Loading...
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 *
28 */
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/mm.h>
34#include <linux/pci.h>
35#include <linux/interrupt.h>
36#include <linux/kmod.h>
37#include <linux/delay.h>
38#include <linux/workqueue.h>
39#include <linux/nmi.h>
40#include <linux/acpi.h>
41#include <linux/acpi_io.h>
42#include <linux/efi.h>
43#include <linux/ioport.h>
44#include <linux/list.h>
45#include <linux/jiffies.h>
46#include <linux/semaphore.h>
47
48#include <asm/io.h>
49#include <asm/uaccess.h>
50
51#include <acpi/acpi.h>
52#include <acpi/acpi_bus.h>
53#include <acpi/processor.h>
54
55#define _COMPONENT ACPI_OS_SERVICES
56ACPI_MODULE_NAME("osl");
57#define PREFIX "ACPI: "
58struct acpi_os_dpc {
59 acpi_osd_exec_callback function;
60 void *context;
61 struct work_struct work;
62 int wait;
63};
64
65#ifdef CONFIG_ACPI_CUSTOM_DSDT
66#include CONFIG_ACPI_CUSTOM_DSDT_FILE
67#endif
68
69#ifdef ENABLE_DEBUGGER
70#include <linux/kdb.h>
71
72/* stuff for debugger support */
73int acpi_in_debugger;
74EXPORT_SYMBOL(acpi_in_debugger);
75
76extern char line_buf[80];
77#endif /*ENABLE_DEBUGGER */
78
79static acpi_osd_handler acpi_irq_handler;
80static void *acpi_irq_context;
81static struct workqueue_struct *kacpid_wq;
82static struct workqueue_struct *kacpi_notify_wq;
83static struct workqueue_struct *kacpi_hotplug_wq;
84
85struct acpi_res_list {
86 resource_size_t start;
87 resource_size_t end;
88 acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 char name[5]; /* only can have a length of 4 chars, make use of this
90 one instead of res->name, no need to kalloc then */
91 struct list_head resource_list;
92 int count;
93};
94
95static LIST_HEAD(resource_list_head);
96static DEFINE_SPINLOCK(acpi_res_lock);
97
98/*
99 * This list of permanent mappings is for memory that may be accessed from
100 * interrupt context, where we can't do the ioremap().
101 */
102struct acpi_ioremap {
103 struct list_head list;
104 void __iomem *virt;
105 acpi_physical_address phys;
106 acpi_size size;
107 unsigned long refcount;
108};
109
110static LIST_HEAD(acpi_ioremaps);
111static DEFINE_MUTEX(acpi_ioremap_lock);
112
113static void __init acpi_osi_setup_late(void);
114
115/*
116 * The story of _OSI(Linux)
117 *
118 * From pre-history through Linux-2.6.22,
119 * Linux responded TRUE upon a BIOS OSI(Linux) query.
120 *
121 * Unfortunately, reference BIOS writers got wind of this
122 * and put OSI(Linux) in their example code, quickly exposing
123 * this string as ill-conceived and opening the door to
124 * an un-bounded number of BIOS incompatibilities.
125 *
126 * For example, OSI(Linux) was used on resume to re-POST a
127 * video card on one system, because Linux at that time
128 * could not do a speedy restore in its native driver.
129 * But then upon gaining quick native restore capability,
130 * Linux has no way to tell the BIOS to skip the time-consuming
131 * POST -- putting Linux at a permanent performance disadvantage.
132 * On another system, the BIOS writer used OSI(Linux)
133 * to infer native OS support for IPMI! On other systems,
134 * OSI(Linux) simply got in the way of Linux claiming to
135 * be compatible with other operating systems, exposing
136 * BIOS issues such as skipped device initialization.
137 *
138 * So "Linux" turned out to be a really poor chose of
139 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
140 *
141 * BIOS writers should NOT query _OSI(Linux) on future systems.
142 * Linux will complain on the console when it sees it, and return FALSE.
143 * To get Linux to return TRUE for your system will require
144 * a kernel source update to add a DMI entry,
145 * or boot with "acpi_osi=Linux"
146 */
147
148static struct osi_linux {
149 unsigned int enable:1;
150 unsigned int dmi:1;
151 unsigned int cmdline:1;
152} osi_linux = {0, 0, 0};
153
154static u32 acpi_osi_handler(acpi_string interface, u32 supported)
155{
156 if (!strcmp("Linux", interface)) {
157
158 printk_once(KERN_NOTICE FW_BUG PREFIX
159 "BIOS _OSI(Linux) query %s%s\n",
160 osi_linux.enable ? "honored" : "ignored",
161 osi_linux.cmdline ? " via cmdline" :
162 osi_linux.dmi ? " via DMI" : "");
163 }
164
165 return supported;
166}
167
168static void __init acpi_request_region (struct acpi_generic_address *addr,
169 unsigned int length, char *desc)
170{
171 if (!addr->address || !length)
172 return;
173
174 /* Resources are never freed */
175 if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
176 request_region(addr->address, length, desc);
177 else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
178 request_mem_region(addr->address, length, desc);
179}
180
181static int __init acpi_reserve_resources(void)
182{
183 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
184 "ACPI PM1a_EVT_BLK");
185
186 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
187 "ACPI PM1b_EVT_BLK");
188
189 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
190 "ACPI PM1a_CNT_BLK");
191
192 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
193 "ACPI PM1b_CNT_BLK");
194
195 if (acpi_gbl_FADT.pm_timer_length == 4)
196 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
197
198 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
199 "ACPI PM2_CNT_BLK");
200
201 /* Length of GPE blocks must be a non-negative multiple of 2 */
202
203 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
204 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
205 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
206
207 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
208 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
209 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
210
211 return 0;
212}
213device_initcall(acpi_reserve_resources);
214
215void acpi_os_printf(const char *fmt, ...)
216{
217 va_list args;
218 va_start(args, fmt);
219 acpi_os_vprintf(fmt, args);
220 va_end(args);
221}
222
223void acpi_os_vprintf(const char *fmt, va_list args)
224{
225 static char buffer[512];
226
227 vsprintf(buffer, fmt, args);
228
229#ifdef ENABLE_DEBUGGER
230 if (acpi_in_debugger) {
231 kdb_printf("%s", buffer);
232 } else {
233 printk(KERN_CONT "%s", buffer);
234 }
235#else
236 printk(KERN_CONT "%s", buffer);
237#endif
238}
239
240#ifdef CONFIG_KEXEC
241static unsigned long acpi_rsdp;
242static int __init setup_acpi_rsdp(char *arg)
243{
244 acpi_rsdp = simple_strtoul(arg, NULL, 16);
245 return 0;
246}
247early_param("acpi_rsdp", setup_acpi_rsdp);
248#endif
249
250acpi_physical_address __init acpi_os_get_root_pointer(void)
251{
252#ifdef CONFIG_KEXEC
253 if (acpi_rsdp)
254 return acpi_rsdp;
255#endif
256
257 if (efi_enabled) {
258 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
259 return efi.acpi20;
260 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
261 return efi.acpi;
262 else {
263 printk(KERN_ERR PREFIX
264 "System description tables not found\n");
265 return 0;
266 }
267 } else {
268 acpi_physical_address pa = 0;
269
270 acpi_find_root_pointer(&pa);
271 return pa;
272 }
273}
274
275/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
276static struct acpi_ioremap *
277acpi_map_lookup(acpi_physical_address phys, acpi_size size)
278{
279 struct acpi_ioremap *map;
280
281 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
282 if (map->phys <= phys &&
283 phys + size <= map->phys + map->size)
284 return map;
285
286 return NULL;
287}
288
289/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
290static void __iomem *
291acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
292{
293 struct acpi_ioremap *map;
294
295 map = acpi_map_lookup(phys, size);
296 if (map)
297 return map->virt + (phys - map->phys);
298
299 return NULL;
300}
301
302void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
303{
304 struct acpi_ioremap *map;
305 void __iomem *virt = NULL;
306
307 mutex_lock(&acpi_ioremap_lock);
308 map = acpi_map_lookup(phys, size);
309 if (map) {
310 virt = map->virt + (phys - map->phys);
311 map->refcount++;
312 }
313 mutex_unlock(&acpi_ioremap_lock);
314 return virt;
315}
316EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
317
318/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
319static struct acpi_ioremap *
320acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
321{
322 struct acpi_ioremap *map;
323
324 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
325 if (map->virt <= virt &&
326 virt + size <= map->virt + map->size)
327 return map;
328
329 return NULL;
330}
331
332void __iomem *__init_refok
333acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
334{
335 struct acpi_ioremap *map;
336 void __iomem *virt;
337 acpi_physical_address pg_off;
338 acpi_size pg_sz;
339
340 if (phys > ULONG_MAX) {
341 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
342 return NULL;
343 }
344
345 if (!acpi_gbl_permanent_mmap)
346 return __acpi_map_table((unsigned long)phys, size);
347
348 mutex_lock(&acpi_ioremap_lock);
349 /* Check if there's a suitable mapping already. */
350 map = acpi_map_lookup(phys, size);
351 if (map) {
352 map->refcount++;
353 goto out;
354 }
355
356 map = kzalloc(sizeof(*map), GFP_KERNEL);
357 if (!map) {
358 mutex_unlock(&acpi_ioremap_lock);
359 return NULL;
360 }
361
362 pg_off = round_down(phys, PAGE_SIZE);
363 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
364 virt = acpi_os_ioremap(pg_off, pg_sz);
365 if (!virt) {
366 mutex_unlock(&acpi_ioremap_lock);
367 kfree(map);
368 return NULL;
369 }
370
371 INIT_LIST_HEAD(&map->list);
372 map->virt = virt;
373 map->phys = pg_off;
374 map->size = pg_sz;
375 map->refcount = 1;
376
377 list_add_tail_rcu(&map->list, &acpi_ioremaps);
378
379 out:
380 mutex_unlock(&acpi_ioremap_lock);
381 return map->virt + (phys - map->phys);
382}
383EXPORT_SYMBOL_GPL(acpi_os_map_memory);
384
385static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
386{
387 if (!--map->refcount)
388 list_del_rcu(&map->list);
389}
390
391static void acpi_os_map_cleanup(struct acpi_ioremap *map)
392{
393 if (!map->refcount) {
394 synchronize_rcu();
395 iounmap(map->virt);
396 kfree(map);
397 }
398}
399
400void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
401{
402 struct acpi_ioremap *map;
403
404 if (!acpi_gbl_permanent_mmap) {
405 __acpi_unmap_table(virt, size);
406 return;
407 }
408
409 mutex_lock(&acpi_ioremap_lock);
410 map = acpi_map_lookup_virt(virt, size);
411 if (!map) {
412 mutex_unlock(&acpi_ioremap_lock);
413 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
414 return;
415 }
416 acpi_os_drop_map_ref(map);
417 mutex_unlock(&acpi_ioremap_lock);
418
419 acpi_os_map_cleanup(map);
420}
421EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
422
423void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
424{
425 if (!acpi_gbl_permanent_mmap)
426 __acpi_unmap_table(virt, size);
427}
428
429static int acpi_os_map_generic_address(struct acpi_generic_address *addr)
430{
431 void __iomem *virt;
432
433 if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
434 return 0;
435
436 if (!addr->address || !addr->bit_width)
437 return -EINVAL;
438
439 virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
440 if (!virt)
441 return -EIO;
442
443 return 0;
444}
445
446static void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
447{
448 struct acpi_ioremap *map;
449
450 if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
451 return;
452
453 if (!addr->address || !addr->bit_width)
454 return;
455
456 mutex_lock(&acpi_ioremap_lock);
457 map = acpi_map_lookup(addr->address, addr->bit_width / 8);
458 if (!map) {
459 mutex_unlock(&acpi_ioremap_lock);
460 return;
461 }
462 acpi_os_drop_map_ref(map);
463 mutex_unlock(&acpi_ioremap_lock);
464
465 acpi_os_map_cleanup(map);
466}
467
468#ifdef ACPI_FUTURE_USAGE
469acpi_status
470acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
471{
472 if (!phys || !virt)
473 return AE_BAD_PARAMETER;
474
475 *phys = virt_to_phys(virt);
476
477 return AE_OK;
478}
479#endif
480
481#define ACPI_MAX_OVERRIDE_LEN 100
482
483static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
484
485acpi_status
486acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
487 acpi_string * new_val)
488{
489 if (!init_val || !new_val)
490 return AE_BAD_PARAMETER;
491
492 *new_val = NULL;
493 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
494 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
495 acpi_os_name);
496 *new_val = acpi_os_name;
497 }
498
499 return AE_OK;
500}
501
502acpi_status
503acpi_os_table_override(struct acpi_table_header * existing_table,
504 struct acpi_table_header ** new_table)
505{
506 if (!existing_table || !new_table)
507 return AE_BAD_PARAMETER;
508
509 *new_table = NULL;
510
511#ifdef CONFIG_ACPI_CUSTOM_DSDT
512 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
513 *new_table = (struct acpi_table_header *)AmlCode;
514#endif
515 if (*new_table != NULL) {
516 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
517 "this is unsafe: tainting kernel\n",
518 existing_table->signature,
519 existing_table->oem_table_id);
520 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
521 }
522 return AE_OK;
523}
524
525static irqreturn_t acpi_irq(int irq, void *dev_id)
526{
527 u32 handled;
528
529 handled = (*acpi_irq_handler) (acpi_irq_context);
530
531 if (handled) {
532 acpi_irq_handled++;
533 return IRQ_HANDLED;
534 } else {
535 acpi_irq_not_handled++;
536 return IRQ_NONE;
537 }
538}
539
540acpi_status
541acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
542 void *context)
543{
544 unsigned int irq;
545
546 acpi_irq_stats_init();
547
548 /*
549 * ACPI interrupts different from the SCI in our copy of the FADT are
550 * not supported.
551 */
552 if (gsi != acpi_gbl_FADT.sci_interrupt)
553 return AE_BAD_PARAMETER;
554
555 if (acpi_irq_handler)
556 return AE_ALREADY_ACQUIRED;
557
558 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
559 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
560 gsi);
561 return AE_OK;
562 }
563
564 acpi_irq_handler = handler;
565 acpi_irq_context = context;
566 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
567 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
568 acpi_irq_handler = NULL;
569 return AE_NOT_ACQUIRED;
570 }
571
572 return AE_OK;
573}
574
575acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
576{
577 if (irq != acpi_gbl_FADT.sci_interrupt)
578 return AE_BAD_PARAMETER;
579
580 free_irq(irq, acpi_irq);
581 acpi_irq_handler = NULL;
582
583 return AE_OK;
584}
585
586/*
587 * Running in interpreter thread context, safe to sleep
588 */
589
590void acpi_os_sleep(u64 ms)
591{
592 schedule_timeout_interruptible(msecs_to_jiffies(ms));
593}
594
595void acpi_os_stall(u32 us)
596{
597 while (us) {
598 u32 delay = 1000;
599
600 if (delay > us)
601 delay = us;
602 udelay(delay);
603 touch_nmi_watchdog();
604 us -= delay;
605 }
606}
607
608/*
609 * Support ACPI 3.0 AML Timer operand
610 * Returns 64-bit free-running, monotonically increasing timer
611 * with 100ns granularity
612 */
613u64 acpi_os_get_timer(void)
614{
615 static u64 t;
616
617#ifdef CONFIG_HPET
618 /* TBD: use HPET if available */
619#endif
620
621#ifdef CONFIG_X86_PM_TIMER
622 /* TBD: default to PM timer if HPET was not available */
623#endif
624 if (!t)
625 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
626
627 return ++t;
628}
629
630acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
631{
632 u32 dummy;
633
634 if (!value)
635 value = &dummy;
636
637 *value = 0;
638 if (width <= 8) {
639 *(u8 *) value = inb(port);
640 } else if (width <= 16) {
641 *(u16 *) value = inw(port);
642 } else if (width <= 32) {
643 *(u32 *) value = inl(port);
644 } else {
645 BUG();
646 }
647
648 return AE_OK;
649}
650
651EXPORT_SYMBOL(acpi_os_read_port);
652
653acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
654{
655 if (width <= 8) {
656 outb(value, port);
657 } else if (width <= 16) {
658 outw(value, port);
659 } else if (width <= 32) {
660 outl(value, port);
661 } else {
662 BUG();
663 }
664
665 return AE_OK;
666}
667
668EXPORT_SYMBOL(acpi_os_write_port);
669
670acpi_status
671acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
672{
673 void __iomem *virt_addr;
674 unsigned int size = width / 8;
675 bool unmap = false;
676 u32 dummy;
677
678 rcu_read_lock();
679 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
680 if (!virt_addr) {
681 rcu_read_unlock();
682 virt_addr = acpi_os_ioremap(phys_addr, size);
683 if (!virt_addr)
684 return AE_BAD_ADDRESS;
685 unmap = true;
686 }
687
688 if (!value)
689 value = &dummy;
690
691 switch (width) {
692 case 8:
693 *(u8 *) value = readb(virt_addr);
694 break;
695 case 16:
696 *(u16 *) value = readw(virt_addr);
697 break;
698 case 32:
699 *(u32 *) value = readl(virt_addr);
700 break;
701 default:
702 BUG();
703 }
704
705 if (unmap)
706 iounmap(virt_addr);
707 else
708 rcu_read_unlock();
709
710 return AE_OK;
711}
712
713acpi_status
714acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
715{
716 void __iomem *virt_addr;
717 unsigned int size = width / 8;
718 bool unmap = false;
719
720 rcu_read_lock();
721 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
722 if (!virt_addr) {
723 rcu_read_unlock();
724 virt_addr = acpi_os_ioremap(phys_addr, size);
725 if (!virt_addr)
726 return AE_BAD_ADDRESS;
727 unmap = true;
728 }
729
730 switch (width) {
731 case 8:
732 writeb(value, virt_addr);
733 break;
734 case 16:
735 writew(value, virt_addr);
736 break;
737 case 32:
738 writel(value, virt_addr);
739 break;
740 default:
741 BUG();
742 }
743
744 if (unmap)
745 iounmap(virt_addr);
746 else
747 rcu_read_unlock();
748
749 return AE_OK;
750}
751
752acpi_status
753acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
754 u64 *value, u32 width)
755{
756 int result, size;
757 u32 value32;
758
759 if (!value)
760 return AE_BAD_PARAMETER;
761
762 switch (width) {
763 case 8:
764 size = 1;
765 break;
766 case 16:
767 size = 2;
768 break;
769 case 32:
770 size = 4;
771 break;
772 default:
773 return AE_ERROR;
774 }
775
776 result = raw_pci_read(pci_id->segment, pci_id->bus,
777 PCI_DEVFN(pci_id->device, pci_id->function),
778 reg, size, &value32);
779 *value = value32;
780
781 return (result ? AE_ERROR : AE_OK);
782}
783
784acpi_status
785acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786 u64 value, u32 width)
787{
788 int result, size;
789
790 switch (width) {
791 case 8:
792 size = 1;
793 break;
794 case 16:
795 size = 2;
796 break;
797 case 32:
798 size = 4;
799 break;
800 default:
801 return AE_ERROR;
802 }
803
804 result = raw_pci_write(pci_id->segment, pci_id->bus,
805 PCI_DEVFN(pci_id->device, pci_id->function),
806 reg, size, value);
807
808 return (result ? AE_ERROR : AE_OK);
809}
810
811static void acpi_os_execute_deferred(struct work_struct *work)
812{
813 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
814
815 if (dpc->wait)
816 acpi_os_wait_events_complete(NULL);
817
818 dpc->function(dpc->context);
819 kfree(dpc);
820}
821
822/*******************************************************************************
823 *
824 * FUNCTION: acpi_os_execute
825 *
826 * PARAMETERS: Type - Type of the callback
827 * Function - Function to be executed
828 * Context - Function parameters
829 *
830 * RETURN: Status
831 *
832 * DESCRIPTION: Depending on type, either queues function for deferred execution or
833 * immediately executes function on a separate thread.
834 *
835 ******************************************************************************/
836
837static acpi_status __acpi_os_execute(acpi_execute_type type,
838 acpi_osd_exec_callback function, void *context, int hp)
839{
840 acpi_status status = AE_OK;
841 struct acpi_os_dpc *dpc;
842 struct workqueue_struct *queue;
843 int ret;
844 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
845 "Scheduling function [%p(%p)] for deferred execution.\n",
846 function, context));
847
848 /*
849 * Allocate/initialize DPC structure. Note that this memory will be
850 * freed by the callee. The kernel handles the work_struct list in a
851 * way that allows us to also free its memory inside the callee.
852 * Because we may want to schedule several tasks with different
853 * parameters we can't use the approach some kernel code uses of
854 * having a static work_struct.
855 */
856
857 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
858 if (!dpc)
859 return AE_NO_MEMORY;
860
861 dpc->function = function;
862 dpc->context = context;
863
864 /*
865 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
866 * because the hotplug code may call driver .remove() functions,
867 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
868 * to flush these workqueues.
869 */
870 queue = hp ? kacpi_hotplug_wq :
871 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
872 dpc->wait = hp ? 1 : 0;
873
874 if (queue == kacpi_hotplug_wq)
875 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
876 else if (queue == kacpi_notify_wq)
877 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
878 else
879 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
880
881 /*
882 * On some machines, a software-initiated SMI causes corruption unless
883 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
884 * typically it's done in GPE-related methods that are run via
885 * workqueues, so we can avoid the known corruption cases by always
886 * queueing on CPU 0.
887 */
888 ret = queue_work_on(0, queue, &dpc->work);
889
890 if (!ret) {
891 printk(KERN_ERR PREFIX
892 "Call to queue_work() failed.\n");
893 status = AE_ERROR;
894 kfree(dpc);
895 }
896 return status;
897}
898
899acpi_status acpi_os_execute(acpi_execute_type type,
900 acpi_osd_exec_callback function, void *context)
901{
902 return __acpi_os_execute(type, function, context, 0);
903}
904EXPORT_SYMBOL(acpi_os_execute);
905
906acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
907 void *context)
908{
909 return __acpi_os_execute(0, function, context, 1);
910}
911
912void acpi_os_wait_events_complete(void *context)
913{
914 flush_workqueue(kacpid_wq);
915 flush_workqueue(kacpi_notify_wq);
916}
917
918EXPORT_SYMBOL(acpi_os_wait_events_complete);
919
920acpi_status
921acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
922{
923 struct semaphore *sem = NULL;
924
925 sem = acpi_os_allocate(sizeof(struct semaphore));
926 if (!sem)
927 return AE_NO_MEMORY;
928 memset(sem, 0, sizeof(struct semaphore));
929
930 sema_init(sem, initial_units);
931
932 *handle = (acpi_handle *) sem;
933
934 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
935 *handle, initial_units));
936
937 return AE_OK;
938}
939
940/*
941 * TODO: A better way to delete semaphores? Linux doesn't have a
942 * 'delete_semaphore()' function -- may result in an invalid
943 * pointer dereference for non-synchronized consumers. Should
944 * we at least check for blocked threads and signal/cancel them?
945 */
946
947acpi_status acpi_os_delete_semaphore(acpi_handle handle)
948{
949 struct semaphore *sem = (struct semaphore *)handle;
950
951 if (!sem)
952 return AE_BAD_PARAMETER;
953
954 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
955
956 BUG_ON(!list_empty(&sem->wait_list));
957 kfree(sem);
958 sem = NULL;
959
960 return AE_OK;
961}
962
963/*
964 * TODO: Support for units > 1?
965 */
966acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
967{
968 acpi_status status = AE_OK;
969 struct semaphore *sem = (struct semaphore *)handle;
970 long jiffies;
971 int ret = 0;
972
973 if (!sem || (units < 1))
974 return AE_BAD_PARAMETER;
975
976 if (units > 1)
977 return AE_SUPPORT;
978
979 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
980 handle, units, timeout));
981
982 if (timeout == ACPI_WAIT_FOREVER)
983 jiffies = MAX_SCHEDULE_TIMEOUT;
984 else
985 jiffies = msecs_to_jiffies(timeout);
986
987 ret = down_timeout(sem, jiffies);
988 if (ret)
989 status = AE_TIME;
990
991 if (ACPI_FAILURE(status)) {
992 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
993 "Failed to acquire semaphore[%p|%d|%d], %s",
994 handle, units, timeout,
995 acpi_format_exception(status)));
996 } else {
997 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
998 "Acquired semaphore[%p|%d|%d]", handle,
999 units, timeout));
1000 }
1001
1002 return status;
1003}
1004
1005/*
1006 * TODO: Support for units > 1?
1007 */
1008acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1009{
1010 struct semaphore *sem = (struct semaphore *)handle;
1011
1012 if (!sem || (units < 1))
1013 return AE_BAD_PARAMETER;
1014
1015 if (units > 1)
1016 return AE_SUPPORT;
1017
1018 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1019 units));
1020
1021 up(sem);
1022
1023 return AE_OK;
1024}
1025
1026#ifdef ACPI_FUTURE_USAGE
1027u32 acpi_os_get_line(char *buffer)
1028{
1029
1030#ifdef ENABLE_DEBUGGER
1031 if (acpi_in_debugger) {
1032 u32 chars;
1033
1034 kdb_read(buffer, sizeof(line_buf));
1035
1036 /* remove the CR kdb includes */
1037 chars = strlen(buffer) - 1;
1038 buffer[chars] = '\0';
1039 }
1040#endif
1041
1042 return 0;
1043}
1044#endif /* ACPI_FUTURE_USAGE */
1045
1046acpi_status acpi_os_signal(u32 function, void *info)
1047{
1048 switch (function) {
1049 case ACPI_SIGNAL_FATAL:
1050 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1051 break;
1052 case ACPI_SIGNAL_BREAKPOINT:
1053 /*
1054 * AML Breakpoint
1055 * ACPI spec. says to treat it as a NOP unless
1056 * you are debugging. So if/when we integrate
1057 * AML debugger into the kernel debugger its
1058 * hook will go here. But until then it is
1059 * not useful to print anything on breakpoints.
1060 */
1061 break;
1062 default:
1063 break;
1064 }
1065
1066 return AE_OK;
1067}
1068
1069static int __init acpi_os_name_setup(char *str)
1070{
1071 char *p = acpi_os_name;
1072 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1073
1074 if (!str || !*str)
1075 return 0;
1076
1077 for (; count-- && str && *str; str++) {
1078 if (isalnum(*str) || *str == ' ' || *str == ':')
1079 *p++ = *str;
1080 else if (*str == '\'' || *str == '"')
1081 continue;
1082 else
1083 break;
1084 }
1085 *p = 0;
1086
1087 return 1;
1088
1089}
1090
1091__setup("acpi_os_name=", acpi_os_name_setup);
1092
1093#define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1094#define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1095
1096struct osi_setup_entry {
1097 char string[OSI_STRING_LENGTH_MAX];
1098 bool enable;
1099};
1100
1101static struct osi_setup_entry __initdata
1102 osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1103 {"Module Device", true},
1104 {"Processor Device", true},
1105 {"3.0 _SCP Extensions", true},
1106 {"Processor Aggregator Device", true},
1107};
1108
1109void __init acpi_osi_setup(char *str)
1110{
1111 struct osi_setup_entry *osi;
1112 bool enable = true;
1113 int i;
1114
1115 if (!acpi_gbl_create_osi_method)
1116 return;
1117
1118 if (str == NULL || *str == '\0') {
1119 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1120 acpi_gbl_create_osi_method = FALSE;
1121 return;
1122 }
1123
1124 if (*str == '!') {
1125 str++;
1126 enable = false;
1127 }
1128
1129 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1130 osi = &osi_setup_entries[i];
1131 if (!strcmp(osi->string, str)) {
1132 osi->enable = enable;
1133 break;
1134 } else if (osi->string[0] == '\0') {
1135 osi->enable = enable;
1136 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1137 break;
1138 }
1139 }
1140}
1141
1142static void __init set_osi_linux(unsigned int enable)
1143{
1144 if (osi_linux.enable != enable)
1145 osi_linux.enable = enable;
1146
1147 if (osi_linux.enable)
1148 acpi_osi_setup("Linux");
1149 else
1150 acpi_osi_setup("!Linux");
1151
1152 return;
1153}
1154
1155static void __init acpi_cmdline_osi_linux(unsigned int enable)
1156{
1157 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1158 osi_linux.dmi = 0;
1159 set_osi_linux(enable);
1160
1161 return;
1162}
1163
1164void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1165{
1166 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1167
1168 if (enable == -1)
1169 return;
1170
1171 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1172 set_osi_linux(enable);
1173
1174 return;
1175}
1176
1177/*
1178 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1179 *
1180 * empty string disables _OSI
1181 * string starting with '!' disables that string
1182 * otherwise string is added to list, augmenting built-in strings
1183 */
1184static void __init acpi_osi_setup_late(void)
1185{
1186 struct osi_setup_entry *osi;
1187 char *str;
1188 int i;
1189 acpi_status status;
1190
1191 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1192 osi = &osi_setup_entries[i];
1193 str = osi->string;
1194
1195 if (*str == '\0')
1196 break;
1197 if (osi->enable) {
1198 status = acpi_install_interface(str);
1199
1200 if (ACPI_SUCCESS(status))
1201 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1202 } else {
1203 status = acpi_remove_interface(str);
1204
1205 if (ACPI_SUCCESS(status))
1206 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1207 }
1208 }
1209}
1210
1211static int __init osi_setup(char *str)
1212{
1213 if (str && !strcmp("Linux", str))
1214 acpi_cmdline_osi_linux(1);
1215 else if (str && !strcmp("!Linux", str))
1216 acpi_cmdline_osi_linux(0);
1217 else
1218 acpi_osi_setup(str);
1219
1220 return 1;
1221}
1222
1223__setup("acpi_osi=", osi_setup);
1224
1225/* enable serialization to combat AE_ALREADY_EXISTS errors */
1226static int __init acpi_serialize_setup(char *str)
1227{
1228 printk(KERN_INFO PREFIX "serialize enabled\n");
1229
1230 acpi_gbl_all_methods_serialized = TRUE;
1231
1232 return 1;
1233}
1234
1235__setup("acpi_serialize", acpi_serialize_setup);
1236
1237/* Check of resource interference between native drivers and ACPI
1238 * OperationRegions (SystemIO and System Memory only).
1239 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1240 * in arbitrary AML code and can interfere with legacy drivers.
1241 * acpi_enforce_resources= can be set to:
1242 *
1243 * - strict (default) (2)
1244 * -> further driver trying to access the resources will not load
1245 * - lax (1)
1246 * -> further driver trying to access the resources will load, but you
1247 * get a system message that something might go wrong...
1248 *
1249 * - no (0)
1250 * -> ACPI Operation Region resources will not be registered
1251 *
1252 */
1253#define ENFORCE_RESOURCES_STRICT 2
1254#define ENFORCE_RESOURCES_LAX 1
1255#define ENFORCE_RESOURCES_NO 0
1256
1257static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1258
1259static int __init acpi_enforce_resources_setup(char *str)
1260{
1261 if (str == NULL || *str == '\0')
1262 return 0;
1263
1264 if (!strcmp("strict", str))
1265 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1266 else if (!strcmp("lax", str))
1267 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1268 else if (!strcmp("no", str))
1269 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1270
1271 return 1;
1272}
1273
1274__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1275
1276/* Check for resource conflicts between ACPI OperationRegions and native
1277 * drivers */
1278int acpi_check_resource_conflict(const struct resource *res)
1279{
1280 struct acpi_res_list *res_list_elem;
1281 int ioport = 0, clash = 0;
1282
1283 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1284 return 0;
1285 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1286 return 0;
1287
1288 ioport = res->flags & IORESOURCE_IO;
1289
1290 spin_lock(&acpi_res_lock);
1291 list_for_each_entry(res_list_elem, &resource_list_head,
1292 resource_list) {
1293 if (ioport && (res_list_elem->resource_type
1294 != ACPI_ADR_SPACE_SYSTEM_IO))
1295 continue;
1296 if (!ioport && (res_list_elem->resource_type
1297 != ACPI_ADR_SPACE_SYSTEM_MEMORY))
1298 continue;
1299
1300 if (res->end < res_list_elem->start
1301 || res_list_elem->end < res->start)
1302 continue;
1303 clash = 1;
1304 break;
1305 }
1306 spin_unlock(&acpi_res_lock);
1307
1308 if (clash) {
1309 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1310 printk(KERN_WARNING "ACPI: resource %s %pR"
1311 " conflicts with ACPI region %s "
1312 "[%s 0x%zx-0x%zx]\n",
1313 res->name, res, res_list_elem->name,
1314 (res_list_elem->resource_type ==
1315 ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1316 (size_t) res_list_elem->start,
1317 (size_t) res_list_elem->end);
1318 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1319 printk(KERN_NOTICE "ACPI: This conflict may"
1320 " cause random problems and system"
1321 " instability\n");
1322 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1323 " for this device, you should use it instead of"
1324 " the native driver\n");
1325 }
1326 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1327 return -EBUSY;
1328 }
1329 return 0;
1330}
1331EXPORT_SYMBOL(acpi_check_resource_conflict);
1332
1333int acpi_check_region(resource_size_t start, resource_size_t n,
1334 const char *name)
1335{
1336 struct resource res = {
1337 .start = start,
1338 .end = start + n - 1,
1339 .name = name,
1340 .flags = IORESOURCE_IO,
1341 };
1342
1343 return acpi_check_resource_conflict(&res);
1344}
1345EXPORT_SYMBOL(acpi_check_region);
1346
1347/*
1348 * Let drivers know whether the resource checks are effective
1349 */
1350int acpi_resources_are_enforced(void)
1351{
1352 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1353}
1354EXPORT_SYMBOL(acpi_resources_are_enforced);
1355
1356/*
1357 * Deallocate the memory for a spinlock.
1358 */
1359void acpi_os_delete_lock(acpi_spinlock handle)
1360{
1361 ACPI_FREE(handle);
1362}
1363
1364/*
1365 * Acquire a spinlock.
1366 *
1367 * handle is a pointer to the spinlock_t.
1368 */
1369
1370acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1371{
1372 acpi_cpu_flags flags;
1373 spin_lock_irqsave(lockp, flags);
1374 return flags;
1375}
1376
1377/*
1378 * Release a spinlock. See above.
1379 */
1380
1381void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1382{
1383 spin_unlock_irqrestore(lockp, flags);
1384}
1385
1386#ifndef ACPI_USE_LOCAL_CACHE
1387
1388/*******************************************************************************
1389 *
1390 * FUNCTION: acpi_os_create_cache
1391 *
1392 * PARAMETERS: name - Ascii name for the cache
1393 * size - Size of each cached object
1394 * depth - Maximum depth of the cache (in objects) <ignored>
1395 * cache - Where the new cache object is returned
1396 *
1397 * RETURN: status
1398 *
1399 * DESCRIPTION: Create a cache object
1400 *
1401 ******************************************************************************/
1402
1403acpi_status
1404acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1405{
1406 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1407 if (*cache == NULL)
1408 return AE_ERROR;
1409 else
1410 return AE_OK;
1411}
1412
1413/*******************************************************************************
1414 *
1415 * FUNCTION: acpi_os_purge_cache
1416 *
1417 * PARAMETERS: Cache - Handle to cache object
1418 *
1419 * RETURN: Status
1420 *
1421 * DESCRIPTION: Free all objects within the requested cache.
1422 *
1423 ******************************************************************************/
1424
1425acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1426{
1427 kmem_cache_shrink(cache);
1428 return (AE_OK);
1429}
1430
1431/*******************************************************************************
1432 *
1433 * FUNCTION: acpi_os_delete_cache
1434 *
1435 * PARAMETERS: Cache - Handle to cache object
1436 *
1437 * RETURN: Status
1438 *
1439 * DESCRIPTION: Free all objects within the requested cache and delete the
1440 * cache object.
1441 *
1442 ******************************************************************************/
1443
1444acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1445{
1446 kmem_cache_destroy(cache);
1447 return (AE_OK);
1448}
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION: acpi_os_release_object
1453 *
1454 * PARAMETERS: Cache - Handle to cache object
1455 * Object - The object to be released
1456 *
1457 * RETURN: None
1458 *
1459 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1460 * the object is deleted.
1461 *
1462 ******************************************************************************/
1463
1464acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1465{
1466 kmem_cache_free(cache, object);
1467 return (AE_OK);
1468}
1469
1470static inline int acpi_res_list_add(struct acpi_res_list *res)
1471{
1472 struct acpi_res_list *res_list_elem;
1473
1474 list_for_each_entry(res_list_elem, &resource_list_head,
1475 resource_list) {
1476
1477 if (res->resource_type == res_list_elem->resource_type &&
1478 res->start == res_list_elem->start &&
1479 res->end == res_list_elem->end) {
1480
1481 /*
1482 * The Region(addr,len) already exist in the list,
1483 * just increase the count
1484 */
1485
1486 res_list_elem->count++;
1487 return 0;
1488 }
1489 }
1490
1491 res->count = 1;
1492 list_add(&res->resource_list, &resource_list_head);
1493 return 1;
1494}
1495
1496static inline void acpi_res_list_del(struct acpi_res_list *res)
1497{
1498 struct acpi_res_list *res_list_elem;
1499
1500 list_for_each_entry(res_list_elem, &resource_list_head,
1501 resource_list) {
1502
1503 if (res->resource_type == res_list_elem->resource_type &&
1504 res->start == res_list_elem->start &&
1505 res->end == res_list_elem->end) {
1506
1507 /*
1508 * If the res count is decreased to 0,
1509 * remove and free it
1510 */
1511
1512 if (--res_list_elem->count == 0) {
1513 list_del(&res_list_elem->resource_list);
1514 kfree(res_list_elem);
1515 }
1516 return;
1517 }
1518 }
1519}
1520
1521acpi_status
1522acpi_os_invalidate_address(
1523 u8 space_id,
1524 acpi_physical_address address,
1525 acpi_size length)
1526{
1527 struct acpi_res_list res;
1528
1529 switch (space_id) {
1530 case ACPI_ADR_SPACE_SYSTEM_IO:
1531 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1532 /* Only interference checks against SystemIO and SystemMemory
1533 are needed */
1534 res.start = address;
1535 res.end = address + length - 1;
1536 res.resource_type = space_id;
1537 spin_lock(&acpi_res_lock);
1538 acpi_res_list_del(&res);
1539 spin_unlock(&acpi_res_lock);
1540 break;
1541 case ACPI_ADR_SPACE_PCI_CONFIG:
1542 case ACPI_ADR_SPACE_EC:
1543 case ACPI_ADR_SPACE_SMBUS:
1544 case ACPI_ADR_SPACE_CMOS:
1545 case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1546 case ACPI_ADR_SPACE_DATA_TABLE:
1547 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1548 break;
1549 }
1550 return AE_OK;
1551}
1552
1553/******************************************************************************
1554 *
1555 * FUNCTION: acpi_os_validate_address
1556 *
1557 * PARAMETERS: space_id - ACPI space ID
1558 * address - Physical address
1559 * length - Address length
1560 *
1561 * RETURN: AE_OK if address/length is valid for the space_id. Otherwise,
1562 * should return AE_AML_ILLEGAL_ADDRESS.
1563 *
1564 * DESCRIPTION: Validate a system address via the host OS. Used to validate
1565 * the addresses accessed by AML operation regions.
1566 *
1567 *****************************************************************************/
1568
1569acpi_status
1570acpi_os_validate_address (
1571 u8 space_id,
1572 acpi_physical_address address,
1573 acpi_size length,
1574 char *name)
1575{
1576 struct acpi_res_list *res;
1577 int added;
1578 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1579 return AE_OK;
1580
1581 switch (space_id) {
1582 case ACPI_ADR_SPACE_SYSTEM_IO:
1583 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1584 /* Only interference checks against SystemIO and SystemMemory
1585 are needed */
1586 res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1587 if (!res)
1588 return AE_OK;
1589 /* ACPI names are fixed to 4 bytes, still better use strlcpy */
1590 strlcpy(res->name, name, 5);
1591 res->start = address;
1592 res->end = address + length - 1;
1593 res->resource_type = space_id;
1594 spin_lock(&acpi_res_lock);
1595 added = acpi_res_list_add(res);
1596 spin_unlock(&acpi_res_lock);
1597 pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1598 "name: %s\n", added ? "Added" : "Already exist",
1599 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1600 ? "SystemIO" : "System Memory",
1601 (unsigned long long)res->start,
1602 (unsigned long long)res->end,
1603 res->name);
1604 if (!added)
1605 kfree(res);
1606 break;
1607 case ACPI_ADR_SPACE_PCI_CONFIG:
1608 case ACPI_ADR_SPACE_EC:
1609 case ACPI_ADR_SPACE_SMBUS:
1610 case ACPI_ADR_SPACE_CMOS:
1611 case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1612 case ACPI_ADR_SPACE_DATA_TABLE:
1613 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1614 break;
1615 }
1616 return AE_OK;
1617}
1618#endif
1619
1620acpi_status __init acpi_os_initialize(void)
1621{
1622 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1623 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1624 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1625 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1626
1627 return AE_OK;
1628}
1629
1630acpi_status __init acpi_os_initialize1(void)
1631{
1632 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1633 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1634 kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1635 BUG_ON(!kacpid_wq);
1636 BUG_ON(!kacpi_notify_wq);
1637 BUG_ON(!kacpi_hotplug_wq);
1638 acpi_install_interface_handler(acpi_osi_handler);
1639 acpi_osi_setup_late();
1640 return AE_OK;
1641}
1642
1643acpi_status acpi_os_terminate(void)
1644{
1645 if (acpi_irq_handler) {
1646 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1647 acpi_irq_handler);
1648 }
1649
1650 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1651 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1652 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1654
1655 destroy_workqueue(kacpid_wq);
1656 destroy_workqueue(kacpi_notify_wq);
1657 destroy_workqueue(kacpi_hotplug_wq);
1658
1659 return AE_OK;
1660}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 union {
81 unsigned long refcount;
82 struct rcu_work rwork;
83 } track;
84};
85
86static LIST_HEAD(acpi_ioremaps);
87static DEFINE_MUTEX(acpi_ioremap_lock);
88#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89
90static void __init acpi_request_region (struct acpi_generic_address *gas,
91 unsigned int length, char *desc)
92{
93 u64 addr;
94
95 /* Handle possible alignment issues */
96 memcpy(&addr, &gas->address, sizeof(addr));
97 if (!addr || !length)
98 return;
99
100 /* Resources are never freed */
101 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102 request_region(addr, length, desc);
103 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104 request_mem_region(addr, length, desc);
105}
106
107static int __init acpi_reserve_resources(void)
108{
109 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1a_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1b_EVT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1a_CNT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1b_CNT_BLK");
120
121 if (acpi_gbl_FADT.pm_timer_length == 4)
122 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125 "ACPI PM2_CNT_BLK");
126
127 /* Length of GPE blocks must be a non-negative multiple of 2 */
128
129 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132
133 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136
137 return 0;
138}
139fs_initcall_sync(acpi_reserve_resources);
140
141void acpi_os_printf(const char *fmt, ...)
142{
143 va_list args;
144 va_start(args, fmt);
145 acpi_os_vprintf(fmt, args);
146 va_end(args);
147}
148EXPORT_SYMBOL(acpi_os_printf);
149
150void acpi_os_vprintf(const char *fmt, va_list args)
151{
152 static char buffer[512];
153
154 vsprintf(buffer, fmt, args);
155
156#ifdef ENABLE_DEBUGGER
157 if (acpi_in_debugger) {
158 kdb_printf("%s", buffer);
159 } else {
160 if (printk_get_level(buffer))
161 printk("%s", buffer);
162 else
163 printk(KERN_CONT "%s", buffer);
164 }
165#else
166 if (acpi_debugger_write_log(buffer) < 0) {
167 if (printk_get_level(buffer))
168 printk("%s", buffer);
169 else
170 printk(KERN_CONT "%s", buffer);
171 }
172#endif
173}
174
175#ifdef CONFIG_KEXEC
176static unsigned long acpi_rsdp;
177static int __init setup_acpi_rsdp(char *arg)
178{
179 return kstrtoul(arg, 16, &acpi_rsdp);
180}
181early_param("acpi_rsdp", setup_acpi_rsdp);
182#endif
183
184acpi_physical_address __init acpi_os_get_root_pointer(void)
185{
186 acpi_physical_address pa;
187
188#ifdef CONFIG_KEXEC
189 /*
190 * We may have been provided with an RSDP on the command line,
191 * but if a malicious user has done so they may be pointing us
192 * at modified ACPI tables that could alter kernel behaviour -
193 * so, we check the lockdown status before making use of
194 * it. If we trust it then also stash it in an architecture
195 * specific location (if appropriate) so it can be carried
196 * over further kexec()s.
197 */
198 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199 acpi_arch_set_root_pointer(acpi_rsdp);
200 return acpi_rsdp;
201 }
202#endif
203 pa = acpi_arch_get_root_pointer();
204 if (pa)
205 return pa;
206
207 if (efi_enabled(EFI_CONFIG_TABLES)) {
208 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209 return efi.acpi20;
210 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi;
212 pr_err(PREFIX "System description tables not found\n");
213 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214 acpi_find_root_pointer(&pa);
215 }
216
217 return pa;
218}
219
220/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221static struct acpi_ioremap *
222acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223{
224 struct acpi_ioremap *map;
225
226 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227 if (map->phys <= phys &&
228 phys + size <= map->phys + map->size)
229 return map;
230
231 return NULL;
232}
233
234/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235static void __iomem *
236acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237{
238 struct acpi_ioremap *map;
239
240 map = acpi_map_lookup(phys, size);
241 if (map)
242 return map->virt + (phys - map->phys);
243
244 return NULL;
245}
246
247void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248{
249 struct acpi_ioremap *map;
250 void __iomem *virt = NULL;
251
252 mutex_lock(&acpi_ioremap_lock);
253 map = acpi_map_lookup(phys, size);
254 if (map) {
255 virt = map->virt + (phys - map->phys);
256 map->track.refcount++;
257 }
258 mutex_unlock(&acpi_ioremap_lock);
259 return virt;
260}
261EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262
263/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264static struct acpi_ioremap *
265acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266{
267 struct acpi_ioremap *map;
268
269 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270 if (map->virt <= virt &&
271 virt + size <= map->virt + map->size)
272 return map;
273
274 return NULL;
275}
276
277#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278/* ioremap will take care of cache attributes */
279#define should_use_kmap(pfn) 0
280#else
281#define should_use_kmap(pfn) page_is_ram(pfn)
282#endif
283
284static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285{
286 unsigned long pfn;
287
288 pfn = pg_off >> PAGE_SHIFT;
289 if (should_use_kmap(pfn)) {
290 if (pg_sz > PAGE_SIZE)
291 return NULL;
292 return (void __iomem __force *)kmap(pfn_to_page(pfn));
293 } else
294 return acpi_os_ioremap(pg_off, pg_sz);
295}
296
297static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298{
299 unsigned long pfn;
300
301 pfn = pg_off >> PAGE_SHIFT;
302 if (should_use_kmap(pfn))
303 kunmap(pfn_to_page(pfn));
304 else
305 iounmap(vaddr);
306}
307
308/**
309 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310 * @phys: Start of the physical address range to map.
311 * @size: Size of the physical address range to map.
312 *
313 * Look up the given physical address range in the list of existing ACPI memory
314 * mappings. If found, get a reference to it and return a pointer to it (its
315 * virtual address). If not found, map it, add it to that list and return a
316 * pointer to it.
317 *
318 * During early init (when acpi_permanent_mmap has not been set yet) this
319 * routine simply calls __acpi_map_table() to get the job done.
320 */
321void __iomem __ref
322*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323{
324 struct acpi_ioremap *map;
325 void __iomem *virt;
326 acpi_physical_address pg_off;
327 acpi_size pg_sz;
328
329 if (phys > ULONG_MAX) {
330 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331 return NULL;
332 }
333
334 if (!acpi_permanent_mmap)
335 return __acpi_map_table((unsigned long)phys, size);
336
337 mutex_lock(&acpi_ioremap_lock);
338 /* Check if there's a suitable mapping already. */
339 map = acpi_map_lookup(phys, size);
340 if (map) {
341 map->track.refcount++;
342 goto out;
343 }
344
345 map = kzalloc(sizeof(*map), GFP_KERNEL);
346 if (!map) {
347 mutex_unlock(&acpi_ioremap_lock);
348 return NULL;
349 }
350
351 pg_off = round_down(phys, PAGE_SIZE);
352 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353 virt = acpi_map(phys, size);
354 if (!virt) {
355 mutex_unlock(&acpi_ioremap_lock);
356 kfree(map);
357 return NULL;
358 }
359
360 INIT_LIST_HEAD(&map->list);
361 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362 map->phys = pg_off;
363 map->size = pg_sz;
364 map->track.refcount = 1;
365
366 list_add_tail_rcu(&map->list, &acpi_ioremaps);
367
368out:
369 mutex_unlock(&acpi_ioremap_lock);
370 return map->virt + (phys - map->phys);
371}
372EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373
374void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375{
376 return (void *)acpi_os_map_iomem(phys, size);
377}
378EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379
380static void acpi_os_map_remove(struct work_struct *work)
381{
382 struct acpi_ioremap *map = container_of(to_rcu_work(work),
383 struct acpi_ioremap,
384 track.rwork);
385
386 acpi_unmap(map->phys, map->virt);
387 kfree(map);
388}
389
390/* Must be called with mutex_lock(&acpi_ioremap_lock) */
391static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392{
393 if (--map->track.refcount)
394 return;
395
396 list_del_rcu(&map->list);
397
398 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399 queue_rcu_work(system_wq, &map->track.rwork);
400}
401
402/**
403 * acpi_os_unmap_iomem - Drop a memory mapping reference.
404 * @virt: Start of the address range to drop a reference to.
405 * @size: Size of the address range to drop a reference to.
406 *
407 * Look up the given virtual address range in the list of existing ACPI memory
408 * mappings, drop a reference to it and if there are no more active references
409 * to it, queue it up for later removal.
410 *
411 * During early init (when acpi_permanent_mmap has not been set yet) this
412 * routine simply calls __acpi_unmap_table() to get the job done. Since
413 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414 * here.
415 */
416void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417{
418 struct acpi_ioremap *map;
419
420 if (!acpi_permanent_mmap) {
421 __acpi_unmap_table(virt, size);
422 return;
423 }
424
425 mutex_lock(&acpi_ioremap_lock);
426
427 map = acpi_map_lookup_virt(virt, size);
428 if (!map) {
429 mutex_unlock(&acpi_ioremap_lock);
430 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431 return;
432 }
433 acpi_os_drop_map_ref(map);
434
435 mutex_unlock(&acpi_ioremap_lock);
436}
437EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438
439/**
440 * acpi_os_unmap_memory - Drop a memory mapping reference.
441 * @virt: Start of the address range to drop a reference to.
442 * @size: Size of the address range to drop a reference to.
443 */
444void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445{
446 acpi_os_unmap_iomem((void __iomem *)virt, size);
447}
448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450int acpi_os_map_generic_address(struct acpi_generic_address *gas)
451{
452 u64 addr;
453 void __iomem *virt;
454
455 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
456 return 0;
457
458 /* Handle possible alignment issues */
459 memcpy(&addr, &gas->address, sizeof(addr));
460 if (!addr || !gas->bit_width)
461 return -EINVAL;
462
463 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
464 if (!virt)
465 return -EIO;
466
467 return 0;
468}
469EXPORT_SYMBOL(acpi_os_map_generic_address);
470
471void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
472{
473 u64 addr;
474 struct acpi_ioremap *map;
475
476 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
477 return;
478
479 /* Handle possible alignment issues */
480 memcpy(&addr, &gas->address, sizeof(addr));
481 if (!addr || !gas->bit_width)
482 return;
483
484 mutex_lock(&acpi_ioremap_lock);
485
486 map = acpi_map_lookup(addr, gas->bit_width / 8);
487 if (!map) {
488 mutex_unlock(&acpi_ioremap_lock);
489 return;
490 }
491 acpi_os_drop_map_ref(map);
492
493 mutex_unlock(&acpi_ioremap_lock);
494}
495EXPORT_SYMBOL(acpi_os_unmap_generic_address);
496
497#ifdef ACPI_FUTURE_USAGE
498acpi_status
499acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
500{
501 if (!phys || !virt)
502 return AE_BAD_PARAMETER;
503
504 *phys = virt_to_phys(virt);
505
506 return AE_OK;
507}
508#endif
509
510#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
511static bool acpi_rev_override;
512
513int __init acpi_rev_override_setup(char *str)
514{
515 acpi_rev_override = true;
516 return 1;
517}
518__setup("acpi_rev_override", acpi_rev_override_setup);
519#else
520#define acpi_rev_override false
521#endif
522
523#define ACPI_MAX_OVERRIDE_LEN 100
524
525static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
526
527acpi_status
528acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
529 acpi_string *new_val)
530{
531 if (!init_val || !new_val)
532 return AE_BAD_PARAMETER;
533
534 *new_val = NULL;
535 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
536 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
537 acpi_os_name);
538 *new_val = acpi_os_name;
539 }
540
541 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
542 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
543 *new_val = (char *)5;
544 }
545
546 return AE_OK;
547}
548
549static irqreturn_t acpi_irq(int irq, void *dev_id)
550{
551 u32 handled;
552
553 handled = (*acpi_irq_handler) (acpi_irq_context);
554
555 if (handled) {
556 acpi_irq_handled++;
557 return IRQ_HANDLED;
558 } else {
559 acpi_irq_not_handled++;
560 return IRQ_NONE;
561 }
562}
563
564acpi_status
565acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
566 void *context)
567{
568 unsigned int irq;
569
570 acpi_irq_stats_init();
571
572 /*
573 * ACPI interrupts different from the SCI in our copy of the FADT are
574 * not supported.
575 */
576 if (gsi != acpi_gbl_FADT.sci_interrupt)
577 return AE_BAD_PARAMETER;
578
579 if (acpi_irq_handler)
580 return AE_ALREADY_ACQUIRED;
581
582 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
583 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
584 gsi);
585 return AE_OK;
586 }
587
588 acpi_irq_handler = handler;
589 acpi_irq_context = context;
590 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
591 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
592 acpi_irq_handler = NULL;
593 return AE_NOT_ACQUIRED;
594 }
595 acpi_sci_irq = irq;
596
597 return AE_OK;
598}
599
600acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
601{
602 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
603 return AE_BAD_PARAMETER;
604
605 free_irq(acpi_sci_irq, acpi_irq);
606 acpi_irq_handler = NULL;
607 acpi_sci_irq = INVALID_ACPI_IRQ;
608
609 return AE_OK;
610}
611
612/*
613 * Running in interpreter thread context, safe to sleep
614 */
615
616void acpi_os_sleep(u64 ms)
617{
618 msleep(ms);
619}
620
621void acpi_os_stall(u32 us)
622{
623 while (us) {
624 u32 delay = 1000;
625
626 if (delay > us)
627 delay = us;
628 udelay(delay);
629 touch_nmi_watchdog();
630 us -= delay;
631 }
632}
633
634/*
635 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
636 * monotonically increasing timer with 100ns granularity. Do not use
637 * ktime_get() to implement this function because this function may get
638 * called after timekeeping has been suspended. Note: calling this function
639 * after timekeeping has been suspended may lead to unexpected results
640 * because when timekeeping is suspended the jiffies counter is not
641 * incremented. See also timekeeping_suspend().
642 */
643u64 acpi_os_get_timer(void)
644{
645 return (get_jiffies_64() - INITIAL_JIFFIES) *
646 (ACPI_100NSEC_PER_SEC / HZ);
647}
648
649acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
650{
651 u32 dummy;
652
653 if (!value)
654 value = &dummy;
655
656 *value = 0;
657 if (width <= 8) {
658 *(u8 *) value = inb(port);
659 } else if (width <= 16) {
660 *(u16 *) value = inw(port);
661 } else if (width <= 32) {
662 *(u32 *) value = inl(port);
663 } else {
664 BUG();
665 }
666
667 return AE_OK;
668}
669
670EXPORT_SYMBOL(acpi_os_read_port);
671
672acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
673{
674 if (width <= 8) {
675 outb(value, port);
676 } else if (width <= 16) {
677 outw(value, port);
678 } else if (width <= 32) {
679 outl(value, port);
680 } else {
681 BUG();
682 }
683
684 return AE_OK;
685}
686
687EXPORT_SYMBOL(acpi_os_write_port);
688
689int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
690{
691
692 switch (width) {
693 case 8:
694 *(u8 *) value = readb(virt_addr);
695 break;
696 case 16:
697 *(u16 *) value = readw(virt_addr);
698 break;
699 case 32:
700 *(u32 *) value = readl(virt_addr);
701 break;
702 case 64:
703 *(u64 *) value = readq(virt_addr);
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 return 0;
710}
711
712acpi_status
713acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
714{
715 void __iomem *virt_addr;
716 unsigned int size = width / 8;
717 bool unmap = false;
718 u64 dummy;
719 int error;
720
721 rcu_read_lock();
722 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
723 if (!virt_addr) {
724 rcu_read_unlock();
725 virt_addr = acpi_os_ioremap(phys_addr, size);
726 if (!virt_addr)
727 return AE_BAD_ADDRESS;
728 unmap = true;
729 }
730
731 if (!value)
732 value = &dummy;
733
734 error = acpi_os_read_iomem(virt_addr, value, width);
735 BUG_ON(error);
736
737 if (unmap)
738 iounmap(virt_addr);
739 else
740 rcu_read_unlock();
741
742 return AE_OK;
743}
744
745acpi_status
746acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
747{
748 void __iomem *virt_addr;
749 unsigned int size = width / 8;
750 bool unmap = false;
751
752 rcu_read_lock();
753 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
754 if (!virt_addr) {
755 rcu_read_unlock();
756 virt_addr = acpi_os_ioremap(phys_addr, size);
757 if (!virt_addr)
758 return AE_BAD_ADDRESS;
759 unmap = true;
760 }
761
762 switch (width) {
763 case 8:
764 writeb(value, virt_addr);
765 break;
766 case 16:
767 writew(value, virt_addr);
768 break;
769 case 32:
770 writel(value, virt_addr);
771 break;
772 case 64:
773 writeq(value, virt_addr);
774 break;
775 default:
776 BUG();
777 }
778
779 if (unmap)
780 iounmap(virt_addr);
781 else
782 rcu_read_unlock();
783
784 return AE_OK;
785}
786
787#ifdef CONFIG_PCI
788acpi_status
789acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
790 u64 *value, u32 width)
791{
792 int result, size;
793 u32 value32;
794
795 if (!value)
796 return AE_BAD_PARAMETER;
797
798 switch (width) {
799 case 8:
800 size = 1;
801 break;
802 case 16:
803 size = 2;
804 break;
805 case 32:
806 size = 4;
807 break;
808 default:
809 return AE_ERROR;
810 }
811
812 result = raw_pci_read(pci_id->segment, pci_id->bus,
813 PCI_DEVFN(pci_id->device, pci_id->function),
814 reg, size, &value32);
815 *value = value32;
816
817 return (result ? AE_ERROR : AE_OK);
818}
819
820acpi_status
821acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
822 u64 value, u32 width)
823{
824 int result, size;
825
826 switch (width) {
827 case 8:
828 size = 1;
829 break;
830 case 16:
831 size = 2;
832 break;
833 case 32:
834 size = 4;
835 break;
836 default:
837 return AE_ERROR;
838 }
839
840 result = raw_pci_write(pci_id->segment, pci_id->bus,
841 PCI_DEVFN(pci_id->device, pci_id->function),
842 reg, size, value);
843
844 return (result ? AE_ERROR : AE_OK);
845}
846#endif
847
848static void acpi_os_execute_deferred(struct work_struct *work)
849{
850 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
851
852 dpc->function(dpc->context);
853 kfree(dpc);
854}
855
856#ifdef CONFIG_ACPI_DEBUGGER
857static struct acpi_debugger acpi_debugger;
858static bool acpi_debugger_initialized;
859
860int acpi_register_debugger(struct module *owner,
861 const struct acpi_debugger_ops *ops)
862{
863 int ret = 0;
864
865 mutex_lock(&acpi_debugger.lock);
866 if (acpi_debugger.ops) {
867 ret = -EBUSY;
868 goto err_lock;
869 }
870
871 acpi_debugger.owner = owner;
872 acpi_debugger.ops = ops;
873
874err_lock:
875 mutex_unlock(&acpi_debugger.lock);
876 return ret;
877}
878EXPORT_SYMBOL(acpi_register_debugger);
879
880void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
881{
882 mutex_lock(&acpi_debugger.lock);
883 if (ops == acpi_debugger.ops) {
884 acpi_debugger.ops = NULL;
885 acpi_debugger.owner = NULL;
886 }
887 mutex_unlock(&acpi_debugger.lock);
888}
889EXPORT_SYMBOL(acpi_unregister_debugger);
890
891int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
892{
893 int ret;
894 int (*func)(acpi_osd_exec_callback, void *);
895 struct module *owner;
896
897 if (!acpi_debugger_initialized)
898 return -ENODEV;
899 mutex_lock(&acpi_debugger.lock);
900 if (!acpi_debugger.ops) {
901 ret = -ENODEV;
902 goto err_lock;
903 }
904 if (!try_module_get(acpi_debugger.owner)) {
905 ret = -ENODEV;
906 goto err_lock;
907 }
908 func = acpi_debugger.ops->create_thread;
909 owner = acpi_debugger.owner;
910 mutex_unlock(&acpi_debugger.lock);
911
912 ret = func(function, context);
913
914 mutex_lock(&acpi_debugger.lock);
915 module_put(owner);
916err_lock:
917 mutex_unlock(&acpi_debugger.lock);
918 return ret;
919}
920
921ssize_t acpi_debugger_write_log(const char *msg)
922{
923 ssize_t ret;
924 ssize_t (*func)(const char *);
925 struct module *owner;
926
927 if (!acpi_debugger_initialized)
928 return -ENODEV;
929 mutex_lock(&acpi_debugger.lock);
930 if (!acpi_debugger.ops) {
931 ret = -ENODEV;
932 goto err_lock;
933 }
934 if (!try_module_get(acpi_debugger.owner)) {
935 ret = -ENODEV;
936 goto err_lock;
937 }
938 func = acpi_debugger.ops->write_log;
939 owner = acpi_debugger.owner;
940 mutex_unlock(&acpi_debugger.lock);
941
942 ret = func(msg);
943
944 mutex_lock(&acpi_debugger.lock);
945 module_put(owner);
946err_lock:
947 mutex_unlock(&acpi_debugger.lock);
948 return ret;
949}
950
951ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
952{
953 ssize_t ret;
954 ssize_t (*func)(char *, size_t);
955 struct module *owner;
956
957 if (!acpi_debugger_initialized)
958 return -ENODEV;
959 mutex_lock(&acpi_debugger.lock);
960 if (!acpi_debugger.ops) {
961 ret = -ENODEV;
962 goto err_lock;
963 }
964 if (!try_module_get(acpi_debugger.owner)) {
965 ret = -ENODEV;
966 goto err_lock;
967 }
968 func = acpi_debugger.ops->read_cmd;
969 owner = acpi_debugger.owner;
970 mutex_unlock(&acpi_debugger.lock);
971
972 ret = func(buffer, buffer_length);
973
974 mutex_lock(&acpi_debugger.lock);
975 module_put(owner);
976err_lock:
977 mutex_unlock(&acpi_debugger.lock);
978 return ret;
979}
980
981int acpi_debugger_wait_command_ready(void)
982{
983 int ret;
984 int (*func)(bool, char *, size_t);
985 struct module *owner;
986
987 if (!acpi_debugger_initialized)
988 return -ENODEV;
989 mutex_lock(&acpi_debugger.lock);
990 if (!acpi_debugger.ops) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 if (!try_module_get(acpi_debugger.owner)) {
995 ret = -ENODEV;
996 goto err_lock;
997 }
998 func = acpi_debugger.ops->wait_command_ready;
999 owner = acpi_debugger.owner;
1000 mutex_unlock(&acpi_debugger.lock);
1001
1002 ret = func(acpi_gbl_method_executing,
1003 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1004
1005 mutex_lock(&acpi_debugger.lock);
1006 module_put(owner);
1007err_lock:
1008 mutex_unlock(&acpi_debugger.lock);
1009 return ret;
1010}
1011
1012int acpi_debugger_notify_command_complete(void)
1013{
1014 int ret;
1015 int (*func)(void);
1016 struct module *owner;
1017
1018 if (!acpi_debugger_initialized)
1019 return -ENODEV;
1020 mutex_lock(&acpi_debugger.lock);
1021 if (!acpi_debugger.ops) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 if (!try_module_get(acpi_debugger.owner)) {
1026 ret = -ENODEV;
1027 goto err_lock;
1028 }
1029 func = acpi_debugger.ops->notify_command_complete;
1030 owner = acpi_debugger.owner;
1031 mutex_unlock(&acpi_debugger.lock);
1032
1033 ret = func();
1034
1035 mutex_lock(&acpi_debugger.lock);
1036 module_put(owner);
1037err_lock:
1038 mutex_unlock(&acpi_debugger.lock);
1039 return ret;
1040}
1041
1042int __init acpi_debugger_init(void)
1043{
1044 mutex_init(&acpi_debugger.lock);
1045 acpi_debugger_initialized = true;
1046 return 0;
1047}
1048#endif
1049
1050/*******************************************************************************
1051 *
1052 * FUNCTION: acpi_os_execute
1053 *
1054 * PARAMETERS: Type - Type of the callback
1055 * Function - Function to be executed
1056 * Context - Function parameters
1057 *
1058 * RETURN: Status
1059 *
1060 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1061 * immediately executes function on a separate thread.
1062 *
1063 ******************************************************************************/
1064
1065acpi_status acpi_os_execute(acpi_execute_type type,
1066 acpi_osd_exec_callback function, void *context)
1067{
1068 acpi_status status = AE_OK;
1069 struct acpi_os_dpc *dpc;
1070 struct workqueue_struct *queue;
1071 int ret;
1072 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1073 "Scheduling function [%p(%p)] for deferred execution.\n",
1074 function, context));
1075
1076 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1077 ret = acpi_debugger_create_thread(function, context);
1078 if (ret) {
1079 pr_err("Call to kthread_create() failed.\n");
1080 status = AE_ERROR;
1081 }
1082 goto out_thread;
1083 }
1084
1085 /*
1086 * Allocate/initialize DPC structure. Note that this memory will be
1087 * freed by the callee. The kernel handles the work_struct list in a
1088 * way that allows us to also free its memory inside the callee.
1089 * Because we may want to schedule several tasks with different
1090 * parameters we can't use the approach some kernel code uses of
1091 * having a static work_struct.
1092 */
1093
1094 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1095 if (!dpc)
1096 return AE_NO_MEMORY;
1097
1098 dpc->function = function;
1099 dpc->context = context;
1100
1101 /*
1102 * To prevent lockdep from complaining unnecessarily, make sure that
1103 * there is a different static lockdep key for each workqueue by using
1104 * INIT_WORK() for each of them separately.
1105 */
1106 if (type == OSL_NOTIFY_HANDLER) {
1107 queue = kacpi_notify_wq;
1108 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109 } else if (type == OSL_GPE_HANDLER) {
1110 queue = kacpid_wq;
1111 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1112 } else {
1113 pr_err("Unsupported os_execute type %d.\n", type);
1114 status = AE_ERROR;
1115 }
1116
1117 if (ACPI_FAILURE(status))
1118 goto err_workqueue;
1119
1120 /*
1121 * On some machines, a software-initiated SMI causes corruption unless
1122 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1123 * typically it's done in GPE-related methods that are run via
1124 * workqueues, so we can avoid the known corruption cases by always
1125 * queueing on CPU 0.
1126 */
1127 ret = queue_work_on(0, queue, &dpc->work);
1128 if (!ret) {
1129 printk(KERN_ERR PREFIX
1130 "Call to queue_work() failed.\n");
1131 status = AE_ERROR;
1132 }
1133err_workqueue:
1134 if (ACPI_FAILURE(status))
1135 kfree(dpc);
1136out_thread:
1137 return status;
1138}
1139EXPORT_SYMBOL(acpi_os_execute);
1140
1141void acpi_os_wait_events_complete(void)
1142{
1143 /*
1144 * Make sure the GPE handler or the fixed event handler is not used
1145 * on another CPU after removal.
1146 */
1147 if (acpi_sci_irq_valid())
1148 synchronize_hardirq(acpi_sci_irq);
1149 flush_workqueue(kacpid_wq);
1150 flush_workqueue(kacpi_notify_wq);
1151}
1152EXPORT_SYMBOL(acpi_os_wait_events_complete);
1153
1154struct acpi_hp_work {
1155 struct work_struct work;
1156 struct acpi_device *adev;
1157 u32 src;
1158};
1159
1160static void acpi_hotplug_work_fn(struct work_struct *work)
1161{
1162 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1163
1164 acpi_os_wait_events_complete();
1165 acpi_device_hotplug(hpw->adev, hpw->src);
1166 kfree(hpw);
1167}
1168
1169acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1170{
1171 struct acpi_hp_work *hpw;
1172
1173 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1174 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1175 adev, src));
1176
1177 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1178 if (!hpw)
1179 return AE_NO_MEMORY;
1180
1181 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1182 hpw->adev = adev;
1183 hpw->src = src;
1184 /*
1185 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1186 * the hotplug code may call driver .remove() functions, which may
1187 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1188 * these workqueues.
1189 */
1190 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1191 kfree(hpw);
1192 return AE_ERROR;
1193 }
1194 return AE_OK;
1195}
1196
1197bool acpi_queue_hotplug_work(struct work_struct *work)
1198{
1199 return queue_work(kacpi_hotplug_wq, work);
1200}
1201
1202acpi_status
1203acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1204{
1205 struct semaphore *sem = NULL;
1206
1207 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1208 if (!sem)
1209 return AE_NO_MEMORY;
1210
1211 sema_init(sem, initial_units);
1212
1213 *handle = (acpi_handle *) sem;
1214
1215 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1216 *handle, initial_units));
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: A better way to delete semaphores? Linux doesn't have a
1223 * 'delete_semaphore()' function -- may result in an invalid
1224 * pointer dereference for non-synchronized consumers. Should
1225 * we at least check for blocked threads and signal/cancel them?
1226 */
1227
1228acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1229{
1230 struct semaphore *sem = (struct semaphore *)handle;
1231
1232 if (!sem)
1233 return AE_BAD_PARAMETER;
1234
1235 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1236
1237 BUG_ON(!list_empty(&sem->wait_list));
1238 kfree(sem);
1239 sem = NULL;
1240
1241 return AE_OK;
1242}
1243
1244/*
1245 * TODO: Support for units > 1?
1246 */
1247acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1248{
1249 acpi_status status = AE_OK;
1250 struct semaphore *sem = (struct semaphore *)handle;
1251 long jiffies;
1252 int ret = 0;
1253
1254 if (!acpi_os_initialized)
1255 return AE_OK;
1256
1257 if (!sem || (units < 1))
1258 return AE_BAD_PARAMETER;
1259
1260 if (units > 1)
1261 return AE_SUPPORT;
1262
1263 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1264 handle, units, timeout));
1265
1266 if (timeout == ACPI_WAIT_FOREVER)
1267 jiffies = MAX_SCHEDULE_TIMEOUT;
1268 else
1269 jiffies = msecs_to_jiffies(timeout);
1270
1271 ret = down_timeout(sem, jiffies);
1272 if (ret)
1273 status = AE_TIME;
1274
1275 if (ACPI_FAILURE(status)) {
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Failed to acquire semaphore[%p|%d|%d], %s",
1278 handle, units, timeout,
1279 acpi_format_exception(status)));
1280 } else {
1281 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1282 "Acquired semaphore[%p|%d|%d]", handle,
1283 units, timeout));
1284 }
1285
1286 return status;
1287}
1288
1289/*
1290 * TODO: Support for units > 1?
1291 */
1292acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1293{
1294 struct semaphore *sem = (struct semaphore *)handle;
1295
1296 if (!acpi_os_initialized)
1297 return AE_OK;
1298
1299 if (!sem || (units < 1))
1300 return AE_BAD_PARAMETER;
1301
1302 if (units > 1)
1303 return AE_SUPPORT;
1304
1305 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1306 units));
1307
1308 up(sem);
1309
1310 return AE_OK;
1311}
1312
1313acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1314{
1315#ifdef ENABLE_DEBUGGER
1316 if (acpi_in_debugger) {
1317 u32 chars;
1318
1319 kdb_read(buffer, buffer_length);
1320
1321 /* remove the CR kdb includes */
1322 chars = strlen(buffer) - 1;
1323 buffer[chars] = '\0';
1324 }
1325#else
1326 int ret;
1327
1328 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1329 if (ret < 0)
1330 return AE_ERROR;
1331 if (bytes_read)
1332 *bytes_read = ret;
1333#endif
1334
1335 return AE_OK;
1336}
1337EXPORT_SYMBOL(acpi_os_get_line);
1338
1339acpi_status acpi_os_wait_command_ready(void)
1340{
1341 int ret;
1342
1343 ret = acpi_debugger_wait_command_ready();
1344 if (ret < 0)
1345 return AE_ERROR;
1346 return AE_OK;
1347}
1348
1349acpi_status acpi_os_notify_command_complete(void)
1350{
1351 int ret;
1352
1353 ret = acpi_debugger_notify_command_complete();
1354 if (ret < 0)
1355 return AE_ERROR;
1356 return AE_OK;
1357}
1358
1359acpi_status acpi_os_signal(u32 function, void *info)
1360{
1361 switch (function) {
1362 case ACPI_SIGNAL_FATAL:
1363 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1364 break;
1365 case ACPI_SIGNAL_BREAKPOINT:
1366 /*
1367 * AML Breakpoint
1368 * ACPI spec. says to treat it as a NOP unless
1369 * you are debugging. So if/when we integrate
1370 * AML debugger into the kernel debugger its
1371 * hook will go here. But until then it is
1372 * not useful to print anything on breakpoints.
1373 */
1374 break;
1375 default:
1376 break;
1377 }
1378
1379 return AE_OK;
1380}
1381
1382static int __init acpi_os_name_setup(char *str)
1383{
1384 char *p = acpi_os_name;
1385 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1386
1387 if (!str || !*str)
1388 return 0;
1389
1390 for (; count-- && *str; str++) {
1391 if (isalnum(*str) || *str == ' ' || *str == ':')
1392 *p++ = *str;
1393 else if (*str == '\'' || *str == '"')
1394 continue;
1395 else
1396 break;
1397 }
1398 *p = 0;
1399
1400 return 1;
1401
1402}
1403
1404__setup("acpi_os_name=", acpi_os_name_setup);
1405
1406/*
1407 * Disable the auto-serialization of named objects creation methods.
1408 *
1409 * This feature is enabled by default. It marks the AML control methods
1410 * that contain the opcodes to create named objects as "Serialized".
1411 */
1412static int __init acpi_no_auto_serialize_setup(char *str)
1413{
1414 acpi_gbl_auto_serialize_methods = FALSE;
1415 pr_info("ACPI: auto-serialization disabled\n");
1416
1417 return 1;
1418}
1419
1420__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1421
1422/* Check of resource interference between native drivers and ACPI
1423 * OperationRegions (SystemIO and System Memory only).
1424 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1425 * in arbitrary AML code and can interfere with legacy drivers.
1426 * acpi_enforce_resources= can be set to:
1427 *
1428 * - strict (default) (2)
1429 * -> further driver trying to access the resources will not load
1430 * - lax (1)
1431 * -> further driver trying to access the resources will load, but you
1432 * get a system message that something might go wrong...
1433 *
1434 * - no (0)
1435 * -> ACPI Operation Region resources will not be registered
1436 *
1437 */
1438#define ENFORCE_RESOURCES_STRICT 2
1439#define ENFORCE_RESOURCES_LAX 1
1440#define ENFORCE_RESOURCES_NO 0
1441
1442static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1443
1444static int __init acpi_enforce_resources_setup(char *str)
1445{
1446 if (str == NULL || *str == '\0')
1447 return 0;
1448
1449 if (!strcmp("strict", str))
1450 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1451 else if (!strcmp("lax", str))
1452 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1453 else if (!strcmp("no", str))
1454 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1455
1456 return 1;
1457}
1458
1459__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1460
1461/* Check for resource conflicts between ACPI OperationRegions and native
1462 * drivers */
1463int acpi_check_resource_conflict(const struct resource *res)
1464{
1465 acpi_adr_space_type space_id;
1466 acpi_size length;
1467 u8 warn = 0;
1468 int clash = 0;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1473 return 0;
1474
1475 if (res->flags & IORESOURCE_IO)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1477 else
1478 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1479
1480 length = resource_size(res);
1481 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1482 warn = 1;
1483 clash = acpi_check_address_range(space_id, res->start, length, warn);
1484
1485 if (clash) {
1486 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1487 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1488 printk(KERN_NOTICE "ACPI: This conflict may"
1489 " cause random problems and system"
1490 " instability\n");
1491 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1492 " for this device, you should use it instead of"
1493 " the native driver\n");
1494 }
1495 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1496 return -EBUSY;
1497 }
1498 return 0;
1499}
1500EXPORT_SYMBOL(acpi_check_resource_conflict);
1501
1502int acpi_check_region(resource_size_t start, resource_size_t n,
1503 const char *name)
1504{
1505 struct resource res = {
1506 .start = start,
1507 .end = start + n - 1,
1508 .name = name,
1509 .flags = IORESOURCE_IO,
1510 };
1511
1512 return acpi_check_resource_conflict(&res);
1513}
1514EXPORT_SYMBOL(acpi_check_region);
1515
1516static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1517 void *_res, void **return_value)
1518{
1519 struct acpi_mem_space_context **mem_ctx;
1520 union acpi_operand_object *handler_obj;
1521 union acpi_operand_object *region_obj2;
1522 union acpi_operand_object *region_obj;
1523 struct resource *res = _res;
1524 acpi_status status;
1525
1526 region_obj = acpi_ns_get_attached_object(handle);
1527 if (!region_obj)
1528 return AE_OK;
1529
1530 handler_obj = region_obj->region.handler;
1531 if (!handler_obj)
1532 return AE_OK;
1533
1534 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1535 return AE_OK;
1536
1537 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1538 return AE_OK;
1539
1540 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1541 if (!region_obj2)
1542 return AE_OK;
1543
1544 mem_ctx = (void *)®ion_obj2->extra.region_context;
1545
1546 if (!(mem_ctx[0]->address >= res->start &&
1547 mem_ctx[0]->address < res->end))
1548 return AE_OK;
1549
1550 status = handler_obj->address_space.setup(region_obj,
1551 ACPI_REGION_DEACTIVATE,
1552 NULL, (void **)mem_ctx);
1553 if (ACPI_SUCCESS(status))
1554 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1555
1556 return status;
1557}
1558
1559/**
1560 * acpi_release_memory - Release any mappings done to a memory region
1561 * @handle: Handle to namespace node
1562 * @res: Memory resource
1563 * @level: A level that terminates the search
1564 *
1565 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1566 * overlap with @res and that have already been activated (mapped).
1567 *
1568 * This is a helper that allows drivers to place special requirements on memory
1569 * region that may overlap with operation regions, primarily allowing them to
1570 * safely map the region as non-cached memory.
1571 *
1572 * The unmapped Operation Regions will be automatically remapped next time they
1573 * are called, so the drivers do not need to do anything else.
1574 */
1575acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1576 u32 level)
1577{
1578 acpi_status status;
1579
1580 if (!(res->flags & IORESOURCE_MEM))
1581 return AE_TYPE;
1582
1583 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1584 acpi_deactivate_mem_region, NULL,
1585 res, NULL);
1586 if (ACPI_FAILURE(status))
1587 return status;
1588
1589 /*
1590 * Wait for all of the mappings queued up for removal by
1591 * acpi_deactivate_mem_region() to actually go away.
1592 */
1593 synchronize_rcu();
1594 rcu_barrier();
1595 flush_scheduled_work();
1596
1597 return AE_OK;
1598}
1599EXPORT_SYMBOL_GPL(acpi_release_memory);
1600
1601/*
1602 * Let drivers know whether the resource checks are effective
1603 */
1604int acpi_resources_are_enforced(void)
1605{
1606 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1607}
1608EXPORT_SYMBOL(acpi_resources_are_enforced);
1609
1610/*
1611 * Deallocate the memory for a spinlock.
1612 */
1613void acpi_os_delete_lock(acpi_spinlock handle)
1614{
1615 ACPI_FREE(handle);
1616}
1617
1618/*
1619 * Acquire a spinlock.
1620 *
1621 * handle is a pointer to the spinlock_t.
1622 */
1623
1624acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1625 __acquires(lockp)
1626{
1627 acpi_cpu_flags flags;
1628 spin_lock_irqsave(lockp, flags);
1629 return flags;
1630}
1631
1632/*
1633 * Release a spinlock. See above.
1634 */
1635
1636void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1637 __releases(lockp)
1638{
1639 spin_unlock_irqrestore(lockp, flags);
1640}
1641
1642#ifndef ACPI_USE_LOCAL_CACHE
1643
1644/*******************************************************************************
1645 *
1646 * FUNCTION: acpi_os_create_cache
1647 *
1648 * PARAMETERS: name - Ascii name for the cache
1649 * size - Size of each cached object
1650 * depth - Maximum depth of the cache (in objects) <ignored>
1651 * cache - Where the new cache object is returned
1652 *
1653 * RETURN: status
1654 *
1655 * DESCRIPTION: Create a cache object
1656 *
1657 ******************************************************************************/
1658
1659acpi_status
1660acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1661{
1662 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1663 if (*cache == NULL)
1664 return AE_ERROR;
1665 else
1666 return AE_OK;
1667}
1668
1669/*******************************************************************************
1670 *
1671 * FUNCTION: acpi_os_purge_cache
1672 *
1673 * PARAMETERS: Cache - Handle to cache object
1674 *
1675 * RETURN: Status
1676 *
1677 * DESCRIPTION: Free all objects within the requested cache.
1678 *
1679 ******************************************************************************/
1680
1681acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1682{
1683 kmem_cache_shrink(cache);
1684 return (AE_OK);
1685}
1686
1687/*******************************************************************************
1688 *
1689 * FUNCTION: acpi_os_delete_cache
1690 *
1691 * PARAMETERS: Cache - Handle to cache object
1692 *
1693 * RETURN: Status
1694 *
1695 * DESCRIPTION: Free all objects within the requested cache and delete the
1696 * cache object.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1701{
1702 kmem_cache_destroy(cache);
1703 return (AE_OK);
1704}
1705
1706/*******************************************************************************
1707 *
1708 * FUNCTION: acpi_os_release_object
1709 *
1710 * PARAMETERS: Cache - Handle to cache object
1711 * Object - The object to be released
1712 *
1713 * RETURN: None
1714 *
1715 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1716 * the object is deleted.
1717 *
1718 ******************************************************************************/
1719
1720acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1721{
1722 kmem_cache_free(cache, object);
1723 return (AE_OK);
1724}
1725#endif
1726
1727static int __init acpi_no_static_ssdt_setup(char *s)
1728{
1729 acpi_gbl_disable_ssdt_table_install = TRUE;
1730 pr_info("ACPI: static SSDT installation disabled\n");
1731
1732 return 0;
1733}
1734
1735early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1736
1737static int __init acpi_disable_return_repair(char *s)
1738{
1739 printk(KERN_NOTICE PREFIX
1740 "ACPI: Predefined validation mechanism disabled\n");
1741 acpi_gbl_disable_auto_repair = TRUE;
1742
1743 return 1;
1744}
1745
1746__setup("acpica_no_return_repair", acpi_disable_return_repair);
1747
1748acpi_status __init acpi_os_initialize(void)
1749{
1750 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1752 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1753 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1755 /*
1756 * Use acpi_os_map_generic_address to pre-map the reset
1757 * register if it's in system memory.
1758 */
1759 int rv;
1760
1761 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1762 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1763 }
1764 acpi_os_initialized = true;
1765
1766 return AE_OK;
1767}
1768
1769acpi_status __init acpi_os_initialize1(void)
1770{
1771 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774 BUG_ON(!kacpid_wq);
1775 BUG_ON(!kacpi_notify_wq);
1776 BUG_ON(!kacpi_hotplug_wq);
1777 acpi_osi_init();
1778 return AE_OK;
1779}
1780
1781acpi_status acpi_os_terminate(void)
1782{
1783 if (acpi_irq_handler) {
1784 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785 acpi_irq_handler);
1786 }
1787
1788 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1791 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1792 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1793 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1794
1795 destroy_workqueue(kacpid_wq);
1796 destroy_workqueue(kacpi_notify_wq);
1797 destroy_workqueue(kacpi_hotplug_wq);
1798
1799 return AE_OK;
1800}
1801
1802acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1803 u32 pm1b_control)
1804{
1805 int rc = 0;
1806 if (__acpi_os_prepare_sleep)
1807 rc = __acpi_os_prepare_sleep(sleep_state,
1808 pm1a_control, pm1b_control);
1809 if (rc < 0)
1810 return AE_ERROR;
1811 else if (rc > 0)
1812 return AE_CTRL_TERMINATE;
1813
1814 return AE_OK;
1815}
1816
1817void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1818 u32 pm1a_ctrl, u32 pm1b_ctrl))
1819{
1820 __acpi_os_prepare_sleep = func;
1821}
1822
1823#if (ACPI_REDUCED_HARDWARE)
1824acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1825 u32 val_b)
1826{
1827 int rc = 0;
1828 if (__acpi_os_prepare_extended_sleep)
1829 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1830 val_a, val_b);
1831 if (rc < 0)
1832 return AE_ERROR;
1833 else if (rc > 0)
1834 return AE_CTRL_TERMINATE;
1835
1836 return AE_OK;
1837}
1838#else
1839acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1840 u32 val_b)
1841{
1842 return AE_OK;
1843}
1844#endif
1845
1846void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1847 u32 val_a, u32 val_b))
1848{
1849 __acpi_os_prepare_extended_sleep = func;
1850}
1851
1852acpi_status acpi_os_enter_sleep(u8 sleep_state,
1853 u32 reg_a_value, u32 reg_b_value)
1854{
1855 acpi_status status;
1856
1857 if (acpi_gbl_reduced_hardware)
1858 status = acpi_os_prepare_extended_sleep(sleep_state,
1859 reg_a_value,
1860 reg_b_value);
1861 else
1862 status = acpi_os_prepare_sleep(sleep_state,
1863 reg_a_value, reg_b_value);
1864 return status;
1865}