Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
 
  76#include <linux/cgroup.h>
  77#include <linux/cpuset.h>
  78#include <linux/audit.h>
  79#include <linux/poll.h>
  80#include <linux/nsproxy.h>
  81#include <linux/oom.h>
  82#include <linux/elf.h>
  83#include <linux/pid_namespace.h>
 
  84#include <linux/fs_struct.h>
  85#include <linux/slab.h>
 
 
  86#ifdef CONFIG_HARDWALL
  87#include <asm/hardwall.h>
  88#endif
 
  89#include "internal.h"
 
  90
  91/* NOTE:
  92 *	Implementing inode permission operations in /proc is almost
  93 *	certainly an error.  Permission checks need to happen during
  94 *	each system call not at open time.  The reason is that most of
  95 *	what we wish to check for permissions in /proc varies at runtime.
  96 *
  97 *	The classic example of a problem is opening file descriptors
  98 *	in /proc for a task before it execs a suid executable.
  99 */
 100
 101struct pid_entry {
 102	char *name;
 103	int len;
 104	mode_t mode;
 105	const struct inode_operations *iop;
 106	const struct file_operations *fop;
 107	union proc_op op;
 108};
 109
 110#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 111	.name = (NAME),					\
 112	.len  = sizeof(NAME) - 1,			\
 113	.mode = MODE,					\
 114	.iop  = IOP,					\
 115	.fop  = FOP,					\
 116	.op   = OP,					\
 117}
 118
 119#define DIR(NAME, MODE, iops, fops)	\
 120	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 121#define LNK(NAME, get_link)					\
 122	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 123		&proc_pid_link_inode_operations, NULL,		\
 124		{ .proc_get_link = get_link } )
 125#define REG(NAME, MODE, fops)				\
 126	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 127#define INF(NAME, MODE, read)				\
 128	NOD(NAME, (S_IFREG|(MODE)), 			\
 129		NULL, &proc_info_file_operations,	\
 130		{ .proc_read = read } )
 131#define ONE(NAME, MODE, show)				\
 132	NOD(NAME, (S_IFREG|(MODE)), 			\
 133		NULL, &proc_single_file_operations,	\
 134		{ .proc_show = show } )
 135
 136/*
 137 * Count the number of hardlinks for the pid_entry table, excluding the .
 138 * and .. links.
 139 */
 140static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 141	unsigned int n)
 142{
 143	unsigned int i;
 144	unsigned int count;
 145
 146	count = 0;
 147	for (i = 0; i < n; ++i) {
 148		if (S_ISDIR(entries[i].mode))
 149			++count;
 150	}
 151
 152	return count;
 153}
 154
 155static int get_task_root(struct task_struct *task, struct path *root)
 156{
 157	int result = -ENOENT;
 158
 159	task_lock(task);
 160	if (task->fs) {
 161		get_fs_root(task->fs, root);
 162		result = 0;
 163	}
 164	task_unlock(task);
 165	return result;
 166}
 167
 168static int proc_cwd_link(struct inode *inode, struct path *path)
 169{
 170	struct task_struct *task = get_proc_task(inode);
 171	int result = -ENOENT;
 172
 173	if (task) {
 174		task_lock(task);
 175		if (task->fs) {
 176			get_fs_pwd(task->fs, path);
 177			result = 0;
 178		}
 179		task_unlock(task);
 180		put_task_struct(task);
 181	}
 182	return result;
 183}
 184
 185static int proc_root_link(struct inode *inode, struct path *path)
 186{
 187	struct task_struct *task = get_proc_task(inode);
 188	int result = -ENOENT;
 189
 190	if (task) {
 191		result = get_task_root(task, path);
 192		put_task_struct(task);
 193	}
 194	return result;
 195}
 196
 197static struct mm_struct *__check_mem_permission(struct task_struct *task)
 198{
 199	struct mm_struct *mm;
 200
 201	mm = get_task_mm(task);
 202	if (!mm)
 203		return ERR_PTR(-EINVAL);
 204
 205	/*
 206	 * A task can always look at itself, in case it chooses
 207	 * to use system calls instead of load instructions.
 208	 */
 209	if (task == current)
 210		return mm;
 211
 212	/*
 213	 * If current is actively ptrace'ing, and would also be
 214	 * permitted to freshly attach with ptrace now, permit it.
 215	 */
 216	if (task_is_stopped_or_traced(task)) {
 217		int match;
 218		rcu_read_lock();
 219		match = (ptrace_parent(task) == current);
 220		rcu_read_unlock();
 221		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
 222			return mm;
 223	}
 224
 225	/*
 226	 * No one else is allowed.
 227	 */
 228	mmput(mm);
 229	return ERR_PTR(-EPERM);
 230}
 231
 232/*
 233 * If current may access user memory in @task return a reference to the
 234 * corresponding mm, otherwise ERR_PTR.
 235 */
 236static struct mm_struct *check_mem_permission(struct task_struct *task)
 237{
 238	struct mm_struct *mm;
 239	int err;
 240
 241	/*
 242	 * Avoid racing if task exec's as we might get a new mm but validate
 243	 * against old credentials.
 244	 */
 245	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 246	if (err)
 247		return ERR_PTR(err);
 248
 249	mm = __check_mem_permission(task);
 250	mutex_unlock(&task->signal->cred_guard_mutex);
 251
 252	return mm;
 253}
 254
 255struct mm_struct *mm_for_maps(struct task_struct *task)
 256{
 257	struct mm_struct *mm;
 258	int err;
 259
 260	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 261	if (err)
 262		return ERR_PTR(err);
 263
 264	mm = get_task_mm(task);
 265	if (mm && mm != current->mm &&
 266			!ptrace_may_access(task, PTRACE_MODE_READ)) {
 267		mmput(mm);
 268		mm = ERR_PTR(-EACCES);
 269	}
 270	mutex_unlock(&task->signal->cred_guard_mutex);
 271
 272	return mm;
 273}
 274
 275static int proc_pid_cmdline(struct task_struct *task, char * buffer)
 276{
 277	int res = 0;
 278	unsigned int len;
 279	struct mm_struct *mm = get_task_mm(task);
 280	if (!mm)
 281		goto out;
 282	if (!mm->arg_end)
 283		goto out_mm;	/* Shh! No looking before we're done */
 284
 285 	len = mm->arg_end - mm->arg_start;
 286 
 287	if (len > PAGE_SIZE)
 288		len = PAGE_SIZE;
 289 
 290	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 291
 292	// If the nul at the end of args has been overwritten, then
 293	// assume application is using setproctitle(3).
 294	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
 295		len = strnlen(buffer, res);
 296		if (len < res) {
 297		    res = len;
 298		} else {
 299			len = mm->env_end - mm->env_start;
 300			if (len > PAGE_SIZE - res)
 301				len = PAGE_SIZE - res;
 302			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
 303			res = strnlen(buffer, res);
 304		}
 305	}
 306out_mm:
 307	mmput(mm);
 308out:
 309	return res;
 310}
 311
 312static int proc_pid_auxv(struct task_struct *task, char *buffer)
 313{
 314	struct mm_struct *mm = mm_for_maps(task);
 315	int res = PTR_ERR(mm);
 316	if (mm && !IS_ERR(mm)) {
 317		unsigned int nwords = 0;
 318		do {
 319			nwords += 2;
 320		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 321		res = nwords * sizeof(mm->saved_auxv[0]);
 322		if (res > PAGE_SIZE)
 323			res = PAGE_SIZE;
 324		memcpy(buffer, mm->saved_auxv, res);
 325		mmput(mm);
 326	}
 327	return res;
 328}
 329
 330
 331#ifdef CONFIG_KALLSYMS
 332/*
 333 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 334 * Returns the resolved symbol.  If that fails, simply return the address.
 335 */
 336static int proc_pid_wchan(struct task_struct *task, char *buffer)
 337{
 338	unsigned long wchan;
 339	char symname[KSYM_NAME_LEN];
 340
 341	wchan = get_wchan(task);
 342
 343	if (lookup_symbol_name(wchan, symname) < 0)
 344		if (!ptrace_may_access(task, PTRACE_MODE_READ))
 345			return 0;
 346		else
 347			return sprintf(buffer, "%lu", wchan);
 348	else
 349		return sprintf(buffer, "%s", symname);
 350}
 351#endif /* CONFIG_KALLSYMS */
 352
 353static int lock_trace(struct task_struct *task)
 354{
 355	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 356	if (err)
 357		return err;
 358	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 359		mutex_unlock(&task->signal->cred_guard_mutex);
 360		return -EPERM;
 361	}
 362	return 0;
 363}
 364
 365static void unlock_trace(struct task_struct *task)
 366{
 367	mutex_unlock(&task->signal->cred_guard_mutex);
 368}
 369
 370#ifdef CONFIG_STACKTRACE
 371
 372#define MAX_STACK_TRACE_DEPTH	64
 373
 374static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 375			  struct pid *pid, struct task_struct *task)
 376{
 377	struct stack_trace trace;
 378	unsigned long *entries;
 379	int err;
 380	int i;
 381
 382	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 383	if (!entries)
 384		return -ENOMEM;
 385
 386	trace.nr_entries	= 0;
 387	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 388	trace.entries		= entries;
 389	trace.skip		= 0;
 390
 391	err = lock_trace(task);
 392	if (!err) {
 393		save_stack_trace_tsk(task, &trace);
 394
 395		for (i = 0; i < trace.nr_entries; i++) {
 396			seq_printf(m, "[<%pK>] %pS\n",
 397				   (void *)entries[i], (void *)entries[i]);
 398		}
 399		unlock_trace(task);
 400	}
 401	kfree(entries);
 402
 403	return err;
 404}
 405#endif
 406
 407#ifdef CONFIG_SCHEDSTATS
 408/*
 409 * Provides /proc/PID/schedstat
 410 */
 411static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 412{
 413	return sprintf(buffer, "%llu %llu %lu\n",
 414			(unsigned long long)task->se.sum_exec_runtime,
 415			(unsigned long long)task->sched_info.run_delay,
 416			task->sched_info.pcount);
 417}
 418#endif
 419
 420#ifdef CONFIG_LATENCYTOP
 421static int lstats_show_proc(struct seq_file *m, void *v)
 422{
 423	int i;
 424	struct inode *inode = m->private;
 425	struct task_struct *task = get_proc_task(inode);
 426
 427	if (!task)
 428		return -ESRCH;
 429	seq_puts(m, "Latency Top version : v0.1\n");
 430	for (i = 0; i < 32; i++) {
 431		struct latency_record *lr = &task->latency_record[i];
 432		if (lr->backtrace[0]) {
 433			int q;
 434			seq_printf(m, "%i %li %li",
 435				   lr->count, lr->time, lr->max);
 436			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 437				unsigned long bt = lr->backtrace[q];
 438				if (!bt)
 439					break;
 440				if (bt == ULONG_MAX)
 441					break;
 442				seq_printf(m, " %ps", (void *)bt);
 443			}
 444			seq_putc(m, '\n');
 445		}
 446
 447	}
 448	put_task_struct(task);
 449	return 0;
 450}
 451
 452static int lstats_open(struct inode *inode, struct file *file)
 453{
 454	return single_open(file, lstats_show_proc, inode);
 455}
 456
 457static ssize_t lstats_write(struct file *file, const char __user *buf,
 458			    size_t count, loff_t *offs)
 459{
 460	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 461
 462	if (!task)
 463		return -ESRCH;
 464	clear_all_latency_tracing(task);
 465	put_task_struct(task);
 466
 467	return count;
 468}
 469
 470static const struct file_operations proc_lstats_operations = {
 471	.open		= lstats_open,
 472	.read		= seq_read,
 473	.write		= lstats_write,
 474	.llseek		= seq_lseek,
 475	.release	= single_release,
 476};
 477
 478#endif
 479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480static int proc_oom_score(struct task_struct *task, char *buffer)
 481{
 
 482	unsigned long points = 0;
 483
 484	read_lock(&tasklist_lock);
 485	if (pid_alive(task))
 486		points = oom_badness(task, NULL, NULL,
 487					totalram_pages + total_swap_pages);
 488	read_unlock(&tasklist_lock);
 489	return sprintf(buffer, "%lu\n", points);
 490}
 491
 492struct limit_names {
 493	char *name;
 494	char *unit;
 495};
 496
 497static const struct limit_names lnames[RLIM_NLIMITS] = {
 498	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 499	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 500	[RLIMIT_DATA] = {"Max data size", "bytes"},
 501	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 502	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 503	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 504	[RLIMIT_NPROC] = {"Max processes", "processes"},
 505	[RLIMIT_NOFILE] = {"Max open files", "files"},
 506	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 507	[RLIMIT_AS] = {"Max address space", "bytes"},
 508	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 509	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 510	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 511	[RLIMIT_NICE] = {"Max nice priority", NULL},
 512	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 513	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 514};
 515
 516/* Display limits for a process */
 517static int proc_pid_limits(struct task_struct *task, char *buffer)
 518{
 519	unsigned int i;
 520	int count = 0;
 521	unsigned long flags;
 522	char *bufptr = buffer;
 523
 524	struct rlimit rlim[RLIM_NLIMITS];
 525
 526	if (!lock_task_sighand(task, &flags))
 527		return 0;
 528	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 529	unlock_task_sighand(task, &flags);
 530
 531	/*
 532	 * print the file header
 533	 */
 534	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 535			"Limit", "Soft Limit", "Hard Limit", "Units");
 536
 537	for (i = 0; i < RLIM_NLIMITS; i++) {
 538		if (rlim[i].rlim_cur == RLIM_INFINITY)
 539			count += sprintf(&bufptr[count], "%-25s %-20s ",
 540					 lnames[i].name, "unlimited");
 541		else
 542			count += sprintf(&bufptr[count], "%-25s %-20lu ",
 543					 lnames[i].name, rlim[i].rlim_cur);
 544
 545		if (rlim[i].rlim_max == RLIM_INFINITY)
 546			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 547		else
 548			count += sprintf(&bufptr[count], "%-20lu ",
 549					 rlim[i].rlim_max);
 550
 551		if (lnames[i].unit)
 552			count += sprintf(&bufptr[count], "%-10s\n",
 553					 lnames[i].unit);
 554		else
 555			count += sprintf(&bufptr[count], "\n");
 556	}
 557
 558	return count;
 559}
 560
 561#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 562static int proc_pid_syscall(struct task_struct *task, char *buffer)
 563{
 564	long nr;
 565	unsigned long args[6], sp, pc;
 566	int res = lock_trace(task);
 567	if (res)
 568		return res;
 569
 570	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 571		res = sprintf(buffer, "running\n");
 572	else if (nr < 0)
 573		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 574	else
 575		res = sprintf(buffer,
 576		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 577		       nr,
 578		       args[0], args[1], args[2], args[3], args[4], args[5],
 579		       sp, pc);
 580	unlock_trace(task);
 581	return res;
 582}
 583#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 584
 585/************************************************************************/
 586/*                       Here the fs part begins                        */
 587/************************************************************************/
 588
 589/* permission checks */
 590static int proc_fd_access_allowed(struct inode *inode)
 591{
 592	struct task_struct *task;
 593	int allowed = 0;
 594	/* Allow access to a task's file descriptors if it is us or we
 595	 * may use ptrace attach to the process and find out that
 596	 * information.
 597	 */
 598	task = get_proc_task(inode);
 599	if (task) {
 600		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 601		put_task_struct(task);
 602	}
 603	return allowed;
 604}
 605
 606int proc_setattr(struct dentry *dentry, struct iattr *attr)
 607{
 608	int error;
 609	struct inode *inode = dentry->d_inode;
 610
 611	if (attr->ia_valid & ATTR_MODE)
 612		return -EPERM;
 613
 614	error = inode_change_ok(inode, attr);
 615	if (error)
 616		return error;
 617
 618	if ((attr->ia_valid & ATTR_SIZE) &&
 619	    attr->ia_size != i_size_read(inode)) {
 620		error = vmtruncate(inode, attr->ia_size);
 621		if (error)
 622			return error;
 623	}
 624
 625	setattr_copy(inode, attr);
 626	mark_inode_dirty(inode);
 627	return 0;
 628}
 629
 630static const struct inode_operations proc_def_inode_operations = {
 631	.setattr	= proc_setattr,
 632};
 633
 634static int mounts_open_common(struct inode *inode, struct file *file,
 635			      const struct seq_operations *op)
 
 636{
 637	struct task_struct *task = get_proc_task(inode);
 638	struct nsproxy *nsp;
 639	struct mnt_namespace *ns = NULL;
 640	struct path root;
 641	struct proc_mounts *p;
 642	int ret = -EINVAL;
 643
 644	if (task) {
 645		rcu_read_lock();
 646		nsp = task_nsproxy(task);
 647		if (nsp) {
 648			ns = nsp->mnt_ns;
 649			if (ns)
 650				get_mnt_ns(ns);
 651		}
 652		rcu_read_unlock();
 653		if (ns && get_task_root(task, &root) == 0)
 654			ret = 0;
 655		put_task_struct(task);
 656	}
 657
 658	if (!ns)
 659		goto err;
 660	if (ret)
 661		goto err_put_ns;
 662
 663	ret = -ENOMEM;
 664	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
 665	if (!p)
 666		goto err_put_path;
 667
 668	file->private_data = &p->m;
 669	ret = seq_open(file, op);
 670	if (ret)
 671		goto err_free;
 672
 673	p->m.private = p;
 674	p->ns = ns;
 675	p->root = root;
 676	p->m.poll_event = ns->event;
 677
 678	return 0;
 679
 680 err_free:
 681	kfree(p);
 682 err_put_path:
 683	path_put(&root);
 684 err_put_ns:
 685	put_mnt_ns(ns);
 686 err:
 687	return ret;
 688}
 689
 690static int mounts_release(struct inode *inode, struct file *file)
 691{
 692	struct proc_mounts *p = file->private_data;
 693	path_put(&p->root);
 694	put_mnt_ns(p->ns);
 695	return seq_release(inode, file);
 696}
 697
 698static unsigned mounts_poll(struct file *file, poll_table *wait)
 699{
 700	struct proc_mounts *p = file->private_data;
 701	unsigned res = POLLIN | POLLRDNORM;
 702
 703	poll_wait(file, &p->ns->poll, wait);
 704	if (mnt_had_events(p))
 705		res |= POLLERR | POLLPRI;
 706
 707	return res;
 708}
 709
 710static int mounts_open(struct inode *inode, struct file *file)
 711{
 712	return mounts_open_common(inode, file, &mounts_op);
 713}
 
 714
 715static const struct file_operations proc_mounts_operations = {
 716	.open		= mounts_open,
 717	.read		= seq_read,
 718	.llseek		= seq_lseek,
 719	.release	= mounts_release,
 720	.poll		= mounts_poll,
 721};
 
 
 
 722
 723static int mountinfo_open(struct inode *inode, struct file *file)
 724{
 725	return mounts_open_common(inode, file, &mountinfo_op);
 726}
 727
 728static const struct file_operations proc_mountinfo_operations = {
 729	.open		= mountinfo_open,
 730	.read		= seq_read,
 731	.llseek		= seq_lseek,
 732	.release	= mounts_release,
 733	.poll		= mounts_poll,
 734};
 735
 736static int mountstats_open(struct inode *inode, struct file *file)
 737{
 738	return mounts_open_common(inode, file, &mountstats_op);
 739}
 740
 741static const struct file_operations proc_mountstats_operations = {
 742	.open		= mountstats_open,
 743	.read		= seq_read,
 744	.llseek		= seq_lseek,
 745	.release	= mounts_release,
 746};
 747
 748#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
 749
 750static ssize_t proc_info_read(struct file * file, char __user * buf,
 751			  size_t count, loff_t *ppos)
 752{
 753	struct inode * inode = file->f_path.dentry->d_inode;
 754	unsigned long page;
 755	ssize_t length;
 756	struct task_struct *task = get_proc_task(inode);
 757
 758	length = -ESRCH;
 759	if (!task)
 760		goto out_no_task;
 761
 762	if (count > PROC_BLOCK_SIZE)
 763		count = PROC_BLOCK_SIZE;
 764
 765	length = -ENOMEM;
 766	if (!(page = __get_free_page(GFP_TEMPORARY)))
 767		goto out;
 768
 769	length = PROC_I(inode)->op.proc_read(task, (char*)page);
 770
 771	if (length >= 0)
 772		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 773	free_page(page);
 774out:
 775	put_task_struct(task);
 776out_no_task:
 777	return length;
 778}
 779
 780static const struct file_operations proc_info_file_operations = {
 781	.read		= proc_info_read,
 782	.llseek		= generic_file_llseek,
 783};
 784
 785static int proc_single_show(struct seq_file *m, void *v)
 786{
 787	struct inode *inode = m->private;
 788	struct pid_namespace *ns;
 789	struct pid *pid;
 790	struct task_struct *task;
 791	int ret;
 792
 793	ns = inode->i_sb->s_fs_info;
 794	pid = proc_pid(inode);
 795	task = get_pid_task(pid, PIDTYPE_PID);
 796	if (!task)
 797		return -ESRCH;
 798
 799	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 800
 801	put_task_struct(task);
 802	return ret;
 803}
 804
 805static int proc_single_open(struct inode *inode, struct file *filp)
 806{
 807	return single_open(filp, proc_single_show, inode);
 808}
 809
 810static const struct file_operations proc_single_file_operations = {
 811	.open		= proc_single_open,
 812	.read		= seq_read,
 813	.llseek		= seq_lseek,
 814	.release	= single_release,
 815};
 816
 817static int mem_open(struct inode* inode, struct file* file)
 818{
 819	file->private_data = (void*)((long)current->self_exec_id);
 820	/* OK to pass negative loff_t, we can catch out-of-range */
 821	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 822	return 0;
 823}
 824
 825static ssize_t mem_read(struct file * file, char __user * buf,
 826			size_t count, loff_t *ppos)
 827{
 828	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 829	char *page;
 830	unsigned long src = *ppos;
 831	int ret = -ESRCH;
 832	struct mm_struct *mm;
 833
 834	if (!task)
 835		goto out_no_task;
 836
 837	ret = -ENOMEM;
 838	page = (char *)__get_free_page(GFP_TEMPORARY);
 839	if (!page)
 840		goto out;
 841
 842	mm = check_mem_permission(task);
 843	ret = PTR_ERR(mm);
 844	if (IS_ERR(mm))
 845		goto out_free;
 846
 847	ret = -EIO;
 848 
 849	if (file->private_data != (void*)((long)current->self_exec_id))
 850		goto out_put;
 
 
 851
 852	ret = 0;
 853 
 854	while (count > 0) {
 855		int this_len, retval;
 856
 857		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 858		retval = access_remote_vm(mm, src, page, this_len, 0);
 859		if (!retval) {
 860			if (!ret)
 861				ret = -EIO;
 862			break;
 863		}
 864
 865		if (copy_to_user(buf, page, retval)) {
 866			ret = -EFAULT;
 867			break;
 868		}
 869 
 870		ret += retval;
 871		src += retval;
 872		buf += retval;
 873		count -= retval;
 874	}
 875	*ppos = src;
 876
 877out_put:
 878	mmput(mm);
 879out_free:
 880	free_page((unsigned long) page);
 881out:
 882	put_task_struct(task);
 883out_no_task:
 884	return ret;
 885}
 886
 887static ssize_t mem_write(struct file * file, const char __user *buf,
 888			 size_t count, loff_t *ppos)
 889{
 890	int copied;
 
 
 891	char *page;
 892	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 893	unsigned long dst = *ppos;
 894	struct mm_struct *mm;
 895
 896	copied = -ESRCH;
 897	if (!task)
 898		goto out_no_task;
 899
 900	copied = -ENOMEM;
 901	page = (char *)__get_free_page(GFP_TEMPORARY);
 902	if (!page)
 903		goto out_task;
 904
 905	mm = check_mem_permission(task);
 906	copied = PTR_ERR(mm);
 907	if (IS_ERR(mm))
 908		goto out_free;
 909
 910	copied = -EIO;
 911	if (file->private_data != (void *)((long)current->self_exec_id))
 912		goto out_mm;
 913
 914	copied = 0;
 
 
 
 915	while (count > 0) {
 916		int this_len, retval;
 917
 918		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 919		if (copy_from_user(page, buf, this_len)) {
 920			copied = -EFAULT;
 921			break;
 922		}
 923		retval = access_remote_vm(mm, dst, page, this_len, 1);
 924		if (!retval) {
 
 925			if (!copied)
 926				copied = -EIO;
 927			break;
 928		}
 929		copied += retval;
 930		buf += retval;
 931		dst += retval;
 932		count -= retval;			
 
 
 
 
 
 
 933	}
 934	*ppos = dst;
 935
 936out_mm:
 937	mmput(mm);
 938out_free:
 939	free_page((unsigned long) page);
 940out_task:
 941	put_task_struct(task);
 942out_no_task:
 943	return copied;
 944}
 945
 
 
 
 
 
 
 
 
 
 
 
 
 946loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 947{
 948	switch (orig) {
 949	case 0:
 950		file->f_pos = offset;
 951		break;
 952	case 1:
 953		file->f_pos += offset;
 954		break;
 955	default:
 956		return -EINVAL;
 957	}
 958	force_successful_syscall_return();
 959	return file->f_pos;
 960}
 961
 
 
 
 
 
 
 
 
 962static const struct file_operations proc_mem_operations = {
 963	.llseek		= mem_lseek,
 964	.read		= mem_read,
 965	.write		= mem_write,
 966	.open		= mem_open,
 
 967};
 968
 
 
 
 
 
 969static ssize_t environ_read(struct file *file, char __user *buf,
 970			size_t count, loff_t *ppos)
 971{
 972	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 973	char *page;
 974	unsigned long src = *ppos;
 975	int ret = -ESRCH;
 976	struct mm_struct *mm;
 977
 978	if (!task)
 979		goto out_no_task;
 980
 981	ret = -ENOMEM;
 982	page = (char *)__get_free_page(GFP_TEMPORARY);
 983	if (!page)
 984		goto out;
 985
 986
 987	mm = mm_for_maps(task);
 988	ret = PTR_ERR(mm);
 989	if (!mm || IS_ERR(mm))
 990		goto out_free;
 991
 992	ret = 0;
 
 
 993	while (count > 0) {
 994		int this_len, retval, max_len;
 
 995
 996		this_len = mm->env_end - (mm->env_start + src);
 997
 998		if (this_len <= 0)
 999			break;
1000
1001		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002		this_len = (this_len > max_len) ? max_len : this_len;
 
 
1003
1004		retval = access_process_vm(task, (mm->env_start + src),
1005			page, this_len, 0);
1006
1007		if (retval <= 0) {
1008			ret = retval;
1009			break;
1010		}
1011
1012		if (copy_to_user(buf, page, retval)) {
1013			ret = -EFAULT;
1014			break;
1015		}
1016
1017		ret += retval;
1018		src += retval;
1019		buf += retval;
1020		count -= retval;
1021	}
1022	*ppos = src;
1023
1024	mmput(mm);
1025out_free:
 
1026	free_page((unsigned long) page);
1027out:
1028	put_task_struct(task);
1029out_no_task:
1030	return ret;
1031}
1032
1033static const struct file_operations proc_environ_operations = {
 
1034	.read		= environ_read,
1035	.llseek		= generic_file_llseek,
 
1036};
1037
1038static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039				size_t count, loff_t *ppos)
1040{
1041	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042	char buffer[PROC_NUMBUF];
 
1043	size_t len;
1044	int oom_adjust = OOM_DISABLE;
1045	unsigned long flags;
1046
1047	if (!task)
1048		return -ESRCH;
1049
1050	if (lock_task_sighand(task, &flags)) {
1051		oom_adjust = task->signal->oom_adj;
 
 
 
 
1052		unlock_task_sighand(task, &flags);
1053	}
1054
1055	put_task_struct(task);
1056
1057	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1058
1059	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060}
1061
1062static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063				size_t count, loff_t *ppos)
1064{
1065	struct task_struct *task;
1066	char buffer[PROC_NUMBUF];
1067	int oom_adjust;
1068	unsigned long flags;
1069	int err;
1070
1071	memset(buffer, 0, sizeof(buffer));
1072	if (count > sizeof(buffer) - 1)
1073		count = sizeof(buffer) - 1;
1074	if (copy_from_user(buffer, buf, count)) {
1075		err = -EFAULT;
1076		goto out;
1077	}
1078
1079	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080	if (err)
1081		goto out;
1082	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083	     oom_adjust != OOM_DISABLE) {
1084		err = -EINVAL;
1085		goto out;
1086	}
1087
1088	task = get_proc_task(file->f_path.dentry->d_inode);
1089	if (!task) {
1090		err = -ESRCH;
1091		goto out;
1092	}
1093
1094	task_lock(task);
1095	if (!task->mm) {
1096		err = -EINVAL;
1097		goto err_task_lock;
1098	}
1099
1100	if (!lock_task_sighand(task, &flags)) {
1101		err = -ESRCH;
1102		goto err_task_lock;
1103	}
1104
1105	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
 
 
 
 
 
 
 
 
 
 
1106		err = -EACCES;
1107		goto err_sighand;
1108	}
1109
1110	if (oom_adjust != task->signal->oom_adj) {
1111		if (oom_adjust == OOM_DISABLE)
1112			atomic_inc(&task->mm->oom_disable_count);
1113		if (task->signal->oom_adj == OOM_DISABLE)
1114			atomic_dec(&task->mm->oom_disable_count);
1115	}
1116
1117	/*
1118	 * Warn that /proc/pid/oom_adj is deprecated, see
1119	 * Documentation/feature-removal-schedule.txt.
1120	 */
1121	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1122		  current->comm, task_pid_nr(current), task_pid_nr(task),
1123		  task_pid_nr(task));
1124	task->signal->oom_adj = oom_adjust;
1125	/*
1126	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1127	 * value is always attainable.
1128	 */
1129	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1130		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1131	else
1132		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1133								-OOM_DISABLE;
1134err_sighand:
1135	unlock_task_sighand(task, &flags);
1136err_task_lock:
1137	task_unlock(task);
1138	put_task_struct(task);
1139out:
1140	return err < 0 ? err : count;
1141}
1142
1143static const struct file_operations proc_oom_adjust_operations = {
1144	.read		= oom_adjust_read,
1145	.write		= oom_adjust_write,
1146	.llseek		= generic_file_llseek,
1147};
1148
1149static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1150					size_t count, loff_t *ppos)
1151{
1152	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1153	char buffer[PROC_NUMBUF];
1154	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1155	unsigned long flags;
1156	size_t len;
1157
1158	if (!task)
1159		return -ESRCH;
1160	if (lock_task_sighand(task, &flags)) {
1161		oom_score_adj = task->signal->oom_score_adj;
1162		unlock_task_sighand(task, &flags);
1163	}
1164	put_task_struct(task);
1165	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1166	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1167}
1168
1169static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1170					size_t count, loff_t *ppos)
1171{
1172	struct task_struct *task;
1173	char buffer[PROC_NUMBUF];
1174	unsigned long flags;
1175	int oom_score_adj;
1176	int err;
1177
1178	memset(buffer, 0, sizeof(buffer));
1179	if (count > sizeof(buffer) - 1)
1180		count = sizeof(buffer) - 1;
1181	if (copy_from_user(buffer, buf, count)) {
1182		err = -EFAULT;
1183		goto out;
1184	}
1185
1186	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1187	if (err)
1188		goto out;
1189	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1190			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1191		err = -EINVAL;
1192		goto out;
1193	}
1194
1195	task = get_proc_task(file->f_path.dentry->d_inode);
1196	if (!task) {
1197		err = -ESRCH;
1198		goto out;
1199	}
1200
1201	task_lock(task);
1202	if (!task->mm) {
1203		err = -EINVAL;
1204		goto err_task_lock;
1205	}
1206
1207	if (!lock_task_sighand(task, &flags)) {
1208		err = -ESRCH;
1209		goto err_task_lock;
1210	}
1211
1212	if (oom_score_adj < task->signal->oom_score_adj_min &&
1213			!capable(CAP_SYS_RESOURCE)) {
1214		err = -EACCES;
1215		goto err_sighand;
1216	}
1217
1218	if (oom_score_adj != task->signal->oom_score_adj) {
1219		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1220			atomic_inc(&task->mm->oom_disable_count);
1221		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1222			atomic_dec(&task->mm->oom_disable_count);
1223	}
1224	task->signal->oom_score_adj = oom_score_adj;
1225	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1226		task->signal->oom_score_adj_min = oom_score_adj;
1227	/*
1228	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1229	 * always attainable.
1230	 */
1231	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1232		task->signal->oom_adj = OOM_DISABLE;
1233	else
1234		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1235							OOM_SCORE_ADJ_MAX;
1236err_sighand:
1237	unlock_task_sighand(task, &flags);
1238err_task_lock:
1239	task_unlock(task);
1240	put_task_struct(task);
1241out:
1242	return err < 0 ? err : count;
1243}
1244
1245static const struct file_operations proc_oom_score_adj_operations = {
1246	.read		= oom_score_adj_read,
1247	.write		= oom_score_adj_write,
1248	.llseek		= default_llseek,
1249};
1250
1251#ifdef CONFIG_AUDITSYSCALL
1252#define TMPBUFLEN 21
1253static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1254				  size_t count, loff_t *ppos)
1255{
1256	struct inode * inode = file->f_path.dentry->d_inode;
1257	struct task_struct *task = get_proc_task(inode);
1258	ssize_t length;
1259	char tmpbuf[TMPBUFLEN];
1260
1261	if (!task)
1262		return -ESRCH;
1263	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1264				audit_get_loginuid(task));
 
1265	put_task_struct(task);
1266	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267}
1268
1269static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1270				   size_t count, loff_t *ppos)
1271{
1272	struct inode * inode = file->f_path.dentry->d_inode;
1273	char *page, *tmp;
1274	ssize_t length;
1275	uid_t loginuid;
1276
1277	if (!capable(CAP_AUDIT_CONTROL))
1278		return -EPERM;
1279
1280	rcu_read_lock();
1281	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282		rcu_read_unlock();
1283		return -EPERM;
1284	}
1285	rcu_read_unlock();
1286
1287	if (count >= PAGE_SIZE)
1288		count = PAGE_SIZE - 1;
1289
1290	if (*ppos != 0) {
1291		/* No partial writes. */
1292		return -EINVAL;
1293	}
1294	page = (char*)__get_free_page(GFP_TEMPORARY);
1295	if (!page)
1296		return -ENOMEM;
1297	length = -EFAULT;
1298	if (copy_from_user(page, buf, count))
1299		goto out_free_page;
1300
1301	page[count] = '\0';
1302	loginuid = simple_strtoul(page, &tmp, 10);
1303	if (tmp == page) {
1304		length = -EINVAL;
1305		goto out_free_page;
1306
1307	}
1308	length = audit_set_loginuid(current, loginuid);
 
 
 
 
 
 
 
 
 
 
 
 
1309	if (likely(length == 0))
1310		length = count;
1311
1312out_free_page:
1313	free_page((unsigned long) page);
1314	return length;
1315}
1316
1317static const struct file_operations proc_loginuid_operations = {
1318	.read		= proc_loginuid_read,
1319	.write		= proc_loginuid_write,
1320	.llseek		= generic_file_llseek,
1321};
1322
1323static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1324				  size_t count, loff_t *ppos)
1325{
1326	struct inode * inode = file->f_path.dentry->d_inode;
1327	struct task_struct *task = get_proc_task(inode);
1328	ssize_t length;
1329	char tmpbuf[TMPBUFLEN];
1330
1331	if (!task)
1332		return -ESRCH;
1333	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1334				audit_get_sessionid(task));
1335	put_task_struct(task);
1336	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1337}
1338
1339static const struct file_operations proc_sessionid_operations = {
1340	.read		= proc_sessionid_read,
1341	.llseek		= generic_file_llseek,
1342};
1343#endif
1344
1345#ifdef CONFIG_FAULT_INJECTION
1346static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1347				      size_t count, loff_t *ppos)
1348{
1349	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1350	char buffer[PROC_NUMBUF];
1351	size_t len;
1352	int make_it_fail;
1353
1354	if (!task)
1355		return -ESRCH;
1356	make_it_fail = task->make_it_fail;
1357	put_task_struct(task);
1358
1359	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1360
1361	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1362}
1363
1364static ssize_t proc_fault_inject_write(struct file * file,
1365			const char __user * buf, size_t count, loff_t *ppos)
1366{
1367	struct task_struct *task;
1368	char buffer[PROC_NUMBUF], *end;
1369	int make_it_fail;
1370
1371	if (!capable(CAP_SYS_RESOURCE))
1372		return -EPERM;
1373	memset(buffer, 0, sizeof(buffer));
1374	if (count > sizeof(buffer) - 1)
1375		count = sizeof(buffer) - 1;
1376	if (copy_from_user(buffer, buf, count))
1377		return -EFAULT;
1378	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1379	if (*end)
1380		return -EINVAL;
1381	task = get_proc_task(file->f_dentry->d_inode);
 
 
 
1382	if (!task)
1383		return -ESRCH;
1384	task->make_it_fail = make_it_fail;
1385	put_task_struct(task);
1386
1387	return count;
1388}
1389
1390static const struct file_operations proc_fault_inject_operations = {
1391	.read		= proc_fault_inject_read,
1392	.write		= proc_fault_inject_write,
1393	.llseek		= generic_file_llseek,
1394};
1395#endif
1396
1397
1398#ifdef CONFIG_SCHED_DEBUG
1399/*
1400 * Print out various scheduling related per-task fields:
1401 */
1402static int sched_show(struct seq_file *m, void *v)
1403{
1404	struct inode *inode = m->private;
1405	struct task_struct *p;
1406
1407	p = get_proc_task(inode);
1408	if (!p)
1409		return -ESRCH;
1410	proc_sched_show_task(p, m);
1411
1412	put_task_struct(p);
1413
1414	return 0;
1415}
1416
1417static ssize_t
1418sched_write(struct file *file, const char __user *buf,
1419	    size_t count, loff_t *offset)
1420{
1421	struct inode *inode = file->f_path.dentry->d_inode;
1422	struct task_struct *p;
1423
1424	p = get_proc_task(inode);
1425	if (!p)
1426		return -ESRCH;
1427	proc_sched_set_task(p);
1428
1429	put_task_struct(p);
1430
1431	return count;
1432}
1433
1434static int sched_open(struct inode *inode, struct file *filp)
1435{
1436	return single_open(filp, sched_show, inode);
1437}
1438
1439static const struct file_operations proc_pid_sched_operations = {
1440	.open		= sched_open,
1441	.read		= seq_read,
1442	.write		= sched_write,
1443	.llseek		= seq_lseek,
1444	.release	= single_release,
1445};
1446
1447#endif
1448
1449#ifdef CONFIG_SCHED_AUTOGROUP
1450/*
1451 * Print out autogroup related information:
1452 */
1453static int sched_autogroup_show(struct seq_file *m, void *v)
1454{
1455	struct inode *inode = m->private;
1456	struct task_struct *p;
1457
1458	p = get_proc_task(inode);
1459	if (!p)
1460		return -ESRCH;
1461	proc_sched_autogroup_show_task(p, m);
1462
1463	put_task_struct(p);
1464
1465	return 0;
1466}
1467
1468static ssize_t
1469sched_autogroup_write(struct file *file, const char __user *buf,
1470	    size_t count, loff_t *offset)
1471{
1472	struct inode *inode = file->f_path.dentry->d_inode;
1473	struct task_struct *p;
1474	char buffer[PROC_NUMBUF];
1475	int nice;
1476	int err;
1477
1478	memset(buffer, 0, sizeof(buffer));
1479	if (count > sizeof(buffer) - 1)
1480		count = sizeof(buffer) - 1;
1481	if (copy_from_user(buffer, buf, count))
1482		return -EFAULT;
1483
1484	err = kstrtoint(strstrip(buffer), 0, &nice);
1485	if (err < 0)
1486		return err;
1487
1488	p = get_proc_task(inode);
1489	if (!p)
1490		return -ESRCH;
1491
1492	err = nice;
1493	err = proc_sched_autogroup_set_nice(p, &err);
1494	if (err)
1495		count = err;
1496
1497	put_task_struct(p);
1498
1499	return count;
1500}
1501
1502static int sched_autogroup_open(struct inode *inode, struct file *filp)
1503{
1504	int ret;
1505
1506	ret = single_open(filp, sched_autogroup_show, NULL);
1507	if (!ret) {
1508		struct seq_file *m = filp->private_data;
1509
1510		m->private = inode;
1511	}
1512	return ret;
1513}
1514
1515static const struct file_operations proc_pid_sched_autogroup_operations = {
1516	.open		= sched_autogroup_open,
1517	.read		= seq_read,
1518	.write		= sched_autogroup_write,
1519	.llseek		= seq_lseek,
1520	.release	= single_release,
1521};
1522
1523#endif /* CONFIG_SCHED_AUTOGROUP */
1524
1525static ssize_t comm_write(struct file *file, const char __user *buf,
1526				size_t count, loff_t *offset)
1527{
1528	struct inode *inode = file->f_path.dentry->d_inode;
1529	struct task_struct *p;
1530	char buffer[TASK_COMM_LEN];
 
1531
1532	memset(buffer, 0, sizeof(buffer));
1533	if (count > sizeof(buffer) - 1)
1534		count = sizeof(buffer) - 1;
1535	if (copy_from_user(buffer, buf, count))
1536		return -EFAULT;
1537
1538	p = get_proc_task(inode);
1539	if (!p)
1540		return -ESRCH;
1541
1542	if (same_thread_group(current, p))
1543		set_task_comm(p, buffer);
1544	else
1545		count = -EINVAL;
1546
1547	put_task_struct(p);
1548
1549	return count;
1550}
1551
1552static int comm_show(struct seq_file *m, void *v)
1553{
1554	struct inode *inode = m->private;
1555	struct task_struct *p;
1556
1557	p = get_proc_task(inode);
1558	if (!p)
1559		return -ESRCH;
1560
1561	task_lock(p);
1562	seq_printf(m, "%s\n", p->comm);
1563	task_unlock(p);
1564
1565	put_task_struct(p);
1566
1567	return 0;
1568}
1569
1570static int comm_open(struct inode *inode, struct file *filp)
1571{
1572	return single_open(filp, comm_show, inode);
1573}
1574
1575static const struct file_operations proc_pid_set_comm_operations = {
1576	.open		= comm_open,
1577	.read		= seq_read,
1578	.write		= comm_write,
1579	.llseek		= seq_lseek,
1580	.release	= single_release,
1581};
1582
1583static int proc_exe_link(struct inode *inode, struct path *exe_path)
1584{
1585	struct task_struct *task;
1586	struct mm_struct *mm;
1587	struct file *exe_file;
1588
1589	task = get_proc_task(inode);
1590	if (!task)
1591		return -ENOENT;
1592	mm = get_task_mm(task);
1593	put_task_struct(task);
1594	if (!mm)
1595		return -ENOENT;
1596	exe_file = get_mm_exe_file(mm);
1597	mmput(mm);
1598	if (exe_file) {
1599		*exe_path = exe_file->f_path;
1600		path_get(&exe_file->f_path);
1601		fput(exe_file);
1602		return 0;
1603	} else
1604		return -ENOENT;
1605}
1606
1607static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1608{
1609	struct inode *inode = dentry->d_inode;
 
1610	int error = -EACCES;
1611
1612	/* We don't need a base pointer in the /proc filesystem */
1613	path_put(&nd->path);
1614
1615	/* Are we allowed to snoop on the tasks file descriptors? */
1616	if (!proc_fd_access_allowed(inode))
1617		goto out;
1618
1619	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
 
 
 
 
 
1620out:
1621	return ERR_PTR(error);
1622}
1623
1624static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1625{
1626	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1627	char *pathname;
1628	int len;
1629
1630	if (!tmp)
1631		return -ENOMEM;
1632
1633	pathname = d_path(path, tmp, PAGE_SIZE);
1634	len = PTR_ERR(pathname);
1635	if (IS_ERR(pathname))
1636		goto out;
1637	len = tmp + PAGE_SIZE - 1 - pathname;
1638
1639	if (len > buflen)
1640		len = buflen;
1641	if (copy_to_user(buffer, pathname, len))
1642		len = -EFAULT;
1643 out:
1644	free_page((unsigned long)tmp);
1645	return len;
1646}
1647
1648static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1649{
1650	int error = -EACCES;
1651	struct inode *inode = dentry->d_inode;
1652	struct path path;
1653
1654	/* Are we allowed to snoop on the tasks file descriptors? */
1655	if (!proc_fd_access_allowed(inode))
1656		goto out;
1657
1658	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1659	if (error)
1660		goto out;
1661
1662	error = do_proc_readlink(&path, buffer, buflen);
1663	path_put(&path);
1664out:
1665	return error;
1666}
1667
1668static const struct inode_operations proc_pid_link_inode_operations = {
1669	.readlink	= proc_pid_readlink,
1670	.follow_link	= proc_pid_follow_link,
1671	.setattr	= proc_setattr,
1672};
1673
1674
1675/* building an inode */
1676
1677static int task_dumpable(struct task_struct *task)
1678{
1679	int dumpable = 0;
1680	struct mm_struct *mm;
1681
1682	task_lock(task);
1683	mm = task->mm;
1684	if (mm)
1685		dumpable = get_dumpable(mm);
1686	task_unlock(task);
1687	if(dumpable == 1)
1688		return 1;
1689	return 0;
1690}
1691
1692struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1693{
1694	struct inode * inode;
1695	struct proc_inode *ei;
1696	const struct cred *cred;
1697
1698	/* We need a new inode */
1699
1700	inode = new_inode(sb);
1701	if (!inode)
1702		goto out;
1703
1704	/* Common stuff */
1705	ei = PROC_I(inode);
1706	inode->i_ino = get_next_ino();
1707	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1708	inode->i_op = &proc_def_inode_operations;
1709
1710	/*
1711	 * grab the reference to task.
1712	 */
1713	ei->pid = get_task_pid(task, PIDTYPE_PID);
1714	if (!ei->pid)
1715		goto out_unlock;
1716
1717	if (task_dumpable(task)) {
1718		rcu_read_lock();
1719		cred = __task_cred(task);
1720		inode->i_uid = cred->euid;
1721		inode->i_gid = cred->egid;
1722		rcu_read_unlock();
1723	}
1724	security_task_to_inode(task, inode);
1725
1726out:
1727	return inode;
1728
1729out_unlock:
1730	iput(inode);
1731	return NULL;
1732}
1733
1734int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1735{
1736	struct inode *inode = dentry->d_inode;
1737	struct task_struct *task;
1738	const struct cred *cred;
 
1739
1740	generic_fillattr(inode, stat);
1741
1742	rcu_read_lock();
1743	stat->uid = 0;
1744	stat->gid = 0;
1745	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1746	if (task) {
 
 
 
 
 
 
 
 
1747		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748		    task_dumpable(task)) {
1749			cred = __task_cred(task);
1750			stat->uid = cred->euid;
1751			stat->gid = cred->egid;
1752		}
1753	}
1754	rcu_read_unlock();
1755	return 0;
1756}
1757
1758/* dentry stuff */
1759
1760/*
1761 *	Exceptional case: normally we are not allowed to unhash a busy
1762 * directory. In this case, however, we can do it - no aliasing problems
1763 * due to the way we treat inodes.
1764 *
1765 * Rewrite the inode's ownerships here because the owning task may have
1766 * performed a setuid(), etc.
1767 *
1768 * Before the /proc/pid/status file was created the only way to read
1769 * the effective uid of a /process was to stat /proc/pid.  Reading
1770 * /proc/pid/status is slow enough that procps and other packages
1771 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1772 * made this apply to all per process world readable and executable
1773 * directories.
1774 */
1775int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1776{
1777	struct inode *inode;
1778	struct task_struct *task;
1779	const struct cred *cred;
1780
1781	if (nd && nd->flags & LOOKUP_RCU)
1782		return -ECHILD;
1783
1784	inode = dentry->d_inode;
1785	task = get_proc_task(inode);
1786
1787	if (task) {
1788		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1789		    task_dumpable(task)) {
1790			rcu_read_lock();
1791			cred = __task_cred(task);
1792			inode->i_uid = cred->euid;
1793			inode->i_gid = cred->egid;
1794			rcu_read_unlock();
1795		} else {
1796			inode->i_uid = 0;
1797			inode->i_gid = 0;
1798		}
1799		inode->i_mode &= ~(S_ISUID | S_ISGID);
1800		security_task_to_inode(task, inode);
1801		put_task_struct(task);
1802		return 1;
1803	}
1804	d_drop(dentry);
1805	return 0;
1806}
1807
1808static int pid_delete_dentry(const struct dentry * dentry)
 
 
 
 
 
1809{
1810	/* Is the task we represent dead?
1811	 * If so, then don't put the dentry on the lru list,
1812	 * kill it immediately.
1813	 */
1814	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1815}
1816
1817const struct dentry_operations pid_dentry_operations =
1818{
1819	.d_revalidate	= pid_revalidate,
1820	.d_delete	= pid_delete_dentry,
1821};
1822
1823/* Lookups */
1824
1825/*
1826 * Fill a directory entry.
1827 *
1828 * If possible create the dcache entry and derive our inode number and
1829 * file type from dcache entry.
1830 *
1831 * Since all of the proc inode numbers are dynamically generated, the inode
1832 * numbers do not exist until the inode is cache.  This means creating the
1833 * the dcache entry in readdir is necessary to keep the inode numbers
1834 * reported by readdir in sync with the inode numbers reported
1835 * by stat.
1836 */
1837int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1838	const char *name, int len,
1839	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840{
1841	struct dentry *child, *dir = filp->f_path.dentry;
 
1842	struct inode *inode;
1843	struct qstr qname;
1844	ino_t ino = 0;
1845	unsigned type = DT_UNKNOWN;
1846
1847	qname.name = name;
1848	qname.len  = len;
1849	qname.hash = full_name_hash(name, len);
1850
1851	child = d_lookup(dir, &qname);
1852	if (!child) {
1853		struct dentry *new;
1854		new = d_alloc(dir, &qname);
1855		if (new) {
1856			child = instantiate(dir->d_inode, new, task, ptr);
1857			if (child)
1858				dput(new);
1859			else
1860				child = new;
1861		}
1862	}
1863	if (!child || IS_ERR(child) || !child->d_inode)
1864		goto end_instantiate;
1865	inode = child->d_inode;
1866	if (inode) {
1867		ino = inode->i_ino;
1868		type = inode->i_mode >> 12;
1869	}
1870	dput(child);
 
 
1871end_instantiate:
1872	if (!ino)
1873		ino = find_inode_number(dir, &qname);
1874	if (!ino)
1875		ino = 1;
1876	return filldir(dirent, name, len, filp->f_pos, ino, type);
1877}
1878
1879static unsigned name_to_int(struct dentry *dentry)
1880{
1881	const char *name = dentry->d_name.name;
1882	int len = dentry->d_name.len;
1883	unsigned n = 0;
1884
1885	if (len > 1 && *name == '0')
1886		goto out;
1887	while (len-- > 0) {
1888		unsigned c = *name++ - '0';
1889		if (c > 9)
1890			goto out;
1891		if (n >= (~0U-9)/10)
1892			goto out;
1893		n *= 10;
1894		n += c;
1895	}
1896	return n;
1897out:
1898	return ~0U;
1899}
1900
1901#define PROC_FDINFO_MAX 64
1902
1903static int proc_fd_info(struct inode *inode, struct path *path, char *info)
 
 
 
 
 
1904{
1905	struct task_struct *task = get_proc_task(inode);
1906	struct files_struct *files = NULL;
1907	struct file *file;
1908	int fd = proc_fd(inode);
1909
1910	if (task) {
1911		files = get_files_struct(task);
1912		put_task_struct(task);
1913	}
1914	if (files) {
1915		/*
1916		 * We are not taking a ref to the file structure, so we must
1917		 * hold ->file_lock.
1918		 */
1919		spin_lock(&files->file_lock);
1920		file = fcheck_files(files, fd);
1921		if (file) {
1922			unsigned int f_flags;
1923			struct fdtable *fdt;
1924
1925			fdt = files_fdtable(files);
1926			f_flags = file->f_flags & ~O_CLOEXEC;
1927			if (FD_ISSET(fd, fdt->close_on_exec))
1928				f_flags |= O_CLOEXEC;
1929
1930			if (path) {
1931				*path = file->f_path;
1932				path_get(&file->f_path);
1933			}
1934			if (info)
1935				snprintf(info, PROC_FDINFO_MAX,
1936					 "pos:\t%lli\n"
1937					 "flags:\t0%o\n",
1938					 (long long) file->f_pos,
1939					 f_flags);
1940			spin_unlock(&files->file_lock);
1941			put_files_struct(files);
1942			return 0;
1943		}
1944		spin_unlock(&files->file_lock);
1945		put_files_struct(files);
1946	}
1947	return -ENOENT;
1948}
1949
1950static int proc_fd_link(struct inode *inode, struct path *path)
1951{
1952	return proc_fd_info(inode, path, NULL);
1953}
1954
1955static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1956{
1957	struct inode *inode;
 
 
1958	struct task_struct *task;
1959	int fd;
1960	struct files_struct *files;
1961	const struct cred *cred;
 
 
1962
1963	if (nd && nd->flags & LOOKUP_RCU)
1964		return -ECHILD;
1965
 
 
 
 
 
1966	inode = dentry->d_inode;
1967	task = get_proc_task(inode);
1968	fd = proc_fd(inode);
 
1969
1970	if (task) {
1971		files = get_files_struct(task);
1972		if (files) {
 
 
 
 
 
 
 
 
 
 
 
1973			rcu_read_lock();
1974			if (fcheck_files(files, fd)) {
1975				rcu_read_unlock();
1976				put_files_struct(files);
1977				if (task_dumpable(task)) {
1978					rcu_read_lock();
1979					cred = __task_cred(task);
1980					inode->i_uid = cred->euid;
1981					inode->i_gid = cred->egid;
1982					rcu_read_unlock();
1983				} else {
1984					inode->i_uid = 0;
1985					inode->i_gid = 0;
1986				}
1987				inode->i_mode &= ~(S_ISUID | S_ISGID);
1988				security_task_to_inode(task, inode);
1989				put_task_struct(task);
1990				return 1;
1991			}
1992			rcu_read_unlock();
1993			put_files_struct(files);
 
 
1994		}
1995		put_task_struct(task);
 
1996	}
1997	d_drop(dentry);
1998	return 0;
 
 
 
 
 
 
 
1999}
2000
2001static const struct dentry_operations tid_fd_dentry_operations =
2002{
2003	.d_revalidate	= tid_fd_revalidate,
2004	.d_delete	= pid_delete_dentry,
2005};
2006
2007static struct dentry *proc_fd_instantiate(struct inode *dir,
2008	struct dentry *dentry, struct task_struct *task, const void *ptr)
2009{
2010	unsigned fd = *(const unsigned *)ptr;
2011	struct file *file;
2012	struct files_struct *files;
2013 	struct inode *inode;
2014 	struct proc_inode *ei;
2015	struct dentry *error = ERR_PTR(-ENOENT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016
2017	inode = proc_pid_make_inode(dir->i_sb, task);
2018	if (!inode)
2019		goto out;
2020	ei = PROC_I(inode);
2021	ei->fd = fd;
2022	files = get_files_struct(task);
2023	if (!files)
2024		goto out_iput;
2025	inode->i_mode = S_IFLNK;
2026
2027	/*
2028	 * We are not taking a ref to the file structure, so we must
2029	 * hold ->file_lock.
2030	 */
2031	spin_lock(&files->file_lock);
2032	file = fcheck_files(files, fd);
2033	if (!file)
2034		goto out_unlock;
2035	if (file->f_mode & FMODE_READ)
2036		inode->i_mode |= S_IRUSR | S_IXUSR;
2037	if (file->f_mode & FMODE_WRITE)
2038		inode->i_mode |= S_IWUSR | S_IXUSR;
2039	spin_unlock(&files->file_lock);
2040	put_files_struct(files);
2041
2042	inode->i_op = &proc_pid_link_inode_operations;
2043	inode->i_size = 64;
2044	ei->op.proc_get_link = proc_fd_link;
2045	d_set_d_op(dentry, &tid_fd_dentry_operations);
 
 
 
 
 
 
2046	d_add(dentry, inode);
2047	/* Close the race of the process dying before we return the dentry */
2048	if (tid_fd_revalidate(dentry, NULL))
2049		error = NULL;
2050
2051 out:
2052	return error;
2053out_unlock:
2054	spin_unlock(&files->file_lock);
2055	put_files_struct(files);
2056out_iput:
2057	iput(inode);
2058	goto out;
2059}
2060
2061static struct dentry *proc_lookupfd_common(struct inode *dir,
2062					   struct dentry *dentry,
2063					   instantiate_t instantiate)
2064{
2065	struct task_struct *task = get_proc_task(dir);
2066	unsigned fd = name_to_int(dentry);
2067	struct dentry *result = ERR_PTR(-ENOENT);
 
 
 
 
 
 
2068
 
 
2069	if (!task)
2070		goto out_no_task;
2071	if (fd == ~0U)
2072		goto out;
2073
2074	result = instantiate(dir, dentry, task, &fd);
2075out:
2076	put_task_struct(task);
2077out_no_task:
2078	return result;
2079}
2080
2081static int proc_readfd_common(struct file * filp, void * dirent,
2082			      filldir_t filldir, instantiate_t instantiate)
2083{
2084	struct dentry *dentry = filp->f_path.dentry;
2085	struct inode *inode = dentry->d_inode;
2086	struct task_struct *p = get_proc_task(inode);
2087	unsigned int fd, ino;
2088	int retval;
2089	struct files_struct * files;
2090
2091	retval = -ENOENT;
2092	if (!p)
2093		goto out_no_task;
2094	retval = 0;
2095
2096	fd = filp->f_pos;
2097	switch (fd) {
2098		case 0:
2099			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2100				goto out;
2101			filp->f_pos++;
2102		case 1:
2103			ino = parent_ino(dentry);
2104			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2105				goto out;
2106			filp->f_pos++;
2107		default:
2108			files = get_files_struct(p);
2109			if (!files)
2110				goto out;
2111			rcu_read_lock();
2112			for (fd = filp->f_pos-2;
2113			     fd < files_fdtable(files)->max_fds;
2114			     fd++, filp->f_pos++) {
2115				char name[PROC_NUMBUF];
2116				int len;
2117
2118				if (!fcheck_files(files, fd))
2119					continue;
2120				rcu_read_unlock();
2121
2122				len = snprintf(name, sizeof(name), "%d", fd);
2123				if (proc_fill_cache(filp, dirent, filldir,
2124						    name, len, instantiate,
2125						    p, &fd) < 0) {
2126					rcu_read_lock();
2127					break;
2128				}
2129				rcu_read_lock();
2130			}
2131			rcu_read_unlock();
2132			put_files_struct(files);
2133	}
2134out:
2135	put_task_struct(p);
2136out_no_task:
2137	return retval;
2138}
2139
2140static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2141				    struct nameidata *nd)
2142{
2143	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2144}
2145
2146static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
 
2147{
2148	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2149}
 
 
 
 
 
 
2150
2151static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2152				      size_t len, loff_t *ppos)
2153{
2154	char tmp[PROC_FDINFO_MAX];
2155	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2156	if (!err)
2157		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2158	return err;
2159}
2160
2161static const struct file_operations proc_fdinfo_file_operations = {
2162	.open           = nonseekable_open,
2163	.read		= proc_fdinfo_read,
2164	.llseek		= no_llseek,
2165};
2166
2167static const struct file_operations proc_fd_operations = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168	.read		= generic_read_dir,
2169	.readdir	= proc_readfd,
2170	.llseek		= default_llseek,
2171};
2172
2173/*
2174 * /proc/pid/fd needs a special permission handler so that a process can still
2175 * access /proc/self/fd after it has executed a setuid().
2176 */
2177static int proc_fd_permission(struct inode *inode, int mask)
2178{
2179	int rv = generic_permission(inode, mask);
2180	if (rv == 0)
2181		return 0;
2182	if (task_pid(current) == proc_pid(inode))
2183		rv = 0;
2184	return rv;
2185}
2186
2187/*
2188 * proc directories can do almost nothing..
2189 */
2190static const struct inode_operations proc_fd_inode_operations = {
2191	.lookup		= proc_lookupfd,
2192	.permission	= proc_fd_permission,
2193	.setattr	= proc_setattr,
2194};
2195
2196static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2197	struct dentry *dentry, struct task_struct *task, const void *ptr)
2198{
2199	unsigned fd = *(unsigned *)ptr;
2200 	struct inode *inode;
2201 	struct proc_inode *ei;
2202	struct dentry *error = ERR_PTR(-ENOENT);
2203
2204	inode = proc_pid_make_inode(dir->i_sb, task);
2205	if (!inode)
2206		goto out;
2207	ei = PROC_I(inode);
2208	ei->fd = fd;
2209	inode->i_mode = S_IFREG | S_IRUSR;
2210	inode->i_fop = &proc_fdinfo_file_operations;
2211	d_set_d_op(dentry, &tid_fd_dentry_operations);
2212	d_add(dentry, inode);
2213	/* Close the race of the process dying before we return the dentry */
2214	if (tid_fd_revalidate(dentry, NULL))
2215		error = NULL;
2216
2217 out:
2218	return error;
 
 
 
 
 
 
 
 
 
2219}
2220
2221static struct dentry *proc_lookupfdinfo(struct inode *dir,
2222					struct dentry *dentry,
2223					struct nameidata *nd)
2224{
2225	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
2226}
2227
2228static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2229{
2230	return proc_readfd_common(filp, dirent, filldir,
2231				  proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232}
2233
2234static const struct file_operations proc_fdinfo_operations = {
2235	.read		= generic_read_dir,
2236	.readdir	= proc_readfdinfo,
2237	.llseek		= default_llseek,
 
2238};
2239
2240/*
2241 * proc directories can do almost nothing..
2242 */
2243static const struct inode_operations proc_fdinfo_inode_operations = {
2244	.lookup		= proc_lookupfdinfo,
2245	.setattr	= proc_setattr,
2246};
2247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248
2249static struct dentry *proc_pident_instantiate(struct inode *dir,
2250	struct dentry *dentry, struct task_struct *task, const void *ptr)
2251{
2252	const struct pid_entry *p = ptr;
2253	struct inode *inode;
2254	struct proc_inode *ei;
2255	struct dentry *error = ERR_PTR(-ENOENT);
2256
2257	inode = proc_pid_make_inode(dir->i_sb, task);
2258	if (!inode)
2259		goto out;
2260
2261	ei = PROC_I(inode);
2262	inode->i_mode = p->mode;
2263	if (S_ISDIR(inode->i_mode))
2264		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2265	if (p->iop)
2266		inode->i_op = p->iop;
2267	if (p->fop)
2268		inode->i_fop = p->fop;
2269	ei->op = p->op;
2270	d_set_d_op(dentry, &pid_dentry_operations);
2271	d_add(dentry, inode);
2272	/* Close the race of the process dying before we return the dentry */
2273	if (pid_revalidate(dentry, NULL))
2274		error = NULL;
2275out:
2276	return error;
2277}
2278
2279static struct dentry *proc_pident_lookup(struct inode *dir, 
2280					 struct dentry *dentry,
2281					 const struct pid_entry *ents,
2282					 unsigned int nents)
2283{
2284	struct dentry *error;
2285	struct task_struct *task = get_proc_task(dir);
2286	const struct pid_entry *p, *last;
2287
2288	error = ERR_PTR(-ENOENT);
2289
2290	if (!task)
2291		goto out_no_task;
2292
2293	/*
2294	 * Yes, it does not scale. And it should not. Don't add
2295	 * new entries into /proc/<tgid>/ without very good reasons.
2296	 */
2297	last = &ents[nents - 1];
2298	for (p = ents; p <= last; p++) {
2299		if (p->len != dentry->d_name.len)
2300			continue;
2301		if (!memcmp(dentry->d_name.name, p->name, p->len))
2302			break;
2303	}
2304	if (p > last)
2305		goto out;
2306
2307	error = proc_pident_instantiate(dir, dentry, task, p);
2308out:
2309	put_task_struct(task);
2310out_no_task:
2311	return error;
2312}
2313
2314static int proc_pident_fill_cache(struct file *filp, void *dirent,
2315	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2316{
2317	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2318				proc_pident_instantiate, task, p);
2319}
2320
2321static int proc_pident_readdir(struct file *filp,
2322		void *dirent, filldir_t filldir,
2323		const struct pid_entry *ents, unsigned int nents)
2324{
2325	int i;
2326	struct dentry *dentry = filp->f_path.dentry;
2327	struct inode *inode = dentry->d_inode;
2328	struct task_struct *task = get_proc_task(inode);
2329	const struct pid_entry *p, *last;
2330	ino_t ino;
2331	int ret;
2332
2333	ret = -ENOENT;
2334	if (!task)
2335		goto out_no_task;
2336
2337	ret = 0;
2338	i = filp->f_pos;
2339	switch (i) {
2340	case 0:
2341		ino = inode->i_ino;
2342		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2343			goto out;
2344		i++;
2345		filp->f_pos++;
2346		/* fall through */
2347	case 1:
2348		ino = parent_ino(dentry);
2349		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2350			goto out;
2351		i++;
2352		filp->f_pos++;
2353		/* fall through */
2354	default:
2355		i -= 2;
2356		if (i >= nents) {
2357			ret = 1;
2358			goto out;
2359		}
2360		p = ents + i;
2361		last = &ents[nents - 1];
2362		while (p <= last) {
2363			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2364				goto out;
2365			filp->f_pos++;
2366			p++;
2367		}
2368	}
2369
2370	ret = 1;
 
 
 
 
 
 
 
 
2371out:
2372	put_task_struct(task);
2373out_no_task:
2374	return ret;
2375}
2376
2377#ifdef CONFIG_SECURITY
2378static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2379				  size_t count, loff_t *ppos)
2380{
2381	struct inode * inode = file->f_path.dentry->d_inode;
2382	char *p = NULL;
2383	ssize_t length;
2384	struct task_struct *task = get_proc_task(inode);
2385
2386	if (!task)
2387		return -ESRCH;
2388
2389	length = security_getprocattr(task,
2390				      (char*)file->f_path.dentry->d_name.name,
2391				      &p);
2392	put_task_struct(task);
2393	if (length > 0)
2394		length = simple_read_from_buffer(buf, count, ppos, p, length);
2395	kfree(p);
2396	return length;
2397}
2398
2399static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2400				   size_t count, loff_t *ppos)
2401{
2402	struct inode * inode = file->f_path.dentry->d_inode;
2403	char *page;
2404	ssize_t length;
2405	struct task_struct *task = get_proc_task(inode);
2406
2407	length = -ESRCH;
2408	if (!task)
2409		goto out_no_task;
2410	if (count > PAGE_SIZE)
2411		count = PAGE_SIZE;
2412
2413	/* No partial writes. */
2414	length = -EINVAL;
2415	if (*ppos != 0)
2416		goto out;
2417
2418	length = -ENOMEM;
2419	page = (char*)__get_free_page(GFP_TEMPORARY);
2420	if (!page)
2421		goto out;
2422
2423	length = -EFAULT;
2424	if (copy_from_user(page, buf, count))
2425		goto out_free;
2426
2427	/* Guard against adverse ptrace interaction */
2428	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2429	if (length < 0)
2430		goto out_free;
2431
2432	length = security_setprocattr(task,
2433				      (char*)file->f_path.dentry->d_name.name,
2434				      (void*)page, count);
2435	mutex_unlock(&task->signal->cred_guard_mutex);
2436out_free:
2437	free_page((unsigned long) page);
2438out:
2439	put_task_struct(task);
2440out_no_task:
2441	return length;
2442}
2443
2444static const struct file_operations proc_pid_attr_operations = {
2445	.read		= proc_pid_attr_read,
2446	.write		= proc_pid_attr_write,
2447	.llseek		= generic_file_llseek,
2448};
2449
2450static const struct pid_entry attr_dir_stuff[] = {
2451	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2452	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2453	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2454	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2455	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2456	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457};
2458
2459static int proc_attr_dir_readdir(struct file * filp,
2460			     void * dirent, filldir_t filldir)
2461{
2462	return proc_pident_readdir(filp,dirent,filldir,
2463				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2464}
2465
2466static const struct file_operations proc_attr_dir_operations = {
2467	.read		= generic_read_dir,
2468	.readdir	= proc_attr_dir_readdir,
2469	.llseek		= default_llseek,
2470};
2471
2472static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2473				struct dentry *dentry, struct nameidata *nd)
2474{
2475	return proc_pident_lookup(dir, dentry,
2476				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2477}
2478
2479static const struct inode_operations proc_attr_dir_inode_operations = {
2480	.lookup		= proc_attr_dir_lookup,
2481	.getattr	= pid_getattr,
2482	.setattr	= proc_setattr,
2483};
2484
2485#endif
2486
2487#ifdef CONFIG_ELF_CORE
2488static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2489					 size_t count, loff_t *ppos)
2490{
2491	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2492	struct mm_struct *mm;
2493	char buffer[PROC_NUMBUF];
2494	size_t len;
2495	int ret;
2496
2497	if (!task)
2498		return -ESRCH;
2499
2500	ret = 0;
2501	mm = get_task_mm(task);
2502	if (mm) {
2503		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2504			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2505				MMF_DUMP_FILTER_SHIFT));
2506		mmput(mm);
2507		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2508	}
2509
2510	put_task_struct(task);
2511
2512	return ret;
2513}
2514
2515static ssize_t proc_coredump_filter_write(struct file *file,
2516					  const char __user *buf,
2517					  size_t count,
2518					  loff_t *ppos)
2519{
2520	struct task_struct *task;
2521	struct mm_struct *mm;
2522	char buffer[PROC_NUMBUF], *end;
2523	unsigned int val;
2524	int ret;
2525	int i;
2526	unsigned long mask;
2527
2528	ret = -EFAULT;
2529	memset(buffer, 0, sizeof(buffer));
2530	if (count > sizeof(buffer) - 1)
2531		count = sizeof(buffer) - 1;
2532	if (copy_from_user(buffer, buf, count))
2533		goto out_no_task;
2534
2535	ret = -EINVAL;
2536	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2537	if (*end == '\n')
2538		end++;
2539	if (end - buffer == 0)
2540		goto out_no_task;
2541
2542	ret = -ESRCH;
2543	task = get_proc_task(file->f_dentry->d_inode);
2544	if (!task)
2545		goto out_no_task;
2546
2547	ret = end - buffer;
2548	mm = get_task_mm(task);
2549	if (!mm)
2550		goto out_no_mm;
2551
2552	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2553		if (val & mask)
2554			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2555		else
2556			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2557	}
2558
2559	mmput(mm);
2560 out_no_mm:
2561	put_task_struct(task);
2562 out_no_task:
2563	return ret;
2564}
2565
2566static const struct file_operations proc_coredump_filter_operations = {
2567	.read		= proc_coredump_filter_read,
2568	.write		= proc_coredump_filter_write,
2569	.llseek		= generic_file_llseek,
2570};
2571#endif
2572
2573/*
2574 * /proc/self:
2575 */
2576static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2577			      int buflen)
2578{
2579	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2580	pid_t tgid = task_tgid_nr_ns(current, ns);
2581	char tmp[PROC_NUMBUF];
2582	if (!tgid)
2583		return -ENOENT;
2584	sprintf(tmp, "%d", tgid);
2585	return vfs_readlink(dentry,buffer,buflen,tmp);
2586}
2587
2588static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2589{
2590	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2591	pid_t tgid = task_tgid_nr_ns(current, ns);
2592	char *name = ERR_PTR(-ENOENT);
2593	if (tgid) {
2594		name = __getname();
2595		if (!name)
2596			name = ERR_PTR(-ENOMEM);
2597		else
2598			sprintf(name, "%d", tgid);
2599	}
2600	nd_set_link(nd, name);
2601	return NULL;
2602}
2603
2604static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2605				void *cookie)
2606{
2607	char *s = nd_get_link(nd);
2608	if (!IS_ERR(s))
2609		__putname(s);
2610}
2611
2612static const struct inode_operations proc_self_inode_operations = {
2613	.readlink	= proc_self_readlink,
2614	.follow_link	= proc_self_follow_link,
2615	.put_link	= proc_self_put_link,
2616};
2617
2618/*
2619 * proc base
2620 *
2621 * These are the directory entries in the root directory of /proc
2622 * that properly belong to the /proc filesystem, as they describe
2623 * describe something that is process related.
2624 */
2625static const struct pid_entry proc_base_stuff[] = {
2626	NOD("self", S_IFLNK|S_IRWXUGO,
2627		&proc_self_inode_operations, NULL, {}),
2628};
2629
2630static struct dentry *proc_base_instantiate(struct inode *dir,
2631	struct dentry *dentry, struct task_struct *task, const void *ptr)
2632{
2633	const struct pid_entry *p = ptr;
2634	struct inode *inode;
2635	struct proc_inode *ei;
2636	struct dentry *error;
2637
2638	/* Allocate the inode */
2639	error = ERR_PTR(-ENOMEM);
2640	inode = new_inode(dir->i_sb);
2641	if (!inode)
2642		goto out;
2643
2644	/* Initialize the inode */
2645	ei = PROC_I(inode);
2646	inode->i_ino = get_next_ino();
2647	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2648
2649	/*
2650	 * grab the reference to the task.
2651	 */
2652	ei->pid = get_task_pid(task, PIDTYPE_PID);
2653	if (!ei->pid)
2654		goto out_iput;
2655
2656	inode->i_mode = p->mode;
2657	if (S_ISDIR(inode->i_mode))
2658		inode->i_nlink = 2;
2659	if (S_ISLNK(inode->i_mode))
2660		inode->i_size = 64;
2661	if (p->iop)
2662		inode->i_op = p->iop;
2663	if (p->fop)
2664		inode->i_fop = p->fop;
2665	ei->op = p->op;
2666	d_add(dentry, inode);
2667	error = NULL;
2668out:
2669	return error;
2670out_iput:
2671	iput(inode);
2672	goto out;
2673}
2674
2675static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2676{
2677	struct dentry *error;
2678	struct task_struct *task = get_proc_task(dir);
2679	const struct pid_entry *p, *last;
2680
2681	error = ERR_PTR(-ENOENT);
2682
2683	if (!task)
2684		goto out_no_task;
2685
2686	/* Lookup the directory entry */
2687	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2688	for (p = proc_base_stuff; p <= last; p++) {
2689		if (p->len != dentry->d_name.len)
2690			continue;
2691		if (!memcmp(dentry->d_name.name, p->name, p->len))
2692			break;
2693	}
2694	if (p > last)
2695		goto out;
2696
2697	error = proc_base_instantiate(dir, dentry, task, p);
2698
2699out:
2700	put_task_struct(task);
2701out_no_task:
2702	return error;
2703}
2704
2705static int proc_base_fill_cache(struct file *filp, void *dirent,
2706	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2707{
2708	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2709				proc_base_instantiate, task, p);
2710}
2711
2712#ifdef CONFIG_TASK_IO_ACCOUNTING
2713static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2714{
2715	struct task_io_accounting acct = task->ioac;
2716	unsigned long flags;
2717	int result;
2718
2719	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2720	if (result)
2721		return result;
2722
2723	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2724		result = -EACCES;
2725		goto out_unlock;
2726	}
2727
2728	if (whole && lock_task_sighand(task, &flags)) {
2729		struct task_struct *t = task;
2730
2731		task_io_accounting_add(&acct, &task->signal->ioac);
2732		while_each_thread(task, t)
2733			task_io_accounting_add(&acct, &t->ioac);
2734
2735		unlock_task_sighand(task, &flags);
2736	}
2737	result = sprintf(buffer,
2738			"rchar: %llu\n"
2739			"wchar: %llu\n"
2740			"syscr: %llu\n"
2741			"syscw: %llu\n"
2742			"read_bytes: %llu\n"
2743			"write_bytes: %llu\n"
2744			"cancelled_write_bytes: %llu\n",
2745			(unsigned long long)acct.rchar,
2746			(unsigned long long)acct.wchar,
2747			(unsigned long long)acct.syscr,
2748			(unsigned long long)acct.syscw,
2749			(unsigned long long)acct.read_bytes,
2750			(unsigned long long)acct.write_bytes,
2751			(unsigned long long)acct.cancelled_write_bytes);
2752out_unlock:
2753	mutex_unlock(&task->signal->cred_guard_mutex);
2754	return result;
2755}
2756
2757static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2758{
2759	return do_io_accounting(task, buffer, 0);
2760}
2761
2762static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2763{
2764	return do_io_accounting(task, buffer, 1);
2765}
2766#endif /* CONFIG_TASK_IO_ACCOUNTING */
2767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2768static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2769				struct pid *pid, struct task_struct *task)
2770{
2771	int err = lock_trace(task);
2772	if (!err) {
2773		seq_printf(m, "%08x\n", task->personality);
2774		unlock_trace(task);
2775	}
2776	return err;
2777}
2778
2779/*
2780 * Thread groups
2781 */
2782static const struct file_operations proc_task_operations;
2783static const struct inode_operations proc_task_inode_operations;
2784
2785static const struct pid_entry tgid_base_stuff[] = {
2786	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2787	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
 
 
 
2788	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2789	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2790#ifdef CONFIG_NET
2791	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2792#endif
2793	REG("environ",    S_IRUSR, proc_environ_operations),
2794	INF("auxv",       S_IRUSR, proc_pid_auxv),
2795	ONE("status",     S_IRUGO, proc_pid_status),
2796	ONE("personality", S_IRUGO, proc_pid_personality),
2797	INF("limits",	  S_IRUGO, proc_pid_limits),
2798#ifdef CONFIG_SCHED_DEBUG
2799	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2800#endif
2801#ifdef CONFIG_SCHED_AUTOGROUP
2802	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2803#endif
2804	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2805#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2806	INF("syscall",    S_IRUGO, proc_pid_syscall),
2807#endif
2808	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2809	ONE("stat",       S_IRUGO, proc_tgid_stat),
2810	ONE("statm",      S_IRUGO, proc_pid_statm),
2811	REG("maps",       S_IRUGO, proc_maps_operations),
2812#ifdef CONFIG_NUMA
2813	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2814#endif
2815	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2816	LNK("cwd",        proc_cwd_link),
2817	LNK("root",       proc_root_link),
2818	LNK("exe",        proc_exe_link),
2819	REG("mounts",     S_IRUGO, proc_mounts_operations),
2820	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2821	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2822#ifdef CONFIG_PROC_PAGE_MONITOR
2823	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2824	REG("smaps",      S_IRUGO, proc_smaps_operations),
2825	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2826#endif
2827#ifdef CONFIG_SECURITY
2828	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2829#endif
2830#ifdef CONFIG_KALLSYMS
2831	INF("wchan",      S_IRUGO, proc_pid_wchan),
2832#endif
2833#ifdef CONFIG_STACKTRACE
2834	ONE("stack",      S_IRUGO, proc_pid_stack),
2835#endif
2836#ifdef CONFIG_SCHEDSTATS
2837	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2838#endif
2839#ifdef CONFIG_LATENCYTOP
2840	REG("latency",  S_IRUGO, proc_lstats_operations),
2841#endif
2842#ifdef CONFIG_PROC_PID_CPUSET
2843	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2844#endif
2845#ifdef CONFIG_CGROUPS
2846	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2847#endif
2848	INF("oom_score",  S_IRUGO, proc_oom_score),
2849	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2850	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2851#ifdef CONFIG_AUDITSYSCALL
2852	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2853	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2854#endif
2855#ifdef CONFIG_FAULT_INJECTION
2856	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2857#endif
2858#ifdef CONFIG_ELF_CORE
2859	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2860#endif
2861#ifdef CONFIG_TASK_IO_ACCOUNTING
2862	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2863#endif
2864#ifdef CONFIG_HARDWALL
2865	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2866#endif
 
 
 
 
 
 
 
 
2867};
2868
2869static int proc_tgid_base_readdir(struct file * filp,
2870			     void * dirent, filldir_t filldir)
2871{
2872	return proc_pident_readdir(filp,dirent,filldir,
2873				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2874}
2875
2876static const struct file_operations proc_tgid_base_operations = {
2877	.read		= generic_read_dir,
2878	.readdir	= proc_tgid_base_readdir,
2879	.llseek		= default_llseek,
2880};
2881
2882static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
2883	return proc_pident_lookup(dir, dentry,
2884				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2885}
2886
2887static const struct inode_operations proc_tgid_base_inode_operations = {
2888	.lookup		= proc_tgid_base_lookup,
2889	.getattr	= pid_getattr,
2890	.setattr	= proc_setattr,
 
2891};
2892
2893static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2894{
2895	struct dentry *dentry, *leader, *dir;
2896	char buf[PROC_NUMBUF];
2897	struct qstr name;
2898
2899	name.name = buf;
2900	name.len = snprintf(buf, sizeof(buf), "%d", pid);
 
2901	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2902	if (dentry) {
2903		shrink_dcache_parent(dentry);
2904		d_drop(dentry);
2905		dput(dentry);
2906	}
2907
2908	name.name = buf;
2909	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2910	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2911	if (!leader)
2912		goto out;
2913
2914	name.name = "task";
2915	name.len = strlen(name.name);
2916	dir = d_hash_and_lookup(leader, &name);
2917	if (!dir)
2918		goto out_put_leader;
2919
2920	name.name = buf;
2921	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2922	dentry = d_hash_and_lookup(dir, &name);
2923	if (dentry) {
2924		shrink_dcache_parent(dentry);
2925		d_drop(dentry);
2926		dput(dentry);
2927	}
2928
2929	dput(dir);
2930out_put_leader:
2931	dput(leader);
2932out:
2933	return;
2934}
2935
2936/**
2937 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2938 * @task: task that should be flushed.
2939 *
2940 * When flushing dentries from proc, one needs to flush them from global
2941 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2942 * in. This call is supposed to do all of this job.
2943 *
2944 * Looks in the dcache for
2945 * /proc/@pid
2946 * /proc/@tgid/task/@pid
2947 * if either directory is present flushes it and all of it'ts children
2948 * from the dcache.
2949 *
2950 * It is safe and reasonable to cache /proc entries for a task until
2951 * that task exits.  After that they just clog up the dcache with
2952 * useless entries, possibly causing useful dcache entries to be
2953 * flushed instead.  This routine is proved to flush those useless
2954 * dcache entries at process exit time.
2955 *
2956 * NOTE: This routine is just an optimization so it does not guarantee
2957 *       that no dcache entries will exist at process exit time it
2958 *       just makes it very unlikely that any will persist.
2959 */
2960
2961void proc_flush_task(struct task_struct *task)
2962{
2963	int i;
2964	struct pid *pid, *tgid;
2965	struct upid *upid;
2966
2967	pid = task_pid(task);
2968	tgid = task_tgid(task);
2969
2970	for (i = 0; i <= pid->level; i++) {
2971		upid = &pid->numbers[i];
2972		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2973					tgid->numbers[i].nr);
2974	}
2975
2976	upid = &pid->numbers[pid->level];
2977	if (upid->nr == 1)
2978		pid_ns_release_proc(upid->ns);
2979}
2980
2981static struct dentry *proc_pid_instantiate(struct inode *dir,
2982					   struct dentry * dentry,
2983					   struct task_struct *task, const void *ptr)
2984{
2985	struct dentry *error = ERR_PTR(-ENOENT);
2986	struct inode *inode;
2987
2988	inode = proc_pid_make_inode(dir->i_sb, task);
2989	if (!inode)
2990		goto out;
2991
2992	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2993	inode->i_op = &proc_tgid_base_inode_operations;
2994	inode->i_fop = &proc_tgid_base_operations;
2995	inode->i_flags|=S_IMMUTABLE;
2996
2997	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2998		ARRAY_SIZE(tgid_base_stuff));
2999
3000	d_set_d_op(dentry, &pid_dentry_operations);
3001
3002	d_add(dentry, inode);
3003	/* Close the race of the process dying before we return the dentry */
3004	if (pid_revalidate(dentry, NULL))
3005		error = NULL;
3006out:
3007	return error;
3008}
3009
3010struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3011{
3012	struct dentry *result;
3013	struct task_struct *task;
3014	unsigned tgid;
3015	struct pid_namespace *ns;
3016
3017	result = proc_base_lookup(dir, dentry);
3018	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3019		goto out;
3020
3021	tgid = name_to_int(dentry);
3022	if (tgid == ~0U)
3023		goto out;
3024
3025	ns = dentry->d_sb->s_fs_info;
3026	rcu_read_lock();
3027	task = find_task_by_pid_ns(tgid, ns);
3028	if (task)
3029		get_task_struct(task);
3030	rcu_read_unlock();
3031	if (!task)
3032		goto out;
3033
3034	result = proc_pid_instantiate(dir, dentry, task, NULL);
3035	put_task_struct(task);
3036out:
3037	return result;
3038}
3039
3040/*
3041 * Find the first task with tgid >= tgid
3042 *
3043 */
3044struct tgid_iter {
3045	unsigned int tgid;
3046	struct task_struct *task;
3047};
3048static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3049{
3050	struct pid *pid;
3051
3052	if (iter.task)
3053		put_task_struct(iter.task);
3054	rcu_read_lock();
3055retry:
3056	iter.task = NULL;
3057	pid = find_ge_pid(iter.tgid, ns);
3058	if (pid) {
3059		iter.tgid = pid_nr_ns(pid, ns);
3060		iter.task = pid_task(pid, PIDTYPE_PID);
3061		/* What we to know is if the pid we have find is the
3062		 * pid of a thread_group_leader.  Testing for task
3063		 * being a thread_group_leader is the obvious thing
3064		 * todo but there is a window when it fails, due to
3065		 * the pid transfer logic in de_thread.
3066		 *
3067		 * So we perform the straight forward test of seeing
3068		 * if the pid we have found is the pid of a thread
3069		 * group leader, and don't worry if the task we have
3070		 * found doesn't happen to be a thread group leader.
3071		 * As we don't care in the case of readdir.
3072		 */
3073		if (!iter.task || !has_group_leader_pid(iter.task)) {
3074			iter.tgid += 1;
3075			goto retry;
3076		}
3077		get_task_struct(iter.task);
3078	}
3079	rcu_read_unlock();
3080	return iter;
3081}
3082
3083#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3084
3085static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086	struct tgid_iter iter)
3087{
3088	char name[PROC_NUMBUF];
3089	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3090	return proc_fill_cache(filp, dirent, filldir, name, len,
3091				proc_pid_instantiate, iter.task, NULL);
3092}
3093
3094/* for the /proc/ directory itself, after non-process stuff has been done */
3095int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096{
3097	unsigned int nr;
3098	struct task_struct *reaper;
3099	struct tgid_iter iter;
3100	struct pid_namespace *ns;
3101
3102	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3103		goto out_no_task;
3104	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3105
3106	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107	if (!reaper)
3108		goto out_no_task;
3109
3110	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3111		const struct pid_entry *p = &proc_base_stuff[nr];
3112		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3113			goto out;
 
 
 
3114	}
3115
3116	ns = filp->f_dentry->d_sb->s_fs_info;
3117	iter.task = NULL;
3118	iter.tgid = filp->f_pos - TGID_OFFSET;
3119	for (iter = next_tgid(ns, iter);
3120	     iter.task;
3121	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3122		filp->f_pos = iter.tgid + TGID_OFFSET;
3123		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
 
 
 
 
 
 
 
3124			put_task_struct(iter.task);
3125			goto out;
3126		}
3127	}
3128	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3129out:
3130	put_task_struct(reaper);
3131out_no_task:
3132	return 0;
3133}
3134
3135/*
3136 * Tasks
3137 */
3138static const struct pid_entry tid_base_stuff[] = {
3139	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3140	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3141	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3142	REG("environ",   S_IRUSR, proc_environ_operations),
3143	INF("auxv",      S_IRUSR, proc_pid_auxv),
3144	ONE("status",    S_IRUGO, proc_pid_status),
3145	ONE("personality", S_IRUGO, proc_pid_personality),
3146	INF("limits",	 S_IRUGO, proc_pid_limits),
3147#ifdef CONFIG_SCHED_DEBUG
3148	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3149#endif
3150	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3151#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3152	INF("syscall",   S_IRUGO, proc_pid_syscall),
3153#endif
3154	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3155	ONE("stat",      S_IRUGO, proc_tid_stat),
3156	ONE("statm",     S_IRUGO, proc_pid_statm),
3157	REG("maps",      S_IRUGO, proc_maps_operations),
 
 
 
3158#ifdef CONFIG_NUMA
3159	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3160#endif
3161	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3162	LNK("cwd",       proc_cwd_link),
3163	LNK("root",      proc_root_link),
3164	LNK("exe",       proc_exe_link),
3165	REG("mounts",    S_IRUGO, proc_mounts_operations),
3166	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3167#ifdef CONFIG_PROC_PAGE_MONITOR
3168	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3169	REG("smaps",     S_IRUGO, proc_smaps_operations),
3170	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3171#endif
3172#ifdef CONFIG_SECURITY
3173	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3174#endif
3175#ifdef CONFIG_KALLSYMS
3176	INF("wchan",     S_IRUGO, proc_pid_wchan),
3177#endif
3178#ifdef CONFIG_STACKTRACE
3179	ONE("stack",      S_IRUGO, proc_pid_stack),
3180#endif
3181#ifdef CONFIG_SCHEDSTATS
3182	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3183#endif
3184#ifdef CONFIG_LATENCYTOP
3185	REG("latency",  S_IRUGO, proc_lstats_operations),
3186#endif
3187#ifdef CONFIG_PROC_PID_CPUSET
3188	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3189#endif
3190#ifdef CONFIG_CGROUPS
3191	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3192#endif
3193	INF("oom_score", S_IRUGO, proc_oom_score),
3194	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3195	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3196#ifdef CONFIG_AUDITSYSCALL
3197	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3198	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3199#endif
3200#ifdef CONFIG_FAULT_INJECTION
3201	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3202#endif
3203#ifdef CONFIG_TASK_IO_ACCOUNTING
3204	INF("io",	S_IRUSR, proc_tid_io_accounting),
3205#endif
3206#ifdef CONFIG_HARDWALL
3207	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3208#endif
 
 
 
 
 
3209};
3210
3211static int proc_tid_base_readdir(struct file * filp,
3212			     void * dirent, filldir_t filldir)
3213{
3214	return proc_pident_readdir(filp,dirent,filldir,
3215				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3216}
3217
3218static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
3219	return proc_pident_lookup(dir, dentry,
3220				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3221}
3222
3223static const struct file_operations proc_tid_base_operations = {
3224	.read		= generic_read_dir,
3225	.readdir	= proc_tid_base_readdir,
3226	.llseek		= default_llseek,
3227};
3228
3229static const struct inode_operations proc_tid_base_inode_operations = {
3230	.lookup		= proc_tid_base_lookup,
3231	.getattr	= pid_getattr,
3232	.setattr	= proc_setattr,
3233};
3234
3235static struct dentry *proc_task_instantiate(struct inode *dir,
3236	struct dentry *dentry, struct task_struct *task, const void *ptr)
3237{
3238	struct dentry *error = ERR_PTR(-ENOENT);
3239	struct inode *inode;
3240	inode = proc_pid_make_inode(dir->i_sb, task);
3241
3242	if (!inode)
3243		goto out;
3244	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3245	inode->i_op = &proc_tid_base_inode_operations;
3246	inode->i_fop = &proc_tid_base_operations;
3247	inode->i_flags|=S_IMMUTABLE;
3248
3249	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3250		ARRAY_SIZE(tid_base_stuff));
3251
3252	d_set_d_op(dentry, &pid_dentry_operations);
3253
3254	d_add(dentry, inode);
3255	/* Close the race of the process dying before we return the dentry */
3256	if (pid_revalidate(dentry, NULL))
3257		error = NULL;
3258out:
3259	return error;
3260}
3261
3262static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3263{
3264	struct dentry *result = ERR_PTR(-ENOENT);
3265	struct task_struct *task;
3266	struct task_struct *leader = get_proc_task(dir);
3267	unsigned tid;
3268	struct pid_namespace *ns;
3269
3270	if (!leader)
3271		goto out_no_task;
3272
3273	tid = name_to_int(dentry);
3274	if (tid == ~0U)
3275		goto out;
3276
3277	ns = dentry->d_sb->s_fs_info;
3278	rcu_read_lock();
3279	task = find_task_by_pid_ns(tid, ns);
3280	if (task)
3281		get_task_struct(task);
3282	rcu_read_unlock();
3283	if (!task)
3284		goto out;
3285	if (!same_thread_group(leader, task))
3286		goto out_drop_task;
3287
3288	result = proc_task_instantiate(dir, dentry, task, NULL);
3289out_drop_task:
3290	put_task_struct(task);
3291out:
3292	put_task_struct(leader);
3293out_no_task:
3294	return result;
3295}
3296
3297/*
3298 * Find the first tid of a thread group to return to user space.
3299 *
3300 * Usually this is just the thread group leader, but if the users
3301 * buffer was too small or there was a seek into the middle of the
3302 * directory we have more work todo.
3303 *
3304 * In the case of a short read we start with find_task_by_pid.
3305 *
3306 * In the case of a seek we start with the leader and walk nr
3307 * threads past it.
3308 */
3309static struct task_struct *first_tid(struct task_struct *leader,
3310		int tid, int nr, struct pid_namespace *ns)
3311{
3312	struct task_struct *pos;
 
 
 
 
3313
3314	rcu_read_lock();
3315	/* Attempt to start with the pid of a thread */
3316	if (tid && (nr > 0)) {
 
 
 
 
3317		pos = find_task_by_pid_ns(tid, ns);
3318		if (pos && (pos->group_leader == leader))
3319			goto found;
3320	}
3321
3322	/* If nr exceeds the number of threads there is nothing todo */
3323	pos = NULL;
3324	if (nr && nr >= get_nr_threads(leader))
3325		goto out;
3326
3327	/* If we haven't found our starting place yet start
3328	 * with the leader and walk nr threads forward.
3329	 */
3330	for (pos = leader; nr > 0; --nr) {
3331		pos = next_thread(pos);
3332		if (pos == leader) {
3333			pos = NULL;
3334			goto out;
3335		}
3336	}
 
3337found:
3338	get_task_struct(pos);
3339out:
3340	rcu_read_unlock();
3341	return pos;
3342}
3343
3344/*
3345 * Find the next thread in the thread list.
3346 * Return NULL if there is an error or no next thread.
3347 *
3348 * The reference to the input task_struct is released.
3349 */
3350static struct task_struct *next_tid(struct task_struct *start)
3351{
3352	struct task_struct *pos = NULL;
3353	rcu_read_lock();
3354	if (pid_alive(start)) {
3355		pos = next_thread(start);
3356		if (thread_group_leader(pos))
3357			pos = NULL;
3358		else
3359			get_task_struct(pos);
3360	}
3361	rcu_read_unlock();
3362	put_task_struct(start);
3363	return pos;
3364}
3365
3366static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3367	struct task_struct *task, int tid)
3368{
3369	char name[PROC_NUMBUF];
3370	int len = snprintf(name, sizeof(name), "%d", tid);
3371	return proc_fill_cache(filp, dirent, filldir, name, len,
3372				proc_task_instantiate, task, NULL);
3373}
3374
3375/* for the /proc/TGID/task/ directories */
3376static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3377{
3378	struct dentry *dentry = filp->f_path.dentry;
3379	struct inode *inode = dentry->d_inode;
3380	struct task_struct *leader = NULL;
3381	struct task_struct *task;
3382	int retval = -ENOENT;
3383	ino_t ino;
3384	int tid;
3385	struct pid_namespace *ns;
 
3386
3387	task = get_proc_task(inode);
3388	if (!task)
3389		goto out_no_task;
3390	rcu_read_lock();
3391	if (pid_alive(task)) {
3392		leader = task->group_leader;
3393		get_task_struct(leader);
3394	}
3395	rcu_read_unlock();
3396	put_task_struct(task);
3397	if (!leader)
3398		goto out_no_task;
3399	retval = 0;
3400
3401	switch ((unsigned long)filp->f_pos) {
3402	case 0:
3403		ino = inode->i_ino;
3404		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3405			goto out;
3406		filp->f_pos++;
3407		/* fall through */
3408	case 1:
3409		ino = parent_ino(dentry);
3410		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3411			goto out;
3412		filp->f_pos++;
3413		/* fall through */
3414	}
3415
3416	/* f_version caches the tgid value that the last readdir call couldn't
3417	 * return. lseek aka telldir automagically resets f_version to 0.
3418	 */
3419	ns = filp->f_dentry->d_sb->s_fs_info;
3420	tid = (int)filp->f_version;
3421	filp->f_version = 0;
3422	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3423	     task;
3424	     task = next_tid(task), filp->f_pos++) {
 
 
3425		tid = task_pid_nr_ns(task, ns);
3426		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
 
 
3427			/* returning this tgid failed, save it as the first
3428			 * pid for the next readir call */
3429			filp->f_version = (u64)tid;
3430			put_task_struct(task);
3431			break;
3432		}
3433	}
3434out:
3435	put_task_struct(leader);
3436out_no_task:
3437	return retval;
3438}
3439
3440static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3441{
3442	struct inode *inode = dentry->d_inode;
3443	struct task_struct *p = get_proc_task(inode);
3444	generic_fillattr(inode, stat);
3445
3446	if (p) {
3447		stat->nlink += get_nr_threads(p);
3448		put_task_struct(p);
3449	}
3450
3451	return 0;
3452}
3453
3454static const struct inode_operations proc_task_inode_operations = {
3455	.lookup		= proc_task_lookup,
3456	.getattr	= proc_task_getattr,
3457	.setattr	= proc_setattr,
 
3458};
3459
3460static const struct file_operations proc_task_operations = {
3461	.read		= generic_read_dir,
3462	.readdir	= proc_task_readdir,
3463	.llseek		= default_llseek,
3464};
v3.15
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 107struct pid_entry {
 108	char *name;
 109	int len;
 110	umode_t mode;
 111	const struct inode_operations *iop;
 112	const struct file_operations *fop;
 113	union proc_op op;
 114};
 115
 116#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 117	.name = (NAME),					\
 118	.len  = sizeof(NAME) - 1,			\
 119	.mode = MODE,					\
 120	.iop  = IOP,					\
 121	.fop  = FOP,					\
 122	.op   = OP,					\
 123}
 124
 125#define DIR(NAME, MODE, iops, fops)	\
 126	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 127#define LNK(NAME, get_link)					\
 128	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 129		&proc_pid_link_inode_operations, NULL,		\
 130		{ .proc_get_link = get_link } )
 131#define REG(NAME, MODE, fops)				\
 132	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 133#define INF(NAME, MODE, read)				\
 134	NOD(NAME, (S_IFREG|(MODE)), 			\
 135		NULL, &proc_info_file_operations,	\
 136		{ .proc_read = read } )
 137#define ONE(NAME, MODE, show)				\
 138	NOD(NAME, (S_IFREG|(MODE)), 			\
 139		NULL, &proc_single_file_operations,	\
 140		{ .proc_show = show } )
 141
 142/*
 143 * Count the number of hardlinks for the pid_entry table, excluding the .
 144 * and .. links.
 145 */
 146static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 147	unsigned int n)
 148{
 149	unsigned int i;
 150	unsigned int count;
 151
 152	count = 0;
 153	for (i = 0; i < n; ++i) {
 154		if (S_ISDIR(entries[i].mode))
 155			++count;
 156	}
 157
 158	return count;
 159}
 160
 161static int get_task_root(struct task_struct *task, struct path *root)
 162{
 163	int result = -ENOENT;
 164
 165	task_lock(task);
 166	if (task->fs) {
 167		get_fs_root(task->fs, root);
 168		result = 0;
 169	}
 170	task_unlock(task);
 171	return result;
 172}
 173
 174static int proc_cwd_link(struct dentry *dentry, struct path *path)
 175{
 176	struct task_struct *task = get_proc_task(dentry->d_inode);
 177	int result = -ENOENT;
 178
 179	if (task) {
 180		task_lock(task);
 181		if (task->fs) {
 182			get_fs_pwd(task->fs, path);
 183			result = 0;
 184		}
 185		task_unlock(task);
 186		put_task_struct(task);
 187	}
 188	return result;
 189}
 190
 191static int proc_root_link(struct dentry *dentry, struct path *path)
 192{
 193	struct task_struct *task = get_proc_task(dentry->d_inode);
 194	int result = -ENOENT;
 195
 196	if (task) {
 197		result = get_task_root(task, path);
 198		put_task_struct(task);
 199	}
 200	return result;
 201}
 202
 203static int proc_pid_cmdline(struct task_struct *task, char *buffer)
 204{
 205	return get_cmdline(task, buffer, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206}
 207
 208static int proc_pid_auxv(struct task_struct *task, char *buffer)
 209{
 210	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
 211	int res = PTR_ERR(mm);
 212	if (mm && !IS_ERR(mm)) {
 213		unsigned int nwords = 0;
 214		do {
 215			nwords += 2;
 216		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 217		res = nwords * sizeof(mm->saved_auxv[0]);
 218		if (res > PAGE_SIZE)
 219			res = PAGE_SIZE;
 220		memcpy(buffer, mm->saved_auxv, res);
 221		mmput(mm);
 222	}
 223	return res;
 224}
 225
 226
 227#ifdef CONFIG_KALLSYMS
 228/*
 229 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 230 * Returns the resolved symbol.  If that fails, simply return the address.
 231 */
 232static int proc_pid_wchan(struct task_struct *task, char *buffer)
 233{
 234	unsigned long wchan;
 235	char symname[KSYM_NAME_LEN];
 236
 237	wchan = get_wchan(task);
 238
 239	if (lookup_symbol_name(wchan, symname) < 0)
 240		if (!ptrace_may_access(task, PTRACE_MODE_READ))
 241			return 0;
 242		else
 243			return sprintf(buffer, "%lu", wchan);
 244	else
 245		return sprintf(buffer, "%s", symname);
 246}
 247#endif /* CONFIG_KALLSYMS */
 248
 249static int lock_trace(struct task_struct *task)
 250{
 251	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 252	if (err)
 253		return err;
 254	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 255		mutex_unlock(&task->signal->cred_guard_mutex);
 256		return -EPERM;
 257	}
 258	return 0;
 259}
 260
 261static void unlock_trace(struct task_struct *task)
 262{
 263	mutex_unlock(&task->signal->cred_guard_mutex);
 264}
 265
 266#ifdef CONFIG_STACKTRACE
 267
 268#define MAX_STACK_TRACE_DEPTH	64
 269
 270static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 271			  struct pid *pid, struct task_struct *task)
 272{
 273	struct stack_trace trace;
 274	unsigned long *entries;
 275	int err;
 276	int i;
 277
 278	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 279	if (!entries)
 280		return -ENOMEM;
 281
 282	trace.nr_entries	= 0;
 283	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 284	trace.entries		= entries;
 285	trace.skip		= 0;
 286
 287	err = lock_trace(task);
 288	if (!err) {
 289		save_stack_trace_tsk(task, &trace);
 290
 291		for (i = 0; i < trace.nr_entries; i++) {
 292			seq_printf(m, "[<%pK>] %pS\n",
 293				   (void *)entries[i], (void *)entries[i]);
 294		}
 295		unlock_trace(task);
 296	}
 297	kfree(entries);
 298
 299	return err;
 300}
 301#endif
 302
 303#ifdef CONFIG_SCHEDSTATS
 304/*
 305 * Provides /proc/PID/schedstat
 306 */
 307static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 308{
 309	return sprintf(buffer, "%llu %llu %lu\n",
 310			(unsigned long long)task->se.sum_exec_runtime,
 311			(unsigned long long)task->sched_info.run_delay,
 312			task->sched_info.pcount);
 313}
 314#endif
 315
 316#ifdef CONFIG_LATENCYTOP
 317static int lstats_show_proc(struct seq_file *m, void *v)
 318{
 319	int i;
 320	struct inode *inode = m->private;
 321	struct task_struct *task = get_proc_task(inode);
 322
 323	if (!task)
 324		return -ESRCH;
 325	seq_puts(m, "Latency Top version : v0.1\n");
 326	for (i = 0; i < 32; i++) {
 327		struct latency_record *lr = &task->latency_record[i];
 328		if (lr->backtrace[0]) {
 329			int q;
 330			seq_printf(m, "%i %li %li",
 331				   lr->count, lr->time, lr->max);
 332			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 333				unsigned long bt = lr->backtrace[q];
 334				if (!bt)
 335					break;
 336				if (bt == ULONG_MAX)
 337					break;
 338				seq_printf(m, " %ps", (void *)bt);
 339			}
 340			seq_putc(m, '\n');
 341		}
 342
 343	}
 344	put_task_struct(task);
 345	return 0;
 346}
 347
 348static int lstats_open(struct inode *inode, struct file *file)
 349{
 350	return single_open(file, lstats_show_proc, inode);
 351}
 352
 353static ssize_t lstats_write(struct file *file, const char __user *buf,
 354			    size_t count, loff_t *offs)
 355{
 356	struct task_struct *task = get_proc_task(file_inode(file));
 357
 358	if (!task)
 359		return -ESRCH;
 360	clear_all_latency_tracing(task);
 361	put_task_struct(task);
 362
 363	return count;
 364}
 365
 366static const struct file_operations proc_lstats_operations = {
 367	.open		= lstats_open,
 368	.read		= seq_read,
 369	.write		= lstats_write,
 370	.llseek		= seq_lseek,
 371	.release	= single_release,
 372};
 373
 374#endif
 375
 376#ifdef CONFIG_CGROUPS
 377static int cgroup_open(struct inode *inode, struct file *file)
 378{
 379	struct pid *pid = PROC_I(inode)->pid;
 380	return single_open(file, proc_cgroup_show, pid);
 381}
 382
 383static const struct file_operations proc_cgroup_operations = {
 384	.open		= cgroup_open,
 385	.read		= seq_read,
 386	.llseek		= seq_lseek,
 387	.release	= single_release,
 388};
 389#endif
 390
 391#ifdef CONFIG_PROC_PID_CPUSET
 392
 393static int cpuset_open(struct inode *inode, struct file *file)
 394{
 395	struct pid *pid = PROC_I(inode)->pid;
 396	return single_open(file, proc_cpuset_show, pid);
 397}
 398
 399static const struct file_operations proc_cpuset_operations = {
 400	.open		= cpuset_open,
 401	.read		= seq_read,
 402	.llseek		= seq_lseek,
 403	.release	= single_release,
 404};
 405#endif
 406
 407static int proc_oom_score(struct task_struct *task, char *buffer)
 408{
 409	unsigned long totalpages = totalram_pages + total_swap_pages;
 410	unsigned long points = 0;
 411
 412	read_lock(&tasklist_lock);
 413	if (pid_alive(task))
 414		points = oom_badness(task, NULL, NULL, totalpages) *
 415						1000 / totalpages;
 416	read_unlock(&tasklist_lock);
 417	return sprintf(buffer, "%lu\n", points);
 418}
 419
 420struct limit_names {
 421	char *name;
 422	char *unit;
 423};
 424
 425static const struct limit_names lnames[RLIM_NLIMITS] = {
 426	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 427	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 428	[RLIMIT_DATA] = {"Max data size", "bytes"},
 429	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 430	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 431	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 432	[RLIMIT_NPROC] = {"Max processes", "processes"},
 433	[RLIMIT_NOFILE] = {"Max open files", "files"},
 434	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 435	[RLIMIT_AS] = {"Max address space", "bytes"},
 436	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 437	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 438	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 439	[RLIMIT_NICE] = {"Max nice priority", NULL},
 440	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 441	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 442};
 443
 444/* Display limits for a process */
 445static int proc_pid_limits(struct task_struct *task, char *buffer)
 446{
 447	unsigned int i;
 448	int count = 0;
 449	unsigned long flags;
 450	char *bufptr = buffer;
 451
 452	struct rlimit rlim[RLIM_NLIMITS];
 453
 454	if (!lock_task_sighand(task, &flags))
 455		return 0;
 456	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 457	unlock_task_sighand(task, &flags);
 458
 459	/*
 460	 * print the file header
 461	 */
 462	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 463			"Limit", "Soft Limit", "Hard Limit", "Units");
 464
 465	for (i = 0; i < RLIM_NLIMITS; i++) {
 466		if (rlim[i].rlim_cur == RLIM_INFINITY)
 467			count += sprintf(&bufptr[count], "%-25s %-20s ",
 468					 lnames[i].name, "unlimited");
 469		else
 470			count += sprintf(&bufptr[count], "%-25s %-20lu ",
 471					 lnames[i].name, rlim[i].rlim_cur);
 472
 473		if (rlim[i].rlim_max == RLIM_INFINITY)
 474			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 475		else
 476			count += sprintf(&bufptr[count], "%-20lu ",
 477					 rlim[i].rlim_max);
 478
 479		if (lnames[i].unit)
 480			count += sprintf(&bufptr[count], "%-10s\n",
 481					 lnames[i].unit);
 482		else
 483			count += sprintf(&bufptr[count], "\n");
 484	}
 485
 486	return count;
 487}
 488
 489#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 490static int proc_pid_syscall(struct task_struct *task, char *buffer)
 491{
 492	long nr;
 493	unsigned long args[6], sp, pc;
 494	int res = lock_trace(task);
 495	if (res)
 496		return res;
 497
 498	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 499		res = sprintf(buffer, "running\n");
 500	else if (nr < 0)
 501		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 502	else
 503		res = sprintf(buffer,
 504		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 505		       nr,
 506		       args[0], args[1], args[2], args[3], args[4], args[5],
 507		       sp, pc);
 508	unlock_trace(task);
 509	return res;
 510}
 511#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 512
 513/************************************************************************/
 514/*                       Here the fs part begins                        */
 515/************************************************************************/
 516
 517/* permission checks */
 518static int proc_fd_access_allowed(struct inode *inode)
 519{
 520	struct task_struct *task;
 521	int allowed = 0;
 522	/* Allow access to a task's file descriptors if it is us or we
 523	 * may use ptrace attach to the process and find out that
 524	 * information.
 525	 */
 526	task = get_proc_task(inode);
 527	if (task) {
 528		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 529		put_task_struct(task);
 530	}
 531	return allowed;
 532}
 533
 534int proc_setattr(struct dentry *dentry, struct iattr *attr)
 535{
 536	int error;
 537	struct inode *inode = dentry->d_inode;
 538
 539	if (attr->ia_valid & ATTR_MODE)
 540		return -EPERM;
 541
 542	error = inode_change_ok(inode, attr);
 543	if (error)
 544		return error;
 545
 
 
 
 
 
 
 
 546	setattr_copy(inode, attr);
 547	mark_inode_dirty(inode);
 548	return 0;
 549}
 550
 551/*
 552 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 553 * or euid/egid (for hide_pid_min=2)?
 554 */
 555static bool has_pid_permissions(struct pid_namespace *pid,
 556				 struct task_struct *task,
 557				 int hide_pid_min)
 558{
 559	if (pid->hide_pid < hide_pid_min)
 560		return true;
 561	if (in_group_p(pid->pid_gid))
 562		return true;
 563	return ptrace_may_access(task, PTRACE_MODE_READ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564}
 565
 
 
 
 
 
 
 
 566
 567static int proc_pid_permission(struct inode *inode, int mask)
 568{
 569	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 570	struct task_struct *task;
 571	bool has_perms;
 
 
 
 
 
 
 572
 573	task = get_proc_task(inode);
 574	if (!task)
 575		return -ESRCH;
 576	has_perms = has_pid_permissions(pid, task, 1);
 577	put_task_struct(task);
 578
 579	if (!has_perms) {
 580		if (pid->hide_pid == 2) {
 581			/*
 582			 * Let's make getdents(), stat(), and open()
 583			 * consistent with each other.  If a process
 584			 * may not stat() a file, it shouldn't be seen
 585			 * in procfs at all.
 586			 */
 587			return -ENOENT;
 588		}
 589
 590		return -EPERM;
 591	}
 592	return generic_permission(inode, mask);
 593}
 594
 
 
 
 
 
 
 
 595
 
 
 
 
 596
 597static const struct inode_operations proc_def_inode_operations = {
 598	.setattr	= proc_setattr,
 
 
 
 599};
 600
 601#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
 602
 603static ssize_t proc_info_read(struct file * file, char __user * buf,
 604			  size_t count, loff_t *ppos)
 605{
 606	struct inode * inode = file_inode(file);
 607	unsigned long page;
 608	ssize_t length;
 609	struct task_struct *task = get_proc_task(inode);
 610
 611	length = -ESRCH;
 612	if (!task)
 613		goto out_no_task;
 614
 615	if (count > PROC_BLOCK_SIZE)
 616		count = PROC_BLOCK_SIZE;
 617
 618	length = -ENOMEM;
 619	if (!(page = __get_free_page(GFP_TEMPORARY)))
 620		goto out;
 621
 622	length = PROC_I(inode)->op.proc_read(task, (char*)page);
 623
 624	if (length >= 0)
 625		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 626	free_page(page);
 627out:
 628	put_task_struct(task);
 629out_no_task:
 630	return length;
 631}
 632
 633static const struct file_operations proc_info_file_operations = {
 634	.read		= proc_info_read,
 635	.llseek		= generic_file_llseek,
 636};
 637
 638static int proc_single_show(struct seq_file *m, void *v)
 639{
 640	struct inode *inode = m->private;
 641	struct pid_namespace *ns;
 642	struct pid *pid;
 643	struct task_struct *task;
 644	int ret;
 645
 646	ns = inode->i_sb->s_fs_info;
 647	pid = proc_pid(inode);
 648	task = get_pid_task(pid, PIDTYPE_PID);
 649	if (!task)
 650		return -ESRCH;
 651
 652	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 653
 654	put_task_struct(task);
 655	return ret;
 656}
 657
 658static int proc_single_open(struct inode *inode, struct file *filp)
 659{
 660	return single_open(filp, proc_single_show, inode);
 661}
 662
 663static const struct file_operations proc_single_file_operations = {
 664	.open		= proc_single_open,
 665	.read		= seq_read,
 666	.llseek		= seq_lseek,
 667	.release	= single_release,
 668};
 669
 670static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 
 
 
 
 
 
 
 
 
 671{
 672	struct task_struct *task = get_proc_task(file_inode(file));
 
 
 
 673	struct mm_struct *mm;
 674
 675	if (!task)
 676		return -ESRCH;
 677
 678	mm = mm_access(task, mode);
 679	put_task_struct(task);
 
 
 680
 
 
 681	if (IS_ERR(mm))
 682		return PTR_ERR(mm);
 683
 684	if (mm) {
 685		/* ensure this mm_struct can't be freed */
 686		atomic_inc(&mm->mm_count);
 687		/* but do not pin its memory */
 688		mmput(mm);
 689	}
 690
 691	file->private_data = mm;
 
 
 
 692
 693	return 0;
 694}
 
 
 
 
 
 695
 696static int mem_open(struct inode *inode, struct file *file)
 697{
 698	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 699
 700	/* OK to pass negative loff_t, we can catch out-of-range */
 701	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 
 
 
 
 
 702
 
 
 
 
 
 
 
 703	return ret;
 704}
 705
 706static ssize_t mem_rw(struct file *file, char __user *buf,
 707			size_t count, loff_t *ppos, int write)
 708{
 709	struct mm_struct *mm = file->private_data;
 710	unsigned long addr = *ppos;
 711	ssize_t copied;
 712	char *page;
 
 
 
 713
 714	if (!mm)
 715		return 0;
 
 716
 
 717	page = (char *)__get_free_page(GFP_TEMPORARY);
 718	if (!page)
 719		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 720
 721	copied = 0;
 722	if (!atomic_inc_not_zero(&mm->mm_users))
 723		goto free;
 724
 725	while (count > 0) {
 726		int this_len = min_t(int, count, PAGE_SIZE);
 727
 728		if (write && copy_from_user(page, buf, this_len)) {
 
 729			copied = -EFAULT;
 730			break;
 731		}
 732
 733		this_len = access_remote_vm(mm, addr, page, this_len, write);
 734		if (!this_len) {
 735			if (!copied)
 736				copied = -EIO;
 737			break;
 738		}
 739
 740		if (!write && copy_to_user(buf, page, this_len)) {
 741			copied = -EFAULT;
 742			break;
 743		}
 744
 745		buf += this_len;
 746		addr += this_len;
 747		copied += this_len;
 748		count -= this_len;
 749	}
 750	*ppos = addr;
 751
 
 752	mmput(mm);
 753free:
 754	free_page((unsigned long) page);
 
 
 
 755	return copied;
 756}
 757
 758static ssize_t mem_read(struct file *file, char __user *buf,
 759			size_t count, loff_t *ppos)
 760{
 761	return mem_rw(file, buf, count, ppos, 0);
 762}
 763
 764static ssize_t mem_write(struct file *file, const char __user *buf,
 765			 size_t count, loff_t *ppos)
 766{
 767	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 768}
 769
 770loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 771{
 772	switch (orig) {
 773	case 0:
 774		file->f_pos = offset;
 775		break;
 776	case 1:
 777		file->f_pos += offset;
 778		break;
 779	default:
 780		return -EINVAL;
 781	}
 782	force_successful_syscall_return();
 783	return file->f_pos;
 784}
 785
 786static int mem_release(struct inode *inode, struct file *file)
 787{
 788	struct mm_struct *mm = file->private_data;
 789	if (mm)
 790		mmdrop(mm);
 791	return 0;
 792}
 793
 794static const struct file_operations proc_mem_operations = {
 795	.llseek		= mem_lseek,
 796	.read		= mem_read,
 797	.write		= mem_write,
 798	.open		= mem_open,
 799	.release	= mem_release,
 800};
 801
 802static int environ_open(struct inode *inode, struct file *file)
 803{
 804	return __mem_open(inode, file, PTRACE_MODE_READ);
 805}
 806
 807static ssize_t environ_read(struct file *file, char __user *buf,
 808			size_t count, loff_t *ppos)
 809{
 
 810	char *page;
 811	unsigned long src = *ppos;
 812	int ret = 0;
 813	struct mm_struct *mm = file->private_data;
 814
 815	if (!mm)
 816		return 0;
 817
 
 818	page = (char *)__get_free_page(GFP_TEMPORARY);
 819	if (!page)
 820		return -ENOMEM;
 
 
 
 
 
 
 821
 822	ret = 0;
 823	if (!atomic_inc_not_zero(&mm->mm_users))
 824		goto free;
 825	while (count > 0) {
 826		size_t this_len, max_len;
 827		int retval;
 828
 829		if (src >= (mm->env_end - mm->env_start))
 
 
 830			break;
 831
 832		this_len = mm->env_end - (mm->env_start + src);
 833
 834		max_len = min_t(size_t, PAGE_SIZE, count);
 835		this_len = min(max_len, this_len);
 836
 837		retval = access_remote_vm(mm, (mm->env_start + src),
 838			page, this_len, 0);
 839
 840		if (retval <= 0) {
 841			ret = retval;
 842			break;
 843		}
 844
 845		if (copy_to_user(buf, page, retval)) {
 846			ret = -EFAULT;
 847			break;
 848		}
 849
 850		ret += retval;
 851		src += retval;
 852		buf += retval;
 853		count -= retval;
 854	}
 855	*ppos = src;
 
 856	mmput(mm);
 857
 858free:
 859	free_page((unsigned long) page);
 
 
 
 860	return ret;
 861}
 862
 863static const struct file_operations proc_environ_operations = {
 864	.open		= environ_open,
 865	.read		= environ_read,
 866	.llseek		= generic_file_llseek,
 867	.release	= mem_release,
 868};
 869
 870static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
 871			    loff_t *ppos)
 872{
 873	struct task_struct *task = get_proc_task(file_inode(file));
 874	char buffer[PROC_NUMBUF];
 875	int oom_adj = OOM_ADJUST_MIN;
 876	size_t len;
 
 877	unsigned long flags;
 878
 879	if (!task)
 880		return -ESRCH;
 
 881	if (lock_task_sighand(task, &flags)) {
 882		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
 883			oom_adj = OOM_ADJUST_MAX;
 884		else
 885			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
 886				  OOM_SCORE_ADJ_MAX;
 887		unlock_task_sighand(task, &flags);
 888	}
 
 889	put_task_struct(task);
 890	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
 
 
 891	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 892}
 893
 894static ssize_t oom_adj_write(struct file *file, const char __user *buf,
 895			     size_t count, loff_t *ppos)
 896{
 897	struct task_struct *task;
 898	char buffer[PROC_NUMBUF];
 899	int oom_adj;
 900	unsigned long flags;
 901	int err;
 902
 903	memset(buffer, 0, sizeof(buffer));
 904	if (count > sizeof(buffer) - 1)
 905		count = sizeof(buffer) - 1;
 906	if (copy_from_user(buffer, buf, count)) {
 907		err = -EFAULT;
 908		goto out;
 909	}
 910
 911	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
 912	if (err)
 913		goto out;
 914	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
 915	     oom_adj != OOM_DISABLE) {
 916		err = -EINVAL;
 917		goto out;
 918	}
 919
 920	task = get_proc_task(file_inode(file));
 921	if (!task) {
 922		err = -ESRCH;
 923		goto out;
 924	}
 925
 926	task_lock(task);
 927	if (!task->mm) {
 928		err = -EINVAL;
 929		goto err_task_lock;
 930	}
 931
 932	if (!lock_task_sighand(task, &flags)) {
 933		err = -ESRCH;
 934		goto err_task_lock;
 935	}
 936
 937	/*
 938	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
 939	 * value is always attainable.
 940	 */
 941	if (oom_adj == OOM_ADJUST_MAX)
 942		oom_adj = OOM_SCORE_ADJ_MAX;
 943	else
 944		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
 945
 946	if (oom_adj < task->signal->oom_score_adj &&
 947	    !capable(CAP_SYS_RESOURCE)) {
 948		err = -EACCES;
 949		goto err_sighand;
 950	}
 951
 
 
 
 
 
 
 
 952	/*
 953	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
 954	 * /proc/pid/oom_score_adj instead.
 955	 */
 956	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
 957		  current->comm, task_pid_nr(current), task_pid_nr(task),
 958		  task_pid_nr(task));
 959
 960	task->signal->oom_score_adj = oom_adj;
 961	trace_oom_score_adj_update(task);
 
 
 
 
 
 
 
 962err_sighand:
 963	unlock_task_sighand(task, &flags);
 964err_task_lock:
 965	task_unlock(task);
 966	put_task_struct(task);
 967out:
 968	return err < 0 ? err : count;
 969}
 970
 971static const struct file_operations proc_oom_adj_operations = {
 972	.read		= oom_adj_read,
 973	.write		= oom_adj_write,
 974	.llseek		= generic_file_llseek,
 975};
 976
 977static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
 978					size_t count, loff_t *ppos)
 979{
 980	struct task_struct *task = get_proc_task(file_inode(file));
 981	char buffer[PROC_NUMBUF];
 982	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 983	unsigned long flags;
 984	size_t len;
 985
 986	if (!task)
 987		return -ESRCH;
 988	if (lock_task_sighand(task, &flags)) {
 989		oom_score_adj = task->signal->oom_score_adj;
 990		unlock_task_sighand(task, &flags);
 991	}
 992	put_task_struct(task);
 993	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
 994	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 995}
 996
 997static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
 998					size_t count, loff_t *ppos)
 999{
1000	struct task_struct *task;
1001	char buffer[PROC_NUMBUF];
1002	unsigned long flags;
1003	int oom_score_adj;
1004	int err;
1005
1006	memset(buffer, 0, sizeof(buffer));
1007	if (count > sizeof(buffer) - 1)
1008		count = sizeof(buffer) - 1;
1009	if (copy_from_user(buffer, buf, count)) {
1010		err = -EFAULT;
1011		goto out;
1012	}
1013
1014	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1015	if (err)
1016		goto out;
1017	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1018			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1019		err = -EINVAL;
1020		goto out;
1021	}
1022
1023	task = get_proc_task(file_inode(file));
1024	if (!task) {
1025		err = -ESRCH;
1026		goto out;
1027	}
1028
1029	task_lock(task);
1030	if (!task->mm) {
1031		err = -EINVAL;
1032		goto err_task_lock;
1033	}
1034
1035	if (!lock_task_sighand(task, &flags)) {
1036		err = -ESRCH;
1037		goto err_task_lock;
1038	}
1039
1040	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1041			!capable(CAP_SYS_RESOURCE)) {
1042		err = -EACCES;
1043		goto err_sighand;
1044	}
1045
1046	task->signal->oom_score_adj = (short)oom_score_adj;
 
 
 
 
 
 
1047	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1048		task->signal->oom_score_adj_min = (short)oom_score_adj;
1049	trace_oom_score_adj_update(task);
1050
 
 
 
 
 
 
 
1051err_sighand:
1052	unlock_task_sighand(task, &flags);
1053err_task_lock:
1054	task_unlock(task);
1055	put_task_struct(task);
1056out:
1057	return err < 0 ? err : count;
1058}
1059
1060static const struct file_operations proc_oom_score_adj_operations = {
1061	.read		= oom_score_adj_read,
1062	.write		= oom_score_adj_write,
1063	.llseek		= default_llseek,
1064};
1065
1066#ifdef CONFIG_AUDITSYSCALL
1067#define TMPBUFLEN 21
1068static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1069				  size_t count, loff_t *ppos)
1070{
1071	struct inode * inode = file_inode(file);
1072	struct task_struct *task = get_proc_task(inode);
1073	ssize_t length;
1074	char tmpbuf[TMPBUFLEN];
1075
1076	if (!task)
1077		return -ESRCH;
1078	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1079			   from_kuid(file->f_cred->user_ns,
1080				     audit_get_loginuid(task)));
1081	put_task_struct(task);
1082	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1083}
1084
1085static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1086				   size_t count, loff_t *ppos)
1087{
1088	struct inode * inode = file_inode(file);
1089	char *page, *tmp;
1090	ssize_t length;
1091	uid_t loginuid;
1092	kuid_t kloginuid;
 
 
1093
1094	rcu_read_lock();
1095	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1096		rcu_read_unlock();
1097		return -EPERM;
1098	}
1099	rcu_read_unlock();
1100
1101	if (count >= PAGE_SIZE)
1102		count = PAGE_SIZE - 1;
1103
1104	if (*ppos != 0) {
1105		/* No partial writes. */
1106		return -EINVAL;
1107	}
1108	page = (char*)__get_free_page(GFP_TEMPORARY);
1109	if (!page)
1110		return -ENOMEM;
1111	length = -EFAULT;
1112	if (copy_from_user(page, buf, count))
1113		goto out_free_page;
1114
1115	page[count] = '\0';
1116	loginuid = simple_strtoul(page, &tmp, 10);
1117	if (tmp == page) {
1118		length = -EINVAL;
1119		goto out_free_page;
1120
1121	}
1122
1123	/* is userspace tring to explicitly UNSET the loginuid? */
1124	if (loginuid == AUDIT_UID_UNSET) {
1125		kloginuid = INVALID_UID;
1126	} else {
1127		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1128		if (!uid_valid(kloginuid)) {
1129			length = -EINVAL;
1130			goto out_free_page;
1131		}
1132	}
1133
1134	length = audit_set_loginuid(kloginuid);
1135	if (likely(length == 0))
1136		length = count;
1137
1138out_free_page:
1139	free_page((unsigned long) page);
1140	return length;
1141}
1142
1143static const struct file_operations proc_loginuid_operations = {
1144	.read		= proc_loginuid_read,
1145	.write		= proc_loginuid_write,
1146	.llseek		= generic_file_llseek,
1147};
1148
1149static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1150				  size_t count, loff_t *ppos)
1151{
1152	struct inode * inode = file_inode(file);
1153	struct task_struct *task = get_proc_task(inode);
1154	ssize_t length;
1155	char tmpbuf[TMPBUFLEN];
1156
1157	if (!task)
1158		return -ESRCH;
1159	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1160				audit_get_sessionid(task));
1161	put_task_struct(task);
1162	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1163}
1164
1165static const struct file_operations proc_sessionid_operations = {
1166	.read		= proc_sessionid_read,
1167	.llseek		= generic_file_llseek,
1168};
1169#endif
1170
1171#ifdef CONFIG_FAULT_INJECTION
1172static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1173				      size_t count, loff_t *ppos)
1174{
1175	struct task_struct *task = get_proc_task(file_inode(file));
1176	char buffer[PROC_NUMBUF];
1177	size_t len;
1178	int make_it_fail;
1179
1180	if (!task)
1181		return -ESRCH;
1182	make_it_fail = task->make_it_fail;
1183	put_task_struct(task);
1184
1185	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1186
1187	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1188}
1189
1190static ssize_t proc_fault_inject_write(struct file * file,
1191			const char __user * buf, size_t count, loff_t *ppos)
1192{
1193	struct task_struct *task;
1194	char buffer[PROC_NUMBUF], *end;
1195	int make_it_fail;
1196
1197	if (!capable(CAP_SYS_RESOURCE))
1198		return -EPERM;
1199	memset(buffer, 0, sizeof(buffer));
1200	if (count > sizeof(buffer) - 1)
1201		count = sizeof(buffer) - 1;
1202	if (copy_from_user(buffer, buf, count))
1203		return -EFAULT;
1204	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1205	if (*end)
1206		return -EINVAL;
1207	if (make_it_fail < 0 || make_it_fail > 1)
1208		return -EINVAL;
1209
1210	task = get_proc_task(file_inode(file));
1211	if (!task)
1212		return -ESRCH;
1213	task->make_it_fail = make_it_fail;
1214	put_task_struct(task);
1215
1216	return count;
1217}
1218
1219static const struct file_operations proc_fault_inject_operations = {
1220	.read		= proc_fault_inject_read,
1221	.write		= proc_fault_inject_write,
1222	.llseek		= generic_file_llseek,
1223};
1224#endif
1225
1226
1227#ifdef CONFIG_SCHED_DEBUG
1228/*
1229 * Print out various scheduling related per-task fields:
1230 */
1231static int sched_show(struct seq_file *m, void *v)
1232{
1233	struct inode *inode = m->private;
1234	struct task_struct *p;
1235
1236	p = get_proc_task(inode);
1237	if (!p)
1238		return -ESRCH;
1239	proc_sched_show_task(p, m);
1240
1241	put_task_struct(p);
1242
1243	return 0;
1244}
1245
1246static ssize_t
1247sched_write(struct file *file, const char __user *buf,
1248	    size_t count, loff_t *offset)
1249{
1250	struct inode *inode = file_inode(file);
1251	struct task_struct *p;
1252
1253	p = get_proc_task(inode);
1254	if (!p)
1255		return -ESRCH;
1256	proc_sched_set_task(p);
1257
1258	put_task_struct(p);
1259
1260	return count;
1261}
1262
1263static int sched_open(struct inode *inode, struct file *filp)
1264{
1265	return single_open(filp, sched_show, inode);
1266}
1267
1268static const struct file_operations proc_pid_sched_operations = {
1269	.open		= sched_open,
1270	.read		= seq_read,
1271	.write		= sched_write,
1272	.llseek		= seq_lseek,
1273	.release	= single_release,
1274};
1275
1276#endif
1277
1278#ifdef CONFIG_SCHED_AUTOGROUP
1279/*
1280 * Print out autogroup related information:
1281 */
1282static int sched_autogroup_show(struct seq_file *m, void *v)
1283{
1284	struct inode *inode = m->private;
1285	struct task_struct *p;
1286
1287	p = get_proc_task(inode);
1288	if (!p)
1289		return -ESRCH;
1290	proc_sched_autogroup_show_task(p, m);
1291
1292	put_task_struct(p);
1293
1294	return 0;
1295}
1296
1297static ssize_t
1298sched_autogroup_write(struct file *file, const char __user *buf,
1299	    size_t count, loff_t *offset)
1300{
1301	struct inode *inode = file_inode(file);
1302	struct task_struct *p;
1303	char buffer[PROC_NUMBUF];
1304	int nice;
1305	int err;
1306
1307	memset(buffer, 0, sizeof(buffer));
1308	if (count > sizeof(buffer) - 1)
1309		count = sizeof(buffer) - 1;
1310	if (copy_from_user(buffer, buf, count))
1311		return -EFAULT;
1312
1313	err = kstrtoint(strstrip(buffer), 0, &nice);
1314	if (err < 0)
1315		return err;
1316
1317	p = get_proc_task(inode);
1318	if (!p)
1319		return -ESRCH;
1320
1321	err = proc_sched_autogroup_set_nice(p, nice);
 
1322	if (err)
1323		count = err;
1324
1325	put_task_struct(p);
1326
1327	return count;
1328}
1329
1330static int sched_autogroup_open(struct inode *inode, struct file *filp)
1331{
1332	int ret;
1333
1334	ret = single_open(filp, sched_autogroup_show, NULL);
1335	if (!ret) {
1336		struct seq_file *m = filp->private_data;
1337
1338		m->private = inode;
1339	}
1340	return ret;
1341}
1342
1343static const struct file_operations proc_pid_sched_autogroup_operations = {
1344	.open		= sched_autogroup_open,
1345	.read		= seq_read,
1346	.write		= sched_autogroup_write,
1347	.llseek		= seq_lseek,
1348	.release	= single_release,
1349};
1350
1351#endif /* CONFIG_SCHED_AUTOGROUP */
1352
1353static ssize_t comm_write(struct file *file, const char __user *buf,
1354				size_t count, loff_t *offset)
1355{
1356	struct inode *inode = file_inode(file);
1357	struct task_struct *p;
1358	char buffer[TASK_COMM_LEN];
1359	const size_t maxlen = sizeof(buffer) - 1;
1360
1361	memset(buffer, 0, sizeof(buffer));
1362	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
 
 
1363		return -EFAULT;
1364
1365	p = get_proc_task(inode);
1366	if (!p)
1367		return -ESRCH;
1368
1369	if (same_thread_group(current, p))
1370		set_task_comm(p, buffer);
1371	else
1372		count = -EINVAL;
1373
1374	put_task_struct(p);
1375
1376	return count;
1377}
1378
1379static int comm_show(struct seq_file *m, void *v)
1380{
1381	struct inode *inode = m->private;
1382	struct task_struct *p;
1383
1384	p = get_proc_task(inode);
1385	if (!p)
1386		return -ESRCH;
1387
1388	task_lock(p);
1389	seq_printf(m, "%s\n", p->comm);
1390	task_unlock(p);
1391
1392	put_task_struct(p);
1393
1394	return 0;
1395}
1396
1397static int comm_open(struct inode *inode, struct file *filp)
1398{
1399	return single_open(filp, comm_show, inode);
1400}
1401
1402static const struct file_operations proc_pid_set_comm_operations = {
1403	.open		= comm_open,
1404	.read		= seq_read,
1405	.write		= comm_write,
1406	.llseek		= seq_lseek,
1407	.release	= single_release,
1408};
1409
1410static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1411{
1412	struct task_struct *task;
1413	struct mm_struct *mm;
1414	struct file *exe_file;
1415
1416	task = get_proc_task(dentry->d_inode);
1417	if (!task)
1418		return -ENOENT;
1419	mm = get_task_mm(task);
1420	put_task_struct(task);
1421	if (!mm)
1422		return -ENOENT;
1423	exe_file = get_mm_exe_file(mm);
1424	mmput(mm);
1425	if (exe_file) {
1426		*exe_path = exe_file->f_path;
1427		path_get(&exe_file->f_path);
1428		fput(exe_file);
1429		return 0;
1430	} else
1431		return -ENOENT;
1432}
1433
1434static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1435{
1436	struct inode *inode = dentry->d_inode;
1437	struct path path;
1438	int error = -EACCES;
1439
 
 
 
1440	/* Are we allowed to snoop on the tasks file descriptors? */
1441	if (!proc_fd_access_allowed(inode))
1442		goto out;
1443
1444	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1445	if (error)
1446		goto out;
1447
1448	nd_jump_link(nd, &path);
1449	return NULL;
1450out:
1451	return ERR_PTR(error);
1452}
1453
1454static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1455{
1456	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1457	char *pathname;
1458	int len;
1459
1460	if (!tmp)
1461		return -ENOMEM;
1462
1463	pathname = d_path(path, tmp, PAGE_SIZE);
1464	len = PTR_ERR(pathname);
1465	if (IS_ERR(pathname))
1466		goto out;
1467	len = tmp + PAGE_SIZE - 1 - pathname;
1468
1469	if (len > buflen)
1470		len = buflen;
1471	if (copy_to_user(buffer, pathname, len))
1472		len = -EFAULT;
1473 out:
1474	free_page((unsigned long)tmp);
1475	return len;
1476}
1477
1478static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1479{
1480	int error = -EACCES;
1481	struct inode *inode = dentry->d_inode;
1482	struct path path;
1483
1484	/* Are we allowed to snoop on the tasks file descriptors? */
1485	if (!proc_fd_access_allowed(inode))
1486		goto out;
1487
1488	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1489	if (error)
1490		goto out;
1491
1492	error = do_proc_readlink(&path, buffer, buflen);
1493	path_put(&path);
1494out:
1495	return error;
1496}
1497
1498const struct inode_operations proc_pid_link_inode_operations = {
1499	.readlink	= proc_pid_readlink,
1500	.follow_link	= proc_pid_follow_link,
1501	.setattr	= proc_setattr,
1502};
1503
1504
1505/* building an inode */
1506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1508{
1509	struct inode * inode;
1510	struct proc_inode *ei;
1511	const struct cred *cred;
1512
1513	/* We need a new inode */
1514
1515	inode = new_inode(sb);
1516	if (!inode)
1517		goto out;
1518
1519	/* Common stuff */
1520	ei = PROC_I(inode);
1521	inode->i_ino = get_next_ino();
1522	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1523	inode->i_op = &proc_def_inode_operations;
1524
1525	/*
1526	 * grab the reference to task.
1527	 */
1528	ei->pid = get_task_pid(task, PIDTYPE_PID);
1529	if (!ei->pid)
1530		goto out_unlock;
1531
1532	if (task_dumpable(task)) {
1533		rcu_read_lock();
1534		cred = __task_cred(task);
1535		inode->i_uid = cred->euid;
1536		inode->i_gid = cred->egid;
1537		rcu_read_unlock();
1538	}
1539	security_task_to_inode(task, inode);
1540
1541out:
1542	return inode;
1543
1544out_unlock:
1545	iput(inode);
1546	return NULL;
1547}
1548
1549int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1550{
1551	struct inode *inode = dentry->d_inode;
1552	struct task_struct *task;
1553	const struct cred *cred;
1554	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1555
1556	generic_fillattr(inode, stat);
1557
1558	rcu_read_lock();
1559	stat->uid = GLOBAL_ROOT_UID;
1560	stat->gid = GLOBAL_ROOT_GID;
1561	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1562	if (task) {
1563		if (!has_pid_permissions(pid, task, 2)) {
1564			rcu_read_unlock();
1565			/*
1566			 * This doesn't prevent learning whether PID exists,
1567			 * it only makes getattr() consistent with readdir().
1568			 */
1569			return -ENOENT;
1570		}
1571		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1572		    task_dumpable(task)) {
1573			cred = __task_cred(task);
1574			stat->uid = cred->euid;
1575			stat->gid = cred->egid;
1576		}
1577	}
1578	rcu_read_unlock();
1579	return 0;
1580}
1581
1582/* dentry stuff */
1583
1584/*
1585 *	Exceptional case: normally we are not allowed to unhash a busy
1586 * directory. In this case, however, we can do it - no aliasing problems
1587 * due to the way we treat inodes.
1588 *
1589 * Rewrite the inode's ownerships here because the owning task may have
1590 * performed a setuid(), etc.
1591 *
1592 * Before the /proc/pid/status file was created the only way to read
1593 * the effective uid of a /process was to stat /proc/pid.  Reading
1594 * /proc/pid/status is slow enough that procps and other packages
1595 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1596 * made this apply to all per process world readable and executable
1597 * directories.
1598 */
1599int pid_revalidate(struct dentry *dentry, unsigned int flags)
1600{
1601	struct inode *inode;
1602	struct task_struct *task;
1603	const struct cred *cred;
1604
1605	if (flags & LOOKUP_RCU)
1606		return -ECHILD;
1607
1608	inode = dentry->d_inode;
1609	task = get_proc_task(inode);
1610
1611	if (task) {
1612		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1613		    task_dumpable(task)) {
1614			rcu_read_lock();
1615			cred = __task_cred(task);
1616			inode->i_uid = cred->euid;
1617			inode->i_gid = cred->egid;
1618			rcu_read_unlock();
1619		} else {
1620			inode->i_uid = GLOBAL_ROOT_UID;
1621			inode->i_gid = GLOBAL_ROOT_GID;
1622		}
1623		inode->i_mode &= ~(S_ISUID | S_ISGID);
1624		security_task_to_inode(task, inode);
1625		put_task_struct(task);
1626		return 1;
1627	}
1628	d_drop(dentry);
1629	return 0;
1630}
1631
1632static inline bool proc_inode_is_dead(struct inode *inode)
1633{
1634	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1635}
1636
1637int pid_delete_dentry(const struct dentry *dentry)
1638{
1639	/* Is the task we represent dead?
1640	 * If so, then don't put the dentry on the lru list,
1641	 * kill it immediately.
1642	 */
1643	return proc_inode_is_dead(dentry->d_inode);
1644}
1645
1646const struct dentry_operations pid_dentry_operations =
1647{
1648	.d_revalidate	= pid_revalidate,
1649	.d_delete	= pid_delete_dentry,
1650};
1651
1652/* Lookups */
1653
1654/*
1655 * Fill a directory entry.
1656 *
1657 * If possible create the dcache entry and derive our inode number and
1658 * file type from dcache entry.
1659 *
1660 * Since all of the proc inode numbers are dynamically generated, the inode
1661 * numbers do not exist until the inode is cache.  This means creating the
1662 * the dcache entry in readdir is necessary to keep the inode numbers
1663 * reported by readdir in sync with the inode numbers reported
1664 * by stat.
1665 */
1666bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1667	const char *name, int len,
1668	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1669{
1670	struct dentry *child, *dir = file->f_path.dentry;
1671	struct qstr qname = QSTR_INIT(name, len);
1672	struct inode *inode;
1673	unsigned type;
1674	ino_t ino;
 
 
 
 
 
1675
1676	child = d_hash_and_lookup(dir, &qname);
1677	if (!child) {
1678		child = d_alloc(dir, &qname);
1679		if (!child)
1680			goto end_instantiate;
1681		if (instantiate(dir->d_inode, child, task, ptr) < 0) {
1682			dput(child);
1683			goto end_instantiate;
 
 
1684		}
1685	}
 
 
1686	inode = child->d_inode;
1687	ino = inode->i_ino;
1688	type = inode->i_mode >> 12;
 
 
1689	dput(child);
1690	return dir_emit(ctx, name, len, ino, type);
1691
1692end_instantiate:
1693	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1694}
1695
1696#ifdef CONFIG_CHECKPOINT_RESTORE
1697
1698/*
1699 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1700 * which represent vma start and end addresses.
1701 */
1702static int dname_to_vma_addr(struct dentry *dentry,
1703			     unsigned long *start, unsigned long *end)
1704{
1705	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1706		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707
1708	return 0;
 
 
1709}
1710
1711static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1712{
1713	unsigned long vm_start, vm_end;
1714	bool exact_vma_exists = false;
1715	struct mm_struct *mm = NULL;
1716	struct task_struct *task;
 
 
1717	const struct cred *cred;
1718	struct inode *inode;
1719	int status = 0;
1720
1721	if (flags & LOOKUP_RCU)
1722		return -ECHILD;
1723
1724	if (!capable(CAP_SYS_ADMIN)) {
1725		status = -EPERM;
1726		goto out_notask;
1727	}
1728
1729	inode = dentry->d_inode;
1730	task = get_proc_task(inode);
1731	if (!task)
1732		goto out_notask;
1733
1734	mm = mm_access(task, PTRACE_MODE_READ);
1735	if (IS_ERR_OR_NULL(mm))
1736		goto out;
1737
1738	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1739		down_read(&mm->mmap_sem);
1740		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1741		up_read(&mm->mmap_sem);
1742	}
1743
1744	mmput(mm);
1745
1746	if (exact_vma_exists) {
1747		if (task_dumpable(task)) {
1748			rcu_read_lock();
1749			cred = __task_cred(task);
1750			inode->i_uid = cred->euid;
1751			inode->i_gid = cred->egid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752			rcu_read_unlock();
1753		} else {
1754			inode->i_uid = GLOBAL_ROOT_UID;
1755			inode->i_gid = GLOBAL_ROOT_GID;
1756		}
1757		security_task_to_inode(task, inode);
1758		status = 1;
1759	}
1760
1761out:
1762	put_task_struct(task);
1763
1764out_notask:
1765	if (status <= 0)
1766		d_drop(dentry);
1767
1768	return status;
1769}
1770
1771static const struct dentry_operations tid_map_files_dentry_operations = {
1772	.d_revalidate	= map_files_d_revalidate,
 
1773	.d_delete	= pid_delete_dentry,
1774};
1775
1776static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
 
1777{
1778	unsigned long vm_start, vm_end;
1779	struct vm_area_struct *vma;
1780	struct task_struct *task;
1781	struct mm_struct *mm;
1782	int rc;
1783
1784	rc = -ENOENT;
1785	task = get_proc_task(dentry->d_inode);
1786	if (!task)
1787		goto out;
1788
1789	mm = get_task_mm(task);
1790	put_task_struct(task);
1791	if (!mm)
1792		goto out;
1793
1794	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1795	if (rc)
1796		goto out_mmput;
1797
1798	rc = -ENOENT;
1799	down_read(&mm->mmap_sem);
1800	vma = find_exact_vma(mm, vm_start, vm_end);
1801	if (vma && vma->vm_file) {
1802		*path = vma->vm_file->f_path;
1803		path_get(path);
1804		rc = 0;
1805	}
1806	up_read(&mm->mmap_sem);
1807
1808out_mmput:
1809	mmput(mm);
1810out:
1811	return rc;
1812}
1813
1814struct map_files_info {
1815	fmode_t		mode;
1816	unsigned long	len;
1817	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1818};
1819
1820static int
1821proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1822			   struct task_struct *task, const void *ptr)
1823{
1824	fmode_t mode = (fmode_t)(unsigned long)ptr;
1825	struct proc_inode *ei;
1826	struct inode *inode;
1827
1828	inode = proc_pid_make_inode(dir->i_sb, task);
1829	if (!inode)
1830		return -ENOENT;
 
 
 
 
 
 
1831
1832	ei = PROC_I(inode);
1833	ei->op.proc_get_link = proc_map_files_get_link;
 
 
 
 
 
 
 
 
 
 
 
 
1834
1835	inode->i_op = &proc_pid_link_inode_operations;
1836	inode->i_size = 64;
1837	inode->i_mode = S_IFLNK;
1838
1839	if (mode & FMODE_READ)
1840		inode->i_mode |= S_IRUSR;
1841	if (mode & FMODE_WRITE)
1842		inode->i_mode |= S_IWUSR;
1843
1844	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1845	d_add(dentry, inode);
 
 
 
1846
1847	return 0;
 
 
 
 
 
 
 
1848}
1849
1850static struct dentry *proc_map_files_lookup(struct inode *dir,
1851		struct dentry *dentry, unsigned int flags)
 
1852{
1853	unsigned long vm_start, vm_end;
1854	struct vm_area_struct *vma;
1855	struct task_struct *task;
1856	int result;
1857	struct mm_struct *mm;
1858
1859	result = -EPERM;
1860	if (!capable(CAP_SYS_ADMIN))
1861		goto out;
1862
1863	result = -ENOENT;
1864	task = get_proc_task(dir);
1865	if (!task)
 
 
1866		goto out;
1867
1868	result = -EACCES;
1869	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1870		goto out_put_task;
 
 
 
1871
1872	result = -ENOENT;
1873	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1874		goto out_put_task;
 
 
 
 
 
 
1875
1876	mm = get_task_mm(task);
1877	if (!mm)
1878		goto out_put_task;
 
1879
1880	down_read(&mm->mmap_sem);
1881	vma = find_exact_vma(mm, vm_start, vm_end);
1882	if (!vma)
1883		goto out_no_vma;
1884
1885	if (vma->vm_file)
1886		result = proc_map_files_instantiate(dir, dentry, task,
1887				(void *)(unsigned long)vma->vm_file->f_mode);
1888
1889out_no_vma:
1890	up_read(&mm->mmap_sem);
1891	mmput(mm);
1892out_put_task:
1893	put_task_struct(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894out:
1895	return ERR_PTR(result);
 
 
1896}
1897
1898static const struct inode_operations proc_map_files_inode_operations = {
1899	.lookup		= proc_map_files_lookup,
1900	.permission	= proc_fd_permission,
1901	.setattr	= proc_setattr,
1902};
1903
1904static int
1905proc_map_files_readdir(struct file *file, struct dir_context *ctx)
1906{
1907	struct vm_area_struct *vma;
1908	struct task_struct *task;
1909	struct mm_struct *mm;
1910	unsigned long nr_files, pos, i;
1911	struct flex_array *fa = NULL;
1912	struct map_files_info info;
1913	struct map_files_info *p;
1914	int ret;
1915
1916	ret = -EPERM;
1917	if (!capable(CAP_SYS_ADMIN))
1918		goto out;
 
 
 
 
 
 
1919
1920	ret = -ENOENT;
1921	task = get_proc_task(file_inode(file));
1922	if (!task)
1923		goto out;
 
1924
1925	ret = -EACCES;
1926	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1927		goto out_put_task;
1928
1929	ret = 0;
1930	if (!dir_emit_dots(file, ctx))
1931		goto out_put_task;
1932
1933	mm = get_task_mm(task);
1934	if (!mm)
1935		goto out_put_task;
1936	down_read(&mm->mmap_sem);
1937
1938	nr_files = 0;
1939
1940	/*
1941	 * We need two passes here:
1942	 *
1943	 *  1) Collect vmas of mapped files with mmap_sem taken
1944	 *  2) Release mmap_sem and instantiate entries
1945	 *
1946	 * otherwise we get lockdep complained, since filldir()
1947	 * routine might require mmap_sem taken in might_fault().
1948	 */
1949
1950	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1951		if (vma->vm_file && ++pos > ctx->pos)
1952			nr_files++;
1953	}
1954
1955	if (nr_files) {
1956		fa = flex_array_alloc(sizeof(info), nr_files,
1957					GFP_KERNEL);
1958		if (!fa || flex_array_prealloc(fa, 0, nr_files,
1959						GFP_KERNEL)) {
1960			ret = -ENOMEM;
1961			if (fa)
1962				flex_array_free(fa);
1963			up_read(&mm->mmap_sem);
1964			mmput(mm);
1965			goto out_put_task;
1966		}
1967		for (i = 0, vma = mm->mmap, pos = 2; vma;
1968				vma = vma->vm_next) {
1969			if (!vma->vm_file)
1970				continue;
1971			if (++pos <= ctx->pos)
1972				continue;
1973
1974			info.mode = vma->vm_file->f_mode;
1975			info.len = snprintf(info.name,
1976					sizeof(info.name), "%lx-%lx",
1977					vma->vm_start, vma->vm_end);
1978			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1979				BUG();
1980		}
1981	}
1982	up_read(&mm->mmap_sem);
1983
1984	for (i = 0; i < nr_files; i++) {
1985		p = flex_array_get(fa, i);
1986		if (!proc_fill_cache(file, ctx,
1987				      p->name, p->len,
1988				      proc_map_files_instantiate,
1989				      task,
1990				      (void *)(unsigned long)p->mode))
1991			break;
1992		ctx->pos++;
1993	}
1994	if (fa)
1995		flex_array_free(fa);
1996	mmput(mm);
1997
1998out_put_task:
1999	put_task_struct(task);
2000out:
2001	return ret;
2002}
2003
2004static const struct file_operations proc_map_files_operations = {
2005	.read		= generic_read_dir,
2006	.iterate	= proc_map_files_readdir,
2007	.llseek		= default_llseek,
2008};
2009
2010struct timers_private {
2011	struct pid *pid;
2012	struct task_struct *task;
2013	struct sighand_struct *sighand;
2014	struct pid_namespace *ns;
2015	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016};
2017
2018static void *timers_start(struct seq_file *m, loff_t *pos)
 
2019{
2020	struct timers_private *tp = m->private;
 
 
 
2021
2022	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2023	if (!tp->task)
2024		return ERR_PTR(-ESRCH);
 
 
 
 
 
 
 
 
 
2025
2026	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2027	if (!tp->sighand)
2028		return ERR_PTR(-ESRCH);
2029
2030	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2031}
2032
2033static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2034{
2035	struct timers_private *tp = m->private;
2036	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2037}
2038
2039static void timers_stop(struct seq_file *m, void *v)
 
 
2040{
2041	struct timers_private *tp = m->private;
2042
2043	if (tp->sighand) {
2044		unlock_task_sighand(tp->task, &tp->flags);
2045		tp->sighand = NULL;
2046	}
2047
2048	if (tp->task) {
2049		put_task_struct(tp->task);
2050		tp->task = NULL;
2051	}
2052}
2053
2054static int show_timer(struct seq_file *m, void *v)
2055{
2056	struct k_itimer *timer;
2057	struct timers_private *tp = m->private;
2058	int notify;
2059	static char *nstr[] = {
2060		[SIGEV_SIGNAL] = "signal",
2061		[SIGEV_NONE] = "none",
2062		[SIGEV_THREAD] = "thread",
2063	};
2064
2065	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2066	notify = timer->it_sigev_notify;
2067
2068	seq_printf(m, "ID: %d\n", timer->it_id);
2069	seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2070			timer->sigq->info.si_value.sival_ptr);
2071	seq_printf(m, "notify: %s/%s.%d\n",
2072		nstr[notify & ~SIGEV_THREAD_ID],
2073		(notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2074		pid_nr_ns(timer->it_pid, tp->ns));
2075	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2076
2077	return 0;
2078}
2079
2080static const struct seq_operations proc_timers_seq_ops = {
2081	.start	= timers_start,
2082	.next	= timers_next,
2083	.stop	= timers_stop,
2084	.show	= show_timer,
2085};
2086
2087static int proc_timers_open(struct inode *inode, struct file *file)
2088{
2089	struct timers_private *tp;
 
 
 
 
2090
2091	tp = __seq_open_private(file, &proc_timers_seq_ops,
2092			sizeof(struct timers_private));
2093	if (!tp)
2094		return -ENOMEM;
2095
2096	tp->pid = proc_pid(inode);
2097	tp->ns = inode->i_sb->s_fs_info;
2098	return 0;
2099}
2100
2101static const struct file_operations proc_timers_operations = {
2102	.open		= proc_timers_open,
2103	.read		= seq_read,
2104	.llseek		= seq_lseek,
2105	.release	= seq_release_private,
2106};
2107#endif /* CONFIG_CHECKPOINT_RESTORE */
2108
2109static int proc_pident_instantiate(struct inode *dir,
2110	struct dentry *dentry, struct task_struct *task, const void *ptr)
2111{
2112	const struct pid_entry *p = ptr;
2113	struct inode *inode;
2114	struct proc_inode *ei;
 
2115
2116	inode = proc_pid_make_inode(dir->i_sb, task);
2117	if (!inode)
2118		goto out;
2119
2120	ei = PROC_I(inode);
2121	inode->i_mode = p->mode;
2122	if (S_ISDIR(inode->i_mode))
2123		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2124	if (p->iop)
2125		inode->i_op = p->iop;
2126	if (p->fop)
2127		inode->i_fop = p->fop;
2128	ei->op = p->op;
2129	d_set_d_op(dentry, &pid_dentry_operations);
2130	d_add(dentry, inode);
2131	/* Close the race of the process dying before we return the dentry */
2132	if (pid_revalidate(dentry, 0))
2133		return 0;
2134out:
2135	return -ENOENT;
2136}
2137
2138static struct dentry *proc_pident_lookup(struct inode *dir, 
2139					 struct dentry *dentry,
2140					 const struct pid_entry *ents,
2141					 unsigned int nents)
2142{
2143	int error;
2144	struct task_struct *task = get_proc_task(dir);
2145	const struct pid_entry *p, *last;
2146
2147	error = -ENOENT;
2148
2149	if (!task)
2150		goto out_no_task;
2151
2152	/*
2153	 * Yes, it does not scale. And it should not. Don't add
2154	 * new entries into /proc/<tgid>/ without very good reasons.
2155	 */
2156	last = &ents[nents - 1];
2157	for (p = ents; p <= last; p++) {
2158		if (p->len != dentry->d_name.len)
2159			continue;
2160		if (!memcmp(dentry->d_name.name, p->name, p->len))
2161			break;
2162	}
2163	if (p > last)
2164		goto out;
2165
2166	error = proc_pident_instantiate(dir, dentry, task, p);
2167out:
2168	put_task_struct(task);
2169out_no_task:
2170	return ERR_PTR(error);
 
 
 
 
 
 
 
2171}
2172
2173static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
 
2174		const struct pid_entry *ents, unsigned int nents)
2175{
2176	struct task_struct *task = get_proc_task(file_inode(file));
2177	const struct pid_entry *p;
 
 
 
 
 
2178
 
2179	if (!task)
2180		return -ENOENT;
2181
2182	if (!dir_emit_dots(file, ctx))
2183		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2184
2185	if (ctx->pos >= nents + 2)
2186		goto out;
2187
2188	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2189		if (!proc_fill_cache(file, ctx, p->name, p->len,
2190				proc_pident_instantiate, task, p))
2191			break;
2192		ctx->pos++;
2193	}
2194out:
2195	put_task_struct(task);
2196	return 0;
 
2197}
2198
2199#ifdef CONFIG_SECURITY
2200static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2201				  size_t count, loff_t *ppos)
2202{
2203	struct inode * inode = file_inode(file);
2204	char *p = NULL;
2205	ssize_t length;
2206	struct task_struct *task = get_proc_task(inode);
2207
2208	if (!task)
2209		return -ESRCH;
2210
2211	length = security_getprocattr(task,
2212				      (char*)file->f_path.dentry->d_name.name,
2213				      &p);
2214	put_task_struct(task);
2215	if (length > 0)
2216		length = simple_read_from_buffer(buf, count, ppos, p, length);
2217	kfree(p);
2218	return length;
2219}
2220
2221static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2222				   size_t count, loff_t *ppos)
2223{
2224	struct inode * inode = file_inode(file);
2225	char *page;
2226	ssize_t length;
2227	struct task_struct *task = get_proc_task(inode);
2228
2229	length = -ESRCH;
2230	if (!task)
2231		goto out_no_task;
2232	if (count > PAGE_SIZE)
2233		count = PAGE_SIZE;
2234
2235	/* No partial writes. */
2236	length = -EINVAL;
2237	if (*ppos != 0)
2238		goto out;
2239
2240	length = -ENOMEM;
2241	page = (char*)__get_free_page(GFP_TEMPORARY);
2242	if (!page)
2243		goto out;
2244
2245	length = -EFAULT;
2246	if (copy_from_user(page, buf, count))
2247		goto out_free;
2248
2249	/* Guard against adverse ptrace interaction */
2250	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2251	if (length < 0)
2252		goto out_free;
2253
2254	length = security_setprocattr(task,
2255				      (char*)file->f_path.dentry->d_name.name,
2256				      (void*)page, count);
2257	mutex_unlock(&task->signal->cred_guard_mutex);
2258out_free:
2259	free_page((unsigned long) page);
2260out:
2261	put_task_struct(task);
2262out_no_task:
2263	return length;
2264}
2265
2266static const struct file_operations proc_pid_attr_operations = {
2267	.read		= proc_pid_attr_read,
2268	.write		= proc_pid_attr_write,
2269	.llseek		= generic_file_llseek,
2270};
2271
2272static const struct pid_entry attr_dir_stuff[] = {
2273	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2274	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2275	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2276	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2277	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2278	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2279};
2280
2281static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
 
2282{
2283	return proc_pident_readdir(file, ctx, 
2284				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2285}
2286
2287static const struct file_operations proc_attr_dir_operations = {
2288	.read		= generic_read_dir,
2289	.iterate	= proc_attr_dir_readdir,
2290	.llseek		= default_llseek,
2291};
2292
2293static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2294				struct dentry *dentry, unsigned int flags)
2295{
2296	return proc_pident_lookup(dir, dentry,
2297				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2298}
2299
2300static const struct inode_operations proc_attr_dir_inode_operations = {
2301	.lookup		= proc_attr_dir_lookup,
2302	.getattr	= pid_getattr,
2303	.setattr	= proc_setattr,
2304};
2305
2306#endif
2307
2308#ifdef CONFIG_ELF_CORE
2309static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2310					 size_t count, loff_t *ppos)
2311{
2312	struct task_struct *task = get_proc_task(file_inode(file));
2313	struct mm_struct *mm;
2314	char buffer[PROC_NUMBUF];
2315	size_t len;
2316	int ret;
2317
2318	if (!task)
2319		return -ESRCH;
2320
2321	ret = 0;
2322	mm = get_task_mm(task);
2323	if (mm) {
2324		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2325			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2326				MMF_DUMP_FILTER_SHIFT));
2327		mmput(mm);
2328		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2329	}
2330
2331	put_task_struct(task);
2332
2333	return ret;
2334}
2335
2336static ssize_t proc_coredump_filter_write(struct file *file,
2337					  const char __user *buf,
2338					  size_t count,
2339					  loff_t *ppos)
2340{
2341	struct task_struct *task;
2342	struct mm_struct *mm;
2343	char buffer[PROC_NUMBUF], *end;
2344	unsigned int val;
2345	int ret;
2346	int i;
2347	unsigned long mask;
2348
2349	ret = -EFAULT;
2350	memset(buffer, 0, sizeof(buffer));
2351	if (count > sizeof(buffer) - 1)
2352		count = sizeof(buffer) - 1;
2353	if (copy_from_user(buffer, buf, count))
2354		goto out_no_task;
2355
2356	ret = -EINVAL;
2357	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2358	if (*end == '\n')
2359		end++;
2360	if (end - buffer == 0)
2361		goto out_no_task;
2362
2363	ret = -ESRCH;
2364	task = get_proc_task(file_inode(file));
2365	if (!task)
2366		goto out_no_task;
2367
2368	ret = end - buffer;
2369	mm = get_task_mm(task);
2370	if (!mm)
2371		goto out_no_mm;
2372
2373	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2374		if (val & mask)
2375			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2376		else
2377			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2378	}
2379
2380	mmput(mm);
2381 out_no_mm:
2382	put_task_struct(task);
2383 out_no_task:
2384	return ret;
2385}
2386
2387static const struct file_operations proc_coredump_filter_operations = {
2388	.read		= proc_coredump_filter_read,
2389	.write		= proc_coredump_filter_write,
2390	.llseek		= generic_file_llseek,
2391};
2392#endif
2393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2394#ifdef CONFIG_TASK_IO_ACCOUNTING
2395static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2396{
2397	struct task_io_accounting acct = task->ioac;
2398	unsigned long flags;
2399	int result;
2400
2401	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2402	if (result)
2403		return result;
2404
2405	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2406		result = -EACCES;
2407		goto out_unlock;
2408	}
2409
2410	if (whole && lock_task_sighand(task, &flags)) {
2411		struct task_struct *t = task;
2412
2413		task_io_accounting_add(&acct, &task->signal->ioac);
2414		while_each_thread(task, t)
2415			task_io_accounting_add(&acct, &t->ioac);
2416
2417		unlock_task_sighand(task, &flags);
2418	}
2419	result = sprintf(buffer,
2420			"rchar: %llu\n"
2421			"wchar: %llu\n"
2422			"syscr: %llu\n"
2423			"syscw: %llu\n"
2424			"read_bytes: %llu\n"
2425			"write_bytes: %llu\n"
2426			"cancelled_write_bytes: %llu\n",
2427			(unsigned long long)acct.rchar,
2428			(unsigned long long)acct.wchar,
2429			(unsigned long long)acct.syscr,
2430			(unsigned long long)acct.syscw,
2431			(unsigned long long)acct.read_bytes,
2432			(unsigned long long)acct.write_bytes,
2433			(unsigned long long)acct.cancelled_write_bytes);
2434out_unlock:
2435	mutex_unlock(&task->signal->cred_guard_mutex);
2436	return result;
2437}
2438
2439static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2440{
2441	return do_io_accounting(task, buffer, 0);
2442}
2443
2444static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2445{
2446	return do_io_accounting(task, buffer, 1);
2447}
2448#endif /* CONFIG_TASK_IO_ACCOUNTING */
2449
2450#ifdef CONFIG_USER_NS
2451static int proc_id_map_open(struct inode *inode, struct file *file,
2452	struct seq_operations *seq_ops)
2453{
2454	struct user_namespace *ns = NULL;
2455	struct task_struct *task;
2456	struct seq_file *seq;
2457	int ret = -EINVAL;
2458
2459	task = get_proc_task(inode);
2460	if (task) {
2461		rcu_read_lock();
2462		ns = get_user_ns(task_cred_xxx(task, user_ns));
2463		rcu_read_unlock();
2464		put_task_struct(task);
2465	}
2466	if (!ns)
2467		goto err;
2468
2469	ret = seq_open(file, seq_ops);
2470	if (ret)
2471		goto err_put_ns;
2472
2473	seq = file->private_data;
2474	seq->private = ns;
2475
2476	return 0;
2477err_put_ns:
2478	put_user_ns(ns);
2479err:
2480	return ret;
2481}
2482
2483static int proc_id_map_release(struct inode *inode, struct file *file)
2484{
2485	struct seq_file *seq = file->private_data;
2486	struct user_namespace *ns = seq->private;
2487	put_user_ns(ns);
2488	return seq_release(inode, file);
2489}
2490
2491static int proc_uid_map_open(struct inode *inode, struct file *file)
2492{
2493	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2494}
2495
2496static int proc_gid_map_open(struct inode *inode, struct file *file)
2497{
2498	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2499}
2500
2501static int proc_projid_map_open(struct inode *inode, struct file *file)
2502{
2503	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2504}
2505
2506static const struct file_operations proc_uid_map_operations = {
2507	.open		= proc_uid_map_open,
2508	.write		= proc_uid_map_write,
2509	.read		= seq_read,
2510	.llseek		= seq_lseek,
2511	.release	= proc_id_map_release,
2512};
2513
2514static const struct file_operations proc_gid_map_operations = {
2515	.open		= proc_gid_map_open,
2516	.write		= proc_gid_map_write,
2517	.read		= seq_read,
2518	.llseek		= seq_lseek,
2519	.release	= proc_id_map_release,
2520};
2521
2522static const struct file_operations proc_projid_map_operations = {
2523	.open		= proc_projid_map_open,
2524	.write		= proc_projid_map_write,
2525	.read		= seq_read,
2526	.llseek		= seq_lseek,
2527	.release	= proc_id_map_release,
2528};
2529#endif /* CONFIG_USER_NS */
2530
2531static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2532				struct pid *pid, struct task_struct *task)
2533{
2534	int err = lock_trace(task);
2535	if (!err) {
2536		seq_printf(m, "%08x\n", task->personality);
2537		unlock_trace(task);
2538	}
2539	return err;
2540}
2541
2542/*
2543 * Thread groups
2544 */
2545static const struct file_operations proc_task_operations;
2546static const struct inode_operations proc_task_inode_operations;
2547
2548static const struct pid_entry tgid_base_stuff[] = {
2549	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2550	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2551#ifdef CONFIG_CHECKPOINT_RESTORE
2552	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2553#endif
2554	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2555	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2556#ifdef CONFIG_NET
2557	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2558#endif
2559	REG("environ",    S_IRUSR, proc_environ_operations),
2560	INF("auxv",       S_IRUSR, proc_pid_auxv),
2561	ONE("status",     S_IRUGO, proc_pid_status),
2562	ONE("personality", S_IRUSR, proc_pid_personality),
2563	INF("limits",	  S_IRUGO, proc_pid_limits),
2564#ifdef CONFIG_SCHED_DEBUG
2565	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2566#endif
2567#ifdef CONFIG_SCHED_AUTOGROUP
2568	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2569#endif
2570	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2571#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2572	INF("syscall",    S_IRUSR, proc_pid_syscall),
2573#endif
2574	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2575	ONE("stat",       S_IRUGO, proc_tgid_stat),
2576	ONE("statm",      S_IRUGO, proc_pid_statm),
2577	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2578#ifdef CONFIG_NUMA
2579	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2580#endif
2581	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2582	LNK("cwd",        proc_cwd_link),
2583	LNK("root",       proc_root_link),
2584	LNK("exe",        proc_exe_link),
2585	REG("mounts",     S_IRUGO, proc_mounts_operations),
2586	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2587	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2588#ifdef CONFIG_PROC_PAGE_MONITOR
2589	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2590	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2591	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2592#endif
2593#ifdef CONFIG_SECURITY
2594	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2595#endif
2596#ifdef CONFIG_KALLSYMS
2597	INF("wchan",      S_IRUGO, proc_pid_wchan),
2598#endif
2599#ifdef CONFIG_STACKTRACE
2600	ONE("stack",      S_IRUSR, proc_pid_stack),
2601#endif
2602#ifdef CONFIG_SCHEDSTATS
2603	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2604#endif
2605#ifdef CONFIG_LATENCYTOP
2606	REG("latency",  S_IRUGO, proc_lstats_operations),
2607#endif
2608#ifdef CONFIG_PROC_PID_CPUSET
2609	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2610#endif
2611#ifdef CONFIG_CGROUPS
2612	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2613#endif
2614	INF("oom_score",  S_IRUGO, proc_oom_score),
2615	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2616	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2617#ifdef CONFIG_AUDITSYSCALL
2618	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2619	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2620#endif
2621#ifdef CONFIG_FAULT_INJECTION
2622	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2623#endif
2624#ifdef CONFIG_ELF_CORE
2625	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2626#endif
2627#ifdef CONFIG_TASK_IO_ACCOUNTING
2628	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2629#endif
2630#ifdef CONFIG_HARDWALL
2631	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2632#endif
2633#ifdef CONFIG_USER_NS
2634	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2635	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2636	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2637#endif
2638#ifdef CONFIG_CHECKPOINT_RESTORE
2639	REG("timers",	  S_IRUGO, proc_timers_operations),
2640#endif
2641};
2642
2643static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
 
2644{
2645	return proc_pident_readdir(file, ctx,
2646				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2647}
2648
2649static const struct file_operations proc_tgid_base_operations = {
2650	.read		= generic_read_dir,
2651	.iterate	= proc_tgid_base_readdir,
2652	.llseek		= default_llseek,
2653};
2654
2655static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2656{
2657	return proc_pident_lookup(dir, dentry,
2658				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2659}
2660
2661static const struct inode_operations proc_tgid_base_inode_operations = {
2662	.lookup		= proc_tgid_base_lookup,
2663	.getattr	= pid_getattr,
2664	.setattr	= proc_setattr,
2665	.permission	= proc_pid_permission,
2666};
2667
2668static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2669{
2670	struct dentry *dentry, *leader, *dir;
2671	char buf[PROC_NUMBUF];
2672	struct qstr name;
2673
2674	name.name = buf;
2675	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2676	/* no ->d_hash() rejects on procfs */
2677	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2678	if (dentry) {
2679		shrink_dcache_parent(dentry);
2680		d_drop(dentry);
2681		dput(dentry);
2682	}
2683
2684	name.name = buf;
2685	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2686	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2687	if (!leader)
2688		goto out;
2689
2690	name.name = "task";
2691	name.len = strlen(name.name);
2692	dir = d_hash_and_lookup(leader, &name);
2693	if (!dir)
2694		goto out_put_leader;
2695
2696	name.name = buf;
2697	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2698	dentry = d_hash_and_lookup(dir, &name);
2699	if (dentry) {
2700		shrink_dcache_parent(dentry);
2701		d_drop(dentry);
2702		dput(dentry);
2703	}
2704
2705	dput(dir);
2706out_put_leader:
2707	dput(leader);
2708out:
2709	return;
2710}
2711
2712/**
2713 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2714 * @task: task that should be flushed.
2715 *
2716 * When flushing dentries from proc, one needs to flush them from global
2717 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2718 * in. This call is supposed to do all of this job.
2719 *
2720 * Looks in the dcache for
2721 * /proc/@pid
2722 * /proc/@tgid/task/@pid
2723 * if either directory is present flushes it and all of it'ts children
2724 * from the dcache.
2725 *
2726 * It is safe and reasonable to cache /proc entries for a task until
2727 * that task exits.  After that they just clog up the dcache with
2728 * useless entries, possibly causing useful dcache entries to be
2729 * flushed instead.  This routine is proved to flush those useless
2730 * dcache entries at process exit time.
2731 *
2732 * NOTE: This routine is just an optimization so it does not guarantee
2733 *       that no dcache entries will exist at process exit time it
2734 *       just makes it very unlikely that any will persist.
2735 */
2736
2737void proc_flush_task(struct task_struct *task)
2738{
2739	int i;
2740	struct pid *pid, *tgid;
2741	struct upid *upid;
2742
2743	pid = task_pid(task);
2744	tgid = task_tgid(task);
2745
2746	for (i = 0; i <= pid->level; i++) {
2747		upid = &pid->numbers[i];
2748		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2749					tgid->numbers[i].nr);
2750	}
 
 
 
 
2751}
2752
2753static int proc_pid_instantiate(struct inode *dir,
2754				   struct dentry * dentry,
2755				   struct task_struct *task, const void *ptr)
2756{
 
2757	struct inode *inode;
2758
2759	inode = proc_pid_make_inode(dir->i_sb, task);
2760	if (!inode)
2761		goto out;
2762
2763	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2764	inode->i_op = &proc_tgid_base_inode_operations;
2765	inode->i_fop = &proc_tgid_base_operations;
2766	inode->i_flags|=S_IMMUTABLE;
2767
2768	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2769						  ARRAY_SIZE(tgid_base_stuff)));
2770
2771	d_set_d_op(dentry, &pid_dentry_operations);
2772
2773	d_add(dentry, inode);
2774	/* Close the race of the process dying before we return the dentry */
2775	if (pid_revalidate(dentry, 0))
2776		return 0;
2777out:
2778	return -ENOENT;
2779}
2780
2781struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2782{
2783	int result = 0;
2784	struct task_struct *task;
2785	unsigned tgid;
2786	struct pid_namespace *ns;
2787
 
 
 
 
2788	tgid = name_to_int(dentry);
2789	if (tgid == ~0U)
2790		goto out;
2791
2792	ns = dentry->d_sb->s_fs_info;
2793	rcu_read_lock();
2794	task = find_task_by_pid_ns(tgid, ns);
2795	if (task)
2796		get_task_struct(task);
2797	rcu_read_unlock();
2798	if (!task)
2799		goto out;
2800
2801	result = proc_pid_instantiate(dir, dentry, task, NULL);
2802	put_task_struct(task);
2803out:
2804	return ERR_PTR(result);
2805}
2806
2807/*
2808 * Find the first task with tgid >= tgid
2809 *
2810 */
2811struct tgid_iter {
2812	unsigned int tgid;
2813	struct task_struct *task;
2814};
2815static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2816{
2817	struct pid *pid;
2818
2819	if (iter.task)
2820		put_task_struct(iter.task);
2821	rcu_read_lock();
2822retry:
2823	iter.task = NULL;
2824	pid = find_ge_pid(iter.tgid, ns);
2825	if (pid) {
2826		iter.tgid = pid_nr_ns(pid, ns);
2827		iter.task = pid_task(pid, PIDTYPE_PID);
2828		/* What we to know is if the pid we have find is the
2829		 * pid of a thread_group_leader.  Testing for task
2830		 * being a thread_group_leader is the obvious thing
2831		 * todo but there is a window when it fails, due to
2832		 * the pid transfer logic in de_thread.
2833		 *
2834		 * So we perform the straight forward test of seeing
2835		 * if the pid we have found is the pid of a thread
2836		 * group leader, and don't worry if the task we have
2837		 * found doesn't happen to be a thread group leader.
2838		 * As we don't care in the case of readdir.
2839		 */
2840		if (!iter.task || !has_group_leader_pid(iter.task)) {
2841			iter.tgid += 1;
2842			goto retry;
2843		}
2844		get_task_struct(iter.task);
2845	}
2846	rcu_read_unlock();
2847	return iter;
2848}
2849
2850#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 1)
 
 
 
 
 
 
 
 
 
2851
2852/* for the /proc/ directory itself, after non-process stuff has been done */
2853int proc_pid_readdir(struct file *file, struct dir_context *ctx)
2854{
 
 
2855	struct tgid_iter iter;
2856	struct pid_namespace *ns = file->f_dentry->d_sb->s_fs_info;
2857	loff_t pos = ctx->pos;
 
 
 
2858
2859	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2860		return 0;
 
2861
2862	if (pos == TGID_OFFSET - 1) {
2863		struct inode *inode = ns->proc_self->d_inode;
2864		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
2865			return 0;
2866		iter.tgid = 0;
2867	} else {
2868		iter.tgid = pos - TGID_OFFSET;
2869	}
 
 
2870	iter.task = NULL;
 
2871	for (iter = next_tgid(ns, iter);
2872	     iter.task;
2873	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2874		char name[PROC_NUMBUF];
2875		int len;
2876		if (!has_pid_permissions(ns, iter.task, 2))
2877			continue;
2878
2879		len = snprintf(name, sizeof(name), "%d", iter.tgid);
2880		ctx->pos = iter.tgid + TGID_OFFSET;
2881		if (!proc_fill_cache(file, ctx, name, len,
2882				     proc_pid_instantiate, iter.task, NULL)) {
2883			put_task_struct(iter.task);
2884			return 0;
2885		}
2886	}
2887	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
 
 
 
2888	return 0;
2889}
2890
2891/*
2892 * Tasks
2893 */
2894static const struct pid_entry tid_base_stuff[] = {
2895	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2896	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2897	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2898	REG("environ",   S_IRUSR, proc_environ_operations),
2899	INF("auxv",      S_IRUSR, proc_pid_auxv),
2900	ONE("status",    S_IRUGO, proc_pid_status),
2901	ONE("personality", S_IRUSR, proc_pid_personality),
2902	INF("limits",	 S_IRUGO, proc_pid_limits),
2903#ifdef CONFIG_SCHED_DEBUG
2904	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2905#endif
2906	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2907#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2908	INF("syscall",   S_IRUSR, proc_pid_syscall),
2909#endif
2910	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2911	ONE("stat",      S_IRUGO, proc_tid_stat),
2912	ONE("statm",     S_IRUGO, proc_pid_statm),
2913	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2914#ifdef CONFIG_CHECKPOINT_RESTORE
2915	REG("children",  S_IRUGO, proc_tid_children_operations),
2916#endif
2917#ifdef CONFIG_NUMA
2918	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2919#endif
2920	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2921	LNK("cwd",       proc_cwd_link),
2922	LNK("root",      proc_root_link),
2923	LNK("exe",       proc_exe_link),
2924	REG("mounts",    S_IRUGO, proc_mounts_operations),
2925	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2926#ifdef CONFIG_PROC_PAGE_MONITOR
2927	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2928	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2929	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2930#endif
2931#ifdef CONFIG_SECURITY
2932	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2933#endif
2934#ifdef CONFIG_KALLSYMS
2935	INF("wchan",     S_IRUGO, proc_pid_wchan),
2936#endif
2937#ifdef CONFIG_STACKTRACE
2938	ONE("stack",      S_IRUSR, proc_pid_stack),
2939#endif
2940#ifdef CONFIG_SCHEDSTATS
2941	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2942#endif
2943#ifdef CONFIG_LATENCYTOP
2944	REG("latency",  S_IRUGO, proc_lstats_operations),
2945#endif
2946#ifdef CONFIG_PROC_PID_CPUSET
2947	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2948#endif
2949#ifdef CONFIG_CGROUPS
2950	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2951#endif
2952	INF("oom_score", S_IRUGO, proc_oom_score),
2953	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2954	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2955#ifdef CONFIG_AUDITSYSCALL
2956	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2957	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2958#endif
2959#ifdef CONFIG_FAULT_INJECTION
2960	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2961#endif
2962#ifdef CONFIG_TASK_IO_ACCOUNTING
2963	INF("io",	S_IRUSR, proc_tid_io_accounting),
2964#endif
2965#ifdef CONFIG_HARDWALL
2966	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2967#endif
2968#ifdef CONFIG_USER_NS
2969	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2970	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2971	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2972#endif
2973};
2974
2975static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
 
2976{
2977	return proc_pident_readdir(file, ctx,
2978				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2979}
2980
2981static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2982{
2983	return proc_pident_lookup(dir, dentry,
2984				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2985}
2986
2987static const struct file_operations proc_tid_base_operations = {
2988	.read		= generic_read_dir,
2989	.iterate	= proc_tid_base_readdir,
2990	.llseek		= default_llseek,
2991};
2992
2993static const struct inode_operations proc_tid_base_inode_operations = {
2994	.lookup		= proc_tid_base_lookup,
2995	.getattr	= pid_getattr,
2996	.setattr	= proc_setattr,
2997};
2998
2999static int proc_task_instantiate(struct inode *dir,
3000	struct dentry *dentry, struct task_struct *task, const void *ptr)
3001{
 
3002	struct inode *inode;
3003	inode = proc_pid_make_inode(dir->i_sb, task);
3004
3005	if (!inode)
3006		goto out;
3007	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3008	inode->i_op = &proc_tid_base_inode_operations;
3009	inode->i_fop = &proc_tid_base_operations;
3010	inode->i_flags|=S_IMMUTABLE;
3011
3012	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3013						  ARRAY_SIZE(tid_base_stuff)));
3014
3015	d_set_d_op(dentry, &pid_dentry_operations);
3016
3017	d_add(dentry, inode);
3018	/* Close the race of the process dying before we return the dentry */
3019	if (pid_revalidate(dentry, 0))
3020		return 0;
3021out:
3022	return -ENOENT;
3023}
3024
3025static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3026{
3027	int result = -ENOENT;
3028	struct task_struct *task;
3029	struct task_struct *leader = get_proc_task(dir);
3030	unsigned tid;
3031	struct pid_namespace *ns;
3032
3033	if (!leader)
3034		goto out_no_task;
3035
3036	tid = name_to_int(dentry);
3037	if (tid == ~0U)
3038		goto out;
3039
3040	ns = dentry->d_sb->s_fs_info;
3041	rcu_read_lock();
3042	task = find_task_by_pid_ns(tid, ns);
3043	if (task)
3044		get_task_struct(task);
3045	rcu_read_unlock();
3046	if (!task)
3047		goto out;
3048	if (!same_thread_group(leader, task))
3049		goto out_drop_task;
3050
3051	result = proc_task_instantiate(dir, dentry, task, NULL);
3052out_drop_task:
3053	put_task_struct(task);
3054out:
3055	put_task_struct(leader);
3056out_no_task:
3057	return ERR_PTR(result);
3058}
3059
3060/*
3061 * Find the first tid of a thread group to return to user space.
3062 *
3063 * Usually this is just the thread group leader, but if the users
3064 * buffer was too small or there was a seek into the middle of the
3065 * directory we have more work todo.
3066 *
3067 * In the case of a short read we start with find_task_by_pid.
3068 *
3069 * In the case of a seek we start with the leader and walk nr
3070 * threads past it.
3071 */
3072static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3073					struct pid_namespace *ns)
3074{
3075	struct task_struct *pos, *task;
3076	unsigned long nr = f_pos;
3077
3078	if (nr != f_pos)	/* 32bit overflow? */
3079		return NULL;
3080
3081	rcu_read_lock();
3082	task = pid_task(pid, PIDTYPE_PID);
3083	if (!task)
3084		goto fail;
3085
3086	/* Attempt to start with the tid of a thread */
3087	if (tid && nr) {
3088		pos = find_task_by_pid_ns(tid, ns);
3089		if (pos && same_thread_group(pos, task))
3090			goto found;
3091	}
3092
3093	/* If nr exceeds the number of threads there is nothing todo */
3094	if (nr >= get_nr_threads(task))
3095		goto fail;
 
3096
3097	/* If we haven't found our starting place yet start
3098	 * with the leader and walk nr threads forward.
3099	 */
3100	pos = task = task->group_leader;
3101	do {
3102		if (!nr--)
3103			goto found;
3104	} while_each_thread(task, pos);
3105fail:
3106	pos = NULL;
3107	goto out;
3108found:
3109	get_task_struct(pos);
3110out:
3111	rcu_read_unlock();
3112	return pos;
3113}
3114
3115/*
3116 * Find the next thread in the thread list.
3117 * Return NULL if there is an error or no next thread.
3118 *
3119 * The reference to the input task_struct is released.
3120 */
3121static struct task_struct *next_tid(struct task_struct *start)
3122{
3123	struct task_struct *pos = NULL;
3124	rcu_read_lock();
3125	if (pid_alive(start)) {
3126		pos = next_thread(start);
3127		if (thread_group_leader(pos))
3128			pos = NULL;
3129		else
3130			get_task_struct(pos);
3131	}
3132	rcu_read_unlock();
3133	put_task_struct(start);
3134	return pos;
3135}
3136
 
 
 
 
 
 
 
 
 
3137/* for the /proc/TGID/task/ directories */
3138static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3139{
3140	struct inode *inode = file_inode(file);
 
 
3141	struct task_struct *task;
 
 
 
3142	struct pid_namespace *ns;
3143	int tid;
3144
3145	if (proc_inode_is_dead(inode))
3146		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
3147
3148	if (!dir_emit_dots(file, ctx))
3149		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3150
3151	/* f_version caches the tgid value that the last readdir call couldn't
3152	 * return. lseek aka telldir automagically resets f_version to 0.
3153	 */
3154	ns = file->f_dentry->d_sb->s_fs_info;
3155	tid = (int)file->f_version;
3156	file->f_version = 0;
3157	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3158	     task;
3159	     task = next_tid(task), ctx->pos++) {
3160		char name[PROC_NUMBUF];
3161		int len;
3162		tid = task_pid_nr_ns(task, ns);
3163		len = snprintf(name, sizeof(name), "%d", tid);
3164		if (!proc_fill_cache(file, ctx, name, len,
3165				proc_task_instantiate, task, NULL)) {
3166			/* returning this tgid failed, save it as the first
3167			 * pid for the next readir call */
3168			file->f_version = (u64)tid;
3169			put_task_struct(task);
3170			break;
3171		}
3172	}
3173
3174	return 0;
 
 
3175}
3176
3177static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3178{
3179	struct inode *inode = dentry->d_inode;
3180	struct task_struct *p = get_proc_task(inode);
3181	generic_fillattr(inode, stat);
3182
3183	if (p) {
3184		stat->nlink += get_nr_threads(p);
3185		put_task_struct(p);
3186	}
3187
3188	return 0;
3189}
3190
3191static const struct inode_operations proc_task_inode_operations = {
3192	.lookup		= proc_task_lookup,
3193	.getattr	= proc_task_getattr,
3194	.setattr	= proc_setattr,
3195	.permission	= proc_pid_permission,
3196};
3197
3198static const struct file_operations proc_task_operations = {
3199	.read		= generic_read_dir,
3200	.iterate	= proc_task_readdir,
3201	.llseek		= default_llseek,
3202};