Loading...
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 *
28 */
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/mm.h>
34#include <linux/pci.h>
35#include <linux/interrupt.h>
36#include <linux/kmod.h>
37#include <linux/delay.h>
38#include <linux/workqueue.h>
39#include <linux/nmi.h>
40#include <linux/acpi.h>
41#include <linux/acpi_io.h>
42#include <linux/efi.h>
43#include <linux/ioport.h>
44#include <linux/list.h>
45#include <linux/jiffies.h>
46#include <linux/semaphore.h>
47
48#include <asm/io.h>
49#include <asm/uaccess.h>
50
51#include <acpi/acpi.h>
52#include <acpi/acpi_bus.h>
53#include <acpi/processor.h>
54
55#define _COMPONENT ACPI_OS_SERVICES
56ACPI_MODULE_NAME("osl");
57#define PREFIX "ACPI: "
58struct acpi_os_dpc {
59 acpi_osd_exec_callback function;
60 void *context;
61 struct work_struct work;
62 int wait;
63};
64
65#ifdef CONFIG_ACPI_CUSTOM_DSDT
66#include CONFIG_ACPI_CUSTOM_DSDT_FILE
67#endif
68
69#ifdef ENABLE_DEBUGGER
70#include <linux/kdb.h>
71
72/* stuff for debugger support */
73int acpi_in_debugger;
74EXPORT_SYMBOL(acpi_in_debugger);
75
76extern char line_buf[80];
77#endif /*ENABLE_DEBUGGER */
78
79static acpi_osd_handler acpi_irq_handler;
80static void *acpi_irq_context;
81static struct workqueue_struct *kacpid_wq;
82static struct workqueue_struct *kacpi_notify_wq;
83static struct workqueue_struct *kacpi_hotplug_wq;
84
85struct acpi_res_list {
86 resource_size_t start;
87 resource_size_t end;
88 acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 char name[5]; /* only can have a length of 4 chars, make use of this
90 one instead of res->name, no need to kalloc then */
91 struct list_head resource_list;
92 int count;
93};
94
95static LIST_HEAD(resource_list_head);
96static DEFINE_SPINLOCK(acpi_res_lock);
97
98/*
99 * This list of permanent mappings is for memory that may be accessed from
100 * interrupt context, where we can't do the ioremap().
101 */
102struct acpi_ioremap {
103 struct list_head list;
104 void __iomem *virt;
105 acpi_physical_address phys;
106 acpi_size size;
107 unsigned long refcount;
108};
109
110static LIST_HEAD(acpi_ioremaps);
111static DEFINE_MUTEX(acpi_ioremap_lock);
112
113static void __init acpi_osi_setup_late(void);
114
115/*
116 * The story of _OSI(Linux)
117 *
118 * From pre-history through Linux-2.6.22,
119 * Linux responded TRUE upon a BIOS OSI(Linux) query.
120 *
121 * Unfortunately, reference BIOS writers got wind of this
122 * and put OSI(Linux) in their example code, quickly exposing
123 * this string as ill-conceived and opening the door to
124 * an un-bounded number of BIOS incompatibilities.
125 *
126 * For example, OSI(Linux) was used on resume to re-POST a
127 * video card on one system, because Linux at that time
128 * could not do a speedy restore in its native driver.
129 * But then upon gaining quick native restore capability,
130 * Linux has no way to tell the BIOS to skip the time-consuming
131 * POST -- putting Linux at a permanent performance disadvantage.
132 * On another system, the BIOS writer used OSI(Linux)
133 * to infer native OS support for IPMI! On other systems,
134 * OSI(Linux) simply got in the way of Linux claiming to
135 * be compatible with other operating systems, exposing
136 * BIOS issues such as skipped device initialization.
137 *
138 * So "Linux" turned out to be a really poor chose of
139 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
140 *
141 * BIOS writers should NOT query _OSI(Linux) on future systems.
142 * Linux will complain on the console when it sees it, and return FALSE.
143 * To get Linux to return TRUE for your system will require
144 * a kernel source update to add a DMI entry,
145 * or boot with "acpi_osi=Linux"
146 */
147
148static struct osi_linux {
149 unsigned int enable:1;
150 unsigned int dmi:1;
151 unsigned int cmdline:1;
152} osi_linux = {0, 0, 0};
153
154static u32 acpi_osi_handler(acpi_string interface, u32 supported)
155{
156 if (!strcmp("Linux", interface)) {
157
158 printk_once(KERN_NOTICE FW_BUG PREFIX
159 "BIOS _OSI(Linux) query %s%s\n",
160 osi_linux.enable ? "honored" : "ignored",
161 osi_linux.cmdline ? " via cmdline" :
162 osi_linux.dmi ? " via DMI" : "");
163 }
164
165 return supported;
166}
167
168static void __init acpi_request_region (struct acpi_generic_address *addr,
169 unsigned int length, char *desc)
170{
171 if (!addr->address || !length)
172 return;
173
174 /* Resources are never freed */
175 if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
176 request_region(addr->address, length, desc);
177 else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
178 request_mem_region(addr->address, length, desc);
179}
180
181static int __init acpi_reserve_resources(void)
182{
183 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
184 "ACPI PM1a_EVT_BLK");
185
186 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
187 "ACPI PM1b_EVT_BLK");
188
189 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
190 "ACPI PM1a_CNT_BLK");
191
192 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
193 "ACPI PM1b_CNT_BLK");
194
195 if (acpi_gbl_FADT.pm_timer_length == 4)
196 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
197
198 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
199 "ACPI PM2_CNT_BLK");
200
201 /* Length of GPE blocks must be a non-negative multiple of 2 */
202
203 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
204 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
205 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
206
207 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
208 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
209 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
210
211 return 0;
212}
213device_initcall(acpi_reserve_resources);
214
215void acpi_os_printf(const char *fmt, ...)
216{
217 va_list args;
218 va_start(args, fmt);
219 acpi_os_vprintf(fmt, args);
220 va_end(args);
221}
222
223void acpi_os_vprintf(const char *fmt, va_list args)
224{
225 static char buffer[512];
226
227 vsprintf(buffer, fmt, args);
228
229#ifdef ENABLE_DEBUGGER
230 if (acpi_in_debugger) {
231 kdb_printf("%s", buffer);
232 } else {
233 printk(KERN_CONT "%s", buffer);
234 }
235#else
236 printk(KERN_CONT "%s", buffer);
237#endif
238}
239
240#ifdef CONFIG_KEXEC
241static unsigned long acpi_rsdp;
242static int __init setup_acpi_rsdp(char *arg)
243{
244 acpi_rsdp = simple_strtoul(arg, NULL, 16);
245 return 0;
246}
247early_param("acpi_rsdp", setup_acpi_rsdp);
248#endif
249
250acpi_physical_address __init acpi_os_get_root_pointer(void)
251{
252#ifdef CONFIG_KEXEC
253 if (acpi_rsdp)
254 return acpi_rsdp;
255#endif
256
257 if (efi_enabled) {
258 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
259 return efi.acpi20;
260 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
261 return efi.acpi;
262 else {
263 printk(KERN_ERR PREFIX
264 "System description tables not found\n");
265 return 0;
266 }
267 } else {
268 acpi_physical_address pa = 0;
269
270 acpi_find_root_pointer(&pa);
271 return pa;
272 }
273}
274
275/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
276static struct acpi_ioremap *
277acpi_map_lookup(acpi_physical_address phys, acpi_size size)
278{
279 struct acpi_ioremap *map;
280
281 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
282 if (map->phys <= phys &&
283 phys + size <= map->phys + map->size)
284 return map;
285
286 return NULL;
287}
288
289/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
290static void __iomem *
291acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
292{
293 struct acpi_ioremap *map;
294
295 map = acpi_map_lookup(phys, size);
296 if (map)
297 return map->virt + (phys - map->phys);
298
299 return NULL;
300}
301
302void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
303{
304 struct acpi_ioremap *map;
305 void __iomem *virt = NULL;
306
307 mutex_lock(&acpi_ioremap_lock);
308 map = acpi_map_lookup(phys, size);
309 if (map) {
310 virt = map->virt + (phys - map->phys);
311 map->refcount++;
312 }
313 mutex_unlock(&acpi_ioremap_lock);
314 return virt;
315}
316EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
317
318/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
319static struct acpi_ioremap *
320acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
321{
322 struct acpi_ioremap *map;
323
324 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
325 if (map->virt <= virt &&
326 virt + size <= map->virt + map->size)
327 return map;
328
329 return NULL;
330}
331
332void __iomem *__init_refok
333acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
334{
335 struct acpi_ioremap *map;
336 void __iomem *virt;
337 acpi_physical_address pg_off;
338 acpi_size pg_sz;
339
340 if (phys > ULONG_MAX) {
341 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
342 return NULL;
343 }
344
345 if (!acpi_gbl_permanent_mmap)
346 return __acpi_map_table((unsigned long)phys, size);
347
348 mutex_lock(&acpi_ioremap_lock);
349 /* Check if there's a suitable mapping already. */
350 map = acpi_map_lookup(phys, size);
351 if (map) {
352 map->refcount++;
353 goto out;
354 }
355
356 map = kzalloc(sizeof(*map), GFP_KERNEL);
357 if (!map) {
358 mutex_unlock(&acpi_ioremap_lock);
359 return NULL;
360 }
361
362 pg_off = round_down(phys, PAGE_SIZE);
363 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
364 virt = acpi_os_ioremap(pg_off, pg_sz);
365 if (!virt) {
366 mutex_unlock(&acpi_ioremap_lock);
367 kfree(map);
368 return NULL;
369 }
370
371 INIT_LIST_HEAD(&map->list);
372 map->virt = virt;
373 map->phys = pg_off;
374 map->size = pg_sz;
375 map->refcount = 1;
376
377 list_add_tail_rcu(&map->list, &acpi_ioremaps);
378
379 out:
380 mutex_unlock(&acpi_ioremap_lock);
381 return map->virt + (phys - map->phys);
382}
383EXPORT_SYMBOL_GPL(acpi_os_map_memory);
384
385static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
386{
387 if (!--map->refcount)
388 list_del_rcu(&map->list);
389}
390
391static void acpi_os_map_cleanup(struct acpi_ioremap *map)
392{
393 if (!map->refcount) {
394 synchronize_rcu();
395 iounmap(map->virt);
396 kfree(map);
397 }
398}
399
400void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
401{
402 struct acpi_ioremap *map;
403
404 if (!acpi_gbl_permanent_mmap) {
405 __acpi_unmap_table(virt, size);
406 return;
407 }
408
409 mutex_lock(&acpi_ioremap_lock);
410 map = acpi_map_lookup_virt(virt, size);
411 if (!map) {
412 mutex_unlock(&acpi_ioremap_lock);
413 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
414 return;
415 }
416 acpi_os_drop_map_ref(map);
417 mutex_unlock(&acpi_ioremap_lock);
418
419 acpi_os_map_cleanup(map);
420}
421EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
422
423void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
424{
425 if (!acpi_gbl_permanent_mmap)
426 __acpi_unmap_table(virt, size);
427}
428
429static int acpi_os_map_generic_address(struct acpi_generic_address *addr)
430{
431 void __iomem *virt;
432
433 if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
434 return 0;
435
436 if (!addr->address || !addr->bit_width)
437 return -EINVAL;
438
439 virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
440 if (!virt)
441 return -EIO;
442
443 return 0;
444}
445
446static void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
447{
448 struct acpi_ioremap *map;
449
450 if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
451 return;
452
453 if (!addr->address || !addr->bit_width)
454 return;
455
456 mutex_lock(&acpi_ioremap_lock);
457 map = acpi_map_lookup(addr->address, addr->bit_width / 8);
458 if (!map) {
459 mutex_unlock(&acpi_ioremap_lock);
460 return;
461 }
462 acpi_os_drop_map_ref(map);
463 mutex_unlock(&acpi_ioremap_lock);
464
465 acpi_os_map_cleanup(map);
466}
467
468#ifdef ACPI_FUTURE_USAGE
469acpi_status
470acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
471{
472 if (!phys || !virt)
473 return AE_BAD_PARAMETER;
474
475 *phys = virt_to_phys(virt);
476
477 return AE_OK;
478}
479#endif
480
481#define ACPI_MAX_OVERRIDE_LEN 100
482
483static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
484
485acpi_status
486acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
487 acpi_string * new_val)
488{
489 if (!init_val || !new_val)
490 return AE_BAD_PARAMETER;
491
492 *new_val = NULL;
493 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
494 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
495 acpi_os_name);
496 *new_val = acpi_os_name;
497 }
498
499 return AE_OK;
500}
501
502acpi_status
503acpi_os_table_override(struct acpi_table_header * existing_table,
504 struct acpi_table_header ** new_table)
505{
506 if (!existing_table || !new_table)
507 return AE_BAD_PARAMETER;
508
509 *new_table = NULL;
510
511#ifdef CONFIG_ACPI_CUSTOM_DSDT
512 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
513 *new_table = (struct acpi_table_header *)AmlCode;
514#endif
515 if (*new_table != NULL) {
516 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
517 "this is unsafe: tainting kernel\n",
518 existing_table->signature,
519 existing_table->oem_table_id);
520 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
521 }
522 return AE_OK;
523}
524
525static irqreturn_t acpi_irq(int irq, void *dev_id)
526{
527 u32 handled;
528
529 handled = (*acpi_irq_handler) (acpi_irq_context);
530
531 if (handled) {
532 acpi_irq_handled++;
533 return IRQ_HANDLED;
534 } else {
535 acpi_irq_not_handled++;
536 return IRQ_NONE;
537 }
538}
539
540acpi_status
541acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
542 void *context)
543{
544 unsigned int irq;
545
546 acpi_irq_stats_init();
547
548 /*
549 * ACPI interrupts different from the SCI in our copy of the FADT are
550 * not supported.
551 */
552 if (gsi != acpi_gbl_FADT.sci_interrupt)
553 return AE_BAD_PARAMETER;
554
555 if (acpi_irq_handler)
556 return AE_ALREADY_ACQUIRED;
557
558 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
559 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
560 gsi);
561 return AE_OK;
562 }
563
564 acpi_irq_handler = handler;
565 acpi_irq_context = context;
566 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
567 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
568 acpi_irq_handler = NULL;
569 return AE_NOT_ACQUIRED;
570 }
571
572 return AE_OK;
573}
574
575acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
576{
577 if (irq != acpi_gbl_FADT.sci_interrupt)
578 return AE_BAD_PARAMETER;
579
580 free_irq(irq, acpi_irq);
581 acpi_irq_handler = NULL;
582
583 return AE_OK;
584}
585
586/*
587 * Running in interpreter thread context, safe to sleep
588 */
589
590void acpi_os_sleep(u64 ms)
591{
592 schedule_timeout_interruptible(msecs_to_jiffies(ms));
593}
594
595void acpi_os_stall(u32 us)
596{
597 while (us) {
598 u32 delay = 1000;
599
600 if (delay > us)
601 delay = us;
602 udelay(delay);
603 touch_nmi_watchdog();
604 us -= delay;
605 }
606}
607
608/*
609 * Support ACPI 3.0 AML Timer operand
610 * Returns 64-bit free-running, monotonically increasing timer
611 * with 100ns granularity
612 */
613u64 acpi_os_get_timer(void)
614{
615 static u64 t;
616
617#ifdef CONFIG_HPET
618 /* TBD: use HPET if available */
619#endif
620
621#ifdef CONFIG_X86_PM_TIMER
622 /* TBD: default to PM timer if HPET was not available */
623#endif
624 if (!t)
625 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
626
627 return ++t;
628}
629
630acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
631{
632 u32 dummy;
633
634 if (!value)
635 value = &dummy;
636
637 *value = 0;
638 if (width <= 8) {
639 *(u8 *) value = inb(port);
640 } else if (width <= 16) {
641 *(u16 *) value = inw(port);
642 } else if (width <= 32) {
643 *(u32 *) value = inl(port);
644 } else {
645 BUG();
646 }
647
648 return AE_OK;
649}
650
651EXPORT_SYMBOL(acpi_os_read_port);
652
653acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
654{
655 if (width <= 8) {
656 outb(value, port);
657 } else if (width <= 16) {
658 outw(value, port);
659 } else if (width <= 32) {
660 outl(value, port);
661 } else {
662 BUG();
663 }
664
665 return AE_OK;
666}
667
668EXPORT_SYMBOL(acpi_os_write_port);
669
670acpi_status
671acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
672{
673 void __iomem *virt_addr;
674 unsigned int size = width / 8;
675 bool unmap = false;
676 u32 dummy;
677
678 rcu_read_lock();
679 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
680 if (!virt_addr) {
681 rcu_read_unlock();
682 virt_addr = acpi_os_ioremap(phys_addr, size);
683 if (!virt_addr)
684 return AE_BAD_ADDRESS;
685 unmap = true;
686 }
687
688 if (!value)
689 value = &dummy;
690
691 switch (width) {
692 case 8:
693 *(u8 *) value = readb(virt_addr);
694 break;
695 case 16:
696 *(u16 *) value = readw(virt_addr);
697 break;
698 case 32:
699 *(u32 *) value = readl(virt_addr);
700 break;
701 default:
702 BUG();
703 }
704
705 if (unmap)
706 iounmap(virt_addr);
707 else
708 rcu_read_unlock();
709
710 return AE_OK;
711}
712
713acpi_status
714acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
715{
716 void __iomem *virt_addr;
717 unsigned int size = width / 8;
718 bool unmap = false;
719
720 rcu_read_lock();
721 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
722 if (!virt_addr) {
723 rcu_read_unlock();
724 virt_addr = acpi_os_ioremap(phys_addr, size);
725 if (!virt_addr)
726 return AE_BAD_ADDRESS;
727 unmap = true;
728 }
729
730 switch (width) {
731 case 8:
732 writeb(value, virt_addr);
733 break;
734 case 16:
735 writew(value, virt_addr);
736 break;
737 case 32:
738 writel(value, virt_addr);
739 break;
740 default:
741 BUG();
742 }
743
744 if (unmap)
745 iounmap(virt_addr);
746 else
747 rcu_read_unlock();
748
749 return AE_OK;
750}
751
752acpi_status
753acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
754 u64 *value, u32 width)
755{
756 int result, size;
757 u32 value32;
758
759 if (!value)
760 return AE_BAD_PARAMETER;
761
762 switch (width) {
763 case 8:
764 size = 1;
765 break;
766 case 16:
767 size = 2;
768 break;
769 case 32:
770 size = 4;
771 break;
772 default:
773 return AE_ERROR;
774 }
775
776 result = raw_pci_read(pci_id->segment, pci_id->bus,
777 PCI_DEVFN(pci_id->device, pci_id->function),
778 reg, size, &value32);
779 *value = value32;
780
781 return (result ? AE_ERROR : AE_OK);
782}
783
784acpi_status
785acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786 u64 value, u32 width)
787{
788 int result, size;
789
790 switch (width) {
791 case 8:
792 size = 1;
793 break;
794 case 16:
795 size = 2;
796 break;
797 case 32:
798 size = 4;
799 break;
800 default:
801 return AE_ERROR;
802 }
803
804 result = raw_pci_write(pci_id->segment, pci_id->bus,
805 PCI_DEVFN(pci_id->device, pci_id->function),
806 reg, size, value);
807
808 return (result ? AE_ERROR : AE_OK);
809}
810
811static void acpi_os_execute_deferred(struct work_struct *work)
812{
813 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
814
815 if (dpc->wait)
816 acpi_os_wait_events_complete(NULL);
817
818 dpc->function(dpc->context);
819 kfree(dpc);
820}
821
822/*******************************************************************************
823 *
824 * FUNCTION: acpi_os_execute
825 *
826 * PARAMETERS: Type - Type of the callback
827 * Function - Function to be executed
828 * Context - Function parameters
829 *
830 * RETURN: Status
831 *
832 * DESCRIPTION: Depending on type, either queues function for deferred execution or
833 * immediately executes function on a separate thread.
834 *
835 ******************************************************************************/
836
837static acpi_status __acpi_os_execute(acpi_execute_type type,
838 acpi_osd_exec_callback function, void *context, int hp)
839{
840 acpi_status status = AE_OK;
841 struct acpi_os_dpc *dpc;
842 struct workqueue_struct *queue;
843 int ret;
844 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
845 "Scheduling function [%p(%p)] for deferred execution.\n",
846 function, context));
847
848 /*
849 * Allocate/initialize DPC structure. Note that this memory will be
850 * freed by the callee. The kernel handles the work_struct list in a
851 * way that allows us to also free its memory inside the callee.
852 * Because we may want to schedule several tasks with different
853 * parameters we can't use the approach some kernel code uses of
854 * having a static work_struct.
855 */
856
857 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
858 if (!dpc)
859 return AE_NO_MEMORY;
860
861 dpc->function = function;
862 dpc->context = context;
863
864 /*
865 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
866 * because the hotplug code may call driver .remove() functions,
867 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
868 * to flush these workqueues.
869 */
870 queue = hp ? kacpi_hotplug_wq :
871 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
872 dpc->wait = hp ? 1 : 0;
873
874 if (queue == kacpi_hotplug_wq)
875 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
876 else if (queue == kacpi_notify_wq)
877 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
878 else
879 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
880
881 /*
882 * On some machines, a software-initiated SMI causes corruption unless
883 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
884 * typically it's done in GPE-related methods that are run via
885 * workqueues, so we can avoid the known corruption cases by always
886 * queueing on CPU 0.
887 */
888 ret = queue_work_on(0, queue, &dpc->work);
889
890 if (!ret) {
891 printk(KERN_ERR PREFIX
892 "Call to queue_work() failed.\n");
893 status = AE_ERROR;
894 kfree(dpc);
895 }
896 return status;
897}
898
899acpi_status acpi_os_execute(acpi_execute_type type,
900 acpi_osd_exec_callback function, void *context)
901{
902 return __acpi_os_execute(type, function, context, 0);
903}
904EXPORT_SYMBOL(acpi_os_execute);
905
906acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
907 void *context)
908{
909 return __acpi_os_execute(0, function, context, 1);
910}
911
912void acpi_os_wait_events_complete(void *context)
913{
914 flush_workqueue(kacpid_wq);
915 flush_workqueue(kacpi_notify_wq);
916}
917
918EXPORT_SYMBOL(acpi_os_wait_events_complete);
919
920acpi_status
921acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
922{
923 struct semaphore *sem = NULL;
924
925 sem = acpi_os_allocate(sizeof(struct semaphore));
926 if (!sem)
927 return AE_NO_MEMORY;
928 memset(sem, 0, sizeof(struct semaphore));
929
930 sema_init(sem, initial_units);
931
932 *handle = (acpi_handle *) sem;
933
934 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
935 *handle, initial_units));
936
937 return AE_OK;
938}
939
940/*
941 * TODO: A better way to delete semaphores? Linux doesn't have a
942 * 'delete_semaphore()' function -- may result in an invalid
943 * pointer dereference for non-synchronized consumers. Should
944 * we at least check for blocked threads and signal/cancel them?
945 */
946
947acpi_status acpi_os_delete_semaphore(acpi_handle handle)
948{
949 struct semaphore *sem = (struct semaphore *)handle;
950
951 if (!sem)
952 return AE_BAD_PARAMETER;
953
954 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
955
956 BUG_ON(!list_empty(&sem->wait_list));
957 kfree(sem);
958 sem = NULL;
959
960 return AE_OK;
961}
962
963/*
964 * TODO: Support for units > 1?
965 */
966acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
967{
968 acpi_status status = AE_OK;
969 struct semaphore *sem = (struct semaphore *)handle;
970 long jiffies;
971 int ret = 0;
972
973 if (!sem || (units < 1))
974 return AE_BAD_PARAMETER;
975
976 if (units > 1)
977 return AE_SUPPORT;
978
979 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
980 handle, units, timeout));
981
982 if (timeout == ACPI_WAIT_FOREVER)
983 jiffies = MAX_SCHEDULE_TIMEOUT;
984 else
985 jiffies = msecs_to_jiffies(timeout);
986
987 ret = down_timeout(sem, jiffies);
988 if (ret)
989 status = AE_TIME;
990
991 if (ACPI_FAILURE(status)) {
992 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
993 "Failed to acquire semaphore[%p|%d|%d], %s",
994 handle, units, timeout,
995 acpi_format_exception(status)));
996 } else {
997 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
998 "Acquired semaphore[%p|%d|%d]", handle,
999 units, timeout));
1000 }
1001
1002 return status;
1003}
1004
1005/*
1006 * TODO: Support for units > 1?
1007 */
1008acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1009{
1010 struct semaphore *sem = (struct semaphore *)handle;
1011
1012 if (!sem || (units < 1))
1013 return AE_BAD_PARAMETER;
1014
1015 if (units > 1)
1016 return AE_SUPPORT;
1017
1018 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1019 units));
1020
1021 up(sem);
1022
1023 return AE_OK;
1024}
1025
1026#ifdef ACPI_FUTURE_USAGE
1027u32 acpi_os_get_line(char *buffer)
1028{
1029
1030#ifdef ENABLE_DEBUGGER
1031 if (acpi_in_debugger) {
1032 u32 chars;
1033
1034 kdb_read(buffer, sizeof(line_buf));
1035
1036 /* remove the CR kdb includes */
1037 chars = strlen(buffer) - 1;
1038 buffer[chars] = '\0';
1039 }
1040#endif
1041
1042 return 0;
1043}
1044#endif /* ACPI_FUTURE_USAGE */
1045
1046acpi_status acpi_os_signal(u32 function, void *info)
1047{
1048 switch (function) {
1049 case ACPI_SIGNAL_FATAL:
1050 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1051 break;
1052 case ACPI_SIGNAL_BREAKPOINT:
1053 /*
1054 * AML Breakpoint
1055 * ACPI spec. says to treat it as a NOP unless
1056 * you are debugging. So if/when we integrate
1057 * AML debugger into the kernel debugger its
1058 * hook will go here. But until then it is
1059 * not useful to print anything on breakpoints.
1060 */
1061 break;
1062 default:
1063 break;
1064 }
1065
1066 return AE_OK;
1067}
1068
1069static int __init acpi_os_name_setup(char *str)
1070{
1071 char *p = acpi_os_name;
1072 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1073
1074 if (!str || !*str)
1075 return 0;
1076
1077 for (; count-- && str && *str; str++) {
1078 if (isalnum(*str) || *str == ' ' || *str == ':')
1079 *p++ = *str;
1080 else if (*str == '\'' || *str == '"')
1081 continue;
1082 else
1083 break;
1084 }
1085 *p = 0;
1086
1087 return 1;
1088
1089}
1090
1091__setup("acpi_os_name=", acpi_os_name_setup);
1092
1093#define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1094#define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1095
1096struct osi_setup_entry {
1097 char string[OSI_STRING_LENGTH_MAX];
1098 bool enable;
1099};
1100
1101static struct osi_setup_entry __initdata
1102 osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1103 {"Module Device", true},
1104 {"Processor Device", true},
1105 {"3.0 _SCP Extensions", true},
1106 {"Processor Aggregator Device", true},
1107};
1108
1109void __init acpi_osi_setup(char *str)
1110{
1111 struct osi_setup_entry *osi;
1112 bool enable = true;
1113 int i;
1114
1115 if (!acpi_gbl_create_osi_method)
1116 return;
1117
1118 if (str == NULL || *str == '\0') {
1119 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1120 acpi_gbl_create_osi_method = FALSE;
1121 return;
1122 }
1123
1124 if (*str == '!') {
1125 str++;
1126 enable = false;
1127 }
1128
1129 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1130 osi = &osi_setup_entries[i];
1131 if (!strcmp(osi->string, str)) {
1132 osi->enable = enable;
1133 break;
1134 } else if (osi->string[0] == '\0') {
1135 osi->enable = enable;
1136 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1137 break;
1138 }
1139 }
1140}
1141
1142static void __init set_osi_linux(unsigned int enable)
1143{
1144 if (osi_linux.enable != enable)
1145 osi_linux.enable = enable;
1146
1147 if (osi_linux.enable)
1148 acpi_osi_setup("Linux");
1149 else
1150 acpi_osi_setup("!Linux");
1151
1152 return;
1153}
1154
1155static void __init acpi_cmdline_osi_linux(unsigned int enable)
1156{
1157 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1158 osi_linux.dmi = 0;
1159 set_osi_linux(enable);
1160
1161 return;
1162}
1163
1164void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1165{
1166 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1167
1168 if (enable == -1)
1169 return;
1170
1171 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1172 set_osi_linux(enable);
1173
1174 return;
1175}
1176
1177/*
1178 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1179 *
1180 * empty string disables _OSI
1181 * string starting with '!' disables that string
1182 * otherwise string is added to list, augmenting built-in strings
1183 */
1184static void __init acpi_osi_setup_late(void)
1185{
1186 struct osi_setup_entry *osi;
1187 char *str;
1188 int i;
1189 acpi_status status;
1190
1191 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1192 osi = &osi_setup_entries[i];
1193 str = osi->string;
1194
1195 if (*str == '\0')
1196 break;
1197 if (osi->enable) {
1198 status = acpi_install_interface(str);
1199
1200 if (ACPI_SUCCESS(status))
1201 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1202 } else {
1203 status = acpi_remove_interface(str);
1204
1205 if (ACPI_SUCCESS(status))
1206 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1207 }
1208 }
1209}
1210
1211static int __init osi_setup(char *str)
1212{
1213 if (str && !strcmp("Linux", str))
1214 acpi_cmdline_osi_linux(1);
1215 else if (str && !strcmp("!Linux", str))
1216 acpi_cmdline_osi_linux(0);
1217 else
1218 acpi_osi_setup(str);
1219
1220 return 1;
1221}
1222
1223__setup("acpi_osi=", osi_setup);
1224
1225/* enable serialization to combat AE_ALREADY_EXISTS errors */
1226static int __init acpi_serialize_setup(char *str)
1227{
1228 printk(KERN_INFO PREFIX "serialize enabled\n");
1229
1230 acpi_gbl_all_methods_serialized = TRUE;
1231
1232 return 1;
1233}
1234
1235__setup("acpi_serialize", acpi_serialize_setup);
1236
1237/* Check of resource interference between native drivers and ACPI
1238 * OperationRegions (SystemIO and System Memory only).
1239 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1240 * in arbitrary AML code and can interfere with legacy drivers.
1241 * acpi_enforce_resources= can be set to:
1242 *
1243 * - strict (default) (2)
1244 * -> further driver trying to access the resources will not load
1245 * - lax (1)
1246 * -> further driver trying to access the resources will load, but you
1247 * get a system message that something might go wrong...
1248 *
1249 * - no (0)
1250 * -> ACPI Operation Region resources will not be registered
1251 *
1252 */
1253#define ENFORCE_RESOURCES_STRICT 2
1254#define ENFORCE_RESOURCES_LAX 1
1255#define ENFORCE_RESOURCES_NO 0
1256
1257static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1258
1259static int __init acpi_enforce_resources_setup(char *str)
1260{
1261 if (str == NULL || *str == '\0')
1262 return 0;
1263
1264 if (!strcmp("strict", str))
1265 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1266 else if (!strcmp("lax", str))
1267 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1268 else if (!strcmp("no", str))
1269 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1270
1271 return 1;
1272}
1273
1274__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1275
1276/* Check for resource conflicts between ACPI OperationRegions and native
1277 * drivers */
1278int acpi_check_resource_conflict(const struct resource *res)
1279{
1280 struct acpi_res_list *res_list_elem;
1281 int ioport = 0, clash = 0;
1282
1283 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1284 return 0;
1285 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1286 return 0;
1287
1288 ioport = res->flags & IORESOURCE_IO;
1289
1290 spin_lock(&acpi_res_lock);
1291 list_for_each_entry(res_list_elem, &resource_list_head,
1292 resource_list) {
1293 if (ioport && (res_list_elem->resource_type
1294 != ACPI_ADR_SPACE_SYSTEM_IO))
1295 continue;
1296 if (!ioport && (res_list_elem->resource_type
1297 != ACPI_ADR_SPACE_SYSTEM_MEMORY))
1298 continue;
1299
1300 if (res->end < res_list_elem->start
1301 || res_list_elem->end < res->start)
1302 continue;
1303 clash = 1;
1304 break;
1305 }
1306 spin_unlock(&acpi_res_lock);
1307
1308 if (clash) {
1309 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1310 printk(KERN_WARNING "ACPI: resource %s %pR"
1311 " conflicts with ACPI region %s "
1312 "[%s 0x%zx-0x%zx]\n",
1313 res->name, res, res_list_elem->name,
1314 (res_list_elem->resource_type ==
1315 ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1316 (size_t) res_list_elem->start,
1317 (size_t) res_list_elem->end);
1318 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1319 printk(KERN_NOTICE "ACPI: This conflict may"
1320 " cause random problems and system"
1321 " instability\n");
1322 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1323 " for this device, you should use it instead of"
1324 " the native driver\n");
1325 }
1326 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1327 return -EBUSY;
1328 }
1329 return 0;
1330}
1331EXPORT_SYMBOL(acpi_check_resource_conflict);
1332
1333int acpi_check_region(resource_size_t start, resource_size_t n,
1334 const char *name)
1335{
1336 struct resource res = {
1337 .start = start,
1338 .end = start + n - 1,
1339 .name = name,
1340 .flags = IORESOURCE_IO,
1341 };
1342
1343 return acpi_check_resource_conflict(&res);
1344}
1345EXPORT_SYMBOL(acpi_check_region);
1346
1347/*
1348 * Let drivers know whether the resource checks are effective
1349 */
1350int acpi_resources_are_enforced(void)
1351{
1352 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1353}
1354EXPORT_SYMBOL(acpi_resources_are_enforced);
1355
1356/*
1357 * Deallocate the memory for a spinlock.
1358 */
1359void acpi_os_delete_lock(acpi_spinlock handle)
1360{
1361 ACPI_FREE(handle);
1362}
1363
1364/*
1365 * Acquire a spinlock.
1366 *
1367 * handle is a pointer to the spinlock_t.
1368 */
1369
1370acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1371{
1372 acpi_cpu_flags flags;
1373 spin_lock_irqsave(lockp, flags);
1374 return flags;
1375}
1376
1377/*
1378 * Release a spinlock. See above.
1379 */
1380
1381void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1382{
1383 spin_unlock_irqrestore(lockp, flags);
1384}
1385
1386#ifndef ACPI_USE_LOCAL_CACHE
1387
1388/*******************************************************************************
1389 *
1390 * FUNCTION: acpi_os_create_cache
1391 *
1392 * PARAMETERS: name - Ascii name for the cache
1393 * size - Size of each cached object
1394 * depth - Maximum depth of the cache (in objects) <ignored>
1395 * cache - Where the new cache object is returned
1396 *
1397 * RETURN: status
1398 *
1399 * DESCRIPTION: Create a cache object
1400 *
1401 ******************************************************************************/
1402
1403acpi_status
1404acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1405{
1406 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1407 if (*cache == NULL)
1408 return AE_ERROR;
1409 else
1410 return AE_OK;
1411}
1412
1413/*******************************************************************************
1414 *
1415 * FUNCTION: acpi_os_purge_cache
1416 *
1417 * PARAMETERS: Cache - Handle to cache object
1418 *
1419 * RETURN: Status
1420 *
1421 * DESCRIPTION: Free all objects within the requested cache.
1422 *
1423 ******************************************************************************/
1424
1425acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1426{
1427 kmem_cache_shrink(cache);
1428 return (AE_OK);
1429}
1430
1431/*******************************************************************************
1432 *
1433 * FUNCTION: acpi_os_delete_cache
1434 *
1435 * PARAMETERS: Cache - Handle to cache object
1436 *
1437 * RETURN: Status
1438 *
1439 * DESCRIPTION: Free all objects within the requested cache and delete the
1440 * cache object.
1441 *
1442 ******************************************************************************/
1443
1444acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1445{
1446 kmem_cache_destroy(cache);
1447 return (AE_OK);
1448}
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION: acpi_os_release_object
1453 *
1454 * PARAMETERS: Cache - Handle to cache object
1455 * Object - The object to be released
1456 *
1457 * RETURN: None
1458 *
1459 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1460 * the object is deleted.
1461 *
1462 ******************************************************************************/
1463
1464acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1465{
1466 kmem_cache_free(cache, object);
1467 return (AE_OK);
1468}
1469
1470static inline int acpi_res_list_add(struct acpi_res_list *res)
1471{
1472 struct acpi_res_list *res_list_elem;
1473
1474 list_for_each_entry(res_list_elem, &resource_list_head,
1475 resource_list) {
1476
1477 if (res->resource_type == res_list_elem->resource_type &&
1478 res->start == res_list_elem->start &&
1479 res->end == res_list_elem->end) {
1480
1481 /*
1482 * The Region(addr,len) already exist in the list,
1483 * just increase the count
1484 */
1485
1486 res_list_elem->count++;
1487 return 0;
1488 }
1489 }
1490
1491 res->count = 1;
1492 list_add(&res->resource_list, &resource_list_head);
1493 return 1;
1494}
1495
1496static inline void acpi_res_list_del(struct acpi_res_list *res)
1497{
1498 struct acpi_res_list *res_list_elem;
1499
1500 list_for_each_entry(res_list_elem, &resource_list_head,
1501 resource_list) {
1502
1503 if (res->resource_type == res_list_elem->resource_type &&
1504 res->start == res_list_elem->start &&
1505 res->end == res_list_elem->end) {
1506
1507 /*
1508 * If the res count is decreased to 0,
1509 * remove and free it
1510 */
1511
1512 if (--res_list_elem->count == 0) {
1513 list_del(&res_list_elem->resource_list);
1514 kfree(res_list_elem);
1515 }
1516 return;
1517 }
1518 }
1519}
1520
1521acpi_status
1522acpi_os_invalidate_address(
1523 u8 space_id,
1524 acpi_physical_address address,
1525 acpi_size length)
1526{
1527 struct acpi_res_list res;
1528
1529 switch (space_id) {
1530 case ACPI_ADR_SPACE_SYSTEM_IO:
1531 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1532 /* Only interference checks against SystemIO and SystemMemory
1533 are needed */
1534 res.start = address;
1535 res.end = address + length - 1;
1536 res.resource_type = space_id;
1537 spin_lock(&acpi_res_lock);
1538 acpi_res_list_del(&res);
1539 spin_unlock(&acpi_res_lock);
1540 break;
1541 case ACPI_ADR_SPACE_PCI_CONFIG:
1542 case ACPI_ADR_SPACE_EC:
1543 case ACPI_ADR_SPACE_SMBUS:
1544 case ACPI_ADR_SPACE_CMOS:
1545 case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1546 case ACPI_ADR_SPACE_DATA_TABLE:
1547 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1548 break;
1549 }
1550 return AE_OK;
1551}
1552
1553/******************************************************************************
1554 *
1555 * FUNCTION: acpi_os_validate_address
1556 *
1557 * PARAMETERS: space_id - ACPI space ID
1558 * address - Physical address
1559 * length - Address length
1560 *
1561 * RETURN: AE_OK if address/length is valid for the space_id. Otherwise,
1562 * should return AE_AML_ILLEGAL_ADDRESS.
1563 *
1564 * DESCRIPTION: Validate a system address via the host OS. Used to validate
1565 * the addresses accessed by AML operation regions.
1566 *
1567 *****************************************************************************/
1568
1569acpi_status
1570acpi_os_validate_address (
1571 u8 space_id,
1572 acpi_physical_address address,
1573 acpi_size length,
1574 char *name)
1575{
1576 struct acpi_res_list *res;
1577 int added;
1578 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1579 return AE_OK;
1580
1581 switch (space_id) {
1582 case ACPI_ADR_SPACE_SYSTEM_IO:
1583 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1584 /* Only interference checks against SystemIO and SystemMemory
1585 are needed */
1586 res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1587 if (!res)
1588 return AE_OK;
1589 /* ACPI names are fixed to 4 bytes, still better use strlcpy */
1590 strlcpy(res->name, name, 5);
1591 res->start = address;
1592 res->end = address + length - 1;
1593 res->resource_type = space_id;
1594 spin_lock(&acpi_res_lock);
1595 added = acpi_res_list_add(res);
1596 spin_unlock(&acpi_res_lock);
1597 pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1598 "name: %s\n", added ? "Added" : "Already exist",
1599 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1600 ? "SystemIO" : "System Memory",
1601 (unsigned long long)res->start,
1602 (unsigned long long)res->end,
1603 res->name);
1604 if (!added)
1605 kfree(res);
1606 break;
1607 case ACPI_ADR_SPACE_PCI_CONFIG:
1608 case ACPI_ADR_SPACE_EC:
1609 case ACPI_ADR_SPACE_SMBUS:
1610 case ACPI_ADR_SPACE_CMOS:
1611 case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1612 case ACPI_ADR_SPACE_DATA_TABLE:
1613 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1614 break;
1615 }
1616 return AE_OK;
1617}
1618#endif
1619
1620acpi_status __init acpi_os_initialize(void)
1621{
1622 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1623 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1624 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1625 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1626
1627 return AE_OK;
1628}
1629
1630acpi_status __init acpi_os_initialize1(void)
1631{
1632 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1633 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1634 kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1635 BUG_ON(!kacpid_wq);
1636 BUG_ON(!kacpi_notify_wq);
1637 BUG_ON(!kacpi_hotplug_wq);
1638 acpi_install_interface_handler(acpi_osi_handler);
1639 acpi_osi_setup_late();
1640 return AE_OK;
1641}
1642
1643acpi_status acpi_os_terminate(void)
1644{
1645 if (acpi_irq_handler) {
1646 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1647 acpi_irq_handler);
1648 }
1649
1650 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1651 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1652 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1654
1655 destroy_workqueue(kacpid_wq);
1656 destroy_workqueue(kacpi_notify_wq);
1657 destroy_workqueue(kacpi_hotplug_wq);
1658
1659 return AE_OK;
1660}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559{
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610 msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643 u32 dummy;
644
645 if (value)
646 *value = 0;
647 else
648 value = &dummy;
649
650 if (width <= 8) {
651 *value = inb(port);
652 } else if (width <= 16) {
653 *value = inw(port);
654 } else if (width <= 32) {
655 *value = inl(port);
656 } else {
657 pr_debug("%s: Access width %d not supported\n", __func__, width);
658 return AE_BAD_PARAMETER;
659 }
660
661 return AE_OK;
662}
663
664EXPORT_SYMBOL(acpi_os_read_port);
665
666acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
667{
668 if (width <= 8) {
669 outb(value, port);
670 } else if (width <= 16) {
671 outw(value, port);
672 } else if (width <= 32) {
673 outl(value, port);
674 } else {
675 pr_debug("%s: Access width %d not supported\n", __func__, width);
676 return AE_BAD_PARAMETER;
677 }
678
679 return AE_OK;
680}
681
682EXPORT_SYMBOL(acpi_os_write_port);
683
684int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685{
686
687 switch (width) {
688 case 8:
689 *(u8 *) value = readb(virt_addr);
690 break;
691 case 16:
692 *(u16 *) value = readw(virt_addr);
693 break;
694 case 32:
695 *(u32 *) value = readl(virt_addr);
696 break;
697 case 64:
698 *(u64 *) value = readq(virt_addr);
699 break;
700 default:
701 return -EINVAL;
702 }
703
704 return 0;
705}
706
707acpi_status
708acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709{
710 void __iomem *virt_addr;
711 unsigned int size = width / 8;
712 bool unmap = false;
713 u64 dummy;
714 int error;
715
716 rcu_read_lock();
717 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718 if (!virt_addr) {
719 rcu_read_unlock();
720 virt_addr = acpi_os_ioremap(phys_addr, size);
721 if (!virt_addr)
722 return AE_BAD_ADDRESS;
723 unmap = true;
724 }
725
726 if (!value)
727 value = &dummy;
728
729 error = acpi_os_read_iomem(virt_addr, value, width);
730 BUG_ON(error);
731
732 if (unmap)
733 iounmap(virt_addr);
734 else
735 rcu_read_unlock();
736
737 return AE_OK;
738}
739
740acpi_status
741acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742{
743 void __iomem *virt_addr;
744 unsigned int size = width / 8;
745 bool unmap = false;
746
747 rcu_read_lock();
748 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749 if (!virt_addr) {
750 rcu_read_unlock();
751 virt_addr = acpi_os_ioremap(phys_addr, size);
752 if (!virt_addr)
753 return AE_BAD_ADDRESS;
754 unmap = true;
755 }
756
757 switch (width) {
758 case 8:
759 writeb(value, virt_addr);
760 break;
761 case 16:
762 writew(value, virt_addr);
763 break;
764 case 32:
765 writel(value, virt_addr);
766 break;
767 case 64:
768 writeq(value, virt_addr);
769 break;
770 default:
771 BUG();
772 }
773
774 if (unmap)
775 iounmap(virt_addr);
776 else
777 rcu_read_unlock();
778
779 return AE_OK;
780}
781
782#ifdef CONFIG_PCI
783acpi_status
784acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
785 u64 *value, u32 width)
786{
787 int result, size;
788 u32 value32;
789
790 if (!value)
791 return AE_BAD_PARAMETER;
792
793 switch (width) {
794 case 8:
795 size = 1;
796 break;
797 case 16:
798 size = 2;
799 break;
800 case 32:
801 size = 4;
802 break;
803 default:
804 return AE_ERROR;
805 }
806
807 result = raw_pci_read(pci_id->segment, pci_id->bus,
808 PCI_DEVFN(pci_id->device, pci_id->function),
809 reg, size, &value32);
810 *value = value32;
811
812 return (result ? AE_ERROR : AE_OK);
813}
814
815acpi_status
816acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817 u64 value, u32 width)
818{
819 int result, size;
820
821 switch (width) {
822 case 8:
823 size = 1;
824 break;
825 case 16:
826 size = 2;
827 break;
828 case 32:
829 size = 4;
830 break;
831 default:
832 return AE_ERROR;
833 }
834
835 result = raw_pci_write(pci_id->segment, pci_id->bus,
836 PCI_DEVFN(pci_id->device, pci_id->function),
837 reg, size, value);
838
839 return (result ? AE_ERROR : AE_OK);
840}
841#endif
842
843static void acpi_os_execute_deferred(struct work_struct *work)
844{
845 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846
847 dpc->function(dpc->context);
848 kfree(dpc);
849}
850
851#ifdef CONFIG_ACPI_DEBUGGER
852static struct acpi_debugger acpi_debugger;
853static bool acpi_debugger_initialized;
854
855int acpi_register_debugger(struct module *owner,
856 const struct acpi_debugger_ops *ops)
857{
858 int ret = 0;
859
860 mutex_lock(&acpi_debugger.lock);
861 if (acpi_debugger.ops) {
862 ret = -EBUSY;
863 goto err_lock;
864 }
865
866 acpi_debugger.owner = owner;
867 acpi_debugger.ops = ops;
868
869err_lock:
870 mutex_unlock(&acpi_debugger.lock);
871 return ret;
872}
873EXPORT_SYMBOL(acpi_register_debugger);
874
875void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876{
877 mutex_lock(&acpi_debugger.lock);
878 if (ops == acpi_debugger.ops) {
879 acpi_debugger.ops = NULL;
880 acpi_debugger.owner = NULL;
881 }
882 mutex_unlock(&acpi_debugger.lock);
883}
884EXPORT_SYMBOL(acpi_unregister_debugger);
885
886int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887{
888 int ret;
889 int (*func)(acpi_osd_exec_callback, void *);
890 struct module *owner;
891
892 if (!acpi_debugger_initialized)
893 return -ENODEV;
894 mutex_lock(&acpi_debugger.lock);
895 if (!acpi_debugger.ops) {
896 ret = -ENODEV;
897 goto err_lock;
898 }
899 if (!try_module_get(acpi_debugger.owner)) {
900 ret = -ENODEV;
901 goto err_lock;
902 }
903 func = acpi_debugger.ops->create_thread;
904 owner = acpi_debugger.owner;
905 mutex_unlock(&acpi_debugger.lock);
906
907 ret = func(function, context);
908
909 mutex_lock(&acpi_debugger.lock);
910 module_put(owner);
911err_lock:
912 mutex_unlock(&acpi_debugger.lock);
913 return ret;
914}
915
916ssize_t acpi_debugger_write_log(const char *msg)
917{
918 ssize_t ret;
919 ssize_t (*func)(const char *);
920 struct module *owner;
921
922 if (!acpi_debugger_initialized)
923 return -ENODEV;
924 mutex_lock(&acpi_debugger.lock);
925 if (!acpi_debugger.ops) {
926 ret = -ENODEV;
927 goto err_lock;
928 }
929 if (!try_module_get(acpi_debugger.owner)) {
930 ret = -ENODEV;
931 goto err_lock;
932 }
933 func = acpi_debugger.ops->write_log;
934 owner = acpi_debugger.owner;
935 mutex_unlock(&acpi_debugger.lock);
936
937 ret = func(msg);
938
939 mutex_lock(&acpi_debugger.lock);
940 module_put(owner);
941err_lock:
942 mutex_unlock(&acpi_debugger.lock);
943 return ret;
944}
945
946ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947{
948 ssize_t ret;
949 ssize_t (*func)(char *, size_t);
950 struct module *owner;
951
952 if (!acpi_debugger_initialized)
953 return -ENODEV;
954 mutex_lock(&acpi_debugger.lock);
955 if (!acpi_debugger.ops) {
956 ret = -ENODEV;
957 goto err_lock;
958 }
959 if (!try_module_get(acpi_debugger.owner)) {
960 ret = -ENODEV;
961 goto err_lock;
962 }
963 func = acpi_debugger.ops->read_cmd;
964 owner = acpi_debugger.owner;
965 mutex_unlock(&acpi_debugger.lock);
966
967 ret = func(buffer, buffer_length);
968
969 mutex_lock(&acpi_debugger.lock);
970 module_put(owner);
971err_lock:
972 mutex_unlock(&acpi_debugger.lock);
973 return ret;
974}
975
976int acpi_debugger_wait_command_ready(void)
977{
978 int ret;
979 int (*func)(bool, char *, size_t);
980 struct module *owner;
981
982 if (!acpi_debugger_initialized)
983 return -ENODEV;
984 mutex_lock(&acpi_debugger.lock);
985 if (!acpi_debugger.ops) {
986 ret = -ENODEV;
987 goto err_lock;
988 }
989 if (!try_module_get(acpi_debugger.owner)) {
990 ret = -ENODEV;
991 goto err_lock;
992 }
993 func = acpi_debugger.ops->wait_command_ready;
994 owner = acpi_debugger.owner;
995 mutex_unlock(&acpi_debugger.lock);
996
997 ret = func(acpi_gbl_method_executing,
998 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999
1000 mutex_lock(&acpi_debugger.lock);
1001 module_put(owner);
1002err_lock:
1003 mutex_unlock(&acpi_debugger.lock);
1004 return ret;
1005}
1006
1007int acpi_debugger_notify_command_complete(void)
1008{
1009 int ret;
1010 int (*func)(void);
1011 struct module *owner;
1012
1013 if (!acpi_debugger_initialized)
1014 return -ENODEV;
1015 mutex_lock(&acpi_debugger.lock);
1016 if (!acpi_debugger.ops) {
1017 ret = -ENODEV;
1018 goto err_lock;
1019 }
1020 if (!try_module_get(acpi_debugger.owner)) {
1021 ret = -ENODEV;
1022 goto err_lock;
1023 }
1024 func = acpi_debugger.ops->notify_command_complete;
1025 owner = acpi_debugger.owner;
1026 mutex_unlock(&acpi_debugger.lock);
1027
1028 ret = func();
1029
1030 mutex_lock(&acpi_debugger.lock);
1031 module_put(owner);
1032err_lock:
1033 mutex_unlock(&acpi_debugger.lock);
1034 return ret;
1035}
1036
1037int __init acpi_debugger_init(void)
1038{
1039 mutex_init(&acpi_debugger.lock);
1040 acpi_debugger_initialized = true;
1041 return 0;
1042}
1043#endif
1044
1045/*******************************************************************************
1046 *
1047 * FUNCTION: acpi_os_execute
1048 *
1049 * PARAMETERS: Type - Type of the callback
1050 * Function - Function to be executed
1051 * Context - Function parameters
1052 *
1053 * RETURN: Status
1054 *
1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056 * immediately executes function on a separate thread.
1057 *
1058 ******************************************************************************/
1059
1060acpi_status acpi_os_execute(acpi_execute_type type,
1061 acpi_osd_exec_callback function, void *context)
1062{
1063 struct acpi_os_dpc *dpc;
1064 int ret;
1065
1066 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067 "Scheduling function [%p(%p)] for deferred execution.\n",
1068 function, context));
1069
1070 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071 ret = acpi_debugger_create_thread(function, context);
1072 if (ret) {
1073 pr_err("Kernel thread creation failed\n");
1074 return AE_ERROR;
1075 }
1076 return AE_OK;
1077 }
1078
1079 /*
1080 * Allocate/initialize DPC structure. Note that this memory will be
1081 * freed by the callee. The kernel handles the work_struct list in a
1082 * way that allows us to also free its memory inside the callee.
1083 * Because we may want to schedule several tasks with different
1084 * parameters we can't use the approach some kernel code uses of
1085 * having a static work_struct.
1086 */
1087
1088 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089 if (!dpc)
1090 return AE_NO_MEMORY;
1091
1092 dpc->function = function;
1093 dpc->context = context;
1094 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096 /*
1097 * To prevent lockdep from complaining unnecessarily, make sure that
1098 * there is a different static lockdep key for each workqueue by using
1099 * INIT_WORK() for each of them separately.
1100 */
1101 switch (type) {
1102 case OSL_NOTIFY_HANDLER:
1103 ret = queue_work(kacpi_notify_wq, &dpc->work);
1104 break;
1105 case OSL_GPE_HANDLER:
1106 /*
1107 * On some machines, a software-initiated SMI causes corruption
1108 * unless the SMI runs on CPU 0. An SMI can be initiated by
1109 * any AML, but typically it's done in GPE-related methods that
1110 * are run via workqueues, so we can avoid the known corruption
1111 * cases by always queueing on CPU 0.
1112 */
1113 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114 break;
1115 default:
1116 pr_err("Unsupported os_execute type %d.\n", type);
1117 goto err;
1118 }
1119 if (!ret) {
1120 pr_err("Unable to queue work\n");
1121 goto err;
1122 }
1123
1124 return AE_OK;
1125
1126err:
1127 kfree(dpc);
1128 return AE_ERROR;
1129}
1130EXPORT_SYMBOL(acpi_os_execute);
1131
1132void acpi_os_wait_events_complete(void)
1133{
1134 /*
1135 * Make sure the GPE handler or the fixed event handler is not used
1136 * on another CPU after removal.
1137 */
1138 if (acpi_sci_irq_valid())
1139 synchronize_hardirq(acpi_sci_irq);
1140 flush_workqueue(kacpid_wq);
1141 flush_workqueue(kacpi_notify_wq);
1142}
1143EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145struct acpi_hp_work {
1146 struct work_struct work;
1147 struct acpi_device *adev;
1148 u32 src;
1149};
1150
1151static void acpi_hotplug_work_fn(struct work_struct *work)
1152{
1153 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155 acpi_os_wait_events_complete();
1156 acpi_device_hotplug(hpw->adev, hpw->src);
1157 kfree(hpw);
1158}
1159
1160acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161{
1162 struct acpi_hp_work *hpw;
1163
1164 acpi_handle_debug(adev->handle,
1165 "Scheduling hotplug event %u for deferred handling\n",
1166 src);
1167
1168 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169 if (!hpw)
1170 return AE_NO_MEMORY;
1171
1172 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173 hpw->adev = adev;
1174 hpw->src = src;
1175 /*
1176 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177 * the hotplug code may call driver .remove() functions, which may
1178 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179 * these workqueues.
1180 */
1181 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182 kfree(hpw);
1183 return AE_ERROR;
1184 }
1185 return AE_OK;
1186}
1187
1188bool acpi_queue_hotplug_work(struct work_struct *work)
1189{
1190 return queue_work(kacpi_hotplug_wq, work);
1191}
1192
1193acpi_status
1194acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195{
1196 struct semaphore *sem = NULL;
1197
1198 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199 if (!sem)
1200 return AE_NO_MEMORY;
1201
1202 sema_init(sem, initial_units);
1203
1204 *handle = (acpi_handle *) sem;
1205
1206 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207 *handle, initial_units));
1208
1209 return AE_OK;
1210}
1211
1212/*
1213 * TODO: A better way to delete semaphores? Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers. Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
1219acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220{
1221 struct semaphore *sem = (struct semaphore *)handle;
1222
1223 if (!sem)
1224 return AE_BAD_PARAMETER;
1225
1226 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228 BUG_ON(!list_empty(&sem->wait_list));
1229 kfree(sem);
1230 sem = NULL;
1231
1232 return AE_OK;
1233}
1234
1235/*
1236 * TODO: Support for units > 1?
1237 */
1238acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239{
1240 acpi_status status = AE_OK;
1241 struct semaphore *sem = (struct semaphore *)handle;
1242 long jiffies;
1243 int ret = 0;
1244
1245 if (!acpi_os_initialized)
1246 return AE_OK;
1247
1248 if (!sem || (units < 1))
1249 return AE_BAD_PARAMETER;
1250
1251 if (units > 1)
1252 return AE_SUPPORT;
1253
1254 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255 handle, units, timeout));
1256
1257 if (timeout == ACPI_WAIT_FOREVER)
1258 jiffies = MAX_SCHEDULE_TIMEOUT;
1259 else
1260 jiffies = msecs_to_jiffies(timeout);
1261
1262 ret = down_timeout(sem, jiffies);
1263 if (ret)
1264 status = AE_TIME;
1265
1266 if (ACPI_FAILURE(status)) {
1267 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 "Failed to acquire semaphore[%p|%d|%d], %s",
1269 handle, units, timeout,
1270 acpi_format_exception(status)));
1271 } else {
1272 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273 "Acquired semaphore[%p|%d|%d]", handle,
1274 units, timeout));
1275 }
1276
1277 return status;
1278}
1279
1280/*
1281 * TODO: Support for units > 1?
1282 */
1283acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284{
1285 struct semaphore *sem = (struct semaphore *)handle;
1286
1287 if (!acpi_os_initialized)
1288 return AE_OK;
1289
1290 if (!sem || (units < 1))
1291 return AE_BAD_PARAMETER;
1292
1293 if (units > 1)
1294 return AE_SUPPORT;
1295
1296 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297 units));
1298
1299 up(sem);
1300
1301 return AE_OK;
1302}
1303
1304acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305{
1306#ifdef ENABLE_DEBUGGER
1307 if (acpi_in_debugger) {
1308 u32 chars;
1309
1310 kdb_read(buffer, buffer_length);
1311
1312 /* remove the CR kdb includes */
1313 chars = strlen(buffer) - 1;
1314 buffer[chars] = '\0';
1315 }
1316#else
1317 int ret;
1318
1319 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320 if (ret < 0)
1321 return AE_ERROR;
1322 if (bytes_read)
1323 *bytes_read = ret;
1324#endif
1325
1326 return AE_OK;
1327}
1328EXPORT_SYMBOL(acpi_os_get_line);
1329
1330acpi_status acpi_os_wait_command_ready(void)
1331{
1332 int ret;
1333
1334 ret = acpi_debugger_wait_command_ready();
1335 if (ret < 0)
1336 return AE_ERROR;
1337 return AE_OK;
1338}
1339
1340acpi_status acpi_os_notify_command_complete(void)
1341{
1342 int ret;
1343
1344 ret = acpi_debugger_notify_command_complete();
1345 if (ret < 0)
1346 return AE_ERROR;
1347 return AE_OK;
1348}
1349
1350acpi_status acpi_os_signal(u32 function, void *info)
1351{
1352 switch (function) {
1353 case ACPI_SIGNAL_FATAL:
1354 pr_err("Fatal opcode executed\n");
1355 break;
1356 case ACPI_SIGNAL_BREAKPOINT:
1357 /*
1358 * AML Breakpoint
1359 * ACPI spec. says to treat it as a NOP unless
1360 * you are debugging. So if/when we integrate
1361 * AML debugger into the kernel debugger its
1362 * hook will go here. But until then it is
1363 * not useful to print anything on breakpoints.
1364 */
1365 break;
1366 default:
1367 break;
1368 }
1369
1370 return AE_OK;
1371}
1372
1373static int __init acpi_os_name_setup(char *str)
1374{
1375 char *p = acpi_os_name;
1376 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378 if (!str || !*str)
1379 return 0;
1380
1381 for (; count-- && *str; str++) {
1382 if (isalnum(*str) || *str == ' ' || *str == ':')
1383 *p++ = *str;
1384 else if (*str == '\'' || *str == '"')
1385 continue;
1386 else
1387 break;
1388 }
1389 *p = 0;
1390
1391 return 1;
1392
1393}
1394
1395__setup("acpi_os_name=", acpi_os_name_setup);
1396
1397/*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default. It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1402 */
1403static int __init acpi_no_auto_serialize_setup(char *str)
1404{
1405 acpi_gbl_auto_serialize_methods = FALSE;
1406 pr_info("Auto-serialization disabled\n");
1407
1408 return 1;
1409}
1410
1411__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413/* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 * - strict (default) (2)
1420 * -> further driver trying to access the resources will not load
1421 * - lax (1)
1422 * -> further driver trying to access the resources will load, but you
1423 * get a system message that something might go wrong...
1424 *
1425 * - no (0)
1426 * -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429#define ENFORCE_RESOURCES_STRICT 2
1430#define ENFORCE_RESOURCES_LAX 1
1431#define ENFORCE_RESOURCES_NO 0
1432
1433static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435static int __init acpi_enforce_resources_setup(char *str)
1436{
1437 if (str == NULL || *str == '\0')
1438 return 0;
1439
1440 if (!strcmp("strict", str))
1441 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442 else if (!strcmp("lax", str))
1443 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444 else if (!strcmp("no", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447 return 1;
1448}
1449
1450__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452/* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454int acpi_check_resource_conflict(const struct resource *res)
1455{
1456 acpi_adr_space_type space_id;
1457
1458 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459 return 0;
1460
1461 if (res->flags & IORESOURCE_IO)
1462 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463 else if (res->flags & IORESOURCE_MEM)
1464 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465 else
1466 return 0;
1467
1468 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469 return 0;
1470
1471 pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474 return -EBUSY;
1475
1476 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
1479 return 0;
1480}
1481EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
1483int acpi_check_region(resource_size_t start, resource_size_t n,
1484 const char *name)
1485{
1486 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487
1488 return acpi_check_resource_conflict(&res);
1489}
1490EXPORT_SYMBOL(acpi_check_region);
1491
1492/*
1493 * Let drivers know whether the resource checks are effective
1494 */
1495int acpi_resources_are_enforced(void)
1496{
1497 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498}
1499EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501/*
1502 * Deallocate the memory for a spinlock.
1503 */
1504void acpi_os_delete_lock(acpi_spinlock handle)
1505{
1506 ACPI_FREE(handle);
1507}
1508
1509/*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
1515acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 __acquires(lockp)
1517{
1518 spin_lock(lockp);
1519 return 0;
1520}
1521
1522/*
1523 * Release a spinlock. See above.
1524 */
1525
1526void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527 __releases(lockp)
1528{
1529 spin_unlock(lockp);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551{
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572{
1573 kmem_cache_shrink(cache);
1574 return AE_OK;
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591{
1592 kmem_cache_destroy(cache);
1593 return AE_OK;
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611{
1612 kmem_cache_free(cache, object);
1613 return AE_OK;
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("Static SSDT installation disabled\n");
1621
1622 return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629 pr_notice("Predefined validation mechanism disabled\n");
1630 acpi_gbl_disable_auto_repair = TRUE;
1631
1632 return 1;
1633}
1634
1635__setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637acpi_status __init acpi_os_initialize(void)
1638{
1639 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642 acpi_gbl_xgpe0_block_logical_address =
1643 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644 acpi_gbl_xgpe1_block_logical_address =
1645 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648 /*
1649 * Use acpi_os_map_generic_address to pre-map the reset
1650 * register if it's in system memory.
1651 */
1652 void *rv;
1653
1654 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655 pr_debug("%s: Reset register mapping %s\n", __func__,
1656 rv ? "successful" : "failed");
1657 }
1658 acpi_os_initialized = true;
1659
1660 return AE_OK;
1661}
1662
1663acpi_status __init acpi_os_initialize1(void)
1664{
1665 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668 BUG_ON(!kacpid_wq);
1669 BUG_ON(!kacpi_notify_wq);
1670 BUG_ON(!kacpi_hotplug_wq);
1671 acpi_osi_init();
1672 return AE_OK;
1673}
1674
1675acpi_status acpi_os_terminate(void)
1676{
1677 if (acpi_irq_handler) {
1678 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679 acpi_irq_handler);
1680 }
1681
1682 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684 acpi_gbl_xgpe0_block_logical_address = 0UL;
1685 acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693 destroy_workqueue(kacpid_wq);
1694 destroy_workqueue(kacpi_notify_wq);
1695 destroy_workqueue(kacpi_hotplug_wq);
1696
1697 return AE_OK;
1698}
1699
1700acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701 u32 pm1b_control)
1702{
1703 int rc = 0;
1704
1705 if (__acpi_os_prepare_sleep)
1706 rc = __acpi_os_prepare_sleep(sleep_state,
1707 pm1a_control, pm1b_control);
1708 if (rc < 0)
1709 return AE_ERROR;
1710 else if (rc > 0)
1711 return AE_CTRL_TERMINATE;
1712
1713 return AE_OK;
1714}
1715
1716void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717 u32 pm1a_ctrl, u32 pm1b_ctrl))
1718{
1719 __acpi_os_prepare_sleep = func;
1720}
1721
1722#if (ACPI_REDUCED_HARDWARE)
1723acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724 u32 val_b)
1725{
1726 int rc = 0;
1727
1728 if (__acpi_os_prepare_extended_sleep)
1729 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730 val_a, val_b);
1731 if (rc < 0)
1732 return AE_ERROR;
1733 else if (rc > 0)
1734 return AE_CTRL_TERMINATE;
1735
1736 return AE_OK;
1737}
1738#else
1739acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740 u32 val_b)
1741{
1742 return AE_OK;
1743}
1744#endif
1745
1746void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747 u32 val_a, u32 val_b))
1748{
1749 __acpi_os_prepare_extended_sleep = func;
1750}
1751
1752acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753 u32 reg_a_value, u32 reg_b_value)
1754{
1755 acpi_status status;
1756
1757 if (acpi_gbl_reduced_hardware)
1758 status = acpi_os_prepare_extended_sleep(sleep_state,
1759 reg_a_value,
1760 reg_b_value);
1761 else
1762 status = acpi_os_prepare_sleep(sleep_state,
1763 reg_a_value, reg_b_value);
1764 return status;
1765}