Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v3.1
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
 
  76#include <linux/cgroup.h>
  77#include <linux/cpuset.h>
  78#include <linux/audit.h>
  79#include <linux/poll.h>
  80#include <linux/nsproxy.h>
  81#include <linux/oom.h>
  82#include <linux/elf.h>
  83#include <linux/pid_namespace.h>
 
  84#include <linux/fs_struct.h>
  85#include <linux/slab.h>
 
 
  86#ifdef CONFIG_HARDWALL
  87#include <asm/hardwall.h>
  88#endif
 
  89#include "internal.h"
 
  90
  91/* NOTE:
  92 *	Implementing inode permission operations in /proc is almost
  93 *	certainly an error.  Permission checks need to happen during
  94 *	each system call not at open time.  The reason is that most of
  95 *	what we wish to check for permissions in /proc varies at runtime.
  96 *
  97 *	The classic example of a problem is opening file descriptors
  98 *	in /proc for a task before it execs a suid executable.
  99 */
 100
 101struct pid_entry {
 102	char *name;
 103	int len;
 104	mode_t mode;
 105	const struct inode_operations *iop;
 106	const struct file_operations *fop;
 107	union proc_op op;
 108};
 109
 110#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 111	.name = (NAME),					\
 112	.len  = sizeof(NAME) - 1,			\
 113	.mode = MODE,					\
 114	.iop  = IOP,					\
 115	.fop  = FOP,					\
 116	.op   = OP,					\
 117}
 118
 119#define DIR(NAME, MODE, iops, fops)	\
 120	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 121#define LNK(NAME, get_link)					\
 122	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 123		&proc_pid_link_inode_operations, NULL,		\
 124		{ .proc_get_link = get_link } )
 125#define REG(NAME, MODE, fops)				\
 126	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 127#define INF(NAME, MODE, read)				\
 128	NOD(NAME, (S_IFREG|(MODE)), 			\
 129		NULL, &proc_info_file_operations,	\
 130		{ .proc_read = read } )
 131#define ONE(NAME, MODE, show)				\
 132	NOD(NAME, (S_IFREG|(MODE)), 			\
 133		NULL, &proc_single_file_operations,	\
 134		{ .proc_show = show } )
 135
 136/*
 137 * Count the number of hardlinks for the pid_entry table, excluding the .
 138 * and .. links.
 139 */
 140static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 141	unsigned int n)
 142{
 143	unsigned int i;
 144	unsigned int count;
 145
 146	count = 0;
 147	for (i = 0; i < n; ++i) {
 148		if (S_ISDIR(entries[i].mode))
 149			++count;
 150	}
 151
 152	return count;
 153}
 154
 155static int get_task_root(struct task_struct *task, struct path *root)
 156{
 157	int result = -ENOENT;
 158
 159	task_lock(task);
 160	if (task->fs) {
 161		get_fs_root(task->fs, root);
 162		result = 0;
 163	}
 164	task_unlock(task);
 165	return result;
 166}
 167
 168static int proc_cwd_link(struct inode *inode, struct path *path)
 169{
 170	struct task_struct *task = get_proc_task(inode);
 171	int result = -ENOENT;
 172
 173	if (task) {
 174		task_lock(task);
 175		if (task->fs) {
 176			get_fs_pwd(task->fs, path);
 177			result = 0;
 178		}
 179		task_unlock(task);
 180		put_task_struct(task);
 181	}
 182	return result;
 183}
 184
 185static int proc_root_link(struct inode *inode, struct path *path)
 186{
 187	struct task_struct *task = get_proc_task(inode);
 188	int result = -ENOENT;
 189
 190	if (task) {
 191		result = get_task_root(task, path);
 192		put_task_struct(task);
 193	}
 194	return result;
 195}
 196
 197static struct mm_struct *__check_mem_permission(struct task_struct *task)
 
 198{
 
 199	struct mm_struct *mm;
 
 
 
 
 
 
 
 200
 201	mm = get_task_mm(task);
 202	if (!mm)
 203		return ERR_PTR(-EINVAL);
 204
 205	/*
 206	 * A task can always look at itself, in case it chooses
 207	 * to use system calls instead of load instructions.
 208	 */
 209	if (task == current)
 210		return mm;
 211
 212	/*
 213	 * If current is actively ptrace'ing, and would also be
 214	 * permitted to freshly attach with ptrace now, permit it.
 215	 */
 216	if (task_is_stopped_or_traced(task)) {
 217		int match;
 218		rcu_read_lock();
 219		match = (ptrace_parent(task) == current);
 220		rcu_read_unlock();
 221		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
 222			return mm;
 223	}
 224
 225	/*
 226	 * No one else is allowed.
 227	 */
 228	mmput(mm);
 229	return ERR_PTR(-EPERM);
 230}
 
 
 
 
 
 
 231
 232/*
 233 * If current may access user memory in @task return a reference to the
 234 * corresponding mm, otherwise ERR_PTR.
 235 */
 236static struct mm_struct *check_mem_permission(struct task_struct *task)
 237{
 238	struct mm_struct *mm;
 239	int err;
 240
 
 
 
 
 
 
 
 
 241	/*
 242	 * Avoid racing if task exec's as we might get a new mm but validate
 243	 * against old credentials.
 244	 */
 245	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 246	if (err)
 247		return ERR_PTR(err);
 248
 249	mm = __check_mem_permission(task);
 250	mutex_unlock(&task->signal->cred_guard_mutex);
 251
 252	return mm;
 253}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254
 255struct mm_struct *mm_for_maps(struct task_struct *task)
 256{
 257	struct mm_struct *mm;
 258	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 261	if (err)
 262		return ERR_PTR(err);
 
 263
 264	mm = get_task_mm(task);
 265	if (mm && mm != current->mm &&
 266			!ptrace_may_access(task, PTRACE_MODE_READ)) {
 267		mmput(mm);
 268		mm = ERR_PTR(-EACCES);
 269	}
 270	mutex_unlock(&task->signal->cred_guard_mutex);
 271
 272	return mm;
 273}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275static int proc_pid_cmdline(struct task_struct *task, char * buffer)
 276{
 277	int res = 0;
 278	unsigned int len;
 279	struct mm_struct *mm = get_task_mm(task);
 280	if (!mm)
 281		goto out;
 282	if (!mm->arg_end)
 283		goto out_mm;	/* Shh! No looking before we're done */
 284
 285 	len = mm->arg_end - mm->arg_start;
 286 
 287	if (len > PAGE_SIZE)
 288		len = PAGE_SIZE;
 289 
 290	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 291
 292	// If the nul at the end of args has been overwritten, then
 293	// assume application is using setproctitle(3).
 294	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
 295		len = strnlen(buffer, res);
 296		if (len < res) {
 297		    res = len;
 298		} else {
 299			len = mm->env_end - mm->env_start;
 300			if (len > PAGE_SIZE - res)
 301				len = PAGE_SIZE - res;
 302			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
 303			res = strnlen(buffer, res);
 304		}
 
 
 305	}
 306out_mm:
 
 
 
 307	mmput(mm);
 308out:
 309	return res;
 
 310}
 311
 312static int proc_pid_auxv(struct task_struct *task, char *buffer)
 
 
 
 
 
 
 313{
 314	struct mm_struct *mm = mm_for_maps(task);
 315	int res = PTR_ERR(mm);
 316	if (mm && !IS_ERR(mm)) {
 317		unsigned int nwords = 0;
 318		do {
 319			nwords += 2;
 320		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 321		res = nwords * sizeof(mm->saved_auxv[0]);
 322		if (res > PAGE_SIZE)
 323			res = PAGE_SIZE;
 324		memcpy(buffer, mm->saved_auxv, res);
 325		mmput(mm);
 326	}
 327	return res;
 
 328}
 329
 330
 331#ifdef CONFIG_KALLSYMS
 332/*
 333 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 334 * Returns the resolved symbol.  If that fails, simply return the address.
 335 */
 336static int proc_pid_wchan(struct task_struct *task, char *buffer)
 
 337{
 338	unsigned long wchan;
 339	char symname[KSYM_NAME_LEN];
 340
 341	wchan = get_wchan(task);
 342
 343	if (lookup_symbol_name(wchan, symname) < 0)
 344		if (!ptrace_may_access(task, PTRACE_MODE_READ))
 345			return 0;
 346		else
 347			return sprintf(buffer, "%lu", wchan);
 348	else
 349		return sprintf(buffer, "%s", symname);
 
 
 350}
 351#endif /* CONFIG_KALLSYMS */
 352
 353static int lock_trace(struct task_struct *task)
 354{
 355	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 356	if (err)
 357		return err;
 358	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 359		mutex_unlock(&task->signal->cred_guard_mutex);
 360		return -EPERM;
 361	}
 362	return 0;
 363}
 364
 365static void unlock_trace(struct task_struct *task)
 366{
 367	mutex_unlock(&task->signal->cred_guard_mutex);
 368}
 369
 370#ifdef CONFIG_STACKTRACE
 371
 372#define MAX_STACK_TRACE_DEPTH	64
 373
 374static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 375			  struct pid *pid, struct task_struct *task)
 376{
 377	struct stack_trace trace;
 378	unsigned long *entries;
 379	int err;
 380	int i;
 381
 382	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 383	if (!entries)
 384		return -ENOMEM;
 385
 386	trace.nr_entries	= 0;
 387	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 388	trace.entries		= entries;
 389	trace.skip		= 0;
 390
 391	err = lock_trace(task);
 392	if (!err) {
 393		save_stack_trace_tsk(task, &trace);
 394
 395		for (i = 0; i < trace.nr_entries; i++) {
 396			seq_printf(m, "[<%pK>] %pS\n",
 397				   (void *)entries[i], (void *)entries[i]);
 398		}
 399		unlock_trace(task);
 400	}
 401	kfree(entries);
 402
 403	return err;
 404}
 405#endif
 406
 407#ifdef CONFIG_SCHEDSTATS
 408/*
 409 * Provides /proc/PID/schedstat
 410 */
 411static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 
 412{
 413	return sprintf(buffer, "%llu %llu %lu\n",
 414			(unsigned long long)task->se.sum_exec_runtime,
 415			(unsigned long long)task->sched_info.run_delay,
 416			task->sched_info.pcount);
 
 
 
 
 
 417}
 418#endif
 419
 420#ifdef CONFIG_LATENCYTOP
 421static int lstats_show_proc(struct seq_file *m, void *v)
 422{
 423	int i;
 424	struct inode *inode = m->private;
 425	struct task_struct *task = get_proc_task(inode);
 426
 427	if (!task)
 428		return -ESRCH;
 429	seq_puts(m, "Latency Top version : v0.1\n");
 430	for (i = 0; i < 32; i++) {
 431		struct latency_record *lr = &task->latency_record[i];
 432		if (lr->backtrace[0]) {
 433			int q;
 434			seq_printf(m, "%i %li %li",
 435				   lr->count, lr->time, lr->max);
 436			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 437				unsigned long bt = lr->backtrace[q];
 438				if (!bt)
 439					break;
 440				if (bt == ULONG_MAX)
 441					break;
 442				seq_printf(m, " %ps", (void *)bt);
 443			}
 444			seq_putc(m, '\n');
 445		}
 446
 447	}
 448	put_task_struct(task);
 449	return 0;
 450}
 451
 452static int lstats_open(struct inode *inode, struct file *file)
 453{
 454	return single_open(file, lstats_show_proc, inode);
 455}
 456
 457static ssize_t lstats_write(struct file *file, const char __user *buf,
 458			    size_t count, loff_t *offs)
 459{
 460	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 461
 462	if (!task)
 463		return -ESRCH;
 464	clear_all_latency_tracing(task);
 465	put_task_struct(task);
 466
 467	return count;
 468}
 469
 470static const struct file_operations proc_lstats_operations = {
 471	.open		= lstats_open,
 472	.read		= seq_read,
 473	.write		= lstats_write,
 474	.llseek		= seq_lseek,
 475	.release	= single_release,
 476};
 477
 478#endif
 479
 480static int proc_oom_score(struct task_struct *task, char *buffer)
 
 481{
 
 482	unsigned long points = 0;
 483
 484	read_lock(&tasklist_lock);
 485	if (pid_alive(task))
 486		points = oom_badness(task, NULL, NULL,
 487					totalram_pages + total_swap_pages);
 488	read_unlock(&tasklist_lock);
 489	return sprintf(buffer, "%lu\n", points);
 
 
 490}
 491
 492struct limit_names {
 493	char *name;
 494	char *unit;
 495};
 496
 497static const struct limit_names lnames[RLIM_NLIMITS] = {
 498	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 499	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 500	[RLIMIT_DATA] = {"Max data size", "bytes"},
 501	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 502	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 503	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 504	[RLIMIT_NPROC] = {"Max processes", "processes"},
 505	[RLIMIT_NOFILE] = {"Max open files", "files"},
 506	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 507	[RLIMIT_AS] = {"Max address space", "bytes"},
 508	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 509	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 510	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 511	[RLIMIT_NICE] = {"Max nice priority", NULL},
 512	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 513	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 514};
 515
 516/* Display limits for a process */
 517static int proc_pid_limits(struct task_struct *task, char *buffer)
 
 518{
 519	unsigned int i;
 520	int count = 0;
 521	unsigned long flags;
 522	char *bufptr = buffer;
 523
 524	struct rlimit rlim[RLIM_NLIMITS];
 525
 526	if (!lock_task_sighand(task, &flags))
 527		return 0;
 528	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 529	unlock_task_sighand(task, &flags);
 530
 531	/*
 532	 * print the file header
 533	 */
 534	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 535			"Limit", "Soft Limit", "Hard Limit", "Units");
 536
 537	for (i = 0; i < RLIM_NLIMITS; i++) {
 538		if (rlim[i].rlim_cur == RLIM_INFINITY)
 539			count += sprintf(&bufptr[count], "%-25s %-20s ",
 540					 lnames[i].name, "unlimited");
 541		else
 542			count += sprintf(&bufptr[count], "%-25s %-20lu ",
 543					 lnames[i].name, rlim[i].rlim_cur);
 544
 545		if (rlim[i].rlim_max == RLIM_INFINITY)
 546			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 547		else
 548			count += sprintf(&bufptr[count], "%-20lu ",
 549					 rlim[i].rlim_max);
 550
 551		if (lnames[i].unit)
 552			count += sprintf(&bufptr[count], "%-10s\n",
 553					 lnames[i].unit);
 554		else
 555			count += sprintf(&bufptr[count], "\n");
 556	}
 557
 558	return count;
 559}
 560
 561#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 562static int proc_pid_syscall(struct task_struct *task, char *buffer)
 
 563{
 564	long nr;
 565	unsigned long args[6], sp, pc;
 566	int res = lock_trace(task);
 
 
 567	if (res)
 568		return res;
 569
 570	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 571		res = sprintf(buffer, "running\n");
 572	else if (nr < 0)
 573		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 574	else
 575		res = sprintf(buffer,
 576		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 577		       nr,
 578		       args[0], args[1], args[2], args[3], args[4], args[5],
 579		       sp, pc);
 580	unlock_trace(task);
 581	return res;
 
 582}
 583#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 584
 585/************************************************************************/
 586/*                       Here the fs part begins                        */
 587/************************************************************************/
 588
 589/* permission checks */
 590static int proc_fd_access_allowed(struct inode *inode)
 591{
 592	struct task_struct *task;
 593	int allowed = 0;
 594	/* Allow access to a task's file descriptors if it is us or we
 595	 * may use ptrace attach to the process and find out that
 596	 * information.
 597	 */
 598	task = get_proc_task(inode);
 599	if (task) {
 600		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 601		put_task_struct(task);
 602	}
 603	return allowed;
 604}
 605
 606int proc_setattr(struct dentry *dentry, struct iattr *attr)
 607{
 608	int error;
 609	struct inode *inode = dentry->d_inode;
 610
 611	if (attr->ia_valid & ATTR_MODE)
 612		return -EPERM;
 613
 614	error = inode_change_ok(inode, attr);
 615	if (error)
 616		return error;
 617
 618	if ((attr->ia_valid & ATTR_SIZE) &&
 619	    attr->ia_size != i_size_read(inode)) {
 620		error = vmtruncate(inode, attr->ia_size);
 621		if (error)
 622			return error;
 623	}
 624
 625	setattr_copy(inode, attr);
 626	mark_inode_dirty(inode);
 627	return 0;
 628}
 629
 630static const struct inode_operations proc_def_inode_operations = {
 631	.setattr	= proc_setattr,
 632};
 633
 634static int mounts_open_common(struct inode *inode, struct file *file,
 635			      const struct seq_operations *op)
 636{
 637	struct task_struct *task = get_proc_task(inode);
 638	struct nsproxy *nsp;
 639	struct mnt_namespace *ns = NULL;
 640	struct path root;
 641	struct proc_mounts *p;
 642	int ret = -EINVAL;
 643
 644	if (task) {
 645		rcu_read_lock();
 646		nsp = task_nsproxy(task);
 647		if (nsp) {
 648			ns = nsp->mnt_ns;
 649			if (ns)
 650				get_mnt_ns(ns);
 651		}
 652		rcu_read_unlock();
 653		if (ns && get_task_root(task, &root) == 0)
 654			ret = 0;
 655		put_task_struct(task);
 656	}
 657
 658	if (!ns)
 659		goto err;
 660	if (ret)
 661		goto err_put_ns;
 662
 663	ret = -ENOMEM;
 664	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
 665	if (!p)
 666		goto err_put_path;
 667
 668	file->private_data = &p->m;
 669	ret = seq_open(file, op);
 670	if (ret)
 671		goto err_free;
 672
 673	p->m.private = p;
 674	p->ns = ns;
 675	p->root = root;
 676	p->m.poll_event = ns->event;
 677
 678	return 0;
 679
 680 err_free:
 681	kfree(p);
 682 err_put_path:
 683	path_put(&root);
 684 err_put_ns:
 685	put_mnt_ns(ns);
 686 err:
 687	return ret;
 688}
 689
 690static int mounts_release(struct inode *inode, struct file *file)
 691{
 692	struct proc_mounts *p = file->private_data;
 693	path_put(&p->root);
 694	put_mnt_ns(p->ns);
 695	return seq_release(inode, file);
 696}
 697
 698static unsigned mounts_poll(struct file *file, poll_table *wait)
 699{
 700	struct proc_mounts *p = file->private_data;
 701	unsigned res = POLLIN | POLLRDNORM;
 702
 703	poll_wait(file, &p->ns->poll, wait);
 704	if (mnt_had_events(p))
 705		res |= POLLERR | POLLPRI;
 706
 707	return res;
 708}
 709
 710static int mounts_open(struct inode *inode, struct file *file)
 711{
 712	return mounts_open_common(inode, file, &mounts_op);
 713}
 714
 715static const struct file_operations proc_mounts_operations = {
 716	.open		= mounts_open,
 717	.read		= seq_read,
 718	.llseek		= seq_lseek,
 719	.release	= mounts_release,
 720	.poll		= mounts_poll,
 721};
 722
 723static int mountinfo_open(struct inode *inode, struct file *file)
 724{
 725	return mounts_open_common(inode, file, &mountinfo_op);
 
 
 
 
 726}
 727
 728static const struct file_operations proc_mountinfo_operations = {
 729	.open		= mountinfo_open,
 730	.read		= seq_read,
 731	.llseek		= seq_lseek,
 732	.release	= mounts_release,
 733	.poll		= mounts_poll,
 734};
 735
 736static int mountstats_open(struct inode *inode, struct file *file)
 737{
 738	return mounts_open_common(inode, file, &mountstats_op);
 739}
 740
 741static const struct file_operations proc_mountstats_operations = {
 742	.open		= mountstats_open,
 743	.read		= seq_read,
 744	.llseek		= seq_lseek,
 745	.release	= mounts_release,
 746};
 747
 748#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
 749
 750static ssize_t proc_info_read(struct file * file, char __user * buf,
 751			  size_t count, loff_t *ppos)
 752{
 753	struct inode * inode = file->f_path.dentry->d_inode;
 754	unsigned long page;
 755	ssize_t length;
 756	struct task_struct *task = get_proc_task(inode);
 757
 758	length = -ESRCH;
 759	if (!task)
 760		goto out_no_task;
 
 
 761
 762	if (count > PROC_BLOCK_SIZE)
 763		count = PROC_BLOCK_SIZE;
 
 
 
 
 
 
 
 
 764
 765	length = -ENOMEM;
 766	if (!(page = __get_free_page(GFP_TEMPORARY)))
 767		goto out;
 
 768
 769	length = PROC_I(inode)->op.proc_read(task, (char*)page);
 770
 771	if (length >= 0)
 772		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 773	free_page(page);
 774out:
 775	put_task_struct(task);
 776out_no_task:
 777	return length;
 778}
 779
 780static const struct file_operations proc_info_file_operations = {
 781	.read		= proc_info_read,
 782	.llseek		= generic_file_llseek,
 783};
 784
 785static int proc_single_show(struct seq_file *m, void *v)
 786{
 787	struct inode *inode = m->private;
 788	struct pid_namespace *ns;
 789	struct pid *pid;
 790	struct task_struct *task;
 791	int ret;
 792
 793	ns = inode->i_sb->s_fs_info;
 794	pid = proc_pid(inode);
 795	task = get_pid_task(pid, PIDTYPE_PID);
 796	if (!task)
 797		return -ESRCH;
 798
 799	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 800
 801	put_task_struct(task);
 802	return ret;
 803}
 804
 805static int proc_single_open(struct inode *inode, struct file *filp)
 806{
 807	return single_open(filp, proc_single_show, inode);
 808}
 809
 810static const struct file_operations proc_single_file_operations = {
 811	.open		= proc_single_open,
 812	.read		= seq_read,
 813	.llseek		= seq_lseek,
 814	.release	= single_release,
 815};
 816
 817static int mem_open(struct inode* inode, struct file* file)
 818{
 819	file->private_data = (void*)((long)current->self_exec_id);
 820	/* OK to pass negative loff_t, we can catch out-of-range */
 821	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 822	return 0;
 823}
 824
 825static ssize_t mem_read(struct file * file, char __user * buf,
 826			size_t count, loff_t *ppos)
 827{
 828	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 829	char *page;
 830	unsigned long src = *ppos;
 831	int ret = -ESRCH;
 832	struct mm_struct *mm;
 833
 834	if (!task)
 835		goto out_no_task;
 
 836
 837	ret = -ENOMEM;
 838	page = (char *)__get_free_page(GFP_TEMPORARY);
 839	if (!page)
 840		goto out;
 
 
 
 841
 842	mm = check_mem_permission(task);
 843	ret = PTR_ERR(mm);
 844	if (IS_ERR(mm))
 845		goto out_free;
 846
 847	ret = -EIO;
 848 
 849	if (file->private_data != (void*)((long)current->self_exec_id))
 850		goto out_put;
 851
 852	ret = 0;
 853 
 854	while (count > 0) {
 855		int this_len, retval;
 856
 857		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 858		retval = access_remote_vm(mm, src, page, this_len, 0);
 859		if (!retval) {
 860			if (!ret)
 861				ret = -EIO;
 862			break;
 863		}
 864
 865		if (copy_to_user(buf, page, retval)) {
 866			ret = -EFAULT;
 867			break;
 868		}
 869 
 870		ret += retval;
 871		src += retval;
 872		buf += retval;
 873		count -= retval;
 874	}
 875	*ppos = src;
 876
 877out_put:
 878	mmput(mm);
 879out_free:
 880	free_page((unsigned long) page);
 881out:
 882	put_task_struct(task);
 883out_no_task:
 884	return ret;
 885}
 886
 887static ssize_t mem_write(struct file * file, const char __user *buf,
 888			 size_t count, loff_t *ppos)
 889{
 890	int copied;
 
 
 891	char *page;
 892	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 893	unsigned long dst = *ppos;
 894	struct mm_struct *mm;
 895
 896	copied = -ESRCH;
 897	if (!task)
 898		goto out_no_task;
 899
 900	copied = -ENOMEM;
 901	page = (char *)__get_free_page(GFP_TEMPORARY);
 902	if (!page)
 903		goto out_task;
 904
 905	mm = check_mem_permission(task);
 906	copied = PTR_ERR(mm);
 907	if (IS_ERR(mm))
 908		goto out_free;
 909
 910	copied = -EIO;
 911	if (file->private_data != (void *)((long)current->self_exec_id))
 912		goto out_mm;
 913
 914	copied = 0;
 
 
 
 915	while (count > 0) {
 916		int this_len, retval;
 917
 918		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 919		if (copy_from_user(page, buf, this_len)) {
 920			copied = -EFAULT;
 921			break;
 922		}
 923		retval = access_remote_vm(mm, dst, page, this_len, 1);
 924		if (!retval) {
 
 925			if (!copied)
 926				copied = -EIO;
 927			break;
 928		}
 929		copied += retval;
 930		buf += retval;
 931		dst += retval;
 932		count -= retval;			
 
 
 
 
 
 
 933	}
 934	*ppos = dst;
 935
 936out_mm:
 937	mmput(mm);
 938out_free:
 939	free_page((unsigned long) page);
 940out_task:
 941	put_task_struct(task);
 942out_no_task:
 943	return copied;
 944}
 945
 
 
 
 
 
 
 
 
 
 
 
 
 946loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 947{
 948	switch (orig) {
 949	case 0:
 950		file->f_pos = offset;
 951		break;
 952	case 1:
 953		file->f_pos += offset;
 954		break;
 955	default:
 956		return -EINVAL;
 957	}
 958	force_successful_syscall_return();
 959	return file->f_pos;
 960}
 961
 
 
 
 
 
 
 
 
 962static const struct file_operations proc_mem_operations = {
 963	.llseek		= mem_lseek,
 964	.read		= mem_read,
 965	.write		= mem_write,
 966	.open		= mem_open,
 
 967};
 968
 
 
 
 
 
 969static ssize_t environ_read(struct file *file, char __user *buf,
 970			size_t count, loff_t *ppos)
 971{
 972	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 973	char *page;
 974	unsigned long src = *ppos;
 975	int ret = -ESRCH;
 976	struct mm_struct *mm;
 
 977
 978	if (!task)
 979		goto out_no_task;
 
 980
 981	ret = -ENOMEM;
 982	page = (char *)__get_free_page(GFP_TEMPORARY);
 983	if (!page)
 984		goto out;
 985
 
 
 
 986
 987	mm = mm_for_maps(task);
 988	ret = PTR_ERR(mm);
 989	if (!mm || IS_ERR(mm))
 990		goto out_free;
 991
 992	ret = 0;
 993	while (count > 0) {
 994		int this_len, retval, max_len;
 995
 996		this_len = mm->env_end - (mm->env_start + src);
 997
 998		if (this_len <= 0)
 999			break;
1000
1001		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002		this_len = (this_len > max_len) ? max_len : this_len;
1003
1004		retval = access_process_vm(task, (mm->env_start + src),
 
 
 
1005			page, this_len, 0);
1006
1007		if (retval <= 0) {
1008			ret = retval;
1009			break;
1010		}
1011
1012		if (copy_to_user(buf, page, retval)) {
1013			ret = -EFAULT;
1014			break;
1015		}
1016
1017		ret += retval;
1018		src += retval;
1019		buf += retval;
1020		count -= retval;
1021	}
1022	*ppos = src;
1023
1024	mmput(mm);
1025out_free:
 
1026	free_page((unsigned long) page);
1027out:
1028	put_task_struct(task);
1029out_no_task:
1030	return ret;
1031}
1032
1033static const struct file_operations proc_environ_operations = {
 
1034	.read		= environ_read,
1035	.llseek		= generic_file_llseek,
 
1036};
1037
1038static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039				size_t count, loff_t *ppos)
1040{
1041	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042	char buffer[PROC_NUMBUF];
 
1043	size_t len;
1044	int oom_adjust = OOM_DISABLE;
1045	unsigned long flags;
1046
1047	if (!task)
1048		return -ESRCH;
1049
1050	if (lock_task_sighand(task, &flags)) {
1051		oom_adjust = task->signal->oom_adj;
 
 
 
 
1052		unlock_task_sighand(task, &flags);
1053	}
1054
1055	put_task_struct(task);
1056
1057	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1058
1059	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060}
1061
1062static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063				size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
1064{
1065	struct task_struct *task;
1066	char buffer[PROC_NUMBUF];
1067	int oom_adjust;
1068	unsigned long flags;
1069	int err;
1070
1071	memset(buffer, 0, sizeof(buffer));
1072	if (count > sizeof(buffer) - 1)
1073		count = sizeof(buffer) - 1;
1074	if (copy_from_user(buffer, buf, count)) {
1075		err = -EFAULT;
1076		goto out;
1077	}
1078
1079	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080	if (err)
1081		goto out;
1082	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083	     oom_adjust != OOM_DISABLE) {
1084		err = -EINVAL;
1085		goto out;
1086	}
1087
1088	task = get_proc_task(file->f_path.dentry->d_inode);
1089	if (!task) {
1090		err = -ESRCH;
1091		goto out;
1092	}
1093
1094	task_lock(task);
1095	if (!task->mm) {
1096		err = -EINVAL;
1097		goto err_task_lock;
1098	}
1099
1100	if (!lock_task_sighand(task, &flags)) {
1101		err = -ESRCH;
1102		goto err_task_lock;
1103	}
1104
1105	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
 
 
 
 
 
 
 
 
 
 
1106		err = -EACCES;
1107		goto err_sighand;
1108	}
1109
1110	if (oom_adjust != task->signal->oom_adj) {
1111		if (oom_adjust == OOM_DISABLE)
1112			atomic_inc(&task->mm->oom_disable_count);
1113		if (task->signal->oom_adj == OOM_DISABLE)
1114			atomic_dec(&task->mm->oom_disable_count);
1115	}
1116
1117	/*
1118	 * Warn that /proc/pid/oom_adj is deprecated, see
1119	 * Documentation/feature-removal-schedule.txt.
1120	 */
1121	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1122		  current->comm, task_pid_nr(current), task_pid_nr(task),
1123		  task_pid_nr(task));
1124	task->signal->oom_adj = oom_adjust;
1125	/*
1126	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1127	 * value is always attainable.
1128	 */
1129	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1130		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1131	else
1132		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1133								-OOM_DISABLE;
1134err_sighand:
1135	unlock_task_sighand(task, &flags);
1136err_task_lock:
1137	task_unlock(task);
1138	put_task_struct(task);
1139out:
1140	return err < 0 ? err : count;
1141}
1142
1143static const struct file_operations proc_oom_adjust_operations = {
1144	.read		= oom_adjust_read,
1145	.write		= oom_adjust_write,
1146	.llseek		= generic_file_llseek,
1147};
1148
1149static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1150					size_t count, loff_t *ppos)
1151{
1152	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1153	char buffer[PROC_NUMBUF];
1154	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1155	unsigned long flags;
1156	size_t len;
1157
1158	if (!task)
1159		return -ESRCH;
1160	if (lock_task_sighand(task, &flags)) {
1161		oom_score_adj = task->signal->oom_score_adj;
1162		unlock_task_sighand(task, &flags);
1163	}
1164	put_task_struct(task);
1165	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1166	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1167}
1168
1169static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1170					size_t count, loff_t *ppos)
1171{
1172	struct task_struct *task;
1173	char buffer[PROC_NUMBUF];
1174	unsigned long flags;
1175	int oom_score_adj;
1176	int err;
1177
1178	memset(buffer, 0, sizeof(buffer));
1179	if (count > sizeof(buffer) - 1)
1180		count = sizeof(buffer) - 1;
1181	if (copy_from_user(buffer, buf, count)) {
1182		err = -EFAULT;
1183		goto out;
1184	}
1185
1186	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1187	if (err)
1188		goto out;
1189	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1190			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1191		err = -EINVAL;
1192		goto out;
1193	}
1194
1195	task = get_proc_task(file->f_path.dentry->d_inode);
1196	if (!task) {
1197		err = -ESRCH;
1198		goto out;
1199	}
1200
1201	task_lock(task);
1202	if (!task->mm) {
1203		err = -EINVAL;
1204		goto err_task_lock;
1205	}
1206
1207	if (!lock_task_sighand(task, &flags)) {
1208		err = -ESRCH;
1209		goto err_task_lock;
1210	}
1211
1212	if (oom_score_adj < task->signal->oom_score_adj_min &&
1213			!capable(CAP_SYS_RESOURCE)) {
1214		err = -EACCES;
1215		goto err_sighand;
1216	}
1217
1218	if (oom_score_adj != task->signal->oom_score_adj) {
1219		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1220			atomic_inc(&task->mm->oom_disable_count);
1221		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1222			atomic_dec(&task->mm->oom_disable_count);
1223	}
1224	task->signal->oom_score_adj = oom_score_adj;
1225	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1226		task->signal->oom_score_adj_min = oom_score_adj;
1227	/*
1228	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1229	 * always attainable.
1230	 */
1231	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1232		task->signal->oom_adj = OOM_DISABLE;
1233	else
1234		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1235							OOM_SCORE_ADJ_MAX;
1236err_sighand:
1237	unlock_task_sighand(task, &flags);
1238err_task_lock:
1239	task_unlock(task);
1240	put_task_struct(task);
1241out:
1242	return err < 0 ? err : count;
1243}
1244
1245static const struct file_operations proc_oom_score_adj_operations = {
1246	.read		= oom_score_adj_read,
1247	.write		= oom_score_adj_write,
1248	.llseek		= default_llseek,
1249};
1250
1251#ifdef CONFIG_AUDITSYSCALL
1252#define TMPBUFLEN 21
1253static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1254				  size_t count, loff_t *ppos)
1255{
1256	struct inode * inode = file->f_path.dentry->d_inode;
1257	struct task_struct *task = get_proc_task(inode);
1258	ssize_t length;
1259	char tmpbuf[TMPBUFLEN];
1260
1261	if (!task)
1262		return -ESRCH;
1263	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1264				audit_get_loginuid(task));
 
1265	put_task_struct(task);
1266	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267}
1268
1269static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1270				   size_t count, loff_t *ppos)
1271{
1272	struct inode * inode = file->f_path.dentry->d_inode;
1273	char *page, *tmp;
1274	ssize_t length;
1275	uid_t loginuid;
1276
1277	if (!capable(CAP_AUDIT_CONTROL))
1278		return -EPERM;
1279
1280	rcu_read_lock();
1281	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282		rcu_read_unlock();
1283		return -EPERM;
1284	}
1285	rcu_read_unlock();
1286
1287	if (count >= PAGE_SIZE)
1288		count = PAGE_SIZE - 1;
1289
1290	if (*ppos != 0) {
1291		/* No partial writes. */
1292		return -EINVAL;
1293	}
1294	page = (char*)__get_free_page(GFP_TEMPORARY);
1295	if (!page)
1296		return -ENOMEM;
1297	length = -EFAULT;
1298	if (copy_from_user(page, buf, count))
1299		goto out_free_page;
1300
1301	page[count] = '\0';
1302	loginuid = simple_strtoul(page, &tmp, 10);
1303	if (tmp == page) {
1304		length = -EINVAL;
1305		goto out_free_page;
1306
1307	}
1308	length = audit_set_loginuid(current, loginuid);
1309	if (likely(length == 0))
1310		length = count;
1311
1312out_free_page:
1313	free_page((unsigned long) page);
1314	return length;
 
 
 
 
 
 
 
 
 
1315}
1316
1317static const struct file_operations proc_loginuid_operations = {
1318	.read		= proc_loginuid_read,
1319	.write		= proc_loginuid_write,
1320	.llseek		= generic_file_llseek,
1321};
1322
1323static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1324				  size_t count, loff_t *ppos)
1325{
1326	struct inode * inode = file->f_path.dentry->d_inode;
1327	struct task_struct *task = get_proc_task(inode);
1328	ssize_t length;
1329	char tmpbuf[TMPBUFLEN];
1330
1331	if (!task)
1332		return -ESRCH;
1333	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1334				audit_get_sessionid(task));
1335	put_task_struct(task);
1336	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1337}
1338
1339static const struct file_operations proc_sessionid_operations = {
1340	.read		= proc_sessionid_read,
1341	.llseek		= generic_file_llseek,
1342};
1343#endif
1344
1345#ifdef CONFIG_FAULT_INJECTION
1346static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1347				      size_t count, loff_t *ppos)
1348{
1349	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1350	char buffer[PROC_NUMBUF];
1351	size_t len;
1352	int make_it_fail;
1353
1354	if (!task)
1355		return -ESRCH;
1356	make_it_fail = task->make_it_fail;
1357	put_task_struct(task);
1358
1359	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1360
1361	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1362}
1363
1364static ssize_t proc_fault_inject_write(struct file * file,
1365			const char __user * buf, size_t count, loff_t *ppos)
1366{
1367	struct task_struct *task;
1368	char buffer[PROC_NUMBUF], *end;
1369	int make_it_fail;
 
1370
1371	if (!capable(CAP_SYS_RESOURCE))
1372		return -EPERM;
1373	memset(buffer, 0, sizeof(buffer));
1374	if (count > sizeof(buffer) - 1)
1375		count = sizeof(buffer) - 1;
1376	if (copy_from_user(buffer, buf, count))
1377		return -EFAULT;
1378	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1379	if (*end)
 
 
1380		return -EINVAL;
1381	task = get_proc_task(file->f_dentry->d_inode);
 
1382	if (!task)
1383		return -ESRCH;
1384	task->make_it_fail = make_it_fail;
1385	put_task_struct(task);
1386
1387	return count;
1388}
1389
1390static const struct file_operations proc_fault_inject_operations = {
1391	.read		= proc_fault_inject_read,
1392	.write		= proc_fault_inject_write,
1393	.llseek		= generic_file_llseek,
1394};
1395#endif
1396
1397
1398#ifdef CONFIG_SCHED_DEBUG
1399/*
1400 * Print out various scheduling related per-task fields:
1401 */
1402static int sched_show(struct seq_file *m, void *v)
1403{
1404	struct inode *inode = m->private;
1405	struct task_struct *p;
1406
1407	p = get_proc_task(inode);
1408	if (!p)
1409		return -ESRCH;
1410	proc_sched_show_task(p, m);
1411
1412	put_task_struct(p);
1413
1414	return 0;
1415}
1416
1417static ssize_t
1418sched_write(struct file *file, const char __user *buf,
1419	    size_t count, loff_t *offset)
1420{
1421	struct inode *inode = file->f_path.dentry->d_inode;
1422	struct task_struct *p;
1423
1424	p = get_proc_task(inode);
1425	if (!p)
1426		return -ESRCH;
1427	proc_sched_set_task(p);
1428
1429	put_task_struct(p);
1430
1431	return count;
1432}
1433
1434static int sched_open(struct inode *inode, struct file *filp)
1435{
1436	return single_open(filp, sched_show, inode);
1437}
1438
1439static const struct file_operations proc_pid_sched_operations = {
1440	.open		= sched_open,
1441	.read		= seq_read,
1442	.write		= sched_write,
1443	.llseek		= seq_lseek,
1444	.release	= single_release,
1445};
1446
1447#endif
1448
1449#ifdef CONFIG_SCHED_AUTOGROUP
1450/*
1451 * Print out autogroup related information:
1452 */
1453static int sched_autogroup_show(struct seq_file *m, void *v)
1454{
1455	struct inode *inode = m->private;
1456	struct task_struct *p;
1457
1458	p = get_proc_task(inode);
1459	if (!p)
1460		return -ESRCH;
1461	proc_sched_autogroup_show_task(p, m);
1462
1463	put_task_struct(p);
1464
1465	return 0;
1466}
1467
1468static ssize_t
1469sched_autogroup_write(struct file *file, const char __user *buf,
1470	    size_t count, loff_t *offset)
1471{
1472	struct inode *inode = file->f_path.dentry->d_inode;
1473	struct task_struct *p;
1474	char buffer[PROC_NUMBUF];
1475	int nice;
1476	int err;
1477
1478	memset(buffer, 0, sizeof(buffer));
1479	if (count > sizeof(buffer) - 1)
1480		count = sizeof(buffer) - 1;
1481	if (copy_from_user(buffer, buf, count))
1482		return -EFAULT;
1483
1484	err = kstrtoint(strstrip(buffer), 0, &nice);
1485	if (err < 0)
1486		return err;
1487
1488	p = get_proc_task(inode);
1489	if (!p)
1490		return -ESRCH;
1491
1492	err = nice;
1493	err = proc_sched_autogroup_set_nice(p, &err);
1494	if (err)
1495		count = err;
1496
1497	put_task_struct(p);
1498
1499	return count;
1500}
1501
1502static int sched_autogroup_open(struct inode *inode, struct file *filp)
1503{
1504	int ret;
1505
1506	ret = single_open(filp, sched_autogroup_show, NULL);
1507	if (!ret) {
1508		struct seq_file *m = filp->private_data;
1509
1510		m->private = inode;
1511	}
1512	return ret;
1513}
1514
1515static const struct file_operations proc_pid_sched_autogroup_operations = {
1516	.open		= sched_autogroup_open,
1517	.read		= seq_read,
1518	.write		= sched_autogroup_write,
1519	.llseek		= seq_lseek,
1520	.release	= single_release,
1521};
1522
1523#endif /* CONFIG_SCHED_AUTOGROUP */
1524
1525static ssize_t comm_write(struct file *file, const char __user *buf,
1526				size_t count, loff_t *offset)
1527{
1528	struct inode *inode = file->f_path.dentry->d_inode;
1529	struct task_struct *p;
1530	char buffer[TASK_COMM_LEN];
 
1531
1532	memset(buffer, 0, sizeof(buffer));
1533	if (count > sizeof(buffer) - 1)
1534		count = sizeof(buffer) - 1;
1535	if (copy_from_user(buffer, buf, count))
1536		return -EFAULT;
1537
1538	p = get_proc_task(inode);
1539	if (!p)
1540		return -ESRCH;
1541
1542	if (same_thread_group(current, p))
1543		set_task_comm(p, buffer);
1544	else
1545		count = -EINVAL;
1546
1547	put_task_struct(p);
1548
1549	return count;
1550}
1551
1552static int comm_show(struct seq_file *m, void *v)
1553{
1554	struct inode *inode = m->private;
1555	struct task_struct *p;
1556
1557	p = get_proc_task(inode);
1558	if (!p)
1559		return -ESRCH;
1560
1561	task_lock(p);
1562	seq_printf(m, "%s\n", p->comm);
1563	task_unlock(p);
1564
1565	put_task_struct(p);
1566
1567	return 0;
1568}
1569
1570static int comm_open(struct inode *inode, struct file *filp)
1571{
1572	return single_open(filp, comm_show, inode);
1573}
1574
1575static const struct file_operations proc_pid_set_comm_operations = {
1576	.open		= comm_open,
1577	.read		= seq_read,
1578	.write		= comm_write,
1579	.llseek		= seq_lseek,
1580	.release	= single_release,
1581};
1582
1583static int proc_exe_link(struct inode *inode, struct path *exe_path)
1584{
1585	struct task_struct *task;
1586	struct mm_struct *mm;
1587	struct file *exe_file;
1588
1589	task = get_proc_task(inode);
1590	if (!task)
1591		return -ENOENT;
1592	mm = get_task_mm(task);
1593	put_task_struct(task);
1594	if (!mm)
1595		return -ENOENT;
1596	exe_file = get_mm_exe_file(mm);
1597	mmput(mm);
1598	if (exe_file) {
1599		*exe_path = exe_file->f_path;
1600		path_get(&exe_file->f_path);
1601		fput(exe_file);
1602		return 0;
1603	} else
1604		return -ENOENT;
1605}
1606
1607static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1608{
1609	struct inode *inode = dentry->d_inode;
1610	int error = -EACCES;
1611
1612	/* We don't need a base pointer in the /proc filesystem */
1613	path_put(&nd->path);
1614
1615	/* Are we allowed to snoop on the tasks file descriptors? */
1616	if (!proc_fd_access_allowed(inode))
1617		goto out;
1618
1619	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
 
 
 
 
 
1620out:
1621	return ERR_PTR(error);
1622}
1623
1624static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1625{
1626	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1627	char *pathname;
1628	int len;
1629
1630	if (!tmp)
1631		return -ENOMEM;
1632
1633	pathname = d_path(path, tmp, PAGE_SIZE);
1634	len = PTR_ERR(pathname);
1635	if (IS_ERR(pathname))
1636		goto out;
1637	len = tmp + PAGE_SIZE - 1 - pathname;
1638
1639	if (len > buflen)
1640		len = buflen;
1641	if (copy_to_user(buffer, pathname, len))
1642		len = -EFAULT;
1643 out:
1644	free_page((unsigned long)tmp);
1645	return len;
1646}
1647
1648static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1649{
1650	int error = -EACCES;
1651	struct inode *inode = dentry->d_inode;
1652	struct path path;
1653
1654	/* Are we allowed to snoop on the tasks file descriptors? */
1655	if (!proc_fd_access_allowed(inode))
1656		goto out;
1657
1658	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1659	if (error)
1660		goto out;
1661
1662	error = do_proc_readlink(&path, buffer, buflen);
1663	path_put(&path);
1664out:
1665	return error;
1666}
1667
1668static const struct inode_operations proc_pid_link_inode_operations = {
1669	.readlink	= proc_pid_readlink,
1670	.follow_link	= proc_pid_follow_link,
1671	.setattr	= proc_setattr,
1672};
1673
1674
1675/* building an inode */
1676
1677static int task_dumpable(struct task_struct *task)
1678{
1679	int dumpable = 0;
1680	struct mm_struct *mm;
1681
1682	task_lock(task);
1683	mm = task->mm;
1684	if (mm)
1685		dumpable = get_dumpable(mm);
1686	task_unlock(task);
1687	if(dumpable == 1)
1688		return 1;
1689	return 0;
1690}
1691
1692struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1693{
1694	struct inode * inode;
1695	struct proc_inode *ei;
1696	const struct cred *cred;
1697
1698	/* We need a new inode */
1699
1700	inode = new_inode(sb);
1701	if (!inode)
1702		goto out;
1703
1704	/* Common stuff */
1705	ei = PROC_I(inode);
1706	inode->i_ino = get_next_ino();
1707	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1708	inode->i_op = &proc_def_inode_operations;
1709
1710	/*
1711	 * grab the reference to task.
1712	 */
1713	ei->pid = get_task_pid(task, PIDTYPE_PID);
1714	if (!ei->pid)
1715		goto out_unlock;
1716
1717	if (task_dumpable(task)) {
1718		rcu_read_lock();
1719		cred = __task_cred(task);
1720		inode->i_uid = cred->euid;
1721		inode->i_gid = cred->egid;
1722		rcu_read_unlock();
1723	}
1724	security_task_to_inode(task, inode);
1725
1726out:
1727	return inode;
1728
1729out_unlock:
1730	iput(inode);
1731	return NULL;
1732}
1733
1734int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1735{
1736	struct inode *inode = dentry->d_inode;
1737	struct task_struct *task;
1738	const struct cred *cred;
 
1739
1740	generic_fillattr(inode, stat);
1741
1742	rcu_read_lock();
1743	stat->uid = 0;
1744	stat->gid = 0;
1745	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1746	if (task) {
 
 
 
 
 
 
 
 
1747		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748		    task_dumpable(task)) {
1749			cred = __task_cred(task);
1750			stat->uid = cred->euid;
1751			stat->gid = cred->egid;
1752		}
1753	}
1754	rcu_read_unlock();
1755	return 0;
1756}
1757
1758/* dentry stuff */
1759
1760/*
1761 *	Exceptional case: normally we are not allowed to unhash a busy
1762 * directory. In this case, however, we can do it - no aliasing problems
1763 * due to the way we treat inodes.
1764 *
1765 * Rewrite the inode's ownerships here because the owning task may have
1766 * performed a setuid(), etc.
1767 *
1768 * Before the /proc/pid/status file was created the only way to read
1769 * the effective uid of a /process was to stat /proc/pid.  Reading
1770 * /proc/pid/status is slow enough that procps and other packages
1771 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1772 * made this apply to all per process world readable and executable
1773 * directories.
1774 */
1775int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1776{
1777	struct inode *inode;
1778	struct task_struct *task;
1779	const struct cred *cred;
1780
1781	if (nd && nd->flags & LOOKUP_RCU)
1782		return -ECHILD;
1783
1784	inode = dentry->d_inode;
1785	task = get_proc_task(inode);
1786
1787	if (task) {
1788		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1789		    task_dumpable(task)) {
1790			rcu_read_lock();
1791			cred = __task_cred(task);
1792			inode->i_uid = cred->euid;
1793			inode->i_gid = cred->egid;
1794			rcu_read_unlock();
1795		} else {
1796			inode->i_uid = 0;
1797			inode->i_gid = 0;
1798		}
1799		inode->i_mode &= ~(S_ISUID | S_ISGID);
1800		security_task_to_inode(task, inode);
1801		put_task_struct(task);
1802		return 1;
1803	}
1804	d_drop(dentry);
1805	return 0;
1806}
1807
1808static int pid_delete_dentry(const struct dentry * dentry)
 
 
 
 
 
1809{
1810	/* Is the task we represent dead?
1811	 * If so, then don't put the dentry on the lru list,
1812	 * kill it immediately.
1813	 */
1814	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1815}
1816
1817const struct dentry_operations pid_dentry_operations =
1818{
1819	.d_revalidate	= pid_revalidate,
1820	.d_delete	= pid_delete_dentry,
1821};
1822
1823/* Lookups */
1824
1825/*
1826 * Fill a directory entry.
1827 *
1828 * If possible create the dcache entry and derive our inode number and
1829 * file type from dcache entry.
1830 *
1831 * Since all of the proc inode numbers are dynamically generated, the inode
1832 * numbers do not exist until the inode is cache.  This means creating the
1833 * the dcache entry in readdir is necessary to keep the inode numbers
1834 * reported by readdir in sync with the inode numbers reported
1835 * by stat.
1836 */
1837int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1838	const char *name, int len,
1839	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840{
1841	struct dentry *child, *dir = filp->f_path.dentry;
 
1842	struct inode *inode;
1843	struct qstr qname;
1844	ino_t ino = 0;
1845	unsigned type = DT_UNKNOWN;
1846
1847	qname.name = name;
1848	qname.len  = len;
1849	qname.hash = full_name_hash(name, len);
1850
1851	child = d_lookup(dir, &qname);
1852	if (!child) {
1853		struct dentry *new;
1854		new = d_alloc(dir, &qname);
1855		if (new) {
1856			child = instantiate(dir->d_inode, new, task, ptr);
1857			if (child)
1858				dput(new);
1859			else
1860				child = new;
1861		}
1862	}
1863	if (!child || IS_ERR(child) || !child->d_inode)
1864		goto end_instantiate;
1865	inode = child->d_inode;
1866	if (inode) {
1867		ino = inode->i_ino;
1868		type = inode->i_mode >> 12;
1869	}
 
 
 
1870	dput(child);
 
 
1871end_instantiate:
1872	if (!ino)
1873		ino = find_inode_number(dir, &qname);
1874	if (!ino)
1875		ino = 1;
1876	return filldir(dirent, name, len, filp->f_pos, ino, type);
1877}
1878
1879static unsigned name_to_int(struct dentry *dentry)
1880{
1881	const char *name = dentry->d_name.name;
1882	int len = dentry->d_name.len;
1883	unsigned n = 0;
1884
1885	if (len > 1 && *name == '0')
1886		goto out;
1887	while (len-- > 0) {
1888		unsigned c = *name++ - '0';
1889		if (c > 9)
1890			goto out;
1891		if (n >= (~0U-9)/10)
1892			goto out;
1893		n *= 10;
1894		n += c;
1895	}
1896	return n;
1897out:
1898	return ~0U;
1899}
1900
1901#define PROC_FDINFO_MAX 64
1902
1903static int proc_fd_info(struct inode *inode, struct path *path, char *info)
 
 
 
1904{
1905	struct task_struct *task = get_proc_task(inode);
1906	struct files_struct *files = NULL;
1907	struct file *file;
1908	int fd = proc_fd(inode);
1909
1910	if (task) {
1911		files = get_files_struct(task);
1912		put_task_struct(task);
1913	}
1914	if (files) {
1915		/*
1916		 * We are not taking a ref to the file structure, so we must
1917		 * hold ->file_lock.
1918		 */
1919		spin_lock(&files->file_lock);
1920		file = fcheck_files(files, fd);
1921		if (file) {
1922			unsigned int f_flags;
1923			struct fdtable *fdt;
1924
1925			fdt = files_fdtable(files);
1926			f_flags = file->f_flags & ~O_CLOEXEC;
1927			if (FD_ISSET(fd, fdt->close_on_exec))
1928				f_flags |= O_CLOEXEC;
1929
1930			if (path) {
1931				*path = file->f_path;
1932				path_get(&file->f_path);
1933			}
1934			if (info)
1935				snprintf(info, PROC_FDINFO_MAX,
1936					 "pos:\t%lli\n"
1937					 "flags:\t0%o\n",
1938					 (long long) file->f_pos,
1939					 f_flags);
1940			spin_unlock(&files->file_lock);
1941			put_files_struct(files);
1942			return 0;
1943		}
1944		spin_unlock(&files->file_lock);
1945		put_files_struct(files);
1946	}
1947	return -ENOENT;
1948}
1949
1950static int proc_fd_link(struct inode *inode, struct path *path)
1951{
1952	return proc_fd_info(inode, path, NULL);
1953}
1954
1955static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1956{
1957	struct inode *inode;
 
 
1958	struct task_struct *task;
1959	int fd;
1960	struct files_struct *files;
1961	const struct cred *cred;
 
 
1962
1963	if (nd && nd->flags & LOOKUP_RCU)
1964		return -ECHILD;
1965
1966	inode = dentry->d_inode;
1967	task = get_proc_task(inode);
1968	fd = proc_fd(inode);
 
1969
1970	if (task) {
1971		files = get_files_struct(task);
1972		if (files) {
 
 
 
 
 
 
 
 
 
 
 
1973			rcu_read_lock();
1974			if (fcheck_files(files, fd)) {
1975				rcu_read_unlock();
1976				put_files_struct(files);
1977				if (task_dumpable(task)) {
1978					rcu_read_lock();
1979					cred = __task_cred(task);
1980					inode->i_uid = cred->euid;
1981					inode->i_gid = cred->egid;
1982					rcu_read_unlock();
1983				} else {
1984					inode->i_uid = 0;
1985					inode->i_gid = 0;
1986				}
1987				inode->i_mode &= ~(S_ISUID | S_ISGID);
1988				security_task_to_inode(task, inode);
1989				put_task_struct(task);
1990				return 1;
1991			}
1992			rcu_read_unlock();
1993			put_files_struct(files);
 
 
1994		}
1995		put_task_struct(task);
 
1996	}
1997	d_drop(dentry);
1998	return 0;
 
 
 
 
1999}
2000
2001static const struct dentry_operations tid_fd_dentry_operations =
2002{
2003	.d_revalidate	= tid_fd_revalidate,
2004	.d_delete	= pid_delete_dentry,
2005};
2006
2007static struct dentry *proc_fd_instantiate(struct inode *dir,
2008	struct dentry *dentry, struct task_struct *task, const void *ptr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009{
2010	unsigned fd = *(const unsigned *)ptr;
2011	struct file *file;
2012	struct files_struct *files;
2013 	struct inode *inode;
2014 	struct proc_inode *ei;
2015	struct dentry *error = ERR_PTR(-ENOENT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016
2017	inode = proc_pid_make_inode(dir->i_sb, task);
2018	if (!inode)
2019		goto out;
 
2020	ei = PROC_I(inode);
2021	ei->fd = fd;
2022	files = get_files_struct(task);
2023	if (!files)
2024		goto out_iput;
2025	inode->i_mode = S_IFLNK;
2026
2027	/*
2028	 * We are not taking a ref to the file structure, so we must
2029	 * hold ->file_lock.
2030	 */
2031	spin_lock(&files->file_lock);
2032	file = fcheck_files(files, fd);
2033	if (!file)
2034		goto out_unlock;
2035	if (file->f_mode & FMODE_READ)
2036		inode->i_mode |= S_IRUSR | S_IXUSR;
2037	if (file->f_mode & FMODE_WRITE)
2038		inode->i_mode |= S_IWUSR | S_IXUSR;
2039	spin_unlock(&files->file_lock);
2040	put_files_struct(files);
2041
2042	inode->i_op = &proc_pid_link_inode_operations;
2043	inode->i_size = 64;
2044	ei->op.proc_get_link = proc_fd_link;
2045	d_set_d_op(dentry, &tid_fd_dentry_operations);
2046	d_add(dentry, inode);
2047	/* Close the race of the process dying before we return the dentry */
2048	if (tid_fd_revalidate(dentry, NULL))
2049		error = NULL;
2050
2051 out:
2052	return error;
2053out_unlock:
2054	spin_unlock(&files->file_lock);
2055	put_files_struct(files);
2056out_iput:
2057	iput(inode);
2058	goto out;
2059}
2060
2061static struct dentry *proc_lookupfd_common(struct inode *dir,
2062					   struct dentry *dentry,
2063					   instantiate_t instantiate)
2064{
2065	struct task_struct *task = get_proc_task(dir);
2066	unsigned fd = name_to_int(dentry);
2067	struct dentry *result = ERR_PTR(-ENOENT);
 
 
2068
 
 
2069	if (!task)
2070		goto out_no_task;
2071	if (fd == ~0U)
2072		goto out;
2073
2074	result = instantiate(dir, dentry, task, &fd);
2075out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076	put_task_struct(task);
2077out_no_task:
2078	return result;
2079}
2080
2081static int proc_readfd_common(struct file * filp, void * dirent,
2082			      filldir_t filldir, instantiate_t instantiate)
 
 
 
 
 
 
2083{
2084	struct dentry *dentry = filp->f_path.dentry;
2085	struct inode *inode = dentry->d_inode;
2086	struct task_struct *p = get_proc_task(inode);
2087	unsigned int fd, ino;
2088	int retval;
2089	struct files_struct * files;
 
 
2090
2091	retval = -ENOENT;
2092	if (!p)
2093		goto out_no_task;
2094	retval = 0;
2095
2096	fd = filp->f_pos;
2097	switch (fd) {
2098		case 0:
2099			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2100				goto out;
2101			filp->f_pos++;
2102		case 1:
2103			ino = parent_ino(dentry);
2104			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2105				goto out;
2106			filp->f_pos++;
2107		default:
2108			files = get_files_struct(p);
2109			if (!files)
2110				goto out;
2111			rcu_read_lock();
2112			for (fd = filp->f_pos-2;
2113			     fd < files_fdtable(files)->max_fds;
2114			     fd++, filp->f_pos++) {
2115				char name[PROC_NUMBUF];
2116				int len;
2117
2118				if (!fcheck_files(files, fd))
2119					continue;
2120				rcu_read_unlock();
2121
2122				len = snprintf(name, sizeof(name), "%d", fd);
2123				if (proc_fill_cache(filp, dirent, filldir,
2124						    name, len, instantiate,
2125						    p, &fd) < 0) {
2126					rcu_read_lock();
2127					break;
2128				}
2129				rcu_read_lock();
2130			}
2131			rcu_read_unlock();
2132			put_files_struct(files);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	}
 
 
 
 
 
 
2134out:
2135	put_task_struct(p);
2136out_no_task:
2137	return retval;
2138}
2139
2140static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2141				    struct nameidata *nd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142{
2143	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
 
 
 
 
 
 
 
 
 
 
2144}
2145
2146static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2147{
2148	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
 
2149}
2150
2151static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2152				      size_t len, loff_t *ppos)
2153{
2154	char tmp[PROC_FDINFO_MAX];
2155	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2156	if (!err)
2157		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2158	return err;
 
 
 
 
 
 
2159}
2160
2161static const struct file_operations proc_fdinfo_file_operations = {
2162	.open           = nonseekable_open,
2163	.read		= proc_fdinfo_read,
2164	.llseek		= no_llseek,
2165};
 
 
 
 
 
2166
2167static const struct file_operations proc_fd_operations = {
2168	.read		= generic_read_dir,
2169	.readdir	= proc_readfd,
2170	.llseek		= default_llseek,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171};
2172
2173/*
2174 * /proc/pid/fd needs a special permission handler so that a process can still
2175 * access /proc/self/fd after it has executed a setuid().
2176 */
2177static int proc_fd_permission(struct inode *inode, int mask)
2178{
2179	int rv = generic_permission(inode, mask);
2180	if (rv == 0)
2181		return 0;
2182	if (task_pid(current) == proc_pid(inode))
2183		rv = 0;
2184	return rv;
 
 
 
 
2185}
2186
2187/*
2188 * proc directories can do almost nothing..
2189 */
2190static const struct inode_operations proc_fd_inode_operations = {
2191	.lookup		= proc_lookupfd,
2192	.permission	= proc_fd_permission,
2193	.setattr	= proc_setattr,
2194};
 
2195
2196static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2197	struct dentry *dentry, struct task_struct *task, const void *ptr)
2198{
2199	unsigned fd = *(unsigned *)ptr;
2200 	struct inode *inode;
2201 	struct proc_inode *ei;
2202	struct dentry *error = ERR_PTR(-ENOENT);
2203
2204	inode = proc_pid_make_inode(dir->i_sb, task);
2205	if (!inode)
2206		goto out;
2207	ei = PROC_I(inode);
2208	ei->fd = fd;
2209	inode->i_mode = S_IFREG | S_IRUSR;
2210	inode->i_fop = &proc_fdinfo_file_operations;
2211	d_set_d_op(dentry, &tid_fd_dentry_operations);
2212	d_add(dentry, inode);
2213	/* Close the race of the process dying before we return the dentry */
2214	if (tid_fd_revalidate(dentry, NULL))
2215		error = NULL;
2216
2217 out:
2218	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219}
2220
2221static struct dentry *proc_lookupfdinfo(struct inode *dir,
2222					struct dentry *dentry,
2223					struct nameidata *nd)
2224{
2225	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2226}
2227
2228static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2229{
2230	return proc_readfd_common(filp, dirent, filldir,
2231				  proc_fdinfo_instantiate);
2232}
2233
2234static const struct file_operations proc_fdinfo_operations = {
2235	.read		= generic_read_dir,
2236	.readdir	= proc_readfdinfo,
2237	.llseek		= default_llseek,
2238};
2239
2240/*
2241 * proc directories can do almost nothing..
2242 */
2243static const struct inode_operations proc_fdinfo_inode_operations = {
2244	.lookup		= proc_lookupfdinfo,
2245	.setattr	= proc_setattr,
2246};
2247
2248
2249static struct dentry *proc_pident_instantiate(struct inode *dir,
2250	struct dentry *dentry, struct task_struct *task, const void *ptr)
2251{
2252	const struct pid_entry *p = ptr;
2253	struct inode *inode;
2254	struct proc_inode *ei;
2255	struct dentry *error = ERR_PTR(-ENOENT);
2256
2257	inode = proc_pid_make_inode(dir->i_sb, task);
2258	if (!inode)
2259		goto out;
2260
2261	ei = PROC_I(inode);
2262	inode->i_mode = p->mode;
2263	if (S_ISDIR(inode->i_mode))
2264		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2265	if (p->iop)
2266		inode->i_op = p->iop;
2267	if (p->fop)
2268		inode->i_fop = p->fop;
2269	ei->op = p->op;
2270	d_set_d_op(dentry, &pid_dentry_operations);
2271	d_add(dentry, inode);
2272	/* Close the race of the process dying before we return the dentry */
2273	if (pid_revalidate(dentry, NULL))
2274		error = NULL;
2275out:
2276	return error;
2277}
2278
2279static struct dentry *proc_pident_lookup(struct inode *dir, 
2280					 struct dentry *dentry,
2281					 const struct pid_entry *ents,
2282					 unsigned int nents)
2283{
2284	struct dentry *error;
2285	struct task_struct *task = get_proc_task(dir);
2286	const struct pid_entry *p, *last;
2287
2288	error = ERR_PTR(-ENOENT);
2289
2290	if (!task)
2291		goto out_no_task;
2292
2293	/*
2294	 * Yes, it does not scale. And it should not. Don't add
2295	 * new entries into /proc/<tgid>/ without very good reasons.
2296	 */
2297	last = &ents[nents - 1];
2298	for (p = ents; p <= last; p++) {
2299		if (p->len != dentry->d_name.len)
2300			continue;
2301		if (!memcmp(dentry->d_name.name, p->name, p->len))
2302			break;
2303	}
2304	if (p > last)
2305		goto out;
2306
2307	error = proc_pident_instantiate(dir, dentry, task, p);
2308out:
2309	put_task_struct(task);
2310out_no_task:
2311	return error;
2312}
2313
2314static int proc_pident_fill_cache(struct file *filp, void *dirent,
2315	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2316{
2317	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2318				proc_pident_instantiate, task, p);
2319}
2320
2321static int proc_pident_readdir(struct file *filp,
2322		void *dirent, filldir_t filldir,
2323		const struct pid_entry *ents, unsigned int nents)
2324{
2325	int i;
2326	struct dentry *dentry = filp->f_path.dentry;
2327	struct inode *inode = dentry->d_inode;
2328	struct task_struct *task = get_proc_task(inode);
2329	const struct pid_entry *p, *last;
2330	ino_t ino;
2331	int ret;
2332
2333	ret = -ENOENT;
2334	if (!task)
2335		goto out_no_task;
2336
2337	ret = 0;
2338	i = filp->f_pos;
2339	switch (i) {
2340	case 0:
2341		ino = inode->i_ino;
2342		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2343			goto out;
2344		i++;
2345		filp->f_pos++;
2346		/* fall through */
2347	case 1:
2348		ino = parent_ino(dentry);
2349		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2350			goto out;
2351		i++;
2352		filp->f_pos++;
2353		/* fall through */
2354	default:
2355		i -= 2;
2356		if (i >= nents) {
2357			ret = 1;
2358			goto out;
2359		}
2360		p = ents + i;
2361		last = &ents[nents - 1];
2362		while (p <= last) {
2363			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2364				goto out;
2365			filp->f_pos++;
2366			p++;
2367		}
2368	}
2369
2370	ret = 1;
 
 
 
 
 
 
 
 
2371out:
2372	put_task_struct(task);
2373out_no_task:
2374	return ret;
2375}
2376
2377#ifdef CONFIG_SECURITY
2378static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2379				  size_t count, loff_t *ppos)
2380{
2381	struct inode * inode = file->f_path.dentry->d_inode;
2382	char *p = NULL;
2383	ssize_t length;
2384	struct task_struct *task = get_proc_task(inode);
2385
2386	if (!task)
2387		return -ESRCH;
2388
2389	length = security_getprocattr(task,
2390				      (char*)file->f_path.dentry->d_name.name,
2391				      &p);
2392	put_task_struct(task);
2393	if (length > 0)
2394		length = simple_read_from_buffer(buf, count, ppos, p, length);
2395	kfree(p);
2396	return length;
2397}
2398
2399static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2400				   size_t count, loff_t *ppos)
2401{
2402	struct inode * inode = file->f_path.dentry->d_inode;
2403	char *page;
2404	ssize_t length;
2405	struct task_struct *task = get_proc_task(inode);
2406
2407	length = -ESRCH;
2408	if (!task)
2409		goto out_no_task;
2410	if (count > PAGE_SIZE)
2411		count = PAGE_SIZE;
2412
2413	/* No partial writes. */
2414	length = -EINVAL;
2415	if (*ppos != 0)
2416		goto out;
2417
2418	length = -ENOMEM;
2419	page = (char*)__get_free_page(GFP_TEMPORARY);
2420	if (!page)
2421		goto out;
2422
2423	length = -EFAULT;
2424	if (copy_from_user(page, buf, count))
2425		goto out_free;
2426
2427	/* Guard against adverse ptrace interaction */
2428	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2429	if (length < 0)
2430		goto out_free;
2431
2432	length = security_setprocattr(task,
2433				      (char*)file->f_path.dentry->d_name.name,
2434				      (void*)page, count);
2435	mutex_unlock(&task->signal->cred_guard_mutex);
2436out_free:
2437	free_page((unsigned long) page);
2438out:
2439	put_task_struct(task);
2440out_no_task:
2441	return length;
2442}
2443
2444static const struct file_operations proc_pid_attr_operations = {
2445	.read		= proc_pid_attr_read,
2446	.write		= proc_pid_attr_write,
2447	.llseek		= generic_file_llseek,
2448};
2449
2450static const struct pid_entry attr_dir_stuff[] = {
2451	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2452	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2453	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2454	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2455	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2456	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457};
2458
2459static int proc_attr_dir_readdir(struct file * filp,
2460			     void * dirent, filldir_t filldir)
2461{
2462	return proc_pident_readdir(filp,dirent,filldir,
2463				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2464}
2465
2466static const struct file_operations proc_attr_dir_operations = {
2467	.read		= generic_read_dir,
2468	.readdir	= proc_attr_dir_readdir,
2469	.llseek		= default_llseek,
2470};
2471
2472static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2473				struct dentry *dentry, struct nameidata *nd)
2474{
2475	return proc_pident_lookup(dir, dentry,
2476				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2477}
2478
2479static const struct inode_operations proc_attr_dir_inode_operations = {
2480	.lookup		= proc_attr_dir_lookup,
2481	.getattr	= pid_getattr,
2482	.setattr	= proc_setattr,
2483};
2484
2485#endif
2486
2487#ifdef CONFIG_ELF_CORE
2488static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2489					 size_t count, loff_t *ppos)
2490{
2491	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2492	struct mm_struct *mm;
2493	char buffer[PROC_NUMBUF];
2494	size_t len;
2495	int ret;
2496
2497	if (!task)
2498		return -ESRCH;
2499
2500	ret = 0;
2501	mm = get_task_mm(task);
2502	if (mm) {
2503		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2504			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2505				MMF_DUMP_FILTER_SHIFT));
2506		mmput(mm);
2507		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2508	}
2509
2510	put_task_struct(task);
2511
2512	return ret;
2513}
2514
2515static ssize_t proc_coredump_filter_write(struct file *file,
2516					  const char __user *buf,
2517					  size_t count,
2518					  loff_t *ppos)
2519{
2520	struct task_struct *task;
2521	struct mm_struct *mm;
2522	char buffer[PROC_NUMBUF], *end;
2523	unsigned int val;
2524	int ret;
2525	int i;
2526	unsigned long mask;
2527
2528	ret = -EFAULT;
2529	memset(buffer, 0, sizeof(buffer));
2530	if (count > sizeof(buffer) - 1)
2531		count = sizeof(buffer) - 1;
2532	if (copy_from_user(buffer, buf, count))
2533		goto out_no_task;
2534
2535	ret = -EINVAL;
2536	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2537	if (*end == '\n')
2538		end++;
2539	if (end - buffer == 0)
2540		goto out_no_task;
2541
2542	ret = -ESRCH;
2543	task = get_proc_task(file->f_dentry->d_inode);
2544	if (!task)
2545		goto out_no_task;
2546
2547	ret = end - buffer;
2548	mm = get_task_mm(task);
2549	if (!mm)
2550		goto out_no_mm;
 
2551
2552	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2553		if (val & mask)
2554			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2555		else
2556			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2557	}
2558
2559	mmput(mm);
2560 out_no_mm:
2561	put_task_struct(task);
2562 out_no_task:
2563	return ret;
 
 
2564}
2565
2566static const struct file_operations proc_coredump_filter_operations = {
2567	.read		= proc_coredump_filter_read,
2568	.write		= proc_coredump_filter_write,
2569	.llseek		= generic_file_llseek,
2570};
2571#endif
2572
2573/*
2574 * /proc/self:
2575 */
2576static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2577			      int buflen)
2578{
2579	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2580	pid_t tgid = task_tgid_nr_ns(current, ns);
2581	char tmp[PROC_NUMBUF];
2582	if (!tgid)
2583		return -ENOENT;
2584	sprintf(tmp, "%d", tgid);
2585	return vfs_readlink(dentry,buffer,buflen,tmp);
2586}
2587
2588static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2589{
2590	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2591	pid_t tgid = task_tgid_nr_ns(current, ns);
2592	char *name = ERR_PTR(-ENOENT);
2593	if (tgid) {
2594		name = __getname();
2595		if (!name)
2596			name = ERR_PTR(-ENOMEM);
2597		else
2598			sprintf(name, "%d", tgid);
2599	}
2600	nd_set_link(nd, name);
2601	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602}
2603
2604static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2605				void *cookie)
2606{
2607	char *s = nd_get_link(nd);
2608	if (!IS_ERR(s))
2609		__putname(s);
2610}
2611
2612static const struct inode_operations proc_self_inode_operations = {
2613	.readlink	= proc_self_readlink,
2614	.follow_link	= proc_self_follow_link,
2615	.put_link	= proc_self_put_link,
2616};
2617
2618/*
2619 * proc base
2620 *
2621 * These are the directory entries in the root directory of /proc
2622 * that properly belong to the /proc filesystem, as they describe
2623 * describe something that is process related.
2624 */
2625static const struct pid_entry proc_base_stuff[] = {
2626	NOD("self", S_IFLNK|S_IRWXUGO,
2627		&proc_self_inode_operations, NULL, {}),
2628};
2629
2630static struct dentry *proc_base_instantiate(struct inode *dir,
2631	struct dentry *dentry, struct task_struct *task, const void *ptr)
 
2632{
2633	const struct pid_entry *p = ptr;
2634	struct inode *inode;
2635	struct proc_inode *ei;
2636	struct dentry *error;
2637
2638	/* Allocate the inode */
2639	error = ERR_PTR(-ENOMEM);
2640	inode = new_inode(dir->i_sb);
2641	if (!inode)
2642		goto out;
 
 
 
 
2643
2644	/* Initialize the inode */
2645	ei = PROC_I(inode);
2646	inode->i_ino = get_next_ino();
2647	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2648
2649	/*
2650	 * grab the reference to the task.
2651	 */
2652	ei->pid = get_task_pid(task, PIDTYPE_PID);
2653	if (!ei->pid)
2654		goto out_iput;
2655
2656	inode->i_mode = p->mode;
2657	if (S_ISDIR(inode->i_mode))
2658		inode->i_nlink = 2;
2659	if (S_ISLNK(inode->i_mode))
2660		inode->i_size = 64;
2661	if (p->iop)
2662		inode->i_op = p->iop;
2663	if (p->fop)
2664		inode->i_fop = p->fop;
2665	ei->op = p->op;
2666	d_add(dentry, inode);
2667	error = NULL;
2668out:
2669	return error;
2670out_iput:
2671	iput(inode);
2672	goto out;
2673}
2674
2675static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2676{
2677	struct dentry *error;
2678	struct task_struct *task = get_proc_task(dir);
2679	const struct pid_entry *p, *last;
2680
2681	error = ERR_PTR(-ENOENT);
2682
2683	if (!task)
2684		goto out_no_task;
2685
2686	/* Lookup the directory entry */
2687	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2688	for (p = proc_base_stuff; p <= last; p++) {
2689		if (p->len != dentry->d_name.len)
2690			continue;
2691		if (!memcmp(dentry->d_name.name, p->name, p->len))
2692			break;
2693	}
2694	if (p > last)
2695		goto out;
2696
2697	error = proc_base_instantiate(dir, dentry, task, p);
2698
2699out:
2700	put_task_struct(task);
2701out_no_task:
2702	return error;
2703}
2704
2705static int proc_base_fill_cache(struct file *filp, void *dirent,
2706	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2707{
2708	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2709				proc_base_instantiate, task, p);
2710}
2711
2712#ifdef CONFIG_TASK_IO_ACCOUNTING
2713static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2714{
2715	struct task_io_accounting acct = task->ioac;
2716	unsigned long flags;
2717	int result;
2718
2719	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2720	if (result)
2721		return result;
 
 
 
 
2722
2723	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2724		result = -EACCES;
2725		goto out_unlock;
2726	}
 
 
 
2727
2728	if (whole && lock_task_sighand(task, &flags)) {
2729		struct task_struct *t = task;
 
 
 
 
 
2730
2731		task_io_accounting_add(&acct, &task->signal->ioac);
2732		while_each_thread(task, t)
2733			task_io_accounting_add(&acct, &t->ioac);
 
 
2734
2735		unlock_task_sighand(task, &flags);
 
 
 
 
 
 
2736	}
2737	result = sprintf(buffer,
2738			"rchar: %llu\n"
2739			"wchar: %llu\n"
2740			"syscr: %llu\n"
2741			"syscw: %llu\n"
2742			"read_bytes: %llu\n"
2743			"write_bytes: %llu\n"
2744			"cancelled_write_bytes: %llu\n",
2745			(unsigned long long)acct.rchar,
2746			(unsigned long long)acct.wchar,
2747			(unsigned long long)acct.syscr,
2748			(unsigned long long)acct.syscw,
2749			(unsigned long long)acct.read_bytes,
2750			(unsigned long long)acct.write_bytes,
2751			(unsigned long long)acct.cancelled_write_bytes);
2752out_unlock:
2753	mutex_unlock(&task->signal->cred_guard_mutex);
2754	return result;
2755}
2756
2757static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2758{
2759	return do_io_accounting(task, buffer, 0);
 
 
 
 
 
 
 
 
 
 
 
 
2760}
2761
2762static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2763{
2764	return do_io_accounting(task, buffer, 1);
 
 
 
 
2765}
2766#endif /* CONFIG_TASK_IO_ACCOUNTING */
 
 
 
 
 
 
 
 
2767
2768static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2769				struct pid *pid, struct task_struct *task)
2770{
2771	int err = lock_trace(task);
2772	if (!err) {
2773		seq_printf(m, "%08x\n", task->personality);
2774		unlock_trace(task);
2775	}
2776	return err;
2777}
2778
2779/*
2780 * Thread groups
2781 */
2782static const struct file_operations proc_task_operations;
2783static const struct inode_operations proc_task_inode_operations;
2784
2785static const struct pid_entry tgid_base_stuff[] = {
2786	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2787	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
 
2788	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2789	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2790#ifdef CONFIG_NET
2791	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2792#endif
2793	REG("environ",    S_IRUSR, proc_environ_operations),
2794	INF("auxv",       S_IRUSR, proc_pid_auxv),
2795	ONE("status",     S_IRUGO, proc_pid_status),
2796	ONE("personality", S_IRUGO, proc_pid_personality),
2797	INF("limits",	  S_IRUGO, proc_pid_limits),
2798#ifdef CONFIG_SCHED_DEBUG
2799	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2800#endif
2801#ifdef CONFIG_SCHED_AUTOGROUP
2802	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2803#endif
2804	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2805#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2806	INF("syscall",    S_IRUGO, proc_pid_syscall),
2807#endif
2808	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2809	ONE("stat",       S_IRUGO, proc_tgid_stat),
2810	ONE("statm",      S_IRUGO, proc_pid_statm),
2811	REG("maps",       S_IRUGO, proc_maps_operations),
2812#ifdef CONFIG_NUMA
2813	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2814#endif
2815	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2816	LNK("cwd",        proc_cwd_link),
2817	LNK("root",       proc_root_link),
2818	LNK("exe",        proc_exe_link),
2819	REG("mounts",     S_IRUGO, proc_mounts_operations),
2820	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2821	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2822#ifdef CONFIG_PROC_PAGE_MONITOR
2823	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2824	REG("smaps",      S_IRUGO, proc_smaps_operations),
2825	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2826#endif
2827#ifdef CONFIG_SECURITY
2828	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2829#endif
2830#ifdef CONFIG_KALLSYMS
2831	INF("wchan",      S_IRUGO, proc_pid_wchan),
2832#endif
2833#ifdef CONFIG_STACKTRACE
2834	ONE("stack",      S_IRUGO, proc_pid_stack),
2835#endif
2836#ifdef CONFIG_SCHEDSTATS
2837	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2838#endif
2839#ifdef CONFIG_LATENCYTOP
2840	REG("latency",  S_IRUGO, proc_lstats_operations),
2841#endif
2842#ifdef CONFIG_PROC_PID_CPUSET
2843	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2844#endif
2845#ifdef CONFIG_CGROUPS
2846	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2847#endif
2848	INF("oom_score",  S_IRUGO, proc_oom_score),
2849	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2850	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2851#ifdef CONFIG_AUDITSYSCALL
2852	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2853	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2854#endif
2855#ifdef CONFIG_FAULT_INJECTION
2856	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2857#endif
2858#ifdef CONFIG_ELF_CORE
2859	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2860#endif
2861#ifdef CONFIG_TASK_IO_ACCOUNTING
2862	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2863#endif
2864#ifdef CONFIG_HARDWALL
2865	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2866#endif
 
 
 
 
 
 
 
 
 
 
2867};
2868
2869static int proc_tgid_base_readdir(struct file * filp,
2870			     void * dirent, filldir_t filldir)
2871{
2872	return proc_pident_readdir(filp,dirent,filldir,
2873				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2874}
2875
2876static const struct file_operations proc_tgid_base_operations = {
2877	.read		= generic_read_dir,
2878	.readdir	= proc_tgid_base_readdir,
2879	.llseek		= default_llseek,
2880};
2881
2882static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
2883	return proc_pident_lookup(dir, dentry,
2884				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2885}
2886
2887static const struct inode_operations proc_tgid_base_inode_operations = {
2888	.lookup		= proc_tgid_base_lookup,
2889	.getattr	= pid_getattr,
2890	.setattr	= proc_setattr,
 
2891};
2892
2893static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2894{
2895	struct dentry *dentry, *leader, *dir;
2896	char buf[PROC_NUMBUF];
2897	struct qstr name;
2898
2899	name.name = buf;
2900	name.len = snprintf(buf, sizeof(buf), "%d", pid);
 
2901	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2902	if (dentry) {
2903		shrink_dcache_parent(dentry);
2904		d_drop(dentry);
2905		dput(dentry);
2906	}
2907
 
 
 
2908	name.name = buf;
2909	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2910	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2911	if (!leader)
2912		goto out;
2913
2914	name.name = "task";
2915	name.len = strlen(name.name);
2916	dir = d_hash_and_lookup(leader, &name);
2917	if (!dir)
2918		goto out_put_leader;
2919
2920	name.name = buf;
2921	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2922	dentry = d_hash_and_lookup(dir, &name);
2923	if (dentry) {
2924		shrink_dcache_parent(dentry);
2925		d_drop(dentry);
2926		dput(dentry);
2927	}
2928
2929	dput(dir);
2930out_put_leader:
2931	dput(leader);
2932out:
2933	return;
2934}
2935
2936/**
2937 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2938 * @task: task that should be flushed.
2939 *
2940 * When flushing dentries from proc, one needs to flush them from global
2941 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2942 * in. This call is supposed to do all of this job.
2943 *
2944 * Looks in the dcache for
2945 * /proc/@pid
2946 * /proc/@tgid/task/@pid
2947 * if either directory is present flushes it and all of it'ts children
2948 * from the dcache.
2949 *
2950 * It is safe and reasonable to cache /proc entries for a task until
2951 * that task exits.  After that they just clog up the dcache with
2952 * useless entries, possibly causing useful dcache entries to be
2953 * flushed instead.  This routine is proved to flush those useless
2954 * dcache entries at process exit time.
2955 *
2956 * NOTE: This routine is just an optimization so it does not guarantee
2957 *       that no dcache entries will exist at process exit time it
2958 *       just makes it very unlikely that any will persist.
2959 */
2960
2961void proc_flush_task(struct task_struct *task)
2962{
2963	int i;
2964	struct pid *pid, *tgid;
2965	struct upid *upid;
2966
2967	pid = task_pid(task);
2968	tgid = task_tgid(task);
2969
2970	for (i = 0; i <= pid->level; i++) {
2971		upid = &pid->numbers[i];
2972		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2973					tgid->numbers[i].nr);
2974	}
2975
2976	upid = &pid->numbers[pid->level];
2977	if (upid->nr == 1)
2978		pid_ns_release_proc(upid->ns);
2979}
2980
2981static struct dentry *proc_pid_instantiate(struct inode *dir,
2982					   struct dentry * dentry,
2983					   struct task_struct *task, const void *ptr)
2984{
2985	struct dentry *error = ERR_PTR(-ENOENT);
2986	struct inode *inode;
2987
2988	inode = proc_pid_make_inode(dir->i_sb, task);
2989	if (!inode)
2990		goto out;
2991
2992	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2993	inode->i_op = &proc_tgid_base_inode_operations;
2994	inode->i_fop = &proc_tgid_base_operations;
2995	inode->i_flags|=S_IMMUTABLE;
2996
2997	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2998		ARRAY_SIZE(tgid_base_stuff));
2999
3000	d_set_d_op(dentry, &pid_dentry_operations);
3001
3002	d_add(dentry, inode);
3003	/* Close the race of the process dying before we return the dentry */
3004	if (pid_revalidate(dentry, NULL))
3005		error = NULL;
3006out:
3007	return error;
3008}
3009
3010struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3011{
3012	struct dentry *result;
3013	struct task_struct *task;
3014	unsigned tgid;
3015	struct pid_namespace *ns;
3016
3017	result = proc_base_lookup(dir, dentry);
3018	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3019		goto out;
3020
3021	tgid = name_to_int(dentry);
3022	if (tgid == ~0U)
3023		goto out;
3024
3025	ns = dentry->d_sb->s_fs_info;
3026	rcu_read_lock();
3027	task = find_task_by_pid_ns(tgid, ns);
3028	if (task)
3029		get_task_struct(task);
3030	rcu_read_unlock();
3031	if (!task)
3032		goto out;
3033
3034	result = proc_pid_instantiate(dir, dentry, task, NULL);
3035	put_task_struct(task);
3036out:
3037	return result;
3038}
3039
3040/*
3041 * Find the first task with tgid >= tgid
3042 *
3043 */
3044struct tgid_iter {
3045	unsigned int tgid;
3046	struct task_struct *task;
3047};
3048static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3049{
3050	struct pid *pid;
3051
3052	if (iter.task)
3053		put_task_struct(iter.task);
3054	rcu_read_lock();
3055retry:
3056	iter.task = NULL;
3057	pid = find_ge_pid(iter.tgid, ns);
3058	if (pid) {
3059		iter.tgid = pid_nr_ns(pid, ns);
3060		iter.task = pid_task(pid, PIDTYPE_PID);
3061		/* What we to know is if the pid we have find is the
3062		 * pid of a thread_group_leader.  Testing for task
3063		 * being a thread_group_leader is the obvious thing
3064		 * todo but there is a window when it fails, due to
3065		 * the pid transfer logic in de_thread.
3066		 *
3067		 * So we perform the straight forward test of seeing
3068		 * if the pid we have found is the pid of a thread
3069		 * group leader, and don't worry if the task we have
3070		 * found doesn't happen to be a thread group leader.
3071		 * As we don't care in the case of readdir.
3072		 */
3073		if (!iter.task || !has_group_leader_pid(iter.task)) {
3074			iter.tgid += 1;
3075			goto retry;
3076		}
3077		get_task_struct(iter.task);
3078	}
3079	rcu_read_unlock();
3080	return iter;
3081}
3082
3083#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3084
3085static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086	struct tgid_iter iter)
3087{
3088	char name[PROC_NUMBUF];
3089	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3090	return proc_fill_cache(filp, dirent, filldir, name, len,
3091				proc_pid_instantiate, iter.task, NULL);
3092}
3093
3094/* for the /proc/ directory itself, after non-process stuff has been done */
3095int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096{
3097	unsigned int nr;
3098	struct task_struct *reaper;
3099	struct tgid_iter iter;
3100	struct pid_namespace *ns;
 
3101
3102	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3103		goto out_no_task;
3104	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3105
3106	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107	if (!reaper)
3108		goto out_no_task;
3109
3110	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3111		const struct pid_entry *p = &proc_base_stuff[nr];
3112		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3113			goto out;
 
3114	}
3115
3116	ns = filp->f_dentry->d_sb->s_fs_info;
 
 
 
 
 
3117	iter.task = NULL;
3118	iter.tgid = filp->f_pos - TGID_OFFSET;
3119	for (iter = next_tgid(ns, iter);
3120	     iter.task;
3121	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3122		filp->f_pos = iter.tgid + TGID_OFFSET;
3123		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
 
 
 
 
 
 
 
3124			put_task_struct(iter.task);
3125			goto out;
3126		}
3127	}
3128	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3129out:
3130	put_task_struct(reaper);
3131out_no_task:
3132	return 0;
3133}
3134
3135/*
3136 * Tasks
3137 */
3138static const struct pid_entry tid_base_stuff[] = {
3139	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3140	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3141	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
 
 
 
3142	REG("environ",   S_IRUSR, proc_environ_operations),
3143	INF("auxv",      S_IRUSR, proc_pid_auxv),
3144	ONE("status",    S_IRUGO, proc_pid_status),
3145	ONE("personality", S_IRUGO, proc_pid_personality),
3146	INF("limits",	 S_IRUGO, proc_pid_limits),
3147#ifdef CONFIG_SCHED_DEBUG
3148	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3149#endif
3150	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3151#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3152	INF("syscall",   S_IRUGO, proc_pid_syscall),
3153#endif
3154	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3155	ONE("stat",      S_IRUGO, proc_tid_stat),
3156	ONE("statm",     S_IRUGO, proc_pid_statm),
3157	REG("maps",      S_IRUGO, proc_maps_operations),
 
 
 
3158#ifdef CONFIG_NUMA
3159	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3160#endif
3161	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3162	LNK("cwd",       proc_cwd_link),
3163	LNK("root",      proc_root_link),
3164	LNK("exe",       proc_exe_link),
3165	REG("mounts",    S_IRUGO, proc_mounts_operations),
3166	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3167#ifdef CONFIG_PROC_PAGE_MONITOR
3168	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3169	REG("smaps",     S_IRUGO, proc_smaps_operations),
3170	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3171#endif
3172#ifdef CONFIG_SECURITY
3173	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3174#endif
3175#ifdef CONFIG_KALLSYMS
3176	INF("wchan",     S_IRUGO, proc_pid_wchan),
3177#endif
3178#ifdef CONFIG_STACKTRACE
3179	ONE("stack",      S_IRUGO, proc_pid_stack),
3180#endif
3181#ifdef CONFIG_SCHEDSTATS
3182	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3183#endif
3184#ifdef CONFIG_LATENCYTOP
3185	REG("latency",  S_IRUGO, proc_lstats_operations),
3186#endif
3187#ifdef CONFIG_PROC_PID_CPUSET
3188	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3189#endif
3190#ifdef CONFIG_CGROUPS
3191	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3192#endif
3193	INF("oom_score", S_IRUGO, proc_oom_score),
3194	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3195	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3196#ifdef CONFIG_AUDITSYSCALL
3197	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3198	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3199#endif
3200#ifdef CONFIG_FAULT_INJECTION
3201	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3202#endif
3203#ifdef CONFIG_TASK_IO_ACCOUNTING
3204	INF("io",	S_IRUSR, proc_tid_io_accounting),
3205#endif
3206#ifdef CONFIG_HARDWALL
3207	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
 
 
 
 
 
 
3208#endif
3209};
3210
3211static int proc_tid_base_readdir(struct file * filp,
3212			     void * dirent, filldir_t filldir)
3213{
3214	return proc_pident_readdir(filp,dirent,filldir,
3215				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3216}
3217
3218static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
3219	return proc_pident_lookup(dir, dentry,
3220				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3221}
3222
3223static const struct file_operations proc_tid_base_operations = {
3224	.read		= generic_read_dir,
3225	.readdir	= proc_tid_base_readdir,
3226	.llseek		= default_llseek,
3227};
3228
3229static const struct inode_operations proc_tid_base_inode_operations = {
3230	.lookup		= proc_tid_base_lookup,
3231	.getattr	= pid_getattr,
3232	.setattr	= proc_setattr,
3233};
3234
3235static struct dentry *proc_task_instantiate(struct inode *dir,
3236	struct dentry *dentry, struct task_struct *task, const void *ptr)
3237{
3238	struct dentry *error = ERR_PTR(-ENOENT);
3239	struct inode *inode;
3240	inode = proc_pid_make_inode(dir->i_sb, task);
3241
3242	if (!inode)
3243		goto out;
3244	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3245	inode->i_op = &proc_tid_base_inode_operations;
3246	inode->i_fop = &proc_tid_base_operations;
3247	inode->i_flags|=S_IMMUTABLE;
3248
3249	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3250		ARRAY_SIZE(tid_base_stuff));
3251
3252	d_set_d_op(dentry, &pid_dentry_operations);
3253
3254	d_add(dentry, inode);
3255	/* Close the race of the process dying before we return the dentry */
3256	if (pid_revalidate(dentry, NULL))
3257		error = NULL;
3258out:
3259	return error;
3260}
3261
3262static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3263{
3264	struct dentry *result = ERR_PTR(-ENOENT);
3265	struct task_struct *task;
3266	struct task_struct *leader = get_proc_task(dir);
3267	unsigned tid;
3268	struct pid_namespace *ns;
3269
3270	if (!leader)
3271		goto out_no_task;
3272
3273	tid = name_to_int(dentry);
3274	if (tid == ~0U)
3275		goto out;
3276
3277	ns = dentry->d_sb->s_fs_info;
3278	rcu_read_lock();
3279	task = find_task_by_pid_ns(tid, ns);
3280	if (task)
3281		get_task_struct(task);
3282	rcu_read_unlock();
3283	if (!task)
3284		goto out;
3285	if (!same_thread_group(leader, task))
3286		goto out_drop_task;
3287
3288	result = proc_task_instantiate(dir, dentry, task, NULL);
3289out_drop_task:
3290	put_task_struct(task);
3291out:
3292	put_task_struct(leader);
3293out_no_task:
3294	return result;
3295}
3296
3297/*
3298 * Find the first tid of a thread group to return to user space.
3299 *
3300 * Usually this is just the thread group leader, but if the users
3301 * buffer was too small or there was a seek into the middle of the
3302 * directory we have more work todo.
3303 *
3304 * In the case of a short read we start with find_task_by_pid.
3305 *
3306 * In the case of a seek we start with the leader and walk nr
3307 * threads past it.
3308 */
3309static struct task_struct *first_tid(struct task_struct *leader,
3310		int tid, int nr, struct pid_namespace *ns)
3311{
3312	struct task_struct *pos;
 
 
 
 
3313
3314	rcu_read_lock();
3315	/* Attempt to start with the pid of a thread */
3316	if (tid && (nr > 0)) {
 
 
 
 
3317		pos = find_task_by_pid_ns(tid, ns);
3318		if (pos && (pos->group_leader == leader))
3319			goto found;
3320	}
3321
3322	/* If nr exceeds the number of threads there is nothing todo */
3323	pos = NULL;
3324	if (nr && nr >= get_nr_threads(leader))
3325		goto out;
3326
3327	/* If we haven't found our starting place yet start
3328	 * with the leader and walk nr threads forward.
3329	 */
3330	for (pos = leader; nr > 0; --nr) {
3331		pos = next_thread(pos);
3332		if (pos == leader) {
3333			pos = NULL;
3334			goto out;
3335		}
3336	}
 
3337found:
3338	get_task_struct(pos);
3339out:
3340	rcu_read_unlock();
3341	return pos;
3342}
3343
3344/*
3345 * Find the next thread in the thread list.
3346 * Return NULL if there is an error or no next thread.
3347 *
3348 * The reference to the input task_struct is released.
3349 */
3350static struct task_struct *next_tid(struct task_struct *start)
3351{
3352	struct task_struct *pos = NULL;
3353	rcu_read_lock();
3354	if (pid_alive(start)) {
3355		pos = next_thread(start);
3356		if (thread_group_leader(pos))
3357			pos = NULL;
3358		else
3359			get_task_struct(pos);
3360	}
3361	rcu_read_unlock();
3362	put_task_struct(start);
3363	return pos;
3364}
3365
3366static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3367	struct task_struct *task, int tid)
3368{
3369	char name[PROC_NUMBUF];
3370	int len = snprintf(name, sizeof(name), "%d", tid);
3371	return proc_fill_cache(filp, dirent, filldir, name, len,
3372				proc_task_instantiate, task, NULL);
3373}
3374
3375/* for the /proc/TGID/task/ directories */
3376static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3377{
3378	struct dentry *dentry = filp->f_path.dentry;
3379	struct inode *inode = dentry->d_inode;
3380	struct task_struct *leader = NULL;
3381	struct task_struct *task;
3382	int retval = -ENOENT;
3383	ino_t ino;
3384	int tid;
3385	struct pid_namespace *ns;
 
3386
3387	task = get_proc_task(inode);
3388	if (!task)
3389		goto out_no_task;
3390	rcu_read_lock();
3391	if (pid_alive(task)) {
3392		leader = task->group_leader;
3393		get_task_struct(leader);
3394	}
3395	rcu_read_unlock();
3396	put_task_struct(task);
3397	if (!leader)
3398		goto out_no_task;
3399	retval = 0;
3400
3401	switch ((unsigned long)filp->f_pos) {
3402	case 0:
3403		ino = inode->i_ino;
3404		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3405			goto out;
3406		filp->f_pos++;
3407		/* fall through */
3408	case 1:
3409		ino = parent_ino(dentry);
3410		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3411			goto out;
3412		filp->f_pos++;
3413		/* fall through */
3414	}
3415
3416	/* f_version caches the tgid value that the last readdir call couldn't
3417	 * return. lseek aka telldir automagically resets f_version to 0.
3418	 */
3419	ns = filp->f_dentry->d_sb->s_fs_info;
3420	tid = (int)filp->f_version;
3421	filp->f_version = 0;
3422	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3423	     task;
3424	     task = next_tid(task), filp->f_pos++) {
 
 
3425		tid = task_pid_nr_ns(task, ns);
3426		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
 
 
3427			/* returning this tgid failed, save it as the first
3428			 * pid for the next readir call */
3429			filp->f_version = (u64)tid;
3430			put_task_struct(task);
3431			break;
3432		}
3433	}
3434out:
3435	put_task_struct(leader);
3436out_no_task:
3437	return retval;
3438}
3439
3440static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3441{
3442	struct inode *inode = dentry->d_inode;
3443	struct task_struct *p = get_proc_task(inode);
3444	generic_fillattr(inode, stat);
3445
3446	if (p) {
3447		stat->nlink += get_nr_threads(p);
3448		put_task_struct(p);
3449	}
3450
3451	return 0;
3452}
3453
3454static const struct inode_operations proc_task_inode_operations = {
3455	.lookup		= proc_task_lookup,
3456	.getattr	= proc_task_getattr,
3457	.setattr	= proc_setattr,
 
3458};
3459
3460static const struct file_operations proc_task_operations = {
3461	.read		= generic_read_dir,
3462	.readdir	= proc_task_readdir,
3463	.llseek		= default_llseek,
3464};
v4.6
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 107struct pid_entry {
 108	const char *name;
 109	int len;
 110	umode_t mode;
 111	const struct inode_operations *iop;
 112	const struct file_operations *fop;
 113	union proc_op op;
 114};
 115
 116#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 117	.name = (NAME),					\
 118	.len  = sizeof(NAME) - 1,			\
 119	.mode = MODE,					\
 120	.iop  = IOP,					\
 121	.fop  = FOP,					\
 122	.op   = OP,					\
 123}
 124
 125#define DIR(NAME, MODE, iops, fops)	\
 126	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 127#define LNK(NAME, get_link)					\
 128	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 129		&proc_pid_link_inode_operations, NULL,		\
 130		{ .proc_get_link = get_link } )
 131#define REG(NAME, MODE, fops)				\
 132	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 
 
 
 
 133#define ONE(NAME, MODE, show)				\
 134	NOD(NAME, (S_IFREG|(MODE)), 			\
 135		NULL, &proc_single_file_operations,	\
 136		{ .proc_show = show } )
 137
 138/*
 139 * Count the number of hardlinks for the pid_entry table, excluding the .
 140 * and .. links.
 141 */
 142static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 143	unsigned int n)
 144{
 145	unsigned int i;
 146	unsigned int count;
 147
 148	count = 0;
 149	for (i = 0; i < n; ++i) {
 150		if (S_ISDIR(entries[i].mode))
 151			++count;
 152	}
 153
 154	return count;
 155}
 156
 157static int get_task_root(struct task_struct *task, struct path *root)
 158{
 159	int result = -ENOENT;
 160
 161	task_lock(task);
 162	if (task->fs) {
 163		get_fs_root(task->fs, root);
 164		result = 0;
 165	}
 166	task_unlock(task);
 167	return result;
 168}
 169
 170static int proc_cwd_link(struct dentry *dentry, struct path *path)
 171{
 172	struct task_struct *task = get_proc_task(d_inode(dentry));
 173	int result = -ENOENT;
 174
 175	if (task) {
 176		task_lock(task);
 177		if (task->fs) {
 178			get_fs_pwd(task->fs, path);
 179			result = 0;
 180		}
 181		task_unlock(task);
 182		put_task_struct(task);
 183	}
 184	return result;
 185}
 186
 187static int proc_root_link(struct dentry *dentry, struct path *path)
 188{
 189	struct task_struct *task = get_proc_task(d_inode(dentry));
 190	int result = -ENOENT;
 191
 192	if (task) {
 193		result = get_task_root(task, path);
 194		put_task_struct(task);
 195	}
 196	return result;
 197}
 198
 199static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 200				     size_t _count, loff_t *pos)
 201{
 202	struct task_struct *tsk;
 203	struct mm_struct *mm;
 204	char *page;
 205	unsigned long count = _count;
 206	unsigned long arg_start, arg_end, env_start, env_end;
 207	unsigned long len1, len2, len;
 208	unsigned long p;
 209	char c;
 210	ssize_t rv;
 211
 212	BUG_ON(*pos < 0);
 
 
 
 
 
 
 
 
 
 213
 214	tsk = get_proc_task(file_inode(file));
 215	if (!tsk)
 216		return -ESRCH;
 217	mm = get_task_mm(tsk);
 218	put_task_struct(tsk);
 219	if (!mm)
 220		return 0;
 221	/* Check if process spawned far enough to have cmdline. */
 222	if (!mm->env_end) {
 223		rv = 0;
 224		goto out_mmput;
 225	}
 226
 227	page = (char *)__get_free_page(GFP_TEMPORARY);
 228	if (!page) {
 229		rv = -ENOMEM;
 230		goto out_mmput;
 231	}
 232
 233	down_read(&mm->mmap_sem);
 234	arg_start = mm->arg_start;
 235	arg_end = mm->arg_end;
 236	env_start = mm->env_start;
 237	env_end = mm->env_end;
 238	up_read(&mm->mmap_sem);
 239
 240	BUG_ON(arg_start > arg_end);
 241	BUG_ON(env_start > env_end);
 
 
 
 
 
 
 242
 243	len1 = arg_end - arg_start;
 244	len2 = env_end - env_start;
 245
 246	/* Empty ARGV. */
 247	if (len1 == 0) {
 248		rv = 0;
 249		goto out_free_page;
 250	}
 251	/*
 252	 * Inherently racy -- command line shares address space
 253	 * with code and data.
 254	 */
 255	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 256	if (rv <= 0)
 257		goto out_free_page;
 258
 259	rv = 0;
 
 260
 261	if (c == '\0') {
 262		/* Command line (set of strings) occupies whole ARGV. */
 263		if (len1 <= *pos)
 264			goto out_free_page;
 265
 266		p = arg_start + *pos;
 267		len = len1 - *pos;
 268		while (count > 0 && len > 0) {
 269			unsigned int _count;
 270			int nr_read;
 271
 272			_count = min3(count, len, PAGE_SIZE);
 273			nr_read = access_remote_vm(mm, p, page, _count, 0);
 274			if (nr_read < 0)
 275				rv = nr_read;
 276			if (nr_read <= 0)
 277				goto out_free_page;
 278
 279			if (copy_to_user(buf, page, nr_read)) {
 280				rv = -EFAULT;
 281				goto out_free_page;
 282			}
 283
 284			p	+= nr_read;
 285			len	-= nr_read;
 286			buf	+= nr_read;
 287			count	-= nr_read;
 288			rv	+= nr_read;
 289		}
 290	} else {
 291		/*
 292		 * Command line (1 string) occupies ARGV and maybe
 293		 * extends into ENVP.
 294		 */
 295		if (len1 + len2 <= *pos)
 296			goto skip_argv_envp;
 297		if (len1 <= *pos)
 298			goto skip_argv;
 299
 300		p = arg_start + *pos;
 301		len = len1 - *pos;
 302		while (count > 0 && len > 0) {
 303			unsigned int _count, l;
 304			int nr_read;
 305			bool final;
 306
 307			_count = min3(count, len, PAGE_SIZE);
 308			nr_read = access_remote_vm(mm, p, page, _count, 0);
 309			if (nr_read < 0)
 310				rv = nr_read;
 311			if (nr_read <= 0)
 312				goto out_free_page;
 313
 314			/*
 315			 * Command line can be shorter than whole ARGV
 316			 * even if last "marker" byte says it is not.
 317			 */
 318			final = false;
 319			l = strnlen(page, nr_read);
 320			if (l < nr_read) {
 321				nr_read = l;
 322				final = true;
 323			}
 324
 325			if (copy_to_user(buf, page, nr_read)) {
 326				rv = -EFAULT;
 327				goto out_free_page;
 328			}
 329
 330			p	+= nr_read;
 331			len	-= nr_read;
 332			buf	+= nr_read;
 333			count	-= nr_read;
 334			rv	+= nr_read;
 
 
 335
 336			if (final)
 337				goto out_free_page;
 338		}
 339skip_argv:
 340		/*
 341		 * Command line (1 string) occupies ARGV and
 342		 * extends into ENVP.
 343		 */
 344		if (len1 <= *pos) {
 345			p = env_start + *pos - len1;
 346			len = len1 + len2 - *pos;
 347		} else {
 348			p = env_start;
 349			len = len2;
 350		}
 351		while (count > 0 && len > 0) {
 352			unsigned int _count, l;
 353			int nr_read;
 354			bool final;
 355
 356			_count = min3(count, len, PAGE_SIZE);
 357			nr_read = access_remote_vm(mm, p, page, _count, 0);
 358			if (nr_read < 0)
 359				rv = nr_read;
 360			if (nr_read <= 0)
 361				goto out_free_page;
 362
 363			/* Find EOS. */
 364			final = false;
 365			l = strnlen(page, nr_read);
 366			if (l < nr_read) {
 367				nr_read = l;
 368				final = true;
 369			}
 370
 371			if (copy_to_user(buf, page, nr_read)) {
 372				rv = -EFAULT;
 373				goto out_free_page;
 374			}
 
 
 
 
 
 375
 376			p	+= nr_read;
 377			len	-= nr_read;
 378			buf	+= nr_read;
 379			count	-= nr_read;
 380			rv	+= nr_read;
 381
 382			if (final)
 383				goto out_free_page;
 
 
 
 
 
 
 
 
 
 
 
 384		}
 385skip_argv_envp:
 386		;
 387	}
 388
 389out_free_page:
 390	free_page((unsigned long)page);
 391out_mmput:
 392	mmput(mm);
 393	if (rv > 0)
 394		*pos += rv;
 395	return rv;
 396}
 397
 398static const struct file_operations proc_pid_cmdline_ops = {
 399	.read	= proc_pid_cmdline_read,
 400	.llseek	= generic_file_llseek,
 401};
 402
 403static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
 404			 struct pid *pid, struct task_struct *task)
 405{
 406	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
 
 407	if (mm && !IS_ERR(mm)) {
 408		unsigned int nwords = 0;
 409		do {
 410			nwords += 2;
 411		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 412		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
 
 
 
 413		mmput(mm);
 414		return 0;
 415	} else
 416		return PTR_ERR(mm);
 417}
 418
 419
 420#ifdef CONFIG_KALLSYMS
 421/*
 422 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 423 * Returns the resolved symbol.  If that fails, simply return the address.
 424 */
 425static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 426			  struct pid *pid, struct task_struct *task)
 427{
 428	unsigned long wchan;
 429	char symname[KSYM_NAME_LEN];
 430
 431	wchan = get_wchan(task);
 432
 433	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 434			&& !lookup_symbol_name(wchan, symname))
 435		seq_printf(m, "%s", symname);
 
 
 436	else
 437		seq_putc(m, '0');
 438
 439	return 0;
 440}
 441#endif /* CONFIG_KALLSYMS */
 442
 443static int lock_trace(struct task_struct *task)
 444{
 445	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 446	if (err)
 447		return err;
 448	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 449		mutex_unlock(&task->signal->cred_guard_mutex);
 450		return -EPERM;
 451	}
 452	return 0;
 453}
 454
 455static void unlock_trace(struct task_struct *task)
 456{
 457	mutex_unlock(&task->signal->cred_guard_mutex);
 458}
 459
 460#ifdef CONFIG_STACKTRACE
 461
 462#define MAX_STACK_TRACE_DEPTH	64
 463
 464static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 465			  struct pid *pid, struct task_struct *task)
 466{
 467	struct stack_trace trace;
 468	unsigned long *entries;
 469	int err;
 470	int i;
 471
 472	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 473	if (!entries)
 474		return -ENOMEM;
 475
 476	trace.nr_entries	= 0;
 477	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 478	trace.entries		= entries;
 479	trace.skip		= 0;
 480
 481	err = lock_trace(task);
 482	if (!err) {
 483		save_stack_trace_tsk(task, &trace);
 484
 485		for (i = 0; i < trace.nr_entries; i++) {
 486			seq_printf(m, "[<%pK>] %pS\n",
 487				   (void *)entries[i], (void *)entries[i]);
 488		}
 489		unlock_trace(task);
 490	}
 491	kfree(entries);
 492
 493	return err;
 494}
 495#endif
 496
 497#ifdef CONFIG_SCHED_INFO
 498/*
 499 * Provides /proc/PID/schedstat
 500 */
 501static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 502			      struct pid *pid, struct task_struct *task)
 503{
 504	if (unlikely(!sched_info_on()))
 505		seq_printf(m, "0 0 0\n");
 506	else
 507		seq_printf(m, "%llu %llu %lu\n",
 508		   (unsigned long long)task->se.sum_exec_runtime,
 509		   (unsigned long long)task->sched_info.run_delay,
 510		   task->sched_info.pcount);
 511
 512	return 0;
 513}
 514#endif
 515
 516#ifdef CONFIG_LATENCYTOP
 517static int lstats_show_proc(struct seq_file *m, void *v)
 518{
 519	int i;
 520	struct inode *inode = m->private;
 521	struct task_struct *task = get_proc_task(inode);
 522
 523	if (!task)
 524		return -ESRCH;
 525	seq_puts(m, "Latency Top version : v0.1\n");
 526	for (i = 0; i < 32; i++) {
 527		struct latency_record *lr = &task->latency_record[i];
 528		if (lr->backtrace[0]) {
 529			int q;
 530			seq_printf(m, "%i %li %li",
 531				   lr->count, lr->time, lr->max);
 532			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 533				unsigned long bt = lr->backtrace[q];
 534				if (!bt)
 535					break;
 536				if (bt == ULONG_MAX)
 537					break;
 538				seq_printf(m, " %ps", (void *)bt);
 539			}
 540			seq_putc(m, '\n');
 541		}
 542
 543	}
 544	put_task_struct(task);
 545	return 0;
 546}
 547
 548static int lstats_open(struct inode *inode, struct file *file)
 549{
 550	return single_open(file, lstats_show_proc, inode);
 551}
 552
 553static ssize_t lstats_write(struct file *file, const char __user *buf,
 554			    size_t count, loff_t *offs)
 555{
 556	struct task_struct *task = get_proc_task(file_inode(file));
 557
 558	if (!task)
 559		return -ESRCH;
 560	clear_all_latency_tracing(task);
 561	put_task_struct(task);
 562
 563	return count;
 564}
 565
 566static const struct file_operations proc_lstats_operations = {
 567	.open		= lstats_open,
 568	.read		= seq_read,
 569	.write		= lstats_write,
 570	.llseek		= seq_lseek,
 571	.release	= single_release,
 572};
 573
 574#endif
 575
 576static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 577			  struct pid *pid, struct task_struct *task)
 578{
 579	unsigned long totalpages = totalram_pages + total_swap_pages;
 580	unsigned long points = 0;
 581
 582	read_lock(&tasklist_lock);
 583	if (pid_alive(task))
 584		points = oom_badness(task, NULL, NULL, totalpages) *
 585						1000 / totalpages;
 586	read_unlock(&tasklist_lock);
 587	seq_printf(m, "%lu\n", points);
 588
 589	return 0;
 590}
 591
 592struct limit_names {
 593	const char *name;
 594	const char *unit;
 595};
 596
 597static const struct limit_names lnames[RLIM_NLIMITS] = {
 598	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 599	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 600	[RLIMIT_DATA] = {"Max data size", "bytes"},
 601	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 602	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 603	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 604	[RLIMIT_NPROC] = {"Max processes", "processes"},
 605	[RLIMIT_NOFILE] = {"Max open files", "files"},
 606	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 607	[RLIMIT_AS] = {"Max address space", "bytes"},
 608	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 609	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 610	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 611	[RLIMIT_NICE] = {"Max nice priority", NULL},
 612	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 613	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 614};
 615
 616/* Display limits for a process */
 617static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 618			   struct pid *pid, struct task_struct *task)
 619{
 620	unsigned int i;
 
 621	unsigned long flags;
 
 622
 623	struct rlimit rlim[RLIM_NLIMITS];
 624
 625	if (!lock_task_sighand(task, &flags))
 626		return 0;
 627	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 628	unlock_task_sighand(task, &flags);
 629
 630	/*
 631	 * print the file header
 632	 */
 633       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 634		  "Limit", "Soft Limit", "Hard Limit", "Units");
 635
 636	for (i = 0; i < RLIM_NLIMITS; i++) {
 637		if (rlim[i].rlim_cur == RLIM_INFINITY)
 638			seq_printf(m, "%-25s %-20s ",
 639				   lnames[i].name, "unlimited");
 640		else
 641			seq_printf(m, "%-25s %-20lu ",
 642				   lnames[i].name, rlim[i].rlim_cur);
 643
 644		if (rlim[i].rlim_max == RLIM_INFINITY)
 645			seq_printf(m, "%-20s ", "unlimited");
 646		else
 647			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 
 648
 649		if (lnames[i].unit)
 650			seq_printf(m, "%-10s\n", lnames[i].unit);
 
 651		else
 652			seq_putc(m, '\n');
 653	}
 654
 655	return 0;
 656}
 657
 658#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 659static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 660			    struct pid *pid, struct task_struct *task)
 661{
 662	long nr;
 663	unsigned long args[6], sp, pc;
 664	int res;
 665
 666	res = lock_trace(task);
 667	if (res)
 668		return res;
 669
 670	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 671		seq_puts(m, "running\n");
 672	else if (nr < 0)
 673		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 674	else
 675		seq_printf(m,
 676		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 677		       nr,
 678		       args[0], args[1], args[2], args[3], args[4], args[5],
 679		       sp, pc);
 680	unlock_trace(task);
 681
 682	return 0;
 683}
 684#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 685
 686/************************************************************************/
 687/*                       Here the fs part begins                        */
 688/************************************************************************/
 689
 690/* permission checks */
 691static int proc_fd_access_allowed(struct inode *inode)
 692{
 693	struct task_struct *task;
 694	int allowed = 0;
 695	/* Allow access to a task's file descriptors if it is us or we
 696	 * may use ptrace attach to the process and find out that
 697	 * information.
 698	 */
 699	task = get_proc_task(inode);
 700	if (task) {
 701		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 702		put_task_struct(task);
 703	}
 704	return allowed;
 705}
 706
 707int proc_setattr(struct dentry *dentry, struct iattr *attr)
 708{
 709	int error;
 710	struct inode *inode = d_inode(dentry);
 711
 712	if (attr->ia_valid & ATTR_MODE)
 713		return -EPERM;
 714
 715	error = inode_change_ok(inode, attr);
 716	if (error)
 717		return error;
 718
 
 
 
 
 
 
 
 719	setattr_copy(inode, attr);
 720	mark_inode_dirty(inode);
 721	return 0;
 722}
 723
 724/*
 725 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 726 * or euid/egid (for hide_pid_min=2)?
 727 */
 728static bool has_pid_permissions(struct pid_namespace *pid,
 729				 struct task_struct *task,
 730				 int hide_pid_min)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731{
 732	if (pid->hide_pid < hide_pid_min)
 733		return true;
 734	if (in_group_p(pid->pid_gid))
 735		return true;
 736	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 737}
 738
 
 
 
 
 
 
 
 739
 740static int proc_pid_permission(struct inode *inode, int mask)
 741{
 742	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 743	struct task_struct *task;
 744	bool has_perms;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745
 746	task = get_proc_task(inode);
 747	if (!task)
 748		return -ESRCH;
 749	has_perms = has_pid_permissions(pid, task, 1);
 750	put_task_struct(task);
 751
 752	if (!has_perms) {
 753		if (pid->hide_pid == 2) {
 754			/*
 755			 * Let's make getdents(), stat(), and open()
 756			 * consistent with each other.  If a process
 757			 * may not stat() a file, it shouldn't be seen
 758			 * in procfs at all.
 759			 */
 760			return -ENOENT;
 761		}
 762
 763		return -EPERM;
 764	}
 765	return generic_permission(inode, mask);
 766}
 767
 
 768
 
 
 
 
 
 
 
 
 769
 770static const struct inode_operations proc_def_inode_operations = {
 771	.setattr	= proc_setattr,
 
 772};
 773
 774static int proc_single_show(struct seq_file *m, void *v)
 775{
 776	struct inode *inode = m->private;
 777	struct pid_namespace *ns;
 778	struct pid *pid;
 779	struct task_struct *task;
 780	int ret;
 781
 782	ns = inode->i_sb->s_fs_info;
 783	pid = proc_pid(inode);
 784	task = get_pid_task(pid, PIDTYPE_PID);
 785	if (!task)
 786		return -ESRCH;
 787
 788	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 789
 790	put_task_struct(task);
 791	return ret;
 792}
 793
 794static int proc_single_open(struct inode *inode, struct file *filp)
 795{
 796	return single_open(filp, proc_single_show, inode);
 797}
 798
 799static const struct file_operations proc_single_file_operations = {
 800	.open		= proc_single_open,
 801	.read		= seq_read,
 802	.llseek		= seq_lseek,
 803	.release	= single_release,
 804};
 805
 
 
 
 
 
 
 
 806
 807struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 
 808{
 809	struct task_struct *task = get_proc_task(inode);
 810	struct mm_struct *mm = ERR_PTR(-ESRCH);
 
 
 
 811
 812	if (task) {
 813		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 814		put_task_struct(task);
 815
 816		if (!IS_ERR_OR_NULL(mm)) {
 817			/* ensure this mm_struct can't be freed */
 818			atomic_inc(&mm->mm_count);
 819			/* but do not pin its memory */
 820			mmput(mm);
 821		}
 822	}
 823
 824	return mm;
 825}
 
 
 826
 827static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 828{
 829	struct mm_struct *mm = proc_mem_open(inode, mode);
 
 830
 831	if (IS_ERR(mm))
 832		return PTR_ERR(mm);
 
 
 833
 834	file->private_data = mm;
 835	return 0;
 836}
 
 
 
 
 837
 838static int mem_open(struct inode *inode, struct file *file)
 839{
 840	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 841
 842	/* OK to pass negative loff_t, we can catch out-of-range */
 843	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 
 
 
 
 
 844
 
 
 
 
 
 
 
 845	return ret;
 846}
 847
 848static ssize_t mem_rw(struct file *file, char __user *buf,
 849			size_t count, loff_t *ppos, int write)
 850{
 851	struct mm_struct *mm = file->private_data;
 852	unsigned long addr = *ppos;
 853	ssize_t copied;
 854	char *page;
 
 
 
 855
 856	if (!mm)
 857		return 0;
 
 858
 
 859	page = (char *)__get_free_page(GFP_TEMPORARY);
 860	if (!page)
 861		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 862
 863	copied = 0;
 864	if (!atomic_inc_not_zero(&mm->mm_users))
 865		goto free;
 866
 867	while (count > 0) {
 868		int this_len = min_t(int, count, PAGE_SIZE);
 869
 870		if (write && copy_from_user(page, buf, this_len)) {
 
 871			copied = -EFAULT;
 872			break;
 873		}
 874
 875		this_len = access_remote_vm(mm, addr, page, this_len, write);
 876		if (!this_len) {
 877			if (!copied)
 878				copied = -EIO;
 879			break;
 880		}
 881
 882		if (!write && copy_to_user(buf, page, this_len)) {
 883			copied = -EFAULT;
 884			break;
 885		}
 886
 887		buf += this_len;
 888		addr += this_len;
 889		copied += this_len;
 890		count -= this_len;
 891	}
 892	*ppos = addr;
 893
 
 894	mmput(mm);
 895free:
 896	free_page((unsigned long) page);
 
 
 
 897	return copied;
 898}
 899
 900static ssize_t mem_read(struct file *file, char __user *buf,
 901			size_t count, loff_t *ppos)
 902{
 903	return mem_rw(file, buf, count, ppos, 0);
 904}
 905
 906static ssize_t mem_write(struct file *file, const char __user *buf,
 907			 size_t count, loff_t *ppos)
 908{
 909	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 910}
 911
 912loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 913{
 914	switch (orig) {
 915	case 0:
 916		file->f_pos = offset;
 917		break;
 918	case 1:
 919		file->f_pos += offset;
 920		break;
 921	default:
 922		return -EINVAL;
 923	}
 924	force_successful_syscall_return();
 925	return file->f_pos;
 926}
 927
 928static int mem_release(struct inode *inode, struct file *file)
 929{
 930	struct mm_struct *mm = file->private_data;
 931	if (mm)
 932		mmdrop(mm);
 933	return 0;
 934}
 935
 936static const struct file_operations proc_mem_operations = {
 937	.llseek		= mem_lseek,
 938	.read		= mem_read,
 939	.write		= mem_write,
 940	.open		= mem_open,
 941	.release	= mem_release,
 942};
 943
 944static int environ_open(struct inode *inode, struct file *file)
 945{
 946	return __mem_open(inode, file, PTRACE_MODE_READ);
 947}
 948
 949static ssize_t environ_read(struct file *file, char __user *buf,
 950			size_t count, loff_t *ppos)
 951{
 
 952	char *page;
 953	unsigned long src = *ppos;
 954	int ret = 0;
 955	struct mm_struct *mm = file->private_data;
 956	unsigned long env_start, env_end;
 957
 958	/* Ensure the process spawned far enough to have an environment. */
 959	if (!mm || !mm->env_end)
 960		return 0;
 961
 
 962	page = (char *)__get_free_page(GFP_TEMPORARY);
 963	if (!page)
 964		return -ENOMEM;
 965
 966	ret = 0;
 967	if (!atomic_inc_not_zero(&mm->mm_users))
 968		goto free;
 969
 970	down_read(&mm->mmap_sem);
 971	env_start = mm->env_start;
 972	env_end = mm->env_end;
 973	up_read(&mm->mmap_sem);
 974
 
 975	while (count > 0) {
 976		size_t this_len, max_len;
 977		int retval;
 
 978
 979		if (src >= (env_end - env_start))
 980			break;
 981
 982		this_len = env_end - (env_start + src);
 
 983
 984		max_len = min_t(size_t, PAGE_SIZE, count);
 985		this_len = min(max_len, this_len);
 986
 987		retval = access_remote_vm(mm, (env_start + src),
 988			page, this_len, 0);
 989
 990		if (retval <= 0) {
 991			ret = retval;
 992			break;
 993		}
 994
 995		if (copy_to_user(buf, page, retval)) {
 996			ret = -EFAULT;
 997			break;
 998		}
 999
1000		ret += retval;
1001		src += retval;
1002		buf += retval;
1003		count -= retval;
1004	}
1005	*ppos = src;
 
1006	mmput(mm);
1007
1008free:
1009	free_page((unsigned long) page);
 
 
 
1010	return ret;
1011}
1012
1013static const struct file_operations proc_environ_operations = {
1014	.open		= environ_open,
1015	.read		= environ_read,
1016	.llseek		= generic_file_llseek,
1017	.release	= mem_release,
1018};
1019
1020static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1021			    loff_t *ppos)
1022{
1023	struct task_struct *task = get_proc_task(file_inode(file));
1024	char buffer[PROC_NUMBUF];
1025	int oom_adj = OOM_ADJUST_MIN;
1026	size_t len;
 
1027	unsigned long flags;
1028
1029	if (!task)
1030		return -ESRCH;
 
1031	if (lock_task_sighand(task, &flags)) {
1032		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1033			oom_adj = OOM_ADJUST_MAX;
1034		else
1035			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1036				  OOM_SCORE_ADJ_MAX;
1037		unlock_task_sighand(task, &flags);
1038	}
 
1039	put_task_struct(task);
1040	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
 
 
1041	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1042}
1043
1044/*
1045 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1046 * kernels.  The effective policy is defined by oom_score_adj, which has a
1047 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1048 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1049 * Processes that become oom disabled via oom_adj will still be oom disabled
1050 * with this implementation.
1051 *
1052 * oom_adj cannot be removed since existing userspace binaries use it.
1053 */
1054static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1055			     size_t count, loff_t *ppos)
1056{
1057	struct task_struct *task;
1058	char buffer[PROC_NUMBUF];
1059	int oom_adj;
1060	unsigned long flags;
1061	int err;
1062
1063	memset(buffer, 0, sizeof(buffer));
1064	if (count > sizeof(buffer) - 1)
1065		count = sizeof(buffer) - 1;
1066	if (copy_from_user(buffer, buf, count)) {
1067		err = -EFAULT;
1068		goto out;
1069	}
1070
1071	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1072	if (err)
1073		goto out;
1074	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1075	     oom_adj != OOM_DISABLE) {
1076		err = -EINVAL;
1077		goto out;
1078	}
1079
1080	task = get_proc_task(file_inode(file));
1081	if (!task) {
1082		err = -ESRCH;
1083		goto out;
1084	}
1085
1086	task_lock(task);
1087	if (!task->mm) {
1088		err = -EINVAL;
1089		goto err_task_lock;
1090	}
1091
1092	if (!lock_task_sighand(task, &flags)) {
1093		err = -ESRCH;
1094		goto err_task_lock;
1095	}
1096
1097	/*
1098	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1099	 * value is always attainable.
1100	 */
1101	if (oom_adj == OOM_ADJUST_MAX)
1102		oom_adj = OOM_SCORE_ADJ_MAX;
1103	else
1104		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1105
1106	if (oom_adj < task->signal->oom_score_adj &&
1107	    !capable(CAP_SYS_RESOURCE)) {
1108		err = -EACCES;
1109		goto err_sighand;
1110	}
1111
 
 
 
 
 
 
 
1112	/*
1113	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1114	 * /proc/pid/oom_score_adj instead.
1115	 */
1116	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1117		  current->comm, task_pid_nr(current), task_pid_nr(task),
1118		  task_pid_nr(task));
1119
1120	task->signal->oom_score_adj = oom_adj;
1121	trace_oom_score_adj_update(task);
 
 
 
 
 
 
 
1122err_sighand:
1123	unlock_task_sighand(task, &flags);
1124err_task_lock:
1125	task_unlock(task);
1126	put_task_struct(task);
1127out:
1128	return err < 0 ? err : count;
1129}
1130
1131static const struct file_operations proc_oom_adj_operations = {
1132	.read		= oom_adj_read,
1133	.write		= oom_adj_write,
1134	.llseek		= generic_file_llseek,
1135};
1136
1137static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1138					size_t count, loff_t *ppos)
1139{
1140	struct task_struct *task = get_proc_task(file_inode(file));
1141	char buffer[PROC_NUMBUF];
1142	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1143	unsigned long flags;
1144	size_t len;
1145
1146	if (!task)
1147		return -ESRCH;
1148	if (lock_task_sighand(task, &flags)) {
1149		oom_score_adj = task->signal->oom_score_adj;
1150		unlock_task_sighand(task, &flags);
1151	}
1152	put_task_struct(task);
1153	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1154	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1155}
1156
1157static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1158					size_t count, loff_t *ppos)
1159{
1160	struct task_struct *task;
1161	char buffer[PROC_NUMBUF];
1162	unsigned long flags;
1163	int oom_score_adj;
1164	int err;
1165
1166	memset(buffer, 0, sizeof(buffer));
1167	if (count > sizeof(buffer) - 1)
1168		count = sizeof(buffer) - 1;
1169	if (copy_from_user(buffer, buf, count)) {
1170		err = -EFAULT;
1171		goto out;
1172	}
1173
1174	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1175	if (err)
1176		goto out;
1177	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1178			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1179		err = -EINVAL;
1180		goto out;
1181	}
1182
1183	task = get_proc_task(file_inode(file));
1184	if (!task) {
1185		err = -ESRCH;
1186		goto out;
1187	}
1188
1189	task_lock(task);
1190	if (!task->mm) {
1191		err = -EINVAL;
1192		goto err_task_lock;
1193	}
1194
1195	if (!lock_task_sighand(task, &flags)) {
1196		err = -ESRCH;
1197		goto err_task_lock;
1198	}
1199
1200	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1201			!capable(CAP_SYS_RESOURCE)) {
1202		err = -EACCES;
1203		goto err_sighand;
1204	}
1205
1206	task->signal->oom_score_adj = (short)oom_score_adj;
 
 
 
 
 
 
1207	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1208		task->signal->oom_score_adj_min = (short)oom_score_adj;
1209	trace_oom_score_adj_update(task);
1210
 
 
 
 
 
 
 
1211err_sighand:
1212	unlock_task_sighand(task, &flags);
1213err_task_lock:
1214	task_unlock(task);
1215	put_task_struct(task);
1216out:
1217	return err < 0 ? err : count;
1218}
1219
1220static const struct file_operations proc_oom_score_adj_operations = {
1221	.read		= oom_score_adj_read,
1222	.write		= oom_score_adj_write,
1223	.llseek		= default_llseek,
1224};
1225
1226#ifdef CONFIG_AUDITSYSCALL
1227#define TMPBUFLEN 21
1228static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229				  size_t count, loff_t *ppos)
1230{
1231	struct inode * inode = file_inode(file);
1232	struct task_struct *task = get_proc_task(inode);
1233	ssize_t length;
1234	char tmpbuf[TMPBUFLEN];
1235
1236	if (!task)
1237		return -ESRCH;
1238	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239			   from_kuid(file->f_cred->user_ns,
1240				     audit_get_loginuid(task)));
1241	put_task_struct(task);
1242	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243}
1244
1245static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246				   size_t count, loff_t *ppos)
1247{
1248	struct inode * inode = file_inode(file);
 
 
1249	uid_t loginuid;
1250	kuid_t kloginuid;
1251	int rv;
 
1252
1253	rcu_read_lock();
1254	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255		rcu_read_unlock();
1256		return -EPERM;
1257	}
1258	rcu_read_unlock();
1259
 
 
 
1260	if (*ppos != 0) {
1261		/* No partial writes. */
1262		return -EINVAL;
1263	}
 
 
 
 
 
 
 
 
 
 
 
 
1264
1265	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266	if (rv < 0)
1267		return rv;
1268
1269	/* is userspace tring to explicitly UNSET the loginuid? */
1270	if (loginuid == AUDIT_UID_UNSET) {
1271		kloginuid = INVALID_UID;
1272	} else {
1273		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274		if (!uid_valid(kloginuid))
1275			return -EINVAL;
1276	}
1277
1278	rv = audit_set_loginuid(kloginuid);
1279	if (rv < 0)
1280		return rv;
1281	return count;
1282}
1283
1284static const struct file_operations proc_loginuid_operations = {
1285	.read		= proc_loginuid_read,
1286	.write		= proc_loginuid_write,
1287	.llseek		= generic_file_llseek,
1288};
1289
1290static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291				  size_t count, loff_t *ppos)
1292{
1293	struct inode * inode = file_inode(file);
1294	struct task_struct *task = get_proc_task(inode);
1295	ssize_t length;
1296	char tmpbuf[TMPBUFLEN];
1297
1298	if (!task)
1299		return -ESRCH;
1300	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301				audit_get_sessionid(task));
1302	put_task_struct(task);
1303	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304}
1305
1306static const struct file_operations proc_sessionid_operations = {
1307	.read		= proc_sessionid_read,
1308	.llseek		= generic_file_llseek,
1309};
1310#endif
1311
1312#ifdef CONFIG_FAULT_INJECTION
1313static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314				      size_t count, loff_t *ppos)
1315{
1316	struct task_struct *task = get_proc_task(file_inode(file));
1317	char buffer[PROC_NUMBUF];
1318	size_t len;
1319	int make_it_fail;
1320
1321	if (!task)
1322		return -ESRCH;
1323	make_it_fail = task->make_it_fail;
1324	put_task_struct(task);
1325
1326	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327
1328	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329}
1330
1331static ssize_t proc_fault_inject_write(struct file * file,
1332			const char __user * buf, size_t count, loff_t *ppos)
1333{
1334	struct task_struct *task;
1335	char buffer[PROC_NUMBUF];
1336	int make_it_fail;
1337	int rv;
1338
1339	if (!capable(CAP_SYS_RESOURCE))
1340		return -EPERM;
1341	memset(buffer, 0, sizeof(buffer));
1342	if (count > sizeof(buffer) - 1)
1343		count = sizeof(buffer) - 1;
1344	if (copy_from_user(buffer, buf, count))
1345		return -EFAULT;
1346	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347	if (rv < 0)
1348		return rv;
1349	if (make_it_fail < 0 || make_it_fail > 1)
1350		return -EINVAL;
1351
1352	task = get_proc_task(file_inode(file));
1353	if (!task)
1354		return -ESRCH;
1355	task->make_it_fail = make_it_fail;
1356	put_task_struct(task);
1357
1358	return count;
1359}
1360
1361static const struct file_operations proc_fault_inject_operations = {
1362	.read		= proc_fault_inject_read,
1363	.write		= proc_fault_inject_write,
1364	.llseek		= generic_file_llseek,
1365};
1366#endif
1367
1368
1369#ifdef CONFIG_SCHED_DEBUG
1370/*
1371 * Print out various scheduling related per-task fields:
1372 */
1373static int sched_show(struct seq_file *m, void *v)
1374{
1375	struct inode *inode = m->private;
1376	struct task_struct *p;
1377
1378	p = get_proc_task(inode);
1379	if (!p)
1380		return -ESRCH;
1381	proc_sched_show_task(p, m);
1382
1383	put_task_struct(p);
1384
1385	return 0;
1386}
1387
1388static ssize_t
1389sched_write(struct file *file, const char __user *buf,
1390	    size_t count, loff_t *offset)
1391{
1392	struct inode *inode = file_inode(file);
1393	struct task_struct *p;
1394
1395	p = get_proc_task(inode);
1396	if (!p)
1397		return -ESRCH;
1398	proc_sched_set_task(p);
1399
1400	put_task_struct(p);
1401
1402	return count;
1403}
1404
1405static int sched_open(struct inode *inode, struct file *filp)
1406{
1407	return single_open(filp, sched_show, inode);
1408}
1409
1410static const struct file_operations proc_pid_sched_operations = {
1411	.open		= sched_open,
1412	.read		= seq_read,
1413	.write		= sched_write,
1414	.llseek		= seq_lseek,
1415	.release	= single_release,
1416};
1417
1418#endif
1419
1420#ifdef CONFIG_SCHED_AUTOGROUP
1421/*
1422 * Print out autogroup related information:
1423 */
1424static int sched_autogroup_show(struct seq_file *m, void *v)
1425{
1426	struct inode *inode = m->private;
1427	struct task_struct *p;
1428
1429	p = get_proc_task(inode);
1430	if (!p)
1431		return -ESRCH;
1432	proc_sched_autogroup_show_task(p, m);
1433
1434	put_task_struct(p);
1435
1436	return 0;
1437}
1438
1439static ssize_t
1440sched_autogroup_write(struct file *file, const char __user *buf,
1441	    size_t count, loff_t *offset)
1442{
1443	struct inode *inode = file_inode(file);
1444	struct task_struct *p;
1445	char buffer[PROC_NUMBUF];
1446	int nice;
1447	int err;
1448
1449	memset(buffer, 0, sizeof(buffer));
1450	if (count > sizeof(buffer) - 1)
1451		count = sizeof(buffer) - 1;
1452	if (copy_from_user(buffer, buf, count))
1453		return -EFAULT;
1454
1455	err = kstrtoint(strstrip(buffer), 0, &nice);
1456	if (err < 0)
1457		return err;
1458
1459	p = get_proc_task(inode);
1460	if (!p)
1461		return -ESRCH;
1462
1463	err = proc_sched_autogroup_set_nice(p, nice);
 
1464	if (err)
1465		count = err;
1466
1467	put_task_struct(p);
1468
1469	return count;
1470}
1471
1472static int sched_autogroup_open(struct inode *inode, struct file *filp)
1473{
1474	int ret;
1475
1476	ret = single_open(filp, sched_autogroup_show, NULL);
1477	if (!ret) {
1478		struct seq_file *m = filp->private_data;
1479
1480		m->private = inode;
1481	}
1482	return ret;
1483}
1484
1485static const struct file_operations proc_pid_sched_autogroup_operations = {
1486	.open		= sched_autogroup_open,
1487	.read		= seq_read,
1488	.write		= sched_autogroup_write,
1489	.llseek		= seq_lseek,
1490	.release	= single_release,
1491};
1492
1493#endif /* CONFIG_SCHED_AUTOGROUP */
1494
1495static ssize_t comm_write(struct file *file, const char __user *buf,
1496				size_t count, loff_t *offset)
1497{
1498	struct inode *inode = file_inode(file);
1499	struct task_struct *p;
1500	char buffer[TASK_COMM_LEN];
1501	const size_t maxlen = sizeof(buffer) - 1;
1502
1503	memset(buffer, 0, sizeof(buffer));
1504	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
 
 
1505		return -EFAULT;
1506
1507	p = get_proc_task(inode);
1508	if (!p)
1509		return -ESRCH;
1510
1511	if (same_thread_group(current, p))
1512		set_task_comm(p, buffer);
1513	else
1514		count = -EINVAL;
1515
1516	put_task_struct(p);
1517
1518	return count;
1519}
1520
1521static int comm_show(struct seq_file *m, void *v)
1522{
1523	struct inode *inode = m->private;
1524	struct task_struct *p;
1525
1526	p = get_proc_task(inode);
1527	if (!p)
1528		return -ESRCH;
1529
1530	task_lock(p);
1531	seq_printf(m, "%s\n", p->comm);
1532	task_unlock(p);
1533
1534	put_task_struct(p);
1535
1536	return 0;
1537}
1538
1539static int comm_open(struct inode *inode, struct file *filp)
1540{
1541	return single_open(filp, comm_show, inode);
1542}
1543
1544static const struct file_operations proc_pid_set_comm_operations = {
1545	.open		= comm_open,
1546	.read		= seq_read,
1547	.write		= comm_write,
1548	.llseek		= seq_lseek,
1549	.release	= single_release,
1550};
1551
1552static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1553{
1554	struct task_struct *task;
1555	struct mm_struct *mm;
1556	struct file *exe_file;
1557
1558	task = get_proc_task(d_inode(dentry));
1559	if (!task)
1560		return -ENOENT;
1561	mm = get_task_mm(task);
1562	put_task_struct(task);
1563	if (!mm)
1564		return -ENOENT;
1565	exe_file = get_mm_exe_file(mm);
1566	mmput(mm);
1567	if (exe_file) {
1568		*exe_path = exe_file->f_path;
1569		path_get(&exe_file->f_path);
1570		fput(exe_file);
1571		return 0;
1572	} else
1573		return -ENOENT;
1574}
1575
1576static const char *proc_pid_get_link(struct dentry *dentry,
1577				     struct inode *inode,
1578				     struct delayed_call *done)
1579{
1580	struct path path;
1581	int error = -EACCES;
1582
1583	if (!dentry)
1584		return ERR_PTR(-ECHILD);
1585
1586	/* Are we allowed to snoop on the tasks file descriptors? */
1587	if (!proc_fd_access_allowed(inode))
1588		goto out;
1589
1590	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1591	if (error)
1592		goto out;
1593
1594	nd_jump_link(&path);
1595	return NULL;
1596out:
1597	return ERR_PTR(error);
1598}
1599
1600static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1601{
1602	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1603	char *pathname;
1604	int len;
1605
1606	if (!tmp)
1607		return -ENOMEM;
1608
1609	pathname = d_path(path, tmp, PAGE_SIZE);
1610	len = PTR_ERR(pathname);
1611	if (IS_ERR(pathname))
1612		goto out;
1613	len = tmp + PAGE_SIZE - 1 - pathname;
1614
1615	if (len > buflen)
1616		len = buflen;
1617	if (copy_to_user(buffer, pathname, len))
1618		len = -EFAULT;
1619 out:
1620	free_page((unsigned long)tmp);
1621	return len;
1622}
1623
1624static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1625{
1626	int error = -EACCES;
1627	struct inode *inode = d_inode(dentry);
1628	struct path path;
1629
1630	/* Are we allowed to snoop on the tasks file descriptors? */
1631	if (!proc_fd_access_allowed(inode))
1632		goto out;
1633
1634	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1635	if (error)
1636		goto out;
1637
1638	error = do_proc_readlink(&path, buffer, buflen);
1639	path_put(&path);
1640out:
1641	return error;
1642}
1643
1644const struct inode_operations proc_pid_link_inode_operations = {
1645	.readlink	= proc_pid_readlink,
1646	.get_link	= proc_pid_get_link,
1647	.setattr	= proc_setattr,
1648};
1649
1650
1651/* building an inode */
1652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1654{
1655	struct inode * inode;
1656	struct proc_inode *ei;
1657	const struct cred *cred;
1658
1659	/* We need a new inode */
1660
1661	inode = new_inode(sb);
1662	if (!inode)
1663		goto out;
1664
1665	/* Common stuff */
1666	ei = PROC_I(inode);
1667	inode->i_ino = get_next_ino();
1668	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1669	inode->i_op = &proc_def_inode_operations;
1670
1671	/*
1672	 * grab the reference to task.
1673	 */
1674	ei->pid = get_task_pid(task, PIDTYPE_PID);
1675	if (!ei->pid)
1676		goto out_unlock;
1677
1678	if (task_dumpable(task)) {
1679		rcu_read_lock();
1680		cred = __task_cred(task);
1681		inode->i_uid = cred->euid;
1682		inode->i_gid = cred->egid;
1683		rcu_read_unlock();
1684	}
1685	security_task_to_inode(task, inode);
1686
1687out:
1688	return inode;
1689
1690out_unlock:
1691	iput(inode);
1692	return NULL;
1693}
1694
1695int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1696{
1697	struct inode *inode = d_inode(dentry);
1698	struct task_struct *task;
1699	const struct cred *cred;
1700	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1701
1702	generic_fillattr(inode, stat);
1703
1704	rcu_read_lock();
1705	stat->uid = GLOBAL_ROOT_UID;
1706	stat->gid = GLOBAL_ROOT_GID;
1707	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1708	if (task) {
1709		if (!has_pid_permissions(pid, task, 2)) {
1710			rcu_read_unlock();
1711			/*
1712			 * This doesn't prevent learning whether PID exists,
1713			 * it only makes getattr() consistent with readdir().
1714			 */
1715			return -ENOENT;
1716		}
1717		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1718		    task_dumpable(task)) {
1719			cred = __task_cred(task);
1720			stat->uid = cred->euid;
1721			stat->gid = cred->egid;
1722		}
1723	}
1724	rcu_read_unlock();
1725	return 0;
1726}
1727
1728/* dentry stuff */
1729
1730/*
1731 *	Exceptional case: normally we are not allowed to unhash a busy
1732 * directory. In this case, however, we can do it - no aliasing problems
1733 * due to the way we treat inodes.
1734 *
1735 * Rewrite the inode's ownerships here because the owning task may have
1736 * performed a setuid(), etc.
1737 *
1738 * Before the /proc/pid/status file was created the only way to read
1739 * the effective uid of a /process was to stat /proc/pid.  Reading
1740 * /proc/pid/status is slow enough that procps and other packages
1741 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1742 * made this apply to all per process world readable and executable
1743 * directories.
1744 */
1745int pid_revalidate(struct dentry *dentry, unsigned int flags)
1746{
1747	struct inode *inode;
1748	struct task_struct *task;
1749	const struct cred *cred;
1750
1751	if (flags & LOOKUP_RCU)
1752		return -ECHILD;
1753
1754	inode = d_inode(dentry);
1755	task = get_proc_task(inode);
1756
1757	if (task) {
1758		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1759		    task_dumpable(task)) {
1760			rcu_read_lock();
1761			cred = __task_cred(task);
1762			inode->i_uid = cred->euid;
1763			inode->i_gid = cred->egid;
1764			rcu_read_unlock();
1765		} else {
1766			inode->i_uid = GLOBAL_ROOT_UID;
1767			inode->i_gid = GLOBAL_ROOT_GID;
1768		}
1769		inode->i_mode &= ~(S_ISUID | S_ISGID);
1770		security_task_to_inode(task, inode);
1771		put_task_struct(task);
1772		return 1;
1773	}
 
1774	return 0;
1775}
1776
1777static inline bool proc_inode_is_dead(struct inode *inode)
1778{
1779	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1780}
1781
1782int pid_delete_dentry(const struct dentry *dentry)
1783{
1784	/* Is the task we represent dead?
1785	 * If so, then don't put the dentry on the lru list,
1786	 * kill it immediately.
1787	 */
1788	return proc_inode_is_dead(d_inode(dentry));
1789}
1790
1791const struct dentry_operations pid_dentry_operations =
1792{
1793	.d_revalidate	= pid_revalidate,
1794	.d_delete	= pid_delete_dentry,
1795};
1796
1797/* Lookups */
1798
1799/*
1800 * Fill a directory entry.
1801 *
1802 * If possible create the dcache entry and derive our inode number and
1803 * file type from dcache entry.
1804 *
1805 * Since all of the proc inode numbers are dynamically generated, the inode
1806 * numbers do not exist until the inode is cache.  This means creating the
1807 * the dcache entry in readdir is necessary to keep the inode numbers
1808 * reported by readdir in sync with the inode numbers reported
1809 * by stat.
1810 */
1811bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1812	const char *name, int len,
1813	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1814{
1815	struct dentry *child, *dir = file->f_path.dentry;
1816	struct qstr qname = QSTR_INIT(name, len);
1817	struct inode *inode;
1818	unsigned type;
1819	ino_t ino;
 
 
 
 
 
1820
1821	child = d_hash_and_lookup(dir, &qname);
1822	if (!child) {
1823		child = d_alloc(dir, &qname);
1824		if (!child)
1825			goto end_instantiate;
1826		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1827			dput(child);
1828			goto end_instantiate;
1829		}
 
 
 
 
 
 
 
 
 
1830	}
1831	inode = d_inode(child);
1832	ino = inode->i_ino;
1833	type = inode->i_mode >> 12;
1834	dput(child);
1835	return dir_emit(ctx, name, len, ino, type);
1836
1837end_instantiate:
1838	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839}
1840
1841/*
1842 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1843 * which represent vma start and end addresses.
1844 */
1845static int dname_to_vma_addr(struct dentry *dentry,
1846			     unsigned long *start, unsigned long *end)
1847{
1848	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1849		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850
1851	return 0;
 
 
1852}
1853
1854static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1855{
1856	unsigned long vm_start, vm_end;
1857	bool exact_vma_exists = false;
1858	struct mm_struct *mm = NULL;
1859	struct task_struct *task;
 
 
1860	const struct cred *cred;
1861	struct inode *inode;
1862	int status = 0;
1863
1864	if (flags & LOOKUP_RCU)
1865		return -ECHILD;
1866
1867	inode = d_inode(dentry);
1868	task = get_proc_task(inode);
1869	if (!task)
1870		goto out_notask;
1871
1872	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1873	if (IS_ERR_OR_NULL(mm))
1874		goto out;
1875
1876	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1877		down_read(&mm->mmap_sem);
1878		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1879		up_read(&mm->mmap_sem);
1880	}
1881
1882	mmput(mm);
1883
1884	if (exact_vma_exists) {
1885		if (task_dumpable(task)) {
1886			rcu_read_lock();
1887			cred = __task_cred(task);
1888			inode->i_uid = cred->euid;
1889			inode->i_gid = cred->egid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890			rcu_read_unlock();
1891		} else {
1892			inode->i_uid = GLOBAL_ROOT_UID;
1893			inode->i_gid = GLOBAL_ROOT_GID;
1894		}
1895		security_task_to_inode(task, inode);
1896		status = 1;
1897	}
1898
1899out:
1900	put_task_struct(task);
1901
1902out_notask:
1903	return status;
1904}
1905
1906static const struct dentry_operations tid_map_files_dentry_operations = {
1907	.d_revalidate	= map_files_d_revalidate,
 
1908	.d_delete	= pid_delete_dentry,
1909};
1910
1911static int map_files_get_link(struct dentry *dentry, struct path *path)
1912{
1913	unsigned long vm_start, vm_end;
1914	struct vm_area_struct *vma;
1915	struct task_struct *task;
1916	struct mm_struct *mm;
1917	int rc;
1918
1919	rc = -ENOENT;
1920	task = get_proc_task(d_inode(dentry));
1921	if (!task)
1922		goto out;
1923
1924	mm = get_task_mm(task);
1925	put_task_struct(task);
1926	if (!mm)
1927		goto out;
1928
1929	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1930	if (rc)
1931		goto out_mmput;
1932
1933	rc = -ENOENT;
1934	down_read(&mm->mmap_sem);
1935	vma = find_exact_vma(mm, vm_start, vm_end);
1936	if (vma && vma->vm_file) {
1937		*path = vma->vm_file->f_path;
1938		path_get(path);
1939		rc = 0;
1940	}
1941	up_read(&mm->mmap_sem);
1942
1943out_mmput:
1944	mmput(mm);
1945out:
1946	return rc;
1947}
1948
1949struct map_files_info {
1950	fmode_t		mode;
1951	unsigned long	len;
1952	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1953};
1954
1955/*
1956 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1957 * symlinks may be used to bypass permissions on ancestor directories in the
1958 * path to the file in question.
1959 */
1960static const char *
1961proc_map_files_get_link(struct dentry *dentry,
1962			struct inode *inode,
1963		        struct delayed_call *done)
1964{
1965	if (!capable(CAP_SYS_ADMIN))
1966		return ERR_PTR(-EPERM);
1967
1968	return proc_pid_get_link(dentry, inode, done);
1969}
1970
1971/*
1972 * Identical to proc_pid_link_inode_operations except for get_link()
1973 */
1974static const struct inode_operations proc_map_files_link_inode_operations = {
1975	.readlink	= proc_pid_readlink,
1976	.get_link	= proc_map_files_get_link,
1977	.setattr	= proc_setattr,
1978};
1979
1980static int
1981proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1982			   struct task_struct *task, const void *ptr)
1983{
1984	fmode_t mode = (fmode_t)(unsigned long)ptr;
1985	struct proc_inode *ei;
1986	struct inode *inode;
1987
1988	inode = proc_pid_make_inode(dir->i_sb, task);
1989	if (!inode)
1990		return -ENOENT;
1991
1992	ei = PROC_I(inode);
1993	ei->op.proc_get_link = map_files_get_link;
1994
1995	inode->i_op = &proc_map_files_link_inode_operations;
1996	inode->i_size = 64;
1997	inode->i_mode = S_IFLNK;
1998
1999	if (mode & FMODE_READ)
2000		inode->i_mode |= S_IRUSR;
2001	if (mode & FMODE_WRITE)
2002		inode->i_mode |= S_IWUSR;
 
 
 
 
 
 
 
 
 
 
2003
2004	d_set_d_op(dentry, &tid_map_files_dentry_operations);
 
 
 
2005	d_add(dentry, inode);
 
 
 
2006
2007	return 0;
 
 
 
 
 
 
 
2008}
2009
2010static struct dentry *proc_map_files_lookup(struct inode *dir,
2011		struct dentry *dentry, unsigned int flags)
 
2012{
2013	unsigned long vm_start, vm_end;
2014	struct vm_area_struct *vma;
2015	struct task_struct *task;
2016	int result;
2017	struct mm_struct *mm;
2018
2019	result = -ENOENT;
2020	task = get_proc_task(dir);
2021	if (!task)
 
 
2022		goto out;
2023
2024	result = -EACCES;
2025	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2026		goto out_put_task;
2027
2028	result = -ENOENT;
2029	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2030		goto out_put_task;
2031
2032	mm = get_task_mm(task);
2033	if (!mm)
2034		goto out_put_task;
2035
2036	down_read(&mm->mmap_sem);
2037	vma = find_exact_vma(mm, vm_start, vm_end);
2038	if (!vma)
2039		goto out_no_vma;
2040
2041	if (vma->vm_file)
2042		result = proc_map_files_instantiate(dir, dentry, task,
2043				(void *)(unsigned long)vma->vm_file->f_mode);
2044
2045out_no_vma:
2046	up_read(&mm->mmap_sem);
2047	mmput(mm);
2048out_put_task:
2049	put_task_struct(task);
2050out:
2051	return ERR_PTR(result);
2052}
2053
2054static const struct inode_operations proc_map_files_inode_operations = {
2055	.lookup		= proc_map_files_lookup,
2056	.permission	= proc_fd_permission,
2057	.setattr	= proc_setattr,
2058};
2059
2060static int
2061proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2062{
2063	struct vm_area_struct *vma;
2064	struct task_struct *task;
2065	struct mm_struct *mm;
2066	unsigned long nr_files, pos, i;
2067	struct flex_array *fa = NULL;
2068	struct map_files_info info;
2069	struct map_files_info *p;
2070	int ret;
2071
2072	ret = -ENOENT;
2073	task = get_proc_task(file_inode(file));
2074	if (!task)
2075		goto out;
2076
2077	ret = -EACCES;
2078	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2079		goto out_put_task;
2080
2081	ret = 0;
2082	if (!dir_emit_dots(file, ctx))
2083		goto out_put_task;
2084
2085	mm = get_task_mm(task);
2086	if (!mm)
2087		goto out_put_task;
2088	down_read(&mm->mmap_sem);
2089
2090	nr_files = 0;
2091
2092	/*
2093	 * We need two passes here:
2094	 *
2095	 *  1) Collect vmas of mapped files with mmap_sem taken
2096	 *  2) Release mmap_sem and instantiate entries
2097	 *
2098	 * otherwise we get lockdep complained, since filldir()
2099	 * routine might require mmap_sem taken in might_fault().
2100	 */
2101
2102	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2103		if (vma->vm_file && ++pos > ctx->pos)
2104			nr_files++;
2105	}
2106
2107	if (nr_files) {
2108		fa = flex_array_alloc(sizeof(info), nr_files,
2109					GFP_KERNEL);
2110		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2111						GFP_KERNEL)) {
2112			ret = -ENOMEM;
2113			if (fa)
2114				flex_array_free(fa);
2115			up_read(&mm->mmap_sem);
2116			mmput(mm);
2117			goto out_put_task;
2118		}
2119		for (i = 0, vma = mm->mmap, pos = 2; vma;
2120				vma = vma->vm_next) {
2121			if (!vma->vm_file)
2122				continue;
2123			if (++pos <= ctx->pos)
2124				continue;
2125
2126			info.mode = vma->vm_file->f_mode;
2127			info.len = snprintf(info.name,
2128					sizeof(info.name), "%lx-%lx",
2129					vma->vm_start, vma->vm_end);
2130			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2131				BUG();
2132		}
2133	}
2134	up_read(&mm->mmap_sem);
2135
2136	for (i = 0; i < nr_files; i++) {
2137		p = flex_array_get(fa, i);
2138		if (!proc_fill_cache(file, ctx,
2139				      p->name, p->len,
2140				      proc_map_files_instantiate,
2141				      task,
2142				      (void *)(unsigned long)p->mode))
2143			break;
2144		ctx->pos++;
2145	}
2146	if (fa)
2147		flex_array_free(fa);
2148	mmput(mm);
2149
2150out_put_task:
2151	put_task_struct(task);
2152out:
2153	return ret;
 
 
2154}
2155
2156static const struct file_operations proc_map_files_operations = {
2157	.read		= generic_read_dir,
2158	.iterate	= proc_map_files_readdir,
2159	.llseek		= default_llseek,
2160};
2161
2162#ifdef CONFIG_CHECKPOINT_RESTORE
2163struct timers_private {
2164	struct pid *pid;
2165	struct task_struct *task;
2166	struct sighand_struct *sighand;
2167	struct pid_namespace *ns;
2168	unsigned long flags;
2169};
2170
2171static void *timers_start(struct seq_file *m, loff_t *pos)
2172{
2173	struct timers_private *tp = m->private;
2174
2175	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2176	if (!tp->task)
2177		return ERR_PTR(-ESRCH);
2178
2179	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2180	if (!tp->sighand)
2181		return ERR_PTR(-ESRCH);
2182
2183	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2184}
2185
2186static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2187{
2188	struct timers_private *tp = m->private;
2189	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2190}
2191
2192static void timers_stop(struct seq_file *m, void *v)
 
2193{
2194	struct timers_private *tp = m->private;
2195
2196	if (tp->sighand) {
2197		unlock_task_sighand(tp->task, &tp->flags);
2198		tp->sighand = NULL;
2199	}
2200
2201	if (tp->task) {
2202		put_task_struct(tp->task);
2203		tp->task = NULL;
2204	}
2205}
2206
2207static int show_timer(struct seq_file *m, void *v)
2208{
2209	struct k_itimer *timer;
2210	struct timers_private *tp = m->private;
2211	int notify;
2212	static const char * const nstr[] = {
2213		[SIGEV_SIGNAL] = "signal",
2214		[SIGEV_NONE] = "none",
2215		[SIGEV_THREAD] = "thread",
2216	};
2217
2218	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2219	notify = timer->it_sigev_notify;
2220
2221	seq_printf(m, "ID: %d\n", timer->it_id);
2222	seq_printf(m, "signal: %d/%p\n",
2223		   timer->sigq->info.si_signo,
2224		   timer->sigq->info.si_value.sival_ptr);
2225	seq_printf(m, "notify: %s/%s.%d\n",
2226		   nstr[notify & ~SIGEV_THREAD_ID],
2227		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2228		   pid_nr_ns(timer->it_pid, tp->ns));
2229	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2230
2231	return 0;
2232}
2233
2234static const struct seq_operations proc_timers_seq_ops = {
2235	.start	= timers_start,
2236	.next	= timers_next,
2237	.stop	= timers_stop,
2238	.show	= show_timer,
2239};
2240
2241static int proc_timers_open(struct inode *inode, struct file *file)
 
 
 
 
2242{
2243	struct timers_private *tp;
2244
2245	tp = __seq_open_private(file, &proc_timers_seq_ops,
2246			sizeof(struct timers_private));
2247	if (!tp)
2248		return -ENOMEM;
2249
2250	tp->pid = proc_pid(inode);
2251	tp->ns = inode->i_sb->s_fs_info;
2252	return 0;
2253}
2254
2255static const struct file_operations proc_timers_operations = {
2256	.open		= proc_timers_open,
2257	.read		= seq_read,
2258	.llseek		= seq_lseek,
2259	.release	= seq_release_private,
 
 
2260};
2261#endif
2262
2263static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2264					size_t count, loff_t *offset)
2265{
2266	struct inode *inode = file_inode(file);
2267	struct task_struct *p;
2268	u64 slack_ns;
2269	int err;
2270
2271	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2272	if (err < 0)
2273		return err;
 
 
 
 
 
 
 
 
 
2274
2275	p = get_proc_task(inode);
2276	if (!p)
2277		return -ESRCH;
2278
2279	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2280		task_lock(p);
2281		if (slack_ns == 0)
2282			p->timer_slack_ns = p->default_timer_slack_ns;
2283		else
2284			p->timer_slack_ns = slack_ns;
2285		task_unlock(p);
2286	} else
2287		count = -EPERM;
2288
2289	put_task_struct(p);
2290
2291	return count;
2292}
2293
2294static int timerslack_ns_show(struct seq_file *m, void *v)
 
 
2295{
2296	struct inode *inode = m->private;
2297	struct task_struct *p;
2298	int err =  0;
2299
2300	p = get_proc_task(inode);
2301	if (!p)
2302		return -ESRCH;
2303
2304	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2305		task_lock(p);
2306		seq_printf(m, "%llu\n", p->timer_slack_ns);
2307		task_unlock(p);
2308	} else
2309		err = -EPERM;
2310
2311	put_task_struct(p);
2312
2313	return err;
2314}
2315
2316static int timerslack_ns_open(struct inode *inode, struct file *filp)
2317{
2318	return single_open(filp, timerslack_ns_show, inode);
 
2319}
2320
2321static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2322	.open		= timerslack_ns_open,
2323	.read		= seq_read,
2324	.write		= timerslack_ns_write,
2325	.llseek		= seq_lseek,
2326	.release	= single_release,
 
 
 
 
 
 
2327};
2328
2329static int proc_pident_instantiate(struct inode *dir,
 
2330	struct dentry *dentry, struct task_struct *task, const void *ptr)
2331{
2332	const struct pid_entry *p = ptr;
2333	struct inode *inode;
2334	struct proc_inode *ei;
 
2335
2336	inode = proc_pid_make_inode(dir->i_sb, task);
2337	if (!inode)
2338		goto out;
2339
2340	ei = PROC_I(inode);
2341	inode->i_mode = p->mode;
2342	if (S_ISDIR(inode->i_mode))
2343		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2344	if (p->iop)
2345		inode->i_op = p->iop;
2346	if (p->fop)
2347		inode->i_fop = p->fop;
2348	ei->op = p->op;
2349	d_set_d_op(dentry, &pid_dentry_operations);
2350	d_add(dentry, inode);
2351	/* Close the race of the process dying before we return the dentry */
2352	if (pid_revalidate(dentry, 0))
2353		return 0;
2354out:
2355	return -ENOENT;
2356}
2357
2358static struct dentry *proc_pident_lookup(struct inode *dir, 
2359					 struct dentry *dentry,
2360					 const struct pid_entry *ents,
2361					 unsigned int nents)
2362{
2363	int error;
2364	struct task_struct *task = get_proc_task(dir);
2365	const struct pid_entry *p, *last;
2366
2367	error = -ENOENT;
2368
2369	if (!task)
2370		goto out_no_task;
2371
2372	/*
2373	 * Yes, it does not scale. And it should not. Don't add
2374	 * new entries into /proc/<tgid>/ without very good reasons.
2375	 */
2376	last = &ents[nents - 1];
2377	for (p = ents; p <= last; p++) {
2378		if (p->len != dentry->d_name.len)
2379			continue;
2380		if (!memcmp(dentry->d_name.name, p->name, p->len))
2381			break;
2382	}
2383	if (p > last)
2384		goto out;
2385
2386	error = proc_pident_instantiate(dir, dentry, task, p);
2387out:
2388	put_task_struct(task);
2389out_no_task:
2390	return ERR_PTR(error);
 
 
 
 
 
 
 
2391}
2392
2393static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
 
2394		const struct pid_entry *ents, unsigned int nents)
2395{
2396	struct task_struct *task = get_proc_task(file_inode(file));
2397	const struct pid_entry *p;
 
 
 
 
 
2398
 
2399	if (!task)
2400		return -ENOENT;
2401
2402	if (!dir_emit_dots(file, ctx))
2403		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404
2405	if (ctx->pos >= nents + 2)
2406		goto out;
2407
2408	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2409		if (!proc_fill_cache(file, ctx, p->name, p->len,
2410				proc_pident_instantiate, task, p))
2411			break;
2412		ctx->pos++;
2413	}
2414out:
2415	put_task_struct(task);
2416	return 0;
 
2417}
2418
2419#ifdef CONFIG_SECURITY
2420static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2421				  size_t count, loff_t *ppos)
2422{
2423	struct inode * inode = file_inode(file);
2424	char *p = NULL;
2425	ssize_t length;
2426	struct task_struct *task = get_proc_task(inode);
2427
2428	if (!task)
2429		return -ESRCH;
2430
2431	length = security_getprocattr(task,
2432				      (char*)file->f_path.dentry->d_name.name,
2433				      &p);
2434	put_task_struct(task);
2435	if (length > 0)
2436		length = simple_read_from_buffer(buf, count, ppos, p, length);
2437	kfree(p);
2438	return length;
2439}
2440
2441static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2442				   size_t count, loff_t *ppos)
2443{
2444	struct inode * inode = file_inode(file);
2445	void *page;
2446	ssize_t length;
2447	struct task_struct *task = get_proc_task(inode);
2448
2449	length = -ESRCH;
2450	if (!task)
2451		goto out_no_task;
2452	if (count > PAGE_SIZE)
2453		count = PAGE_SIZE;
2454
2455	/* No partial writes. */
2456	length = -EINVAL;
2457	if (*ppos != 0)
2458		goto out;
2459
2460	page = memdup_user(buf, count);
2461	if (IS_ERR(page)) {
2462		length = PTR_ERR(page);
2463		goto out;
2464	}
 
 
 
2465
2466	/* Guard against adverse ptrace interaction */
2467	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2468	if (length < 0)
2469		goto out_free;
2470
2471	length = security_setprocattr(task,
2472				      (char*)file->f_path.dentry->d_name.name,
2473				      page, count);
2474	mutex_unlock(&task->signal->cred_guard_mutex);
2475out_free:
2476	kfree(page);
2477out:
2478	put_task_struct(task);
2479out_no_task:
2480	return length;
2481}
2482
2483static const struct file_operations proc_pid_attr_operations = {
2484	.read		= proc_pid_attr_read,
2485	.write		= proc_pid_attr_write,
2486	.llseek		= generic_file_llseek,
2487};
2488
2489static const struct pid_entry attr_dir_stuff[] = {
2490	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2491	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2492	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2493	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2494	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2495	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2496};
2497
2498static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
 
2499{
2500	return proc_pident_readdir(file, ctx, 
2501				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2502}
2503
2504static const struct file_operations proc_attr_dir_operations = {
2505	.read		= generic_read_dir,
2506	.iterate	= proc_attr_dir_readdir,
2507	.llseek		= default_llseek,
2508};
2509
2510static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2511				struct dentry *dentry, unsigned int flags)
2512{
2513	return proc_pident_lookup(dir, dentry,
2514				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2515}
2516
2517static const struct inode_operations proc_attr_dir_inode_operations = {
2518	.lookup		= proc_attr_dir_lookup,
2519	.getattr	= pid_getattr,
2520	.setattr	= proc_setattr,
2521};
2522
2523#endif
2524
2525#ifdef CONFIG_ELF_CORE
2526static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2527					 size_t count, loff_t *ppos)
2528{
2529	struct task_struct *task = get_proc_task(file_inode(file));
2530	struct mm_struct *mm;
2531	char buffer[PROC_NUMBUF];
2532	size_t len;
2533	int ret;
2534
2535	if (!task)
2536		return -ESRCH;
2537
2538	ret = 0;
2539	mm = get_task_mm(task);
2540	if (mm) {
2541		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2542			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2543				MMF_DUMP_FILTER_SHIFT));
2544		mmput(mm);
2545		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2546	}
2547
2548	put_task_struct(task);
2549
2550	return ret;
2551}
2552
2553static ssize_t proc_coredump_filter_write(struct file *file,
2554					  const char __user *buf,
2555					  size_t count,
2556					  loff_t *ppos)
2557{
2558	struct task_struct *task;
2559	struct mm_struct *mm;
 
2560	unsigned int val;
2561	int ret;
2562	int i;
2563	unsigned long mask;
2564
2565	ret = kstrtouint_from_user(buf, count, 0, &val);
2566	if (ret < 0)
2567		return ret;
 
 
 
 
 
 
 
 
 
 
2568
2569	ret = -ESRCH;
2570	task = get_proc_task(file_inode(file));
2571	if (!task)
2572		goto out_no_task;
2573
 
2574	mm = get_task_mm(task);
2575	if (!mm)
2576		goto out_no_mm;
2577	ret = 0;
2578
2579	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2580		if (val & mask)
2581			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2582		else
2583			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2584	}
2585
2586	mmput(mm);
2587 out_no_mm:
2588	put_task_struct(task);
2589 out_no_task:
2590	if (ret < 0)
2591		return ret;
2592	return count;
2593}
2594
2595static const struct file_operations proc_coredump_filter_operations = {
2596	.read		= proc_coredump_filter_read,
2597	.write		= proc_coredump_filter_write,
2598	.llseek		= generic_file_llseek,
2599};
2600#endif
2601
2602#ifdef CONFIG_TASK_IO_ACCOUNTING
2603static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
 
 
 
2604{
2605	struct task_io_accounting acct = task->ioac;
2606	unsigned long flags;
2607	int result;
 
 
 
 
 
2608
2609	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2610	if (result)
2611		return result;
2612
2613	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2614		result = -EACCES;
2615		goto out_unlock;
 
 
 
 
2616	}
2617
2618	if (whole && lock_task_sighand(task, &flags)) {
2619		struct task_struct *t = task;
2620
2621		task_io_accounting_add(&acct, &task->signal->ioac);
2622		while_each_thread(task, t)
2623			task_io_accounting_add(&acct, &t->ioac);
2624
2625		unlock_task_sighand(task, &flags);
2626	}
2627	seq_printf(m,
2628		   "rchar: %llu\n"
2629		   "wchar: %llu\n"
2630		   "syscr: %llu\n"
2631		   "syscw: %llu\n"
2632		   "read_bytes: %llu\n"
2633		   "write_bytes: %llu\n"
2634		   "cancelled_write_bytes: %llu\n",
2635		   (unsigned long long)acct.rchar,
2636		   (unsigned long long)acct.wchar,
2637		   (unsigned long long)acct.syscr,
2638		   (unsigned long long)acct.syscw,
2639		   (unsigned long long)acct.read_bytes,
2640		   (unsigned long long)acct.write_bytes,
2641		   (unsigned long long)acct.cancelled_write_bytes);
2642	result = 0;
2643
2644out_unlock:
2645	mutex_unlock(&task->signal->cred_guard_mutex);
2646	return result;
2647}
2648
2649static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2650				  struct pid *pid, struct task_struct *task)
2651{
2652	return do_io_accounting(task, m, 0);
 
 
2653}
2654
2655static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2656				   struct pid *pid, struct task_struct *task)
2657{
2658	return do_io_accounting(task, m, 1);
2659}
2660#endif /* CONFIG_TASK_IO_ACCOUNTING */
 
 
 
 
 
 
 
 
 
 
 
2661
2662#ifdef CONFIG_USER_NS
2663static int proc_id_map_open(struct inode *inode, struct file *file,
2664	const struct seq_operations *seq_ops)
2665{
2666	struct user_namespace *ns = NULL;
2667	struct task_struct *task;
2668	struct seq_file *seq;
2669	int ret = -EINVAL;
2670
2671	task = get_proc_task(inode);
2672	if (task) {
2673		rcu_read_lock();
2674		ns = get_user_ns(task_cred_xxx(task, user_ns));
2675		rcu_read_unlock();
2676		put_task_struct(task);
2677	}
2678	if (!ns)
2679		goto err;
2680
2681	ret = seq_open(file, seq_ops);
2682	if (ret)
2683		goto err_put_ns;
 
2684
2685	seq = file->private_data;
2686	seq->private = ns;
 
 
 
 
2687
2688	return 0;
2689err_put_ns:
2690	put_user_ns(ns);
2691err:
2692	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
2693}
2694
2695static int proc_id_map_release(struct inode *inode, struct file *file)
2696{
2697	struct seq_file *seq = file->private_data;
2698	struct user_namespace *ns = seq->private;
2699	put_user_ns(ns);
2700	return seq_release(inode, file);
2701}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702
2703static int proc_uid_map_open(struct inode *inode, struct file *file)
2704{
2705	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
 
2706}
2707
2708static int proc_gid_map_open(struct inode *inode, struct file *file)
 
2709{
2710	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
 
2711}
2712
2713static int proc_projid_map_open(struct inode *inode, struct file *file)
 
2714{
2715	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2716}
 
2717
2718static const struct file_operations proc_uid_map_operations = {
2719	.open		= proc_uid_map_open,
2720	.write		= proc_uid_map_write,
2721	.read		= seq_read,
2722	.llseek		= seq_lseek,
2723	.release	= proc_id_map_release,
2724};
2725
2726static const struct file_operations proc_gid_map_operations = {
2727	.open		= proc_gid_map_open,
2728	.write		= proc_gid_map_write,
2729	.read		= seq_read,
2730	.llseek		= seq_lseek,
2731	.release	= proc_id_map_release,
2732};
2733
2734static const struct file_operations proc_projid_map_operations = {
2735	.open		= proc_projid_map_open,
2736	.write		= proc_projid_map_write,
2737	.read		= seq_read,
2738	.llseek		= seq_lseek,
2739	.release	= proc_id_map_release,
2740};
2741
2742static int proc_setgroups_open(struct inode *inode, struct file *file)
2743{
2744	struct user_namespace *ns = NULL;
2745	struct task_struct *task;
2746	int ret;
2747
2748	ret = -ESRCH;
2749	task = get_proc_task(inode);
2750	if (task) {
2751		rcu_read_lock();
2752		ns = get_user_ns(task_cred_xxx(task, user_ns));
2753		rcu_read_unlock();
2754		put_task_struct(task);
2755	}
2756	if (!ns)
2757		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758
2759	if (file->f_mode & FMODE_WRITE) {
2760		ret = -EACCES;
2761		if (!ns_capable(ns, CAP_SYS_ADMIN))
2762			goto err_put_ns;
2763	}
2764
2765	ret = single_open(file, &proc_setgroups_show, ns);
2766	if (ret)
2767		goto err_put_ns;
2768
2769	return 0;
2770err_put_ns:
2771	put_user_ns(ns);
2772err:
2773	return ret;
2774}
2775
2776static int proc_setgroups_release(struct inode *inode, struct file *file)
2777{
2778	struct seq_file *seq = file->private_data;
2779	struct user_namespace *ns = seq->private;
2780	int ret = single_release(inode, file);
2781	put_user_ns(ns);
2782	return ret;
2783}
2784
2785static const struct file_operations proc_setgroups_operations = {
2786	.open		= proc_setgroups_open,
2787	.write		= proc_setgroups_write,
2788	.read		= seq_read,
2789	.llseek		= seq_lseek,
2790	.release	= proc_setgroups_release,
2791};
2792#endif /* CONFIG_USER_NS */
2793
2794static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2795				struct pid *pid, struct task_struct *task)
2796{
2797	int err = lock_trace(task);
2798	if (!err) {
2799		seq_printf(m, "%08x\n", task->personality);
2800		unlock_trace(task);
2801	}
2802	return err;
2803}
2804
2805/*
2806 * Thread groups
2807 */
2808static const struct file_operations proc_task_operations;
2809static const struct inode_operations proc_task_inode_operations;
2810
2811static const struct pid_entry tgid_base_stuff[] = {
2812	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2813	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2814	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2815	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2816	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2817#ifdef CONFIG_NET
2818	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2819#endif
2820	REG("environ",    S_IRUSR, proc_environ_operations),
2821	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2822	ONE("status",     S_IRUGO, proc_pid_status),
2823	ONE("personality", S_IRUSR, proc_pid_personality),
2824	ONE("limits",	  S_IRUGO, proc_pid_limits),
2825#ifdef CONFIG_SCHED_DEBUG
2826	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2827#endif
2828#ifdef CONFIG_SCHED_AUTOGROUP
2829	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2830#endif
2831	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2832#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2833	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2834#endif
2835	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2836	ONE("stat",       S_IRUGO, proc_tgid_stat),
2837	ONE("statm",      S_IRUGO, proc_pid_statm),
2838	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2839#ifdef CONFIG_NUMA
2840	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2841#endif
2842	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2843	LNK("cwd",        proc_cwd_link),
2844	LNK("root",       proc_root_link),
2845	LNK("exe",        proc_exe_link),
2846	REG("mounts",     S_IRUGO, proc_mounts_operations),
2847	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2848	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2849#ifdef CONFIG_PROC_PAGE_MONITOR
2850	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2851	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2852	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2853#endif
2854#ifdef CONFIG_SECURITY
2855	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2856#endif
2857#ifdef CONFIG_KALLSYMS
2858	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2859#endif
2860#ifdef CONFIG_STACKTRACE
2861	ONE("stack",      S_IRUSR, proc_pid_stack),
2862#endif
2863#ifdef CONFIG_SCHED_INFO
2864	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2865#endif
2866#ifdef CONFIG_LATENCYTOP
2867	REG("latency",  S_IRUGO, proc_lstats_operations),
2868#endif
2869#ifdef CONFIG_PROC_PID_CPUSET
2870	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2871#endif
2872#ifdef CONFIG_CGROUPS
2873	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2874#endif
2875	ONE("oom_score",  S_IRUGO, proc_oom_score),
2876	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2877	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2878#ifdef CONFIG_AUDITSYSCALL
2879	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2880	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2881#endif
2882#ifdef CONFIG_FAULT_INJECTION
2883	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2884#endif
2885#ifdef CONFIG_ELF_CORE
2886	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2887#endif
2888#ifdef CONFIG_TASK_IO_ACCOUNTING
2889	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2890#endif
2891#ifdef CONFIG_HARDWALL
2892	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2893#endif
2894#ifdef CONFIG_USER_NS
2895	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2896	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2897	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2898	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2899#endif
2900#ifdef CONFIG_CHECKPOINT_RESTORE
2901	REG("timers",	  S_IRUGO, proc_timers_operations),
2902#endif
2903	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2904};
2905
2906static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
 
2907{
2908	return proc_pident_readdir(file, ctx,
2909				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2910}
2911
2912static const struct file_operations proc_tgid_base_operations = {
2913	.read		= generic_read_dir,
2914	.iterate	= proc_tgid_base_readdir,
2915	.llseek		= default_llseek,
2916};
2917
2918static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2919{
2920	return proc_pident_lookup(dir, dentry,
2921				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2922}
2923
2924static const struct inode_operations proc_tgid_base_inode_operations = {
2925	.lookup		= proc_tgid_base_lookup,
2926	.getattr	= pid_getattr,
2927	.setattr	= proc_setattr,
2928	.permission	= proc_pid_permission,
2929};
2930
2931static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2932{
2933	struct dentry *dentry, *leader, *dir;
2934	char buf[PROC_NUMBUF];
2935	struct qstr name;
2936
2937	name.name = buf;
2938	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2939	/* no ->d_hash() rejects on procfs */
2940	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2941	if (dentry) {
2942		d_invalidate(dentry);
 
2943		dput(dentry);
2944	}
2945
2946	if (pid == tgid)
2947		return;
2948
2949	name.name = buf;
2950	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2951	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2952	if (!leader)
2953		goto out;
2954
2955	name.name = "task";
2956	name.len = strlen(name.name);
2957	dir = d_hash_and_lookup(leader, &name);
2958	if (!dir)
2959		goto out_put_leader;
2960
2961	name.name = buf;
2962	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2963	dentry = d_hash_and_lookup(dir, &name);
2964	if (dentry) {
2965		d_invalidate(dentry);
 
2966		dput(dentry);
2967	}
2968
2969	dput(dir);
2970out_put_leader:
2971	dput(leader);
2972out:
2973	return;
2974}
2975
2976/**
2977 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2978 * @task: task that should be flushed.
2979 *
2980 * When flushing dentries from proc, one needs to flush them from global
2981 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2982 * in. This call is supposed to do all of this job.
2983 *
2984 * Looks in the dcache for
2985 * /proc/@pid
2986 * /proc/@tgid/task/@pid
2987 * if either directory is present flushes it and all of it'ts children
2988 * from the dcache.
2989 *
2990 * It is safe and reasonable to cache /proc entries for a task until
2991 * that task exits.  After that they just clog up the dcache with
2992 * useless entries, possibly causing useful dcache entries to be
2993 * flushed instead.  This routine is proved to flush those useless
2994 * dcache entries at process exit time.
2995 *
2996 * NOTE: This routine is just an optimization so it does not guarantee
2997 *       that no dcache entries will exist at process exit time it
2998 *       just makes it very unlikely that any will persist.
2999 */
3000
3001void proc_flush_task(struct task_struct *task)
3002{
3003	int i;
3004	struct pid *pid, *tgid;
3005	struct upid *upid;
3006
3007	pid = task_pid(task);
3008	tgid = task_tgid(task);
3009
3010	for (i = 0; i <= pid->level; i++) {
3011		upid = &pid->numbers[i];
3012		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3013					tgid->numbers[i].nr);
3014	}
 
 
 
 
3015}
3016
3017static int proc_pid_instantiate(struct inode *dir,
3018				   struct dentry * dentry,
3019				   struct task_struct *task, const void *ptr)
3020{
 
3021	struct inode *inode;
3022
3023	inode = proc_pid_make_inode(dir->i_sb, task);
3024	if (!inode)
3025		goto out;
3026
3027	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3028	inode->i_op = &proc_tgid_base_inode_operations;
3029	inode->i_fop = &proc_tgid_base_operations;
3030	inode->i_flags|=S_IMMUTABLE;
3031
3032	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3033						  ARRAY_SIZE(tgid_base_stuff)));
3034
3035	d_set_d_op(dentry, &pid_dentry_operations);
3036
3037	d_add(dentry, inode);
3038	/* Close the race of the process dying before we return the dentry */
3039	if (pid_revalidate(dentry, 0))
3040		return 0;
3041out:
3042	return -ENOENT;
3043}
3044
3045struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3046{
3047	int result = -ENOENT;
3048	struct task_struct *task;
3049	unsigned tgid;
3050	struct pid_namespace *ns;
3051
3052	tgid = name_to_int(&dentry->d_name);
 
 
 
 
3053	if (tgid == ~0U)
3054		goto out;
3055
3056	ns = dentry->d_sb->s_fs_info;
3057	rcu_read_lock();
3058	task = find_task_by_pid_ns(tgid, ns);
3059	if (task)
3060		get_task_struct(task);
3061	rcu_read_unlock();
3062	if (!task)
3063		goto out;
3064
3065	result = proc_pid_instantiate(dir, dentry, task, NULL);
3066	put_task_struct(task);
3067out:
3068	return ERR_PTR(result);
3069}
3070
3071/*
3072 * Find the first task with tgid >= tgid
3073 *
3074 */
3075struct tgid_iter {
3076	unsigned int tgid;
3077	struct task_struct *task;
3078};
3079static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3080{
3081	struct pid *pid;
3082
3083	if (iter.task)
3084		put_task_struct(iter.task);
3085	rcu_read_lock();
3086retry:
3087	iter.task = NULL;
3088	pid = find_ge_pid(iter.tgid, ns);
3089	if (pid) {
3090		iter.tgid = pid_nr_ns(pid, ns);
3091		iter.task = pid_task(pid, PIDTYPE_PID);
3092		/* What we to know is if the pid we have find is the
3093		 * pid of a thread_group_leader.  Testing for task
3094		 * being a thread_group_leader is the obvious thing
3095		 * todo but there is a window when it fails, due to
3096		 * the pid transfer logic in de_thread.
3097		 *
3098		 * So we perform the straight forward test of seeing
3099		 * if the pid we have found is the pid of a thread
3100		 * group leader, and don't worry if the task we have
3101		 * found doesn't happen to be a thread group leader.
3102		 * As we don't care in the case of readdir.
3103		 */
3104		if (!iter.task || !has_group_leader_pid(iter.task)) {
3105			iter.tgid += 1;
3106			goto retry;
3107		}
3108		get_task_struct(iter.task);
3109	}
3110	rcu_read_unlock();
3111	return iter;
3112}
3113
3114#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
 
 
 
 
 
 
 
 
 
3115
3116/* for the /proc/ directory itself, after non-process stuff has been done */
3117int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3118{
 
 
3119	struct tgid_iter iter;
3120	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3121	loff_t pos = ctx->pos;
3122
3123	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3124		return 0;
 
 
 
 
 
3125
3126	if (pos == TGID_OFFSET - 2) {
3127		struct inode *inode = d_inode(ns->proc_self);
3128		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3129			return 0;
3130		ctx->pos = pos = pos + 1;
3131	}
3132	if (pos == TGID_OFFSET - 1) {
3133		struct inode *inode = d_inode(ns->proc_thread_self);
3134		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3135			return 0;
3136		ctx->pos = pos = pos + 1;
3137	}
3138	iter.tgid = pos - TGID_OFFSET;
3139	iter.task = NULL;
 
3140	for (iter = next_tgid(ns, iter);
3141	     iter.task;
3142	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3143		char name[PROC_NUMBUF];
3144		int len;
3145		if (!has_pid_permissions(ns, iter.task, 2))
3146			continue;
3147
3148		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3149		ctx->pos = iter.tgid + TGID_OFFSET;
3150		if (!proc_fill_cache(file, ctx, name, len,
3151				     proc_pid_instantiate, iter.task, NULL)) {
3152			put_task_struct(iter.task);
3153			return 0;
3154		}
3155	}
3156	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
 
 
 
3157	return 0;
3158}
3159
3160/*
3161 * Tasks
3162 */
3163static const struct pid_entry tid_base_stuff[] = {
3164	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3165	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3166	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3167#ifdef CONFIG_NET
3168	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3169#endif
3170	REG("environ",   S_IRUSR, proc_environ_operations),
3171	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3172	ONE("status",    S_IRUGO, proc_pid_status),
3173	ONE("personality", S_IRUSR, proc_pid_personality),
3174	ONE("limits",	 S_IRUGO, proc_pid_limits),
3175#ifdef CONFIG_SCHED_DEBUG
3176	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3177#endif
3178	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3179#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3180	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3181#endif
3182	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3183	ONE("stat",      S_IRUGO, proc_tid_stat),
3184	ONE("statm",     S_IRUGO, proc_pid_statm),
3185	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3186#ifdef CONFIG_PROC_CHILDREN
3187	REG("children",  S_IRUGO, proc_tid_children_operations),
3188#endif
3189#ifdef CONFIG_NUMA
3190	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3191#endif
3192	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3193	LNK("cwd",       proc_cwd_link),
3194	LNK("root",      proc_root_link),
3195	LNK("exe",       proc_exe_link),
3196	REG("mounts",    S_IRUGO, proc_mounts_operations),
3197	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3198#ifdef CONFIG_PROC_PAGE_MONITOR
3199	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3200	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3201	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3202#endif
3203#ifdef CONFIG_SECURITY
3204	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3205#endif
3206#ifdef CONFIG_KALLSYMS
3207	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3208#endif
3209#ifdef CONFIG_STACKTRACE
3210	ONE("stack",      S_IRUSR, proc_pid_stack),
3211#endif
3212#ifdef CONFIG_SCHED_INFO
3213	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3214#endif
3215#ifdef CONFIG_LATENCYTOP
3216	REG("latency",  S_IRUGO, proc_lstats_operations),
3217#endif
3218#ifdef CONFIG_PROC_PID_CPUSET
3219	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3220#endif
3221#ifdef CONFIG_CGROUPS
3222	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3223#endif
3224	ONE("oom_score", S_IRUGO, proc_oom_score),
3225	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3226	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3227#ifdef CONFIG_AUDITSYSCALL
3228	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3229	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3230#endif
3231#ifdef CONFIG_FAULT_INJECTION
3232	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3233#endif
3234#ifdef CONFIG_TASK_IO_ACCOUNTING
3235	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3236#endif
3237#ifdef CONFIG_HARDWALL
3238	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3239#endif
3240#ifdef CONFIG_USER_NS
3241	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3242	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3243	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3244	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3245#endif
3246};
3247
3248static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
 
3249{
3250	return proc_pident_readdir(file, ctx,
3251				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3252}
3253
3254static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3255{
3256	return proc_pident_lookup(dir, dentry,
3257				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3258}
3259
3260static const struct file_operations proc_tid_base_operations = {
3261	.read		= generic_read_dir,
3262	.iterate	= proc_tid_base_readdir,
3263	.llseek		= default_llseek,
3264};
3265
3266static const struct inode_operations proc_tid_base_inode_operations = {
3267	.lookup		= proc_tid_base_lookup,
3268	.getattr	= pid_getattr,
3269	.setattr	= proc_setattr,
3270};
3271
3272static int proc_task_instantiate(struct inode *dir,
3273	struct dentry *dentry, struct task_struct *task, const void *ptr)
3274{
 
3275	struct inode *inode;
3276	inode = proc_pid_make_inode(dir->i_sb, task);
3277
3278	if (!inode)
3279		goto out;
3280	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3281	inode->i_op = &proc_tid_base_inode_operations;
3282	inode->i_fop = &proc_tid_base_operations;
3283	inode->i_flags|=S_IMMUTABLE;
3284
3285	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3286						  ARRAY_SIZE(tid_base_stuff)));
3287
3288	d_set_d_op(dentry, &pid_dentry_operations);
3289
3290	d_add(dentry, inode);
3291	/* Close the race of the process dying before we return the dentry */
3292	if (pid_revalidate(dentry, 0))
3293		return 0;
3294out:
3295	return -ENOENT;
3296}
3297
3298static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3299{
3300	int result = -ENOENT;
3301	struct task_struct *task;
3302	struct task_struct *leader = get_proc_task(dir);
3303	unsigned tid;
3304	struct pid_namespace *ns;
3305
3306	if (!leader)
3307		goto out_no_task;
3308
3309	tid = name_to_int(&dentry->d_name);
3310	if (tid == ~0U)
3311		goto out;
3312
3313	ns = dentry->d_sb->s_fs_info;
3314	rcu_read_lock();
3315	task = find_task_by_pid_ns(tid, ns);
3316	if (task)
3317		get_task_struct(task);
3318	rcu_read_unlock();
3319	if (!task)
3320		goto out;
3321	if (!same_thread_group(leader, task))
3322		goto out_drop_task;
3323
3324	result = proc_task_instantiate(dir, dentry, task, NULL);
3325out_drop_task:
3326	put_task_struct(task);
3327out:
3328	put_task_struct(leader);
3329out_no_task:
3330	return ERR_PTR(result);
3331}
3332
3333/*
3334 * Find the first tid of a thread group to return to user space.
3335 *
3336 * Usually this is just the thread group leader, but if the users
3337 * buffer was too small or there was a seek into the middle of the
3338 * directory we have more work todo.
3339 *
3340 * In the case of a short read we start with find_task_by_pid.
3341 *
3342 * In the case of a seek we start with the leader and walk nr
3343 * threads past it.
3344 */
3345static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3346					struct pid_namespace *ns)
3347{
3348	struct task_struct *pos, *task;
3349	unsigned long nr = f_pos;
3350
3351	if (nr != f_pos)	/* 32bit overflow? */
3352		return NULL;
3353
3354	rcu_read_lock();
3355	task = pid_task(pid, PIDTYPE_PID);
3356	if (!task)
3357		goto fail;
3358
3359	/* Attempt to start with the tid of a thread */
3360	if (tid && nr) {
3361		pos = find_task_by_pid_ns(tid, ns);
3362		if (pos && same_thread_group(pos, task))
3363			goto found;
3364	}
3365
3366	/* If nr exceeds the number of threads there is nothing todo */
3367	if (nr >= get_nr_threads(task))
3368		goto fail;
 
3369
3370	/* If we haven't found our starting place yet start
3371	 * with the leader and walk nr threads forward.
3372	 */
3373	pos = task = task->group_leader;
3374	do {
3375		if (!nr--)
3376			goto found;
3377	} while_each_thread(task, pos);
3378fail:
3379	pos = NULL;
3380	goto out;
3381found:
3382	get_task_struct(pos);
3383out:
3384	rcu_read_unlock();
3385	return pos;
3386}
3387
3388/*
3389 * Find the next thread in the thread list.
3390 * Return NULL if there is an error or no next thread.
3391 *
3392 * The reference to the input task_struct is released.
3393 */
3394static struct task_struct *next_tid(struct task_struct *start)
3395{
3396	struct task_struct *pos = NULL;
3397	rcu_read_lock();
3398	if (pid_alive(start)) {
3399		pos = next_thread(start);
3400		if (thread_group_leader(pos))
3401			pos = NULL;
3402		else
3403			get_task_struct(pos);
3404	}
3405	rcu_read_unlock();
3406	put_task_struct(start);
3407	return pos;
3408}
3409
 
 
 
 
 
 
 
 
 
3410/* for the /proc/TGID/task/ directories */
3411static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3412{
3413	struct inode *inode = file_inode(file);
 
 
3414	struct task_struct *task;
 
 
 
3415	struct pid_namespace *ns;
3416	int tid;
3417
3418	if (proc_inode_is_dead(inode))
3419		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
3420
3421	if (!dir_emit_dots(file, ctx))
3422		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3423
3424	/* f_version caches the tgid value that the last readdir call couldn't
3425	 * return. lseek aka telldir automagically resets f_version to 0.
3426	 */
3427	ns = inode->i_sb->s_fs_info;
3428	tid = (int)file->f_version;
3429	file->f_version = 0;
3430	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3431	     task;
3432	     task = next_tid(task), ctx->pos++) {
3433		char name[PROC_NUMBUF];
3434		int len;
3435		tid = task_pid_nr_ns(task, ns);
3436		len = snprintf(name, sizeof(name), "%d", tid);
3437		if (!proc_fill_cache(file, ctx, name, len,
3438				proc_task_instantiate, task, NULL)) {
3439			/* returning this tgid failed, save it as the first
3440			 * pid for the next readir call */
3441			file->f_version = (u64)tid;
3442			put_task_struct(task);
3443			break;
3444		}
3445	}
3446
3447	return 0;
 
 
3448}
3449
3450static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3451{
3452	struct inode *inode = d_inode(dentry);
3453	struct task_struct *p = get_proc_task(inode);
3454	generic_fillattr(inode, stat);
3455
3456	if (p) {
3457		stat->nlink += get_nr_threads(p);
3458		put_task_struct(p);
3459	}
3460
3461	return 0;
3462}
3463
3464static const struct inode_operations proc_task_inode_operations = {
3465	.lookup		= proc_task_lookup,
3466	.getattr	= proc_task_getattr,
3467	.setattr	= proc_setattr,
3468	.permission	= proc_pid_permission,
3469};
3470
3471static const struct file_operations proc_task_operations = {
3472	.read		= generic_read_dir,
3473	.iterate	= proc_task_readdir,
3474	.llseek		= default_llseek,
3475};