Loading...
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 *
28 */
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/mm.h>
34#include <linux/pci.h>
35#include <linux/interrupt.h>
36#include <linux/kmod.h>
37#include <linux/delay.h>
38#include <linux/workqueue.h>
39#include <linux/nmi.h>
40#include <linux/acpi.h>
41#include <linux/acpi_io.h>
42#include <linux/efi.h>
43#include <linux/ioport.h>
44#include <linux/list.h>
45#include <linux/jiffies.h>
46#include <linux/semaphore.h>
47
48#include <asm/io.h>
49#include <asm/uaccess.h>
50
51#include <acpi/acpi.h>
52#include <acpi/acpi_bus.h>
53#include <acpi/processor.h>
54
55#define _COMPONENT ACPI_OS_SERVICES
56ACPI_MODULE_NAME("osl");
57#define PREFIX "ACPI: "
58struct acpi_os_dpc {
59 acpi_osd_exec_callback function;
60 void *context;
61 struct work_struct work;
62 int wait;
63};
64
65#ifdef CONFIG_ACPI_CUSTOM_DSDT
66#include CONFIG_ACPI_CUSTOM_DSDT_FILE
67#endif
68
69#ifdef ENABLE_DEBUGGER
70#include <linux/kdb.h>
71
72/* stuff for debugger support */
73int acpi_in_debugger;
74EXPORT_SYMBOL(acpi_in_debugger);
75
76extern char line_buf[80];
77#endif /*ENABLE_DEBUGGER */
78
79static acpi_osd_handler acpi_irq_handler;
80static void *acpi_irq_context;
81static struct workqueue_struct *kacpid_wq;
82static struct workqueue_struct *kacpi_notify_wq;
83static struct workqueue_struct *kacpi_hotplug_wq;
84
85struct acpi_res_list {
86 resource_size_t start;
87 resource_size_t end;
88 acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 char name[5]; /* only can have a length of 4 chars, make use of this
90 one instead of res->name, no need to kalloc then */
91 struct list_head resource_list;
92 int count;
93};
94
95static LIST_HEAD(resource_list_head);
96static DEFINE_SPINLOCK(acpi_res_lock);
97
98/*
99 * This list of permanent mappings is for memory that may be accessed from
100 * interrupt context, where we can't do the ioremap().
101 */
102struct acpi_ioremap {
103 struct list_head list;
104 void __iomem *virt;
105 acpi_physical_address phys;
106 acpi_size size;
107 unsigned long refcount;
108};
109
110static LIST_HEAD(acpi_ioremaps);
111static DEFINE_MUTEX(acpi_ioremap_lock);
112
113static void __init acpi_osi_setup_late(void);
114
115/*
116 * The story of _OSI(Linux)
117 *
118 * From pre-history through Linux-2.6.22,
119 * Linux responded TRUE upon a BIOS OSI(Linux) query.
120 *
121 * Unfortunately, reference BIOS writers got wind of this
122 * and put OSI(Linux) in their example code, quickly exposing
123 * this string as ill-conceived and opening the door to
124 * an un-bounded number of BIOS incompatibilities.
125 *
126 * For example, OSI(Linux) was used on resume to re-POST a
127 * video card on one system, because Linux at that time
128 * could not do a speedy restore in its native driver.
129 * But then upon gaining quick native restore capability,
130 * Linux has no way to tell the BIOS to skip the time-consuming
131 * POST -- putting Linux at a permanent performance disadvantage.
132 * On another system, the BIOS writer used OSI(Linux)
133 * to infer native OS support for IPMI! On other systems,
134 * OSI(Linux) simply got in the way of Linux claiming to
135 * be compatible with other operating systems, exposing
136 * BIOS issues such as skipped device initialization.
137 *
138 * So "Linux" turned out to be a really poor chose of
139 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
140 *
141 * BIOS writers should NOT query _OSI(Linux) on future systems.
142 * Linux will complain on the console when it sees it, and return FALSE.
143 * To get Linux to return TRUE for your system will require
144 * a kernel source update to add a DMI entry,
145 * or boot with "acpi_osi=Linux"
146 */
147
148static struct osi_linux {
149 unsigned int enable:1;
150 unsigned int dmi:1;
151 unsigned int cmdline:1;
152} osi_linux = {0, 0, 0};
153
154static u32 acpi_osi_handler(acpi_string interface, u32 supported)
155{
156 if (!strcmp("Linux", interface)) {
157
158 printk_once(KERN_NOTICE FW_BUG PREFIX
159 "BIOS _OSI(Linux) query %s%s\n",
160 osi_linux.enable ? "honored" : "ignored",
161 osi_linux.cmdline ? " via cmdline" :
162 osi_linux.dmi ? " via DMI" : "");
163 }
164
165 return supported;
166}
167
168static void __init acpi_request_region (struct acpi_generic_address *addr,
169 unsigned int length, char *desc)
170{
171 if (!addr->address || !length)
172 return;
173
174 /* Resources are never freed */
175 if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
176 request_region(addr->address, length, desc);
177 else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
178 request_mem_region(addr->address, length, desc);
179}
180
181static int __init acpi_reserve_resources(void)
182{
183 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
184 "ACPI PM1a_EVT_BLK");
185
186 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
187 "ACPI PM1b_EVT_BLK");
188
189 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
190 "ACPI PM1a_CNT_BLK");
191
192 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
193 "ACPI PM1b_CNT_BLK");
194
195 if (acpi_gbl_FADT.pm_timer_length == 4)
196 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
197
198 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
199 "ACPI PM2_CNT_BLK");
200
201 /* Length of GPE blocks must be a non-negative multiple of 2 */
202
203 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
204 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
205 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
206
207 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
208 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
209 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
210
211 return 0;
212}
213device_initcall(acpi_reserve_resources);
214
215void acpi_os_printf(const char *fmt, ...)
216{
217 va_list args;
218 va_start(args, fmt);
219 acpi_os_vprintf(fmt, args);
220 va_end(args);
221}
222
223void acpi_os_vprintf(const char *fmt, va_list args)
224{
225 static char buffer[512];
226
227 vsprintf(buffer, fmt, args);
228
229#ifdef ENABLE_DEBUGGER
230 if (acpi_in_debugger) {
231 kdb_printf("%s", buffer);
232 } else {
233 printk(KERN_CONT "%s", buffer);
234 }
235#else
236 printk(KERN_CONT "%s", buffer);
237#endif
238}
239
240#ifdef CONFIG_KEXEC
241static unsigned long acpi_rsdp;
242static int __init setup_acpi_rsdp(char *arg)
243{
244 acpi_rsdp = simple_strtoul(arg, NULL, 16);
245 return 0;
246}
247early_param("acpi_rsdp", setup_acpi_rsdp);
248#endif
249
250acpi_physical_address __init acpi_os_get_root_pointer(void)
251{
252#ifdef CONFIG_KEXEC
253 if (acpi_rsdp)
254 return acpi_rsdp;
255#endif
256
257 if (efi_enabled) {
258 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
259 return efi.acpi20;
260 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
261 return efi.acpi;
262 else {
263 printk(KERN_ERR PREFIX
264 "System description tables not found\n");
265 return 0;
266 }
267 } else {
268 acpi_physical_address pa = 0;
269
270 acpi_find_root_pointer(&pa);
271 return pa;
272 }
273}
274
275/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
276static struct acpi_ioremap *
277acpi_map_lookup(acpi_physical_address phys, acpi_size size)
278{
279 struct acpi_ioremap *map;
280
281 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
282 if (map->phys <= phys &&
283 phys + size <= map->phys + map->size)
284 return map;
285
286 return NULL;
287}
288
289/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
290static void __iomem *
291acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
292{
293 struct acpi_ioremap *map;
294
295 map = acpi_map_lookup(phys, size);
296 if (map)
297 return map->virt + (phys - map->phys);
298
299 return NULL;
300}
301
302void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
303{
304 struct acpi_ioremap *map;
305 void __iomem *virt = NULL;
306
307 mutex_lock(&acpi_ioremap_lock);
308 map = acpi_map_lookup(phys, size);
309 if (map) {
310 virt = map->virt + (phys - map->phys);
311 map->refcount++;
312 }
313 mutex_unlock(&acpi_ioremap_lock);
314 return virt;
315}
316EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
317
318/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
319static struct acpi_ioremap *
320acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
321{
322 struct acpi_ioremap *map;
323
324 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
325 if (map->virt <= virt &&
326 virt + size <= map->virt + map->size)
327 return map;
328
329 return NULL;
330}
331
332void __iomem *__init_refok
333acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
334{
335 struct acpi_ioremap *map;
336 void __iomem *virt;
337 acpi_physical_address pg_off;
338 acpi_size pg_sz;
339
340 if (phys > ULONG_MAX) {
341 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
342 return NULL;
343 }
344
345 if (!acpi_gbl_permanent_mmap)
346 return __acpi_map_table((unsigned long)phys, size);
347
348 mutex_lock(&acpi_ioremap_lock);
349 /* Check if there's a suitable mapping already. */
350 map = acpi_map_lookup(phys, size);
351 if (map) {
352 map->refcount++;
353 goto out;
354 }
355
356 map = kzalloc(sizeof(*map), GFP_KERNEL);
357 if (!map) {
358 mutex_unlock(&acpi_ioremap_lock);
359 return NULL;
360 }
361
362 pg_off = round_down(phys, PAGE_SIZE);
363 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
364 virt = acpi_os_ioremap(pg_off, pg_sz);
365 if (!virt) {
366 mutex_unlock(&acpi_ioremap_lock);
367 kfree(map);
368 return NULL;
369 }
370
371 INIT_LIST_HEAD(&map->list);
372 map->virt = virt;
373 map->phys = pg_off;
374 map->size = pg_sz;
375 map->refcount = 1;
376
377 list_add_tail_rcu(&map->list, &acpi_ioremaps);
378
379 out:
380 mutex_unlock(&acpi_ioremap_lock);
381 return map->virt + (phys - map->phys);
382}
383EXPORT_SYMBOL_GPL(acpi_os_map_memory);
384
385static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
386{
387 if (!--map->refcount)
388 list_del_rcu(&map->list);
389}
390
391static void acpi_os_map_cleanup(struct acpi_ioremap *map)
392{
393 if (!map->refcount) {
394 synchronize_rcu();
395 iounmap(map->virt);
396 kfree(map);
397 }
398}
399
400void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
401{
402 struct acpi_ioremap *map;
403
404 if (!acpi_gbl_permanent_mmap) {
405 __acpi_unmap_table(virt, size);
406 return;
407 }
408
409 mutex_lock(&acpi_ioremap_lock);
410 map = acpi_map_lookup_virt(virt, size);
411 if (!map) {
412 mutex_unlock(&acpi_ioremap_lock);
413 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
414 return;
415 }
416 acpi_os_drop_map_ref(map);
417 mutex_unlock(&acpi_ioremap_lock);
418
419 acpi_os_map_cleanup(map);
420}
421EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
422
423void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
424{
425 if (!acpi_gbl_permanent_mmap)
426 __acpi_unmap_table(virt, size);
427}
428
429static int acpi_os_map_generic_address(struct acpi_generic_address *addr)
430{
431 void __iomem *virt;
432
433 if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
434 return 0;
435
436 if (!addr->address || !addr->bit_width)
437 return -EINVAL;
438
439 virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
440 if (!virt)
441 return -EIO;
442
443 return 0;
444}
445
446static void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
447{
448 struct acpi_ioremap *map;
449
450 if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
451 return;
452
453 if (!addr->address || !addr->bit_width)
454 return;
455
456 mutex_lock(&acpi_ioremap_lock);
457 map = acpi_map_lookup(addr->address, addr->bit_width / 8);
458 if (!map) {
459 mutex_unlock(&acpi_ioremap_lock);
460 return;
461 }
462 acpi_os_drop_map_ref(map);
463 mutex_unlock(&acpi_ioremap_lock);
464
465 acpi_os_map_cleanup(map);
466}
467
468#ifdef ACPI_FUTURE_USAGE
469acpi_status
470acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
471{
472 if (!phys || !virt)
473 return AE_BAD_PARAMETER;
474
475 *phys = virt_to_phys(virt);
476
477 return AE_OK;
478}
479#endif
480
481#define ACPI_MAX_OVERRIDE_LEN 100
482
483static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
484
485acpi_status
486acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
487 acpi_string * new_val)
488{
489 if (!init_val || !new_val)
490 return AE_BAD_PARAMETER;
491
492 *new_val = NULL;
493 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
494 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
495 acpi_os_name);
496 *new_val = acpi_os_name;
497 }
498
499 return AE_OK;
500}
501
502acpi_status
503acpi_os_table_override(struct acpi_table_header * existing_table,
504 struct acpi_table_header ** new_table)
505{
506 if (!existing_table || !new_table)
507 return AE_BAD_PARAMETER;
508
509 *new_table = NULL;
510
511#ifdef CONFIG_ACPI_CUSTOM_DSDT
512 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
513 *new_table = (struct acpi_table_header *)AmlCode;
514#endif
515 if (*new_table != NULL) {
516 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
517 "this is unsafe: tainting kernel\n",
518 existing_table->signature,
519 existing_table->oem_table_id);
520 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
521 }
522 return AE_OK;
523}
524
525static irqreturn_t acpi_irq(int irq, void *dev_id)
526{
527 u32 handled;
528
529 handled = (*acpi_irq_handler) (acpi_irq_context);
530
531 if (handled) {
532 acpi_irq_handled++;
533 return IRQ_HANDLED;
534 } else {
535 acpi_irq_not_handled++;
536 return IRQ_NONE;
537 }
538}
539
540acpi_status
541acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
542 void *context)
543{
544 unsigned int irq;
545
546 acpi_irq_stats_init();
547
548 /*
549 * ACPI interrupts different from the SCI in our copy of the FADT are
550 * not supported.
551 */
552 if (gsi != acpi_gbl_FADT.sci_interrupt)
553 return AE_BAD_PARAMETER;
554
555 if (acpi_irq_handler)
556 return AE_ALREADY_ACQUIRED;
557
558 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
559 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
560 gsi);
561 return AE_OK;
562 }
563
564 acpi_irq_handler = handler;
565 acpi_irq_context = context;
566 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
567 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
568 acpi_irq_handler = NULL;
569 return AE_NOT_ACQUIRED;
570 }
571
572 return AE_OK;
573}
574
575acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
576{
577 if (irq != acpi_gbl_FADT.sci_interrupt)
578 return AE_BAD_PARAMETER;
579
580 free_irq(irq, acpi_irq);
581 acpi_irq_handler = NULL;
582
583 return AE_OK;
584}
585
586/*
587 * Running in interpreter thread context, safe to sleep
588 */
589
590void acpi_os_sleep(u64 ms)
591{
592 schedule_timeout_interruptible(msecs_to_jiffies(ms));
593}
594
595void acpi_os_stall(u32 us)
596{
597 while (us) {
598 u32 delay = 1000;
599
600 if (delay > us)
601 delay = us;
602 udelay(delay);
603 touch_nmi_watchdog();
604 us -= delay;
605 }
606}
607
608/*
609 * Support ACPI 3.0 AML Timer operand
610 * Returns 64-bit free-running, monotonically increasing timer
611 * with 100ns granularity
612 */
613u64 acpi_os_get_timer(void)
614{
615 static u64 t;
616
617#ifdef CONFIG_HPET
618 /* TBD: use HPET if available */
619#endif
620
621#ifdef CONFIG_X86_PM_TIMER
622 /* TBD: default to PM timer if HPET was not available */
623#endif
624 if (!t)
625 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
626
627 return ++t;
628}
629
630acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
631{
632 u32 dummy;
633
634 if (!value)
635 value = &dummy;
636
637 *value = 0;
638 if (width <= 8) {
639 *(u8 *) value = inb(port);
640 } else if (width <= 16) {
641 *(u16 *) value = inw(port);
642 } else if (width <= 32) {
643 *(u32 *) value = inl(port);
644 } else {
645 BUG();
646 }
647
648 return AE_OK;
649}
650
651EXPORT_SYMBOL(acpi_os_read_port);
652
653acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
654{
655 if (width <= 8) {
656 outb(value, port);
657 } else if (width <= 16) {
658 outw(value, port);
659 } else if (width <= 32) {
660 outl(value, port);
661 } else {
662 BUG();
663 }
664
665 return AE_OK;
666}
667
668EXPORT_SYMBOL(acpi_os_write_port);
669
670acpi_status
671acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
672{
673 void __iomem *virt_addr;
674 unsigned int size = width / 8;
675 bool unmap = false;
676 u32 dummy;
677
678 rcu_read_lock();
679 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
680 if (!virt_addr) {
681 rcu_read_unlock();
682 virt_addr = acpi_os_ioremap(phys_addr, size);
683 if (!virt_addr)
684 return AE_BAD_ADDRESS;
685 unmap = true;
686 }
687
688 if (!value)
689 value = &dummy;
690
691 switch (width) {
692 case 8:
693 *(u8 *) value = readb(virt_addr);
694 break;
695 case 16:
696 *(u16 *) value = readw(virt_addr);
697 break;
698 case 32:
699 *(u32 *) value = readl(virt_addr);
700 break;
701 default:
702 BUG();
703 }
704
705 if (unmap)
706 iounmap(virt_addr);
707 else
708 rcu_read_unlock();
709
710 return AE_OK;
711}
712
713acpi_status
714acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
715{
716 void __iomem *virt_addr;
717 unsigned int size = width / 8;
718 bool unmap = false;
719
720 rcu_read_lock();
721 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
722 if (!virt_addr) {
723 rcu_read_unlock();
724 virt_addr = acpi_os_ioremap(phys_addr, size);
725 if (!virt_addr)
726 return AE_BAD_ADDRESS;
727 unmap = true;
728 }
729
730 switch (width) {
731 case 8:
732 writeb(value, virt_addr);
733 break;
734 case 16:
735 writew(value, virt_addr);
736 break;
737 case 32:
738 writel(value, virt_addr);
739 break;
740 default:
741 BUG();
742 }
743
744 if (unmap)
745 iounmap(virt_addr);
746 else
747 rcu_read_unlock();
748
749 return AE_OK;
750}
751
752acpi_status
753acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
754 u64 *value, u32 width)
755{
756 int result, size;
757 u32 value32;
758
759 if (!value)
760 return AE_BAD_PARAMETER;
761
762 switch (width) {
763 case 8:
764 size = 1;
765 break;
766 case 16:
767 size = 2;
768 break;
769 case 32:
770 size = 4;
771 break;
772 default:
773 return AE_ERROR;
774 }
775
776 result = raw_pci_read(pci_id->segment, pci_id->bus,
777 PCI_DEVFN(pci_id->device, pci_id->function),
778 reg, size, &value32);
779 *value = value32;
780
781 return (result ? AE_ERROR : AE_OK);
782}
783
784acpi_status
785acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786 u64 value, u32 width)
787{
788 int result, size;
789
790 switch (width) {
791 case 8:
792 size = 1;
793 break;
794 case 16:
795 size = 2;
796 break;
797 case 32:
798 size = 4;
799 break;
800 default:
801 return AE_ERROR;
802 }
803
804 result = raw_pci_write(pci_id->segment, pci_id->bus,
805 PCI_DEVFN(pci_id->device, pci_id->function),
806 reg, size, value);
807
808 return (result ? AE_ERROR : AE_OK);
809}
810
811static void acpi_os_execute_deferred(struct work_struct *work)
812{
813 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
814
815 if (dpc->wait)
816 acpi_os_wait_events_complete(NULL);
817
818 dpc->function(dpc->context);
819 kfree(dpc);
820}
821
822/*******************************************************************************
823 *
824 * FUNCTION: acpi_os_execute
825 *
826 * PARAMETERS: Type - Type of the callback
827 * Function - Function to be executed
828 * Context - Function parameters
829 *
830 * RETURN: Status
831 *
832 * DESCRIPTION: Depending on type, either queues function for deferred execution or
833 * immediately executes function on a separate thread.
834 *
835 ******************************************************************************/
836
837static acpi_status __acpi_os_execute(acpi_execute_type type,
838 acpi_osd_exec_callback function, void *context, int hp)
839{
840 acpi_status status = AE_OK;
841 struct acpi_os_dpc *dpc;
842 struct workqueue_struct *queue;
843 int ret;
844 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
845 "Scheduling function [%p(%p)] for deferred execution.\n",
846 function, context));
847
848 /*
849 * Allocate/initialize DPC structure. Note that this memory will be
850 * freed by the callee. The kernel handles the work_struct list in a
851 * way that allows us to also free its memory inside the callee.
852 * Because we may want to schedule several tasks with different
853 * parameters we can't use the approach some kernel code uses of
854 * having a static work_struct.
855 */
856
857 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
858 if (!dpc)
859 return AE_NO_MEMORY;
860
861 dpc->function = function;
862 dpc->context = context;
863
864 /*
865 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
866 * because the hotplug code may call driver .remove() functions,
867 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
868 * to flush these workqueues.
869 */
870 queue = hp ? kacpi_hotplug_wq :
871 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
872 dpc->wait = hp ? 1 : 0;
873
874 if (queue == kacpi_hotplug_wq)
875 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
876 else if (queue == kacpi_notify_wq)
877 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
878 else
879 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
880
881 /*
882 * On some machines, a software-initiated SMI causes corruption unless
883 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
884 * typically it's done in GPE-related methods that are run via
885 * workqueues, so we can avoid the known corruption cases by always
886 * queueing on CPU 0.
887 */
888 ret = queue_work_on(0, queue, &dpc->work);
889
890 if (!ret) {
891 printk(KERN_ERR PREFIX
892 "Call to queue_work() failed.\n");
893 status = AE_ERROR;
894 kfree(dpc);
895 }
896 return status;
897}
898
899acpi_status acpi_os_execute(acpi_execute_type type,
900 acpi_osd_exec_callback function, void *context)
901{
902 return __acpi_os_execute(type, function, context, 0);
903}
904EXPORT_SYMBOL(acpi_os_execute);
905
906acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
907 void *context)
908{
909 return __acpi_os_execute(0, function, context, 1);
910}
911
912void acpi_os_wait_events_complete(void *context)
913{
914 flush_workqueue(kacpid_wq);
915 flush_workqueue(kacpi_notify_wq);
916}
917
918EXPORT_SYMBOL(acpi_os_wait_events_complete);
919
920acpi_status
921acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
922{
923 struct semaphore *sem = NULL;
924
925 sem = acpi_os_allocate(sizeof(struct semaphore));
926 if (!sem)
927 return AE_NO_MEMORY;
928 memset(sem, 0, sizeof(struct semaphore));
929
930 sema_init(sem, initial_units);
931
932 *handle = (acpi_handle *) sem;
933
934 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
935 *handle, initial_units));
936
937 return AE_OK;
938}
939
940/*
941 * TODO: A better way to delete semaphores? Linux doesn't have a
942 * 'delete_semaphore()' function -- may result in an invalid
943 * pointer dereference for non-synchronized consumers. Should
944 * we at least check for blocked threads and signal/cancel them?
945 */
946
947acpi_status acpi_os_delete_semaphore(acpi_handle handle)
948{
949 struct semaphore *sem = (struct semaphore *)handle;
950
951 if (!sem)
952 return AE_BAD_PARAMETER;
953
954 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
955
956 BUG_ON(!list_empty(&sem->wait_list));
957 kfree(sem);
958 sem = NULL;
959
960 return AE_OK;
961}
962
963/*
964 * TODO: Support for units > 1?
965 */
966acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
967{
968 acpi_status status = AE_OK;
969 struct semaphore *sem = (struct semaphore *)handle;
970 long jiffies;
971 int ret = 0;
972
973 if (!sem || (units < 1))
974 return AE_BAD_PARAMETER;
975
976 if (units > 1)
977 return AE_SUPPORT;
978
979 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
980 handle, units, timeout));
981
982 if (timeout == ACPI_WAIT_FOREVER)
983 jiffies = MAX_SCHEDULE_TIMEOUT;
984 else
985 jiffies = msecs_to_jiffies(timeout);
986
987 ret = down_timeout(sem, jiffies);
988 if (ret)
989 status = AE_TIME;
990
991 if (ACPI_FAILURE(status)) {
992 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
993 "Failed to acquire semaphore[%p|%d|%d], %s",
994 handle, units, timeout,
995 acpi_format_exception(status)));
996 } else {
997 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
998 "Acquired semaphore[%p|%d|%d]", handle,
999 units, timeout));
1000 }
1001
1002 return status;
1003}
1004
1005/*
1006 * TODO: Support for units > 1?
1007 */
1008acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1009{
1010 struct semaphore *sem = (struct semaphore *)handle;
1011
1012 if (!sem || (units < 1))
1013 return AE_BAD_PARAMETER;
1014
1015 if (units > 1)
1016 return AE_SUPPORT;
1017
1018 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1019 units));
1020
1021 up(sem);
1022
1023 return AE_OK;
1024}
1025
1026#ifdef ACPI_FUTURE_USAGE
1027u32 acpi_os_get_line(char *buffer)
1028{
1029
1030#ifdef ENABLE_DEBUGGER
1031 if (acpi_in_debugger) {
1032 u32 chars;
1033
1034 kdb_read(buffer, sizeof(line_buf));
1035
1036 /* remove the CR kdb includes */
1037 chars = strlen(buffer) - 1;
1038 buffer[chars] = '\0';
1039 }
1040#endif
1041
1042 return 0;
1043}
1044#endif /* ACPI_FUTURE_USAGE */
1045
1046acpi_status acpi_os_signal(u32 function, void *info)
1047{
1048 switch (function) {
1049 case ACPI_SIGNAL_FATAL:
1050 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1051 break;
1052 case ACPI_SIGNAL_BREAKPOINT:
1053 /*
1054 * AML Breakpoint
1055 * ACPI spec. says to treat it as a NOP unless
1056 * you are debugging. So if/when we integrate
1057 * AML debugger into the kernel debugger its
1058 * hook will go here. But until then it is
1059 * not useful to print anything on breakpoints.
1060 */
1061 break;
1062 default:
1063 break;
1064 }
1065
1066 return AE_OK;
1067}
1068
1069static int __init acpi_os_name_setup(char *str)
1070{
1071 char *p = acpi_os_name;
1072 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1073
1074 if (!str || !*str)
1075 return 0;
1076
1077 for (; count-- && str && *str; str++) {
1078 if (isalnum(*str) || *str == ' ' || *str == ':')
1079 *p++ = *str;
1080 else if (*str == '\'' || *str == '"')
1081 continue;
1082 else
1083 break;
1084 }
1085 *p = 0;
1086
1087 return 1;
1088
1089}
1090
1091__setup("acpi_os_name=", acpi_os_name_setup);
1092
1093#define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1094#define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1095
1096struct osi_setup_entry {
1097 char string[OSI_STRING_LENGTH_MAX];
1098 bool enable;
1099};
1100
1101static struct osi_setup_entry __initdata
1102 osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1103 {"Module Device", true},
1104 {"Processor Device", true},
1105 {"3.0 _SCP Extensions", true},
1106 {"Processor Aggregator Device", true},
1107};
1108
1109void __init acpi_osi_setup(char *str)
1110{
1111 struct osi_setup_entry *osi;
1112 bool enable = true;
1113 int i;
1114
1115 if (!acpi_gbl_create_osi_method)
1116 return;
1117
1118 if (str == NULL || *str == '\0') {
1119 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1120 acpi_gbl_create_osi_method = FALSE;
1121 return;
1122 }
1123
1124 if (*str == '!') {
1125 str++;
1126 enable = false;
1127 }
1128
1129 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1130 osi = &osi_setup_entries[i];
1131 if (!strcmp(osi->string, str)) {
1132 osi->enable = enable;
1133 break;
1134 } else if (osi->string[0] == '\0') {
1135 osi->enable = enable;
1136 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1137 break;
1138 }
1139 }
1140}
1141
1142static void __init set_osi_linux(unsigned int enable)
1143{
1144 if (osi_linux.enable != enable)
1145 osi_linux.enable = enable;
1146
1147 if (osi_linux.enable)
1148 acpi_osi_setup("Linux");
1149 else
1150 acpi_osi_setup("!Linux");
1151
1152 return;
1153}
1154
1155static void __init acpi_cmdline_osi_linux(unsigned int enable)
1156{
1157 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1158 osi_linux.dmi = 0;
1159 set_osi_linux(enable);
1160
1161 return;
1162}
1163
1164void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1165{
1166 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1167
1168 if (enable == -1)
1169 return;
1170
1171 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1172 set_osi_linux(enable);
1173
1174 return;
1175}
1176
1177/*
1178 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1179 *
1180 * empty string disables _OSI
1181 * string starting with '!' disables that string
1182 * otherwise string is added to list, augmenting built-in strings
1183 */
1184static void __init acpi_osi_setup_late(void)
1185{
1186 struct osi_setup_entry *osi;
1187 char *str;
1188 int i;
1189 acpi_status status;
1190
1191 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1192 osi = &osi_setup_entries[i];
1193 str = osi->string;
1194
1195 if (*str == '\0')
1196 break;
1197 if (osi->enable) {
1198 status = acpi_install_interface(str);
1199
1200 if (ACPI_SUCCESS(status))
1201 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1202 } else {
1203 status = acpi_remove_interface(str);
1204
1205 if (ACPI_SUCCESS(status))
1206 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1207 }
1208 }
1209}
1210
1211static int __init osi_setup(char *str)
1212{
1213 if (str && !strcmp("Linux", str))
1214 acpi_cmdline_osi_linux(1);
1215 else if (str && !strcmp("!Linux", str))
1216 acpi_cmdline_osi_linux(0);
1217 else
1218 acpi_osi_setup(str);
1219
1220 return 1;
1221}
1222
1223__setup("acpi_osi=", osi_setup);
1224
1225/* enable serialization to combat AE_ALREADY_EXISTS errors */
1226static int __init acpi_serialize_setup(char *str)
1227{
1228 printk(KERN_INFO PREFIX "serialize enabled\n");
1229
1230 acpi_gbl_all_methods_serialized = TRUE;
1231
1232 return 1;
1233}
1234
1235__setup("acpi_serialize", acpi_serialize_setup);
1236
1237/* Check of resource interference between native drivers and ACPI
1238 * OperationRegions (SystemIO and System Memory only).
1239 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1240 * in arbitrary AML code and can interfere with legacy drivers.
1241 * acpi_enforce_resources= can be set to:
1242 *
1243 * - strict (default) (2)
1244 * -> further driver trying to access the resources will not load
1245 * - lax (1)
1246 * -> further driver trying to access the resources will load, but you
1247 * get a system message that something might go wrong...
1248 *
1249 * - no (0)
1250 * -> ACPI Operation Region resources will not be registered
1251 *
1252 */
1253#define ENFORCE_RESOURCES_STRICT 2
1254#define ENFORCE_RESOURCES_LAX 1
1255#define ENFORCE_RESOURCES_NO 0
1256
1257static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1258
1259static int __init acpi_enforce_resources_setup(char *str)
1260{
1261 if (str == NULL || *str == '\0')
1262 return 0;
1263
1264 if (!strcmp("strict", str))
1265 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1266 else if (!strcmp("lax", str))
1267 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1268 else if (!strcmp("no", str))
1269 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1270
1271 return 1;
1272}
1273
1274__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1275
1276/* Check for resource conflicts between ACPI OperationRegions and native
1277 * drivers */
1278int acpi_check_resource_conflict(const struct resource *res)
1279{
1280 struct acpi_res_list *res_list_elem;
1281 int ioport = 0, clash = 0;
1282
1283 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1284 return 0;
1285 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1286 return 0;
1287
1288 ioport = res->flags & IORESOURCE_IO;
1289
1290 spin_lock(&acpi_res_lock);
1291 list_for_each_entry(res_list_elem, &resource_list_head,
1292 resource_list) {
1293 if (ioport && (res_list_elem->resource_type
1294 != ACPI_ADR_SPACE_SYSTEM_IO))
1295 continue;
1296 if (!ioport && (res_list_elem->resource_type
1297 != ACPI_ADR_SPACE_SYSTEM_MEMORY))
1298 continue;
1299
1300 if (res->end < res_list_elem->start
1301 || res_list_elem->end < res->start)
1302 continue;
1303 clash = 1;
1304 break;
1305 }
1306 spin_unlock(&acpi_res_lock);
1307
1308 if (clash) {
1309 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1310 printk(KERN_WARNING "ACPI: resource %s %pR"
1311 " conflicts with ACPI region %s "
1312 "[%s 0x%zx-0x%zx]\n",
1313 res->name, res, res_list_elem->name,
1314 (res_list_elem->resource_type ==
1315 ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1316 (size_t) res_list_elem->start,
1317 (size_t) res_list_elem->end);
1318 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1319 printk(KERN_NOTICE "ACPI: This conflict may"
1320 " cause random problems and system"
1321 " instability\n");
1322 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1323 " for this device, you should use it instead of"
1324 " the native driver\n");
1325 }
1326 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1327 return -EBUSY;
1328 }
1329 return 0;
1330}
1331EXPORT_SYMBOL(acpi_check_resource_conflict);
1332
1333int acpi_check_region(resource_size_t start, resource_size_t n,
1334 const char *name)
1335{
1336 struct resource res = {
1337 .start = start,
1338 .end = start + n - 1,
1339 .name = name,
1340 .flags = IORESOURCE_IO,
1341 };
1342
1343 return acpi_check_resource_conflict(&res);
1344}
1345EXPORT_SYMBOL(acpi_check_region);
1346
1347/*
1348 * Let drivers know whether the resource checks are effective
1349 */
1350int acpi_resources_are_enforced(void)
1351{
1352 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1353}
1354EXPORT_SYMBOL(acpi_resources_are_enforced);
1355
1356/*
1357 * Deallocate the memory for a spinlock.
1358 */
1359void acpi_os_delete_lock(acpi_spinlock handle)
1360{
1361 ACPI_FREE(handle);
1362}
1363
1364/*
1365 * Acquire a spinlock.
1366 *
1367 * handle is a pointer to the spinlock_t.
1368 */
1369
1370acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1371{
1372 acpi_cpu_flags flags;
1373 spin_lock_irqsave(lockp, flags);
1374 return flags;
1375}
1376
1377/*
1378 * Release a spinlock. See above.
1379 */
1380
1381void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1382{
1383 spin_unlock_irqrestore(lockp, flags);
1384}
1385
1386#ifndef ACPI_USE_LOCAL_CACHE
1387
1388/*******************************************************************************
1389 *
1390 * FUNCTION: acpi_os_create_cache
1391 *
1392 * PARAMETERS: name - Ascii name for the cache
1393 * size - Size of each cached object
1394 * depth - Maximum depth of the cache (in objects) <ignored>
1395 * cache - Where the new cache object is returned
1396 *
1397 * RETURN: status
1398 *
1399 * DESCRIPTION: Create a cache object
1400 *
1401 ******************************************************************************/
1402
1403acpi_status
1404acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1405{
1406 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1407 if (*cache == NULL)
1408 return AE_ERROR;
1409 else
1410 return AE_OK;
1411}
1412
1413/*******************************************************************************
1414 *
1415 * FUNCTION: acpi_os_purge_cache
1416 *
1417 * PARAMETERS: Cache - Handle to cache object
1418 *
1419 * RETURN: Status
1420 *
1421 * DESCRIPTION: Free all objects within the requested cache.
1422 *
1423 ******************************************************************************/
1424
1425acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1426{
1427 kmem_cache_shrink(cache);
1428 return (AE_OK);
1429}
1430
1431/*******************************************************************************
1432 *
1433 * FUNCTION: acpi_os_delete_cache
1434 *
1435 * PARAMETERS: Cache - Handle to cache object
1436 *
1437 * RETURN: Status
1438 *
1439 * DESCRIPTION: Free all objects within the requested cache and delete the
1440 * cache object.
1441 *
1442 ******************************************************************************/
1443
1444acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1445{
1446 kmem_cache_destroy(cache);
1447 return (AE_OK);
1448}
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION: acpi_os_release_object
1453 *
1454 * PARAMETERS: Cache - Handle to cache object
1455 * Object - The object to be released
1456 *
1457 * RETURN: None
1458 *
1459 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1460 * the object is deleted.
1461 *
1462 ******************************************************************************/
1463
1464acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1465{
1466 kmem_cache_free(cache, object);
1467 return (AE_OK);
1468}
1469
1470static inline int acpi_res_list_add(struct acpi_res_list *res)
1471{
1472 struct acpi_res_list *res_list_elem;
1473
1474 list_for_each_entry(res_list_elem, &resource_list_head,
1475 resource_list) {
1476
1477 if (res->resource_type == res_list_elem->resource_type &&
1478 res->start == res_list_elem->start &&
1479 res->end == res_list_elem->end) {
1480
1481 /*
1482 * The Region(addr,len) already exist in the list,
1483 * just increase the count
1484 */
1485
1486 res_list_elem->count++;
1487 return 0;
1488 }
1489 }
1490
1491 res->count = 1;
1492 list_add(&res->resource_list, &resource_list_head);
1493 return 1;
1494}
1495
1496static inline void acpi_res_list_del(struct acpi_res_list *res)
1497{
1498 struct acpi_res_list *res_list_elem;
1499
1500 list_for_each_entry(res_list_elem, &resource_list_head,
1501 resource_list) {
1502
1503 if (res->resource_type == res_list_elem->resource_type &&
1504 res->start == res_list_elem->start &&
1505 res->end == res_list_elem->end) {
1506
1507 /*
1508 * If the res count is decreased to 0,
1509 * remove and free it
1510 */
1511
1512 if (--res_list_elem->count == 0) {
1513 list_del(&res_list_elem->resource_list);
1514 kfree(res_list_elem);
1515 }
1516 return;
1517 }
1518 }
1519}
1520
1521acpi_status
1522acpi_os_invalidate_address(
1523 u8 space_id,
1524 acpi_physical_address address,
1525 acpi_size length)
1526{
1527 struct acpi_res_list res;
1528
1529 switch (space_id) {
1530 case ACPI_ADR_SPACE_SYSTEM_IO:
1531 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1532 /* Only interference checks against SystemIO and SystemMemory
1533 are needed */
1534 res.start = address;
1535 res.end = address + length - 1;
1536 res.resource_type = space_id;
1537 spin_lock(&acpi_res_lock);
1538 acpi_res_list_del(&res);
1539 spin_unlock(&acpi_res_lock);
1540 break;
1541 case ACPI_ADR_SPACE_PCI_CONFIG:
1542 case ACPI_ADR_SPACE_EC:
1543 case ACPI_ADR_SPACE_SMBUS:
1544 case ACPI_ADR_SPACE_CMOS:
1545 case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1546 case ACPI_ADR_SPACE_DATA_TABLE:
1547 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1548 break;
1549 }
1550 return AE_OK;
1551}
1552
1553/******************************************************************************
1554 *
1555 * FUNCTION: acpi_os_validate_address
1556 *
1557 * PARAMETERS: space_id - ACPI space ID
1558 * address - Physical address
1559 * length - Address length
1560 *
1561 * RETURN: AE_OK if address/length is valid for the space_id. Otherwise,
1562 * should return AE_AML_ILLEGAL_ADDRESS.
1563 *
1564 * DESCRIPTION: Validate a system address via the host OS. Used to validate
1565 * the addresses accessed by AML operation regions.
1566 *
1567 *****************************************************************************/
1568
1569acpi_status
1570acpi_os_validate_address (
1571 u8 space_id,
1572 acpi_physical_address address,
1573 acpi_size length,
1574 char *name)
1575{
1576 struct acpi_res_list *res;
1577 int added;
1578 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1579 return AE_OK;
1580
1581 switch (space_id) {
1582 case ACPI_ADR_SPACE_SYSTEM_IO:
1583 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1584 /* Only interference checks against SystemIO and SystemMemory
1585 are needed */
1586 res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1587 if (!res)
1588 return AE_OK;
1589 /* ACPI names are fixed to 4 bytes, still better use strlcpy */
1590 strlcpy(res->name, name, 5);
1591 res->start = address;
1592 res->end = address + length - 1;
1593 res->resource_type = space_id;
1594 spin_lock(&acpi_res_lock);
1595 added = acpi_res_list_add(res);
1596 spin_unlock(&acpi_res_lock);
1597 pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1598 "name: %s\n", added ? "Added" : "Already exist",
1599 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1600 ? "SystemIO" : "System Memory",
1601 (unsigned long long)res->start,
1602 (unsigned long long)res->end,
1603 res->name);
1604 if (!added)
1605 kfree(res);
1606 break;
1607 case ACPI_ADR_SPACE_PCI_CONFIG:
1608 case ACPI_ADR_SPACE_EC:
1609 case ACPI_ADR_SPACE_SMBUS:
1610 case ACPI_ADR_SPACE_CMOS:
1611 case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1612 case ACPI_ADR_SPACE_DATA_TABLE:
1613 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1614 break;
1615 }
1616 return AE_OK;
1617}
1618#endif
1619
1620acpi_status __init acpi_os_initialize(void)
1621{
1622 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1623 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1624 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1625 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1626
1627 return AE_OK;
1628}
1629
1630acpi_status __init acpi_os_initialize1(void)
1631{
1632 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1633 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1634 kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1635 BUG_ON(!kacpid_wq);
1636 BUG_ON(!kacpi_notify_wq);
1637 BUG_ON(!kacpi_hotplug_wq);
1638 acpi_install_interface_handler(acpi_osi_handler);
1639 acpi_osi_setup_late();
1640 return AE_OK;
1641}
1642
1643acpi_status acpi_os_terminate(void)
1644{
1645 if (acpi_irq_handler) {
1646 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1647 acpi_irq_handler);
1648 }
1649
1650 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1651 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1652 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1654
1655 destroy_workqueue(kacpid_wq);
1656 destroy_workqueue(kacpi_notify_wq);
1657 destroy_workqueue(kacpi_hotplug_wq);
1658
1659 return AE_OK;
1660}
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/pci.h>
32#include <linux/interrupt.h>
33#include <linux/kmod.h>
34#include <linux/delay.h>
35#include <linux/workqueue.h>
36#include <linux/nmi.h>
37#include <linux/acpi.h>
38#include <linux/efi.h>
39#include <linux/ioport.h>
40#include <linux/list.h>
41#include <linux/jiffies.h>
42#include <linux/semaphore.h>
43
44#include <asm/io.h>
45#include <linux/uaccess.h>
46#include <linux/io-64-nonatomic-lo-hi.h>
47
48#include "internal.h"
49
50#define _COMPONENT ACPI_OS_SERVICES
51ACPI_MODULE_NAME("osl");
52
53struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57};
58
59#ifdef ENABLE_DEBUGGER
60#include <linux/kdb.h>
61
62/* stuff for debugger support */
63int acpi_in_debugger;
64EXPORT_SYMBOL(acpi_in_debugger);
65#endif /*ENABLE_DEBUGGER */
66
67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 u32 pm1b_ctrl);
69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 u32 val_b);
71
72static acpi_osd_handler acpi_irq_handler;
73static void *acpi_irq_context;
74static struct workqueue_struct *kacpid_wq;
75static struct workqueue_struct *kacpi_notify_wq;
76static struct workqueue_struct *kacpi_hotplug_wq;
77static bool acpi_os_initialized;
78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79bool acpi_permanent_mmap = false;
80
81/*
82 * This list of permanent mappings is for memory that may be accessed from
83 * interrupt context, where we can't do the ioremap().
84 */
85struct acpi_ioremap {
86 struct list_head list;
87 void __iomem *virt;
88 acpi_physical_address phys;
89 acpi_size size;
90 unsigned long refcount;
91};
92
93static LIST_HEAD(acpi_ioremaps);
94static DEFINE_MUTEX(acpi_ioremap_lock);
95
96static void __init acpi_request_region (struct acpi_generic_address *gas,
97 unsigned int length, char *desc)
98{
99 u64 addr;
100
101 /* Handle possible alignment issues */
102 memcpy(&addr, &gas->address, sizeof(addr));
103 if (!addr || !length)
104 return;
105
106 /* Resources are never freed */
107 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 request_region(addr, length, desc);
109 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 request_mem_region(addr, length, desc);
111}
112
113static int __init acpi_reserve_resources(void)
114{
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1a_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 "ACPI PM1b_EVT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1a_CNT_BLK");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 "ACPI PM1b_CNT_BLK");
126
127 if (acpi_gbl_FADT.pm_timer_length == 4)
128 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129
130 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 "ACPI PM2_CNT_BLK");
132
133 /* Length of GPE blocks must be a non-negative multiple of 2 */
134
135 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138
139 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142
143 return 0;
144}
145fs_initcall_sync(acpi_reserve_resources);
146
147void acpi_os_printf(const char *fmt, ...)
148{
149 va_list args;
150 va_start(args, fmt);
151 acpi_os_vprintf(fmt, args);
152 va_end(args);
153}
154EXPORT_SYMBOL(acpi_os_printf);
155
156void acpi_os_vprintf(const char *fmt, va_list args)
157{
158 static char buffer[512];
159
160 vsprintf(buffer, fmt, args);
161
162#ifdef ENABLE_DEBUGGER
163 if (acpi_in_debugger) {
164 kdb_printf("%s", buffer);
165 } else {
166 if (printk_get_level(buffer))
167 printk("%s", buffer);
168 else
169 printk(KERN_CONT "%s", buffer);
170 }
171#else
172 if (acpi_debugger_write_log(buffer) < 0) {
173 if (printk_get_level(buffer))
174 printk("%s", buffer);
175 else
176 printk(KERN_CONT "%s", buffer);
177 }
178#endif
179}
180
181#ifdef CONFIG_KEXEC
182static unsigned long acpi_rsdp;
183static int __init setup_acpi_rsdp(char *arg)
184{
185 return kstrtoul(arg, 16, &acpi_rsdp);
186}
187early_param("acpi_rsdp", setup_acpi_rsdp);
188#endif
189
190acpi_physical_address __init acpi_os_get_root_pointer(void)
191{
192 acpi_physical_address pa;
193
194#ifdef CONFIG_KEXEC
195 if (acpi_rsdp)
196 return acpi_rsdp;
197#endif
198 pa = acpi_arch_get_root_pointer();
199 if (pa)
200 return pa;
201
202 if (efi_enabled(EFI_CONFIG_TABLES)) {
203 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
204 return efi.acpi20;
205 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi;
207 pr_err(PREFIX "System description tables not found\n");
208 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209 acpi_find_root_pointer(&pa);
210 }
211
212 return pa;
213}
214
215/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
216static struct acpi_ioremap *
217acpi_map_lookup(acpi_physical_address phys, acpi_size size)
218{
219 struct acpi_ioremap *map;
220
221 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
222 if (map->phys <= phys &&
223 phys + size <= map->phys + map->size)
224 return map;
225
226 return NULL;
227}
228
229/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
230static void __iomem *
231acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
232{
233 struct acpi_ioremap *map;
234
235 map = acpi_map_lookup(phys, size);
236 if (map)
237 return map->virt + (phys - map->phys);
238
239 return NULL;
240}
241
242void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
243{
244 struct acpi_ioremap *map;
245 void __iomem *virt = NULL;
246
247 mutex_lock(&acpi_ioremap_lock);
248 map = acpi_map_lookup(phys, size);
249 if (map) {
250 virt = map->virt + (phys - map->phys);
251 map->refcount++;
252 }
253 mutex_unlock(&acpi_ioremap_lock);
254 return virt;
255}
256EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
257
258/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
259static struct acpi_ioremap *
260acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
261{
262 struct acpi_ioremap *map;
263
264 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
265 if (map->virt <= virt &&
266 virt + size <= map->virt + map->size)
267 return map;
268
269 return NULL;
270}
271
272#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
273/* ioremap will take care of cache attributes */
274#define should_use_kmap(pfn) 0
275#else
276#define should_use_kmap(pfn) page_is_ram(pfn)
277#endif
278
279static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
280{
281 unsigned long pfn;
282
283 pfn = pg_off >> PAGE_SHIFT;
284 if (should_use_kmap(pfn)) {
285 if (pg_sz > PAGE_SIZE)
286 return NULL;
287 return (void __iomem __force *)kmap(pfn_to_page(pfn));
288 } else
289 return acpi_os_ioremap(pg_off, pg_sz);
290}
291
292static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
293{
294 unsigned long pfn;
295
296 pfn = pg_off >> PAGE_SHIFT;
297 if (should_use_kmap(pfn))
298 kunmap(pfn_to_page(pfn));
299 else
300 iounmap(vaddr);
301}
302
303/**
304 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
305 * @phys: Start of the physical address range to map.
306 * @size: Size of the physical address range to map.
307 *
308 * Look up the given physical address range in the list of existing ACPI memory
309 * mappings. If found, get a reference to it and return a pointer to it (its
310 * virtual address). If not found, map it, add it to that list and return a
311 * pointer to it.
312 *
313 * During early init (when acpi_permanent_mmap has not been set yet) this
314 * routine simply calls __acpi_map_table() to get the job done.
315 */
316void __iomem *__ref
317acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
318{
319 struct acpi_ioremap *map;
320 void __iomem *virt;
321 acpi_physical_address pg_off;
322 acpi_size pg_sz;
323
324 if (phys > ULONG_MAX) {
325 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
326 return NULL;
327 }
328
329 if (!acpi_permanent_mmap)
330 return __acpi_map_table((unsigned long)phys, size);
331
332 mutex_lock(&acpi_ioremap_lock);
333 /* Check if there's a suitable mapping already. */
334 map = acpi_map_lookup(phys, size);
335 if (map) {
336 map->refcount++;
337 goto out;
338 }
339
340 map = kzalloc(sizeof(*map), GFP_KERNEL);
341 if (!map) {
342 mutex_unlock(&acpi_ioremap_lock);
343 return NULL;
344 }
345
346 pg_off = round_down(phys, PAGE_SIZE);
347 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
348 virt = acpi_map(pg_off, pg_sz);
349 if (!virt) {
350 mutex_unlock(&acpi_ioremap_lock);
351 kfree(map);
352 return NULL;
353 }
354
355 INIT_LIST_HEAD(&map->list);
356 map->virt = virt;
357 map->phys = pg_off;
358 map->size = pg_sz;
359 map->refcount = 1;
360
361 list_add_tail_rcu(&map->list, &acpi_ioremaps);
362
363out:
364 mutex_unlock(&acpi_ioremap_lock);
365 return map->virt + (phys - map->phys);
366}
367EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
368
369void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
370{
371 return (void *)acpi_os_map_iomem(phys, size);
372}
373EXPORT_SYMBOL_GPL(acpi_os_map_memory);
374
375static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
376{
377 if (!--map->refcount)
378 list_del_rcu(&map->list);
379}
380
381static void acpi_os_map_cleanup(struct acpi_ioremap *map)
382{
383 if (!map->refcount) {
384 synchronize_rcu_expedited();
385 acpi_unmap(map->phys, map->virt);
386 kfree(map);
387 }
388}
389
390/**
391 * acpi_os_unmap_iomem - Drop a memory mapping reference.
392 * @virt: Start of the address range to drop a reference to.
393 * @size: Size of the address range to drop a reference to.
394 *
395 * Look up the given virtual address range in the list of existing ACPI memory
396 * mappings, drop a reference to it and unmap it if there are no more active
397 * references to it.
398 *
399 * During early init (when acpi_permanent_mmap has not been set yet) this
400 * routine simply calls __acpi_unmap_table() to get the job done. Since
401 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
402 * here.
403 */
404void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
405{
406 struct acpi_ioremap *map;
407
408 if (!acpi_permanent_mmap) {
409 __acpi_unmap_table(virt, size);
410 return;
411 }
412
413 mutex_lock(&acpi_ioremap_lock);
414 map = acpi_map_lookup_virt(virt, size);
415 if (!map) {
416 mutex_unlock(&acpi_ioremap_lock);
417 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
418 return;
419 }
420 acpi_os_drop_map_ref(map);
421 mutex_unlock(&acpi_ioremap_lock);
422
423 acpi_os_map_cleanup(map);
424}
425EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
426
427void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
428{
429 return acpi_os_unmap_iomem((void __iomem *)virt, size);
430}
431EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
432
433int acpi_os_map_generic_address(struct acpi_generic_address *gas)
434{
435 u64 addr;
436 void __iomem *virt;
437
438 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
439 return 0;
440
441 /* Handle possible alignment issues */
442 memcpy(&addr, &gas->address, sizeof(addr));
443 if (!addr || !gas->bit_width)
444 return -EINVAL;
445
446 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
447 if (!virt)
448 return -EIO;
449
450 return 0;
451}
452EXPORT_SYMBOL(acpi_os_map_generic_address);
453
454void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
455{
456 u64 addr;
457 struct acpi_ioremap *map;
458
459 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
460 return;
461
462 /* Handle possible alignment issues */
463 memcpy(&addr, &gas->address, sizeof(addr));
464 if (!addr || !gas->bit_width)
465 return;
466
467 mutex_lock(&acpi_ioremap_lock);
468 map = acpi_map_lookup(addr, gas->bit_width / 8);
469 if (!map) {
470 mutex_unlock(&acpi_ioremap_lock);
471 return;
472 }
473 acpi_os_drop_map_ref(map);
474 mutex_unlock(&acpi_ioremap_lock);
475
476 acpi_os_map_cleanup(map);
477}
478EXPORT_SYMBOL(acpi_os_unmap_generic_address);
479
480#ifdef ACPI_FUTURE_USAGE
481acpi_status
482acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
483{
484 if (!phys || !virt)
485 return AE_BAD_PARAMETER;
486
487 *phys = virt_to_phys(virt);
488
489 return AE_OK;
490}
491#endif
492
493#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
494static bool acpi_rev_override;
495
496int __init acpi_rev_override_setup(char *str)
497{
498 acpi_rev_override = true;
499 return 1;
500}
501__setup("acpi_rev_override", acpi_rev_override_setup);
502#else
503#define acpi_rev_override false
504#endif
505
506#define ACPI_MAX_OVERRIDE_LEN 100
507
508static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
509
510acpi_status
511acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
512 acpi_string *new_val)
513{
514 if (!init_val || !new_val)
515 return AE_BAD_PARAMETER;
516
517 *new_val = NULL;
518 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
519 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
520 acpi_os_name);
521 *new_val = acpi_os_name;
522 }
523
524 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
525 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
526 *new_val = (char *)5;
527 }
528
529 return AE_OK;
530}
531
532static irqreturn_t acpi_irq(int irq, void *dev_id)
533{
534 u32 handled;
535
536 handled = (*acpi_irq_handler) (acpi_irq_context);
537
538 if (handled) {
539 acpi_irq_handled++;
540 return IRQ_HANDLED;
541 } else {
542 acpi_irq_not_handled++;
543 return IRQ_NONE;
544 }
545}
546
547acpi_status
548acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
549 void *context)
550{
551 unsigned int irq;
552
553 acpi_irq_stats_init();
554
555 /*
556 * ACPI interrupts different from the SCI in our copy of the FADT are
557 * not supported.
558 */
559 if (gsi != acpi_gbl_FADT.sci_interrupt)
560 return AE_BAD_PARAMETER;
561
562 if (acpi_irq_handler)
563 return AE_ALREADY_ACQUIRED;
564
565 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
566 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
567 gsi);
568 return AE_OK;
569 }
570
571 acpi_irq_handler = handler;
572 acpi_irq_context = context;
573 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
574 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
575 acpi_irq_handler = NULL;
576 return AE_NOT_ACQUIRED;
577 }
578 acpi_sci_irq = irq;
579
580 return AE_OK;
581}
582
583acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
584{
585 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
586 return AE_BAD_PARAMETER;
587
588 free_irq(acpi_sci_irq, acpi_irq);
589 acpi_irq_handler = NULL;
590 acpi_sci_irq = INVALID_ACPI_IRQ;
591
592 return AE_OK;
593}
594
595/*
596 * Running in interpreter thread context, safe to sleep
597 */
598
599void acpi_os_sleep(u64 ms)
600{
601 msleep(ms);
602}
603
604void acpi_os_stall(u32 us)
605{
606 while (us) {
607 u32 delay = 1000;
608
609 if (delay > us)
610 delay = us;
611 udelay(delay);
612 touch_nmi_watchdog();
613 us -= delay;
614 }
615}
616
617/*
618 * Support ACPI 3.0 AML Timer operand
619 * Returns 64-bit free-running, monotonically increasing timer
620 * with 100ns granularity
621 */
622u64 acpi_os_get_timer(void)
623{
624 u64 time_ns = ktime_to_ns(ktime_get());
625 do_div(time_ns, 100);
626 return time_ns;
627}
628
629acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
630{
631 u32 dummy;
632
633 if (!value)
634 value = &dummy;
635
636 *value = 0;
637 if (width <= 8) {
638 *(u8 *) value = inb(port);
639 } else if (width <= 16) {
640 *(u16 *) value = inw(port);
641 } else if (width <= 32) {
642 *(u32 *) value = inl(port);
643 } else {
644 BUG();
645 }
646
647 return AE_OK;
648}
649
650EXPORT_SYMBOL(acpi_os_read_port);
651
652acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
653{
654 if (width <= 8) {
655 outb(value, port);
656 } else if (width <= 16) {
657 outw(value, port);
658 } else if (width <= 32) {
659 outl(value, port);
660 } else {
661 BUG();
662 }
663
664 return AE_OK;
665}
666
667EXPORT_SYMBOL(acpi_os_write_port);
668
669int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
670{
671
672 switch (width) {
673 case 8:
674 *(u8 *) value = readb(virt_addr);
675 break;
676 case 16:
677 *(u16 *) value = readw(virt_addr);
678 break;
679 case 32:
680 *(u32 *) value = readl(virt_addr);
681 break;
682 case 64:
683 *(u64 *) value = readq(virt_addr);
684 break;
685 default:
686 return -EINVAL;
687 }
688
689 return 0;
690}
691
692acpi_status
693acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
694{
695 void __iomem *virt_addr;
696 unsigned int size = width / 8;
697 bool unmap = false;
698 u64 dummy;
699 int error;
700
701 rcu_read_lock();
702 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
703 if (!virt_addr) {
704 rcu_read_unlock();
705 virt_addr = acpi_os_ioremap(phys_addr, size);
706 if (!virt_addr)
707 return AE_BAD_ADDRESS;
708 unmap = true;
709 }
710
711 if (!value)
712 value = &dummy;
713
714 error = acpi_os_read_iomem(virt_addr, value, width);
715 BUG_ON(error);
716
717 if (unmap)
718 iounmap(virt_addr);
719 else
720 rcu_read_unlock();
721
722 return AE_OK;
723}
724
725acpi_status
726acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
727{
728 void __iomem *virt_addr;
729 unsigned int size = width / 8;
730 bool unmap = false;
731
732 rcu_read_lock();
733 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
734 if (!virt_addr) {
735 rcu_read_unlock();
736 virt_addr = acpi_os_ioremap(phys_addr, size);
737 if (!virt_addr)
738 return AE_BAD_ADDRESS;
739 unmap = true;
740 }
741
742 switch (width) {
743 case 8:
744 writeb(value, virt_addr);
745 break;
746 case 16:
747 writew(value, virt_addr);
748 break;
749 case 32:
750 writel(value, virt_addr);
751 break;
752 case 64:
753 writeq(value, virt_addr);
754 break;
755 default:
756 BUG();
757 }
758
759 if (unmap)
760 iounmap(virt_addr);
761 else
762 rcu_read_unlock();
763
764 return AE_OK;
765}
766
767acpi_status
768acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
769 u64 *value, u32 width)
770{
771 int result, size;
772 u32 value32;
773
774 if (!value)
775 return AE_BAD_PARAMETER;
776
777 switch (width) {
778 case 8:
779 size = 1;
780 break;
781 case 16:
782 size = 2;
783 break;
784 case 32:
785 size = 4;
786 break;
787 default:
788 return AE_ERROR;
789 }
790
791 result = raw_pci_read(pci_id->segment, pci_id->bus,
792 PCI_DEVFN(pci_id->device, pci_id->function),
793 reg, size, &value32);
794 *value = value32;
795
796 return (result ? AE_ERROR : AE_OK);
797}
798
799acpi_status
800acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
801 u64 value, u32 width)
802{
803 int result, size;
804
805 switch (width) {
806 case 8:
807 size = 1;
808 break;
809 case 16:
810 size = 2;
811 break;
812 case 32:
813 size = 4;
814 break;
815 default:
816 return AE_ERROR;
817 }
818
819 result = raw_pci_write(pci_id->segment, pci_id->bus,
820 PCI_DEVFN(pci_id->device, pci_id->function),
821 reg, size, value);
822
823 return (result ? AE_ERROR : AE_OK);
824}
825
826static void acpi_os_execute_deferred(struct work_struct *work)
827{
828 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
829
830 dpc->function(dpc->context);
831 kfree(dpc);
832}
833
834#ifdef CONFIG_ACPI_DEBUGGER
835static struct acpi_debugger acpi_debugger;
836static bool acpi_debugger_initialized;
837
838int acpi_register_debugger(struct module *owner,
839 const struct acpi_debugger_ops *ops)
840{
841 int ret = 0;
842
843 mutex_lock(&acpi_debugger.lock);
844 if (acpi_debugger.ops) {
845 ret = -EBUSY;
846 goto err_lock;
847 }
848
849 acpi_debugger.owner = owner;
850 acpi_debugger.ops = ops;
851
852err_lock:
853 mutex_unlock(&acpi_debugger.lock);
854 return ret;
855}
856EXPORT_SYMBOL(acpi_register_debugger);
857
858void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
859{
860 mutex_lock(&acpi_debugger.lock);
861 if (ops == acpi_debugger.ops) {
862 acpi_debugger.ops = NULL;
863 acpi_debugger.owner = NULL;
864 }
865 mutex_unlock(&acpi_debugger.lock);
866}
867EXPORT_SYMBOL(acpi_unregister_debugger);
868
869int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
870{
871 int ret;
872 int (*func)(acpi_osd_exec_callback, void *);
873 struct module *owner;
874
875 if (!acpi_debugger_initialized)
876 return -ENODEV;
877 mutex_lock(&acpi_debugger.lock);
878 if (!acpi_debugger.ops) {
879 ret = -ENODEV;
880 goto err_lock;
881 }
882 if (!try_module_get(acpi_debugger.owner)) {
883 ret = -ENODEV;
884 goto err_lock;
885 }
886 func = acpi_debugger.ops->create_thread;
887 owner = acpi_debugger.owner;
888 mutex_unlock(&acpi_debugger.lock);
889
890 ret = func(function, context);
891
892 mutex_lock(&acpi_debugger.lock);
893 module_put(owner);
894err_lock:
895 mutex_unlock(&acpi_debugger.lock);
896 return ret;
897}
898
899ssize_t acpi_debugger_write_log(const char *msg)
900{
901 ssize_t ret;
902 ssize_t (*func)(const char *);
903 struct module *owner;
904
905 if (!acpi_debugger_initialized)
906 return -ENODEV;
907 mutex_lock(&acpi_debugger.lock);
908 if (!acpi_debugger.ops) {
909 ret = -ENODEV;
910 goto err_lock;
911 }
912 if (!try_module_get(acpi_debugger.owner)) {
913 ret = -ENODEV;
914 goto err_lock;
915 }
916 func = acpi_debugger.ops->write_log;
917 owner = acpi_debugger.owner;
918 mutex_unlock(&acpi_debugger.lock);
919
920 ret = func(msg);
921
922 mutex_lock(&acpi_debugger.lock);
923 module_put(owner);
924err_lock:
925 mutex_unlock(&acpi_debugger.lock);
926 return ret;
927}
928
929ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
930{
931 ssize_t ret;
932 ssize_t (*func)(char *, size_t);
933 struct module *owner;
934
935 if (!acpi_debugger_initialized)
936 return -ENODEV;
937 mutex_lock(&acpi_debugger.lock);
938 if (!acpi_debugger.ops) {
939 ret = -ENODEV;
940 goto err_lock;
941 }
942 if (!try_module_get(acpi_debugger.owner)) {
943 ret = -ENODEV;
944 goto err_lock;
945 }
946 func = acpi_debugger.ops->read_cmd;
947 owner = acpi_debugger.owner;
948 mutex_unlock(&acpi_debugger.lock);
949
950 ret = func(buffer, buffer_length);
951
952 mutex_lock(&acpi_debugger.lock);
953 module_put(owner);
954err_lock:
955 mutex_unlock(&acpi_debugger.lock);
956 return ret;
957}
958
959int acpi_debugger_wait_command_ready(void)
960{
961 int ret;
962 int (*func)(bool, char *, size_t);
963 struct module *owner;
964
965 if (!acpi_debugger_initialized)
966 return -ENODEV;
967 mutex_lock(&acpi_debugger.lock);
968 if (!acpi_debugger.ops) {
969 ret = -ENODEV;
970 goto err_lock;
971 }
972 if (!try_module_get(acpi_debugger.owner)) {
973 ret = -ENODEV;
974 goto err_lock;
975 }
976 func = acpi_debugger.ops->wait_command_ready;
977 owner = acpi_debugger.owner;
978 mutex_unlock(&acpi_debugger.lock);
979
980 ret = func(acpi_gbl_method_executing,
981 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
982
983 mutex_lock(&acpi_debugger.lock);
984 module_put(owner);
985err_lock:
986 mutex_unlock(&acpi_debugger.lock);
987 return ret;
988}
989
990int acpi_debugger_notify_command_complete(void)
991{
992 int ret;
993 int (*func)(void);
994 struct module *owner;
995
996 if (!acpi_debugger_initialized)
997 return -ENODEV;
998 mutex_lock(&acpi_debugger.lock);
999 if (!acpi_debugger.ops) {
1000 ret = -ENODEV;
1001 goto err_lock;
1002 }
1003 if (!try_module_get(acpi_debugger.owner)) {
1004 ret = -ENODEV;
1005 goto err_lock;
1006 }
1007 func = acpi_debugger.ops->notify_command_complete;
1008 owner = acpi_debugger.owner;
1009 mutex_unlock(&acpi_debugger.lock);
1010
1011 ret = func();
1012
1013 mutex_lock(&acpi_debugger.lock);
1014 module_put(owner);
1015err_lock:
1016 mutex_unlock(&acpi_debugger.lock);
1017 return ret;
1018}
1019
1020int __init acpi_debugger_init(void)
1021{
1022 mutex_init(&acpi_debugger.lock);
1023 acpi_debugger_initialized = true;
1024 return 0;
1025}
1026#endif
1027
1028/*******************************************************************************
1029 *
1030 * FUNCTION: acpi_os_execute
1031 *
1032 * PARAMETERS: Type - Type of the callback
1033 * Function - Function to be executed
1034 * Context - Function parameters
1035 *
1036 * RETURN: Status
1037 *
1038 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1039 * immediately executes function on a separate thread.
1040 *
1041 ******************************************************************************/
1042
1043acpi_status acpi_os_execute(acpi_execute_type type,
1044 acpi_osd_exec_callback function, void *context)
1045{
1046 acpi_status status = AE_OK;
1047 struct acpi_os_dpc *dpc;
1048 struct workqueue_struct *queue;
1049 int ret;
1050 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1051 "Scheduling function [%p(%p)] for deferred execution.\n",
1052 function, context));
1053
1054 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1055 ret = acpi_debugger_create_thread(function, context);
1056 if (ret) {
1057 pr_err("Call to kthread_create() failed.\n");
1058 status = AE_ERROR;
1059 }
1060 goto out_thread;
1061 }
1062
1063 /*
1064 * Allocate/initialize DPC structure. Note that this memory will be
1065 * freed by the callee. The kernel handles the work_struct list in a
1066 * way that allows us to also free its memory inside the callee.
1067 * Because we may want to schedule several tasks with different
1068 * parameters we can't use the approach some kernel code uses of
1069 * having a static work_struct.
1070 */
1071
1072 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1073 if (!dpc)
1074 return AE_NO_MEMORY;
1075
1076 dpc->function = function;
1077 dpc->context = context;
1078
1079 /*
1080 * To prevent lockdep from complaining unnecessarily, make sure that
1081 * there is a different static lockdep key for each workqueue by using
1082 * INIT_WORK() for each of them separately.
1083 */
1084 if (type == OSL_NOTIFY_HANDLER) {
1085 queue = kacpi_notify_wq;
1086 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1087 } else if (type == OSL_GPE_HANDLER) {
1088 queue = kacpid_wq;
1089 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1090 } else {
1091 pr_err("Unsupported os_execute type %d.\n", type);
1092 status = AE_ERROR;
1093 }
1094
1095 if (ACPI_FAILURE(status))
1096 goto err_workqueue;
1097
1098 /*
1099 * On some machines, a software-initiated SMI causes corruption unless
1100 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1101 * typically it's done in GPE-related methods that are run via
1102 * workqueues, so we can avoid the known corruption cases by always
1103 * queueing on CPU 0.
1104 */
1105 ret = queue_work_on(0, queue, &dpc->work);
1106 if (!ret) {
1107 printk(KERN_ERR PREFIX
1108 "Call to queue_work() failed.\n");
1109 status = AE_ERROR;
1110 }
1111err_workqueue:
1112 if (ACPI_FAILURE(status))
1113 kfree(dpc);
1114out_thread:
1115 return status;
1116}
1117EXPORT_SYMBOL(acpi_os_execute);
1118
1119void acpi_os_wait_events_complete(void)
1120{
1121 /*
1122 * Make sure the GPE handler or the fixed event handler is not used
1123 * on another CPU after removal.
1124 */
1125 if (acpi_sci_irq_valid())
1126 synchronize_hardirq(acpi_sci_irq);
1127 flush_workqueue(kacpid_wq);
1128 flush_workqueue(kacpi_notify_wq);
1129}
1130
1131struct acpi_hp_work {
1132 struct work_struct work;
1133 struct acpi_device *adev;
1134 u32 src;
1135};
1136
1137static void acpi_hotplug_work_fn(struct work_struct *work)
1138{
1139 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1140
1141 acpi_os_wait_events_complete();
1142 acpi_device_hotplug(hpw->adev, hpw->src);
1143 kfree(hpw);
1144}
1145
1146acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1147{
1148 struct acpi_hp_work *hpw;
1149
1150 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1151 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1152 adev, src));
1153
1154 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1155 if (!hpw)
1156 return AE_NO_MEMORY;
1157
1158 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1159 hpw->adev = adev;
1160 hpw->src = src;
1161 /*
1162 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1163 * the hotplug code may call driver .remove() functions, which may
1164 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1165 * these workqueues.
1166 */
1167 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1168 kfree(hpw);
1169 return AE_ERROR;
1170 }
1171 return AE_OK;
1172}
1173
1174bool acpi_queue_hotplug_work(struct work_struct *work)
1175{
1176 return queue_work(kacpi_hotplug_wq, work);
1177}
1178
1179acpi_status
1180acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1181{
1182 struct semaphore *sem = NULL;
1183
1184 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1185 if (!sem)
1186 return AE_NO_MEMORY;
1187
1188 sema_init(sem, initial_units);
1189
1190 *handle = (acpi_handle *) sem;
1191
1192 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1193 *handle, initial_units));
1194
1195 return AE_OK;
1196}
1197
1198/*
1199 * TODO: A better way to delete semaphores? Linux doesn't have a
1200 * 'delete_semaphore()' function -- may result in an invalid
1201 * pointer dereference for non-synchronized consumers. Should
1202 * we at least check for blocked threads and signal/cancel them?
1203 */
1204
1205acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1206{
1207 struct semaphore *sem = (struct semaphore *)handle;
1208
1209 if (!sem)
1210 return AE_BAD_PARAMETER;
1211
1212 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1213
1214 BUG_ON(!list_empty(&sem->wait_list));
1215 kfree(sem);
1216 sem = NULL;
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: Support for units > 1?
1223 */
1224acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1225{
1226 acpi_status status = AE_OK;
1227 struct semaphore *sem = (struct semaphore *)handle;
1228 long jiffies;
1229 int ret = 0;
1230
1231 if (!acpi_os_initialized)
1232 return AE_OK;
1233
1234 if (!sem || (units < 1))
1235 return AE_BAD_PARAMETER;
1236
1237 if (units > 1)
1238 return AE_SUPPORT;
1239
1240 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1241 handle, units, timeout));
1242
1243 if (timeout == ACPI_WAIT_FOREVER)
1244 jiffies = MAX_SCHEDULE_TIMEOUT;
1245 else
1246 jiffies = msecs_to_jiffies(timeout);
1247
1248 ret = down_timeout(sem, jiffies);
1249 if (ret)
1250 status = AE_TIME;
1251
1252 if (ACPI_FAILURE(status)) {
1253 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1254 "Failed to acquire semaphore[%p|%d|%d], %s",
1255 handle, units, timeout,
1256 acpi_format_exception(status)));
1257 } else {
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1259 "Acquired semaphore[%p|%d|%d]", handle,
1260 units, timeout));
1261 }
1262
1263 return status;
1264}
1265
1266/*
1267 * TODO: Support for units > 1?
1268 */
1269acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1270{
1271 struct semaphore *sem = (struct semaphore *)handle;
1272
1273 if (!acpi_os_initialized)
1274 return AE_OK;
1275
1276 if (!sem || (units < 1))
1277 return AE_BAD_PARAMETER;
1278
1279 if (units > 1)
1280 return AE_SUPPORT;
1281
1282 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1283 units));
1284
1285 up(sem);
1286
1287 return AE_OK;
1288}
1289
1290acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1291{
1292#ifdef ENABLE_DEBUGGER
1293 if (acpi_in_debugger) {
1294 u32 chars;
1295
1296 kdb_read(buffer, buffer_length);
1297
1298 /* remove the CR kdb includes */
1299 chars = strlen(buffer) - 1;
1300 buffer[chars] = '\0';
1301 }
1302#else
1303 int ret;
1304
1305 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1306 if (ret < 0)
1307 return AE_ERROR;
1308 if (bytes_read)
1309 *bytes_read = ret;
1310#endif
1311
1312 return AE_OK;
1313}
1314EXPORT_SYMBOL(acpi_os_get_line);
1315
1316acpi_status acpi_os_wait_command_ready(void)
1317{
1318 int ret;
1319
1320 ret = acpi_debugger_wait_command_ready();
1321 if (ret < 0)
1322 return AE_ERROR;
1323 return AE_OK;
1324}
1325
1326acpi_status acpi_os_notify_command_complete(void)
1327{
1328 int ret;
1329
1330 ret = acpi_debugger_notify_command_complete();
1331 if (ret < 0)
1332 return AE_ERROR;
1333 return AE_OK;
1334}
1335
1336acpi_status acpi_os_signal(u32 function, void *info)
1337{
1338 switch (function) {
1339 case ACPI_SIGNAL_FATAL:
1340 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1341 break;
1342 case ACPI_SIGNAL_BREAKPOINT:
1343 /*
1344 * AML Breakpoint
1345 * ACPI spec. says to treat it as a NOP unless
1346 * you are debugging. So if/when we integrate
1347 * AML debugger into the kernel debugger its
1348 * hook will go here. But until then it is
1349 * not useful to print anything on breakpoints.
1350 */
1351 break;
1352 default:
1353 break;
1354 }
1355
1356 return AE_OK;
1357}
1358
1359static int __init acpi_os_name_setup(char *str)
1360{
1361 char *p = acpi_os_name;
1362 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1363
1364 if (!str || !*str)
1365 return 0;
1366
1367 for (; count-- && *str; str++) {
1368 if (isalnum(*str) || *str == ' ' || *str == ':')
1369 *p++ = *str;
1370 else if (*str == '\'' || *str == '"')
1371 continue;
1372 else
1373 break;
1374 }
1375 *p = 0;
1376
1377 return 1;
1378
1379}
1380
1381__setup("acpi_os_name=", acpi_os_name_setup);
1382
1383/*
1384 * Disable the auto-serialization of named objects creation methods.
1385 *
1386 * This feature is enabled by default. It marks the AML control methods
1387 * that contain the opcodes to create named objects as "Serialized".
1388 */
1389static int __init acpi_no_auto_serialize_setup(char *str)
1390{
1391 acpi_gbl_auto_serialize_methods = FALSE;
1392 pr_info("ACPI: auto-serialization disabled\n");
1393
1394 return 1;
1395}
1396
1397__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1398
1399/* Check of resource interference between native drivers and ACPI
1400 * OperationRegions (SystemIO and System Memory only).
1401 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1402 * in arbitrary AML code and can interfere with legacy drivers.
1403 * acpi_enforce_resources= can be set to:
1404 *
1405 * - strict (default) (2)
1406 * -> further driver trying to access the resources will not load
1407 * - lax (1)
1408 * -> further driver trying to access the resources will load, but you
1409 * get a system message that something might go wrong...
1410 *
1411 * - no (0)
1412 * -> ACPI Operation Region resources will not be registered
1413 *
1414 */
1415#define ENFORCE_RESOURCES_STRICT 2
1416#define ENFORCE_RESOURCES_LAX 1
1417#define ENFORCE_RESOURCES_NO 0
1418
1419static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1420
1421static int __init acpi_enforce_resources_setup(char *str)
1422{
1423 if (str == NULL || *str == '\0')
1424 return 0;
1425
1426 if (!strcmp("strict", str))
1427 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428 else if (!strcmp("lax", str))
1429 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1430 else if (!strcmp("no", str))
1431 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1432
1433 return 1;
1434}
1435
1436__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1437
1438/* Check for resource conflicts between ACPI OperationRegions and native
1439 * drivers */
1440int acpi_check_resource_conflict(const struct resource *res)
1441{
1442 acpi_adr_space_type space_id;
1443 acpi_size length;
1444 u8 warn = 0;
1445 int clash = 0;
1446
1447 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1448 return 0;
1449 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1450 return 0;
1451
1452 if (res->flags & IORESOURCE_IO)
1453 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1454 else
1455 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1456
1457 length = resource_size(res);
1458 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1459 warn = 1;
1460 clash = acpi_check_address_range(space_id, res->start, length, warn);
1461
1462 if (clash) {
1463 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1464 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1465 printk(KERN_NOTICE "ACPI: This conflict may"
1466 " cause random problems and system"
1467 " instability\n");
1468 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1469 " for this device, you should use it instead of"
1470 " the native driver\n");
1471 }
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1473 return -EBUSY;
1474 }
1475 return 0;
1476}
1477EXPORT_SYMBOL(acpi_check_resource_conflict);
1478
1479int acpi_check_region(resource_size_t start, resource_size_t n,
1480 const char *name)
1481{
1482 struct resource res = {
1483 .start = start,
1484 .end = start + n - 1,
1485 .name = name,
1486 .flags = IORESOURCE_IO,
1487 };
1488
1489 return acpi_check_resource_conflict(&res);
1490}
1491EXPORT_SYMBOL(acpi_check_region);
1492
1493/*
1494 * Let drivers know whether the resource checks are effective
1495 */
1496int acpi_resources_are_enforced(void)
1497{
1498 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1499}
1500EXPORT_SYMBOL(acpi_resources_are_enforced);
1501
1502/*
1503 * Deallocate the memory for a spinlock.
1504 */
1505void acpi_os_delete_lock(acpi_spinlock handle)
1506{
1507 ACPI_FREE(handle);
1508}
1509
1510/*
1511 * Acquire a spinlock.
1512 *
1513 * handle is a pointer to the spinlock_t.
1514 */
1515
1516acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1517{
1518 acpi_cpu_flags flags;
1519 spin_lock_irqsave(lockp, flags);
1520 return flags;
1521}
1522
1523/*
1524 * Release a spinlock. See above.
1525 */
1526
1527void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1528{
1529 spin_unlock_irqrestore(lockp, flags);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1551{
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1572{
1573 kmem_cache_shrink(cache);
1574 return (AE_OK);
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1591{
1592 kmem_cache_destroy(cache);
1593 return (AE_OK);
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1611{
1612 kmem_cache_free(cache, object);
1613 return (AE_OK);
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("ACPI: static SSDT installation disabled\n");
1621
1622 return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629 printk(KERN_NOTICE PREFIX
1630 "ACPI: Predefined validation mechanism disabled\n");
1631 acpi_gbl_disable_auto_repair = TRUE;
1632
1633 return 1;
1634}
1635
1636__setup("acpica_no_return_repair", acpi_disable_return_repair);
1637
1638acpi_status __init acpi_os_initialize(void)
1639{
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1641 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1642 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1643 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1644 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1645 /*
1646 * Use acpi_os_map_generic_address to pre-map the reset
1647 * register if it's in system memory.
1648 */
1649 int rv;
1650
1651 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1652 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1653 }
1654 acpi_os_initialized = true;
1655
1656 return AE_OK;
1657}
1658
1659acpi_status __init acpi_os_initialize1(void)
1660{
1661 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1662 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1663 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1664 BUG_ON(!kacpid_wq);
1665 BUG_ON(!kacpi_notify_wq);
1666 BUG_ON(!kacpi_hotplug_wq);
1667 acpi_osi_init();
1668 return AE_OK;
1669}
1670
1671acpi_status acpi_os_terminate(void)
1672{
1673 if (acpi_irq_handler) {
1674 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1675 acpi_irq_handler);
1676 }
1677
1678 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1679 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1680 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1681 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1682 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1684
1685 destroy_workqueue(kacpid_wq);
1686 destroy_workqueue(kacpi_notify_wq);
1687 destroy_workqueue(kacpi_hotplug_wq);
1688
1689 return AE_OK;
1690}
1691
1692acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1693 u32 pm1b_control)
1694{
1695 int rc = 0;
1696 if (__acpi_os_prepare_sleep)
1697 rc = __acpi_os_prepare_sleep(sleep_state,
1698 pm1a_control, pm1b_control);
1699 if (rc < 0)
1700 return AE_ERROR;
1701 else if (rc > 0)
1702 return AE_CTRL_TERMINATE;
1703
1704 return AE_OK;
1705}
1706
1707void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1708 u32 pm1a_ctrl, u32 pm1b_ctrl))
1709{
1710 __acpi_os_prepare_sleep = func;
1711}
1712
1713#if (ACPI_REDUCED_HARDWARE)
1714acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1715 u32 val_b)
1716{
1717 int rc = 0;
1718 if (__acpi_os_prepare_extended_sleep)
1719 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1720 val_a, val_b);
1721 if (rc < 0)
1722 return AE_ERROR;
1723 else if (rc > 0)
1724 return AE_CTRL_TERMINATE;
1725
1726 return AE_OK;
1727}
1728#else
1729acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730 u32 val_b)
1731{
1732 return AE_OK;
1733}
1734#endif
1735
1736void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1737 u32 val_a, u32 val_b))
1738{
1739 __acpi_os_prepare_extended_sleep = func;
1740}
1741
1742acpi_status acpi_os_enter_sleep(u8 sleep_state,
1743 u32 reg_a_value, u32 reg_b_value)
1744{
1745 acpi_status status;
1746
1747 if (acpi_gbl_reduced_hardware)
1748 status = acpi_os_prepare_extended_sleep(sleep_state,
1749 reg_a_value,
1750 reg_b_value);
1751 else
1752 status = acpi_os_prepare_sleep(sleep_state,
1753 reg_a_value, reg_b_value);
1754 return status;
1755}