Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
 
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51
 
 
 
 
 
 
 
 
  52#include <linux/atomic.h>
  53#include <asm/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55extern struct workqueue_struct *ib_wq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57union ib_gid {
  58	u8	raw[16];
  59	struct {
  60		__be64	subnet_prefix;
  61		__be64	interface_id;
  62	} global;
  63};
  64
  65enum rdma_node_type {
  66	/* IB values map to NodeInfo:NodeType. */
  67	RDMA_NODE_IB_CA 	= 1,
  68	RDMA_NODE_IB_SWITCH,
  69	RDMA_NODE_IB_ROUTER,
  70	RDMA_NODE_RNIC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71};
  72
  73enum rdma_transport_type {
  74	RDMA_TRANSPORT_IB,
  75	RDMA_TRANSPORT_IWARP
 
 
 
 
 
 
 
 
 
 
  76};
  77
  78enum rdma_transport_type
  79rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81enum rdma_link_layer {
  82	IB_LINK_LAYER_UNSPECIFIED,
  83	IB_LINK_LAYER_INFINIBAND,
  84	IB_LINK_LAYER_ETHERNET,
  85};
  86
  87enum ib_device_cap_flags {
  88	IB_DEVICE_RESIZE_MAX_WR		= 1,
  89	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
  90	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
  91	IB_DEVICE_RAW_MULTI		= (1<<3),
  92	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
  93	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
  94	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
  95	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
  96	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
  97	IB_DEVICE_INIT_TYPE		= (1<<9),
  98	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
  99	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
 100	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
 101	IB_DEVICE_SRQ_RESIZE		= (1<<13),
 102	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
 103	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
 104	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
 105	IB_DEVICE_MEM_WINDOW		= (1<<17),
 
 
 
 
 
 
 
 
 106	/*
 107	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 108	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 109	 * messages and can verify the validity of checksum for
 110	 * incoming messages.  Setting this flag implies that the
 111	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 112	 */
 113	IB_DEVICE_UD_IP_CSUM		= (1<<18),
 114	IB_DEVICE_UD_TSO		= (1<<19),
 115	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
 116	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117};
 118
 119enum ib_atomic_cap {
 120	IB_ATOMIC_NONE,
 121	IB_ATOMIC_HCA,
 122	IB_ATOMIC_GLOB
 123};
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125struct ib_device_attr {
 126	u64			fw_ver;
 127	__be64			sys_image_guid;
 128	u64			max_mr_size;
 129	u64			page_size_cap;
 130	u32			vendor_id;
 131	u32			vendor_part_id;
 132	u32			hw_ver;
 133	int			max_qp;
 134	int			max_qp_wr;
 135	int			device_cap_flags;
 136	int			max_sge;
 
 137	int			max_sge_rd;
 138	int			max_cq;
 139	int			max_cqe;
 140	int			max_mr;
 141	int			max_pd;
 142	int			max_qp_rd_atom;
 143	int			max_ee_rd_atom;
 144	int			max_res_rd_atom;
 145	int			max_qp_init_rd_atom;
 146	int			max_ee_init_rd_atom;
 147	enum ib_atomic_cap	atomic_cap;
 148	enum ib_atomic_cap	masked_atomic_cap;
 149	int			max_ee;
 150	int			max_rdd;
 151	int			max_mw;
 152	int			max_raw_ipv6_qp;
 153	int			max_raw_ethy_qp;
 154	int			max_mcast_grp;
 155	int			max_mcast_qp_attach;
 156	int			max_total_mcast_qp_attach;
 157	int			max_ah;
 158	int			max_fmr;
 159	int			max_map_per_fmr;
 160	int			max_srq;
 161	int			max_srq_wr;
 162	int			max_srq_sge;
 163	unsigned int		max_fast_reg_page_list_len;
 
 164	u16			max_pkeys;
 165	u8			local_ca_ack_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 166};
 167
 168enum ib_mtu {
 169	IB_MTU_256  = 1,
 170	IB_MTU_512  = 2,
 171	IB_MTU_1024 = 3,
 172	IB_MTU_2048 = 4,
 173	IB_MTU_4096 = 5
 174};
 175
 
 
 
 
 
 176static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 177{
 178	switch (mtu) {
 179	case IB_MTU_256:  return  256;
 180	case IB_MTU_512:  return  512;
 181	case IB_MTU_1024: return 1024;
 182	case IB_MTU_2048: return 2048;
 183	case IB_MTU_4096: return 4096;
 184	default: 	  return -1;
 185	}
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188enum ib_port_state {
 189	IB_PORT_NOP		= 0,
 190	IB_PORT_DOWN		= 1,
 191	IB_PORT_INIT		= 2,
 192	IB_PORT_ARMED		= 3,
 193	IB_PORT_ACTIVE		= 4,
 194	IB_PORT_ACTIVE_DEFER	= 5
 195};
 196
 197enum ib_port_cap_flags {
 198	IB_PORT_SM				= 1 <<  1,
 199	IB_PORT_NOTICE_SUP			= 1 <<  2,
 200	IB_PORT_TRAP_SUP			= 1 <<  3,
 201	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 202	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
 203	IB_PORT_SL_MAP_SUP			= 1 <<  6,
 204	IB_PORT_MKEY_NVRAM			= 1 <<  7,
 205	IB_PORT_PKEY_NVRAM			= 1 <<  8,
 206	IB_PORT_LED_INFO_SUP			= 1 <<  9,
 207	IB_PORT_SM_DISABLED			= 1 << 10,
 208	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
 209	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
 210	IB_PORT_CM_SUP				= 1 << 16,
 211	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
 212	IB_PORT_REINIT_SUP			= 1 << 18,
 213	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
 214	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
 215	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
 216	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
 217	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
 218	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
 219	IB_PORT_CLIENT_REG_SUP			= 1 << 25
 220};
 221
 222enum ib_port_width {
 223	IB_WIDTH_1X	= 1,
 
 224	IB_WIDTH_4X	= 2,
 225	IB_WIDTH_8X	= 4,
 226	IB_WIDTH_12X	= 8
 227};
 228
 229static inline int ib_width_enum_to_int(enum ib_port_width width)
 230{
 231	switch (width) {
 232	case IB_WIDTH_1X:  return  1;
 
 233	case IB_WIDTH_4X:  return  4;
 234	case IB_WIDTH_8X:  return  8;
 235	case IB_WIDTH_12X: return 12;
 236	default: 	  return -1;
 237	}
 238}
 239
 240struct ib_protocol_stats {
 241	/* TBD... */
 
 
 
 
 
 
 
 242};
 243
 244struct iw_protocol_stats {
 245	u64	ipInReceives;
 246	u64	ipInHdrErrors;
 247	u64	ipInTooBigErrors;
 248	u64	ipInNoRoutes;
 249	u64	ipInAddrErrors;
 250	u64	ipInUnknownProtos;
 251	u64	ipInTruncatedPkts;
 252	u64	ipInDiscards;
 253	u64	ipInDelivers;
 254	u64	ipOutForwDatagrams;
 255	u64	ipOutRequests;
 256	u64	ipOutDiscards;
 257	u64	ipOutNoRoutes;
 258	u64	ipReasmTimeout;
 259	u64	ipReasmReqds;
 260	u64	ipReasmOKs;
 261	u64	ipReasmFails;
 262	u64	ipFragOKs;
 263	u64	ipFragFails;
 264	u64	ipFragCreates;
 265	u64	ipInMcastPkts;
 266	u64	ipOutMcastPkts;
 267	u64	ipInBcastPkts;
 268	u64	ipOutBcastPkts;
 269
 270	u64	tcpRtoAlgorithm;
 271	u64	tcpRtoMin;
 272	u64	tcpRtoMax;
 273	u64	tcpMaxConn;
 274	u64	tcpActiveOpens;
 275	u64	tcpPassiveOpens;
 276	u64	tcpAttemptFails;
 277	u64	tcpEstabResets;
 278	u64	tcpCurrEstab;
 279	u64	tcpInSegs;
 280	u64	tcpOutSegs;
 281	u64	tcpRetransSegs;
 282	u64	tcpInErrs;
 283	u64	tcpOutRsts;
 284};
 285
 286union rdma_protocol_stats {
 287	struct ib_protocol_stats	ib;
 288	struct iw_protocol_stats	iw;
 289};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290
 291struct ib_port_attr {
 
 292	enum ib_port_state	state;
 293	enum ib_mtu		max_mtu;
 294	enum ib_mtu		active_mtu;
 
 295	int			gid_tbl_len;
 
 
 296	u32			port_cap_flags;
 297	u32			max_msg_sz;
 298	u32			bad_pkey_cntr;
 299	u32			qkey_viol_cntr;
 300	u16			pkey_tbl_len;
 301	u16			lid;
 302	u16			sm_lid;
 303	u8			lmc;
 304	u8			max_vl_num;
 305	u8			sm_sl;
 306	u8			subnet_timeout;
 307	u8			init_type_reply;
 308	u8			active_width;
 309	u8			active_speed;
 310	u8                      phys_state;
 
 311};
 312
 313enum ib_device_modify_flags {
 314	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 315	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 316};
 317
 
 
 318struct ib_device_modify {
 319	u64	sys_image_guid;
 320	char	node_desc[64];
 321};
 322
 323enum ib_port_modify_flags {
 324	IB_PORT_SHUTDOWN		= 1,
 325	IB_PORT_INIT_TYPE		= (1<<2),
 326	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
 
 327};
 328
 329struct ib_port_modify {
 330	u32	set_port_cap_mask;
 331	u32	clr_port_cap_mask;
 332	u8	init_type;
 333};
 334
 335enum ib_event_type {
 336	IB_EVENT_CQ_ERR,
 337	IB_EVENT_QP_FATAL,
 338	IB_EVENT_QP_REQ_ERR,
 339	IB_EVENT_QP_ACCESS_ERR,
 340	IB_EVENT_COMM_EST,
 341	IB_EVENT_SQ_DRAINED,
 342	IB_EVENT_PATH_MIG,
 343	IB_EVENT_PATH_MIG_ERR,
 344	IB_EVENT_DEVICE_FATAL,
 345	IB_EVENT_PORT_ACTIVE,
 346	IB_EVENT_PORT_ERR,
 347	IB_EVENT_LID_CHANGE,
 348	IB_EVENT_PKEY_CHANGE,
 349	IB_EVENT_SM_CHANGE,
 350	IB_EVENT_SRQ_ERR,
 351	IB_EVENT_SRQ_LIMIT_REACHED,
 352	IB_EVENT_QP_LAST_WQE_REACHED,
 353	IB_EVENT_CLIENT_REREGISTER,
 354	IB_EVENT_GID_CHANGE,
 
 355};
 356
 
 
 357struct ib_event {
 358	struct ib_device	*device;
 359	union {
 360		struct ib_cq	*cq;
 361		struct ib_qp	*qp;
 362		struct ib_srq	*srq;
 363		u8		port_num;
 
 364	} element;
 365	enum ib_event_type	event;
 366};
 367
 368struct ib_event_handler {
 369	struct ib_device *device;
 370	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 371	struct list_head  list;
 372};
 373
 374#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 375	do {							\
 376		(_ptr)->device  = _device;			\
 377		(_ptr)->handler = _handler;			\
 378		INIT_LIST_HEAD(&(_ptr)->list);			\
 379	} while (0)
 380
 381struct ib_global_route {
 
 382	union ib_gid	dgid;
 383	u32		flow_label;
 384	u8		sgid_index;
 385	u8		hop_limit;
 386	u8		traffic_class;
 387};
 388
 389struct ib_grh {
 390	__be32		version_tclass_flow;
 391	__be16		paylen;
 392	u8		next_hdr;
 393	u8		hop_limit;
 394	union ib_gid	sgid;
 395	union ib_gid	dgid;
 396};
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 398enum {
 399	IB_MULTICAST_QPN = 0xffffff
 400};
 401
 402#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 
 403
 404enum ib_ah_flags {
 405	IB_AH_GRH	= 1
 406};
 407
 408enum ib_rate {
 409	IB_RATE_PORT_CURRENT = 0,
 410	IB_RATE_2_5_GBPS = 2,
 411	IB_RATE_5_GBPS   = 5,
 412	IB_RATE_10_GBPS  = 3,
 413	IB_RATE_20_GBPS  = 6,
 414	IB_RATE_30_GBPS  = 4,
 415	IB_RATE_40_GBPS  = 7,
 416	IB_RATE_60_GBPS  = 8,
 417	IB_RATE_80_GBPS  = 9,
 418	IB_RATE_120_GBPS = 10
 
 
 
 
 
 
 
 
 
 
 
 
 419};
 420
 421/**
 422 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 423 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 424 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 425 * @rate: rate to convert.
 426 */
 427int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 429/**
 430 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 431 * enum.
 432 * @mult: multiple to convert.
 433 */
 434enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436struct ib_ah_attr {
 437	struct ib_global_route	grh;
 438	u16			dlid;
 439	u8			sl;
 440	u8			src_path_bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	u8			static_rate;
 
 442	u8			ah_flags;
 443	u8			port_num;
 
 
 
 
 
 444};
 445
 446enum ib_wc_status {
 447	IB_WC_SUCCESS,
 448	IB_WC_LOC_LEN_ERR,
 449	IB_WC_LOC_QP_OP_ERR,
 450	IB_WC_LOC_EEC_OP_ERR,
 451	IB_WC_LOC_PROT_ERR,
 452	IB_WC_WR_FLUSH_ERR,
 453	IB_WC_MW_BIND_ERR,
 454	IB_WC_BAD_RESP_ERR,
 455	IB_WC_LOC_ACCESS_ERR,
 456	IB_WC_REM_INV_REQ_ERR,
 457	IB_WC_REM_ACCESS_ERR,
 458	IB_WC_REM_OP_ERR,
 459	IB_WC_RETRY_EXC_ERR,
 460	IB_WC_RNR_RETRY_EXC_ERR,
 461	IB_WC_LOC_RDD_VIOL_ERR,
 462	IB_WC_REM_INV_RD_REQ_ERR,
 463	IB_WC_REM_ABORT_ERR,
 464	IB_WC_INV_EECN_ERR,
 465	IB_WC_INV_EEC_STATE_ERR,
 466	IB_WC_FATAL_ERR,
 467	IB_WC_RESP_TIMEOUT_ERR,
 468	IB_WC_GENERAL_ERR
 469};
 470
 
 
 471enum ib_wc_opcode {
 472	IB_WC_SEND,
 473	IB_WC_RDMA_WRITE,
 474	IB_WC_RDMA_READ,
 475	IB_WC_COMP_SWAP,
 476	IB_WC_FETCH_ADD,
 477	IB_WC_BIND_MW,
 478	IB_WC_LSO,
 479	IB_WC_LOCAL_INV,
 480	IB_WC_FAST_REG_MR,
 481	IB_WC_MASKED_COMP_SWAP,
 482	IB_WC_MASKED_FETCH_ADD,
 483/*
 484 * Set value of IB_WC_RECV so consumers can test if a completion is a
 485 * receive by testing (opcode & IB_WC_RECV).
 486 */
 487	IB_WC_RECV			= 1 << 7,
 488	IB_WC_RECV_RDMA_WITH_IMM
 489};
 490
 491enum ib_wc_flags {
 492	IB_WC_GRH		= 1,
 493	IB_WC_WITH_IMM		= (1<<1),
 494	IB_WC_WITH_INVALIDATE	= (1<<2),
 
 
 
 
 495};
 496
 497struct ib_wc {
 498	u64			wr_id;
 
 
 
 499	enum ib_wc_status	status;
 500	enum ib_wc_opcode	opcode;
 501	u32			vendor_err;
 502	u32			byte_len;
 503	struct ib_qp	       *qp;
 504	union {
 505		__be32		imm_data;
 506		u32		invalidate_rkey;
 507	} ex;
 508	u32			src_qp;
 
 509	int			wc_flags;
 510	u16			pkey_index;
 511	u16			slid;
 512	u8			sl;
 513	u8			dlid_path_bits;
 514	u8			port_num;	/* valid only for DR SMPs on switches */
 515	int			csum_ok;
 
 
 516};
 517
 518enum ib_cq_notify_flags {
 519	IB_CQ_SOLICITED			= 1 << 0,
 520	IB_CQ_NEXT_COMP			= 1 << 1,
 521	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 522	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
 523};
 524
 
 
 
 
 
 
 
 
 
 
 
 
 525enum ib_srq_attr_mask {
 526	IB_SRQ_MAX_WR	= 1 << 0,
 527	IB_SRQ_LIMIT	= 1 << 1,
 528};
 529
 530struct ib_srq_attr {
 531	u32	max_wr;
 532	u32	max_sge;
 533	u32	srq_limit;
 534};
 535
 536struct ib_srq_init_attr {
 537	void		      (*event_handler)(struct ib_event *, void *);
 538	void		       *srq_context;
 539	struct ib_srq_attr	attr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540};
 541
 542struct ib_qp_cap {
 543	u32	max_send_wr;
 544	u32	max_recv_wr;
 545	u32	max_send_sge;
 546	u32	max_recv_sge;
 547	u32	max_inline_data;
 
 
 
 
 
 
 
 548};
 549
 550enum ib_sig_type {
 551	IB_SIGNAL_ALL_WR,
 552	IB_SIGNAL_REQ_WR
 553};
 554
 555enum ib_qp_type {
 556	/*
 557	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 558	 * here (and in that order) since the MAD layer uses them as
 559	 * indices into a 2-entry table.
 560	 */
 561	IB_QPT_SMI,
 562	IB_QPT_GSI,
 563
 564	IB_QPT_RC,
 565	IB_QPT_UC,
 566	IB_QPT_UD,
 567	IB_QPT_RAW_IPV6,
 568	IB_QPT_RAW_ETHERTYPE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569};
 570
 571enum ib_qp_create_flags {
 572	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
 573	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574};
 575
 
 
 
 
 
 576struct ib_qp_init_attr {
 
 577	void                  (*event_handler)(struct ib_event *, void *);
 
 578	void		       *qp_context;
 579	struct ib_cq	       *send_cq;
 580	struct ib_cq	       *recv_cq;
 581	struct ib_srq	       *srq;
 
 582	struct ib_qp_cap	cap;
 583	enum ib_sig_type	sq_sig_type;
 584	enum ib_qp_type		qp_type;
 585	enum ib_qp_create_flags	create_flags;
 586	u8			port_num; /* special QP types only */
 
 
 
 
 
 
 
 
 
 
 
 
 
 587};
 588
 589enum ib_rnr_timeout {
 590	IB_RNR_TIMER_655_36 =  0,
 591	IB_RNR_TIMER_000_01 =  1,
 592	IB_RNR_TIMER_000_02 =  2,
 593	IB_RNR_TIMER_000_03 =  3,
 594	IB_RNR_TIMER_000_04 =  4,
 595	IB_RNR_TIMER_000_06 =  5,
 596	IB_RNR_TIMER_000_08 =  6,
 597	IB_RNR_TIMER_000_12 =  7,
 598	IB_RNR_TIMER_000_16 =  8,
 599	IB_RNR_TIMER_000_24 =  9,
 600	IB_RNR_TIMER_000_32 = 10,
 601	IB_RNR_TIMER_000_48 = 11,
 602	IB_RNR_TIMER_000_64 = 12,
 603	IB_RNR_TIMER_000_96 = 13,
 604	IB_RNR_TIMER_001_28 = 14,
 605	IB_RNR_TIMER_001_92 = 15,
 606	IB_RNR_TIMER_002_56 = 16,
 607	IB_RNR_TIMER_003_84 = 17,
 608	IB_RNR_TIMER_005_12 = 18,
 609	IB_RNR_TIMER_007_68 = 19,
 610	IB_RNR_TIMER_010_24 = 20,
 611	IB_RNR_TIMER_015_36 = 21,
 612	IB_RNR_TIMER_020_48 = 22,
 613	IB_RNR_TIMER_030_72 = 23,
 614	IB_RNR_TIMER_040_96 = 24,
 615	IB_RNR_TIMER_061_44 = 25,
 616	IB_RNR_TIMER_081_92 = 26,
 617	IB_RNR_TIMER_122_88 = 27,
 618	IB_RNR_TIMER_163_84 = 28,
 619	IB_RNR_TIMER_245_76 = 29,
 620	IB_RNR_TIMER_327_68 = 30,
 621	IB_RNR_TIMER_491_52 = 31
 622};
 623
 624enum ib_qp_attr_mask {
 625	IB_QP_STATE			= 1,
 626	IB_QP_CUR_STATE			= (1<<1),
 627	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
 628	IB_QP_ACCESS_FLAGS		= (1<<3),
 629	IB_QP_PKEY_INDEX		= (1<<4),
 630	IB_QP_PORT			= (1<<5),
 631	IB_QP_QKEY			= (1<<6),
 632	IB_QP_AV			= (1<<7),
 633	IB_QP_PATH_MTU			= (1<<8),
 634	IB_QP_TIMEOUT			= (1<<9),
 635	IB_QP_RETRY_CNT			= (1<<10),
 636	IB_QP_RNR_RETRY			= (1<<11),
 637	IB_QP_RQ_PSN			= (1<<12),
 638	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
 639	IB_QP_ALT_PATH			= (1<<14),
 640	IB_QP_MIN_RNR_TIMER		= (1<<15),
 641	IB_QP_SQ_PSN			= (1<<16),
 642	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
 643	IB_QP_PATH_MIG_STATE		= (1<<18),
 644	IB_QP_CAP			= (1<<19),
 645	IB_QP_DEST_QPN			= (1<<20)
 
 
 
 
 
 
 
 646};
 647
 648enum ib_qp_state {
 649	IB_QPS_RESET,
 650	IB_QPS_INIT,
 651	IB_QPS_RTR,
 652	IB_QPS_RTS,
 653	IB_QPS_SQD,
 654	IB_QPS_SQE,
 655	IB_QPS_ERR
 656};
 657
 658enum ib_mig_state {
 659	IB_MIG_MIGRATED,
 660	IB_MIG_REARM,
 661	IB_MIG_ARMED
 662};
 663
 
 
 
 
 
 664struct ib_qp_attr {
 665	enum ib_qp_state	qp_state;
 666	enum ib_qp_state	cur_qp_state;
 667	enum ib_mtu		path_mtu;
 668	enum ib_mig_state	path_mig_state;
 669	u32			qkey;
 670	u32			rq_psn;
 671	u32			sq_psn;
 672	u32			dest_qp_num;
 673	int			qp_access_flags;
 674	struct ib_qp_cap	cap;
 675	struct ib_ah_attr	ah_attr;
 676	struct ib_ah_attr	alt_ah_attr;
 677	u16			pkey_index;
 678	u16			alt_pkey_index;
 679	u8			en_sqd_async_notify;
 680	u8			sq_draining;
 681	u8			max_rd_atomic;
 682	u8			max_dest_rd_atomic;
 683	u8			min_rnr_timer;
 684	u8			port_num;
 685	u8			timeout;
 686	u8			retry_cnt;
 687	u8			rnr_retry;
 688	u8			alt_port_num;
 689	u8			alt_timeout;
 
 
 690};
 691
 692enum ib_wr_opcode {
 693	IB_WR_RDMA_WRITE,
 694	IB_WR_RDMA_WRITE_WITH_IMM,
 695	IB_WR_SEND,
 696	IB_WR_SEND_WITH_IMM,
 697	IB_WR_RDMA_READ,
 698	IB_WR_ATOMIC_CMP_AND_SWP,
 699	IB_WR_ATOMIC_FETCH_AND_ADD,
 700	IB_WR_LSO,
 701	IB_WR_SEND_WITH_INV,
 702	IB_WR_RDMA_READ_WITH_INV,
 703	IB_WR_LOCAL_INV,
 704	IB_WR_FAST_REG_MR,
 705	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
 706	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707};
 708
 709enum ib_send_flags {
 710	IB_SEND_FENCE		= 1,
 711	IB_SEND_SIGNALED	= (1<<1),
 712	IB_SEND_SOLICITED	= (1<<2),
 713	IB_SEND_INLINE		= (1<<3),
 714	IB_SEND_IP_CSUM		= (1<<4)
 
 
 
 
 715};
 716
 717struct ib_sge {
 718	u64	addr;
 719	u32	length;
 720	u32	lkey;
 721};
 722
 723struct ib_fast_reg_page_list {
 724	struct ib_device       *device;
 725	u64		       *page_list;
 726	unsigned int		max_page_list_len;
 727};
 728
 729struct ib_send_wr {
 730	struct ib_send_wr      *next;
 731	u64			wr_id;
 
 
 
 732	struct ib_sge	       *sg_list;
 733	int			num_sge;
 734	enum ib_wr_opcode	opcode;
 735	int			send_flags;
 736	union {
 737		__be32		imm_data;
 738		u32		invalidate_rkey;
 739	} ex;
 740	union {
 741		struct {
 742			u64	remote_addr;
 743			u32	rkey;
 744		} rdma;
 745		struct {
 746			u64	remote_addr;
 747			u64	compare_add;
 748			u64	swap;
 749			u64	compare_add_mask;
 750			u64	swap_mask;
 751			u32	rkey;
 752		} atomic;
 753		struct {
 754			struct ib_ah *ah;
 755			void   *header;
 756			int     hlen;
 757			int     mss;
 758			u32	remote_qpn;
 759			u32	remote_qkey;
 760			u16	pkey_index; /* valid for GSI only */
 761			u8	port_num;   /* valid for DR SMPs on switch only */
 762		} ud;
 763		struct {
 764			u64				iova_start;
 765			struct ib_fast_reg_page_list   *page_list;
 766			unsigned int			page_shift;
 767			unsigned int			page_list_len;
 768			u32				length;
 769			int				access_flags;
 770			u32				rkey;
 771		} fast_reg;
 772	} wr;
 773};
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775struct ib_recv_wr {
 776	struct ib_recv_wr      *next;
 777	u64			wr_id;
 
 
 
 778	struct ib_sge	       *sg_list;
 779	int			num_sge;
 780};
 781
 782enum ib_access_flags {
 783	IB_ACCESS_LOCAL_WRITE	= 1,
 784	IB_ACCESS_REMOTE_WRITE	= (1<<1),
 785	IB_ACCESS_REMOTE_READ	= (1<<2),
 786	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
 787	IB_ACCESS_MW_BIND	= (1<<4)
 788};
 789
 790struct ib_phys_buf {
 791	u64      addr;
 792	u64      size;
 793};
 794
 795struct ib_mr_attr {
 796	struct ib_pd	*pd;
 797	u64		device_virt_addr;
 798	u64		size;
 799	int		mr_access_flags;
 800	u32		lkey;
 801	u32		rkey;
 802};
 803
 
 
 
 
 804enum ib_mr_rereg_flags {
 805	IB_MR_REREG_TRANS	= 1,
 806	IB_MR_REREG_PD		= (1<<1),
 807	IB_MR_REREG_ACCESS	= (1<<2)
 
 808};
 809
 810struct ib_mw_bind {
 811	struct ib_mr   *mr;
 812	u64		wr_id;
 813	u64		addr;
 814	u32		length;
 815	int		send_flags;
 816	int		mw_access_flags;
 817};
 818
 819struct ib_fmr_attr {
 820	int	max_pages;
 821	int	max_maps;
 822	u8	page_shift;
 
 
 
 
 
 
 
 
 
 823};
 824
 825struct ib_ucontext {
 826	struct ib_device       *device;
 827	struct list_head	pd_list;
 828	struct list_head	mr_list;
 829	struct list_head	mw_list;
 830	struct list_head	cq_list;
 831	struct list_head	qp_list;
 832	struct list_head	srq_list;
 833	struct list_head	ah_list;
 834	int			closing;
 835};
 836
 837struct ib_uobject {
 838	u64			user_handle;	/* handle given to us by userspace */
 
 
 
 839	struct ib_ucontext     *context;	/* associated user context */
 840	void		       *object;		/* containing object */
 841	struct list_head	list;		/* link to context's list */
 
 842	int			id;		/* index into kernel idr */
 843	struct kref		ref;
 844	struct rw_semaphore	mutex;		/* protects .live */
 845	int			live;
 
 
 846};
 847
 848struct ib_udata {
 849	void __user *inbuf;
 850	void __user *outbuf;
 851	size_t       inlen;
 852	size_t       outlen;
 853};
 854
 855struct ib_pd {
 
 
 856	struct ib_device       *device;
 857	struct ib_uobject      *uobject;
 858	atomic_t          	usecnt; /* count all resources */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859};
 860
 861struct ib_ah {
 862	struct ib_device	*device;
 863	struct ib_pd		*pd;
 864	struct ib_uobject	*uobject;
 
 
 865};
 866
 867typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
 868
 
 
 
 
 
 
 
 
 
 869struct ib_cq {
 870	struct ib_device       *device;
 871	struct ib_uobject      *uobject;
 872	ib_comp_handler   	comp_handler;
 873	void                  (*event_handler)(struct ib_event *, void *);
 874	void                   *cq_context;
 875	int               	cqe;
 
 876	atomic_t          	usecnt; /* count number of work queues */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877};
 878
 879struct ib_srq {
 880	struct ib_device       *device;
 881	struct ib_pd	       *pd;
 882	struct ib_uobject      *uobject;
 883	void		      (*event_handler)(struct ib_event *, void *);
 884	void		       *srq_context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	atomic_t		usecnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886};
 887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888struct ib_qp {
 889	struct ib_device       *device;
 890	struct ib_pd	       *pd;
 891	struct ib_cq	       *send_cq;
 892	struct ib_cq	       *recv_cq;
 
 
 
 
 893	struct ib_srq	       *srq;
 894	struct ib_uobject      *uobject;
 
 
 
 
 
 
 
 895	void                  (*event_handler)(struct ib_event *, void *);
 896	void		       *qp_context;
 
 
 
 897	u32			qp_num;
 
 
 898	enum ib_qp_type		qp_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899};
 900
 901struct ib_mr {
 902	struct ib_device  *device;
 903	struct ib_pd	  *pd;
 904	struct ib_uobject *uobject;
 905	u32		   lkey;
 906	u32		   rkey;
 907	atomic_t	   usecnt; /* count number of MWs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908};
 909
 910struct ib_mw {
 911	struct ib_device	*device;
 912	struct ib_pd		*pd;
 913	struct ib_uobject	*uobject;
 914	u32			rkey;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915};
 916
 917struct ib_fmr {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	struct ib_device	*device;
 919	struct ib_pd		*pd;
 920	struct list_head	list;
 921	u32			lkey;
 922	u32			rkey;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923};
 924
 925struct ib_mad;
 926struct ib_grh;
 927
 928enum ib_process_mad_flags {
 929	IB_MAD_IGNORE_MKEY	= 1,
 930	IB_MAD_IGNORE_BKEY	= 2,
 931	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
 932};
 933
 934enum ib_mad_result {
 935	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
 936	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
 937	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
 938	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
 939};
 940
 941#define IB_DEVICE_NAME_MAX 64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 943struct ib_cache {
 944	rwlock_t                lock;
 945	struct ib_event_handler event_handler;
 946	struct ib_pkey_cache  **pkey_cache;
 947	struct ib_gid_cache   **gid_cache;
 948	u8                     *lmc_cache;
 949};
 950
 951struct ib_dma_mapping_ops {
 952	int		(*mapping_error)(struct ib_device *dev,
 953					 u64 dma_addr);
 954	u64		(*map_single)(struct ib_device *dev,
 955				      void *ptr, size_t size,
 956				      enum dma_data_direction direction);
 957	void		(*unmap_single)(struct ib_device *dev,
 958					u64 addr, size_t size,
 959					enum dma_data_direction direction);
 960	u64		(*map_page)(struct ib_device *dev,
 961				    struct page *page, unsigned long offset,
 962				    size_t size,
 963				    enum dma_data_direction direction);
 964	void		(*unmap_page)(struct ib_device *dev,
 965				      u64 addr, size_t size,
 966				      enum dma_data_direction direction);
 967	int		(*map_sg)(struct ib_device *dev,
 968				  struct scatterlist *sg, int nents,
 969				  enum dma_data_direction direction);
 970	void		(*unmap_sg)(struct ib_device *dev,
 971				    struct scatterlist *sg, int nents,
 972				    enum dma_data_direction direction);
 973	u64		(*dma_address)(struct ib_device *dev,
 974				       struct scatterlist *sg);
 975	unsigned int	(*dma_len)(struct ib_device *dev,
 976				   struct scatterlist *sg);
 977	void		(*sync_single_for_cpu)(struct ib_device *dev,
 978					       u64 dma_handle,
 979					       size_t size,
 980					       enum dma_data_direction dir);
 981	void		(*sync_single_for_device)(struct ib_device *dev,
 982						  u64 dma_handle,
 983						  size_t size,
 984						  enum dma_data_direction dir);
 985	void		*(*alloc_coherent)(struct ib_device *dev,
 986					   size_t size,
 987					   u64 *dma_handle,
 988					   gfp_t flag);
 989	void		(*free_coherent)(struct ib_device *dev,
 990					 size_t size, void *cpu_addr,
 991					 u64 dma_handle);
 992};
 993
 994struct iw_cm_verbs;
 
 
 
 
 
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996struct ib_device {
 
 997	struct device                *dma_device;
 998
 999	char                          name[IB_DEVICE_NAME_MAX];
 
1000
1001	struct list_head              event_handler_list;
1002	spinlock_t                    event_handler_lock;
 
1003
1004	spinlock_t                    client_data_lock;
1005	struct list_head              core_list;
1006	struct list_head              client_data_list;
1007
1008	struct ib_cache               cache;
1009	int                          *pkey_tbl_len;
1010	int                          *gid_tbl_len;
1011
1012	int			      num_comp_vectors;
 
 
 
 
 
 
 
 
 
1013
1014	struct iw_cm_verbs	     *iwcm;
1015
1016	int		           (*get_protocol_stats)(struct ib_device *device,
1017							 union rdma_protocol_stats *stats);
1018	int		           (*query_device)(struct ib_device *device,
1019						   struct ib_device_attr *device_attr);
1020	int		           (*query_port)(struct ib_device *device,
1021						 u8 port_num,
1022						 struct ib_port_attr *port_attr);
1023	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1024						     u8 port_num);
1025	int		           (*query_gid)(struct ib_device *device,
1026						u8 port_num, int index,
1027						union ib_gid *gid);
1028	int		           (*query_pkey)(struct ib_device *device,
1029						 u8 port_num, u16 index, u16 *pkey);
1030	int		           (*modify_device)(struct ib_device *device,
1031						    int device_modify_mask,
1032						    struct ib_device_modify *device_modify);
1033	int		           (*modify_port)(struct ib_device *device,
1034						  u8 port_num, int port_modify_mask,
1035						  struct ib_port_modify *port_modify);
1036	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1037						     struct ib_udata *udata);
1038	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1039	int                        (*mmap)(struct ib_ucontext *context,
1040					   struct vm_area_struct *vma);
1041	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1042					       struct ib_ucontext *context,
1043					       struct ib_udata *udata);
1044	int                        (*dealloc_pd)(struct ib_pd *pd);
1045	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1046						struct ib_ah_attr *ah_attr);
1047	int                        (*modify_ah)(struct ib_ah *ah,
1048						struct ib_ah_attr *ah_attr);
1049	int                        (*query_ah)(struct ib_ah *ah,
1050					       struct ib_ah_attr *ah_attr);
1051	int                        (*destroy_ah)(struct ib_ah *ah);
1052	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1053						 struct ib_srq_init_attr *srq_init_attr,
1054						 struct ib_udata *udata);
1055	int                        (*modify_srq)(struct ib_srq *srq,
1056						 struct ib_srq_attr *srq_attr,
1057						 enum ib_srq_attr_mask srq_attr_mask,
1058						 struct ib_udata *udata);
1059	int                        (*query_srq)(struct ib_srq *srq,
1060						struct ib_srq_attr *srq_attr);
1061	int                        (*destroy_srq)(struct ib_srq *srq);
1062	int                        (*post_srq_recv)(struct ib_srq *srq,
1063						    struct ib_recv_wr *recv_wr,
1064						    struct ib_recv_wr **bad_recv_wr);
1065	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1066						struct ib_qp_init_attr *qp_init_attr,
1067						struct ib_udata *udata);
1068	int                        (*modify_qp)(struct ib_qp *qp,
1069						struct ib_qp_attr *qp_attr,
1070						int qp_attr_mask,
1071						struct ib_udata *udata);
1072	int                        (*query_qp)(struct ib_qp *qp,
1073					       struct ib_qp_attr *qp_attr,
1074					       int qp_attr_mask,
1075					       struct ib_qp_init_attr *qp_init_attr);
1076	int                        (*destroy_qp)(struct ib_qp *qp);
1077	int                        (*post_send)(struct ib_qp *qp,
1078						struct ib_send_wr *send_wr,
1079						struct ib_send_wr **bad_send_wr);
1080	int                        (*post_recv)(struct ib_qp *qp,
1081						struct ib_recv_wr *recv_wr,
1082						struct ib_recv_wr **bad_recv_wr);
1083	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1084						int comp_vector,
1085						struct ib_ucontext *context,
1086						struct ib_udata *udata);
1087	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1088						u16 cq_period);
1089	int                        (*destroy_cq)(struct ib_cq *cq);
1090	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1091						struct ib_udata *udata);
1092	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1093					      struct ib_wc *wc);
1094	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1095	int                        (*req_notify_cq)(struct ib_cq *cq,
1096						    enum ib_cq_notify_flags flags);
1097	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1098						      int wc_cnt);
1099	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1100						 int mr_access_flags);
1101	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1102						  struct ib_phys_buf *phys_buf_array,
1103						  int num_phys_buf,
1104						  int mr_access_flags,
1105						  u64 *iova_start);
1106	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1107						  u64 start, u64 length,
1108						  u64 virt_addr,
1109						  int mr_access_flags,
1110						  struct ib_udata *udata);
1111	int                        (*query_mr)(struct ib_mr *mr,
1112					       struct ib_mr_attr *mr_attr);
1113	int                        (*dereg_mr)(struct ib_mr *mr);
1114	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1115					       int max_page_list_len);
1116	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1117								   int page_list_len);
1118	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1119	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1120						    int mr_rereg_mask,
1121						    struct ib_pd *pd,
1122						    struct ib_phys_buf *phys_buf_array,
1123						    int num_phys_buf,
1124						    int mr_access_flags,
1125						    u64 *iova_start);
1126	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1127	int                        (*bind_mw)(struct ib_qp *qp,
1128					      struct ib_mw *mw,
1129					      struct ib_mw_bind *mw_bind);
1130	int                        (*dealloc_mw)(struct ib_mw *mw);
1131	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1132						int mr_access_flags,
1133						struct ib_fmr_attr *fmr_attr);
1134	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1135						   u64 *page_list, int list_len,
1136						   u64 iova);
1137	int		           (*unmap_fmr)(struct list_head *fmr_list);
1138	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1139	int                        (*attach_mcast)(struct ib_qp *qp,
1140						   union ib_gid *gid,
1141						   u16 lid);
1142	int                        (*detach_mcast)(struct ib_qp *qp,
1143						   union ib_gid *gid,
1144						   u16 lid);
1145	int                        (*process_mad)(struct ib_device *device,
1146						  int process_mad_flags,
1147						  u8 port_num,
1148						  struct ib_wc *in_wc,
1149						  struct ib_grh *in_grh,
1150						  struct ib_mad *in_mad,
1151						  struct ib_mad *out_mad);
1152
1153	struct ib_dma_mapping_ops   *dma_ops;
1154
1155	struct module               *owner;
1156	struct device                dev;
1157	struct kobject               *ports_parent;
1158	struct list_head             port_list;
1159
1160	enum {
1161		IB_DEV_UNINITIALIZED,
1162		IB_DEV_REGISTERED,
1163		IB_DEV_UNREGISTERED
1164	}                            reg_state;
1165
1166	int			     uverbs_abi_ver;
1167	u64			     uverbs_cmd_mask;
1168
1169	char			     node_desc[64];
1170	__be64			     node_guid;
1171	u32			     local_dma_lkey;
 
 
 
 
 
1172	u8                           node_type;
1173	u8                           phys_port_cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174};
1175
 
1176struct ib_client {
1177	char  *name;
1178	void (*add)   (struct ib_device *);
1179	void (*remove)(struct ib_device *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	struct list_head list;
 
1182};
1183
1184struct ib_device *ib_alloc_device(size_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185void ib_dealloc_device(struct ib_device *device);
1186
1187int ib_register_device(struct ib_device *device,
1188		       int (*port_callback)(struct ib_device *,
1189					    u8, struct kobject *));
 
1190void ib_unregister_device(struct ib_device *device);
 
 
 
1191
1192int ib_register_client   (struct ib_client *client);
1193void ib_unregister_client(struct ib_client *client);
1194
1195void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1197			 void *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1200{
1201	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1202}
1203
1204static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1205{
1206	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1207}
1208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209/**
1210 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1211 * contains all required attributes and no attributes not allowed for
1212 * the given QP state transition.
1213 * @cur_state: Current QP state
1214 * @next_state: Next QP state
1215 * @type: QP type
1216 * @mask: Mask of supplied QP attributes
1217 *
1218 * This function is a helper function that a low-level driver's
1219 * modify_qp method can use to validate the consumer's input.  It
1220 * checks that cur_state and next_state are valid QP states, that a
1221 * transition from cur_state to next_state is allowed by the IB spec,
1222 * and that the attribute mask supplied is allowed for the transition.
1223 */
1224int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1225		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1226
1227int ib_register_event_handler  (struct ib_event_handler *event_handler);
1228int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1229void ib_dispatch_event(struct ib_event *event);
1230
1231int ib_query_device(struct ib_device *device,
1232		    struct ib_device_attr *device_attr);
 
1233
1234int ib_query_port(struct ib_device *device,
1235		  u8 port_num, struct ib_port_attr *port_attr);
1236
1237enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1238					       u8 port_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239
1240int ib_query_gid(struct ib_device *device,
1241		 u8 port_num, int index, union ib_gid *gid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242
1243int ib_query_pkey(struct ib_device *device,
1244		  u8 port_num, u16 index, u16 *pkey);
1245
1246int ib_modify_device(struct ib_device *device,
1247		     int device_modify_mask,
1248		     struct ib_device_modify *device_modify);
1249
1250int ib_modify_port(struct ib_device *device,
1251		   u8 port_num, int port_modify_mask,
1252		   struct ib_port_modify *port_modify);
1253
1254int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1255		u8 *port_num, u16 *index);
1256
1257int ib_find_pkey(struct ib_device *device,
1258		 u8 port_num, u16 pkey, u16 *index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
1260/**
1261 * ib_alloc_pd - Allocates an unused protection domain.
1262 * @device: The device on which to allocate the protection domain.
 
1263 *
1264 * A protection domain object provides an association between QPs, shared
1265 * receive queues, address handles, memory regions, and memory windows.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266 */
1267struct ib_pd *ib_alloc_pd(struct ib_device *device);
 
 
 
 
 
 
 
 
 
 
1268
1269/**
1270 * ib_dealloc_pd - Deallocates a protection domain.
1271 * @pd: The protection domain to deallocate.
 
 
 
 
 
1272 */
1273int ib_dealloc_pd(struct ib_pd *pd);
 
1274
1275/**
1276 * ib_create_ah - Creates an address handle for the given address vector.
 
1277 * @pd: The protection domain associated with the address handle.
1278 * @ah_attr: The attributes of the address vector.
 
 
1279 *
 
1280 * The address handle is used to reference a local or global destination
1281 * in all UD QP post sends.
1282 */
1283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284
1285/**
1286 * ib_init_ah_from_wc - Initializes address handle attributes from a
1287 *   work completion.
1288 * @device: Device on which the received message arrived.
1289 * @port_num: Port on which the received message arrived.
1290 * @wc: Work completion associated with the received message.
1291 * @grh: References the received global route header.  This parameter is
1292 *   ignored unless the work completion indicates that the GRH is valid.
1293 * @ah_attr: Returned attributes that can be used when creating an address
1294 *   handle for replying to the message.
 
 
 
 
 
 
 
1295 */
1296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1297		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
 
1298
1299/**
1300 * ib_create_ah_from_wc - Creates an address handle associated with the
1301 *   sender of the specified work completion.
1302 * @pd: The protection domain associated with the address handle.
1303 * @wc: Work completion information associated with a received message.
1304 * @grh: References the received global route header.  This parameter is
1305 *   ignored unless the work completion indicates that the GRH is valid.
1306 * @port_num: The outbound port number to associate with the address.
1307 *
1308 * The address handle is used to reference a local or global destination
1309 * in all UD QP post sends.
1310 */
1311struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1312				   struct ib_grh *grh, u8 port_num);
1313
1314/**
1315 * ib_modify_ah - Modifies the address vector associated with an address
1316 *   handle.
1317 * @ah: The address handle to modify.
1318 * @ah_attr: The new address vector attributes to associate with the
1319 *   address handle.
1320 */
1321int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1322
1323/**
1324 * ib_query_ah - Queries the address vector associated with an address
1325 *   handle.
1326 * @ah: The address handle to query.
1327 * @ah_attr: The address vector attributes associated with the address
1328 *   handle.
1329 */
1330int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
 
 
 
 
 
1331
1332/**
1333 * ib_destroy_ah - Destroys an address handle.
1334 * @ah: The address handle to destroy.
 
 
1335 */
1336int ib_destroy_ah(struct ib_ah *ah);
1337
1338/**
1339 * ib_create_srq - Creates a SRQ associated with the specified protection
1340 *   domain.
1341 * @pd: The protection domain associated with the SRQ.
1342 * @srq_init_attr: A list of initial attributes required to create the
1343 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1344 *   the actual capabilities of the created SRQ.
1345 *
1346 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1347 * requested size of the SRQ, and set to the actual values allocated
1348 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1349 * will always be at least as large as the requested values.
1350 */
1351struct ib_srq *ib_create_srq(struct ib_pd *pd,
1352			     struct ib_srq_init_attr *srq_init_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354/**
1355 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1356 * @srq: The SRQ to modify.
1357 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1358 *   the current values of selected SRQ attributes are returned.
1359 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1360 *   are being modified.
1361 *
1362 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1363 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1364 * the number of receives queued drops below the limit.
1365 */
1366int ib_modify_srq(struct ib_srq *srq,
1367		  struct ib_srq_attr *srq_attr,
1368		  enum ib_srq_attr_mask srq_attr_mask);
1369
1370/**
1371 * ib_query_srq - Returns the attribute list and current values for the
1372 *   specified SRQ.
1373 * @srq: The SRQ to query.
1374 * @srq_attr: The attributes of the specified SRQ.
1375 */
1376int ib_query_srq(struct ib_srq *srq,
1377		 struct ib_srq_attr *srq_attr);
1378
1379/**
1380 * ib_destroy_srq - Destroys the specified SRQ.
1381 * @srq: The SRQ to destroy.
 
1382 */
1383int ib_destroy_srq(struct ib_srq *srq);
 
 
 
 
 
 
 
 
 
 
 
 
 
1384
1385/**
1386 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1387 * @srq: The SRQ to post the work request on.
1388 * @recv_wr: A list of work requests to post on the receive queue.
1389 * @bad_recv_wr: On an immediate failure, this parameter will reference
1390 *   the work request that failed to be posted on the QP.
1391 */
1392static inline int ib_post_srq_recv(struct ib_srq *srq,
1393				   struct ib_recv_wr *recv_wr,
1394				   struct ib_recv_wr **bad_recv_wr)
1395{
1396	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
 
 
 
 
 
 
 
 
 
 
 
 
1397}
1398
1399/**
1400 * ib_create_qp - Creates a QP associated with the specified protection
1401 *   domain.
1402 * @pd: The protection domain associated with the QP.
1403 * @qp_init_attr: A list of initial attributes required to create the
1404 *   QP.  If QP creation succeeds, then the attributes are updated to
1405 *   the actual capabilities of the created QP.
 
 
 
1406 */
1407struct ib_qp *ib_create_qp(struct ib_pd *pd,
1408			   struct ib_qp_init_attr *qp_init_attr);
 
 
1409
1410/**
1411 * ib_modify_qp - Modifies the attributes for the specified QP and then
1412 *   transitions the QP to the given state.
1413 * @qp: The QP to modify.
1414 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1415 *   the current values of selected QP attributes are returned.
1416 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1417 *   are being modified.
1418 */
1419int ib_modify_qp(struct ib_qp *qp,
1420		 struct ib_qp_attr *qp_attr,
1421		 int qp_attr_mask);
1422
1423/**
1424 * ib_query_qp - Returns the attribute list and current values for the
1425 *   specified QP.
1426 * @qp: The QP to query.
1427 * @qp_attr: The attributes of the specified QP.
1428 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1429 * @qp_init_attr: Additional attributes of the selected QP.
1430 *
1431 * The qp_attr_mask may be used to limit the query to gathering only the
1432 * selected attributes.
1433 */
1434int ib_query_qp(struct ib_qp *qp,
1435		struct ib_qp_attr *qp_attr,
1436		int qp_attr_mask,
1437		struct ib_qp_init_attr *qp_init_attr);
1438
1439/**
1440 * ib_destroy_qp - Destroys the specified QP.
1441 * @qp: The QP to destroy.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442 */
1443int ib_destroy_qp(struct ib_qp *qp);
1444
1445/**
1446 * ib_post_send - Posts a list of work requests to the send queue of
1447 *   the specified QP.
1448 * @qp: The QP to post the work request on.
1449 * @send_wr: A list of work requests to post on the send queue.
1450 * @bad_send_wr: On an immediate failure, this parameter will reference
1451 *   the work request that failed to be posted on the QP.
1452 *
1453 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1454 * error is returned, the QP state shall not be affected,
1455 * ib_post_send() will return an immediate error after queueing any
1456 * earlier work requests in the list.
1457 */
1458static inline int ib_post_send(struct ib_qp *qp,
1459			       struct ib_send_wr *send_wr,
1460			       struct ib_send_wr **bad_send_wr)
1461{
1462	return qp->device->post_send(qp, send_wr, bad_send_wr);
 
 
1463}
1464
1465/**
1466 * ib_post_recv - Posts a list of work requests to the receive queue of
1467 *   the specified QP.
1468 * @qp: The QP to post the work request on.
1469 * @recv_wr: A list of work requests to post on the receive queue.
1470 * @bad_recv_wr: On an immediate failure, this parameter will reference
1471 *   the work request that failed to be posted on the QP.
1472 */
1473static inline int ib_post_recv(struct ib_qp *qp,
1474			       struct ib_recv_wr *recv_wr,
1475			       struct ib_recv_wr **bad_recv_wr)
 
 
 
 
 
 
 
 
 
 
 
 
1476{
1477	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
 
1478}
1479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480/**
1481 * ib_create_cq - Creates a CQ on the specified device.
1482 * @device: The device on which to create the CQ.
1483 * @comp_handler: A user-specified callback that is invoked when a
1484 *   completion event occurs on the CQ.
1485 * @event_handler: A user-specified callback that is invoked when an
1486 *   asynchronous event not associated with a completion occurs on the CQ.
1487 * @cq_context: Context associated with the CQ returned to the user via
1488 *   the associated completion and event handlers.
1489 * @cqe: The minimum size of the CQ.
1490 * @comp_vector - Completion vector used to signal completion events.
1491 *     Must be >= 0 and < context->num_comp_vectors.
1492 *
1493 * Users can examine the cq structure to determine the actual CQ size.
1494 */
1495struct ib_cq *ib_create_cq(struct ib_device *device,
1496			   ib_comp_handler comp_handler,
1497			   void (*event_handler)(struct ib_event *, void *),
1498			   void *cq_context, int cqe, int comp_vector);
 
 
 
 
1499
1500/**
1501 * ib_resize_cq - Modifies the capacity of the CQ.
1502 * @cq: The CQ to resize.
1503 * @cqe: The minimum size of the CQ.
1504 *
1505 * Users can examine the cq structure to determine the actual CQ size.
1506 */
1507int ib_resize_cq(struct ib_cq *cq, int cqe);
1508
1509/**
1510 * ib_modify_cq - Modifies moderation params of the CQ
1511 * @cq: The CQ to modify.
1512 * @cq_count: number of CQEs that will trigger an event
1513 * @cq_period: max period of time in usec before triggering an event
1514 *
1515 */
1516int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
 
 
 
 
 
 
 
1517
1518/**
1519 * ib_destroy_cq - Destroys the specified CQ.
1520 * @cq: The CQ to destroy.
 
 
1521 */
1522int ib_destroy_cq(struct ib_cq *cq);
 
 
 
 
 
1523
1524/**
1525 * ib_poll_cq - poll a CQ for completion(s)
1526 * @cq:the CQ being polled
1527 * @num_entries:maximum number of completions to return
1528 * @wc:array of at least @num_entries &struct ib_wc where completions
1529 *   will be returned
1530 *
1531 * Poll a CQ for (possibly multiple) completions.  If the return value
1532 * is < 0, an error occurred.  If the return value is >= 0, it is the
1533 * number of completions returned.  If the return value is
1534 * non-negative and < num_entries, then the CQ was emptied.
1535 */
1536static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1537			     struct ib_wc *wc)
1538{
1539	return cq->device->poll_cq(cq, num_entries, wc);
1540}
1541
1542/**
1543 * ib_peek_cq - Returns the number of unreaped completions currently
1544 *   on the specified CQ.
1545 * @cq: The CQ to peek.
1546 * @wc_cnt: A minimum number of unreaped completions to check for.
1547 *
1548 * If the number of unreaped completions is greater than or equal to wc_cnt,
1549 * this function returns wc_cnt, otherwise, it returns the actual number of
1550 * unreaped completions.
1551 */
1552int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1553
1554/**
1555 * ib_req_notify_cq - Request completion notification on a CQ.
1556 * @cq: The CQ to generate an event for.
1557 * @flags:
1558 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1559 *   to request an event on the next solicited event or next work
1560 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1561 *   may also be |ed in to request a hint about missed events, as
1562 *   described below.
1563 *
1564 * Return Value:
1565 *    < 0 means an error occurred while requesting notification
1566 *   == 0 means notification was requested successfully, and if
1567 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1568 *        were missed and it is safe to wait for another event.  In
1569 *        this case is it guaranteed that any work completions added
1570 *        to the CQ since the last CQ poll will trigger a completion
1571 *        notification event.
1572 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1573 *        in.  It means that the consumer must poll the CQ again to
1574 *        make sure it is empty to avoid missing an event because of a
1575 *        race between requesting notification and an entry being
1576 *        added to the CQ.  This return value means it is possible
1577 *        (but not guaranteed) that a work completion has been added
1578 *        to the CQ since the last poll without triggering a
1579 *        completion notification event.
1580 */
1581static inline int ib_req_notify_cq(struct ib_cq *cq,
1582				   enum ib_cq_notify_flags flags)
1583{
1584	return cq->device->req_notify_cq(cq, flags);
1585}
1586
1587/**
1588 * ib_req_ncomp_notif - Request completion notification when there are
1589 *   at least the specified number of unreaped completions on the CQ.
1590 * @cq: The CQ to generate an event for.
1591 * @wc_cnt: The number of unreaped completions that should be on the
1592 *   CQ before an event is generated.
 
 
 
 
1593 */
1594static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1595{
1596	return cq->device->req_ncomp_notif ?
1597		cq->device->req_ncomp_notif(cq, wc_cnt) :
1598		-ENOSYS;
1599}
1600
1601/**
1602 * ib_get_dma_mr - Returns a memory region for system memory that is
1603 *   usable for DMA.
1604 * @pd: The protection domain associated with the memory region.
1605 * @mr_access_flags: Specifies the memory access rights.
1606 *
1607 * Note that the ib_dma_*() functions defined below must be used
1608 * to create/destroy addresses used with the Lkey or Rkey returned
1609 * by ib_get_dma_mr().
1610 */
1611struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1612
1613/**
1614 * ib_dma_mapping_error - check a DMA addr for error
1615 * @dev: The device for which the dma_addr was created
1616 * @dma_addr: The DMA address to check
1617 */
1618static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1619{
1620	if (dev->dma_ops)
1621		return dev->dma_ops->mapping_error(dev, dma_addr);
1622	return dma_mapping_error(dev->dma_device, dma_addr);
1623}
1624
1625/**
1626 * ib_dma_map_single - Map a kernel virtual address to DMA address
1627 * @dev: The device for which the dma_addr is to be created
1628 * @cpu_addr: The kernel virtual address
1629 * @size: The size of the region in bytes
1630 * @direction: The direction of the DMA
1631 */
1632static inline u64 ib_dma_map_single(struct ib_device *dev,
1633				    void *cpu_addr, size_t size,
1634				    enum dma_data_direction direction)
1635{
1636	if (dev->dma_ops)
1637		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1638	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1639}
1640
1641/**
1642 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1643 * @dev: The device for which the DMA address was created
1644 * @addr: The DMA address
1645 * @size: The size of the region in bytes
1646 * @direction: The direction of the DMA
1647 */
1648static inline void ib_dma_unmap_single(struct ib_device *dev,
1649				       u64 addr, size_t size,
1650				       enum dma_data_direction direction)
1651{
1652	if (dev->dma_ops)
1653		dev->dma_ops->unmap_single(dev, addr, size, direction);
1654	else
1655		dma_unmap_single(dev->dma_device, addr, size, direction);
1656}
1657
1658static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1659					  void *cpu_addr, size_t size,
1660					  enum dma_data_direction direction,
1661					  struct dma_attrs *attrs)
1662{
1663	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1664				    direction, attrs);
1665}
1666
1667static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1668					     u64 addr, size_t size,
1669					     enum dma_data_direction direction,
1670					     struct dma_attrs *attrs)
1671{
1672	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1673				      direction, attrs);
1674}
1675
1676/**
1677 * ib_dma_map_page - Map a physical page to DMA address
1678 * @dev: The device for which the dma_addr is to be created
1679 * @page: The page to be mapped
1680 * @offset: The offset within the page
1681 * @size: The size of the region in bytes
1682 * @direction: The direction of the DMA
1683 */
1684static inline u64 ib_dma_map_page(struct ib_device *dev,
1685				  struct page *page,
1686				  unsigned long offset,
1687				  size_t size,
1688					 enum dma_data_direction direction)
1689{
1690	if (dev->dma_ops)
1691		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1692	return dma_map_page(dev->dma_device, page, offset, size, direction);
1693}
1694
1695/**
1696 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1697 * @dev: The device for which the DMA address was created
1698 * @addr: The DMA address
1699 * @size: The size of the region in bytes
1700 * @direction: The direction of the DMA
1701 */
1702static inline void ib_dma_unmap_page(struct ib_device *dev,
1703				     u64 addr, size_t size,
1704				     enum dma_data_direction direction)
1705{
1706	if (dev->dma_ops)
1707		dev->dma_ops->unmap_page(dev, addr, size, direction);
1708	else
1709		dma_unmap_page(dev->dma_device, addr, size, direction);
1710}
1711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712/**
1713 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1714 * @dev: The device for which the DMA addresses are to be created
1715 * @sg: The array of scatter/gather entries
1716 * @nents: The number of scatter/gather entries
1717 * @direction: The direction of the DMA
1718 */
1719static inline int ib_dma_map_sg(struct ib_device *dev,
1720				struct scatterlist *sg, int nents,
1721				enum dma_data_direction direction)
1722{
1723	if (dev->dma_ops)
1724		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1725	return dma_map_sg(dev->dma_device, sg, nents, direction);
1726}
1727
1728/**
1729 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1730 * @dev: The device for which the DMA addresses were created
1731 * @sg: The array of scatter/gather entries
1732 * @nents: The number of scatter/gather entries
1733 * @direction: The direction of the DMA
1734 */
1735static inline void ib_dma_unmap_sg(struct ib_device *dev,
1736				   struct scatterlist *sg, int nents,
1737				   enum dma_data_direction direction)
1738{
1739	if (dev->dma_ops)
1740		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1741	else
1742		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1743}
1744
1745static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1746				      struct scatterlist *sg, int nents,
1747				      enum dma_data_direction direction,
1748				      struct dma_attrs *attrs)
1749{
1750	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1751}
1752
1753static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1754					 struct scatterlist *sg, int nents,
1755					 enum dma_data_direction direction,
1756					 struct dma_attrs *attrs)
1757{
1758	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1759}
1760/**
1761 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1762 * @dev: The device for which the DMA addresses were created
1763 * @sg: The scatter/gather entry
1764 */
1765static inline u64 ib_sg_dma_address(struct ib_device *dev,
1766				    struct scatterlist *sg)
1767{
1768	if (dev->dma_ops)
1769		return dev->dma_ops->dma_address(dev, sg);
1770	return sg_dma_address(sg);
1771}
1772
1773/**
1774 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1775 * @dev: The device for which the DMA addresses were created
1776 * @sg: The scatter/gather entry
1777 */
1778static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1779					 struct scatterlist *sg)
1780{
1781	if (dev->dma_ops)
1782		return dev->dma_ops->dma_len(dev, sg);
1783	return sg_dma_len(sg);
1784}
1785
1786/**
1787 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1788 * @dev: The device for which the DMA address was created
1789 * @addr: The DMA address
1790 * @size: The size of the region in bytes
1791 * @dir: The direction of the DMA
1792 */
1793static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1794					      u64 addr,
1795					      size_t size,
1796					      enum dma_data_direction dir)
1797{
1798	if (dev->dma_ops)
1799		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1800	else
1801		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1802}
1803
1804/**
1805 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1806 * @dev: The device for which the DMA address was created
1807 * @addr: The DMA address
1808 * @size: The size of the region in bytes
1809 * @dir: The direction of the DMA
1810 */
1811static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1812						 u64 addr,
1813						 size_t size,
1814						 enum dma_data_direction dir)
1815{
1816	if (dev->dma_ops)
1817		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1818	else
1819		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1820}
1821
 
 
 
 
 
 
 
 
 
1822/**
1823 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1824 * @dev: The device for which the DMA address is requested
1825 * @size: The size of the region to allocate in bytes
1826 * @dma_handle: A pointer for returning the DMA address of the region
1827 * @flag: memory allocator flags
1828 */
1829static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1830					   size_t size,
1831					   u64 *dma_handle,
1832					   gfp_t flag)
1833{
1834	if (dev->dma_ops)
1835		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1836	else {
1837		dma_addr_t handle;
1838		void *ret;
1839
1840		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1841		*dma_handle = handle;
1842		return ret;
1843	}
1844}
1845
 
 
 
 
 
 
 
1846/**
1847 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1848 * @dev: The device for which the DMA addresses were allocated
1849 * @size: The size of the region
1850 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1851 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1852 */
1853static inline void ib_dma_free_coherent(struct ib_device *dev,
1854					size_t size, void *cpu_addr,
1855					u64 dma_handle)
1856{
1857	if (dev->dma_ops)
1858		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1859	else
1860		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1861}
1862
1863/**
1864 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1865 *   by an HCA.
1866 * @pd: The protection domain associated assigned to the registered region.
1867 * @phys_buf_array: Specifies a list of physical buffers to use in the
1868 *   memory region.
1869 * @num_phys_buf: Specifies the size of the phys_buf_array.
1870 * @mr_access_flags: Specifies the memory access rights.
1871 * @iova_start: The offset of the region's starting I/O virtual address.
1872 */
1873struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1874			     struct ib_phys_buf *phys_buf_array,
1875			     int num_phys_buf,
1876			     int mr_access_flags,
1877			     u64 *iova_start);
1878
1879/**
1880 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1881 *   Conceptually, this call performs the functions deregister memory region
1882 *   followed by register physical memory region.  Where possible,
1883 *   resources are reused instead of deallocated and reallocated.
1884 * @mr: The memory region to modify.
1885 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1886 *   properties of the memory region are being modified.
1887 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1888 *   the new protection domain to associated with the memory region,
1889 *   otherwise, this parameter is ignored.
1890 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1891 *   field specifies a list of physical buffers to use in the new
1892 *   translation, otherwise, this parameter is ignored.
1893 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1894 *   field specifies the size of the phys_buf_array, otherwise, this
1895 *   parameter is ignored.
1896 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1897 *   field specifies the new memory access rights, otherwise, this
1898 *   parameter is ignored.
1899 * @iova_start: The offset of the region's starting I/O virtual address.
1900 */
1901int ib_rereg_phys_mr(struct ib_mr *mr,
1902		     int mr_rereg_mask,
1903		     struct ib_pd *pd,
1904		     struct ib_phys_buf *phys_buf_array,
1905		     int num_phys_buf,
1906		     int mr_access_flags,
1907		     u64 *iova_start);
1908
1909/**
1910 * ib_query_mr - Retrieves information about a specific memory region.
1911 * @mr: The memory region to retrieve information about.
1912 * @mr_attr: The attributes of the specified memory region.
1913 */
1914int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
 
 
 
 
1915
1916/**
1917 * ib_dereg_mr - Deregisters a memory region and removes it from the
1918 *   HCA translation table.
1919 * @mr: The memory region to deregister.
 
 
 
 
 
 
 
1920 */
1921int ib_dereg_mr(struct ib_mr *mr);
1922
1923/**
1924 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1925 *   IB_WR_FAST_REG_MR send work request.
1926 * @pd: The protection domain associated with the region.
1927 * @max_page_list_len: requested max physical buffer list length to be
1928 *   used with fast register work requests for this MR.
1929 */
1930struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931
1932/**
1933 * ib_alloc_fast_reg_page_list - Allocates a page list array
1934 * @device - ib device pointer.
1935 * @page_list_len - size of the page list array to be allocated.
1936 *
1937 * This allocates and returns a struct ib_fast_reg_page_list * and a
1938 * page_list array that is at least page_list_len in size.  The actual
1939 * size is returned in max_page_list_len.  The caller is responsible
1940 * for initializing the contents of the page_list array before posting
1941 * a send work request with the IB_WC_FAST_REG_MR opcode.
1942 *
1943 * The page_list array entries must be translated using one of the
1944 * ib_dma_*() functions just like the addresses passed to
1945 * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
1946 * ib_fast_reg_page_list must not be modified by the caller until the
1947 * IB_WC_FAST_REG_MR work request completes.
1948 */
1949struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1950				struct ib_device *device, int page_list_len);
1951
1952/**
1953 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1954 *   page list array.
1955 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
 
 
 
 
 
 
 
 
1956 */
1957void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1958
1959/**
1960 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1961 *   R_Key and L_Key.
1962 * @mr - struct ib_mr pointer to be updated.
1963 * @newkey - new key to be used.
1964 */
1965static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
 
1966{
1967	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1968	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
 
 
 
 
 
 
 
1969}
1970
1971/**
1972 * ib_alloc_mw - Allocates a memory window.
1973 * @pd: The protection domain associated with the memory window.
 
 
 
 
 
1974 */
1975struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
 
 
 
 
1976
1977/**
1978 * ib_bind_mw - Posts a work request to the send queue of the specified
1979 *   QP, which binds the memory window to the given address range and
1980 *   remote access attributes.
1981 * @qp: QP to post the bind work request on.
1982 * @mw: The memory window to bind.
1983 * @mw_bind: Specifies information about the memory window, including
1984 *   its address range, remote access rights, and associated memory region.
1985 */
1986static inline int ib_bind_mw(struct ib_qp *qp,
1987			     struct ib_mw *mw,
1988			     struct ib_mw_bind *mw_bind)
1989{
1990	/* XXX reference counting in corresponding MR? */
1991	return mw->device->bind_mw ?
1992		mw->device->bind_mw(qp, mw, mw_bind) :
1993		-ENOSYS;
1994}
1995
1996/**
1997 * ib_dealloc_mw - Deallocates a memory window.
1998 * @mw: The memory window to deallocate.
 
 
 
 
 
 
1999 */
2000int ib_dealloc_mw(struct ib_mw *mw);
 
 
 
 
 
 
 
 
 
2001
2002/**
2003 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2004 * @pd: The protection domain associated with the unmapped region.
2005 * @mr_access_flags: Specifies the memory access rights.
2006 * @fmr_attr: Attributes of the unmapped region.
2007 *
2008 * A fast memory region must be mapped before it can be used as part of
2009 * a work request.
2010 */
2011struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2012			    int mr_access_flags,
2013			    struct ib_fmr_attr *fmr_attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
2014
2015/**
2016 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2017 * @fmr: The fast memory region to associate with the pages.
2018 * @page_list: An array of physical pages to map to the fast memory region.
2019 * @list_len: The number of pages in page_list.
2020 * @iova: The I/O virtual address to use with the mapped region.
 
2021 */
2022static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2023				  u64 *page_list, int list_len,
2024				  u64 iova)
2025{
2026	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
 
 
 
2027}
2028
2029/**
2030 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2031 * @fmr_list: A linked list of fast memory regions to unmap.
2032 */
2033int ib_unmap_fmr(struct list_head *fmr_list);
 
 
 
 
 
 
 
2034
2035/**
2036 * ib_dealloc_fmr - Deallocates a fast memory region.
2037 * @fmr: The fast memory region to deallocate.
 
 
 
 
2038 */
2039int ib_dealloc_fmr(struct ib_fmr *fmr);
 
 
 
 
 
 
 
 
2040
2041/**
2042 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2043 * @qp: QP to attach to the multicast group.  The QP must be type
2044 *   IB_QPT_UD.
2045 * @gid: Multicast group GID.
2046 * @lid: Multicast group LID in host byte order.
2047 *
2048 * In order to send and receive multicast packets, subnet
2049 * administration must have created the multicast group and configured
2050 * the fabric appropriately.  The port associated with the specified
2051 * QP must also be a member of the multicast group.
2052 */
2053int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
 
 
 
 
2054
2055/**
2056 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2057 * @qp: QP to detach from the multicast group.
2058 * @gid: Multicast group GID.
2059 * @lid: Multicast group LID in host byte order.
 
 
 
 
 
 
 
 
 
2060 */
2061int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 
 
 
 
 
 
 
 
2062
 
 
2063#endif /* IB_VERBS_H */
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
   2/*
   3 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   4 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   5 * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   7 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   9 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#ifndef IB_VERBS_H
  13#define IB_VERBS_H
  14
  15#include <linux/ethtool.h>
  16#include <linux/types.h>
  17#include <linux/device.h>
 
  18#include <linux/dma-mapping.h>
  19#include <linux/kref.h>
  20#include <linux/list.h>
  21#include <linux/rwsem.h>
 
  22#include <linux/workqueue.h>
  23#include <linux/irq_poll.h>
  24#include <uapi/linux/if_ether.h>
  25#include <net/ipv6.h>
  26#include <net/ip.h>
  27#include <linux/string.h>
  28#include <linux/slab.h>
  29#include <linux/netdevice.h>
  30#include <linux/refcount.h>
  31#include <linux/if_link.h>
  32#include <linux/atomic.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/uaccess.h>
  35#include <linux/cgroup_rdma.h>
  36#include <linux/irqflags.h>
  37#include <linux/preempt.h>
  38#include <linux/dim.h>
  39#include <uapi/rdma/ib_user_verbs.h>
  40#include <rdma/rdma_counter.h>
  41#include <rdma/restrack.h>
  42#include <rdma/signature.h>
  43#include <uapi/rdma/rdma_user_ioctl.h>
  44#include <uapi/rdma/ib_user_ioctl_verbs.h>
  45
  46#define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
  47
  48struct ib_umem_odp;
  49struct ib_uqp_object;
  50struct ib_usrq_object;
  51struct ib_uwq_object;
  52struct rdma_cm_id;
  53struct ib_port;
  54struct hw_stats_device_data;
  55
  56extern struct workqueue_struct *ib_wq;
  57extern struct workqueue_struct *ib_comp_wq;
  58extern struct workqueue_struct *ib_comp_unbound_wq;
  59
  60struct ib_ucq_object;
  61
  62__printf(3, 4) __cold
  63void ibdev_printk(const char *level, const struct ib_device *ibdev,
  64		  const char *format, ...);
  65__printf(2, 3) __cold
  66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
  67__printf(2, 3) __cold
  68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
  69__printf(2, 3) __cold
  70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
  71__printf(2, 3) __cold
  72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
  73__printf(2, 3) __cold
  74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
  75__printf(2, 3) __cold
  76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
  77__printf(2, 3) __cold
  78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
  79
  80#if defined(CONFIG_DYNAMIC_DEBUG) || \
  81	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
  82#define ibdev_dbg(__dev, format, args...)                       \
  83	dynamic_ibdev_dbg(__dev, format, ##args)
  84#else
  85__printf(2, 3) __cold
  86static inline
  87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
  88#endif
  89
  90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
  91do {                                                                    \
  92	static DEFINE_RATELIMIT_STATE(_rs,                              \
  93				      DEFAULT_RATELIMIT_INTERVAL,       \
  94				      DEFAULT_RATELIMIT_BURST);         \
  95	if (__ratelimit(&_rs))                                          \
  96		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
  97} while (0)
  98
  99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
 100	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
 101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
 102	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
 103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
 104	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
 105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
 106	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
 107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
 108	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
 109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
 110	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
 111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
 112	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
 113
 114#if defined(CONFIG_DYNAMIC_DEBUG) || \
 115	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
 117#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
 118do {                                                                    \
 119	static DEFINE_RATELIMIT_STATE(_rs,                              \
 120				      DEFAULT_RATELIMIT_INTERVAL,       \
 121				      DEFAULT_RATELIMIT_BURST);         \
 122	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
 123	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
 124		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
 125				    ##__VA_ARGS__);                     \
 126} while (0)
 127#else
 128__printf(2, 3) __cold
 129static inline
 130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
 131#endif
 132
 133union ib_gid {
 134	u8	raw[16];
 135	struct {
 136		__be64	subnet_prefix;
 137		__be64	interface_id;
 138	} global;
 139};
 140
 141extern union ib_gid zgid;
 142
 143enum ib_gid_type {
 144	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
 145	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
 146	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
 147	IB_GID_TYPE_SIZE
 148};
 149
 150#define ROCE_V2_UDP_DPORT      4791
 151struct ib_gid_attr {
 152	struct net_device __rcu	*ndev;
 153	struct ib_device	*device;
 154	union ib_gid		gid;
 155	enum ib_gid_type	gid_type;
 156	u16			index;
 157	u32			port_num;
 158};
 159
 160enum {
 161	/* set the local administered indication */
 162	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
 163};
 164
 165enum rdma_transport_type {
 166	RDMA_TRANSPORT_IB,
 167	RDMA_TRANSPORT_IWARP,
 168	RDMA_TRANSPORT_USNIC,
 169	RDMA_TRANSPORT_USNIC_UDP,
 170	RDMA_TRANSPORT_UNSPECIFIED,
 171};
 172
 173enum rdma_protocol_type {
 174	RDMA_PROTOCOL_IB,
 175	RDMA_PROTOCOL_IBOE,
 176	RDMA_PROTOCOL_IWARP,
 177	RDMA_PROTOCOL_USNIC_UDP
 178};
 179
 180__attribute_const__ enum rdma_transport_type
 181rdma_node_get_transport(unsigned int node_type);
 182
 183enum rdma_network_type {
 184	RDMA_NETWORK_IB,
 185	RDMA_NETWORK_ROCE_V1,
 186	RDMA_NETWORK_IPV4,
 187	RDMA_NETWORK_IPV6
 188};
 189
 190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 191{
 192	if (network_type == RDMA_NETWORK_IPV4 ||
 193	    network_type == RDMA_NETWORK_IPV6)
 194		return IB_GID_TYPE_ROCE_UDP_ENCAP;
 195	else if (network_type == RDMA_NETWORK_ROCE_V1)
 196		return IB_GID_TYPE_ROCE;
 197	else
 198		return IB_GID_TYPE_IB;
 199}
 200
 201static inline enum rdma_network_type
 202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
 203{
 204	if (attr->gid_type == IB_GID_TYPE_IB)
 205		return RDMA_NETWORK_IB;
 206
 207	if (attr->gid_type == IB_GID_TYPE_ROCE)
 208		return RDMA_NETWORK_ROCE_V1;
 209
 210	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
 211		return RDMA_NETWORK_IPV4;
 212	else
 213		return RDMA_NETWORK_IPV6;
 214}
 215
 216enum rdma_link_layer {
 217	IB_LINK_LAYER_UNSPECIFIED,
 218	IB_LINK_LAYER_INFINIBAND,
 219	IB_LINK_LAYER_ETHERNET,
 220};
 221
 222enum ib_device_cap_flags {
 223	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
 224	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
 225	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
 226	IB_DEVICE_RAW_MULTI			= (1 << 3),
 227	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
 228	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
 229	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
 230	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
 231	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
 232	/* Not in use, former INIT_TYPE		= (1 << 9),*/
 233	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
 234	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
 235	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
 236	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
 237	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
 238
 239	/*
 240	 * This device supports a per-device lkey or stag that can be
 241	 * used without performing a memory registration for the local
 242	 * memory.  Note that ULPs should never check this flag, but
 243	 * instead of use the local_dma_lkey flag in the ib_pd structure,
 244	 * which will always contain a usable lkey.
 245	 */
 246	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
 247	/* Reserved, old SEND_W_INV		= (1 << 16),*/
 248	IB_DEVICE_MEM_WINDOW			= (1 << 17),
 249	/*
 250	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
 251	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
 252	 * messages and can verify the validity of checksum for
 253	 * incoming messages.  Setting this flag implies that the
 254	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 255	 */
 256	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
 257	IB_DEVICE_UD_TSO			= (1 << 19),
 258	IB_DEVICE_XRC				= (1 << 20),
 259
 260	/*
 261	 * This device supports the IB "base memory management extension",
 262	 * which includes support for fast registrations (IB_WR_REG_MR,
 263	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 264	 * also be set by any iWarp device which must support FRs to comply
 265	 * to the iWarp verbs spec.  iWarp devices also support the
 266	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 267	 * stag.
 268	 */
 269	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
 270	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
 271	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
 272	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
 273	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
 274	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
 275	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
 276	/*
 277	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
 278	 * support execution of WQEs that involve synchronization
 279	 * of I/O operations with single completion queue managed
 280	 * by hardware.
 281	 */
 282	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
 283	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
 284	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
 285	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
 286	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
 287	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
 288	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
 289	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
 290	IB_DEVICE_RDMA_NETDEV_OPA		= (1ULL << 35),
 291	/* The device supports padding incoming writes to cacheline. */
 292	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
 293	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
 294};
 295
 296enum ib_atomic_cap {
 297	IB_ATOMIC_NONE,
 298	IB_ATOMIC_HCA,
 299	IB_ATOMIC_GLOB
 300};
 301
 302enum ib_odp_general_cap_bits {
 303	IB_ODP_SUPPORT		= 1 << 0,
 304	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
 305};
 306
 307enum ib_odp_transport_cap_bits {
 308	IB_ODP_SUPPORT_SEND	= 1 << 0,
 309	IB_ODP_SUPPORT_RECV	= 1 << 1,
 310	IB_ODP_SUPPORT_WRITE	= 1 << 2,
 311	IB_ODP_SUPPORT_READ	= 1 << 3,
 312	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
 313	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
 314};
 315
 316struct ib_odp_caps {
 317	uint64_t general_caps;
 318	struct {
 319		uint32_t  rc_odp_caps;
 320		uint32_t  uc_odp_caps;
 321		uint32_t  ud_odp_caps;
 322		uint32_t  xrc_odp_caps;
 323	} per_transport_caps;
 324};
 325
 326struct ib_rss_caps {
 327	/* Corresponding bit will be set if qp type from
 328	 * 'enum ib_qp_type' is supported, e.g.
 329	 * supported_qpts |= 1 << IB_QPT_UD
 330	 */
 331	u32 supported_qpts;
 332	u32 max_rwq_indirection_tables;
 333	u32 max_rwq_indirection_table_size;
 334};
 335
 336enum ib_tm_cap_flags {
 337	/*  Support tag matching with rendezvous offload for RC transport */
 338	IB_TM_CAP_RNDV_RC = 1 << 0,
 339};
 340
 341struct ib_tm_caps {
 342	/* Max size of RNDV header */
 343	u32 max_rndv_hdr_size;
 344	/* Max number of entries in tag matching list */
 345	u32 max_num_tags;
 346	/* From enum ib_tm_cap_flags */
 347	u32 flags;
 348	/* Max number of outstanding list operations */
 349	u32 max_ops;
 350	/* Max number of SGE in tag matching entry */
 351	u32 max_sge;
 352};
 353
 354struct ib_cq_init_attr {
 355	unsigned int	cqe;
 356	u32		comp_vector;
 357	u32		flags;
 358};
 359
 360enum ib_cq_attr_mask {
 361	IB_CQ_MODERATE = 1 << 0,
 362};
 363
 364struct ib_cq_caps {
 365	u16     max_cq_moderation_count;
 366	u16     max_cq_moderation_period;
 367};
 368
 369struct ib_dm_mr_attr {
 370	u64		length;
 371	u64		offset;
 372	u32		access_flags;
 373};
 374
 375struct ib_dm_alloc_attr {
 376	u64	length;
 377	u32	alignment;
 378	u32	flags;
 379};
 380
 381struct ib_device_attr {
 382	u64			fw_ver;
 383	__be64			sys_image_guid;
 384	u64			max_mr_size;
 385	u64			page_size_cap;
 386	u32			vendor_id;
 387	u32			vendor_part_id;
 388	u32			hw_ver;
 389	int			max_qp;
 390	int			max_qp_wr;
 391	u64			device_cap_flags;
 392	int			max_send_sge;
 393	int			max_recv_sge;
 394	int			max_sge_rd;
 395	int			max_cq;
 396	int			max_cqe;
 397	int			max_mr;
 398	int			max_pd;
 399	int			max_qp_rd_atom;
 400	int			max_ee_rd_atom;
 401	int			max_res_rd_atom;
 402	int			max_qp_init_rd_atom;
 403	int			max_ee_init_rd_atom;
 404	enum ib_atomic_cap	atomic_cap;
 405	enum ib_atomic_cap	masked_atomic_cap;
 406	int			max_ee;
 407	int			max_rdd;
 408	int			max_mw;
 409	int			max_raw_ipv6_qp;
 410	int			max_raw_ethy_qp;
 411	int			max_mcast_grp;
 412	int			max_mcast_qp_attach;
 413	int			max_total_mcast_qp_attach;
 414	int			max_ah;
 
 
 415	int			max_srq;
 416	int			max_srq_wr;
 417	int			max_srq_sge;
 418	unsigned int		max_fast_reg_page_list_len;
 419	unsigned int		max_pi_fast_reg_page_list_len;
 420	u16			max_pkeys;
 421	u8			local_ca_ack_delay;
 422	int			sig_prot_cap;
 423	int			sig_guard_cap;
 424	struct ib_odp_caps	odp_caps;
 425	uint64_t		timestamp_mask;
 426	uint64_t		hca_core_clock; /* in KHZ */
 427	struct ib_rss_caps	rss_caps;
 428	u32			max_wq_type_rq;
 429	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
 430	struct ib_tm_caps	tm_caps;
 431	struct ib_cq_caps       cq_caps;
 432	u64			max_dm_size;
 433	/* Max entries for sgl for optimized performance per READ */
 434	u32			max_sgl_rd;
 435};
 436
 437enum ib_mtu {
 438	IB_MTU_256  = 1,
 439	IB_MTU_512  = 2,
 440	IB_MTU_1024 = 3,
 441	IB_MTU_2048 = 4,
 442	IB_MTU_4096 = 5
 443};
 444
 445enum opa_mtu {
 446	OPA_MTU_8192 = 6,
 447	OPA_MTU_10240 = 7
 448};
 449
 450static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 451{
 452	switch (mtu) {
 453	case IB_MTU_256:  return  256;
 454	case IB_MTU_512:  return  512;
 455	case IB_MTU_1024: return 1024;
 456	case IB_MTU_2048: return 2048;
 457	case IB_MTU_4096: return 4096;
 458	default: 	  return -1;
 459	}
 460}
 461
 462static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
 463{
 464	if (mtu >= 4096)
 465		return IB_MTU_4096;
 466	else if (mtu >= 2048)
 467		return IB_MTU_2048;
 468	else if (mtu >= 1024)
 469		return IB_MTU_1024;
 470	else if (mtu >= 512)
 471		return IB_MTU_512;
 472	else
 473		return IB_MTU_256;
 474}
 475
 476static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
 477{
 478	switch (mtu) {
 479	case OPA_MTU_8192:
 480		return 8192;
 481	case OPA_MTU_10240:
 482		return 10240;
 483	default:
 484		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
 485	}
 486}
 487
 488static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
 489{
 490	if (mtu >= 10240)
 491		return OPA_MTU_10240;
 492	else if (mtu >= 8192)
 493		return OPA_MTU_8192;
 494	else
 495		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
 496}
 497
 498enum ib_port_state {
 499	IB_PORT_NOP		= 0,
 500	IB_PORT_DOWN		= 1,
 501	IB_PORT_INIT		= 2,
 502	IB_PORT_ARMED		= 3,
 503	IB_PORT_ACTIVE		= 4,
 504	IB_PORT_ACTIVE_DEFER	= 5
 505};
 506
 507enum ib_port_phys_state {
 508	IB_PORT_PHYS_STATE_SLEEP = 1,
 509	IB_PORT_PHYS_STATE_POLLING = 2,
 510	IB_PORT_PHYS_STATE_DISABLED = 3,
 511	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
 512	IB_PORT_PHYS_STATE_LINK_UP = 5,
 513	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
 514	IB_PORT_PHYS_STATE_PHY_TEST = 7,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515};
 516
 517enum ib_port_width {
 518	IB_WIDTH_1X	= 1,
 519	IB_WIDTH_2X	= 16,
 520	IB_WIDTH_4X	= 2,
 521	IB_WIDTH_8X	= 4,
 522	IB_WIDTH_12X	= 8
 523};
 524
 525static inline int ib_width_enum_to_int(enum ib_port_width width)
 526{
 527	switch (width) {
 528	case IB_WIDTH_1X:  return  1;
 529	case IB_WIDTH_2X:  return  2;
 530	case IB_WIDTH_4X:  return  4;
 531	case IB_WIDTH_8X:  return  8;
 532	case IB_WIDTH_12X: return 12;
 533	default: 	  return -1;
 534	}
 535}
 536
 537enum ib_port_speed {
 538	IB_SPEED_SDR	= 1,
 539	IB_SPEED_DDR	= 2,
 540	IB_SPEED_QDR	= 4,
 541	IB_SPEED_FDR10	= 8,
 542	IB_SPEED_FDR	= 16,
 543	IB_SPEED_EDR	= 32,
 544	IB_SPEED_HDR	= 64,
 545	IB_SPEED_NDR	= 128,
 546};
 547
 548/**
 549 * struct rdma_hw_stats
 550 * @lock - Mutex to protect parallel write access to lifespan and values
 551 *    of counters, which are 64bits and not guaranteeed to be written
 552 *    atomicaly on 32bits systems.
 553 * @timestamp - Used by the core code to track when the last update was
 554 * @lifespan - Used by the core code to determine how old the counters
 555 *   should be before being updated again.  Stored in jiffies, defaults
 556 *   to 10 milliseconds, drivers can override the default be specifying
 557 *   their own value during their allocation routine.
 558 * @name - Array of pointers to static names used for the counters in
 559 *   directory.
 560 * @num_counters - How many hardware counters there are.  If name is
 561 *   shorter than this number, a kernel oops will result.  Driver authors
 562 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 563 *   in their code to prevent this.
 564 * @value - Array of u64 counters that are accessed by the sysfs code and
 565 *   filled in by the drivers get_stats routine
 566 */
 567struct rdma_hw_stats {
 568	struct mutex	lock; /* Protect lifespan and values[] */
 569	unsigned long	timestamp;
 570	unsigned long	lifespan;
 571	const char * const *names;
 572	int		num_counters;
 573	u64		value[];
 574};
 575
 576#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
 577/**
 578 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
 579 *   for drivers.
 580 * @names - Array of static const char *
 581 * @num_counters - How many elements in array
 582 * @lifespan - How many milliseconds between updates
 583 */
 584static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
 585		const char * const *names, int num_counters,
 586		unsigned long lifespan)
 587{
 588	struct rdma_hw_stats *stats;
 589
 590	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
 591			GFP_KERNEL);
 592	if (!stats)
 593		return NULL;
 594	stats->names = names;
 595	stats->num_counters = num_counters;
 596	stats->lifespan = msecs_to_jiffies(lifespan);
 597
 598	return stats;
 599}
 600
 601
 602/* Define bits for the various functionality this port needs to be supported by
 603 * the core.
 604 */
 605/* Management                           0x00000FFF */
 606#define RDMA_CORE_CAP_IB_MAD            0x00000001
 607#define RDMA_CORE_CAP_IB_SMI            0x00000002
 608#define RDMA_CORE_CAP_IB_CM             0x00000004
 609#define RDMA_CORE_CAP_IW_CM             0x00000008
 610#define RDMA_CORE_CAP_IB_SA             0x00000010
 611#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 612
 613/* Address format                       0x000FF000 */
 614#define RDMA_CORE_CAP_AF_IB             0x00001000
 615#define RDMA_CORE_CAP_ETH_AH            0x00002000
 616#define RDMA_CORE_CAP_OPA_AH            0x00004000
 617#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
 618
 619/* Protocol                             0xFFF00000 */
 620#define RDMA_CORE_CAP_PROT_IB           0x00100000
 621#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 622#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 623#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 624#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
 625#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
 626
 627#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
 628					| RDMA_CORE_CAP_PROT_ROCE     \
 629					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
 630
 631#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 632					| RDMA_CORE_CAP_IB_MAD \
 633					| RDMA_CORE_CAP_IB_SMI \
 634					| RDMA_CORE_CAP_IB_CM  \
 635					| RDMA_CORE_CAP_IB_SA  \
 636					| RDMA_CORE_CAP_AF_IB)
 637#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 638					| RDMA_CORE_CAP_IB_MAD  \
 639					| RDMA_CORE_CAP_IB_CM   \
 640					| RDMA_CORE_CAP_AF_IB   \
 641					| RDMA_CORE_CAP_ETH_AH)
 642#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
 643					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 644					| RDMA_CORE_CAP_IB_MAD  \
 645					| RDMA_CORE_CAP_IB_CM   \
 646					| RDMA_CORE_CAP_AF_IB   \
 647					| RDMA_CORE_CAP_ETH_AH)
 648#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 649					| RDMA_CORE_CAP_IW_CM)
 650#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 651					| RDMA_CORE_CAP_OPA_MAD)
 652
 653#define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
 654
 655#define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
 656
 657struct ib_port_attr {
 658	u64			subnet_prefix;
 659	enum ib_port_state	state;
 660	enum ib_mtu		max_mtu;
 661	enum ib_mtu		active_mtu;
 662	u32                     phys_mtu;
 663	int			gid_tbl_len;
 664	unsigned int		ip_gids:1;
 665	/* This is the value from PortInfo CapabilityMask, defined by IBA */
 666	u32			port_cap_flags;
 667	u32			max_msg_sz;
 668	u32			bad_pkey_cntr;
 669	u32			qkey_viol_cntr;
 670	u16			pkey_tbl_len;
 671	u32			sm_lid;
 672	u32			lid;
 673	u8			lmc;
 674	u8			max_vl_num;
 675	u8			sm_sl;
 676	u8			subnet_timeout;
 677	u8			init_type_reply;
 678	u8			active_width;
 679	u16			active_speed;
 680	u8                      phys_state;
 681	u16			port_cap_flags2;
 682};
 683
 684enum ib_device_modify_flags {
 685	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
 686	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
 687};
 688
 689#define IB_DEVICE_NODE_DESC_MAX 64
 690
 691struct ib_device_modify {
 692	u64	sys_image_guid;
 693	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
 694};
 695
 696enum ib_port_modify_flags {
 697	IB_PORT_SHUTDOWN		= 1,
 698	IB_PORT_INIT_TYPE		= (1<<2),
 699	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
 700	IB_PORT_OPA_MASK_CHG		= (1<<4)
 701};
 702
 703struct ib_port_modify {
 704	u32	set_port_cap_mask;
 705	u32	clr_port_cap_mask;
 706	u8	init_type;
 707};
 708
 709enum ib_event_type {
 710	IB_EVENT_CQ_ERR,
 711	IB_EVENT_QP_FATAL,
 712	IB_EVENT_QP_REQ_ERR,
 713	IB_EVENT_QP_ACCESS_ERR,
 714	IB_EVENT_COMM_EST,
 715	IB_EVENT_SQ_DRAINED,
 716	IB_EVENT_PATH_MIG,
 717	IB_EVENT_PATH_MIG_ERR,
 718	IB_EVENT_DEVICE_FATAL,
 719	IB_EVENT_PORT_ACTIVE,
 720	IB_EVENT_PORT_ERR,
 721	IB_EVENT_LID_CHANGE,
 722	IB_EVENT_PKEY_CHANGE,
 723	IB_EVENT_SM_CHANGE,
 724	IB_EVENT_SRQ_ERR,
 725	IB_EVENT_SRQ_LIMIT_REACHED,
 726	IB_EVENT_QP_LAST_WQE_REACHED,
 727	IB_EVENT_CLIENT_REREGISTER,
 728	IB_EVENT_GID_CHANGE,
 729	IB_EVENT_WQ_FATAL,
 730};
 731
 732const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 733
 734struct ib_event {
 735	struct ib_device	*device;
 736	union {
 737		struct ib_cq	*cq;
 738		struct ib_qp	*qp;
 739		struct ib_srq	*srq;
 740		struct ib_wq	*wq;
 741		u32		port_num;
 742	} element;
 743	enum ib_event_type	event;
 744};
 745
 746struct ib_event_handler {
 747	struct ib_device *device;
 748	void            (*handler)(struct ib_event_handler *, struct ib_event *);
 749	struct list_head  list;
 750};
 751
 752#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
 753	do {							\
 754		(_ptr)->device  = _device;			\
 755		(_ptr)->handler = _handler;			\
 756		INIT_LIST_HEAD(&(_ptr)->list);			\
 757	} while (0)
 758
 759struct ib_global_route {
 760	const struct ib_gid_attr *sgid_attr;
 761	union ib_gid	dgid;
 762	u32		flow_label;
 763	u8		sgid_index;
 764	u8		hop_limit;
 765	u8		traffic_class;
 766};
 767
 768struct ib_grh {
 769	__be32		version_tclass_flow;
 770	__be16		paylen;
 771	u8		next_hdr;
 772	u8		hop_limit;
 773	union ib_gid	sgid;
 774	union ib_gid	dgid;
 775};
 776
 777union rdma_network_hdr {
 778	struct ib_grh ibgrh;
 779	struct {
 780		/* The IB spec states that if it's IPv4, the header
 781		 * is located in the last 20 bytes of the header.
 782		 */
 783		u8		reserved[20];
 784		struct iphdr	roce4grh;
 785	};
 786};
 787
 788#define IB_QPN_MASK		0xFFFFFF
 789
 790enum {
 791	IB_MULTICAST_QPN = 0xffffff
 792};
 793
 794#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
 795#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
 796
 797enum ib_ah_flags {
 798	IB_AH_GRH	= 1
 799};
 800
 801enum ib_rate {
 802	IB_RATE_PORT_CURRENT = 0,
 803	IB_RATE_2_5_GBPS = 2,
 804	IB_RATE_5_GBPS   = 5,
 805	IB_RATE_10_GBPS  = 3,
 806	IB_RATE_20_GBPS  = 6,
 807	IB_RATE_30_GBPS  = 4,
 808	IB_RATE_40_GBPS  = 7,
 809	IB_RATE_60_GBPS  = 8,
 810	IB_RATE_80_GBPS  = 9,
 811	IB_RATE_120_GBPS = 10,
 812	IB_RATE_14_GBPS  = 11,
 813	IB_RATE_56_GBPS  = 12,
 814	IB_RATE_112_GBPS = 13,
 815	IB_RATE_168_GBPS = 14,
 816	IB_RATE_25_GBPS  = 15,
 817	IB_RATE_100_GBPS = 16,
 818	IB_RATE_200_GBPS = 17,
 819	IB_RATE_300_GBPS = 18,
 820	IB_RATE_28_GBPS  = 19,
 821	IB_RATE_50_GBPS  = 20,
 822	IB_RATE_400_GBPS = 21,
 823	IB_RATE_600_GBPS = 22,
 824};
 825
 826/**
 827 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 828 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 829 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 830 * @rate: rate to convert.
 831 */
 832__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 833
 834/**
 835 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 836 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 837 * @rate: rate to convert.
 838 */
 839__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 840
 841
 842/**
 843 * enum ib_mr_type - memory region type
 844 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 845 *                            normal registration
 846 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 847 *                            register any arbitrary sg lists (without
 848 *                            the normal mr constraints - see
 849 *                            ib_map_mr_sg)
 850 * @IB_MR_TYPE_DM:            memory region that is used for device
 851 *                            memory registration
 852 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
 853 *                            application
 854 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
 855 *                            without address translations (VA=PA)
 856 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
 857 *                            data integrity operations
 858 */
 859enum ib_mr_type {
 860	IB_MR_TYPE_MEM_REG,
 861	IB_MR_TYPE_SG_GAPS,
 862	IB_MR_TYPE_DM,
 863	IB_MR_TYPE_USER,
 864	IB_MR_TYPE_DMA,
 865	IB_MR_TYPE_INTEGRITY,
 866};
 867
 868enum ib_mr_status_check {
 869	IB_MR_CHECK_SIG_STATUS = 1,
 870};
 871
 872/**
 873 * struct ib_mr_status - Memory region status container
 874 *
 875 * @fail_status: Bitmask of MR checks status. For each
 876 *     failed check a corresponding status bit is set.
 877 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 878 *     failure.
 879 */
 880struct ib_mr_status {
 881	u32		    fail_status;
 882	struct ib_sig_err   sig_err;
 883};
 884
 885/**
 886 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 887 * enum.
 888 * @mult: multiple to convert.
 889 */
 890__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 891
 892struct rdma_ah_init_attr {
 893	struct rdma_ah_attr *ah_attr;
 894	u32 flags;
 895	struct net_device *xmit_slave;
 896};
 897
 898enum rdma_ah_attr_type {
 899	RDMA_AH_ATTR_TYPE_UNDEFINED,
 900	RDMA_AH_ATTR_TYPE_IB,
 901	RDMA_AH_ATTR_TYPE_ROCE,
 902	RDMA_AH_ATTR_TYPE_OPA,
 903};
 904
 905struct ib_ah_attr {
 
 906	u16			dlid;
 
 907	u8			src_path_bits;
 908};
 909
 910struct roce_ah_attr {
 911	u8			dmac[ETH_ALEN];
 912};
 913
 914struct opa_ah_attr {
 915	u32			dlid;
 916	u8			src_path_bits;
 917	bool			make_grd;
 918};
 919
 920struct rdma_ah_attr {
 921	struct ib_global_route	grh;
 922	u8			sl;
 923	u8			static_rate;
 924	u32			port_num;
 925	u8			ah_flags;
 926	enum rdma_ah_attr_type type;
 927	union {
 928		struct ib_ah_attr ib;
 929		struct roce_ah_attr roce;
 930		struct opa_ah_attr opa;
 931	};
 932};
 933
 934enum ib_wc_status {
 935	IB_WC_SUCCESS,
 936	IB_WC_LOC_LEN_ERR,
 937	IB_WC_LOC_QP_OP_ERR,
 938	IB_WC_LOC_EEC_OP_ERR,
 939	IB_WC_LOC_PROT_ERR,
 940	IB_WC_WR_FLUSH_ERR,
 941	IB_WC_MW_BIND_ERR,
 942	IB_WC_BAD_RESP_ERR,
 943	IB_WC_LOC_ACCESS_ERR,
 944	IB_WC_REM_INV_REQ_ERR,
 945	IB_WC_REM_ACCESS_ERR,
 946	IB_WC_REM_OP_ERR,
 947	IB_WC_RETRY_EXC_ERR,
 948	IB_WC_RNR_RETRY_EXC_ERR,
 949	IB_WC_LOC_RDD_VIOL_ERR,
 950	IB_WC_REM_INV_RD_REQ_ERR,
 951	IB_WC_REM_ABORT_ERR,
 952	IB_WC_INV_EECN_ERR,
 953	IB_WC_INV_EEC_STATE_ERR,
 954	IB_WC_FATAL_ERR,
 955	IB_WC_RESP_TIMEOUT_ERR,
 956	IB_WC_GENERAL_ERR
 957};
 958
 959const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 960
 961enum ib_wc_opcode {
 962	IB_WC_SEND = IB_UVERBS_WC_SEND,
 963	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
 964	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
 965	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
 966	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
 967	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
 968	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
 969	IB_WC_LSO = IB_UVERBS_WC_TSO,
 970	IB_WC_REG_MR,
 971	IB_WC_MASKED_COMP_SWAP,
 972	IB_WC_MASKED_FETCH_ADD,
 973/*
 974 * Set value of IB_WC_RECV so consumers can test if a completion is a
 975 * receive by testing (opcode & IB_WC_RECV).
 976 */
 977	IB_WC_RECV			= 1 << 7,
 978	IB_WC_RECV_RDMA_WITH_IMM
 979};
 980
 981enum ib_wc_flags {
 982	IB_WC_GRH		= 1,
 983	IB_WC_WITH_IMM		= (1<<1),
 984	IB_WC_WITH_INVALIDATE	= (1<<2),
 985	IB_WC_IP_CSUM_OK	= (1<<3),
 986	IB_WC_WITH_SMAC		= (1<<4),
 987	IB_WC_WITH_VLAN		= (1<<5),
 988	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
 989};
 990
 991struct ib_wc {
 992	union {
 993		u64		wr_id;
 994		struct ib_cqe	*wr_cqe;
 995	};
 996	enum ib_wc_status	status;
 997	enum ib_wc_opcode	opcode;
 998	u32			vendor_err;
 999	u32			byte_len;
1000	struct ib_qp	       *qp;
1001	union {
1002		__be32		imm_data;
1003		u32		invalidate_rkey;
1004	} ex;
1005	u32			src_qp;
1006	u32			slid;
1007	int			wc_flags;
1008	u16			pkey_index;
 
1009	u8			sl;
1010	u8			dlid_path_bits;
1011	u32 port_num; /* valid only for DR SMPs on switches */
1012	u8			smac[ETH_ALEN];
1013	u16			vlan_id;
1014	u8			network_hdr_type;
1015};
1016
1017enum ib_cq_notify_flags {
1018	IB_CQ_SOLICITED			= 1 << 0,
1019	IB_CQ_NEXT_COMP			= 1 << 1,
1020	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1021	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1022};
1023
1024enum ib_srq_type {
1025	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1026	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1027	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1028};
1029
1030static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1031{
1032	return srq_type == IB_SRQT_XRC ||
1033	       srq_type == IB_SRQT_TM;
1034}
1035
1036enum ib_srq_attr_mask {
1037	IB_SRQ_MAX_WR	= 1 << 0,
1038	IB_SRQ_LIMIT	= 1 << 1,
1039};
1040
1041struct ib_srq_attr {
1042	u32	max_wr;
1043	u32	max_sge;
1044	u32	srq_limit;
1045};
1046
1047struct ib_srq_init_attr {
1048	void		      (*event_handler)(struct ib_event *, void *);
1049	void		       *srq_context;
1050	struct ib_srq_attr	attr;
1051	enum ib_srq_type	srq_type;
1052
1053	struct {
1054		struct ib_cq   *cq;
1055		union {
1056			struct {
1057				struct ib_xrcd *xrcd;
1058			} xrc;
1059
1060			struct {
1061				u32		max_num_tags;
1062			} tag_matching;
1063		};
1064	} ext;
1065};
1066
1067struct ib_qp_cap {
1068	u32	max_send_wr;
1069	u32	max_recv_wr;
1070	u32	max_send_sge;
1071	u32	max_recv_sge;
1072	u32	max_inline_data;
1073
1074	/*
1075	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1076	 * ib_create_qp() will calculate the right amount of neededed WRs
1077	 * and MRs based on this.
1078	 */
1079	u32	max_rdma_ctxs;
1080};
1081
1082enum ib_sig_type {
1083	IB_SIGNAL_ALL_WR,
1084	IB_SIGNAL_REQ_WR
1085};
1086
1087enum ib_qp_type {
1088	/*
1089	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1090	 * here (and in that order) since the MAD layer uses them as
1091	 * indices into a 2-entry table.
1092	 */
1093	IB_QPT_SMI,
1094	IB_QPT_GSI,
1095
1096	IB_QPT_RC = IB_UVERBS_QPT_RC,
1097	IB_QPT_UC = IB_UVERBS_QPT_UC,
1098	IB_QPT_UD = IB_UVERBS_QPT_UD,
1099	IB_QPT_RAW_IPV6,
1100	IB_QPT_RAW_ETHERTYPE,
1101	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1102	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1103	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1104	IB_QPT_MAX,
1105	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1106	/* Reserve a range for qp types internal to the low level driver.
1107	 * These qp types will not be visible at the IB core layer, so the
1108	 * IB_QPT_MAX usages should not be affected in the core layer
1109	 */
1110	IB_QPT_RESERVED1 = 0x1000,
1111	IB_QPT_RESERVED2,
1112	IB_QPT_RESERVED3,
1113	IB_QPT_RESERVED4,
1114	IB_QPT_RESERVED5,
1115	IB_QPT_RESERVED6,
1116	IB_QPT_RESERVED7,
1117	IB_QPT_RESERVED8,
1118	IB_QPT_RESERVED9,
1119	IB_QPT_RESERVED10,
1120};
1121
1122enum ib_qp_create_flags {
1123	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1124	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1125		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1126	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1127	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1128	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1129	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1130	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1131	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1132	IB_QP_CREATE_SCATTER_FCS		=
1133		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1134	IB_QP_CREATE_CVLAN_STRIPPING		=
1135		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1136	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1137	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1138		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1139	/* reserve bits 26-31 for low level drivers' internal use */
1140	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1141	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1142};
1143
1144/*
1145 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1146 * callback to destroy the passed in QP.
1147 */
1148
1149struct ib_qp_init_attr {
1150	/* Consumer's event_handler callback must not block */
1151	void                  (*event_handler)(struct ib_event *, void *);
1152
1153	void		       *qp_context;
1154	struct ib_cq	       *send_cq;
1155	struct ib_cq	       *recv_cq;
1156	struct ib_srq	       *srq;
1157	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1158	struct ib_qp_cap	cap;
1159	enum ib_sig_type	sq_sig_type;
1160	enum ib_qp_type		qp_type;
1161	u32			create_flags;
1162
1163	/*
1164	 * Only needed for special QP types, or when using the RW API.
1165	 */
1166	u32			port_num;
1167	struct ib_rwq_ind_table *rwq_ind_tbl;
1168	u32			source_qpn;
1169};
1170
1171struct ib_qp_open_attr {
1172	void                  (*event_handler)(struct ib_event *, void *);
1173	void		       *qp_context;
1174	u32			qp_num;
1175	enum ib_qp_type		qp_type;
1176};
1177
1178enum ib_rnr_timeout {
1179	IB_RNR_TIMER_655_36 =  0,
1180	IB_RNR_TIMER_000_01 =  1,
1181	IB_RNR_TIMER_000_02 =  2,
1182	IB_RNR_TIMER_000_03 =  3,
1183	IB_RNR_TIMER_000_04 =  4,
1184	IB_RNR_TIMER_000_06 =  5,
1185	IB_RNR_TIMER_000_08 =  6,
1186	IB_RNR_TIMER_000_12 =  7,
1187	IB_RNR_TIMER_000_16 =  8,
1188	IB_RNR_TIMER_000_24 =  9,
1189	IB_RNR_TIMER_000_32 = 10,
1190	IB_RNR_TIMER_000_48 = 11,
1191	IB_RNR_TIMER_000_64 = 12,
1192	IB_RNR_TIMER_000_96 = 13,
1193	IB_RNR_TIMER_001_28 = 14,
1194	IB_RNR_TIMER_001_92 = 15,
1195	IB_RNR_TIMER_002_56 = 16,
1196	IB_RNR_TIMER_003_84 = 17,
1197	IB_RNR_TIMER_005_12 = 18,
1198	IB_RNR_TIMER_007_68 = 19,
1199	IB_RNR_TIMER_010_24 = 20,
1200	IB_RNR_TIMER_015_36 = 21,
1201	IB_RNR_TIMER_020_48 = 22,
1202	IB_RNR_TIMER_030_72 = 23,
1203	IB_RNR_TIMER_040_96 = 24,
1204	IB_RNR_TIMER_061_44 = 25,
1205	IB_RNR_TIMER_081_92 = 26,
1206	IB_RNR_TIMER_122_88 = 27,
1207	IB_RNR_TIMER_163_84 = 28,
1208	IB_RNR_TIMER_245_76 = 29,
1209	IB_RNR_TIMER_327_68 = 30,
1210	IB_RNR_TIMER_491_52 = 31
1211};
1212
1213enum ib_qp_attr_mask {
1214	IB_QP_STATE			= 1,
1215	IB_QP_CUR_STATE			= (1<<1),
1216	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1217	IB_QP_ACCESS_FLAGS		= (1<<3),
1218	IB_QP_PKEY_INDEX		= (1<<4),
1219	IB_QP_PORT			= (1<<5),
1220	IB_QP_QKEY			= (1<<6),
1221	IB_QP_AV			= (1<<7),
1222	IB_QP_PATH_MTU			= (1<<8),
1223	IB_QP_TIMEOUT			= (1<<9),
1224	IB_QP_RETRY_CNT			= (1<<10),
1225	IB_QP_RNR_RETRY			= (1<<11),
1226	IB_QP_RQ_PSN			= (1<<12),
1227	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1228	IB_QP_ALT_PATH			= (1<<14),
1229	IB_QP_MIN_RNR_TIMER		= (1<<15),
1230	IB_QP_SQ_PSN			= (1<<16),
1231	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1232	IB_QP_PATH_MIG_STATE		= (1<<18),
1233	IB_QP_CAP			= (1<<19),
1234	IB_QP_DEST_QPN			= (1<<20),
1235	IB_QP_RESERVED1			= (1<<21),
1236	IB_QP_RESERVED2			= (1<<22),
1237	IB_QP_RESERVED3			= (1<<23),
1238	IB_QP_RESERVED4			= (1<<24),
1239	IB_QP_RATE_LIMIT		= (1<<25),
1240
1241	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1242};
1243
1244enum ib_qp_state {
1245	IB_QPS_RESET,
1246	IB_QPS_INIT,
1247	IB_QPS_RTR,
1248	IB_QPS_RTS,
1249	IB_QPS_SQD,
1250	IB_QPS_SQE,
1251	IB_QPS_ERR
1252};
1253
1254enum ib_mig_state {
1255	IB_MIG_MIGRATED,
1256	IB_MIG_REARM,
1257	IB_MIG_ARMED
1258};
1259
1260enum ib_mw_type {
1261	IB_MW_TYPE_1 = 1,
1262	IB_MW_TYPE_2 = 2
1263};
1264
1265struct ib_qp_attr {
1266	enum ib_qp_state	qp_state;
1267	enum ib_qp_state	cur_qp_state;
1268	enum ib_mtu		path_mtu;
1269	enum ib_mig_state	path_mig_state;
1270	u32			qkey;
1271	u32			rq_psn;
1272	u32			sq_psn;
1273	u32			dest_qp_num;
1274	int			qp_access_flags;
1275	struct ib_qp_cap	cap;
1276	struct rdma_ah_attr	ah_attr;
1277	struct rdma_ah_attr	alt_ah_attr;
1278	u16			pkey_index;
1279	u16			alt_pkey_index;
1280	u8			en_sqd_async_notify;
1281	u8			sq_draining;
1282	u8			max_rd_atomic;
1283	u8			max_dest_rd_atomic;
1284	u8			min_rnr_timer;
1285	u32			port_num;
1286	u8			timeout;
1287	u8			retry_cnt;
1288	u8			rnr_retry;
1289	u32			alt_port_num;
1290	u8			alt_timeout;
1291	u32			rate_limit;
1292	struct net_device	*xmit_slave;
1293};
1294
1295enum ib_wr_opcode {
1296	/* These are shared with userspace */
1297	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1298	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1299	IB_WR_SEND = IB_UVERBS_WR_SEND,
1300	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1301	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1302	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1303	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1304	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1305	IB_WR_LSO = IB_UVERBS_WR_TSO,
1306	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1307	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1308	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1309	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1310		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1311	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1312		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1313
1314	/* These are kernel only and can not be issued by userspace */
1315	IB_WR_REG_MR = 0x20,
1316	IB_WR_REG_MR_INTEGRITY,
1317
1318	/* reserve values for low level drivers' internal use.
1319	 * These values will not be used at all in the ib core layer.
1320	 */
1321	IB_WR_RESERVED1 = 0xf0,
1322	IB_WR_RESERVED2,
1323	IB_WR_RESERVED3,
1324	IB_WR_RESERVED4,
1325	IB_WR_RESERVED5,
1326	IB_WR_RESERVED6,
1327	IB_WR_RESERVED7,
1328	IB_WR_RESERVED8,
1329	IB_WR_RESERVED9,
1330	IB_WR_RESERVED10,
1331};
1332
1333enum ib_send_flags {
1334	IB_SEND_FENCE		= 1,
1335	IB_SEND_SIGNALED	= (1<<1),
1336	IB_SEND_SOLICITED	= (1<<2),
1337	IB_SEND_INLINE		= (1<<3),
1338	IB_SEND_IP_CSUM		= (1<<4),
1339
1340	/* reserve bits 26-31 for low level drivers' internal use */
1341	IB_SEND_RESERVED_START	= (1 << 26),
1342	IB_SEND_RESERVED_END	= (1 << 31),
1343};
1344
1345struct ib_sge {
1346	u64	addr;
1347	u32	length;
1348	u32	lkey;
1349};
1350
1351struct ib_cqe {
1352	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
 
 
1353};
1354
1355struct ib_send_wr {
1356	struct ib_send_wr      *next;
1357	union {
1358		u64		wr_id;
1359		struct ib_cqe	*wr_cqe;
1360	};
1361	struct ib_sge	       *sg_list;
1362	int			num_sge;
1363	enum ib_wr_opcode	opcode;
1364	int			send_flags;
1365	union {
1366		__be32		imm_data;
1367		u32		invalidate_rkey;
1368	} ex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369};
1370
1371struct ib_rdma_wr {
1372	struct ib_send_wr	wr;
1373	u64			remote_addr;
1374	u32			rkey;
1375};
1376
1377static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1378{
1379	return container_of(wr, struct ib_rdma_wr, wr);
1380}
1381
1382struct ib_atomic_wr {
1383	struct ib_send_wr	wr;
1384	u64			remote_addr;
1385	u64			compare_add;
1386	u64			swap;
1387	u64			compare_add_mask;
1388	u64			swap_mask;
1389	u32			rkey;
1390};
1391
1392static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1393{
1394	return container_of(wr, struct ib_atomic_wr, wr);
1395}
1396
1397struct ib_ud_wr {
1398	struct ib_send_wr	wr;
1399	struct ib_ah		*ah;
1400	void			*header;
1401	int			hlen;
1402	int			mss;
1403	u32			remote_qpn;
1404	u32			remote_qkey;
1405	u16			pkey_index; /* valid for GSI only */
1406	u32			port_num; /* valid for DR SMPs on switch only */
1407};
1408
1409static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1410{
1411	return container_of(wr, struct ib_ud_wr, wr);
1412}
1413
1414struct ib_reg_wr {
1415	struct ib_send_wr	wr;
1416	struct ib_mr		*mr;
1417	u32			key;
1418	int			access;
1419};
1420
1421static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1422{
1423	return container_of(wr, struct ib_reg_wr, wr);
1424}
1425
1426struct ib_recv_wr {
1427	struct ib_recv_wr      *next;
1428	union {
1429		u64		wr_id;
1430		struct ib_cqe	*wr_cqe;
1431	};
1432	struct ib_sge	       *sg_list;
1433	int			num_sge;
1434};
1435
1436enum ib_access_flags {
1437	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1438	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1439	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1440	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1441	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1442	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1443	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1444	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1445	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1446
1447	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1448	IB_ACCESS_SUPPORTED =
1449		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
 
 
 
 
 
 
1450};
1451
1452/*
1453 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1454 * are hidden here instead of a uapi header!
1455 */
1456enum ib_mr_rereg_flags {
1457	IB_MR_REREG_TRANS	= 1,
1458	IB_MR_REREG_PD		= (1<<1),
1459	IB_MR_REREG_ACCESS	= (1<<2),
1460	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1461};
1462
1463struct ib_umem;
1464
1465enum rdma_remove_reason {
1466	/*
1467	 * Userspace requested uobject deletion or initial try
1468	 * to remove uobject via cleanup. Call could fail
1469	 */
1470	RDMA_REMOVE_DESTROY,
1471	/* Context deletion. This call should delete the actual object itself */
1472	RDMA_REMOVE_CLOSE,
1473	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1474	RDMA_REMOVE_DRIVER_REMOVE,
1475	/* uobj is being cleaned-up before being committed */
1476	RDMA_REMOVE_ABORT,
1477	/* The driver failed to destroy the uobject and is being disconnected */
1478	RDMA_REMOVE_DRIVER_FAILURE,
1479};
1480
1481struct ib_rdmacg_object {
1482#ifdef CONFIG_CGROUP_RDMA
1483	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1484#endif
1485};
1486
1487struct ib_ucontext {
1488	struct ib_device       *device;
1489	struct ib_uverbs_file  *ufile;
1490
1491	struct ib_rdmacg_object	cg_obj;
1492	/*
1493	 * Implementation details of the RDMA core, don't use in drivers:
1494	 */
1495	struct rdma_restrack_entry res;
1496	struct xarray mmap_xa;
1497};
1498
1499struct ib_uobject {
1500	u64			user_handle;	/* handle given to us by userspace */
1501	/* ufile & ucontext owning this object */
1502	struct ib_uverbs_file  *ufile;
1503	/* FIXME, save memory: ufile->context == context */
1504	struct ib_ucontext     *context;	/* associated user context */
1505	void		       *object;		/* containing object */
1506	struct list_head	list;		/* link to context's list */
1507	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1508	int			id;		/* index into kernel idr */
1509	struct kref		ref;
1510	atomic_t		usecnt;		/* protects exclusive access */
1511	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1512
1513	const struct uverbs_api_object *uapi_object;
1514};
1515
1516struct ib_udata {
1517	const void __user *inbuf;
1518	void __user *outbuf;
1519	size_t       inlen;
1520	size_t       outlen;
1521};
1522
1523struct ib_pd {
1524	u32			local_dma_lkey;
1525	u32			flags;
1526	struct ib_device       *device;
1527	struct ib_uobject      *uobject;
1528	atomic_t          	usecnt; /* count all resources */
1529
1530	u32			unsafe_global_rkey;
1531
1532	/*
1533	 * Implementation details of the RDMA core, don't use in drivers:
1534	 */
1535	struct ib_mr	       *__internal_mr;
1536	struct rdma_restrack_entry res;
1537};
1538
1539struct ib_xrcd {
1540	struct ib_device       *device;
1541	atomic_t		usecnt; /* count all exposed resources */
1542	struct inode	       *inode;
1543	struct rw_semaphore	tgt_qps_rwsem;
1544	struct xarray		tgt_qps;
1545};
1546
1547struct ib_ah {
1548	struct ib_device	*device;
1549	struct ib_pd		*pd;
1550	struct ib_uobject	*uobject;
1551	const struct ib_gid_attr *sgid_attr;
1552	enum rdma_ah_attr_type	type;
1553};
1554
1555typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1556
1557enum ib_poll_context {
1558	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1559	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1560	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1561	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1562
1563	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1564};
1565
1566struct ib_cq {
1567	struct ib_device       *device;
1568	struct ib_ucq_object   *uobject;
1569	ib_comp_handler   	comp_handler;
1570	void                  (*event_handler)(struct ib_event *, void *);
1571	void                   *cq_context;
1572	int               	cqe;
1573	unsigned int		cqe_used;
1574	atomic_t          	usecnt; /* count number of work queues */
1575	enum ib_poll_context	poll_ctx;
1576	struct ib_wc		*wc;
1577	struct list_head        pool_entry;
1578	union {
1579		struct irq_poll		iop;
1580		struct work_struct	work;
1581	};
1582	struct workqueue_struct *comp_wq;
1583	struct dim *dim;
1584
1585	/* updated only by trace points */
1586	ktime_t timestamp;
1587	u8 interrupt:1;
1588	u8 shared:1;
1589	unsigned int comp_vector;
1590
1591	/*
1592	 * Implementation details of the RDMA core, don't use in drivers:
1593	 */
1594	struct rdma_restrack_entry res;
1595};
1596
1597struct ib_srq {
1598	struct ib_device       *device;
1599	struct ib_pd	       *pd;
1600	struct ib_usrq_object  *uobject;
1601	void		      (*event_handler)(struct ib_event *, void *);
1602	void		       *srq_context;
1603	enum ib_srq_type	srq_type;
1604	atomic_t		usecnt;
1605
1606	struct {
1607		struct ib_cq   *cq;
1608		union {
1609			struct {
1610				struct ib_xrcd *xrcd;
1611				u32		srq_num;
1612			} xrc;
1613		};
1614	} ext;
1615
1616	/*
1617	 * Implementation details of the RDMA core, don't use in drivers:
1618	 */
1619	struct rdma_restrack_entry res;
1620};
1621
1622enum ib_raw_packet_caps {
1623	/* Strip cvlan from incoming packet and report it in the matching work
1624	 * completion is supported.
1625	 */
1626	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1627	/* Scatter FCS field of an incoming packet to host memory is supported.
1628	 */
1629	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1630	/* Checksum offloads are supported (for both send and receive). */
1631	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1632	/* When a packet is received for an RQ with no receive WQEs, the
1633	 * packet processing is delayed.
1634	 */
1635	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1636};
1637
1638enum ib_wq_type {
1639	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1640};
1641
1642enum ib_wq_state {
1643	IB_WQS_RESET,
1644	IB_WQS_RDY,
1645	IB_WQS_ERR
1646};
1647
1648struct ib_wq {
1649	struct ib_device       *device;
1650	struct ib_uwq_object   *uobject;
1651	void		    *wq_context;
1652	void		    (*event_handler)(struct ib_event *, void *);
1653	struct ib_pd	       *pd;
1654	struct ib_cq	       *cq;
1655	u32		wq_num;
1656	enum ib_wq_state       state;
1657	enum ib_wq_type	wq_type;
1658	atomic_t		usecnt;
1659};
1660
1661enum ib_wq_flags {
1662	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1663	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1664	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1665	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1666				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1667};
1668
1669struct ib_wq_init_attr {
1670	void		       *wq_context;
1671	enum ib_wq_type	wq_type;
1672	u32		max_wr;
1673	u32		max_sge;
1674	struct	ib_cq	       *cq;
1675	void		    (*event_handler)(struct ib_event *, void *);
1676	u32		create_flags; /* Use enum ib_wq_flags */
1677};
1678
1679enum ib_wq_attr_mask {
1680	IB_WQ_STATE		= 1 << 0,
1681	IB_WQ_CUR_STATE		= 1 << 1,
1682	IB_WQ_FLAGS		= 1 << 2,
1683};
1684
1685struct ib_wq_attr {
1686	enum	ib_wq_state	wq_state;
1687	enum	ib_wq_state	curr_wq_state;
1688	u32			flags; /* Use enum ib_wq_flags */
1689	u32			flags_mask; /* Use enum ib_wq_flags */
1690};
1691
1692struct ib_rwq_ind_table {
1693	struct ib_device	*device;
1694	struct ib_uobject      *uobject;
1695	atomic_t		usecnt;
1696	u32		ind_tbl_num;
1697	u32		log_ind_tbl_size;
1698	struct ib_wq	**ind_tbl;
1699};
1700
1701struct ib_rwq_ind_table_init_attr {
1702	u32		log_ind_tbl_size;
1703	/* Each entry is a pointer to Receive Work Queue */
1704	struct ib_wq	**ind_tbl;
1705};
1706
1707enum port_pkey_state {
1708	IB_PORT_PKEY_NOT_VALID = 0,
1709	IB_PORT_PKEY_VALID = 1,
1710	IB_PORT_PKEY_LISTED = 2,
1711};
1712
1713struct ib_qp_security;
1714
1715struct ib_port_pkey {
1716	enum port_pkey_state	state;
1717	u16			pkey_index;
1718	u32			port_num;
1719	struct list_head	qp_list;
1720	struct list_head	to_error_list;
1721	struct ib_qp_security  *sec;
1722};
1723
1724struct ib_ports_pkeys {
1725	struct ib_port_pkey	main;
1726	struct ib_port_pkey	alt;
1727};
1728
1729struct ib_qp_security {
1730	struct ib_qp	       *qp;
1731	struct ib_device       *dev;
1732	/* Hold this mutex when changing port and pkey settings. */
1733	struct mutex		mutex;
1734	struct ib_ports_pkeys  *ports_pkeys;
1735	/* A list of all open shared QP handles.  Required to enforce security
1736	 * properly for all users of a shared QP.
1737	 */
1738	struct list_head        shared_qp_list;
1739	void                   *security;
1740	bool			destroying;
1741	atomic_t		error_list_count;
1742	struct completion	error_complete;
1743	int			error_comps_pending;
1744};
1745
1746/*
1747 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1748 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1749 */
1750struct ib_qp {
1751	struct ib_device       *device;
1752	struct ib_pd	       *pd;
1753	struct ib_cq	       *send_cq;
1754	struct ib_cq	       *recv_cq;
1755	spinlock_t		mr_lock;
1756	int			mrs_used;
1757	struct list_head	rdma_mrs;
1758	struct list_head	sig_mrs;
1759	struct ib_srq	       *srq;
1760	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1761	struct list_head	xrcd_list;
1762
1763	/* count times opened, mcast attaches, flow attaches */
1764	atomic_t		usecnt;
1765	struct list_head	open_list;
1766	struct ib_qp           *real_qp;
1767	struct ib_uqp_object   *uobject;
1768	void                  (*event_handler)(struct ib_event *, void *);
1769	void		       *qp_context;
1770	/* sgid_attrs associated with the AV's */
1771	const struct ib_gid_attr *av_sgid_attr;
1772	const struct ib_gid_attr *alt_path_sgid_attr;
1773	u32			qp_num;
1774	u32			max_write_sge;
1775	u32			max_read_sge;
1776	enum ib_qp_type		qp_type;
1777	struct ib_rwq_ind_table *rwq_ind_tbl;
1778	struct ib_qp_security  *qp_sec;
1779	u32			port;
1780
1781	bool			integrity_en;
1782	/*
1783	 * Implementation details of the RDMA core, don't use in drivers:
1784	 */
1785	struct rdma_restrack_entry     res;
1786
1787	/* The counter the qp is bind to */
1788	struct rdma_counter    *counter;
1789};
1790
1791struct ib_dm {
1792	struct ib_device  *device;
1793	u32		   length;
1794	u32		   flags;
1795	struct ib_uobject *uobject;
1796	atomic_t	   usecnt;
1797};
1798
1799struct ib_mr {
1800	struct ib_device  *device;
1801	struct ib_pd	  *pd;
 
1802	u32		   lkey;
1803	u32		   rkey;
1804	u64		   iova;
1805	u64		   length;
1806	unsigned int	   page_size;
1807	enum ib_mr_type	   type;
1808	bool		   need_inval;
1809	union {
1810		struct ib_uobject	*uobject;	/* user */
1811		struct list_head	qp_entry;	/* FR */
1812	};
1813
1814	struct ib_dm      *dm;
1815	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1816	/*
1817	 * Implementation details of the RDMA core, don't use in drivers:
1818	 */
1819	struct rdma_restrack_entry res;
1820};
1821
1822struct ib_mw {
1823	struct ib_device	*device;
1824	struct ib_pd		*pd;
1825	struct ib_uobject	*uobject;
1826	u32			rkey;
1827	enum ib_mw_type         type;
1828};
1829
1830/* Supported steering options */
1831enum ib_flow_attr_type {
1832	/* steering according to rule specifications */
1833	IB_FLOW_ATTR_NORMAL		= 0x0,
1834	/* default unicast and multicast rule -
1835	 * receive all Eth traffic which isn't steered to any QP
1836	 */
1837	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1838	/* default multicast rule -
1839	 * receive all Eth multicast traffic which isn't steered to any QP
1840	 */
1841	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1842	/* sniffer rule - receive all port traffic */
1843	IB_FLOW_ATTR_SNIFFER		= 0x3
1844};
1845
1846/* Supported steering header types */
1847enum ib_flow_spec_type {
1848	/* L2 headers*/
1849	IB_FLOW_SPEC_ETH		= 0x20,
1850	IB_FLOW_SPEC_IB			= 0x22,
1851	/* L3 header*/
1852	IB_FLOW_SPEC_IPV4		= 0x30,
1853	IB_FLOW_SPEC_IPV6		= 0x31,
1854	IB_FLOW_SPEC_ESP                = 0x34,
1855	/* L4 headers*/
1856	IB_FLOW_SPEC_TCP		= 0x40,
1857	IB_FLOW_SPEC_UDP		= 0x41,
1858	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1859	IB_FLOW_SPEC_GRE		= 0x51,
1860	IB_FLOW_SPEC_MPLS		= 0x60,
1861	IB_FLOW_SPEC_INNER		= 0x100,
1862	/* Actions */
1863	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1864	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1865	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1866	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1867};
1868#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1869#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1870
1871enum ib_flow_flags {
1872	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1873	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1874	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1875};
1876
1877struct ib_flow_eth_filter {
1878	u8	dst_mac[6];
1879	u8	src_mac[6];
1880	__be16	ether_type;
1881	__be16	vlan_tag;
1882	/* Must be last */
1883	u8	real_sz[];
1884};
1885
1886struct ib_flow_spec_eth {
1887	u32			  type;
1888	u16			  size;
1889	struct ib_flow_eth_filter val;
1890	struct ib_flow_eth_filter mask;
1891};
1892
1893struct ib_flow_ib_filter {
1894	__be16 dlid;
1895	__u8   sl;
1896	/* Must be last */
1897	u8	real_sz[];
1898};
1899
1900struct ib_flow_spec_ib {
1901	u32			 type;
1902	u16			 size;
1903	struct ib_flow_ib_filter val;
1904	struct ib_flow_ib_filter mask;
1905};
1906
1907/* IPv4 header flags */
1908enum ib_ipv4_flags {
1909	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1910	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1911				    last have this flag set */
1912};
1913
1914struct ib_flow_ipv4_filter {
1915	__be32	src_ip;
1916	__be32	dst_ip;
1917	u8	proto;
1918	u8	tos;
1919	u8	ttl;
1920	u8	flags;
1921	/* Must be last */
1922	u8	real_sz[];
1923};
1924
1925struct ib_flow_spec_ipv4 {
1926	u32			   type;
1927	u16			   size;
1928	struct ib_flow_ipv4_filter val;
1929	struct ib_flow_ipv4_filter mask;
1930};
1931
1932struct ib_flow_ipv6_filter {
1933	u8	src_ip[16];
1934	u8	dst_ip[16];
1935	__be32	flow_label;
1936	u8	next_hdr;
1937	u8	traffic_class;
1938	u8	hop_limit;
1939	/* Must be last */
1940	u8	real_sz[];
1941};
1942
1943struct ib_flow_spec_ipv6 {
1944	u32			   type;
1945	u16			   size;
1946	struct ib_flow_ipv6_filter val;
1947	struct ib_flow_ipv6_filter mask;
1948};
1949
1950struct ib_flow_tcp_udp_filter {
1951	__be16	dst_port;
1952	__be16	src_port;
1953	/* Must be last */
1954	u8	real_sz[];
1955};
1956
1957struct ib_flow_spec_tcp_udp {
1958	u32			      type;
1959	u16			      size;
1960	struct ib_flow_tcp_udp_filter val;
1961	struct ib_flow_tcp_udp_filter mask;
1962};
1963
1964struct ib_flow_tunnel_filter {
1965	__be32	tunnel_id;
1966	u8	real_sz[];
1967};
1968
1969/* ib_flow_spec_tunnel describes the Vxlan tunnel
1970 * the tunnel_id from val has the vni value
1971 */
1972struct ib_flow_spec_tunnel {
1973	u32			      type;
1974	u16			      size;
1975	struct ib_flow_tunnel_filter  val;
1976	struct ib_flow_tunnel_filter  mask;
1977};
1978
1979struct ib_flow_esp_filter {
1980	__be32	spi;
1981	__be32  seq;
1982	/* Must be last */
1983	u8	real_sz[];
1984};
1985
1986struct ib_flow_spec_esp {
1987	u32                           type;
1988	u16			      size;
1989	struct ib_flow_esp_filter     val;
1990	struct ib_flow_esp_filter     mask;
1991};
1992
1993struct ib_flow_gre_filter {
1994	__be16 c_ks_res0_ver;
1995	__be16 protocol;
1996	__be32 key;
1997	/* Must be last */
1998	u8	real_sz[];
1999};
2000
2001struct ib_flow_spec_gre {
2002	u32                           type;
2003	u16			      size;
2004	struct ib_flow_gre_filter     val;
2005	struct ib_flow_gre_filter     mask;
2006};
2007
2008struct ib_flow_mpls_filter {
2009	__be32 tag;
2010	/* Must be last */
2011	u8	real_sz[];
2012};
2013
2014struct ib_flow_spec_mpls {
2015	u32                           type;
2016	u16			      size;
2017	struct ib_flow_mpls_filter     val;
2018	struct ib_flow_mpls_filter     mask;
2019};
2020
2021struct ib_flow_spec_action_tag {
2022	enum ib_flow_spec_type	      type;
2023	u16			      size;
2024	u32                           tag_id;
2025};
2026
2027struct ib_flow_spec_action_drop {
2028	enum ib_flow_spec_type	      type;
2029	u16			      size;
2030};
2031
2032struct ib_flow_spec_action_handle {
2033	enum ib_flow_spec_type	      type;
2034	u16			      size;
2035	struct ib_flow_action	     *act;
2036};
2037
2038enum ib_counters_description {
2039	IB_COUNTER_PACKETS,
2040	IB_COUNTER_BYTES,
2041};
2042
2043struct ib_flow_spec_action_count {
2044	enum ib_flow_spec_type type;
2045	u16 size;
2046	struct ib_counters *counters;
2047};
2048
2049union ib_flow_spec {
2050	struct {
2051		u32			type;
2052		u16			size;
2053	};
2054	struct ib_flow_spec_eth		eth;
2055	struct ib_flow_spec_ib		ib;
2056	struct ib_flow_spec_ipv4        ipv4;
2057	struct ib_flow_spec_tcp_udp	tcp_udp;
2058	struct ib_flow_spec_ipv6        ipv6;
2059	struct ib_flow_spec_tunnel      tunnel;
2060	struct ib_flow_spec_esp		esp;
2061	struct ib_flow_spec_gre		gre;
2062	struct ib_flow_spec_mpls	mpls;
2063	struct ib_flow_spec_action_tag  flow_tag;
2064	struct ib_flow_spec_action_drop drop;
2065	struct ib_flow_spec_action_handle action;
2066	struct ib_flow_spec_action_count flow_count;
2067};
2068
2069struct ib_flow_attr {
2070	enum ib_flow_attr_type type;
2071	u16	     size;
2072	u16	     priority;
2073	u32	     flags;
2074	u8	     num_of_specs;
2075	u32	     port;
2076	union ib_flow_spec flows[];
2077};
2078
2079struct ib_flow {
2080	struct ib_qp		*qp;
2081	struct ib_device	*device;
2082	struct ib_uobject	*uobject;
2083};
2084
2085enum ib_flow_action_type {
2086	IB_FLOW_ACTION_UNSPECIFIED,
2087	IB_FLOW_ACTION_ESP = 1,
2088};
2089
2090struct ib_flow_action_attrs_esp_keymats {
2091	enum ib_uverbs_flow_action_esp_keymat			protocol;
2092	union {
2093		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2094	} keymat;
2095};
2096
2097struct ib_flow_action_attrs_esp_replays {
2098	enum ib_uverbs_flow_action_esp_replay			protocol;
2099	union {
2100		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2101	} replay;
2102};
2103
2104enum ib_flow_action_attrs_esp_flags {
2105	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2106	 * This is done in order to share the same flags between user-space and
2107	 * kernel and spare an unnecessary translation.
2108	 */
2109
2110	/* Kernel flags */
2111	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2112	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2113};
2114
2115struct ib_flow_spec_list {
2116	struct ib_flow_spec_list	*next;
2117	union ib_flow_spec		spec;
2118};
2119
2120struct ib_flow_action_attrs_esp {
2121	struct ib_flow_action_attrs_esp_keymats		*keymat;
2122	struct ib_flow_action_attrs_esp_replays		*replay;
2123	struct ib_flow_spec_list			*encap;
2124	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2125	 * Value of 0 is a valid value.
2126	 */
2127	u32						esn;
2128	u32						spi;
2129	u32						seq;
2130	u32						tfc_pad;
2131	/* Use enum ib_flow_action_attrs_esp_flags */
2132	u64						flags;
2133	u64						hard_limit_pkts;
2134};
2135
2136struct ib_flow_action {
2137	struct ib_device		*device;
2138	struct ib_uobject		*uobject;
2139	enum ib_flow_action_type	type;
2140	atomic_t			usecnt;
2141};
2142
2143struct ib_mad;
 
2144
2145enum ib_process_mad_flags {
2146	IB_MAD_IGNORE_MKEY	= 1,
2147	IB_MAD_IGNORE_BKEY	= 2,
2148	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2149};
2150
2151enum ib_mad_result {
2152	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2153	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2154	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2155	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2156};
2157
2158struct ib_port_cache {
2159	u64		      subnet_prefix;
2160	struct ib_pkey_cache  *pkey;
2161	struct ib_gid_table   *gid;
2162	u8                     lmc;
2163	enum ib_port_state     port_state;
2164};
2165
2166struct ib_port_immutable {
2167	int                           pkey_tbl_len;
2168	int                           gid_tbl_len;
2169	u32                           core_cap_flags;
2170	u32                           max_mad_size;
2171};
2172
2173struct ib_port_data {
2174	struct ib_device *ib_dev;
2175
2176	struct ib_port_immutable immutable;
2177
2178	spinlock_t pkey_list_lock;
2179
2180	spinlock_t netdev_lock;
2181
2182	struct list_head pkey_list;
2183
2184	struct ib_port_cache cache;
2185
2186	struct net_device __rcu *netdev;
2187	struct hlist_node ndev_hash_link;
2188	struct rdma_port_counter port_counter;
2189	struct ib_port *sysfs;
2190};
2191
2192/* rdma netdev type - specifies protocol type */
2193enum rdma_netdev_t {
2194	RDMA_NETDEV_OPA_VNIC,
2195	RDMA_NETDEV_IPOIB,
2196};
2197
2198/**
2199 * struct rdma_netdev - rdma netdev
2200 * For cases where netstack interfacing is required.
2201 */
2202struct rdma_netdev {
2203	void              *clnt_priv;
2204	struct ib_device  *hca;
2205	u32		   port_num;
2206	int                mtu;
2207
2208	/*
2209	 * cleanup function must be specified.
2210	 * FIXME: This is only used for OPA_VNIC and that usage should be
2211	 * removed too.
2212	 */
2213	void (*free_rdma_netdev)(struct net_device *netdev);
2214
2215	/* control functions */
2216	void (*set_id)(struct net_device *netdev, int id);
2217	/* send packet */
2218	int (*send)(struct net_device *dev, struct sk_buff *skb,
2219		    struct ib_ah *address, u32 dqpn);
2220	/* multicast */
2221	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2222			    union ib_gid *gid, u16 mlid,
2223			    int set_qkey, u32 qkey);
2224	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2225			    union ib_gid *gid, u16 mlid);
2226	/* timeout */
2227	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2228};
2229
2230struct rdma_netdev_alloc_params {
2231	size_t sizeof_priv;
2232	unsigned int txqs;
2233	unsigned int rxqs;
2234	void *param;
2235
2236	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2237				      struct net_device *netdev, void *param);
2238};
2239
2240struct ib_odp_counters {
2241	atomic64_t faults;
2242	atomic64_t invalidations;
2243	atomic64_t prefetch;
 
 
 
2244};
2245
2246struct ib_counters {
2247	struct ib_device	*device;
2248	struct ib_uobject	*uobject;
2249	/* num of objects attached */
2250	atomic_t	usecnt;
2251};
2252
2253struct ib_counters_read_attr {
2254	u64	*counters_buff;
2255	u32	ncounters;
2256	u32	flags; /* use enum ib_read_counters_flags */
2257};
2258
2259struct uverbs_attr_bundle;
2260struct iw_cm_id;
2261struct iw_cm_conn_param;
2262
2263#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2264	.size_##ib_struct =                                                    \
2265		(sizeof(struct drv_struct) +                                   \
2266		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2267		 BUILD_BUG_ON_ZERO(                                            \
2268			 !__same_type(((struct drv_struct *)NULL)->member,     \
2269				      struct ib_struct)))
2270
2271#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2272	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2273
2274#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2275	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2276
2277#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2278
2279struct rdma_user_mmap_entry {
2280	struct kref ref;
2281	struct ib_ucontext *ucontext;
2282	unsigned long start_pgoff;
2283	size_t npages;
2284	bool driver_removed;
2285};
2286
2287/* Return the offset (in bytes) the user should pass to libc's mmap() */
2288static inline u64
2289rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2290{
2291	return (u64)entry->start_pgoff << PAGE_SHIFT;
2292}
2293
2294/**
2295 * struct ib_device_ops - InfiniBand device operations
2296 * This structure defines all the InfiniBand device operations, providers will
2297 * need to define the supported operations, otherwise they will be set to null.
2298 */
2299struct ib_device_ops {
2300	struct module *owner;
2301	enum rdma_driver_id driver_id;
2302	u32 uverbs_abi_ver;
2303	unsigned int uverbs_no_driver_id_binding:1;
2304
2305	/*
2306	 * NOTE: New drivers should not make use of device_group; instead new
2307	 * device parameter should be exposed via netlink command. This
2308	 * mechanism exists only for existing drivers.
2309	 */
2310	const struct attribute_group *device_group;
2311	const struct attribute_group **port_groups;
2312
2313	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2314			 const struct ib_send_wr **bad_send_wr);
2315	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2316			 const struct ib_recv_wr **bad_recv_wr);
2317	void (*drain_rq)(struct ib_qp *qp);
2318	void (*drain_sq)(struct ib_qp *qp);
2319	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2320	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2321	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2322	int (*post_srq_recv)(struct ib_srq *srq,
2323			     const struct ib_recv_wr *recv_wr,
2324			     const struct ib_recv_wr **bad_recv_wr);
2325	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2326			   u32 port_num, const struct ib_wc *in_wc,
2327			   const struct ib_grh *in_grh,
2328			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2329			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2330	int (*query_device)(struct ib_device *device,
2331			    struct ib_device_attr *device_attr,
2332			    struct ib_udata *udata);
2333	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2334			     struct ib_device_modify *device_modify);
2335	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2336	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2337						     int comp_vector);
2338	int (*query_port)(struct ib_device *device, u32 port_num,
2339			  struct ib_port_attr *port_attr);
2340	int (*modify_port)(struct ib_device *device, u32 port_num,
2341			   int port_modify_mask,
2342			   struct ib_port_modify *port_modify);
2343	/**
2344	 * The following mandatory functions are used only at device
2345	 * registration.  Keep functions such as these at the end of this
2346	 * structure to avoid cache line misses when accessing struct ib_device
2347	 * in fast paths.
2348	 */
2349	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2350				  struct ib_port_immutable *immutable);
2351	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2352					       u32 port_num);
2353	/**
2354	 * When calling get_netdev, the HW vendor's driver should return the
2355	 * net device of device @device at port @port_num or NULL if such
2356	 * a net device doesn't exist. The vendor driver should call dev_hold
2357	 * on this net device. The HW vendor's device driver must guarantee
2358	 * that this function returns NULL before the net device has finished
2359	 * NETDEV_UNREGISTER state.
2360	 */
2361	struct net_device *(*get_netdev)(struct ib_device *device,
2362					 u32 port_num);
2363	/**
2364	 * rdma netdev operation
2365	 *
2366	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2367	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2368	 */
2369	struct net_device *(*alloc_rdma_netdev)(
2370		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2371		const char *name, unsigned char name_assign_type,
2372		void (*setup)(struct net_device *));
2373
2374	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2375				      enum rdma_netdev_t type,
2376				      struct rdma_netdev_alloc_params *params);
2377	/**
2378	 * query_gid should be return GID value for @device, when @port_num
2379	 * link layer is either IB or iWarp. It is no-op if @port_num port
2380	 * is RoCE link layer.
2381	 */
2382	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2383			 union ib_gid *gid);
2384	/**
2385	 * When calling add_gid, the HW vendor's driver should add the gid
2386	 * of device of port at gid index available at @attr. Meta-info of
2387	 * that gid (for example, the network device related to this gid) is
2388	 * available at @attr. @context allows the HW vendor driver to store
2389	 * extra information together with a GID entry. The HW vendor driver may
2390	 * allocate memory to contain this information and store it in @context
2391	 * when a new GID entry is written to. Params are consistent until the
2392	 * next call of add_gid or delete_gid. The function should return 0 on
2393	 * success or error otherwise. The function could be called
2394	 * concurrently for different ports. This function is only called when
2395	 * roce_gid_table is used.
2396	 */
2397	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2398	/**
2399	 * When calling del_gid, the HW vendor's driver should delete the
2400	 * gid of device @device at gid index gid_index of port port_num
2401	 * available in @attr.
2402	 * Upon the deletion of a GID entry, the HW vendor must free any
2403	 * allocated memory. The caller will clear @context afterwards.
2404	 * This function is only called when roce_gid_table is used.
2405	 */
2406	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2407	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2408			  u16 *pkey);
2409	int (*alloc_ucontext)(struct ib_ucontext *context,
2410			      struct ib_udata *udata);
2411	void (*dealloc_ucontext)(struct ib_ucontext *context);
2412	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2413	/**
2414	 * This will be called once refcount of an entry in mmap_xa reaches
2415	 * zero. The type of the memory that was mapped may differ between
2416	 * entries and is opaque to the rdma_user_mmap interface.
2417	 * Therefore needs to be implemented by the driver in mmap_free.
2418	 */
2419	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2420	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2421	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2422	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2423	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2424			 struct ib_udata *udata);
2425	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2426			      struct ib_udata *udata);
2427	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2428	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2429	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2430	int (*create_srq)(struct ib_srq *srq,
2431			  struct ib_srq_init_attr *srq_init_attr,
2432			  struct ib_udata *udata);
2433	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2434			  enum ib_srq_attr_mask srq_attr_mask,
2435			  struct ib_udata *udata);
2436	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2437	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2438	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2439				   struct ib_qp_init_attr *qp_init_attr,
2440				   struct ib_udata *udata);
2441	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2442			 int qp_attr_mask, struct ib_udata *udata);
2443	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2444			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2445	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2446	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2447			 struct ib_udata *udata);
2448	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2449	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2450	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2451	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2452	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2453				     u64 virt_addr, int mr_access_flags,
2454				     struct ib_udata *udata);
2455	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2456					    u64 length, u64 virt_addr, int fd,
2457					    int mr_access_flags,
2458					    struct ib_udata *udata);
2459	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2460				       u64 length, u64 virt_addr,
2461				       int mr_access_flags, struct ib_pd *pd,
2462				       struct ib_udata *udata);
2463	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2464	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2465				  u32 max_num_sg);
2466	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2467					    u32 max_num_data_sg,
2468					    u32 max_num_meta_sg);
2469	int (*advise_mr)(struct ib_pd *pd,
2470			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2471			 struct ib_sge *sg_list, u32 num_sge,
2472			 struct uverbs_attr_bundle *attrs);
2473
2474	/*
2475	 * Kernel users should universally support relaxed ordering (RO), as
2476	 * they are designed to read data only after observing the CQE and use
2477	 * the DMA API correctly.
2478	 *
2479	 * Some drivers implicitly enable RO if platform supports it.
2480	 */
2481	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2482			 unsigned int *sg_offset);
2483	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2484			       struct ib_mr_status *mr_status);
2485	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2486	int (*dealloc_mw)(struct ib_mw *mw);
2487	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2488	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2489	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2490	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2491	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2492				       struct ib_flow_attr *flow_attr,
2493				       struct ib_udata *udata);
2494	int (*destroy_flow)(struct ib_flow *flow_id);
2495	struct ib_flow_action *(*create_flow_action_esp)(
2496		struct ib_device *device,
2497		const struct ib_flow_action_attrs_esp *attr,
2498		struct uverbs_attr_bundle *attrs);
2499	int (*destroy_flow_action)(struct ib_flow_action *action);
2500	int (*modify_flow_action_esp)(
2501		struct ib_flow_action *action,
2502		const struct ib_flow_action_attrs_esp *attr,
2503		struct uverbs_attr_bundle *attrs);
2504	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2505				 int state);
2506	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2507			     struct ifla_vf_info *ivf);
2508	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2509			    struct ifla_vf_stats *stats);
2510	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2511			    struct ifla_vf_guid *node_guid,
2512			    struct ifla_vf_guid *port_guid);
2513	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2514			   int type);
2515	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2516				   struct ib_wq_init_attr *init_attr,
2517				   struct ib_udata *udata);
2518	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2519	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2520			 u32 wq_attr_mask, struct ib_udata *udata);
2521	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2522				    struct ib_rwq_ind_table_init_attr *init_attr,
2523				    struct ib_udata *udata);
2524	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2525	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2526				  struct ib_ucontext *context,
2527				  struct ib_dm_alloc_attr *attr,
2528				  struct uverbs_attr_bundle *attrs);
2529	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2530	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2531				   struct ib_dm_mr_attr *attr,
2532				   struct uverbs_attr_bundle *attrs);
2533	int (*create_counters)(struct ib_counters *counters,
2534			       struct uverbs_attr_bundle *attrs);
2535	int (*destroy_counters)(struct ib_counters *counters);
2536	int (*read_counters)(struct ib_counters *counters,
2537			     struct ib_counters_read_attr *counters_read_attr,
2538			     struct uverbs_attr_bundle *attrs);
2539	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2540			    int data_sg_nents, unsigned int *data_sg_offset,
2541			    struct scatterlist *meta_sg, int meta_sg_nents,
2542			    unsigned int *meta_sg_offset);
2543
2544	/**
2545	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2546	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2547	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2548	 *   return struct tells the core to set a default lifespan.
2549	 */
2550	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2551	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2552						     u32 port_num);
2553	/**
2554	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2555	 * @index - The index in the value array we wish to have updated, or
2556	 *   num_counters if we want all stats updated
2557	 * Return codes -
2558	 *   < 0 - Error, no counters updated
2559	 *   index - Updated the single counter pointed to by index
2560	 *   num_counters - Updated all counters (will reset the timestamp
2561	 *     and prevent further calls for lifespan milliseconds)
2562	 * Drivers are allowed to update all counters in leiu of just the
2563	 *   one given in index at their option
2564	 */
2565	int (*get_hw_stats)(struct ib_device *device,
2566			    struct rdma_hw_stats *stats, u32 port, int index);
2567
2568	/**
2569	 * Allows rdma drivers to add their own restrack attributes.
2570	 */
2571	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2572	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2573	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2574	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2575	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2576	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2577	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2578
2579	/* Device lifecycle callbacks */
2580	/*
2581	 * Called after the device becomes registered, before clients are
2582	 * attached
2583	 */
2584	int (*enable_driver)(struct ib_device *dev);
2585	/*
2586	 * This is called as part of ib_dealloc_device().
2587	 */
2588	void (*dealloc_driver)(struct ib_device *dev);
2589
2590	/* iWarp CM callbacks */
2591	void (*iw_add_ref)(struct ib_qp *qp);
2592	void (*iw_rem_ref)(struct ib_qp *qp);
2593	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2594	int (*iw_connect)(struct iw_cm_id *cm_id,
2595			  struct iw_cm_conn_param *conn_param);
2596	int (*iw_accept)(struct iw_cm_id *cm_id,
2597			 struct iw_cm_conn_param *conn_param);
2598	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2599			 u8 pdata_len);
2600	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2601	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2602	/**
2603	 * counter_bind_qp - Bind a QP to a counter.
2604	 * @counter - The counter to be bound. If counter->id is zero then
2605	 *   the driver needs to allocate a new counter and set counter->id
2606	 */
2607	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2608	/**
2609	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2610	 *   counter and bind it onto the default one
2611	 */
2612	int (*counter_unbind_qp)(struct ib_qp *qp);
2613	/**
2614	 * counter_dealloc -De-allocate the hw counter
2615	 */
2616	int (*counter_dealloc)(struct rdma_counter *counter);
2617	/**
2618	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2619	 * the driver initialized data.
2620	 */
2621	struct rdma_hw_stats *(*counter_alloc_stats)(
2622		struct rdma_counter *counter);
2623	/**
2624	 * counter_update_stats - Query the stats value of this counter
2625	 */
2626	int (*counter_update_stats)(struct rdma_counter *counter);
2627
2628	/**
2629	 * Allows rdma drivers to add their own restrack attributes
2630	 * dumped via 'rdma stat' iproute2 command.
2631	 */
2632	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2633
2634	/* query driver for its ucontext properties */
2635	int (*query_ucontext)(struct ib_ucontext *context,
2636			      struct uverbs_attr_bundle *attrs);
2637
2638	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2639	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2640	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2641	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2642	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2643	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2644	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2645	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2646	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2647};
2648
2649struct ib_core_device {
2650	/* device must be the first element in structure until,
2651	 * union of ib_core_device and device exists in ib_device.
2652	 */
2653	struct device dev;
2654	possible_net_t rdma_net;
2655	struct kobject *ports_kobj;
2656	struct list_head port_list;
2657	struct ib_device *owner; /* reach back to owner ib_device */
2658};
2659
2660struct rdma_restrack_root;
2661struct ib_device {
2662	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2663	struct device                *dma_device;
2664	struct ib_device_ops	     ops;
2665	char                          name[IB_DEVICE_NAME_MAX];
2666	struct rcu_head rcu_head;
2667
2668	struct list_head              event_handler_list;
2669	/* Protects event_handler_list */
2670	struct rw_semaphore event_handler_rwsem;
2671
2672	/* Protects QP's event_handler calls and open_qp list */
2673	spinlock_t qp_open_list_lock;
 
 
 
 
 
2674
2675	struct rw_semaphore	      client_data_rwsem;
2676	struct xarray                 client_data;
2677	struct mutex                  unregistration_lock;
2678
2679	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2680	rwlock_t cache_lock;
2681	/**
2682	 * port_data is indexed by port number
2683	 */
2684	struct ib_port_data *port_data;
2685
2686	int			      num_comp_vectors;
2687
2688	union {
2689		struct device		dev;
2690		struct ib_core_device	coredev;
2691	};
2692
2693	/* First group is for device attributes,
2694	 * Second group is for driver provided attributes (optional).
2695	 * Third group is for the hw_stats
2696	 * It is a NULL terminated array.
2697	 */
2698	const struct attribute_group	*groups[4];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
 
2700	u64			     uverbs_cmd_mask;
2701
2702	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2703	__be64			     node_guid;
2704	u32			     local_dma_lkey;
2705	u16                          is_switch:1;
2706	/* Indicates kernel verbs support, should not be used in drivers */
2707	u16                          kverbs_provider:1;
2708	/* CQ adaptive moderation (RDMA DIM) */
2709	u16                          use_cq_dim:1;
2710	u8                           node_type;
2711	u32			     phys_port_cnt;
2712	struct ib_device_attr        attrs;
2713	struct hw_stats_device_data *hw_stats_data;
2714
2715#ifdef CONFIG_CGROUP_RDMA
2716	struct rdmacg_device         cg_device;
2717#endif
2718
2719	u32                          index;
2720
2721	spinlock_t                   cq_pools_lock;
2722	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2723
2724	struct rdma_restrack_root *res;
2725
2726	const struct uapi_definition   *driver_def;
2727
2728	/*
2729	 * Positive refcount indicates that the device is currently
2730	 * registered and cannot be unregistered.
2731	 */
2732	refcount_t refcount;
2733	struct completion unreg_completion;
2734	struct work_struct unregistration_work;
2735
2736	const struct rdma_link_ops *link_ops;
2737
2738	/* Protects compat_devs xarray modifications */
2739	struct mutex compat_devs_mutex;
2740	/* Maintains compat devices for each net namespace */
2741	struct xarray compat_devs;
2742
2743	/* Used by iWarp CM */
2744	char iw_ifname[IFNAMSIZ];
2745	u32 iw_driver_flags;
2746	u32 lag_flags;
2747};
2748
2749struct ib_client_nl_info;
2750struct ib_client {
2751	const char *name;
2752	int (*add)(struct ib_device *ibdev);
2753	void (*remove)(struct ib_device *, void *client_data);
2754	void (*rename)(struct ib_device *dev, void *client_data);
2755	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2756			   struct ib_client_nl_info *res);
2757	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2758
2759	/* Returns the net_dev belonging to this ib_client and matching the
2760	 * given parameters.
2761	 * @dev:	 An RDMA device that the net_dev use for communication.
2762	 * @port:	 A physical port number on the RDMA device.
2763	 * @pkey:	 P_Key that the net_dev uses if applicable.
2764	 * @gid:	 A GID that the net_dev uses to communicate.
2765	 * @addr:	 An IP address the net_dev is configured with.
2766	 * @client_data: The device's client data set by ib_set_client_data().
2767	 *
2768	 * An ib_client that implements a net_dev on top of RDMA devices
2769	 * (such as IP over IB) should implement this callback, allowing the
2770	 * rdma_cm module to find the right net_dev for a given request.
2771	 *
2772	 * The caller is responsible for calling dev_put on the returned
2773	 * netdev. */
2774	struct net_device *(*get_net_dev_by_params)(
2775			struct ib_device *dev,
2776			u32 port,
2777			u16 pkey,
2778			const union ib_gid *gid,
2779			const struct sockaddr *addr,
2780			void *client_data);
2781
2782	refcount_t uses;
2783	struct completion uses_zero;
2784	u32 client_id;
2785
2786	/* kverbs are not required by the client */
2787	u8 no_kverbs_req:1;
2788};
2789
2790/*
2791 * IB block DMA iterator
2792 *
2793 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2794 * to a HW supported page size.
2795 */
2796struct ib_block_iter {
2797	/* internal states */
2798	struct scatterlist *__sg;	/* sg holding the current aligned block */
2799	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2800	unsigned int __sg_nents;	/* number of SG entries */
2801	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2802	unsigned int __pg_bit;		/* alignment of current block */
2803};
2804
2805struct ib_device *_ib_alloc_device(size_t size);
2806#define ib_alloc_device(drv_struct, member)                                    \
2807	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2808				      BUILD_BUG_ON_ZERO(offsetof(              \
2809					      struct drv_struct, member))),    \
2810		     struct drv_struct, member)
2811
2812void ib_dealloc_device(struct ib_device *device);
2813
2814void ib_get_device_fw_str(struct ib_device *device, char *str);
2815
2816int ib_register_device(struct ib_device *device, const char *name,
2817		       struct device *dma_device);
2818void ib_unregister_device(struct ib_device *device);
2819void ib_unregister_driver(enum rdma_driver_id driver_id);
2820void ib_unregister_device_and_put(struct ib_device *device);
2821void ib_unregister_device_queued(struct ib_device *ib_dev);
2822
2823int ib_register_client   (struct ib_client *client);
2824void ib_unregister_client(struct ib_client *client);
2825
2826void __rdma_block_iter_start(struct ib_block_iter *biter,
2827			     struct scatterlist *sglist,
2828			     unsigned int nents,
2829			     unsigned long pgsz);
2830bool __rdma_block_iter_next(struct ib_block_iter *biter);
2831
2832/**
2833 * rdma_block_iter_dma_address - get the aligned dma address of the current
2834 * block held by the block iterator.
2835 * @biter: block iterator holding the memory block
2836 */
2837static inline dma_addr_t
2838rdma_block_iter_dma_address(struct ib_block_iter *biter)
2839{
2840	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2841}
2842
2843/**
2844 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2845 * @sglist: sglist to iterate over
2846 * @biter: block iterator holding the memory block
2847 * @nents: maximum number of sg entries to iterate over
2848 * @pgsz: best HW supported page size to use
2849 *
2850 * Callers may use rdma_block_iter_dma_address() to get each
2851 * blocks aligned DMA address.
2852 */
2853#define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2854	for (__rdma_block_iter_start(biter, sglist, nents,	\
2855				     pgsz);			\
2856	     __rdma_block_iter_next(biter);)
2857
2858/**
2859 * ib_get_client_data - Get IB client context
2860 * @device:Device to get context for
2861 * @client:Client to get context for
2862 *
2863 * ib_get_client_data() returns the client context data set with
2864 * ib_set_client_data(). This can only be called while the client is
2865 * registered to the device, once the ib_client remove() callback returns this
2866 * cannot be called.
2867 */
2868static inline void *ib_get_client_data(struct ib_device *device,
2869				       struct ib_client *client)
2870{
2871	return xa_load(&device->client_data, client->client_id);
2872}
2873void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2874			 void *data);
2875void ib_set_device_ops(struct ib_device *device,
2876		       const struct ib_device_ops *ops);
2877
2878int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2879		      unsigned long pfn, unsigned long size, pgprot_t prot,
2880		      struct rdma_user_mmap_entry *entry);
2881int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2882				struct rdma_user_mmap_entry *entry,
2883				size_t length);
2884int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2885				      struct rdma_user_mmap_entry *entry,
2886				      size_t length, u32 min_pgoff,
2887				      u32 max_pgoff);
2888
2889struct rdma_user_mmap_entry *
2890rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2891			       unsigned long pgoff);
2892struct rdma_user_mmap_entry *
2893rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2894			 struct vm_area_struct *vma);
2895void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2896
2897void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2898
2899static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2900{
2901	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2902}
2903
2904static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2905{
2906	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2907}
2908
2909static inline bool ib_is_buffer_cleared(const void __user *p,
2910					size_t len)
2911{
2912	bool ret;
2913	u8 *buf;
2914
2915	if (len > USHRT_MAX)
2916		return false;
2917
2918	buf = memdup_user(p, len);
2919	if (IS_ERR(buf))
2920		return false;
2921
2922	ret = !memchr_inv(buf, 0, len);
2923	kfree(buf);
2924	return ret;
2925}
2926
2927static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2928				       size_t offset,
2929				       size_t len)
2930{
2931	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2932}
2933
2934/**
2935 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2936 * contains all required attributes and no attributes not allowed for
2937 * the given QP state transition.
2938 * @cur_state: Current QP state
2939 * @next_state: Next QP state
2940 * @type: QP type
2941 * @mask: Mask of supplied QP attributes
2942 *
2943 * This function is a helper function that a low-level driver's
2944 * modify_qp method can use to validate the consumer's input.  It
2945 * checks that cur_state and next_state are valid QP states, that a
2946 * transition from cur_state to next_state is allowed by the IB spec,
2947 * and that the attribute mask supplied is allowed for the transition.
2948 */
2949bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2950			enum ib_qp_type type, enum ib_qp_attr_mask mask);
 
 
 
 
2951
2952void ib_register_event_handler(struct ib_event_handler *event_handler);
2953void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2954void ib_dispatch_event(const struct ib_event *event);
2955
2956int ib_query_port(struct ib_device *device,
2957		  u32 port_num, struct ib_port_attr *port_attr);
2958
2959enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2960					       u32 port_num);
2961
2962/**
2963 * rdma_cap_ib_switch - Check if the device is IB switch
2964 * @device: Device to check
2965 *
2966 * Device driver is responsible for setting is_switch bit on
2967 * in ib_device structure at init time.
2968 *
2969 * Return: true if the device is IB switch.
2970 */
2971static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2972{
2973	return device->is_switch;
2974}
2975
2976/**
2977 * rdma_start_port - Return the first valid port number for the device
2978 * specified
2979 *
2980 * @device: Device to be checked
2981 *
2982 * Return start port number
2983 */
2984static inline u32 rdma_start_port(const struct ib_device *device)
2985{
2986	return rdma_cap_ib_switch(device) ? 0 : 1;
2987}
2988
2989/**
2990 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2991 * @device - The struct ib_device * to iterate over
2992 * @iter - The unsigned int to store the port number
2993 */
2994#define rdma_for_each_port(device, iter)                                       \
2995	for (iter = rdma_start_port(device +				       \
2996				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
2997								   iter)));    \
2998	     iter <= rdma_end_port(device); iter++)
2999
3000/**
3001 * rdma_end_port - Return the last valid port number for the device
3002 * specified
3003 *
3004 * @device: Device to be checked
3005 *
3006 * Return last port number
3007 */
3008static inline u32 rdma_end_port(const struct ib_device *device)
3009{
3010	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3011}
3012
3013static inline int rdma_is_port_valid(const struct ib_device *device,
3014				     unsigned int port)
3015{
3016	return (port >= rdma_start_port(device) &&
3017		port <= rdma_end_port(device));
3018}
3019
3020static inline bool rdma_is_grh_required(const struct ib_device *device,
3021					u32 port_num)
3022{
3023	return device->port_data[port_num].immutable.core_cap_flags &
3024	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3025}
3026
3027static inline bool rdma_protocol_ib(const struct ib_device *device,
3028				    u32 port_num)
3029{
3030	return device->port_data[port_num].immutable.core_cap_flags &
3031	       RDMA_CORE_CAP_PROT_IB;
3032}
3033
3034static inline bool rdma_protocol_roce(const struct ib_device *device,
3035				      u32 port_num)
3036{
3037	return device->port_data[port_num].immutable.core_cap_flags &
3038	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3039}
3040
3041static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3042						u32 port_num)
3043{
3044	return device->port_data[port_num].immutable.core_cap_flags &
3045	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3046}
3047
3048static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3049						u32 port_num)
3050{
3051	return device->port_data[port_num].immutable.core_cap_flags &
3052	       RDMA_CORE_CAP_PROT_ROCE;
3053}
3054
3055static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3056				       u32 port_num)
3057{
3058	return device->port_data[port_num].immutable.core_cap_flags &
3059	       RDMA_CORE_CAP_PROT_IWARP;
3060}
3061
3062static inline bool rdma_ib_or_roce(const struct ib_device *device,
3063				   u32 port_num)
3064{
3065	return rdma_protocol_ib(device, port_num) ||
3066		rdma_protocol_roce(device, port_num);
3067}
3068
3069static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3070					    u32 port_num)
3071{
3072	return device->port_data[port_num].immutable.core_cap_flags &
3073	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3074}
3075
3076static inline bool rdma_protocol_usnic(const struct ib_device *device,
3077				       u32 port_num)
3078{
3079	return device->port_data[port_num].immutable.core_cap_flags &
3080	       RDMA_CORE_CAP_PROT_USNIC;
3081}
3082
3083/**
3084 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3085 * Management Datagrams.
3086 * @device: Device to check
3087 * @port_num: Port number to check
3088 *
3089 * Management Datagrams (MAD) are a required part of the InfiniBand
3090 * specification and are supported on all InfiniBand devices.  A slightly
3091 * extended version are also supported on OPA interfaces.
3092 *
3093 * Return: true if the port supports sending/receiving of MAD packets.
3094 */
3095static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3096{
3097	return device->port_data[port_num].immutable.core_cap_flags &
3098	       RDMA_CORE_CAP_IB_MAD;
3099}
3100
3101/**
3102 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3103 * Management Datagrams.
3104 * @device: Device to check
3105 * @port_num: Port number to check
3106 *
3107 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3108 * datagrams with their own versions.  These OPA MADs share many but not all of
3109 * the characteristics of InfiniBand MADs.
3110 *
3111 * OPA MADs differ in the following ways:
3112 *
3113 *    1) MADs are variable size up to 2K
3114 *       IBTA defined MADs remain fixed at 256 bytes
3115 *    2) OPA SMPs must carry valid PKeys
3116 *    3) OPA SMP packets are a different format
3117 *
3118 * Return: true if the port supports OPA MAD packet formats.
3119 */
3120static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3121{
3122	return device->port_data[port_num].immutable.core_cap_flags &
3123		RDMA_CORE_CAP_OPA_MAD;
3124}
3125
3126/**
3127 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3128 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3129 * @device: Device to check
3130 * @port_num: Port number to check
3131 *
3132 * Each InfiniBand node is required to provide a Subnet Management Agent
3133 * that the subnet manager can access.  Prior to the fabric being fully
3134 * configured by the subnet manager, the SMA is accessed via a well known
3135 * interface called the Subnet Management Interface (SMI).  This interface
3136 * uses directed route packets to communicate with the SM to get around the
3137 * chicken and egg problem of the SM needing to know what's on the fabric
3138 * in order to configure the fabric, and needing to configure the fabric in
3139 * order to send packets to the devices on the fabric.  These directed
3140 * route packets do not need the fabric fully configured in order to reach
3141 * their destination.  The SMI is the only method allowed to send
3142 * directed route packets on an InfiniBand fabric.
3143 *
3144 * Return: true if the port provides an SMI.
3145 */
3146static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3147{
3148	return device->port_data[port_num].immutable.core_cap_flags &
3149	       RDMA_CORE_CAP_IB_SMI;
3150}
3151
3152/**
3153 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3154 * Communication Manager.
3155 * @device: Device to check
3156 * @port_num: Port number to check
3157 *
3158 * The InfiniBand Communication Manager is one of many pre-defined General
3159 * Service Agents (GSA) that are accessed via the General Service
3160 * Interface (GSI).  It's role is to facilitate establishment of connections
3161 * between nodes as well as other management related tasks for established
3162 * connections.
3163 *
3164 * Return: true if the port supports an IB CM (this does not guarantee that
3165 * a CM is actually running however).
3166 */
3167static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3168{
3169	return device->port_data[port_num].immutable.core_cap_flags &
3170	       RDMA_CORE_CAP_IB_CM;
3171}
3172
3173/**
3174 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3175 * Communication Manager.
3176 * @device: Device to check
3177 * @port_num: Port number to check
3178 *
3179 * Similar to above, but specific to iWARP connections which have a different
3180 * managment protocol than InfiniBand.
3181 *
3182 * Return: true if the port supports an iWARP CM (this does not guarantee that
3183 * a CM is actually running however).
3184 */
3185static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3186{
3187	return device->port_data[port_num].immutable.core_cap_flags &
3188	       RDMA_CORE_CAP_IW_CM;
3189}
3190
3191/**
3192 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3193 * Subnet Administration.
3194 * @device: Device to check
3195 * @port_num: Port number to check
3196 *
3197 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3198 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3199 * fabrics, devices should resolve routes to other hosts by contacting the
3200 * SA to query the proper route.
3201 *
3202 * Return: true if the port should act as a client to the fabric Subnet
3203 * Administration interface.  This does not imply that the SA service is
3204 * running locally.
3205 */
3206static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3207{
3208	return device->port_data[port_num].immutable.core_cap_flags &
3209	       RDMA_CORE_CAP_IB_SA;
3210}
3211
3212/**
3213 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3214 * Multicast.
3215 * @device: Device to check
3216 * @port_num: Port number to check
3217 *
3218 * InfiniBand multicast registration is more complex than normal IPv4 or
3219 * IPv6 multicast registration.  Each Host Channel Adapter must register
3220 * with the Subnet Manager when it wishes to join a multicast group.  It
3221 * should do so only once regardless of how many queue pairs it subscribes
3222 * to this group.  And it should leave the group only after all queue pairs
3223 * attached to the group have been detached.
3224 *
3225 * Return: true if the port must undertake the additional adminstrative
3226 * overhead of registering/unregistering with the SM and tracking of the
3227 * total number of queue pairs attached to the multicast group.
3228 */
3229static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3230				     u32 port_num)
3231{
3232	return rdma_cap_ib_sa(device, port_num);
3233}
3234
3235/**
3236 * rdma_cap_af_ib - Check if the port of device has the capability
3237 * Native Infiniband Address.
3238 * @device: Device to check
3239 * @port_num: Port number to check
3240 *
3241 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3242 * GID.  RoCE uses a different mechanism, but still generates a GID via
3243 * a prescribed mechanism and port specific data.
3244 *
3245 * Return: true if the port uses a GID address to identify devices on the
3246 * network.
3247 */
3248static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3249{
3250	return device->port_data[port_num].immutable.core_cap_flags &
3251	       RDMA_CORE_CAP_AF_IB;
3252}
3253
3254/**
3255 * rdma_cap_eth_ah - Check if the port of device has the capability
3256 * Ethernet Address Handle.
3257 * @device: Device to check
3258 * @port_num: Port number to check
3259 *
3260 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3261 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3262 * port.  Normally, packet headers are generated by the sending host
3263 * adapter, but when sending connectionless datagrams, we must manually
3264 * inject the proper headers for the fabric we are communicating over.
3265 *
3266 * Return: true if we are running as a RoCE port and must force the
3267 * addition of a Global Route Header built from our Ethernet Address
3268 * Handle into our header list for connectionless packets.
3269 */
3270static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3271{
3272	return device->port_data[port_num].immutable.core_cap_flags &
3273	       RDMA_CORE_CAP_ETH_AH;
3274}
3275
3276/**
3277 * rdma_cap_opa_ah - Check if the port of device supports
3278 * OPA Address handles
3279 * @device: Device to check
3280 * @port_num: Port number to check
3281 *
3282 * Return: true if we are running on an OPA device which supports
3283 * the extended OPA addressing.
3284 */
3285static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3286{
3287	return (device->port_data[port_num].immutable.core_cap_flags &
3288		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3289}
3290
3291/**
3292 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3293 *
3294 * @device: Device
3295 * @port_num: Port number
3296 *
3297 * This MAD size includes the MAD headers and MAD payload.  No other headers
3298 * are included.
3299 *
3300 * Return the max MAD size required by the Port.  Will return 0 if the port
3301 * does not support MADs
3302 */
3303static inline size_t rdma_max_mad_size(const struct ib_device *device,
3304				       u32 port_num)
3305{
3306	return device->port_data[port_num].immutable.max_mad_size;
3307}
3308
3309/**
3310 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3311 * @device: Device to check
3312 * @port_num: Port number to check
3313 *
3314 * RoCE GID table mechanism manages the various GIDs for a device.
3315 *
3316 * NOTE: if allocating the port's GID table has failed, this call will still
3317 * return true, but any RoCE GID table API will fail.
3318 *
3319 * Return: true if the port uses RoCE GID table mechanism in order to manage
3320 * its GIDs.
3321 */
3322static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3323					   u32 port_num)
3324{
3325	return rdma_protocol_roce(device, port_num) &&
3326		device->ops.add_gid && device->ops.del_gid;
3327}
3328
3329/*
3330 * Check if the device supports READ W/ INVALIDATE.
3331 */
3332static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3333{
3334	/*
3335	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3336	 * has support for it yet.
3337	 */
3338	return rdma_protocol_iwarp(dev, port_num);
3339}
3340
3341/**
3342 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3343 * @device: Device
3344 * @port_num: 1 based Port number
3345 *
3346 * Return true if port is an Intel OPA port , false if not
3347 */
3348static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3349					  u32 port_num)
3350{
3351	return (device->port_data[port_num].immutable.core_cap_flags &
3352		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3353}
3354
3355/**
3356 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3357 * @device: Device
3358 * @port_num: Port number
3359 * @mtu: enum value of MTU
3360 *
3361 * Return the MTU size supported by the port as an integer value. Will return
3362 * -1 if enum value of mtu is not supported.
3363 */
3364static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3365				       int mtu)
3366{
3367	if (rdma_core_cap_opa_port(device, port))
3368		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3369	else
3370		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3371}
3372
3373/**
3374 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3375 * @device: Device
3376 * @port_num: Port number
3377 * @attr: port attribute
3378 *
3379 * Return the MTU size supported by the port as an integer value.
3380 */
3381static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3382				     struct ib_port_attr *attr)
3383{
3384	if (rdma_core_cap_opa_port(device, port))
3385		return attr->phys_mtu;
3386	else
3387		return ib_mtu_enum_to_int(attr->max_mtu);
3388}
3389
3390int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3391			 int state);
3392int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3393		     struct ifla_vf_info *info);
3394int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3395		    struct ifla_vf_stats *stats);
3396int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3397		    struct ifla_vf_guid *node_guid,
3398		    struct ifla_vf_guid *port_guid);
3399int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3400		   int type);
3401
3402int ib_query_pkey(struct ib_device *device,
3403		  u32 port_num, u16 index, u16 *pkey);
3404
3405int ib_modify_device(struct ib_device *device,
3406		     int device_modify_mask,
3407		     struct ib_device_modify *device_modify);
3408
3409int ib_modify_port(struct ib_device *device,
3410		   u32 port_num, int port_modify_mask,
3411		   struct ib_port_modify *port_modify);
3412
3413int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3414		u32 *port_num, u16 *index);
3415
3416int ib_find_pkey(struct ib_device *device,
3417		 u32 port_num, u16 pkey, u16 *index);
3418
3419enum ib_pd_flags {
3420	/*
3421	 * Create a memory registration for all memory in the system and place
3422	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3423	 * ULPs to avoid the overhead of dynamic MRs.
3424	 *
3425	 * This flag is generally considered unsafe and must only be used in
3426	 * extremly trusted environments.  Every use of it will log a warning
3427	 * in the kernel log.
3428	 */
3429	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3430};
3431
3432struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3433		const char *caller);
3434
3435/**
3436 * ib_alloc_pd - Allocates an unused protection domain.
3437 * @device: The device on which to allocate the protection domain.
3438 * @flags: protection domain flags
3439 *
3440 * A protection domain object provides an association between QPs, shared
3441 * receive queues, address handles, memory regions, and memory windows.
3442 *
3443 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3444 * memory operations.
3445 */
3446#define ib_alloc_pd(device, flags) \
3447	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3448
3449int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3450
3451/**
3452 * ib_dealloc_pd - Deallocate kernel PD
3453 * @pd: The protection domain
3454 *
3455 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3456 */
3457static inline void ib_dealloc_pd(struct ib_pd *pd)
3458{
3459	int ret = ib_dealloc_pd_user(pd, NULL);
3460
3461	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3462}
3463
3464enum rdma_create_ah_flags {
3465	/* In a sleepable context */
3466	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3467};
3468
3469/**
3470 * rdma_create_ah - Creates an address handle for the given address vector.
3471 * @pd: The protection domain associated with the address handle.
3472 * @ah_attr: The attributes of the address vector.
3473 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3474 *
3475 * The address handle is used to reference a local or global destination
3476 * in all UD QP post sends.
3477 */
3478struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3479			     u32 flags);
3480
3481/**
3482 * rdma_create_user_ah - Creates an address handle for the given address vector.
3483 * It resolves destination mac address for ah attribute of RoCE type.
3484 * @pd: The protection domain associated with the address handle.
3485 * @ah_attr: The attributes of the address vector.
3486 * @udata: pointer to user's input output buffer information need by
3487 *         provider driver.
3488 *
3489 * It returns 0 on success and returns appropriate error code on error.
3490 * The address handle is used to reference a local or global destination
3491 * in all UD QP post sends.
3492 */
3493struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3494				  struct rdma_ah_attr *ah_attr,
3495				  struct ib_udata *udata);
3496/**
3497 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3498 *   work completion.
3499 * @hdr: the L3 header to parse
3500 * @net_type: type of header to parse
3501 * @sgid: place to store source gid
3502 * @dgid: place to store destination gid
3503 */
3504int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3505			      enum rdma_network_type net_type,
3506			      union ib_gid *sgid, union ib_gid *dgid);
3507
3508/**
3509 * ib_get_rdma_header_version - Get the header version
3510 * @hdr: the L3 header to parse
3511 */
3512int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3513
3514/**
3515 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3516 *   work completion.
3517 * @device: Device on which the received message arrived.
3518 * @port_num: Port on which the received message arrived.
3519 * @wc: Work completion associated with the received message.
3520 * @grh: References the received global route header.  This parameter is
3521 *   ignored unless the work completion indicates that the GRH is valid.
3522 * @ah_attr: Returned attributes that can be used when creating an address
3523 *   handle for replying to the message.
3524 * When ib_init_ah_attr_from_wc() returns success,
3525 * (a) for IB link layer it optionally contains a reference to SGID attribute
3526 * when GRH is present for IB link layer.
3527 * (b) for RoCE link layer it contains a reference to SGID attribute.
3528 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3529 * attributes which are initialized using ib_init_ah_attr_from_wc().
3530 *
3531 */
3532int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3533			    const struct ib_wc *wc, const struct ib_grh *grh,
3534			    struct rdma_ah_attr *ah_attr);
3535
3536/**
3537 * ib_create_ah_from_wc - Creates an address handle associated with the
3538 *   sender of the specified work completion.
3539 * @pd: The protection domain associated with the address handle.
3540 * @wc: Work completion information associated with a received message.
3541 * @grh: References the received global route header.  This parameter is
3542 *   ignored unless the work completion indicates that the GRH is valid.
3543 * @port_num: The outbound port number to associate with the address.
3544 *
3545 * The address handle is used to reference a local or global destination
3546 * in all UD QP post sends.
3547 */
3548struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3549				   const struct ib_grh *grh, u32 port_num);
3550
3551/**
3552 * rdma_modify_ah - Modifies the address vector associated with an address
3553 *   handle.
3554 * @ah: The address handle to modify.
3555 * @ah_attr: The new address vector attributes to associate with the
3556 *   address handle.
3557 */
3558int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3559
3560/**
3561 * rdma_query_ah - Queries the address vector associated with an address
3562 *   handle.
3563 * @ah: The address handle to query.
3564 * @ah_attr: The address vector attributes associated with the address
3565 *   handle.
3566 */
3567int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3568
3569enum rdma_destroy_ah_flags {
3570	/* In a sleepable context */
3571	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3572};
3573
3574/**
3575 * rdma_destroy_ah_user - Destroys an address handle.
3576 * @ah: The address handle to destroy.
3577 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3578 * @udata: Valid user data or NULL for kernel objects
3579 */
3580int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3581
3582/**
3583 * rdma_destroy_ah - Destroys an kernel address handle.
3584 * @ah: The address handle to destroy.
3585 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3586 *
3587 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
 
 
 
 
 
 
3588 */
3589static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3590{
3591	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3592
3593	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3594}
3595
3596struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3597				  struct ib_srq_init_attr *srq_init_attr,
3598				  struct ib_usrq_object *uobject,
3599				  struct ib_udata *udata);
3600static inline struct ib_srq *
3601ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3602{
3603	if (!pd->device->ops.create_srq)
3604		return ERR_PTR(-EOPNOTSUPP);
3605
3606	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3607}
3608
3609/**
3610 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3611 * @srq: The SRQ to modify.
3612 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3613 *   the current values of selected SRQ attributes are returned.
3614 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3615 *   are being modified.
3616 *
3617 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3618 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3619 * the number of receives queued drops below the limit.
3620 */
3621int ib_modify_srq(struct ib_srq *srq,
3622		  struct ib_srq_attr *srq_attr,
3623		  enum ib_srq_attr_mask srq_attr_mask);
3624
3625/**
3626 * ib_query_srq - Returns the attribute list and current values for the
3627 *   specified SRQ.
3628 * @srq: The SRQ to query.
3629 * @srq_attr: The attributes of the specified SRQ.
3630 */
3631int ib_query_srq(struct ib_srq *srq,
3632		 struct ib_srq_attr *srq_attr);
3633
3634/**
3635 * ib_destroy_srq_user - Destroys the specified SRQ.
3636 * @srq: The SRQ to destroy.
3637 * @udata: Valid user data or NULL for kernel objects
3638 */
3639int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3640
3641/**
3642 * ib_destroy_srq - Destroys the specified kernel SRQ.
3643 * @srq: The SRQ to destroy.
3644 *
3645 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3646 */
3647static inline void ib_destroy_srq(struct ib_srq *srq)
3648{
3649	int ret = ib_destroy_srq_user(srq, NULL);
3650
3651	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3652}
3653
3654/**
3655 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3656 * @srq: The SRQ to post the work request on.
3657 * @recv_wr: A list of work requests to post on the receive queue.
3658 * @bad_recv_wr: On an immediate failure, this parameter will reference
3659 *   the work request that failed to be posted on the QP.
3660 */
3661static inline int ib_post_srq_recv(struct ib_srq *srq,
3662				   const struct ib_recv_wr *recv_wr,
3663				   const struct ib_recv_wr **bad_recv_wr)
3664{
3665	const struct ib_recv_wr *dummy;
3666
3667	return srq->device->ops.post_srq_recv(srq, recv_wr,
3668					      bad_recv_wr ? : &dummy);
3669}
3670
3671struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
3672				 struct ib_qp_init_attr *qp_init_attr,
3673				 const char *caller);
3674static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3675					 struct ib_qp_init_attr *init_attr)
3676{
3677	return ib_create_named_qp(pd, init_attr, KBUILD_MODNAME);
3678}
3679
3680/**
3681 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3682 * @qp: The QP to modify.
3683 * @attr: On input, specifies the QP attributes to modify.  On output,
3684 *   the current values of selected QP attributes are returned.
3685 * @attr_mask: A bit-mask used to specify which attributes of the QP
3686 *   are being modified.
3687 * @udata: pointer to user's input output buffer information
3688 *   are being modified.
3689 * It returns 0 on success and returns appropriate error code on error.
3690 */
3691int ib_modify_qp_with_udata(struct ib_qp *qp,
3692			    struct ib_qp_attr *attr,
3693			    int attr_mask,
3694			    struct ib_udata *udata);
3695
3696/**
3697 * ib_modify_qp - Modifies the attributes for the specified QP and then
3698 *   transitions the QP to the given state.
3699 * @qp: The QP to modify.
3700 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3701 *   the current values of selected QP attributes are returned.
3702 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3703 *   are being modified.
3704 */
3705int ib_modify_qp(struct ib_qp *qp,
3706		 struct ib_qp_attr *qp_attr,
3707		 int qp_attr_mask);
3708
3709/**
3710 * ib_query_qp - Returns the attribute list and current values for the
3711 *   specified QP.
3712 * @qp: The QP to query.
3713 * @qp_attr: The attributes of the specified QP.
3714 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3715 * @qp_init_attr: Additional attributes of the selected QP.
3716 *
3717 * The qp_attr_mask may be used to limit the query to gathering only the
3718 * selected attributes.
3719 */
3720int ib_query_qp(struct ib_qp *qp,
3721		struct ib_qp_attr *qp_attr,
3722		int qp_attr_mask,
3723		struct ib_qp_init_attr *qp_init_attr);
3724
3725/**
3726 * ib_destroy_qp - Destroys the specified QP.
3727 * @qp: The QP to destroy.
3728 * @udata: Valid udata or NULL for kernel objects
3729 */
3730int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3731
3732/**
3733 * ib_destroy_qp - Destroys the specified kernel QP.
3734 * @qp: The QP to destroy.
3735 *
3736 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3737 */
3738static inline int ib_destroy_qp(struct ib_qp *qp)
3739{
3740	return ib_destroy_qp_user(qp, NULL);
3741}
3742
3743/**
3744 * ib_open_qp - Obtain a reference to an existing sharable QP.
3745 * @xrcd - XRC domain
3746 * @qp_open_attr: Attributes identifying the QP to open.
3747 *
3748 * Returns a reference to a sharable QP.
3749 */
3750struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3751			 struct ib_qp_open_attr *qp_open_attr);
3752
3753/**
3754 * ib_close_qp - Release an external reference to a QP.
3755 * @qp: The QP handle to release
3756 *
3757 * The opened QP handle is released by the caller.  The underlying
3758 * shared QP is not destroyed until all internal references are released.
3759 */
3760int ib_close_qp(struct ib_qp *qp);
3761
3762/**
3763 * ib_post_send - Posts a list of work requests to the send queue of
3764 *   the specified QP.
3765 * @qp: The QP to post the work request on.
3766 * @send_wr: A list of work requests to post on the send queue.
3767 * @bad_send_wr: On an immediate failure, this parameter will reference
3768 *   the work request that failed to be posted on the QP.
3769 *
3770 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3771 * error is returned, the QP state shall not be affected,
3772 * ib_post_send() will return an immediate error after queueing any
3773 * earlier work requests in the list.
3774 */
3775static inline int ib_post_send(struct ib_qp *qp,
3776			       const struct ib_send_wr *send_wr,
3777			       const struct ib_send_wr **bad_send_wr)
3778{
3779	const struct ib_send_wr *dummy;
3780
3781	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3782}
3783
3784/**
3785 * ib_post_recv - Posts a list of work requests to the receive queue of
3786 *   the specified QP.
3787 * @qp: The QP to post the work request on.
3788 * @recv_wr: A list of work requests to post on the receive queue.
3789 * @bad_recv_wr: On an immediate failure, this parameter will reference
3790 *   the work request that failed to be posted on the QP.
3791 */
3792static inline int ib_post_recv(struct ib_qp *qp,
3793			       const struct ib_recv_wr *recv_wr,
3794			       const struct ib_recv_wr **bad_recv_wr)
3795{
3796	const struct ib_recv_wr *dummy;
3797
3798	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3799}
3800
3801struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3802			    int comp_vector, enum ib_poll_context poll_ctx,
3803			    const char *caller);
3804static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3805					int nr_cqe, int comp_vector,
3806					enum ib_poll_context poll_ctx)
3807{
3808	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3809			     KBUILD_MODNAME);
3810}
3811
3812struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3813				int nr_cqe, enum ib_poll_context poll_ctx,
3814				const char *caller);
3815
3816/**
3817 * ib_alloc_cq_any: Allocate kernel CQ
3818 * @dev: The IB device
3819 * @private: Private data attached to the CQE
3820 * @nr_cqe: Number of CQEs in the CQ
3821 * @poll_ctx: Context used for polling the CQ
3822 */
3823static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3824					    void *private, int nr_cqe,
3825					    enum ib_poll_context poll_ctx)
3826{
3827	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3828				 KBUILD_MODNAME);
3829}
3830
3831void ib_free_cq(struct ib_cq *cq);
3832int ib_process_cq_direct(struct ib_cq *cq, int budget);
3833
3834/**
3835 * ib_create_cq - Creates a CQ on the specified device.
3836 * @device: The device on which to create the CQ.
3837 * @comp_handler: A user-specified callback that is invoked when a
3838 *   completion event occurs on the CQ.
3839 * @event_handler: A user-specified callback that is invoked when an
3840 *   asynchronous event not associated with a completion occurs on the CQ.
3841 * @cq_context: Context associated with the CQ returned to the user via
3842 *   the associated completion and event handlers.
3843 * @cq_attr: The attributes the CQ should be created upon.
 
 
3844 *
3845 * Users can examine the cq structure to determine the actual CQ size.
3846 */
3847struct ib_cq *__ib_create_cq(struct ib_device *device,
3848			     ib_comp_handler comp_handler,
3849			     void (*event_handler)(struct ib_event *, void *),
3850			     void *cq_context,
3851			     const struct ib_cq_init_attr *cq_attr,
3852			     const char *caller);
3853#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3854	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3855
3856/**
3857 * ib_resize_cq - Modifies the capacity of the CQ.
3858 * @cq: The CQ to resize.
3859 * @cqe: The minimum size of the CQ.
3860 *
3861 * Users can examine the cq structure to determine the actual CQ size.
3862 */
3863int ib_resize_cq(struct ib_cq *cq, int cqe);
3864
3865/**
3866 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3867 * @cq: The CQ to modify.
3868 * @cq_count: number of CQEs that will trigger an event
3869 * @cq_period: max period of time in usec before triggering an event
3870 *
3871 */
3872int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3873
3874/**
3875 * ib_destroy_cq_user - Destroys the specified CQ.
3876 * @cq: The CQ to destroy.
3877 * @udata: Valid user data or NULL for kernel objects
3878 */
3879int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3880
3881/**
3882 * ib_destroy_cq - Destroys the specified kernel CQ.
3883 * @cq: The CQ to destroy.
3884 *
3885 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3886 */
3887static inline void ib_destroy_cq(struct ib_cq *cq)
3888{
3889	int ret = ib_destroy_cq_user(cq, NULL);
3890
3891	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3892}
3893
3894/**
3895 * ib_poll_cq - poll a CQ for completion(s)
3896 * @cq:the CQ being polled
3897 * @num_entries:maximum number of completions to return
3898 * @wc:array of at least @num_entries &struct ib_wc where completions
3899 *   will be returned
3900 *
3901 * Poll a CQ for (possibly multiple) completions.  If the return value
3902 * is < 0, an error occurred.  If the return value is >= 0, it is the
3903 * number of completions returned.  If the return value is
3904 * non-negative and < num_entries, then the CQ was emptied.
3905 */
3906static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3907			     struct ib_wc *wc)
3908{
3909	return cq->device->ops.poll_cq(cq, num_entries, wc);
3910}
3911
3912/**
 
 
 
 
 
 
 
 
 
 
 
 
3913 * ib_req_notify_cq - Request completion notification on a CQ.
3914 * @cq: The CQ to generate an event for.
3915 * @flags:
3916 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3917 *   to request an event on the next solicited event or next work
3918 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3919 *   may also be |ed in to request a hint about missed events, as
3920 *   described below.
3921 *
3922 * Return Value:
3923 *    < 0 means an error occurred while requesting notification
3924 *   == 0 means notification was requested successfully, and if
3925 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3926 *        were missed and it is safe to wait for another event.  In
3927 *        this case is it guaranteed that any work completions added
3928 *        to the CQ since the last CQ poll will trigger a completion
3929 *        notification event.
3930 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3931 *        in.  It means that the consumer must poll the CQ again to
3932 *        make sure it is empty to avoid missing an event because of a
3933 *        race between requesting notification and an entry being
3934 *        added to the CQ.  This return value means it is possible
3935 *        (but not guaranteed) that a work completion has been added
3936 *        to the CQ since the last poll without triggering a
3937 *        completion notification event.
3938 */
3939static inline int ib_req_notify_cq(struct ib_cq *cq,
3940				   enum ib_cq_notify_flags flags)
3941{
3942	return cq->device->ops.req_notify_cq(cq, flags);
3943}
3944
3945struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3946			     int comp_vector_hint,
3947			     enum ib_poll_context poll_ctx);
3948
3949void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3950
3951/*
3952 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
3953 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
3954 * address into the dma address.
3955 */
3956static inline bool ib_uses_virt_dma(struct ib_device *dev)
3957{
3958	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
 
 
3959}
3960
3961/**
 
 
 
 
 
 
 
 
 
 
 
 
3962 * ib_dma_mapping_error - check a DMA addr for error
3963 * @dev: The device for which the dma_addr was created
3964 * @dma_addr: The DMA address to check
3965 */
3966static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3967{
3968	if (ib_uses_virt_dma(dev))
3969		return 0;
3970	return dma_mapping_error(dev->dma_device, dma_addr);
3971}
3972
3973/**
3974 * ib_dma_map_single - Map a kernel virtual address to DMA address
3975 * @dev: The device for which the dma_addr is to be created
3976 * @cpu_addr: The kernel virtual address
3977 * @size: The size of the region in bytes
3978 * @direction: The direction of the DMA
3979 */
3980static inline u64 ib_dma_map_single(struct ib_device *dev,
3981				    void *cpu_addr, size_t size,
3982				    enum dma_data_direction direction)
3983{
3984	if (ib_uses_virt_dma(dev))
3985		return (uintptr_t)cpu_addr;
3986	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3987}
3988
3989/**
3990 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3991 * @dev: The device for which the DMA address was created
3992 * @addr: The DMA address
3993 * @size: The size of the region in bytes
3994 * @direction: The direction of the DMA
3995 */
3996static inline void ib_dma_unmap_single(struct ib_device *dev,
3997				       u64 addr, size_t size,
3998				       enum dma_data_direction direction)
3999{
4000	if (!ib_uses_virt_dma(dev))
 
 
4001		dma_unmap_single(dev->dma_device, addr, size, direction);
4002}
4003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4004/**
4005 * ib_dma_map_page - Map a physical page to DMA address
4006 * @dev: The device for which the dma_addr is to be created
4007 * @page: The page to be mapped
4008 * @offset: The offset within the page
4009 * @size: The size of the region in bytes
4010 * @direction: The direction of the DMA
4011 */
4012static inline u64 ib_dma_map_page(struct ib_device *dev,
4013				  struct page *page,
4014				  unsigned long offset,
4015				  size_t size,
4016					 enum dma_data_direction direction)
4017{
4018	if (ib_uses_virt_dma(dev))
4019		return (uintptr_t)(page_address(page) + offset);
4020	return dma_map_page(dev->dma_device, page, offset, size, direction);
4021}
4022
4023/**
4024 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4025 * @dev: The device for which the DMA address was created
4026 * @addr: The DMA address
4027 * @size: The size of the region in bytes
4028 * @direction: The direction of the DMA
4029 */
4030static inline void ib_dma_unmap_page(struct ib_device *dev,
4031				     u64 addr, size_t size,
4032				     enum dma_data_direction direction)
4033{
4034	if (!ib_uses_virt_dma(dev))
 
 
4035		dma_unmap_page(dev->dma_device, addr, size, direction);
4036}
4037
4038int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4039static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4040				      struct scatterlist *sg, int nents,
4041				      enum dma_data_direction direction,
4042				      unsigned long dma_attrs)
4043{
4044	if (ib_uses_virt_dma(dev))
4045		return ib_dma_virt_map_sg(dev, sg, nents);
4046	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4047				dma_attrs);
4048}
4049
4050static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4051					 struct scatterlist *sg, int nents,
4052					 enum dma_data_direction direction,
4053					 unsigned long dma_attrs)
4054{
4055	if (!ib_uses_virt_dma(dev))
4056		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4057				   dma_attrs);
4058}
4059
4060/**
4061 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4062 * @dev: The device for which the DMA addresses are to be created
4063 * @sg: The array of scatter/gather entries
4064 * @nents: The number of scatter/gather entries
4065 * @direction: The direction of the DMA
4066 */
4067static inline int ib_dma_map_sg(struct ib_device *dev,
4068				struct scatterlist *sg, int nents,
4069				enum dma_data_direction direction)
4070{
4071	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
 
 
4072}
4073
4074/**
4075 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4076 * @dev: The device for which the DMA addresses were created
4077 * @sg: The array of scatter/gather entries
4078 * @nents: The number of scatter/gather entries
4079 * @direction: The direction of the DMA
4080 */
4081static inline void ib_dma_unmap_sg(struct ib_device *dev,
4082				   struct scatterlist *sg, int nents,
4083				   enum dma_data_direction direction)
4084{
4085	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
 
 
 
4086}
4087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4088/**
4089 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4090 * @dev: The device to query
4091 *
4092 * The returned value represents a size in bytes.
 
 
 
 
 
 
 
 
 
 
 
 
4093 */
4094static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
 
4095{
4096	if (ib_uses_virt_dma(dev))
4097		return UINT_MAX;
4098	return dma_get_max_seg_size(dev->dma_device);
4099}
4100
4101/**
4102 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4103 * @dev: The device for which the DMA address was created
4104 * @addr: The DMA address
4105 * @size: The size of the region in bytes
4106 * @dir: The direction of the DMA
4107 */
4108static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4109					      u64 addr,
4110					      size_t size,
4111					      enum dma_data_direction dir)
4112{
4113	if (!ib_uses_virt_dma(dev))
 
 
4114		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4115}
4116
4117/**
4118 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4119 * @dev: The device for which the DMA address was created
4120 * @addr: The DMA address
4121 * @size: The size of the region in bytes
4122 * @dir: The direction of the DMA
4123 */
4124static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4125						 u64 addr,
4126						 size_t size,
4127						 enum dma_data_direction dir)
4128{
4129	if (!ib_uses_virt_dma(dev))
 
 
4130		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4131}
4132
4133/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4134 * space. This function should be called when 'current' is the owning MM.
4135 */
4136struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4137			     u64 virt_addr, int mr_access_flags);
4138
4139/* ib_advise_mr -  give an advice about an address range in a memory region */
4140int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4141		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4142/**
4143 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4144 *   HCA translation table.
4145 * @mr: The memory region to deregister.
4146 * @udata: Valid user data or NULL for kernel object
4147 *
4148 * This function can fail, if the memory region has memory windows bound to it.
4149 */
4150int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4151
4152/**
4153 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4154 *   HCA translation table.
4155 * @mr: The memory region to deregister.
4156 *
4157 * This function can fail, if the memory region has memory windows bound to it.
4158 *
4159 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4160 */
4161static inline int ib_dereg_mr(struct ib_mr *mr)
4162{
4163	return ib_dereg_mr_user(mr, NULL);
4164}
4165
4166struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4167			  u32 max_num_sg);
4168
4169struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4170				    u32 max_num_data_sg,
4171				    u32 max_num_meta_sg);
4172
4173/**
4174 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4175 *   R_Key and L_Key.
4176 * @mr - struct ib_mr pointer to be updated.
4177 * @newkey - new key to be used.
4178 */
4179static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
 
 
 
4180{
4181	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4182	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
 
 
4183}
4184
4185/**
4186 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4187 * for calculating a new rkey for type 2 memory windows.
4188 * @rkey - the rkey to increment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4189 */
4190static inline u32 ib_inc_rkey(u32 rkey)
4191{
4192	const u32 mask = 0x000000ff;
4193	return ((rkey + 1) & mask) | (rkey & ~mask);
4194}
4195
4196/**
4197 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4198 * @qp: QP to attach to the multicast group.  The QP must be type
4199 *   IB_QPT_UD.
4200 * @gid: Multicast group GID.
4201 * @lid: Multicast group LID in host byte order.
4202 *
4203 * In order to send and receive multicast packets, subnet
4204 * administration must have created the multicast group and configured
4205 * the fabric appropriately.  The port associated with the specified
4206 * QP must also be a member of the multicast group.
4207 */
4208int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4209
4210/**
4211 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4212 * @qp: QP to detach from the multicast group.
4213 * @gid: Multicast group GID.
4214 * @lid: Multicast group LID in host byte order.
 
4215 */
4216int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4217
4218struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4219				   struct inode *inode, struct ib_udata *udata);
4220int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4221
4222static inline int ib_check_mr_access(struct ib_device *ib_dev,
4223				     unsigned int flags)
4224{
4225	/*
4226	 * Local write permission is required if remote write or
4227	 * remote atomic permission is also requested.
4228	 */
4229	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4230	    !(flags & IB_ACCESS_LOCAL_WRITE))
4231		return -EINVAL;
4232
4233	if (flags & ~IB_ACCESS_SUPPORTED)
4234		return -EINVAL;
4235
4236	if (flags & IB_ACCESS_ON_DEMAND &&
4237	    !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING))
4238		return -EINVAL;
4239	return 0;
4240}
4241
4242static inline bool ib_access_writable(int access_flags)
4243{
4244	/*
4245	 * We have writable memory backing the MR if any of the following
4246	 * access flags are set.  "Local write" and "remote write" obviously
4247	 * require write access.  "Remote atomic" can do things like fetch and
4248	 * add, which will modify memory, and "MW bind" can change permissions
4249	 * by binding a window.
4250	 */
4251	return access_flags &
4252		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4253		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4254}
4255
4256/**
4257 * ib_check_mr_status: lightweight check of MR status.
4258 *     This routine may provide status checks on a selected
4259 *     ib_mr. first use is for signature status check.
4260 *
4261 * @mr: A memory region.
4262 * @check_mask: Bitmask of which checks to perform from
4263 *     ib_mr_status_check enumeration.
4264 * @mr_status: The container of relevant status checks.
4265 *     failed checks will be indicated in the status bitmask
4266 *     and the relevant info shall be in the error item.
 
 
 
 
 
4267 */
4268int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4269		       struct ib_mr_status *mr_status);
4270
4271/**
4272 * ib_device_try_get: Hold a registration lock
4273 * device: The device to lock
4274 *
4275 * A device under an active registration lock cannot become unregistered. It
4276 * is only possible to obtain a registration lock on a device that is fully
4277 * registered, otherwise this function returns false.
4278 *
4279 * The registration lock is only necessary for actions which require the
4280 * device to still be registered. Uses that only require the device pointer to
4281 * be valid should use get_device(&ibdev->dev) to hold the memory.
4282 *
4283 */
4284static inline bool ib_device_try_get(struct ib_device *dev)
4285{
4286	return refcount_inc_not_zero(&dev->refcount);
4287}
4288
4289void ib_device_put(struct ib_device *device);
4290struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4291					  enum rdma_driver_id driver_id);
4292struct ib_device *ib_device_get_by_name(const char *name,
4293					enum rdma_driver_id driver_id);
4294struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4295					    u16 pkey, const union ib_gid *gid,
4296					    const struct sockaddr *addr);
4297int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4298			 unsigned int port);
4299struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4300
4301struct ib_wq *ib_create_wq(struct ib_pd *pd,
4302			   struct ib_wq_init_attr *init_attr);
4303int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4304
4305int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4306		 unsigned int *sg_offset, unsigned int page_size);
4307int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4308		    int data_sg_nents, unsigned int *data_sg_offset,
4309		    struct scatterlist *meta_sg, int meta_sg_nents,
4310		    unsigned int *meta_sg_offset, unsigned int page_size);
4311
4312static inline int
4313ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4314		  unsigned int *sg_offset, unsigned int page_size)
4315{
4316	int n;
4317
4318	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4319	mr->iova = 0;
4320
4321	return n;
4322}
4323
4324int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4325		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4326
4327void ib_drain_rq(struct ib_qp *qp);
4328void ib_drain_sq(struct ib_qp *qp);
4329void ib_drain_qp(struct ib_qp *qp);
4330
4331int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4332		     u8 *width);
4333
4334static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4335{
4336	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4337		return attr->roce.dmac;
4338	return NULL;
4339}
4340
4341static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4342{
4343	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4344		attr->ib.dlid = (u16)dlid;
4345	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4346		attr->opa.dlid = dlid;
4347}
4348
4349static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4350{
4351	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4352		return attr->ib.dlid;
4353	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4354		return attr->opa.dlid;
4355	return 0;
4356}
4357
4358static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4359{
4360	attr->sl = sl;
4361}
4362
4363static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4364{
4365	return attr->sl;
4366}
4367
4368static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4369					 u8 src_path_bits)
4370{
4371	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4372		attr->ib.src_path_bits = src_path_bits;
4373	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4374		attr->opa.src_path_bits = src_path_bits;
4375}
4376
4377static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4378{
4379	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4380		return attr->ib.src_path_bits;
4381	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4382		return attr->opa.src_path_bits;
4383	return 0;
4384}
4385
4386static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4387					bool make_grd)
4388{
4389	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4390		attr->opa.make_grd = make_grd;
4391}
4392
4393static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4394{
4395	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4396		return attr->opa.make_grd;
4397	return false;
4398}
4399
4400static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4401{
4402	attr->port_num = port_num;
4403}
4404
4405static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4406{
4407	return attr->port_num;
4408}
4409
4410static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4411					   u8 static_rate)
4412{
4413	attr->static_rate = static_rate;
4414}
4415
4416static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4417{
4418	return attr->static_rate;
4419}
4420
4421static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4422					enum ib_ah_flags flag)
4423{
4424	attr->ah_flags = flag;
4425}
4426
4427static inline enum ib_ah_flags
4428		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4429{
4430	return attr->ah_flags;
4431}
4432
4433static inline const struct ib_global_route
4434		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4435{
4436	return &attr->grh;
4437}
4438
4439/*To retrieve and modify the grh */
4440static inline struct ib_global_route
4441		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4442{
4443	return &attr->grh;
4444}
4445
4446static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4447{
4448	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4449
4450	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4451}
4452
4453static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4454					     __be64 prefix)
4455{
4456	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4457
4458	grh->dgid.global.subnet_prefix = prefix;
4459}
4460
4461static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4462					    __be64 if_id)
4463{
4464	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4465
4466	grh->dgid.global.interface_id = if_id;
4467}
4468
4469static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4470				   union ib_gid *dgid, u32 flow_label,
4471				   u8 sgid_index, u8 hop_limit,
4472				   u8 traffic_class)
4473{
4474	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4475
4476	attr->ah_flags = IB_AH_GRH;
4477	if (dgid)
4478		grh->dgid = *dgid;
4479	grh->flow_label = flow_label;
4480	grh->sgid_index = sgid_index;
4481	grh->hop_limit = hop_limit;
4482	grh->traffic_class = traffic_class;
4483	grh->sgid_attr = NULL;
4484}
4485
4486void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4487void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4488			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4489			     const struct ib_gid_attr *sgid_attr);
4490void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4491		       const struct rdma_ah_attr *src);
4492void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4493			  const struct rdma_ah_attr *new);
4494void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4495
4496/**
4497 * rdma_ah_find_type - Return address handle type.
4498 *
4499 * @dev: Device to be checked
4500 * @port_num: Port number
4501 */
4502static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4503						       u32 port_num)
4504{
4505	if (rdma_protocol_roce(dev, port_num))
4506		return RDMA_AH_ATTR_TYPE_ROCE;
4507	if (rdma_protocol_ib(dev, port_num)) {
4508		if (rdma_cap_opa_ah(dev, port_num))
4509			return RDMA_AH_ATTR_TYPE_OPA;
4510		return RDMA_AH_ATTR_TYPE_IB;
4511	}
4512
4513	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4514}
4515
4516/**
4517 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4518 *     In the current implementation the only way to get
4519 *     get the 32bit lid is from other sources for OPA.
4520 *     For IB, lids will always be 16bits so cast the
4521 *     value accordingly.
4522 *
4523 * @lid: A 32bit LID
4524 */
4525static inline u16 ib_lid_cpu16(u32 lid)
4526{
4527	WARN_ON_ONCE(lid & 0xFFFF0000);
4528	return (u16)lid;
4529}
4530
4531/**
4532 * ib_lid_be16 - Return lid in 16bit BE encoding.
4533 *
4534 * @lid: A 32bit LID
 
 
 
 
4535 */
4536static inline __be16 ib_lid_be16(u32 lid)
 
 
4537{
4538	WARN_ON_ONCE(lid & 0xFFFF0000);
4539	return cpu_to_be16((u16)lid);
 
 
4540}
4541
4542/**
4543 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4544 *   vector
4545 * @device:         the rdma device
4546 * @comp_vector:    index of completion vector
4547 *
4548 * Returns NULL on failure, otherwise a corresponding cpu map of the
4549 * completion vector (returns all-cpus map if the device driver doesn't
4550 * implement get_vector_affinity).
4551 */
4552static inline const struct cpumask *
4553ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4554{
4555	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4556	    !device->ops.get_vector_affinity)
4557		return NULL;
4558
4559	return device->ops.get_vector_affinity(device, comp_vector);
4560
4561}
4562
4563/**
4564 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4565 * and add their gids, as needed, to the relevant RoCE devices.
 
 
4566 *
4567 * @device:         the rdma device
 
4568 */
4569void rdma_roce_rescan_device(struct ib_device *ibdev);
4570
4571struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4572
4573int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4574
4575struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4576				     enum rdma_netdev_t type, const char *name,
4577				     unsigned char name_assign_type,
4578				     void (*setup)(struct net_device *));
4579
4580int rdma_init_netdev(struct ib_device *device, u32 port_num,
4581		     enum rdma_netdev_t type, const char *name,
4582		     unsigned char name_assign_type,
4583		     void (*setup)(struct net_device *),
4584		     struct net_device *netdev);
4585
4586/**
4587 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4588 *
4589 * @device:	device pointer for which ib_device pointer to retrieve
4590 *
4591 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4592 *
4593 */
4594static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
 
 
4595{
4596	struct ib_core_device *coredev =
4597		container_of(device, struct ib_core_device, dev);
4598
4599	return coredev->owner;
4600}
4601
4602/**
4603 * ibdev_to_node - return the NUMA node for a given ib_device
4604 * @dev:	device to get the NUMA node for.
4605 */
4606static inline int ibdev_to_node(struct ib_device *ibdev)
4607{
4608	struct device *parent = ibdev->dev.parent;
4609
4610	if (!parent)
4611		return NUMA_NO_NODE;
4612	return dev_to_node(parent);
4613}
4614
4615/**
4616 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4617 *			       ib_device holder structure from device pointer.
4618 *
4619 * NOTE: New drivers should not make use of this API; This API is only for
4620 * existing drivers who have exposed sysfs entries using
4621 * ops->device_group.
4622 */
4623#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4624	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4625
4626bool rdma_dev_access_netns(const struct ib_device *device,
4627			   const struct net *net);
4628
4629#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4630#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4631#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4632
4633/**
4634 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4635 *                               on the flow_label
 
 
 
4636 *
4637 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4638 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4639 * convention.
 
4640 */
4641static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4642{
4643	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4644
4645	fl_low ^= fl_high >> 14;
4646	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4647}
4648
4649/**
4650 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4651 *                        local and remote qpn values
4652 *
4653 * This function folded the multiplication results of two qpns, 24 bit each,
4654 * fields, and converts it to a 20 bit results.
4655 *
4656 * This function will create symmetric flow_label value based on the local
4657 * and remote qpn values. this will allow both the requester and responder
4658 * to calculate the same flow_label for a given connection.
4659 *
4660 * This helper function should be used by driver in case the upper layer
4661 * provide a zero flow_label value. This is to improve entropy of RDMA
4662 * traffic in the network.
4663 */
4664static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4665{
4666	u64 v = (u64)lqpn * rqpn;
4667
4668	v ^= v >> 20;
4669	v ^= v >> 40;
4670
4671	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4672}
4673
4674const struct ib_port_immutable*
4675ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4676#endif /* IB_VERBS_H */