Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; if not, write to the Free Software
  24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  27 *
  28 */
  29
 
 
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/mm.h>
 
 
  34#include <linux/pci.h>
  35#include <linux/interrupt.h>
  36#include <linux/kmod.h>
  37#include <linux/delay.h>
  38#include <linux/workqueue.h>
  39#include <linux/nmi.h>
  40#include <linux/acpi.h>
  41#include <linux/acpi_io.h>
  42#include <linux/efi.h>
  43#include <linux/ioport.h>
  44#include <linux/list.h>
  45#include <linux/jiffies.h>
  46#include <linux/semaphore.h>
 
  47
  48#include <asm/io.h>
  49#include <asm/uaccess.h>
 
  50
  51#include <acpi/acpi.h>
  52#include <acpi/acpi_bus.h>
  53#include <acpi/processor.h>
  54
 
  55#define _COMPONENT		ACPI_OS_SERVICES
  56ACPI_MODULE_NAME("osl");
  57#define PREFIX		"ACPI: "
  58struct acpi_os_dpc {
  59	acpi_osd_exec_callback function;
  60	void *context;
  61	struct work_struct work;
  62	int wait;
  63};
  64
  65#ifdef CONFIG_ACPI_CUSTOM_DSDT
  66#include CONFIG_ACPI_CUSTOM_DSDT_FILE
  67#endif
  68
  69#ifdef ENABLE_DEBUGGER
  70#include <linux/kdb.h>
  71
  72/* stuff for debugger support */
  73int acpi_in_debugger;
  74EXPORT_SYMBOL(acpi_in_debugger);
  75
  76extern char line_buf[80];
  77#endif				/*ENABLE_DEBUGGER */
  78
 
 
 
 
 
  79static acpi_osd_handler acpi_irq_handler;
  80static void *acpi_irq_context;
  81static struct workqueue_struct *kacpid_wq;
  82static struct workqueue_struct *kacpi_notify_wq;
  83static struct workqueue_struct *kacpi_hotplug_wq;
  84
  85struct acpi_res_list {
  86	resource_size_t start;
  87	resource_size_t end;
  88	acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
  89	char name[5];   /* only can have a length of 4 chars, make use of this
  90			   one instead of res->name, no need to kalloc then */
  91	struct list_head resource_list;
  92	int count;
  93};
  94
  95static LIST_HEAD(resource_list_head);
  96static DEFINE_SPINLOCK(acpi_res_lock);
  97
  98/*
  99 * This list of permanent mappings is for memory that may be accessed from
 100 * interrupt context, where we can't do the ioremap().
 101 */
 102struct acpi_ioremap {
 103	struct list_head list;
 104	void __iomem *virt;
 105	acpi_physical_address phys;
 106	acpi_size size;
 107	unsigned long refcount;
 
 
 
 108};
 109
 110static LIST_HEAD(acpi_ioremaps);
 111static DEFINE_MUTEX(acpi_ioremap_lock);
 
 112
 113static void __init acpi_osi_setup_late(void);
 114
 115/*
 116 * The story of _OSI(Linux)
 117 *
 118 * From pre-history through Linux-2.6.22,
 119 * Linux responded TRUE upon a BIOS OSI(Linux) query.
 120 *
 121 * Unfortunately, reference BIOS writers got wind of this
 122 * and put OSI(Linux) in their example code, quickly exposing
 123 * this string as ill-conceived and opening the door to
 124 * an un-bounded number of BIOS incompatibilities.
 125 *
 126 * For example, OSI(Linux) was used on resume to re-POST a
 127 * video card on one system, because Linux at that time
 128 * could not do a speedy restore in its native driver.
 129 * But then upon gaining quick native restore capability,
 130 * Linux has no way to tell the BIOS to skip the time-consuming
 131 * POST -- putting Linux at a permanent performance disadvantage.
 132 * On another system, the BIOS writer used OSI(Linux)
 133 * to infer native OS support for IPMI!  On other systems,
 134 * OSI(Linux) simply got in the way of Linux claiming to
 135 * be compatible with other operating systems, exposing
 136 * BIOS issues such as skipped device initialization.
 137 *
 138 * So "Linux" turned out to be a really poor chose of
 139 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
 140 *
 141 * BIOS writers should NOT query _OSI(Linux) on future systems.
 142 * Linux will complain on the console when it sees it, and return FALSE.
 143 * To get Linux to return TRUE for your system  will require
 144 * a kernel source update to add a DMI entry,
 145 * or boot with "acpi_osi=Linux"
 146 */
 147
 148static struct osi_linux {
 149	unsigned int	enable:1;
 150	unsigned int	dmi:1;
 151	unsigned int	cmdline:1;
 152} osi_linux = {0, 0, 0};
 153
 154static u32 acpi_osi_handler(acpi_string interface, u32 supported)
 155{
 156	if (!strcmp("Linux", interface)) {
 157
 158		printk_once(KERN_NOTICE FW_BUG PREFIX
 159			"BIOS _OSI(Linux) query %s%s\n",
 160			osi_linux.enable ? "honored" : "ignored",
 161			osi_linux.cmdline ? " via cmdline" :
 162			osi_linux.dmi ? " via DMI" : "");
 163	}
 164
 165	return supported;
 166}
 167
 168static void __init acpi_request_region (struct acpi_generic_address *addr,
 169	unsigned int length, char *desc)
 170{
 171	if (!addr->address || !length)
 
 
 
 
 172		return;
 173
 174	/* Resources are never freed */
 175	if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 176		request_region(addr->address, length, desc);
 177	else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 178		request_mem_region(addr->address, length, desc);
 179}
 180
 181static int __init acpi_reserve_resources(void)
 182{
 183	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 184		"ACPI PM1a_EVT_BLK");
 185
 186	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 187		"ACPI PM1b_EVT_BLK");
 188
 189	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 190		"ACPI PM1a_CNT_BLK");
 191
 192	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 193		"ACPI PM1b_CNT_BLK");
 194
 195	if (acpi_gbl_FADT.pm_timer_length == 4)
 196		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 197
 198	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 199		"ACPI PM2_CNT_BLK");
 200
 201	/* Length of GPE blocks must be a non-negative multiple of 2 */
 202
 203	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 204		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 205			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 206
 207	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 208		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 209			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 210
 211	return 0;
 212}
 213device_initcall(acpi_reserve_resources);
 214
 215void acpi_os_printf(const char *fmt, ...)
 216{
 217	va_list args;
 218	va_start(args, fmt);
 219	acpi_os_vprintf(fmt, args);
 220	va_end(args);
 221}
 
 222
 223void acpi_os_vprintf(const char *fmt, va_list args)
 224{
 225	static char buffer[512];
 226
 227	vsprintf(buffer, fmt, args);
 228
 229#ifdef ENABLE_DEBUGGER
 230	if (acpi_in_debugger) {
 231		kdb_printf("%s", buffer);
 232	} else {
 233		printk(KERN_CONT "%s", buffer);
 
 
 
 234	}
 235#else
 236	printk(KERN_CONT "%s", buffer);
 
 
 
 
 
 237#endif
 238}
 239
 240#ifdef CONFIG_KEXEC
 241static unsigned long acpi_rsdp;
 242static int __init setup_acpi_rsdp(char *arg)
 243{
 244	acpi_rsdp = simple_strtoul(arg, NULL, 16);
 245	return 0;
 246}
 247early_param("acpi_rsdp", setup_acpi_rsdp);
 248#endif
 249
 250acpi_physical_address __init acpi_os_get_root_pointer(void)
 251{
 
 
 252#ifdef CONFIG_KEXEC
 253	if (acpi_rsdp)
 
 
 
 
 
 
 
 
 
 
 254		return acpi_rsdp;
 
 255#endif
 
 
 
 256
 257	if (efi_enabled) {
 258		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 259			return efi.acpi20;
 260		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 261			return efi.acpi;
 262		else {
 263			printk(KERN_ERR PREFIX
 264			       "System description tables not found\n");
 265			return 0;
 266		}
 267	} else {
 268		acpi_physical_address pa = 0;
 269
 270		acpi_find_root_pointer(&pa);
 271		return pa;
 272	}
 
 
 273}
 274
 275/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 276static struct acpi_ioremap *
 277acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 278{
 279	struct acpi_ioremap *map;
 280
 281	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 282		if (map->phys <= phys &&
 283		    phys + size <= map->phys + map->size)
 284			return map;
 285
 286	return NULL;
 287}
 288
 289/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 290static void __iomem *
 291acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 292{
 293	struct acpi_ioremap *map;
 294
 295	map = acpi_map_lookup(phys, size);
 296	if (map)
 297		return map->virt + (phys - map->phys);
 298
 299	return NULL;
 300}
 301
 302void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 303{
 304	struct acpi_ioremap *map;
 305	void __iomem *virt = NULL;
 306
 307	mutex_lock(&acpi_ioremap_lock);
 308	map = acpi_map_lookup(phys, size);
 309	if (map) {
 310		virt = map->virt + (phys - map->phys);
 311		map->refcount++;
 312	}
 313	mutex_unlock(&acpi_ioremap_lock);
 314	return virt;
 315}
 316EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 317
 318/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 319static struct acpi_ioremap *
 320acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 321{
 322	struct acpi_ioremap *map;
 323
 324	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 325		if (map->virt <= virt &&
 326		    virt + size <= map->virt + map->size)
 327			return map;
 328
 329	return NULL;
 330}
 331
 332void __iomem *__init_refok
 333acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334{
 335	struct acpi_ioremap *map;
 336	void __iomem *virt;
 337	acpi_physical_address pg_off;
 338	acpi_size pg_sz;
 339
 340	if (phys > ULONG_MAX) {
 341		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 342		return NULL;
 343	}
 344
 345	if (!acpi_gbl_permanent_mmap)
 346		return __acpi_map_table((unsigned long)phys, size);
 347
 348	mutex_lock(&acpi_ioremap_lock);
 349	/* Check if there's a suitable mapping already. */
 350	map = acpi_map_lookup(phys, size);
 351	if (map) {
 352		map->refcount++;
 353		goto out;
 354	}
 355
 356	map = kzalloc(sizeof(*map), GFP_KERNEL);
 357	if (!map) {
 358		mutex_unlock(&acpi_ioremap_lock);
 359		return NULL;
 360	}
 361
 362	pg_off = round_down(phys, PAGE_SIZE);
 363	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 364	virt = acpi_os_ioremap(pg_off, pg_sz);
 365	if (!virt) {
 366		mutex_unlock(&acpi_ioremap_lock);
 367		kfree(map);
 368		return NULL;
 369	}
 370
 371	INIT_LIST_HEAD(&map->list);
 372	map->virt = virt;
 373	map->phys = pg_off;
 374	map->size = pg_sz;
 375	map->refcount = 1;
 376
 377	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 378
 379 out:
 380	mutex_unlock(&acpi_ioremap_lock);
 381	return map->virt + (phys - map->phys);
 382}
 
 
 
 
 
 
 383EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 384
 385static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 386{
 387	if (!--map->refcount)
 388		list_del_rcu(&map->list);
 
 
 
 
 389}
 390
 391static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 
 392{
 393	if (!map->refcount) {
 394		synchronize_rcu();
 395		iounmap(map->virt);
 396		kfree(map);
 397	}
 
 
 398}
 399
 400void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401{
 402	struct acpi_ioremap *map;
 403
 404	if (!acpi_gbl_permanent_mmap) {
 405		__acpi_unmap_table(virt, size);
 406		return;
 407	}
 408
 409	mutex_lock(&acpi_ioremap_lock);
 
 410	map = acpi_map_lookup_virt(virt, size);
 411	if (!map) {
 412		mutex_unlock(&acpi_ioremap_lock);
 413		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 414		return;
 415	}
 416	acpi_os_drop_map_ref(map);
 417	mutex_unlock(&acpi_ioremap_lock);
 418
 419	acpi_os_map_cleanup(map);
 420}
 421EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 422
 423void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 
 
 
 
 
 424{
 425	if (!acpi_gbl_permanent_mmap)
 426		__acpi_unmap_table(virt, size);
 427}
 
 428
 429static int acpi_os_map_generic_address(struct acpi_generic_address *addr)
 430{
 431	void __iomem *virt;
 432
 433	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 434		return 0;
 435
 436	if (!addr->address || !addr->bit_width)
 437		return -EINVAL;
 438
 439	virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
 440	if (!virt)
 441		return -EIO;
 
 442
 443	return 0;
 444}
 
 445
 446static void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
 447{
 
 448	struct acpi_ioremap *map;
 449
 450	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 451		return;
 452
 453	if (!addr->address || !addr->bit_width)
 
 
 454		return;
 455
 456	mutex_lock(&acpi_ioremap_lock);
 457	map = acpi_map_lookup(addr->address, addr->bit_width / 8);
 
 458	if (!map) {
 459		mutex_unlock(&acpi_ioremap_lock);
 460		return;
 461	}
 462	acpi_os_drop_map_ref(map);
 463	mutex_unlock(&acpi_ioremap_lock);
 464
 465	acpi_os_map_cleanup(map);
 466}
 
 467
 468#ifdef ACPI_FUTURE_USAGE
 469acpi_status
 470acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 471{
 472	if (!phys || !virt)
 473		return AE_BAD_PARAMETER;
 474
 475	*phys = virt_to_phys(virt);
 476
 477	return AE_OK;
 478}
 479#endif
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 481#define ACPI_MAX_OVERRIDE_LEN 100
 482
 483static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 484
 485acpi_status
 486acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 487			    acpi_string * new_val)
 488{
 489	if (!init_val || !new_val)
 490		return AE_BAD_PARAMETER;
 491
 492	*new_val = NULL;
 493	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 494		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 495		       acpi_os_name);
 496		*new_val = acpi_os_name;
 497	}
 498
 499	return AE_OK;
 500}
 501
 502acpi_status
 503acpi_os_table_override(struct acpi_table_header * existing_table,
 504		       struct acpi_table_header ** new_table)
 505{
 506	if (!existing_table || !new_table)
 507		return AE_BAD_PARAMETER;
 508
 509	*new_table = NULL;
 510
 511#ifdef CONFIG_ACPI_CUSTOM_DSDT
 512	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
 513		*new_table = (struct acpi_table_header *)AmlCode;
 514#endif
 515	if (*new_table != NULL) {
 516		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
 517			   "this is unsafe: tainting kernel\n",
 518		       existing_table->signature,
 519		       existing_table->oem_table_id);
 520		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
 521	}
 
 522	return AE_OK;
 523}
 524
 525static irqreturn_t acpi_irq(int irq, void *dev_id)
 526{
 527	u32 handled;
 528
 529	handled = (*acpi_irq_handler) (acpi_irq_context);
 530
 531	if (handled) {
 532		acpi_irq_handled++;
 533		return IRQ_HANDLED;
 534	} else {
 535		acpi_irq_not_handled++;
 536		return IRQ_NONE;
 537	}
 538}
 539
 540acpi_status
 541acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 542				  void *context)
 543{
 544	unsigned int irq;
 545
 546	acpi_irq_stats_init();
 547
 548	/*
 549	 * ACPI interrupts different from the SCI in our copy of the FADT are
 550	 * not supported.
 551	 */
 552	if (gsi != acpi_gbl_FADT.sci_interrupt)
 553		return AE_BAD_PARAMETER;
 554
 555	if (acpi_irq_handler)
 556		return AE_ALREADY_ACQUIRED;
 557
 558	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 559		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 560		       gsi);
 561		return AE_OK;
 562	}
 563
 564	acpi_irq_handler = handler;
 565	acpi_irq_context = context;
 566	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 567		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 568		acpi_irq_handler = NULL;
 569		return AE_NOT_ACQUIRED;
 570	}
 
 571
 572	return AE_OK;
 573}
 574
 575acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
 576{
 577	if (irq != acpi_gbl_FADT.sci_interrupt)
 578		return AE_BAD_PARAMETER;
 579
 580	free_irq(irq, acpi_irq);
 581	acpi_irq_handler = NULL;
 
 582
 583	return AE_OK;
 584}
 585
 586/*
 587 * Running in interpreter thread context, safe to sleep
 588 */
 589
 590void acpi_os_sleep(u64 ms)
 591{
 592	schedule_timeout_interruptible(msecs_to_jiffies(ms));
 593}
 594
 595void acpi_os_stall(u32 us)
 596{
 597	while (us) {
 598		u32 delay = 1000;
 599
 600		if (delay > us)
 601			delay = us;
 602		udelay(delay);
 603		touch_nmi_watchdog();
 604		us -= delay;
 605	}
 606}
 607
 608/*
 609 * Support ACPI 3.0 AML Timer operand
 610 * Returns 64-bit free-running, monotonically increasing timer
 611 * with 100ns granularity
 
 
 
 
 612 */
 613u64 acpi_os_get_timer(void)
 614{
 615	static u64 t;
 616
 617#ifdef	CONFIG_HPET
 618	/* TBD: use HPET if available */
 619#endif
 620
 621#ifdef	CONFIG_X86_PM_TIMER
 622	/* TBD: default to PM timer if HPET was not available */
 623#endif
 624	if (!t)
 625		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
 626
 627	return ++t;
 628}
 629
 630acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 631{
 632	u32 dummy;
 633
 634	if (!value)
 635		value = &dummy;
 636
 637	*value = 0;
 638	if (width <= 8) {
 639		*(u8 *) value = inb(port);
 640	} else if (width <= 16) {
 641		*(u16 *) value = inw(port);
 642	} else if (width <= 32) {
 643		*(u32 *) value = inl(port);
 644	} else {
 645		BUG();
 646	}
 647
 648	return AE_OK;
 649}
 650
 651EXPORT_SYMBOL(acpi_os_read_port);
 652
 653acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 654{
 655	if (width <= 8) {
 656		outb(value, port);
 657	} else if (width <= 16) {
 658		outw(value, port);
 659	} else if (width <= 32) {
 660		outl(value, port);
 661	} else {
 662		BUG();
 663	}
 664
 665	return AE_OK;
 666}
 667
 668EXPORT_SYMBOL(acpi_os_write_port);
 669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670acpi_status
 671acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
 672{
 673	void __iomem *virt_addr;
 674	unsigned int size = width / 8;
 675	bool unmap = false;
 676	u32 dummy;
 
 677
 678	rcu_read_lock();
 679	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 680	if (!virt_addr) {
 681		rcu_read_unlock();
 682		virt_addr = acpi_os_ioremap(phys_addr, size);
 683		if (!virt_addr)
 684			return AE_BAD_ADDRESS;
 685		unmap = true;
 686	}
 687
 688	if (!value)
 689		value = &dummy;
 690
 691	switch (width) {
 692	case 8:
 693		*(u8 *) value = readb(virt_addr);
 694		break;
 695	case 16:
 696		*(u16 *) value = readw(virt_addr);
 697		break;
 698	case 32:
 699		*(u32 *) value = readl(virt_addr);
 700		break;
 701	default:
 702		BUG();
 703	}
 704
 705	if (unmap)
 706		iounmap(virt_addr);
 707	else
 708		rcu_read_unlock();
 709
 710	return AE_OK;
 711}
 712
 713acpi_status
 714acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
 715{
 716	void __iomem *virt_addr;
 717	unsigned int size = width / 8;
 718	bool unmap = false;
 719
 720	rcu_read_lock();
 721	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 722	if (!virt_addr) {
 723		rcu_read_unlock();
 724		virt_addr = acpi_os_ioremap(phys_addr, size);
 725		if (!virt_addr)
 726			return AE_BAD_ADDRESS;
 727		unmap = true;
 728	}
 729
 730	switch (width) {
 731	case 8:
 732		writeb(value, virt_addr);
 733		break;
 734	case 16:
 735		writew(value, virt_addr);
 736		break;
 737	case 32:
 738		writel(value, virt_addr);
 739		break;
 
 
 
 740	default:
 741		BUG();
 742	}
 743
 744	if (unmap)
 745		iounmap(virt_addr);
 746	else
 747		rcu_read_unlock();
 748
 749	return AE_OK;
 750}
 751
 
 752acpi_status
 753acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 754			       u64 *value, u32 width)
 755{
 756	int result, size;
 757	u32 value32;
 758
 759	if (!value)
 760		return AE_BAD_PARAMETER;
 761
 762	switch (width) {
 763	case 8:
 764		size = 1;
 765		break;
 766	case 16:
 767		size = 2;
 768		break;
 769	case 32:
 770		size = 4;
 771		break;
 772	default:
 773		return AE_ERROR;
 774	}
 775
 776	result = raw_pci_read(pci_id->segment, pci_id->bus,
 777				PCI_DEVFN(pci_id->device, pci_id->function),
 778				reg, size, &value32);
 779	*value = value32;
 780
 781	return (result ? AE_ERROR : AE_OK);
 782}
 783
 784acpi_status
 785acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 786				u64 value, u32 width)
 787{
 788	int result, size;
 789
 790	switch (width) {
 791	case 8:
 792		size = 1;
 793		break;
 794	case 16:
 795		size = 2;
 796		break;
 797	case 32:
 798		size = 4;
 799		break;
 800	default:
 801		return AE_ERROR;
 802	}
 803
 804	result = raw_pci_write(pci_id->segment, pci_id->bus,
 805				PCI_DEVFN(pci_id->device, pci_id->function),
 806				reg, size, value);
 807
 808	return (result ? AE_ERROR : AE_OK);
 809}
 
 810
 811static void acpi_os_execute_deferred(struct work_struct *work)
 812{
 813	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 814
 815	if (dpc->wait)
 816		acpi_os_wait_events_complete(NULL);
 817
 818	dpc->function(dpc->context);
 819	kfree(dpc);
 820}
 821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822/*******************************************************************************
 823 *
 824 * FUNCTION:    acpi_os_execute
 825 *
 826 * PARAMETERS:  Type               - Type of the callback
 827 *              Function           - Function to be executed
 828 *              Context            - Function parameters
 829 *
 830 * RETURN:      Status
 831 *
 832 * DESCRIPTION: Depending on type, either queues function for deferred execution or
 833 *              immediately executes function on a separate thread.
 834 *
 835 ******************************************************************************/
 836
 837static acpi_status __acpi_os_execute(acpi_execute_type type,
 838	acpi_osd_exec_callback function, void *context, int hp)
 839{
 840	acpi_status status = AE_OK;
 841	struct acpi_os_dpc *dpc;
 842	struct workqueue_struct *queue;
 843	int ret;
 844	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
 845			  "Scheduling function [%p(%p)] for deferred execution.\n",
 846			  function, context));
 847
 
 
 
 
 
 
 
 
 
 848	/*
 849	 * Allocate/initialize DPC structure.  Note that this memory will be
 850	 * freed by the callee.  The kernel handles the work_struct list  in a
 851	 * way that allows us to also free its memory inside the callee.
 852	 * Because we may want to schedule several tasks with different
 853	 * parameters we can't use the approach some kernel code uses of
 854	 * having a static work_struct.
 855	 */
 856
 857	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
 858	if (!dpc)
 859		return AE_NO_MEMORY;
 860
 861	dpc->function = function;
 862	dpc->context = context;
 863
 864	/*
 865	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
 866	 * because the hotplug code may call driver .remove() functions,
 867	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
 868	 * to flush these workqueues.
 869	 */
 870	queue = hp ? kacpi_hotplug_wq :
 871		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
 872	dpc->wait = hp ? 1 : 0;
 873
 874	if (queue == kacpi_hotplug_wq)
 875		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 876	else if (queue == kacpi_notify_wq)
 877		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 878	else
 
 879		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 
 
 
 
 
 
 
 880
 881	/*
 882	 * On some machines, a software-initiated SMI causes corruption unless
 883	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
 884	 * typically it's done in GPE-related methods that are run via
 885	 * workqueues, so we can avoid the known corruption cases by always
 886	 * queueing on CPU 0.
 887	 */
 888	ret = queue_work_on(0, queue, &dpc->work);
 889
 890	if (!ret) {
 891		printk(KERN_ERR PREFIX
 892			  "Call to queue_work() failed.\n");
 893		status = AE_ERROR;
 894		kfree(dpc);
 895	}
 
 
 
 
 896	return status;
 897}
 
 898
 899acpi_status acpi_os_execute(acpi_execute_type type,
 900			    acpi_osd_exec_callback function, void *context)
 901{
 902	return __acpi_os_execute(type, function, context, 0);
 
 
 
 
 
 
 
 903}
 904EXPORT_SYMBOL(acpi_os_execute);
 905
 906acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
 907	void *context)
 
 
 
 
 
 908{
 909	return __acpi_os_execute(0, function, context, 1);
 
 
 
 
 910}
 911
 912void acpi_os_wait_events_complete(void *context)
 913{
 914	flush_workqueue(kacpid_wq);
 915	flush_workqueue(kacpi_notify_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916}
 917
 918EXPORT_SYMBOL(acpi_os_wait_events_complete);
 
 
 
 919
 920acpi_status
 921acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
 922{
 923	struct semaphore *sem = NULL;
 924
 925	sem = acpi_os_allocate(sizeof(struct semaphore));
 926	if (!sem)
 927		return AE_NO_MEMORY;
 928	memset(sem, 0, sizeof(struct semaphore));
 929
 930	sema_init(sem, initial_units);
 931
 932	*handle = (acpi_handle *) sem;
 933
 934	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
 935			  *handle, initial_units));
 936
 937	return AE_OK;
 938}
 939
 940/*
 941 * TODO: A better way to delete semaphores?  Linux doesn't have a
 942 * 'delete_semaphore()' function -- may result in an invalid
 943 * pointer dereference for non-synchronized consumers.	Should
 944 * we at least check for blocked threads and signal/cancel them?
 945 */
 946
 947acpi_status acpi_os_delete_semaphore(acpi_handle handle)
 948{
 949	struct semaphore *sem = (struct semaphore *)handle;
 950
 951	if (!sem)
 952		return AE_BAD_PARAMETER;
 953
 954	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
 955
 956	BUG_ON(!list_empty(&sem->wait_list));
 957	kfree(sem);
 958	sem = NULL;
 959
 960	return AE_OK;
 961}
 962
 963/*
 964 * TODO: Support for units > 1?
 965 */
 966acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
 967{
 968	acpi_status status = AE_OK;
 969	struct semaphore *sem = (struct semaphore *)handle;
 970	long jiffies;
 971	int ret = 0;
 972
 
 
 
 973	if (!sem || (units < 1))
 974		return AE_BAD_PARAMETER;
 975
 976	if (units > 1)
 977		return AE_SUPPORT;
 978
 979	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
 980			  handle, units, timeout));
 981
 982	if (timeout == ACPI_WAIT_FOREVER)
 983		jiffies = MAX_SCHEDULE_TIMEOUT;
 984	else
 985		jiffies = msecs_to_jiffies(timeout);
 986	
 987	ret = down_timeout(sem, jiffies);
 988	if (ret)
 989		status = AE_TIME;
 990
 991	if (ACPI_FAILURE(status)) {
 992		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
 993				  "Failed to acquire semaphore[%p|%d|%d], %s",
 994				  handle, units, timeout,
 995				  acpi_format_exception(status)));
 996	} else {
 997		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
 998				  "Acquired semaphore[%p|%d|%d]", handle,
 999				  units, timeout));
1000	}
1001
1002	return status;
1003}
1004
1005/*
1006 * TODO: Support for units > 1?
1007 */
1008acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1009{
1010	struct semaphore *sem = (struct semaphore *)handle;
1011
 
 
 
1012	if (!sem || (units < 1))
1013		return AE_BAD_PARAMETER;
1014
1015	if (units > 1)
1016		return AE_SUPPORT;
1017
1018	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1019			  units));
1020
1021	up(sem);
1022
1023	return AE_OK;
1024}
1025
1026#ifdef ACPI_FUTURE_USAGE
1027u32 acpi_os_get_line(char *buffer)
1028{
1029
1030#ifdef ENABLE_DEBUGGER
1031	if (acpi_in_debugger) {
1032		u32 chars;
1033
1034		kdb_read(buffer, sizeof(line_buf));
1035
1036		/* remove the CR kdb includes */
1037		chars = strlen(buffer) - 1;
1038		buffer[chars] = '\0';
1039	}
 
 
 
 
 
 
 
 
1040#endif
1041
1042	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043}
1044#endif				/*  ACPI_FUTURE_USAGE  */
1045
1046acpi_status acpi_os_signal(u32 function, void *info)
1047{
1048	switch (function) {
1049	case ACPI_SIGNAL_FATAL:
1050		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1051		break;
1052	case ACPI_SIGNAL_BREAKPOINT:
1053		/*
1054		 * AML Breakpoint
1055		 * ACPI spec. says to treat it as a NOP unless
1056		 * you are debugging.  So if/when we integrate
1057		 * AML debugger into the kernel debugger its
1058		 * hook will go here.  But until then it is
1059		 * not useful to print anything on breakpoints.
1060		 */
1061		break;
1062	default:
1063		break;
1064	}
1065
1066	return AE_OK;
1067}
1068
1069static int __init acpi_os_name_setup(char *str)
1070{
1071	char *p = acpi_os_name;
1072	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1073
1074	if (!str || !*str)
1075		return 0;
1076
1077	for (; count-- && str && *str; str++) {
1078		if (isalnum(*str) || *str == ' ' || *str == ':')
1079			*p++ = *str;
1080		else if (*str == '\'' || *str == '"')
1081			continue;
1082		else
1083			break;
1084	}
1085	*p = 0;
1086
1087	return 1;
1088
1089}
1090
1091__setup("acpi_os_name=", acpi_os_name_setup);
1092
1093#define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1094#define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1095
1096struct osi_setup_entry {
1097	char string[OSI_STRING_LENGTH_MAX];
1098	bool enable;
1099};
1100
1101static struct osi_setup_entry __initdata
1102		osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1103	{"Module Device", true},
1104	{"Processor Device", true},
1105	{"3.0 _SCP Extensions", true},
1106	{"Processor Aggregator Device", true},
1107};
1108
1109void __init acpi_osi_setup(char *str)
1110{
1111	struct osi_setup_entry *osi;
1112	bool enable = true;
1113	int i;
1114
1115	if (!acpi_gbl_create_osi_method)
1116		return;
1117
1118	if (str == NULL || *str == '\0') {
1119		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1120		acpi_gbl_create_osi_method = FALSE;
1121		return;
1122	}
1123
1124	if (*str == '!') {
1125		str++;
1126		enable = false;
1127	}
1128
1129	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1130		osi = &osi_setup_entries[i];
1131		if (!strcmp(osi->string, str)) {
1132			osi->enable = enable;
1133			break;
1134		} else if (osi->string[0] == '\0') {
1135			osi->enable = enable;
1136			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1137			break;
1138		}
1139	}
1140}
1141
1142static void __init set_osi_linux(unsigned int enable)
1143{
1144	if (osi_linux.enable != enable)
1145		osi_linux.enable = enable;
1146
1147	if (osi_linux.enable)
1148		acpi_osi_setup("Linux");
1149	else
1150		acpi_osi_setup("!Linux");
1151
1152	return;
1153}
1154
1155static void __init acpi_cmdline_osi_linux(unsigned int enable)
1156{
1157	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1158	osi_linux.dmi = 0;
1159	set_osi_linux(enable);
1160
1161	return;
1162}
1163
1164void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1165{
1166	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1167
1168	if (enable == -1)
1169		return;
1170
1171	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1172	set_osi_linux(enable);
1173
1174	return;
1175}
1176
1177/*
1178 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1179 *
1180 * empty string disables _OSI
1181 * string starting with '!' disables that string
1182 * otherwise string is added to list, augmenting built-in strings
1183 */
1184static void __init acpi_osi_setup_late(void)
1185{
1186	struct osi_setup_entry *osi;
1187	char *str;
1188	int i;
1189	acpi_status status;
1190
1191	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1192		osi = &osi_setup_entries[i];
1193		str = osi->string;
1194
1195		if (*str == '\0')
1196			break;
1197		if (osi->enable) {
1198			status = acpi_install_interface(str);
1199
1200			if (ACPI_SUCCESS(status))
1201				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1202		} else {
1203			status = acpi_remove_interface(str);
1204
1205			if (ACPI_SUCCESS(status))
1206				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1207		}
1208	}
1209}
1210
1211static int __init osi_setup(char *str)
1212{
1213	if (str && !strcmp("Linux", str))
1214		acpi_cmdline_osi_linux(1);
1215	else if (str && !strcmp("!Linux", str))
1216		acpi_cmdline_osi_linux(0);
1217	else
1218		acpi_osi_setup(str);
1219
1220	return 1;
1221}
1222
1223__setup("acpi_osi=", osi_setup);
1224
1225/* enable serialization to combat AE_ALREADY_EXISTS errors */
1226static int __init acpi_serialize_setup(char *str)
1227{
1228	printk(KERN_INFO PREFIX "serialize enabled\n");
1229
1230	acpi_gbl_all_methods_serialized = TRUE;
1231
1232	return 1;
1233}
1234
1235__setup("acpi_serialize", acpi_serialize_setup);
1236
1237/* Check of resource interference between native drivers and ACPI
1238 * OperationRegions (SystemIO and System Memory only).
1239 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1240 * in arbitrary AML code and can interfere with legacy drivers.
1241 * acpi_enforce_resources= can be set to:
1242 *
1243 *   - strict (default) (2)
1244 *     -> further driver trying to access the resources will not load
1245 *   - lax              (1)
1246 *     -> further driver trying to access the resources will load, but you
1247 *     get a system message that something might go wrong...
1248 *
1249 *   - no               (0)
1250 *     -> ACPI Operation Region resources will not be registered
1251 *
1252 */
1253#define ENFORCE_RESOURCES_STRICT 2
1254#define ENFORCE_RESOURCES_LAX    1
1255#define ENFORCE_RESOURCES_NO     0
1256
1257static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1258
1259static int __init acpi_enforce_resources_setup(char *str)
1260{
1261	if (str == NULL || *str == '\0')
1262		return 0;
1263
1264	if (!strcmp("strict", str))
1265		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1266	else if (!strcmp("lax", str))
1267		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1268	else if (!strcmp("no", str))
1269		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1270
1271	return 1;
1272}
1273
1274__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1275
1276/* Check for resource conflicts between ACPI OperationRegions and native
1277 * drivers */
1278int acpi_check_resource_conflict(const struct resource *res)
1279{
1280	struct acpi_res_list *res_list_elem;
1281	int ioport = 0, clash = 0;
1282
1283	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1284		return 0;
1285	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
 
 
 
 
 
1286		return 0;
1287
1288	ioport = res->flags & IORESOURCE_IO;
 
1289
1290	spin_lock(&acpi_res_lock);
1291	list_for_each_entry(res_list_elem, &resource_list_head,
1292			    resource_list) {
1293		if (ioport && (res_list_elem->resource_type
1294			       != ACPI_ADR_SPACE_SYSTEM_IO))
1295			continue;
1296		if (!ioport && (res_list_elem->resource_type
1297				!= ACPI_ADR_SPACE_SYSTEM_MEMORY))
1298			continue;
1299
1300		if (res->end < res_list_elem->start
1301		    || res_list_elem->end < res->start)
1302			continue;
1303		clash = 1;
1304		break;
1305	}
1306	spin_unlock(&acpi_res_lock);
1307
1308	if (clash) {
1309		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1310			printk(KERN_WARNING "ACPI: resource %s %pR"
1311			       " conflicts with ACPI region %s "
1312			       "[%s 0x%zx-0x%zx]\n",
1313			       res->name, res, res_list_elem->name,
1314			       (res_list_elem->resource_type ==
1315				ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1316			       (size_t) res_list_elem->start,
1317			       (size_t) res_list_elem->end);
1318			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1319				printk(KERN_NOTICE "ACPI: This conflict may"
1320				       " cause random problems and system"
1321				       " instability\n");
1322			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1323			       " for this device, you should use it instead of"
1324			       " the native driver\n");
1325		}
1326		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1327			return -EBUSY;
1328	}
1329	return 0;
1330}
1331EXPORT_SYMBOL(acpi_check_resource_conflict);
1332
1333int acpi_check_region(resource_size_t start, resource_size_t n,
1334		      const char *name)
1335{
1336	struct resource res = {
1337		.start = start,
1338		.end   = start + n - 1,
1339		.name  = name,
1340		.flags = IORESOURCE_IO,
1341	};
1342
1343	return acpi_check_resource_conflict(&res);
1344}
1345EXPORT_SYMBOL(acpi_check_region);
1346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347/*
1348 * Let drivers know whether the resource checks are effective
1349 */
1350int acpi_resources_are_enforced(void)
1351{
1352	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1353}
1354EXPORT_SYMBOL(acpi_resources_are_enforced);
1355
1356/*
1357 * Deallocate the memory for a spinlock.
1358 */
1359void acpi_os_delete_lock(acpi_spinlock handle)
1360{
1361	ACPI_FREE(handle);
1362}
1363
1364/*
1365 * Acquire a spinlock.
1366 *
1367 * handle is a pointer to the spinlock_t.
1368 */
1369
1370acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
 
1371{
1372	acpi_cpu_flags flags;
1373	spin_lock_irqsave(lockp, flags);
1374	return flags;
1375}
1376
1377/*
1378 * Release a spinlock. See above.
1379 */
1380
1381void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
 
1382{
1383	spin_unlock_irqrestore(lockp, flags);
1384}
1385
1386#ifndef ACPI_USE_LOCAL_CACHE
1387
1388/*******************************************************************************
1389 *
1390 * FUNCTION:    acpi_os_create_cache
1391 *
1392 * PARAMETERS:  name      - Ascii name for the cache
1393 *              size      - Size of each cached object
1394 *              depth     - Maximum depth of the cache (in objects) <ignored>
1395 *              cache     - Where the new cache object is returned
1396 *
1397 * RETURN:      status
1398 *
1399 * DESCRIPTION: Create a cache object
1400 *
1401 ******************************************************************************/
1402
1403acpi_status
1404acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1405{
1406	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1407	if (*cache == NULL)
1408		return AE_ERROR;
1409	else
1410		return AE_OK;
1411}
1412
1413/*******************************************************************************
1414 *
1415 * FUNCTION:    acpi_os_purge_cache
1416 *
1417 * PARAMETERS:  Cache           - Handle to cache object
1418 *
1419 * RETURN:      Status
1420 *
1421 * DESCRIPTION: Free all objects within the requested cache.
1422 *
1423 ******************************************************************************/
1424
1425acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1426{
1427	kmem_cache_shrink(cache);
1428	return (AE_OK);
1429}
1430
1431/*******************************************************************************
1432 *
1433 * FUNCTION:    acpi_os_delete_cache
1434 *
1435 * PARAMETERS:  Cache           - Handle to cache object
1436 *
1437 * RETURN:      Status
1438 *
1439 * DESCRIPTION: Free all objects within the requested cache and delete the
1440 *              cache object.
1441 *
1442 ******************************************************************************/
1443
1444acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1445{
1446	kmem_cache_destroy(cache);
1447	return (AE_OK);
1448}
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION:    acpi_os_release_object
1453 *
1454 * PARAMETERS:  Cache       - Handle to cache object
1455 *              Object      - The object to be released
1456 *
1457 * RETURN:      None
1458 *
1459 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1460 *              the object is deleted.
1461 *
1462 ******************************************************************************/
1463
1464acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1465{
1466	kmem_cache_free(cache, object);
1467	return (AE_OK);
1468}
 
1469
1470static inline int acpi_res_list_add(struct acpi_res_list *res)
1471{
1472	struct acpi_res_list *res_list_elem;
1473
1474	list_for_each_entry(res_list_elem, &resource_list_head,
1475			    resource_list) {
1476
1477		if (res->resource_type == res_list_elem->resource_type &&
1478		    res->start == res_list_elem->start &&
1479		    res->end == res_list_elem->end) {
1480
1481			/*
1482			 * The Region(addr,len) already exist in the list,
1483			 * just increase the count
1484			 */
1485
1486			res_list_elem->count++;
1487			return 0;
1488		}
1489	}
1490
1491	res->count = 1;
1492	list_add(&res->resource_list, &resource_list_head);
1493	return 1;
1494}
1495
1496static inline void acpi_res_list_del(struct acpi_res_list *res)
1497{
1498	struct acpi_res_list *res_list_elem;
1499
1500	list_for_each_entry(res_list_elem, &resource_list_head,
1501			    resource_list) {
1502
1503		if (res->resource_type == res_list_elem->resource_type &&
1504		    res->start == res_list_elem->start &&
1505		    res->end == res_list_elem->end) {
1506
1507			/*
1508			 * If the res count is decreased to 0,
1509			 * remove and free it
1510			 */
1511
1512			if (--res_list_elem->count == 0) {
1513				list_del(&res_list_elem->resource_list);
1514				kfree(res_list_elem);
1515			}
1516			return;
1517		}
1518	}
1519}
1520
1521acpi_status
1522acpi_os_invalidate_address(
1523    u8                   space_id,
1524    acpi_physical_address   address,
1525    acpi_size               length)
1526{
1527	struct acpi_res_list res;
1528
1529	switch (space_id) {
1530	case ACPI_ADR_SPACE_SYSTEM_IO:
1531	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1532		/* Only interference checks against SystemIO and SystemMemory
1533		   are needed */
1534		res.start = address;
1535		res.end = address + length - 1;
1536		res.resource_type = space_id;
1537		spin_lock(&acpi_res_lock);
1538		acpi_res_list_del(&res);
1539		spin_unlock(&acpi_res_lock);
1540		break;
1541	case ACPI_ADR_SPACE_PCI_CONFIG:
1542	case ACPI_ADR_SPACE_EC:
1543	case ACPI_ADR_SPACE_SMBUS:
1544	case ACPI_ADR_SPACE_CMOS:
1545	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1546	case ACPI_ADR_SPACE_DATA_TABLE:
1547	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1548		break;
1549	}
1550	return AE_OK;
1551}
1552
1553/******************************************************************************
1554 *
1555 * FUNCTION:    acpi_os_validate_address
1556 *
1557 * PARAMETERS:  space_id             - ACPI space ID
1558 *              address             - Physical address
1559 *              length              - Address length
1560 *
1561 * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1562 *              should return AE_AML_ILLEGAL_ADDRESS.
1563 *
1564 * DESCRIPTION: Validate a system address via the host OS. Used to validate
1565 *              the addresses accessed by AML operation regions.
1566 *
1567 *****************************************************************************/
1568
1569acpi_status
1570acpi_os_validate_address (
1571    u8                   space_id,
1572    acpi_physical_address   address,
1573    acpi_size               length,
1574    char *name)
1575{
1576	struct acpi_res_list *res;
1577	int added;
1578	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1579		return AE_OK;
1580
1581	switch (space_id) {
1582	case ACPI_ADR_SPACE_SYSTEM_IO:
1583	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1584		/* Only interference checks against SystemIO and SystemMemory
1585		   are needed */
1586		res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1587		if (!res)
1588			return AE_OK;
1589		/* ACPI names are fixed to 4 bytes, still better use strlcpy */
1590		strlcpy(res->name, name, 5);
1591		res->start = address;
1592		res->end = address + length - 1;
1593		res->resource_type = space_id;
1594		spin_lock(&acpi_res_lock);
1595		added = acpi_res_list_add(res);
1596		spin_unlock(&acpi_res_lock);
1597		pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1598			 "name: %s\n", added ? "Added" : "Already exist",
1599			 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1600			 ? "SystemIO" : "System Memory",
1601			 (unsigned long long)res->start,
1602			 (unsigned long long)res->end,
1603			 res->name);
1604		if (!added)
1605			kfree(res);
1606		break;
1607	case ACPI_ADR_SPACE_PCI_CONFIG:
1608	case ACPI_ADR_SPACE_EC:
1609	case ACPI_ADR_SPACE_SMBUS:
1610	case ACPI_ADR_SPACE_CMOS:
1611	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1612	case ACPI_ADR_SPACE_DATA_TABLE:
1613	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1614		break;
1615	}
1616	return AE_OK;
1617}
1618#endif
 
1619
1620acpi_status __init acpi_os_initialize(void)
1621{
1622	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1623	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1624	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1625	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626
1627	return AE_OK;
1628}
1629
1630acpi_status __init acpi_os_initialize1(void)
1631{
1632	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1633	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1634	kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1635	BUG_ON(!kacpid_wq);
1636	BUG_ON(!kacpi_notify_wq);
1637	BUG_ON(!kacpi_hotplug_wq);
1638	acpi_install_interface_handler(acpi_osi_handler);
1639	acpi_osi_setup_late();
1640	return AE_OK;
1641}
1642
1643acpi_status acpi_os_terminate(void)
1644{
1645	if (acpi_irq_handler) {
1646		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1647						 acpi_irq_handler);
1648	}
1649
1650	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1651	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
 
 
 
1652	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1654
 
 
 
1655	destroy_workqueue(kacpid_wq);
1656	destroy_workqueue(kacpi_notify_wq);
1657	destroy_workqueue(kacpi_hotplug_wq);
1658
1659	return AE_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#define pr_fmt(fmt) "ACPI: OSL: " fmt
  13
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/mm.h>
  18#include <linux/highmem.h>
  19#include <linux/lockdep.h>
  20#include <linux/pci.h>
  21#include <linux/interrupt.h>
  22#include <linux/kmod.h>
  23#include <linux/delay.h>
  24#include <linux/workqueue.h>
  25#include <linux/nmi.h>
  26#include <linux/acpi.h>
 
  27#include <linux/efi.h>
  28#include <linux/ioport.h>
  29#include <linux/list.h>
  30#include <linux/jiffies.h>
  31#include <linux/semaphore.h>
  32#include <linux/security.h>
  33
  34#include <asm/io.h>
  35#include <linux/uaccess.h>
  36#include <linux/io-64-nonatomic-lo-hi.h>
  37
  38#include "acpica/accommon.h"
  39#include "acpica/acnamesp.h"
  40#include "internal.h"
  41
  42/* Definitions for ACPI_DEBUG_PRINT() */
  43#define _COMPONENT		ACPI_OS_SERVICES
  44ACPI_MODULE_NAME("osl");
  45
  46struct acpi_os_dpc {
  47	acpi_osd_exec_callback function;
  48	void *context;
  49	struct work_struct work;
 
  50};
  51
 
 
 
 
  52#ifdef ENABLE_DEBUGGER
  53#include <linux/kdb.h>
  54
  55/* stuff for debugger support */
  56int acpi_in_debugger;
  57EXPORT_SYMBOL(acpi_in_debugger);
 
 
  58#endif				/*ENABLE_DEBUGGER */
  59
  60static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  61				      u32 pm1b_ctrl);
  62static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  63				      u32 val_b);
  64
  65static acpi_osd_handler acpi_irq_handler;
  66static void *acpi_irq_context;
  67static struct workqueue_struct *kacpid_wq;
  68static struct workqueue_struct *kacpi_notify_wq;
  69static struct workqueue_struct *kacpi_hotplug_wq;
  70static bool acpi_os_initialized;
  71unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  72bool acpi_permanent_mmap = false;
 
 
 
 
 
 
 
 
 
 
  73
  74/*
  75 * This list of permanent mappings is for memory that may be accessed from
  76 * interrupt context, where we can't do the ioremap().
  77 */
  78struct acpi_ioremap {
  79	struct list_head list;
  80	void __iomem *virt;
  81	acpi_physical_address phys;
  82	acpi_size size;
  83	union {
  84		unsigned long refcount;
  85		struct rcu_work rwork;
  86	} track;
  87};
  88
  89static LIST_HEAD(acpi_ioremaps);
  90static DEFINE_MUTEX(acpi_ioremap_lock);
  91#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  92
  93static void __init acpi_request_region (struct acpi_generic_address *gas,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94	unsigned int length, char *desc)
  95{
  96	u64 addr;
  97
  98	/* Handle possible alignment issues */
  99	memcpy(&addr, &gas->address, sizeof(addr));
 100	if (!addr || !length)
 101		return;
 102
 103	/* Resources are never freed */
 104	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 105		request_region(addr, length, desc);
 106	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 107		request_mem_region(addr, length, desc);
 108}
 109
 110static int __init acpi_reserve_resources(void)
 111{
 112	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 113		"ACPI PM1a_EVT_BLK");
 114
 115	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 116		"ACPI PM1b_EVT_BLK");
 117
 118	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 119		"ACPI PM1a_CNT_BLK");
 120
 121	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 122		"ACPI PM1b_CNT_BLK");
 123
 124	if (acpi_gbl_FADT.pm_timer_length == 4)
 125		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 126
 127	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 128		"ACPI PM2_CNT_BLK");
 129
 130	/* Length of GPE blocks must be a non-negative multiple of 2 */
 131
 132	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 133		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 134			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 135
 136	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 137		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 138			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 139
 140	return 0;
 141}
 142fs_initcall_sync(acpi_reserve_resources);
 143
 144void acpi_os_printf(const char *fmt, ...)
 145{
 146	va_list args;
 147	va_start(args, fmt);
 148	acpi_os_vprintf(fmt, args);
 149	va_end(args);
 150}
 151EXPORT_SYMBOL(acpi_os_printf);
 152
 153void acpi_os_vprintf(const char *fmt, va_list args)
 154{
 155	static char buffer[512];
 156
 157	vsprintf(buffer, fmt, args);
 158
 159#ifdef ENABLE_DEBUGGER
 160	if (acpi_in_debugger) {
 161		kdb_printf("%s", buffer);
 162	} else {
 163		if (printk_get_level(buffer))
 164			printk("%s", buffer);
 165		else
 166			printk(KERN_CONT "%s", buffer);
 167	}
 168#else
 169	if (acpi_debugger_write_log(buffer) < 0) {
 170		if (printk_get_level(buffer))
 171			printk("%s", buffer);
 172		else
 173			printk(KERN_CONT "%s", buffer);
 174	}
 175#endif
 176}
 177
 178#ifdef CONFIG_KEXEC
 179static unsigned long acpi_rsdp;
 180static int __init setup_acpi_rsdp(char *arg)
 181{
 182	return kstrtoul(arg, 16, &acpi_rsdp);
 
 183}
 184early_param("acpi_rsdp", setup_acpi_rsdp);
 185#endif
 186
 187acpi_physical_address __init acpi_os_get_root_pointer(void)
 188{
 189	acpi_physical_address pa;
 190
 191#ifdef CONFIG_KEXEC
 192	/*
 193	 * We may have been provided with an RSDP on the command line,
 194	 * but if a malicious user has done so they may be pointing us
 195	 * at modified ACPI tables that could alter kernel behaviour -
 196	 * so, we check the lockdown status before making use of
 197	 * it. If we trust it then also stash it in an architecture
 198	 * specific location (if appropriate) so it can be carried
 199	 * over further kexec()s.
 200	 */
 201	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 202		acpi_arch_set_root_pointer(acpi_rsdp);
 203		return acpi_rsdp;
 204	}
 205#endif
 206	pa = acpi_arch_get_root_pointer();
 207	if (pa)
 208		return pa;
 209
 210	if (efi_enabled(EFI_CONFIG_TABLES)) {
 211		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 212			return efi.acpi20;
 213		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 214			return efi.acpi;
 215		pr_err("System description tables not found\n");
 216	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 
 
 
 
 
 
 217		acpi_find_root_pointer(&pa);
 
 218	}
 219
 220	return pa;
 221}
 222
 223/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 224static struct acpi_ioremap *
 225acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 226{
 227	struct acpi_ioremap *map;
 228
 229	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 230		if (map->phys <= phys &&
 231		    phys + size <= map->phys + map->size)
 232			return map;
 233
 234	return NULL;
 235}
 236
 237/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 238static void __iomem *
 239acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 240{
 241	struct acpi_ioremap *map;
 242
 243	map = acpi_map_lookup(phys, size);
 244	if (map)
 245		return map->virt + (phys - map->phys);
 246
 247	return NULL;
 248}
 249
 250void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 251{
 252	struct acpi_ioremap *map;
 253	void __iomem *virt = NULL;
 254
 255	mutex_lock(&acpi_ioremap_lock);
 256	map = acpi_map_lookup(phys, size);
 257	if (map) {
 258		virt = map->virt + (phys - map->phys);
 259		map->track.refcount++;
 260	}
 261	mutex_unlock(&acpi_ioremap_lock);
 262	return virt;
 263}
 264EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 265
 266/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 267static struct acpi_ioremap *
 268acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 269{
 270	struct acpi_ioremap *map;
 271
 272	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 273		if (map->virt <= virt &&
 274		    virt + size <= map->virt + map->size)
 275			return map;
 276
 277	return NULL;
 278}
 279
 280#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 281/* ioremap will take care of cache attributes */
 282#define should_use_kmap(pfn)   0
 283#else
 284#define should_use_kmap(pfn)   page_is_ram(pfn)
 285#endif
 286
 287static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 288{
 289	unsigned long pfn;
 290
 291	pfn = pg_off >> PAGE_SHIFT;
 292	if (should_use_kmap(pfn)) {
 293		if (pg_sz > PAGE_SIZE)
 294			return NULL;
 295		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 296	} else
 297		return acpi_os_ioremap(pg_off, pg_sz);
 298}
 299
 300static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 301{
 302	unsigned long pfn;
 303
 304	pfn = pg_off >> PAGE_SHIFT;
 305	if (should_use_kmap(pfn))
 306		kunmap(pfn_to_page(pfn));
 307	else
 308		iounmap(vaddr);
 309}
 310
 311/**
 312 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 313 * @phys: Start of the physical address range to map.
 314 * @size: Size of the physical address range to map.
 315 *
 316 * Look up the given physical address range in the list of existing ACPI memory
 317 * mappings.  If found, get a reference to it and return a pointer to it (its
 318 * virtual address).  If not found, map it, add it to that list and return a
 319 * pointer to it.
 320 *
 321 * During early init (when acpi_permanent_mmap has not been set yet) this
 322 * routine simply calls __acpi_map_table() to get the job done.
 323 */
 324void __iomem __ref
 325*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 326{
 327	struct acpi_ioremap *map;
 328	void __iomem *virt;
 329	acpi_physical_address pg_off;
 330	acpi_size pg_sz;
 331
 332	if (phys > ULONG_MAX) {
 333		pr_err("Cannot map memory that high: 0x%llx\n", phys);
 334		return NULL;
 335	}
 336
 337	if (!acpi_permanent_mmap)
 338		return __acpi_map_table((unsigned long)phys, size);
 339
 340	mutex_lock(&acpi_ioremap_lock);
 341	/* Check if there's a suitable mapping already. */
 342	map = acpi_map_lookup(phys, size);
 343	if (map) {
 344		map->track.refcount++;
 345		goto out;
 346	}
 347
 348	map = kzalloc(sizeof(*map), GFP_KERNEL);
 349	if (!map) {
 350		mutex_unlock(&acpi_ioremap_lock);
 351		return NULL;
 352	}
 353
 354	pg_off = round_down(phys, PAGE_SIZE);
 355	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 356	virt = acpi_map(phys, size);
 357	if (!virt) {
 358		mutex_unlock(&acpi_ioremap_lock);
 359		kfree(map);
 360		return NULL;
 361	}
 362
 363	INIT_LIST_HEAD(&map->list);
 364	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
 365	map->phys = pg_off;
 366	map->size = pg_sz;
 367	map->track.refcount = 1;
 368
 369	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 370
 371out:
 372	mutex_unlock(&acpi_ioremap_lock);
 373	return map->virt + (phys - map->phys);
 374}
 375EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 376
 377void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 378{
 379	return (void *)acpi_os_map_iomem(phys, size);
 380}
 381EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 382
 383static void acpi_os_map_remove(struct work_struct *work)
 384{
 385	struct acpi_ioremap *map = container_of(to_rcu_work(work),
 386						struct acpi_ioremap,
 387						track.rwork);
 388
 389	acpi_unmap(map->phys, map->virt);
 390	kfree(map);
 391}
 392
 393/* Must be called with mutex_lock(&acpi_ioremap_lock) */
 394static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 395{
 396	if (--map->track.refcount)
 397		return;
 398
 399	list_del_rcu(&map->list);
 400
 401	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
 402	queue_rcu_work(system_wq, &map->track.rwork);
 403}
 404
 405/**
 406 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 407 * @virt: Start of the address range to drop a reference to.
 408 * @size: Size of the address range to drop a reference to.
 409 *
 410 * Look up the given virtual address range in the list of existing ACPI memory
 411 * mappings, drop a reference to it and if there are no more active references
 412 * to it, queue it up for later removal.
 413 *
 414 * During early init (when acpi_permanent_mmap has not been set yet) this
 415 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 416 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 417 * here.
 418 */
 419void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 420{
 421	struct acpi_ioremap *map;
 422
 423	if (!acpi_permanent_mmap) {
 424		__acpi_unmap_table(virt, size);
 425		return;
 426	}
 427
 428	mutex_lock(&acpi_ioremap_lock);
 429
 430	map = acpi_map_lookup_virt(virt, size);
 431	if (!map) {
 432		mutex_unlock(&acpi_ioremap_lock);
 433		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
 434		return;
 435	}
 436	acpi_os_drop_map_ref(map);
 
 437
 438	mutex_unlock(&acpi_ioremap_lock);
 439}
 440EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 441
 442/**
 443 * acpi_os_unmap_memory - Drop a memory mapping reference.
 444 * @virt: Start of the address range to drop a reference to.
 445 * @size: Size of the address range to drop a reference to.
 446 */
 447void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 448{
 449	acpi_os_unmap_iomem((void __iomem *)virt, size);
 
 450}
 451EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 452
 453void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
 454{
 455	u64 addr;
 
 
 
 456
 457	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 458		return NULL;
 459
 460	/* Handle possible alignment issues */
 461	memcpy(&addr, &gas->address, sizeof(addr));
 462	if (!addr || !gas->bit_width)
 463		return NULL;
 464
 465	return acpi_os_map_iomem(addr, gas->bit_width / 8);
 466}
 467EXPORT_SYMBOL(acpi_os_map_generic_address);
 468
 469void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 470{
 471	u64 addr;
 472	struct acpi_ioremap *map;
 473
 474	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 475		return;
 476
 477	/* Handle possible alignment issues */
 478	memcpy(&addr, &gas->address, sizeof(addr));
 479	if (!addr || !gas->bit_width)
 480		return;
 481
 482	mutex_lock(&acpi_ioremap_lock);
 483
 484	map = acpi_map_lookup(addr, gas->bit_width / 8);
 485	if (!map) {
 486		mutex_unlock(&acpi_ioremap_lock);
 487		return;
 488	}
 489	acpi_os_drop_map_ref(map);
 
 490
 491	mutex_unlock(&acpi_ioremap_lock);
 492}
 493EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 494
 495#ifdef ACPI_FUTURE_USAGE
 496acpi_status
 497acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 498{
 499	if (!phys || !virt)
 500		return AE_BAD_PARAMETER;
 501
 502	*phys = virt_to_phys(virt);
 503
 504	return AE_OK;
 505}
 506#endif
 507
 508#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 509static bool acpi_rev_override;
 510
 511int __init acpi_rev_override_setup(char *str)
 512{
 513	acpi_rev_override = true;
 514	return 1;
 515}
 516__setup("acpi_rev_override", acpi_rev_override_setup);
 517#else
 518#define acpi_rev_override	false
 519#endif
 520
 521#define ACPI_MAX_OVERRIDE_LEN 100
 522
 523static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 524
 525acpi_status
 526acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 527			    acpi_string *new_val)
 528{
 529	if (!init_val || !new_val)
 530		return AE_BAD_PARAMETER;
 531
 532	*new_val = NULL;
 533	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 534		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
 
 535		*new_val = acpi_os_name;
 536	}
 537
 538	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 539		pr_info("Overriding _REV return value to 5\n");
 540		*new_val = (char *)5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541	}
 542
 543	return AE_OK;
 544}
 545
 546static irqreturn_t acpi_irq(int irq, void *dev_id)
 547{
 548	u32 handled;
 549
 550	handled = (*acpi_irq_handler) (acpi_irq_context);
 551
 552	if (handled) {
 553		acpi_irq_handled++;
 554		return IRQ_HANDLED;
 555	} else {
 556		acpi_irq_not_handled++;
 557		return IRQ_NONE;
 558	}
 559}
 560
 561acpi_status
 562acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 563				  void *context)
 564{
 565	unsigned int irq;
 566
 567	acpi_irq_stats_init();
 568
 569	/*
 570	 * ACPI interrupts different from the SCI in our copy of the FADT are
 571	 * not supported.
 572	 */
 573	if (gsi != acpi_gbl_FADT.sci_interrupt)
 574		return AE_BAD_PARAMETER;
 575
 576	if (acpi_irq_handler)
 577		return AE_ALREADY_ACQUIRED;
 578
 579	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 580		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
 
 581		return AE_OK;
 582	}
 583
 584	acpi_irq_handler = handler;
 585	acpi_irq_context = context;
 586	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 587		pr_err("SCI (IRQ%d) allocation failed\n", irq);
 588		acpi_irq_handler = NULL;
 589		return AE_NOT_ACQUIRED;
 590	}
 591	acpi_sci_irq = irq;
 592
 593	return AE_OK;
 594}
 595
 596acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 597{
 598	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 599		return AE_BAD_PARAMETER;
 600
 601	free_irq(acpi_sci_irq, acpi_irq);
 602	acpi_irq_handler = NULL;
 603	acpi_sci_irq = INVALID_ACPI_IRQ;
 604
 605	return AE_OK;
 606}
 607
 608/*
 609 * Running in interpreter thread context, safe to sleep
 610 */
 611
 612void acpi_os_sleep(u64 ms)
 613{
 614	msleep(ms);
 615}
 616
 617void acpi_os_stall(u32 us)
 618{
 619	while (us) {
 620		u32 delay = 1000;
 621
 622		if (delay > us)
 623			delay = us;
 624		udelay(delay);
 625		touch_nmi_watchdog();
 626		us -= delay;
 627	}
 628}
 629
 630/*
 631 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 632 * monotonically increasing timer with 100ns granularity. Do not use
 633 * ktime_get() to implement this function because this function may get
 634 * called after timekeeping has been suspended. Note: calling this function
 635 * after timekeeping has been suspended may lead to unexpected results
 636 * because when timekeeping is suspended the jiffies counter is not
 637 * incremented. See also timekeeping_suspend().
 638 */
 639u64 acpi_os_get_timer(void)
 640{
 641	return (get_jiffies_64() - INITIAL_JIFFIES) *
 642		(ACPI_100NSEC_PER_SEC / HZ);
 
 
 
 
 
 
 
 
 
 
 
 643}
 644
 645acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 646{
 647	u32 dummy;
 648
 649	if (!value)
 650		value = &dummy;
 651
 652	*value = 0;
 653	if (width <= 8) {
 654		*(u8 *) value = inb(port);
 655	} else if (width <= 16) {
 656		*(u16 *) value = inw(port);
 657	} else if (width <= 32) {
 658		*(u32 *) value = inl(port);
 659	} else {
 660		BUG();
 661	}
 662
 663	return AE_OK;
 664}
 665
 666EXPORT_SYMBOL(acpi_os_read_port);
 667
 668acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 669{
 670	if (width <= 8) {
 671		outb(value, port);
 672	} else if (width <= 16) {
 673		outw(value, port);
 674	} else if (width <= 32) {
 675		outl(value, port);
 676	} else {
 677		BUG();
 678	}
 679
 680	return AE_OK;
 681}
 682
 683EXPORT_SYMBOL(acpi_os_write_port);
 684
 685int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 686{
 687
 688	switch (width) {
 689	case 8:
 690		*(u8 *) value = readb(virt_addr);
 691		break;
 692	case 16:
 693		*(u16 *) value = readw(virt_addr);
 694		break;
 695	case 32:
 696		*(u32 *) value = readl(virt_addr);
 697		break;
 698	case 64:
 699		*(u64 *) value = readq(virt_addr);
 700		break;
 701	default:
 702		return -EINVAL;
 703	}
 704
 705	return 0;
 706}
 707
 708acpi_status
 709acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 710{
 711	void __iomem *virt_addr;
 712	unsigned int size = width / 8;
 713	bool unmap = false;
 714	u64 dummy;
 715	int error;
 716
 717	rcu_read_lock();
 718	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 719	if (!virt_addr) {
 720		rcu_read_unlock();
 721		virt_addr = acpi_os_ioremap(phys_addr, size);
 722		if (!virt_addr)
 723			return AE_BAD_ADDRESS;
 724		unmap = true;
 725	}
 726
 727	if (!value)
 728		value = &dummy;
 729
 730	error = acpi_os_read_iomem(virt_addr, value, width);
 731	BUG_ON(error);
 
 
 
 
 
 
 
 
 
 
 
 732
 733	if (unmap)
 734		iounmap(virt_addr);
 735	else
 736		rcu_read_unlock();
 737
 738	return AE_OK;
 739}
 740
 741acpi_status
 742acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 743{
 744	void __iomem *virt_addr;
 745	unsigned int size = width / 8;
 746	bool unmap = false;
 747
 748	rcu_read_lock();
 749	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 750	if (!virt_addr) {
 751		rcu_read_unlock();
 752		virt_addr = acpi_os_ioremap(phys_addr, size);
 753		if (!virt_addr)
 754			return AE_BAD_ADDRESS;
 755		unmap = true;
 756	}
 757
 758	switch (width) {
 759	case 8:
 760		writeb(value, virt_addr);
 761		break;
 762	case 16:
 763		writew(value, virt_addr);
 764		break;
 765	case 32:
 766		writel(value, virt_addr);
 767		break;
 768	case 64:
 769		writeq(value, virt_addr);
 770		break;
 771	default:
 772		BUG();
 773	}
 774
 775	if (unmap)
 776		iounmap(virt_addr);
 777	else
 778		rcu_read_unlock();
 779
 780	return AE_OK;
 781}
 782
 783#ifdef CONFIG_PCI
 784acpi_status
 785acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 786			       u64 *value, u32 width)
 787{
 788	int result, size;
 789	u32 value32;
 790
 791	if (!value)
 792		return AE_BAD_PARAMETER;
 793
 794	switch (width) {
 795	case 8:
 796		size = 1;
 797		break;
 798	case 16:
 799		size = 2;
 800		break;
 801	case 32:
 802		size = 4;
 803		break;
 804	default:
 805		return AE_ERROR;
 806	}
 807
 808	result = raw_pci_read(pci_id->segment, pci_id->bus,
 809				PCI_DEVFN(pci_id->device, pci_id->function),
 810				reg, size, &value32);
 811	*value = value32;
 812
 813	return (result ? AE_ERROR : AE_OK);
 814}
 815
 816acpi_status
 817acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 818				u64 value, u32 width)
 819{
 820	int result, size;
 821
 822	switch (width) {
 823	case 8:
 824		size = 1;
 825		break;
 826	case 16:
 827		size = 2;
 828		break;
 829	case 32:
 830		size = 4;
 831		break;
 832	default:
 833		return AE_ERROR;
 834	}
 835
 836	result = raw_pci_write(pci_id->segment, pci_id->bus,
 837				PCI_DEVFN(pci_id->device, pci_id->function),
 838				reg, size, value);
 839
 840	return (result ? AE_ERROR : AE_OK);
 841}
 842#endif
 843
 844static void acpi_os_execute_deferred(struct work_struct *work)
 845{
 846	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 847
 
 
 
 848	dpc->function(dpc->context);
 849	kfree(dpc);
 850}
 851
 852#ifdef CONFIG_ACPI_DEBUGGER
 853static struct acpi_debugger acpi_debugger;
 854static bool acpi_debugger_initialized;
 855
 856int acpi_register_debugger(struct module *owner,
 857			   const struct acpi_debugger_ops *ops)
 858{
 859	int ret = 0;
 860
 861	mutex_lock(&acpi_debugger.lock);
 862	if (acpi_debugger.ops) {
 863		ret = -EBUSY;
 864		goto err_lock;
 865	}
 866
 867	acpi_debugger.owner = owner;
 868	acpi_debugger.ops = ops;
 869
 870err_lock:
 871	mutex_unlock(&acpi_debugger.lock);
 872	return ret;
 873}
 874EXPORT_SYMBOL(acpi_register_debugger);
 875
 876void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 877{
 878	mutex_lock(&acpi_debugger.lock);
 879	if (ops == acpi_debugger.ops) {
 880		acpi_debugger.ops = NULL;
 881		acpi_debugger.owner = NULL;
 882	}
 883	mutex_unlock(&acpi_debugger.lock);
 884}
 885EXPORT_SYMBOL(acpi_unregister_debugger);
 886
 887int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 888{
 889	int ret;
 890	int (*func)(acpi_osd_exec_callback, void *);
 891	struct module *owner;
 892
 893	if (!acpi_debugger_initialized)
 894		return -ENODEV;
 895	mutex_lock(&acpi_debugger.lock);
 896	if (!acpi_debugger.ops) {
 897		ret = -ENODEV;
 898		goto err_lock;
 899	}
 900	if (!try_module_get(acpi_debugger.owner)) {
 901		ret = -ENODEV;
 902		goto err_lock;
 903	}
 904	func = acpi_debugger.ops->create_thread;
 905	owner = acpi_debugger.owner;
 906	mutex_unlock(&acpi_debugger.lock);
 907
 908	ret = func(function, context);
 909
 910	mutex_lock(&acpi_debugger.lock);
 911	module_put(owner);
 912err_lock:
 913	mutex_unlock(&acpi_debugger.lock);
 914	return ret;
 915}
 916
 917ssize_t acpi_debugger_write_log(const char *msg)
 918{
 919	ssize_t ret;
 920	ssize_t (*func)(const char *);
 921	struct module *owner;
 922
 923	if (!acpi_debugger_initialized)
 924		return -ENODEV;
 925	mutex_lock(&acpi_debugger.lock);
 926	if (!acpi_debugger.ops) {
 927		ret = -ENODEV;
 928		goto err_lock;
 929	}
 930	if (!try_module_get(acpi_debugger.owner)) {
 931		ret = -ENODEV;
 932		goto err_lock;
 933	}
 934	func = acpi_debugger.ops->write_log;
 935	owner = acpi_debugger.owner;
 936	mutex_unlock(&acpi_debugger.lock);
 937
 938	ret = func(msg);
 939
 940	mutex_lock(&acpi_debugger.lock);
 941	module_put(owner);
 942err_lock:
 943	mutex_unlock(&acpi_debugger.lock);
 944	return ret;
 945}
 946
 947ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 948{
 949	ssize_t ret;
 950	ssize_t (*func)(char *, size_t);
 951	struct module *owner;
 952
 953	if (!acpi_debugger_initialized)
 954		return -ENODEV;
 955	mutex_lock(&acpi_debugger.lock);
 956	if (!acpi_debugger.ops) {
 957		ret = -ENODEV;
 958		goto err_lock;
 959	}
 960	if (!try_module_get(acpi_debugger.owner)) {
 961		ret = -ENODEV;
 962		goto err_lock;
 963	}
 964	func = acpi_debugger.ops->read_cmd;
 965	owner = acpi_debugger.owner;
 966	mutex_unlock(&acpi_debugger.lock);
 967
 968	ret = func(buffer, buffer_length);
 969
 970	mutex_lock(&acpi_debugger.lock);
 971	module_put(owner);
 972err_lock:
 973	mutex_unlock(&acpi_debugger.lock);
 974	return ret;
 975}
 976
 977int acpi_debugger_wait_command_ready(void)
 978{
 979	int ret;
 980	int (*func)(bool, char *, size_t);
 981	struct module *owner;
 982
 983	if (!acpi_debugger_initialized)
 984		return -ENODEV;
 985	mutex_lock(&acpi_debugger.lock);
 986	if (!acpi_debugger.ops) {
 987		ret = -ENODEV;
 988		goto err_lock;
 989	}
 990	if (!try_module_get(acpi_debugger.owner)) {
 991		ret = -ENODEV;
 992		goto err_lock;
 993	}
 994	func = acpi_debugger.ops->wait_command_ready;
 995	owner = acpi_debugger.owner;
 996	mutex_unlock(&acpi_debugger.lock);
 997
 998	ret = func(acpi_gbl_method_executing,
 999		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1000
1001	mutex_lock(&acpi_debugger.lock);
1002	module_put(owner);
1003err_lock:
1004	mutex_unlock(&acpi_debugger.lock);
1005	return ret;
1006}
1007
1008int acpi_debugger_notify_command_complete(void)
1009{
1010	int ret;
1011	int (*func)(void);
1012	struct module *owner;
1013
1014	if (!acpi_debugger_initialized)
1015		return -ENODEV;
1016	mutex_lock(&acpi_debugger.lock);
1017	if (!acpi_debugger.ops) {
1018		ret = -ENODEV;
1019		goto err_lock;
1020	}
1021	if (!try_module_get(acpi_debugger.owner)) {
1022		ret = -ENODEV;
1023		goto err_lock;
1024	}
1025	func = acpi_debugger.ops->notify_command_complete;
1026	owner = acpi_debugger.owner;
1027	mutex_unlock(&acpi_debugger.lock);
1028
1029	ret = func();
1030
1031	mutex_lock(&acpi_debugger.lock);
1032	module_put(owner);
1033err_lock:
1034	mutex_unlock(&acpi_debugger.lock);
1035	return ret;
1036}
1037
1038int __init acpi_debugger_init(void)
1039{
1040	mutex_init(&acpi_debugger.lock);
1041	acpi_debugger_initialized = true;
1042	return 0;
1043}
1044#endif
1045
1046/*******************************************************************************
1047 *
1048 * FUNCTION:    acpi_os_execute
1049 *
1050 * PARAMETERS:  Type               - Type of the callback
1051 *              Function           - Function to be executed
1052 *              Context            - Function parameters
1053 *
1054 * RETURN:      Status
1055 *
1056 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1057 *              immediately executes function on a separate thread.
1058 *
1059 ******************************************************************************/
1060
1061acpi_status acpi_os_execute(acpi_execute_type type,
1062			    acpi_osd_exec_callback function, void *context)
1063{
1064	acpi_status status = AE_OK;
1065	struct acpi_os_dpc *dpc;
1066	struct workqueue_struct *queue;
1067	int ret;
1068	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1069			  "Scheduling function [%p(%p)] for deferred execution.\n",
1070			  function, context));
1071
1072	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1073		ret = acpi_debugger_create_thread(function, context);
1074		if (ret) {
1075			pr_err("Kernel thread creation failed\n");
1076			status = AE_ERROR;
1077		}
1078		goto out_thread;
1079	}
1080
1081	/*
1082	 * Allocate/initialize DPC structure.  Note that this memory will be
1083	 * freed by the callee.  The kernel handles the work_struct list  in a
1084	 * way that allows us to also free its memory inside the callee.
1085	 * Because we may want to schedule several tasks with different
1086	 * parameters we can't use the approach some kernel code uses of
1087	 * having a static work_struct.
1088	 */
1089
1090	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1091	if (!dpc)
1092		return AE_NO_MEMORY;
1093
1094	dpc->function = function;
1095	dpc->context = context;
1096
1097	/*
1098	 * To prevent lockdep from complaining unnecessarily, make sure that
1099	 * there is a different static lockdep key for each workqueue by using
1100	 * INIT_WORK() for each of them separately.
 
1101	 */
1102	if (type == OSL_NOTIFY_HANDLER) {
1103		queue = kacpi_notify_wq;
 
 
 
 
 
1104		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1105	} else if (type == OSL_GPE_HANDLER) {
1106		queue = kacpid_wq;
1107		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1108	} else {
1109		pr_err("Unsupported os_execute type %d.\n", type);
1110		status = AE_ERROR;
1111	}
1112
1113	if (ACPI_FAILURE(status))
1114		goto err_workqueue;
1115
1116	/*
1117	 * On some machines, a software-initiated SMI causes corruption unless
1118	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1119	 * typically it's done in GPE-related methods that are run via
1120	 * workqueues, so we can avoid the known corruption cases by always
1121	 * queueing on CPU 0.
1122	 */
1123	ret = queue_work_on(0, queue, &dpc->work);
 
1124	if (!ret) {
1125		pr_err("Unable to queue work\n");
 
1126		status = AE_ERROR;
 
1127	}
1128err_workqueue:
1129	if (ACPI_FAILURE(status))
1130		kfree(dpc);
1131out_thread:
1132	return status;
1133}
1134EXPORT_SYMBOL(acpi_os_execute);
1135
1136void acpi_os_wait_events_complete(void)
 
1137{
1138	/*
1139	 * Make sure the GPE handler or the fixed event handler is not used
1140	 * on another CPU after removal.
1141	 */
1142	if (acpi_sci_irq_valid())
1143		synchronize_hardirq(acpi_sci_irq);
1144	flush_workqueue(kacpid_wq);
1145	flush_workqueue(kacpi_notify_wq);
1146}
1147EXPORT_SYMBOL(acpi_os_wait_events_complete);
1148
1149struct acpi_hp_work {
1150	struct work_struct work;
1151	struct acpi_device *adev;
1152	u32 src;
1153};
1154
1155static void acpi_hotplug_work_fn(struct work_struct *work)
1156{
1157	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1158
1159	acpi_os_wait_events_complete();
1160	acpi_device_hotplug(hpw->adev, hpw->src);
1161	kfree(hpw);
1162}
1163
1164acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1165{
1166	struct acpi_hp_work *hpw;
1167
1168	acpi_handle_debug(adev->handle,
1169			  "Scheduling hotplug event %u for deferred handling\n",
1170			   src);
1171
1172	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1173	if (!hpw)
1174		return AE_NO_MEMORY;
1175
1176	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1177	hpw->adev = adev;
1178	hpw->src = src;
1179	/*
1180	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181	 * the hotplug code may call driver .remove() functions, which may
1182	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1183	 * these workqueues.
1184	 */
1185	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1186		kfree(hpw);
1187		return AE_ERROR;
1188	}
1189	return AE_OK;
1190}
1191
1192bool acpi_queue_hotplug_work(struct work_struct *work)
1193{
1194	return queue_work(kacpi_hotplug_wq, work);
1195}
1196
1197acpi_status
1198acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1199{
1200	struct semaphore *sem = NULL;
1201
1202	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1203	if (!sem)
1204		return AE_NO_MEMORY;
 
1205
1206	sema_init(sem, initial_units);
1207
1208	*handle = (acpi_handle *) sem;
1209
1210	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211			  *handle, initial_units));
1212
1213	return AE_OK;
1214}
1215
1216/*
1217 * TODO: A better way to delete semaphores?  Linux doesn't have a
1218 * 'delete_semaphore()' function -- may result in an invalid
1219 * pointer dereference for non-synchronized consumers.	Should
1220 * we at least check for blocked threads and signal/cancel them?
1221 */
1222
1223acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1224{
1225	struct semaphore *sem = (struct semaphore *)handle;
1226
1227	if (!sem)
1228		return AE_BAD_PARAMETER;
1229
1230	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1231
1232	BUG_ON(!list_empty(&sem->wait_list));
1233	kfree(sem);
1234	sem = NULL;
1235
1236	return AE_OK;
1237}
1238
1239/*
1240 * TODO: Support for units > 1?
1241 */
1242acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1243{
1244	acpi_status status = AE_OK;
1245	struct semaphore *sem = (struct semaphore *)handle;
1246	long jiffies;
1247	int ret = 0;
1248
1249	if (!acpi_os_initialized)
1250		return AE_OK;
1251
1252	if (!sem || (units < 1))
1253		return AE_BAD_PARAMETER;
1254
1255	if (units > 1)
1256		return AE_SUPPORT;
1257
1258	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259			  handle, units, timeout));
1260
1261	if (timeout == ACPI_WAIT_FOREVER)
1262		jiffies = MAX_SCHEDULE_TIMEOUT;
1263	else
1264		jiffies = msecs_to_jiffies(timeout);
1265
1266	ret = down_timeout(sem, jiffies);
1267	if (ret)
1268		status = AE_TIME;
1269
1270	if (ACPI_FAILURE(status)) {
1271		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272				  "Failed to acquire semaphore[%p|%d|%d], %s",
1273				  handle, units, timeout,
1274				  acpi_format_exception(status)));
1275	} else {
1276		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277				  "Acquired semaphore[%p|%d|%d]", handle,
1278				  units, timeout));
1279	}
1280
1281	return status;
1282}
1283
1284/*
1285 * TODO: Support for units > 1?
1286 */
1287acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1288{
1289	struct semaphore *sem = (struct semaphore *)handle;
1290
1291	if (!acpi_os_initialized)
1292		return AE_OK;
1293
1294	if (!sem || (units < 1))
1295		return AE_BAD_PARAMETER;
1296
1297	if (units > 1)
1298		return AE_SUPPORT;
1299
1300	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1301			  units));
1302
1303	up(sem);
1304
1305	return AE_OK;
1306}
1307
1308acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
 
1309{
 
1310#ifdef ENABLE_DEBUGGER
1311	if (acpi_in_debugger) {
1312		u32 chars;
1313
1314		kdb_read(buffer, buffer_length);
1315
1316		/* remove the CR kdb includes */
1317		chars = strlen(buffer) - 1;
1318		buffer[chars] = '\0';
1319	}
1320#else
1321	int ret;
1322
1323	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1324	if (ret < 0)
1325		return AE_ERROR;
1326	if (bytes_read)
1327		*bytes_read = ret;
1328#endif
1329
1330	return AE_OK;
1331}
1332EXPORT_SYMBOL(acpi_os_get_line);
1333
1334acpi_status acpi_os_wait_command_ready(void)
1335{
1336	int ret;
1337
1338	ret = acpi_debugger_wait_command_ready();
1339	if (ret < 0)
1340		return AE_ERROR;
1341	return AE_OK;
1342}
1343
1344acpi_status acpi_os_notify_command_complete(void)
1345{
1346	int ret;
1347
1348	ret = acpi_debugger_notify_command_complete();
1349	if (ret < 0)
1350		return AE_ERROR;
1351	return AE_OK;
1352}
 
1353
1354acpi_status acpi_os_signal(u32 function, void *info)
1355{
1356	switch (function) {
1357	case ACPI_SIGNAL_FATAL:
1358		pr_err("Fatal opcode executed\n");
1359		break;
1360	case ACPI_SIGNAL_BREAKPOINT:
1361		/*
1362		 * AML Breakpoint
1363		 * ACPI spec. says to treat it as a NOP unless
1364		 * you are debugging.  So if/when we integrate
1365		 * AML debugger into the kernel debugger its
1366		 * hook will go here.  But until then it is
1367		 * not useful to print anything on breakpoints.
1368		 */
1369		break;
1370	default:
1371		break;
1372	}
1373
1374	return AE_OK;
1375}
1376
1377static int __init acpi_os_name_setup(char *str)
1378{
1379	char *p = acpi_os_name;
1380	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1381
1382	if (!str || !*str)
1383		return 0;
1384
1385	for (; count-- && *str; str++) {
1386		if (isalnum(*str) || *str == ' ' || *str == ':')
1387			*p++ = *str;
1388		else if (*str == '\'' || *str == '"')
1389			continue;
1390		else
1391			break;
1392	}
1393	*p = 0;
1394
1395	return 1;
1396
1397}
1398
1399__setup("acpi_os_name=", acpi_os_name_setup);
1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401/*
1402 * Disable the auto-serialization of named objects creation methods.
1403 *
1404 * This feature is enabled by default.  It marks the AML control methods
1405 * that contain the opcodes to create named objects as "Serialized".
 
1406 */
1407static int __init acpi_no_auto_serialize_setup(char *str)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408{
1409	acpi_gbl_auto_serialize_methods = FALSE;
1410	pr_info("Auto-serialization disabled\n");
 
1411
1412	return 1;
1413}
1414
1415__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1416
1417/* Check of resource interference between native drivers and ACPI
1418 * OperationRegions (SystemIO and System Memory only).
1419 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420 * in arbitrary AML code and can interfere with legacy drivers.
1421 * acpi_enforce_resources= can be set to:
1422 *
1423 *   - strict (default) (2)
1424 *     -> further driver trying to access the resources will not load
1425 *   - lax              (1)
1426 *     -> further driver trying to access the resources will load, but you
1427 *     get a system message that something might go wrong...
1428 *
1429 *   - no               (0)
1430 *     -> ACPI Operation Region resources will not be registered
1431 *
1432 */
1433#define ENFORCE_RESOURCES_STRICT 2
1434#define ENFORCE_RESOURCES_LAX    1
1435#define ENFORCE_RESOURCES_NO     0
1436
1437static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1438
1439static int __init acpi_enforce_resources_setup(char *str)
1440{
1441	if (str == NULL || *str == '\0')
1442		return 0;
1443
1444	if (!strcmp("strict", str))
1445		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446	else if (!strcmp("lax", str))
1447		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448	else if (!strcmp("no", str))
1449		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1450
1451	return 1;
1452}
1453
1454__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1455
1456/* Check for resource conflicts between ACPI OperationRegions and native
1457 * drivers */
1458int acpi_check_resource_conflict(const struct resource *res)
1459{
1460	acpi_adr_space_type space_id;
 
1461
1462	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1463		return 0;
1464
1465	if (res->flags & IORESOURCE_IO)
1466		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1467	else if (res->flags & IORESOURCE_MEM)
1468		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1469	else
1470		return 0;
1471
1472	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1473		return 0;
1474
1475	pr_info("Resource conflict; ACPI support missing from driver?\n");
 
 
 
 
 
 
 
 
1476
1477	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1478		return -EBUSY;
1479
1480	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1481		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
 
 
1482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483	return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488		      const char *name)
1489{
1490	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
 
 
 
 
 
1491
1492	return acpi_check_resource_conflict(&res);
1493}
1494EXPORT_SYMBOL(acpi_check_region);
1495
1496static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1497					      void *_res, void **return_value)
1498{
1499	struct acpi_mem_space_context **mem_ctx;
1500	union acpi_operand_object *handler_obj;
1501	union acpi_operand_object *region_obj2;
1502	union acpi_operand_object *region_obj;
1503	struct resource *res = _res;
1504	acpi_status status;
1505
1506	region_obj = acpi_ns_get_attached_object(handle);
1507	if (!region_obj)
1508		return AE_OK;
1509
1510	handler_obj = region_obj->region.handler;
1511	if (!handler_obj)
1512		return AE_OK;
1513
1514	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1515		return AE_OK;
1516
1517	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1518		return AE_OK;
1519
1520	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1521	if (!region_obj2)
1522		return AE_OK;
1523
1524	mem_ctx = (void *)&region_obj2->extra.region_context;
1525
1526	if (!(mem_ctx[0]->address >= res->start &&
1527	      mem_ctx[0]->address < res->end))
1528		return AE_OK;
1529
1530	status = handler_obj->address_space.setup(region_obj,
1531						  ACPI_REGION_DEACTIVATE,
1532						  NULL, (void **)mem_ctx);
1533	if (ACPI_SUCCESS(status))
1534		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1535
1536	return status;
1537}
1538
1539/**
1540 * acpi_release_memory - Release any mappings done to a memory region
1541 * @handle: Handle to namespace node
1542 * @res: Memory resource
1543 * @level: A level that terminates the search
1544 *
1545 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1546 * overlap with @res and that have already been activated (mapped).
1547 *
1548 * This is a helper that allows drivers to place special requirements on memory
1549 * region that may overlap with operation regions, primarily allowing them to
1550 * safely map the region as non-cached memory.
1551 *
1552 * The unmapped Operation Regions will be automatically remapped next time they
1553 * are called, so the drivers do not need to do anything else.
1554 */
1555acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1556				u32 level)
1557{
1558	acpi_status status;
1559
1560	if (!(res->flags & IORESOURCE_MEM))
1561		return AE_TYPE;
1562
1563	status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1564				     acpi_deactivate_mem_region, NULL,
1565				     res, NULL);
1566	if (ACPI_FAILURE(status))
1567		return status;
1568
1569	/*
1570	 * Wait for all of the mappings queued up for removal by
1571	 * acpi_deactivate_mem_region() to actually go away.
1572	 */
1573	synchronize_rcu();
1574	rcu_barrier();
1575	flush_scheduled_work();
1576
1577	return AE_OK;
1578}
1579EXPORT_SYMBOL_GPL(acpi_release_memory);
1580
1581/*
1582 * Let drivers know whether the resource checks are effective
1583 */
1584int acpi_resources_are_enforced(void)
1585{
1586	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1587}
1588EXPORT_SYMBOL(acpi_resources_are_enforced);
1589
1590/*
1591 * Deallocate the memory for a spinlock.
1592 */
1593void acpi_os_delete_lock(acpi_spinlock handle)
1594{
1595	ACPI_FREE(handle);
1596}
1597
1598/*
1599 * Acquire a spinlock.
1600 *
1601 * handle is a pointer to the spinlock_t.
1602 */
1603
1604acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1605	__acquires(lockp)
1606{
1607	acpi_cpu_flags flags;
1608	spin_lock_irqsave(lockp, flags);
1609	return flags;
1610}
1611
1612/*
1613 * Release a spinlock. See above.
1614 */
1615
1616void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1617	__releases(lockp)
1618{
1619	spin_unlock_irqrestore(lockp, flags);
1620}
1621
1622#ifndef ACPI_USE_LOCAL_CACHE
1623
1624/*******************************************************************************
1625 *
1626 * FUNCTION:    acpi_os_create_cache
1627 *
1628 * PARAMETERS:  name      - Ascii name for the cache
1629 *              size      - Size of each cached object
1630 *              depth     - Maximum depth of the cache (in objects) <ignored>
1631 *              cache     - Where the new cache object is returned
1632 *
1633 * RETURN:      status
1634 *
1635 * DESCRIPTION: Create a cache object
1636 *
1637 ******************************************************************************/
1638
1639acpi_status
1640acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1641{
1642	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1643	if (*cache == NULL)
1644		return AE_ERROR;
1645	else
1646		return AE_OK;
1647}
1648
1649/*******************************************************************************
1650 *
1651 * FUNCTION:    acpi_os_purge_cache
1652 *
1653 * PARAMETERS:  Cache           - Handle to cache object
1654 *
1655 * RETURN:      Status
1656 *
1657 * DESCRIPTION: Free all objects within the requested cache.
1658 *
1659 ******************************************************************************/
1660
1661acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1662{
1663	kmem_cache_shrink(cache);
1664	return (AE_OK);
1665}
1666
1667/*******************************************************************************
1668 *
1669 * FUNCTION:    acpi_os_delete_cache
1670 *
1671 * PARAMETERS:  Cache           - Handle to cache object
1672 *
1673 * RETURN:      Status
1674 *
1675 * DESCRIPTION: Free all objects within the requested cache and delete the
1676 *              cache object.
1677 *
1678 ******************************************************************************/
1679
1680acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1681{
1682	kmem_cache_destroy(cache);
1683	return (AE_OK);
1684}
1685
1686/*******************************************************************************
1687 *
1688 * FUNCTION:    acpi_os_release_object
1689 *
1690 * PARAMETERS:  Cache       - Handle to cache object
1691 *              Object      - The object to be released
1692 *
1693 * RETURN:      None
1694 *
1695 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1696 *              the object is deleted.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1701{
1702	kmem_cache_free(cache, object);
1703	return (AE_OK);
1704}
1705#endif
1706
1707static int __init acpi_no_static_ssdt_setup(char *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708{
1709	acpi_gbl_disable_ssdt_table_install = TRUE;
1710	pr_info("Static SSDT installation disabled\n");
 
 
1711
1712	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713}
1714
1715early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717static int __init acpi_disable_return_repair(char *s)
 
 
 
 
 
1718{
1719	pr_notice("Predefined validation mechanism disabled\n");
1720	acpi_gbl_disable_auto_repair = TRUE;
 
 
1721
1722	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723}
1724
1725__setup("acpica_no_return_repair", acpi_disable_return_repair);
1726
1727acpi_status __init acpi_os_initialize(void)
1728{
1729	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1730	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1731
1732	acpi_gbl_xgpe0_block_logical_address =
1733		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1734	acpi_gbl_xgpe1_block_logical_address =
1735		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1736
1737	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1738		/*
1739		 * Use acpi_os_map_generic_address to pre-map the reset
1740		 * register if it's in system memory.
1741		 */
1742		void *rv;
1743
1744		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1745		pr_debug("%s: Reset register mapping %s\n", __func__,
1746			 rv ? "successful" : "failed");
1747	}
1748	acpi_os_initialized = true;
1749
1750	return AE_OK;
1751}
1752
1753acpi_status __init acpi_os_initialize1(void)
1754{
1755	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1756	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1757	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1758	BUG_ON(!kacpid_wq);
1759	BUG_ON(!kacpi_notify_wq);
1760	BUG_ON(!kacpi_hotplug_wq);
1761	acpi_osi_init();
 
1762	return AE_OK;
1763}
1764
1765acpi_status acpi_os_terminate(void)
1766{
1767	if (acpi_irq_handler) {
1768		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1769						 acpi_irq_handler);
1770	}
1771
1772	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1773	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1774	acpi_gbl_xgpe0_block_logical_address = 0UL;
1775	acpi_gbl_xgpe1_block_logical_address = 0UL;
1776
1777	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1778	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1779
1780	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1781		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1782
1783	destroy_workqueue(kacpid_wq);
1784	destroy_workqueue(kacpi_notify_wq);
1785	destroy_workqueue(kacpi_hotplug_wq);
1786
1787	return AE_OK;
1788}
1789
1790acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1791				  u32 pm1b_control)
1792{
1793	int rc = 0;
1794	if (__acpi_os_prepare_sleep)
1795		rc = __acpi_os_prepare_sleep(sleep_state,
1796					     pm1a_control, pm1b_control);
1797	if (rc < 0)
1798		return AE_ERROR;
1799	else if (rc > 0)
1800		return AE_CTRL_TERMINATE;
1801
1802	return AE_OK;
1803}
1804
1805void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1806			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1807{
1808	__acpi_os_prepare_sleep = func;
1809}
1810
1811#if (ACPI_REDUCED_HARDWARE)
1812acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1813				  u32 val_b)
1814{
1815	int rc = 0;
1816	if (__acpi_os_prepare_extended_sleep)
1817		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1818					     val_a, val_b);
1819	if (rc < 0)
1820		return AE_ERROR;
1821	else if (rc > 0)
1822		return AE_CTRL_TERMINATE;
1823
1824	return AE_OK;
1825}
1826#else
1827acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1828				  u32 val_b)
1829{
1830	return AE_OK;
1831}
1832#endif
1833
1834void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1835			       u32 val_a, u32 val_b))
1836{
1837	__acpi_os_prepare_extended_sleep = func;
1838}
1839
1840acpi_status acpi_os_enter_sleep(u8 sleep_state,
1841				u32 reg_a_value, u32 reg_b_value)
1842{
1843	acpi_status status;
1844
1845	if (acpi_gbl_reduced_hardware)
1846		status = acpi_os_prepare_extended_sleep(sleep_state,
1847							reg_a_value,
1848							reg_b_value);
1849	else
1850		status = acpi_os_prepare_sleep(sleep_state,
1851					       reg_a_value, reg_b_value);
1852	return status;
1853}