Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; if not, write to the Free Software
  24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  27 *
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/mm.h>
 
  34#include <linux/pci.h>
  35#include <linux/interrupt.h>
  36#include <linux/kmod.h>
  37#include <linux/delay.h>
  38#include <linux/workqueue.h>
  39#include <linux/nmi.h>
  40#include <linux/acpi.h>
  41#include <linux/acpi_io.h>
  42#include <linux/efi.h>
  43#include <linux/ioport.h>
  44#include <linux/list.h>
  45#include <linux/jiffies.h>
  46#include <linux/semaphore.h>
  47
  48#include <asm/io.h>
  49#include <asm/uaccess.h>
 
  50
  51#include <acpi/acpi.h>
  52#include <acpi/acpi_bus.h>
  53#include <acpi/processor.h>
  54
  55#define _COMPONENT		ACPI_OS_SERVICES
  56ACPI_MODULE_NAME("osl");
  57#define PREFIX		"ACPI: "
  58struct acpi_os_dpc {
  59	acpi_osd_exec_callback function;
  60	void *context;
  61	struct work_struct work;
  62	int wait;
  63};
  64
  65#ifdef CONFIG_ACPI_CUSTOM_DSDT
  66#include CONFIG_ACPI_CUSTOM_DSDT_FILE
  67#endif
  68
  69#ifdef ENABLE_DEBUGGER
  70#include <linux/kdb.h>
  71
  72/* stuff for debugger support */
  73int acpi_in_debugger;
  74EXPORT_SYMBOL(acpi_in_debugger);
  75
  76extern char line_buf[80];
  77#endif				/*ENABLE_DEBUGGER */
  78
 
 
 
 
 
  79static acpi_osd_handler acpi_irq_handler;
  80static void *acpi_irq_context;
  81static struct workqueue_struct *kacpid_wq;
  82static struct workqueue_struct *kacpi_notify_wq;
  83static struct workqueue_struct *kacpi_hotplug_wq;
  84
  85struct acpi_res_list {
  86	resource_size_t start;
  87	resource_size_t end;
  88	acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
  89	char name[5];   /* only can have a length of 4 chars, make use of this
  90			   one instead of res->name, no need to kalloc then */
  91	struct list_head resource_list;
  92	int count;
  93};
  94
  95static LIST_HEAD(resource_list_head);
  96static DEFINE_SPINLOCK(acpi_res_lock);
  97
  98/*
  99 * This list of permanent mappings is for memory that may be accessed from
 100 * interrupt context, where we can't do the ioremap().
 101 */
 102struct acpi_ioremap {
 103	struct list_head list;
 104	void __iomem *virt;
 105	acpi_physical_address phys;
 106	acpi_size size;
 107	unsigned long refcount;
 108};
 109
 110static LIST_HEAD(acpi_ioremaps);
 111static DEFINE_MUTEX(acpi_ioremap_lock);
 112
 113static void __init acpi_osi_setup_late(void);
 114
 115/*
 116 * The story of _OSI(Linux)
 117 *
 118 * From pre-history through Linux-2.6.22,
 119 * Linux responded TRUE upon a BIOS OSI(Linux) query.
 120 *
 121 * Unfortunately, reference BIOS writers got wind of this
 122 * and put OSI(Linux) in their example code, quickly exposing
 123 * this string as ill-conceived and opening the door to
 124 * an un-bounded number of BIOS incompatibilities.
 125 *
 126 * For example, OSI(Linux) was used on resume to re-POST a
 127 * video card on one system, because Linux at that time
 128 * could not do a speedy restore in its native driver.
 129 * But then upon gaining quick native restore capability,
 130 * Linux has no way to tell the BIOS to skip the time-consuming
 131 * POST -- putting Linux at a permanent performance disadvantage.
 132 * On another system, the BIOS writer used OSI(Linux)
 133 * to infer native OS support for IPMI!  On other systems,
 134 * OSI(Linux) simply got in the way of Linux claiming to
 135 * be compatible with other operating systems, exposing
 136 * BIOS issues such as skipped device initialization.
 137 *
 138 * So "Linux" turned out to be a really poor chose of
 139 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
 140 *
 141 * BIOS writers should NOT query _OSI(Linux) on future systems.
 142 * Linux will complain on the console when it sees it, and return FALSE.
 143 * To get Linux to return TRUE for your system  will require
 144 * a kernel source update to add a DMI entry,
 145 * or boot with "acpi_osi=Linux"
 146 */
 147
 148static struct osi_linux {
 149	unsigned int	enable:1;
 150	unsigned int	dmi:1;
 151	unsigned int	cmdline:1;
 152} osi_linux = {0, 0, 0};
 153
 154static u32 acpi_osi_handler(acpi_string interface, u32 supported)
 155{
 156	if (!strcmp("Linux", interface)) {
 157
 158		printk_once(KERN_NOTICE FW_BUG PREFIX
 159			"BIOS _OSI(Linux) query %s%s\n",
 160			osi_linux.enable ? "honored" : "ignored",
 161			osi_linux.cmdline ? " via cmdline" :
 162			osi_linux.dmi ? " via DMI" : "");
 163	}
 164
 165	return supported;
 166}
 167
 168static void __init acpi_request_region (struct acpi_generic_address *addr,
 169	unsigned int length, char *desc)
 170{
 171	if (!addr->address || !length)
 
 
 
 
 172		return;
 173
 174	/* Resources are never freed */
 175	if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 176		request_region(addr->address, length, desc);
 177	else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 178		request_mem_region(addr->address, length, desc);
 179}
 180
 181static int __init acpi_reserve_resources(void)
 182{
 183	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 184		"ACPI PM1a_EVT_BLK");
 185
 186	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 187		"ACPI PM1b_EVT_BLK");
 188
 189	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 190		"ACPI PM1a_CNT_BLK");
 191
 192	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 193		"ACPI PM1b_CNT_BLK");
 194
 195	if (acpi_gbl_FADT.pm_timer_length == 4)
 196		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 197
 198	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 199		"ACPI PM2_CNT_BLK");
 200
 201	/* Length of GPE blocks must be a non-negative multiple of 2 */
 202
 203	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 204		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 205			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 206
 207	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 208		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 209			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 210
 211	return 0;
 212}
 213device_initcall(acpi_reserve_resources);
 214
 215void acpi_os_printf(const char *fmt, ...)
 216{
 217	va_list args;
 218	va_start(args, fmt);
 219	acpi_os_vprintf(fmt, args);
 220	va_end(args);
 221}
 
 222
 223void acpi_os_vprintf(const char *fmt, va_list args)
 224{
 225	static char buffer[512];
 226
 227	vsprintf(buffer, fmt, args);
 228
 229#ifdef ENABLE_DEBUGGER
 230	if (acpi_in_debugger) {
 231		kdb_printf("%s", buffer);
 232	} else {
 233		printk(KERN_CONT "%s", buffer);
 
 
 
 234	}
 235#else
 236	printk(KERN_CONT "%s", buffer);
 
 
 
 
 
 237#endif
 238}
 239
 240#ifdef CONFIG_KEXEC
 241static unsigned long acpi_rsdp;
 242static int __init setup_acpi_rsdp(char *arg)
 243{
 244	acpi_rsdp = simple_strtoul(arg, NULL, 16);
 245	return 0;
 246}
 247early_param("acpi_rsdp", setup_acpi_rsdp);
 248#endif
 249
 250acpi_physical_address __init acpi_os_get_root_pointer(void)
 251{
 
 
 252#ifdef CONFIG_KEXEC
 253	if (acpi_rsdp)
 254		return acpi_rsdp;
 255#endif
 256
 257	if (efi_enabled) {
 258		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 259			return efi.acpi20;
 260		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 261			return efi.acpi;
 262		else {
 263			printk(KERN_ERR PREFIX
 264			       "System description tables not found\n");
 265			return 0;
 266		}
 267	} else {
 268		acpi_physical_address pa = 0;
 269
 270		acpi_find_root_pointer(&pa);
 271		return pa;
 272	}
 
 
 273}
 274
 275/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 276static struct acpi_ioremap *
 277acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 278{
 279	struct acpi_ioremap *map;
 280
 281	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 282		if (map->phys <= phys &&
 283		    phys + size <= map->phys + map->size)
 284			return map;
 285
 286	return NULL;
 287}
 288
 289/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 290static void __iomem *
 291acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 292{
 293	struct acpi_ioremap *map;
 294
 295	map = acpi_map_lookup(phys, size);
 296	if (map)
 297		return map->virt + (phys - map->phys);
 298
 299	return NULL;
 300}
 301
 302void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 303{
 304	struct acpi_ioremap *map;
 305	void __iomem *virt = NULL;
 306
 307	mutex_lock(&acpi_ioremap_lock);
 308	map = acpi_map_lookup(phys, size);
 309	if (map) {
 310		virt = map->virt + (phys - map->phys);
 311		map->refcount++;
 312	}
 313	mutex_unlock(&acpi_ioremap_lock);
 314	return virt;
 315}
 316EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 317
 318/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 319static struct acpi_ioremap *
 320acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 321{
 322	struct acpi_ioremap *map;
 323
 324	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 325		if (map->virt <= virt &&
 326		    virt + size <= map->virt + map->size)
 327			return map;
 328
 329	return NULL;
 330}
 331
 332void __iomem *__init_refok
 333acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334{
 335	struct acpi_ioremap *map;
 336	void __iomem *virt;
 337	acpi_physical_address pg_off;
 338	acpi_size pg_sz;
 339
 340	if (phys > ULONG_MAX) {
 341		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 342		return NULL;
 343	}
 344
 345	if (!acpi_gbl_permanent_mmap)
 346		return __acpi_map_table((unsigned long)phys, size);
 347
 348	mutex_lock(&acpi_ioremap_lock);
 349	/* Check if there's a suitable mapping already. */
 350	map = acpi_map_lookup(phys, size);
 351	if (map) {
 352		map->refcount++;
 353		goto out;
 354	}
 355
 356	map = kzalloc(sizeof(*map), GFP_KERNEL);
 357	if (!map) {
 358		mutex_unlock(&acpi_ioremap_lock);
 359		return NULL;
 360	}
 361
 362	pg_off = round_down(phys, PAGE_SIZE);
 363	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 364	virt = acpi_os_ioremap(pg_off, pg_sz);
 365	if (!virt) {
 366		mutex_unlock(&acpi_ioremap_lock);
 367		kfree(map);
 368		return NULL;
 369	}
 370
 371	INIT_LIST_HEAD(&map->list);
 372	map->virt = virt;
 373	map->phys = pg_off;
 374	map->size = pg_sz;
 375	map->refcount = 1;
 376
 377	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 378
 379 out:
 380	mutex_unlock(&acpi_ioremap_lock);
 381	return map->virt + (phys - map->phys);
 382}
 
 
 
 
 
 
 383EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 384
 385static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 386{
 387	if (!--map->refcount)
 388		list_del_rcu(&map->list);
 389}
 390
 391static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 392{
 393	if (!map->refcount) {
 394		synchronize_rcu();
 395		iounmap(map->virt);
 396		kfree(map);
 397	}
 398}
 399
 400void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401{
 402	struct acpi_ioremap *map;
 403
 404	if (!acpi_gbl_permanent_mmap) {
 405		__acpi_unmap_table(virt, size);
 406		return;
 407	}
 408
 409	mutex_lock(&acpi_ioremap_lock);
 410	map = acpi_map_lookup_virt(virt, size);
 411	if (!map) {
 412		mutex_unlock(&acpi_ioremap_lock);
 413		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 414		return;
 415	}
 416	acpi_os_drop_map_ref(map);
 417	mutex_unlock(&acpi_ioremap_lock);
 418
 419	acpi_os_map_cleanup(map);
 420}
 421EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 422
 423void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 424{
 425	if (!acpi_gbl_permanent_mmap)
 426		__acpi_unmap_table(virt, size);
 427}
 
 428
 429static int acpi_os_map_generic_address(struct acpi_generic_address *addr)
 430{
 
 431	void __iomem *virt;
 432
 433	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 434		return 0;
 435
 436	if (!addr->address || !addr->bit_width)
 
 
 437		return -EINVAL;
 438
 439	virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
 440	if (!virt)
 441		return -EIO;
 442
 443	return 0;
 444}
 
 445
 446static void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
 447{
 
 448	struct acpi_ioremap *map;
 449
 450	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 451		return;
 452
 453	if (!addr->address || !addr->bit_width)
 
 
 454		return;
 455
 456	mutex_lock(&acpi_ioremap_lock);
 457	map = acpi_map_lookup(addr->address, addr->bit_width / 8);
 458	if (!map) {
 459		mutex_unlock(&acpi_ioremap_lock);
 460		return;
 461	}
 462	acpi_os_drop_map_ref(map);
 463	mutex_unlock(&acpi_ioremap_lock);
 464
 465	acpi_os_map_cleanup(map);
 466}
 
 467
 468#ifdef ACPI_FUTURE_USAGE
 469acpi_status
 470acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 471{
 472	if (!phys || !virt)
 473		return AE_BAD_PARAMETER;
 474
 475	*phys = virt_to_phys(virt);
 476
 477	return AE_OK;
 478}
 479#endif
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 481#define ACPI_MAX_OVERRIDE_LEN 100
 482
 483static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 484
 485acpi_status
 486acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 487			    acpi_string * new_val)
 488{
 489	if (!init_val || !new_val)
 490		return AE_BAD_PARAMETER;
 491
 492	*new_val = NULL;
 493	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 494		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 495		       acpi_os_name);
 496		*new_val = acpi_os_name;
 497	}
 498
 499	return AE_OK;
 500}
 501
 502acpi_status
 503acpi_os_table_override(struct acpi_table_header * existing_table,
 504		       struct acpi_table_header ** new_table)
 505{
 506	if (!existing_table || !new_table)
 507		return AE_BAD_PARAMETER;
 508
 509	*new_table = NULL;
 510
 511#ifdef CONFIG_ACPI_CUSTOM_DSDT
 512	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
 513		*new_table = (struct acpi_table_header *)AmlCode;
 514#endif
 515	if (*new_table != NULL) {
 516		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
 517			   "this is unsafe: tainting kernel\n",
 518		       existing_table->signature,
 519		       existing_table->oem_table_id);
 520		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
 521	}
 
 522	return AE_OK;
 523}
 524
 525static irqreturn_t acpi_irq(int irq, void *dev_id)
 526{
 527	u32 handled;
 528
 529	handled = (*acpi_irq_handler) (acpi_irq_context);
 530
 531	if (handled) {
 532		acpi_irq_handled++;
 533		return IRQ_HANDLED;
 534	} else {
 535		acpi_irq_not_handled++;
 536		return IRQ_NONE;
 537	}
 538}
 539
 540acpi_status
 541acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 542				  void *context)
 543{
 544	unsigned int irq;
 545
 546	acpi_irq_stats_init();
 547
 548	/*
 549	 * ACPI interrupts different from the SCI in our copy of the FADT are
 550	 * not supported.
 551	 */
 552	if (gsi != acpi_gbl_FADT.sci_interrupt)
 553		return AE_BAD_PARAMETER;
 554
 555	if (acpi_irq_handler)
 556		return AE_ALREADY_ACQUIRED;
 557
 558	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 559		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 560		       gsi);
 561		return AE_OK;
 562	}
 563
 564	acpi_irq_handler = handler;
 565	acpi_irq_context = context;
 566	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 567		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 568		acpi_irq_handler = NULL;
 569		return AE_NOT_ACQUIRED;
 570	}
 
 571
 572	return AE_OK;
 573}
 574
 575acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
 576{
 577	if (irq != acpi_gbl_FADT.sci_interrupt)
 578		return AE_BAD_PARAMETER;
 579
 580	free_irq(irq, acpi_irq);
 581	acpi_irq_handler = NULL;
 
 582
 583	return AE_OK;
 584}
 585
 586/*
 587 * Running in interpreter thread context, safe to sleep
 588 */
 589
 590void acpi_os_sleep(u64 ms)
 591{
 592	schedule_timeout_interruptible(msecs_to_jiffies(ms));
 593}
 594
 595void acpi_os_stall(u32 us)
 596{
 597	while (us) {
 598		u32 delay = 1000;
 599
 600		if (delay > us)
 601			delay = us;
 602		udelay(delay);
 603		touch_nmi_watchdog();
 604		us -= delay;
 605	}
 606}
 607
 608/*
 609 * Support ACPI 3.0 AML Timer operand
 610 * Returns 64-bit free-running, monotonically increasing timer
 611 * with 100ns granularity
 612 */
 613u64 acpi_os_get_timer(void)
 614{
 615	static u64 t;
 616
 617#ifdef	CONFIG_HPET
 618	/* TBD: use HPET if available */
 619#endif
 620
 621#ifdef	CONFIG_X86_PM_TIMER
 622	/* TBD: default to PM timer if HPET was not available */
 623#endif
 624	if (!t)
 625		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
 626
 627	return ++t;
 628}
 629
 630acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 631{
 632	u32 dummy;
 633
 634	if (!value)
 635		value = &dummy;
 636
 637	*value = 0;
 638	if (width <= 8) {
 639		*(u8 *) value = inb(port);
 640	} else if (width <= 16) {
 641		*(u16 *) value = inw(port);
 642	} else if (width <= 32) {
 643		*(u32 *) value = inl(port);
 644	} else {
 645		BUG();
 646	}
 647
 648	return AE_OK;
 649}
 650
 651EXPORT_SYMBOL(acpi_os_read_port);
 652
 653acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 654{
 655	if (width <= 8) {
 656		outb(value, port);
 657	} else if (width <= 16) {
 658		outw(value, port);
 659	} else if (width <= 32) {
 660		outl(value, port);
 661	} else {
 662		BUG();
 663	}
 664
 665	return AE_OK;
 666}
 667
 668EXPORT_SYMBOL(acpi_os_write_port);
 669
 670acpi_status
 671acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
 672{
 673	void __iomem *virt_addr;
 674	unsigned int size = width / 8;
 675	bool unmap = false;
 676	u32 dummy;
 677
 678	rcu_read_lock();
 679	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 680	if (!virt_addr) {
 681		rcu_read_unlock();
 682		virt_addr = acpi_os_ioremap(phys_addr, size);
 683		if (!virt_addr)
 684			return AE_BAD_ADDRESS;
 685		unmap = true;
 686	}
 687
 688	if (!value)
 689		value = &dummy;
 690
 691	switch (width) {
 692	case 8:
 693		*(u8 *) value = readb(virt_addr);
 694		break;
 695	case 16:
 696		*(u16 *) value = readw(virt_addr);
 697		break;
 698	case 32:
 699		*(u32 *) value = readl(virt_addr);
 700		break;
 
 
 
 701	default:
 702		BUG();
 703	}
 704
 705	if (unmap)
 706		iounmap(virt_addr);
 707	else
 708		rcu_read_unlock();
 709
 710	return AE_OK;
 711}
 712
 713acpi_status
 714acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
 715{
 716	void __iomem *virt_addr;
 717	unsigned int size = width / 8;
 718	bool unmap = false;
 719
 720	rcu_read_lock();
 721	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 722	if (!virt_addr) {
 723		rcu_read_unlock();
 724		virt_addr = acpi_os_ioremap(phys_addr, size);
 725		if (!virt_addr)
 726			return AE_BAD_ADDRESS;
 727		unmap = true;
 728	}
 729
 730	switch (width) {
 731	case 8:
 732		writeb(value, virt_addr);
 733		break;
 734	case 16:
 735		writew(value, virt_addr);
 736		break;
 737	case 32:
 738		writel(value, virt_addr);
 739		break;
 
 
 
 740	default:
 741		BUG();
 742	}
 743
 744	if (unmap)
 745		iounmap(virt_addr);
 746	else
 747		rcu_read_unlock();
 748
 749	return AE_OK;
 750}
 751
 752acpi_status
 753acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 754			       u64 *value, u32 width)
 755{
 756	int result, size;
 757	u32 value32;
 758
 759	if (!value)
 760		return AE_BAD_PARAMETER;
 761
 762	switch (width) {
 763	case 8:
 764		size = 1;
 765		break;
 766	case 16:
 767		size = 2;
 768		break;
 769	case 32:
 770		size = 4;
 771		break;
 772	default:
 773		return AE_ERROR;
 774	}
 775
 776	result = raw_pci_read(pci_id->segment, pci_id->bus,
 777				PCI_DEVFN(pci_id->device, pci_id->function),
 778				reg, size, &value32);
 779	*value = value32;
 780
 781	return (result ? AE_ERROR : AE_OK);
 782}
 783
 784acpi_status
 785acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 786				u64 value, u32 width)
 787{
 788	int result, size;
 789
 790	switch (width) {
 791	case 8:
 792		size = 1;
 793		break;
 794	case 16:
 795		size = 2;
 796		break;
 797	case 32:
 798		size = 4;
 799		break;
 800	default:
 801		return AE_ERROR;
 802	}
 803
 804	result = raw_pci_write(pci_id->segment, pci_id->bus,
 805				PCI_DEVFN(pci_id->device, pci_id->function),
 806				reg, size, value);
 807
 808	return (result ? AE_ERROR : AE_OK);
 809}
 810
 811static void acpi_os_execute_deferred(struct work_struct *work)
 812{
 813	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 814
 815	if (dpc->wait)
 816		acpi_os_wait_events_complete(NULL);
 817
 818	dpc->function(dpc->context);
 819	kfree(dpc);
 820}
 821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822/*******************************************************************************
 823 *
 824 * FUNCTION:    acpi_os_execute
 825 *
 826 * PARAMETERS:  Type               - Type of the callback
 827 *              Function           - Function to be executed
 828 *              Context            - Function parameters
 829 *
 830 * RETURN:      Status
 831 *
 832 * DESCRIPTION: Depending on type, either queues function for deferred execution or
 833 *              immediately executes function on a separate thread.
 834 *
 835 ******************************************************************************/
 836
 837static acpi_status __acpi_os_execute(acpi_execute_type type,
 838	acpi_osd_exec_callback function, void *context, int hp)
 839{
 840	acpi_status status = AE_OK;
 841	struct acpi_os_dpc *dpc;
 842	struct workqueue_struct *queue;
 843	int ret;
 844	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
 845			  "Scheduling function [%p(%p)] for deferred execution.\n",
 846			  function, context));
 847
 
 
 
 
 
 
 
 
 
 848	/*
 849	 * Allocate/initialize DPC structure.  Note that this memory will be
 850	 * freed by the callee.  The kernel handles the work_struct list  in a
 851	 * way that allows us to also free its memory inside the callee.
 852	 * Because we may want to schedule several tasks with different
 853	 * parameters we can't use the approach some kernel code uses of
 854	 * having a static work_struct.
 855	 */
 856
 857	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
 858	if (!dpc)
 859		return AE_NO_MEMORY;
 860
 861	dpc->function = function;
 862	dpc->context = context;
 863
 864	/*
 865	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
 866	 * because the hotplug code may call driver .remove() functions,
 867	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
 868	 * to flush these workqueues.
 869	 */
 870	queue = hp ? kacpi_hotplug_wq :
 871		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
 872	dpc->wait = hp ? 1 : 0;
 873
 874	if (queue == kacpi_hotplug_wq)
 875		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 876	else if (queue == kacpi_notify_wq)
 877		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 878	else
 879		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 
 
 
 
 
 
 
 880
 881	/*
 882	 * On some machines, a software-initiated SMI causes corruption unless
 883	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
 884	 * typically it's done in GPE-related methods that are run via
 885	 * workqueues, so we can avoid the known corruption cases by always
 886	 * queueing on CPU 0.
 887	 */
 888	ret = queue_work_on(0, queue, &dpc->work);
 889
 890	if (!ret) {
 891		printk(KERN_ERR PREFIX
 892			  "Call to queue_work() failed.\n");
 893		status = AE_ERROR;
 894		kfree(dpc);
 895	}
 
 
 
 
 896	return status;
 897}
 
 898
 899acpi_status acpi_os_execute(acpi_execute_type type,
 900			    acpi_osd_exec_callback function, void *context)
 901{
 902	return __acpi_os_execute(type, function, context, 0);
 
 
 
 
 
 
 
 903}
 904EXPORT_SYMBOL(acpi_os_execute);
 905
 906acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
 907	void *context)
 
 
 
 
 
 908{
 909	return __acpi_os_execute(0, function, context, 1);
 
 
 
 
 910}
 911
 912void acpi_os_wait_events_complete(void *context)
 913{
 914	flush_workqueue(kacpid_wq);
 915	flush_workqueue(kacpi_notify_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916}
 917
 918EXPORT_SYMBOL(acpi_os_wait_events_complete);
 
 
 
 919
 920acpi_status
 921acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
 922{
 923	struct semaphore *sem = NULL;
 924
 925	sem = acpi_os_allocate(sizeof(struct semaphore));
 926	if (!sem)
 927		return AE_NO_MEMORY;
 928	memset(sem, 0, sizeof(struct semaphore));
 929
 930	sema_init(sem, initial_units);
 931
 932	*handle = (acpi_handle *) sem;
 933
 934	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
 935			  *handle, initial_units));
 936
 937	return AE_OK;
 938}
 939
 940/*
 941 * TODO: A better way to delete semaphores?  Linux doesn't have a
 942 * 'delete_semaphore()' function -- may result in an invalid
 943 * pointer dereference for non-synchronized consumers.	Should
 944 * we at least check for blocked threads and signal/cancel them?
 945 */
 946
 947acpi_status acpi_os_delete_semaphore(acpi_handle handle)
 948{
 949	struct semaphore *sem = (struct semaphore *)handle;
 950
 951	if (!sem)
 952		return AE_BAD_PARAMETER;
 953
 954	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
 955
 956	BUG_ON(!list_empty(&sem->wait_list));
 957	kfree(sem);
 958	sem = NULL;
 959
 960	return AE_OK;
 961}
 962
 963/*
 964 * TODO: Support for units > 1?
 965 */
 966acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
 967{
 968	acpi_status status = AE_OK;
 969	struct semaphore *sem = (struct semaphore *)handle;
 970	long jiffies;
 971	int ret = 0;
 972
 
 
 
 973	if (!sem || (units < 1))
 974		return AE_BAD_PARAMETER;
 975
 976	if (units > 1)
 977		return AE_SUPPORT;
 978
 979	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
 980			  handle, units, timeout));
 981
 982	if (timeout == ACPI_WAIT_FOREVER)
 983		jiffies = MAX_SCHEDULE_TIMEOUT;
 984	else
 985		jiffies = msecs_to_jiffies(timeout);
 986	
 987	ret = down_timeout(sem, jiffies);
 988	if (ret)
 989		status = AE_TIME;
 990
 991	if (ACPI_FAILURE(status)) {
 992		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
 993				  "Failed to acquire semaphore[%p|%d|%d], %s",
 994				  handle, units, timeout,
 995				  acpi_format_exception(status)));
 996	} else {
 997		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
 998				  "Acquired semaphore[%p|%d|%d]", handle,
 999				  units, timeout));
1000	}
1001
1002	return status;
1003}
1004
1005/*
1006 * TODO: Support for units > 1?
1007 */
1008acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1009{
1010	struct semaphore *sem = (struct semaphore *)handle;
1011
 
 
 
1012	if (!sem || (units < 1))
1013		return AE_BAD_PARAMETER;
1014
1015	if (units > 1)
1016		return AE_SUPPORT;
1017
1018	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1019			  units));
1020
1021	up(sem);
1022
1023	return AE_OK;
1024}
1025
1026#ifdef ACPI_FUTURE_USAGE
1027u32 acpi_os_get_line(char *buffer)
1028{
1029
1030#ifdef ENABLE_DEBUGGER
1031	if (acpi_in_debugger) {
1032		u32 chars;
1033
1034		kdb_read(buffer, sizeof(line_buf));
1035
1036		/* remove the CR kdb includes */
1037		chars = strlen(buffer) - 1;
1038		buffer[chars] = '\0';
1039	}
 
 
 
 
 
 
 
 
1040#endif
1041
1042	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043}
1044#endif				/*  ACPI_FUTURE_USAGE  */
1045
1046acpi_status acpi_os_signal(u32 function, void *info)
1047{
1048	switch (function) {
1049	case ACPI_SIGNAL_FATAL:
1050		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1051		break;
1052	case ACPI_SIGNAL_BREAKPOINT:
1053		/*
1054		 * AML Breakpoint
1055		 * ACPI spec. says to treat it as a NOP unless
1056		 * you are debugging.  So if/when we integrate
1057		 * AML debugger into the kernel debugger its
1058		 * hook will go here.  But until then it is
1059		 * not useful to print anything on breakpoints.
1060		 */
1061		break;
1062	default:
1063		break;
1064	}
1065
1066	return AE_OK;
1067}
1068
1069static int __init acpi_os_name_setup(char *str)
1070{
1071	char *p = acpi_os_name;
1072	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1073
1074	if (!str || !*str)
1075		return 0;
1076
1077	for (; count-- && str && *str; str++) {
1078		if (isalnum(*str) || *str == ' ' || *str == ':')
1079			*p++ = *str;
1080		else if (*str == '\'' || *str == '"')
1081			continue;
1082		else
1083			break;
1084	}
1085	*p = 0;
1086
1087	return 1;
1088
1089}
1090
1091__setup("acpi_os_name=", acpi_os_name_setup);
1092
1093#define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1094#define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1095
1096struct osi_setup_entry {
1097	char string[OSI_STRING_LENGTH_MAX];
1098	bool enable;
1099};
1100
1101static struct osi_setup_entry __initdata
1102		osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1103	{"Module Device", true},
1104	{"Processor Device", true},
1105	{"3.0 _SCP Extensions", true},
1106	{"Processor Aggregator Device", true},
1107};
1108
1109void __init acpi_osi_setup(char *str)
1110{
1111	struct osi_setup_entry *osi;
1112	bool enable = true;
1113	int i;
1114
1115	if (!acpi_gbl_create_osi_method)
1116		return;
1117
1118	if (str == NULL || *str == '\0') {
1119		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1120		acpi_gbl_create_osi_method = FALSE;
1121		return;
1122	}
1123
1124	if (*str == '!') {
1125		str++;
1126		enable = false;
1127	}
1128
1129	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1130		osi = &osi_setup_entries[i];
1131		if (!strcmp(osi->string, str)) {
1132			osi->enable = enable;
1133			break;
1134		} else if (osi->string[0] == '\0') {
1135			osi->enable = enable;
1136			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1137			break;
1138		}
1139	}
1140}
1141
1142static void __init set_osi_linux(unsigned int enable)
1143{
1144	if (osi_linux.enable != enable)
1145		osi_linux.enable = enable;
1146
1147	if (osi_linux.enable)
1148		acpi_osi_setup("Linux");
1149	else
1150		acpi_osi_setup("!Linux");
1151
1152	return;
1153}
1154
1155static void __init acpi_cmdline_osi_linux(unsigned int enable)
1156{
1157	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1158	osi_linux.dmi = 0;
1159	set_osi_linux(enable);
1160
1161	return;
1162}
1163
1164void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1165{
1166	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1167
1168	if (enable == -1)
1169		return;
1170
1171	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1172	set_osi_linux(enable);
1173
1174	return;
1175}
1176
1177/*
1178 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1179 *
1180 * empty string disables _OSI
1181 * string starting with '!' disables that string
1182 * otherwise string is added to list, augmenting built-in strings
1183 */
1184static void __init acpi_osi_setup_late(void)
1185{
1186	struct osi_setup_entry *osi;
1187	char *str;
1188	int i;
1189	acpi_status status;
1190
1191	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1192		osi = &osi_setup_entries[i];
1193		str = osi->string;
1194
1195		if (*str == '\0')
1196			break;
1197		if (osi->enable) {
1198			status = acpi_install_interface(str);
1199
1200			if (ACPI_SUCCESS(status))
1201				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1202		} else {
1203			status = acpi_remove_interface(str);
1204
1205			if (ACPI_SUCCESS(status))
1206				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1207		}
1208	}
1209}
1210
1211static int __init osi_setup(char *str)
1212{
1213	if (str && !strcmp("Linux", str))
1214		acpi_cmdline_osi_linux(1);
1215	else if (str && !strcmp("!Linux", str))
1216		acpi_cmdline_osi_linux(0);
1217	else
1218		acpi_osi_setup(str);
1219
1220	return 1;
1221}
1222
1223__setup("acpi_osi=", osi_setup);
1224
1225/* enable serialization to combat AE_ALREADY_EXISTS errors */
1226static int __init acpi_serialize_setup(char *str)
1227{
1228	printk(KERN_INFO PREFIX "serialize enabled\n");
1229
1230	acpi_gbl_all_methods_serialized = TRUE;
1231
1232	return 1;
1233}
1234
1235__setup("acpi_serialize", acpi_serialize_setup);
1236
1237/* Check of resource interference between native drivers and ACPI
1238 * OperationRegions (SystemIO and System Memory only).
1239 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1240 * in arbitrary AML code and can interfere with legacy drivers.
1241 * acpi_enforce_resources= can be set to:
1242 *
1243 *   - strict (default) (2)
1244 *     -> further driver trying to access the resources will not load
1245 *   - lax              (1)
1246 *     -> further driver trying to access the resources will load, but you
1247 *     get a system message that something might go wrong...
1248 *
1249 *   - no               (0)
1250 *     -> ACPI Operation Region resources will not be registered
1251 *
1252 */
1253#define ENFORCE_RESOURCES_STRICT 2
1254#define ENFORCE_RESOURCES_LAX    1
1255#define ENFORCE_RESOURCES_NO     0
1256
1257static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1258
1259static int __init acpi_enforce_resources_setup(char *str)
1260{
1261	if (str == NULL || *str == '\0')
1262		return 0;
1263
1264	if (!strcmp("strict", str))
1265		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1266	else if (!strcmp("lax", str))
1267		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1268	else if (!strcmp("no", str))
1269		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1270
1271	return 1;
1272}
1273
1274__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1275
1276/* Check for resource conflicts between ACPI OperationRegions and native
1277 * drivers */
1278int acpi_check_resource_conflict(const struct resource *res)
1279{
1280	struct acpi_res_list *res_list_elem;
1281	int ioport = 0, clash = 0;
 
 
1282
1283	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1284		return 0;
1285	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1286		return 0;
1287
1288	ioport = res->flags & IORESOURCE_IO;
1289
1290	spin_lock(&acpi_res_lock);
1291	list_for_each_entry(res_list_elem, &resource_list_head,
1292			    resource_list) {
1293		if (ioport && (res_list_elem->resource_type
1294			       != ACPI_ADR_SPACE_SYSTEM_IO))
1295			continue;
1296		if (!ioport && (res_list_elem->resource_type
1297				!= ACPI_ADR_SPACE_SYSTEM_MEMORY))
1298			continue;
1299
1300		if (res->end < res_list_elem->start
1301		    || res_list_elem->end < res->start)
1302			continue;
1303		clash = 1;
1304		break;
1305	}
1306	spin_unlock(&acpi_res_lock);
1307
1308	if (clash) {
1309		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1310			printk(KERN_WARNING "ACPI: resource %s %pR"
1311			       " conflicts with ACPI region %s "
1312			       "[%s 0x%zx-0x%zx]\n",
1313			       res->name, res, res_list_elem->name,
1314			       (res_list_elem->resource_type ==
1315				ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1316			       (size_t) res_list_elem->start,
1317			       (size_t) res_list_elem->end);
1318			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1319				printk(KERN_NOTICE "ACPI: This conflict may"
1320				       " cause random problems and system"
1321				       " instability\n");
1322			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1323			       " for this device, you should use it instead of"
1324			       " the native driver\n");
1325		}
1326		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1327			return -EBUSY;
1328	}
1329	return 0;
1330}
1331EXPORT_SYMBOL(acpi_check_resource_conflict);
1332
1333int acpi_check_region(resource_size_t start, resource_size_t n,
1334		      const char *name)
1335{
1336	struct resource res = {
1337		.start = start,
1338		.end   = start + n - 1,
1339		.name  = name,
1340		.flags = IORESOURCE_IO,
1341	};
1342
1343	return acpi_check_resource_conflict(&res);
1344}
1345EXPORT_SYMBOL(acpi_check_region);
1346
1347/*
1348 * Let drivers know whether the resource checks are effective
1349 */
1350int acpi_resources_are_enforced(void)
1351{
1352	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1353}
1354EXPORT_SYMBOL(acpi_resources_are_enforced);
1355
1356/*
1357 * Deallocate the memory for a spinlock.
1358 */
1359void acpi_os_delete_lock(acpi_spinlock handle)
1360{
1361	ACPI_FREE(handle);
1362}
1363
1364/*
1365 * Acquire a spinlock.
1366 *
1367 * handle is a pointer to the spinlock_t.
1368 */
1369
1370acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1371{
1372	acpi_cpu_flags flags;
1373	spin_lock_irqsave(lockp, flags);
1374	return flags;
1375}
1376
1377/*
1378 * Release a spinlock. See above.
1379 */
1380
1381void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1382{
1383	spin_unlock_irqrestore(lockp, flags);
1384}
1385
1386#ifndef ACPI_USE_LOCAL_CACHE
1387
1388/*******************************************************************************
1389 *
1390 * FUNCTION:    acpi_os_create_cache
1391 *
1392 * PARAMETERS:  name      - Ascii name for the cache
1393 *              size      - Size of each cached object
1394 *              depth     - Maximum depth of the cache (in objects) <ignored>
1395 *              cache     - Where the new cache object is returned
1396 *
1397 * RETURN:      status
1398 *
1399 * DESCRIPTION: Create a cache object
1400 *
1401 ******************************************************************************/
1402
1403acpi_status
1404acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1405{
1406	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1407	if (*cache == NULL)
1408		return AE_ERROR;
1409	else
1410		return AE_OK;
1411}
1412
1413/*******************************************************************************
1414 *
1415 * FUNCTION:    acpi_os_purge_cache
1416 *
1417 * PARAMETERS:  Cache           - Handle to cache object
1418 *
1419 * RETURN:      Status
1420 *
1421 * DESCRIPTION: Free all objects within the requested cache.
1422 *
1423 ******************************************************************************/
1424
1425acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1426{
1427	kmem_cache_shrink(cache);
1428	return (AE_OK);
1429}
1430
1431/*******************************************************************************
1432 *
1433 * FUNCTION:    acpi_os_delete_cache
1434 *
1435 * PARAMETERS:  Cache           - Handle to cache object
1436 *
1437 * RETURN:      Status
1438 *
1439 * DESCRIPTION: Free all objects within the requested cache and delete the
1440 *              cache object.
1441 *
1442 ******************************************************************************/
1443
1444acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1445{
1446	kmem_cache_destroy(cache);
1447	return (AE_OK);
1448}
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION:    acpi_os_release_object
1453 *
1454 * PARAMETERS:  Cache       - Handle to cache object
1455 *              Object      - The object to be released
1456 *
1457 * RETURN:      None
1458 *
1459 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1460 *              the object is deleted.
1461 *
1462 ******************************************************************************/
1463
1464acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1465{
1466	kmem_cache_free(cache, object);
1467	return (AE_OK);
1468}
 
1469
1470static inline int acpi_res_list_add(struct acpi_res_list *res)
1471{
1472	struct acpi_res_list *res_list_elem;
1473
1474	list_for_each_entry(res_list_elem, &resource_list_head,
1475			    resource_list) {
1476
1477		if (res->resource_type == res_list_elem->resource_type &&
1478		    res->start == res_list_elem->start &&
1479		    res->end == res_list_elem->end) {
1480
1481			/*
1482			 * The Region(addr,len) already exist in the list,
1483			 * just increase the count
1484			 */
1485
1486			res_list_elem->count++;
1487			return 0;
1488		}
1489	}
1490
1491	res->count = 1;
1492	list_add(&res->resource_list, &resource_list_head);
1493	return 1;
1494}
1495
1496static inline void acpi_res_list_del(struct acpi_res_list *res)
1497{
1498	struct acpi_res_list *res_list_elem;
1499
1500	list_for_each_entry(res_list_elem, &resource_list_head,
1501			    resource_list) {
1502
1503		if (res->resource_type == res_list_elem->resource_type &&
1504		    res->start == res_list_elem->start &&
1505		    res->end == res_list_elem->end) {
1506
1507			/*
1508			 * If the res count is decreased to 0,
1509			 * remove and free it
1510			 */
1511
1512			if (--res_list_elem->count == 0) {
1513				list_del(&res_list_elem->resource_list);
1514				kfree(res_list_elem);
1515			}
1516			return;
1517		}
1518	}
1519}
1520
1521acpi_status
1522acpi_os_invalidate_address(
1523    u8                   space_id,
1524    acpi_physical_address   address,
1525    acpi_size               length)
1526{
1527	struct acpi_res_list res;
1528
1529	switch (space_id) {
1530	case ACPI_ADR_SPACE_SYSTEM_IO:
1531	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1532		/* Only interference checks against SystemIO and SystemMemory
1533		   are needed */
1534		res.start = address;
1535		res.end = address + length - 1;
1536		res.resource_type = space_id;
1537		spin_lock(&acpi_res_lock);
1538		acpi_res_list_del(&res);
1539		spin_unlock(&acpi_res_lock);
1540		break;
1541	case ACPI_ADR_SPACE_PCI_CONFIG:
1542	case ACPI_ADR_SPACE_EC:
1543	case ACPI_ADR_SPACE_SMBUS:
1544	case ACPI_ADR_SPACE_CMOS:
1545	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1546	case ACPI_ADR_SPACE_DATA_TABLE:
1547	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1548		break;
1549	}
1550	return AE_OK;
1551}
1552
1553/******************************************************************************
1554 *
1555 * FUNCTION:    acpi_os_validate_address
1556 *
1557 * PARAMETERS:  space_id             - ACPI space ID
1558 *              address             - Physical address
1559 *              length              - Address length
1560 *
1561 * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1562 *              should return AE_AML_ILLEGAL_ADDRESS.
1563 *
1564 * DESCRIPTION: Validate a system address via the host OS. Used to validate
1565 *              the addresses accessed by AML operation regions.
1566 *
1567 *****************************************************************************/
1568
1569acpi_status
1570acpi_os_validate_address (
1571    u8                   space_id,
1572    acpi_physical_address   address,
1573    acpi_size               length,
1574    char *name)
1575{
1576	struct acpi_res_list *res;
1577	int added;
1578	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1579		return AE_OK;
1580
1581	switch (space_id) {
1582	case ACPI_ADR_SPACE_SYSTEM_IO:
1583	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1584		/* Only interference checks against SystemIO and SystemMemory
1585		   are needed */
1586		res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1587		if (!res)
1588			return AE_OK;
1589		/* ACPI names are fixed to 4 bytes, still better use strlcpy */
1590		strlcpy(res->name, name, 5);
1591		res->start = address;
1592		res->end = address + length - 1;
1593		res->resource_type = space_id;
1594		spin_lock(&acpi_res_lock);
1595		added = acpi_res_list_add(res);
1596		spin_unlock(&acpi_res_lock);
1597		pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1598			 "name: %s\n", added ? "Added" : "Already exist",
1599			 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1600			 ? "SystemIO" : "System Memory",
1601			 (unsigned long long)res->start,
1602			 (unsigned long long)res->end,
1603			 res->name);
1604		if (!added)
1605			kfree(res);
1606		break;
1607	case ACPI_ADR_SPACE_PCI_CONFIG:
1608	case ACPI_ADR_SPACE_EC:
1609	case ACPI_ADR_SPACE_SMBUS:
1610	case ACPI_ADR_SPACE_CMOS:
1611	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1612	case ACPI_ADR_SPACE_DATA_TABLE:
1613	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1614		break;
1615	}
1616	return AE_OK;
1617}
1618#endif
 
1619
1620acpi_status __init acpi_os_initialize(void)
1621{
1622	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1623	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1624	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1625	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
 
 
 
 
 
 
 
 
 
 
 
1626
1627	return AE_OK;
1628}
1629
1630acpi_status __init acpi_os_initialize1(void)
1631{
1632	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1633	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1634	kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1635	BUG_ON(!kacpid_wq);
1636	BUG_ON(!kacpi_notify_wq);
1637	BUG_ON(!kacpi_hotplug_wq);
1638	acpi_install_interface_handler(acpi_osi_handler);
1639	acpi_osi_setup_late();
1640	return AE_OK;
1641}
1642
1643acpi_status acpi_os_terminate(void)
1644{
1645	if (acpi_irq_handler) {
1646		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1647						 acpi_irq_handler);
1648	}
1649
1650	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1651	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1652	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
 
 
1654
1655	destroy_workqueue(kacpid_wq);
1656	destroy_workqueue(kacpi_notify_wq);
1657	destroy_workqueue(kacpi_hotplug_wq);
1658
1659	return AE_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660}
v4.10.11
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
 
 
 
 
  22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23 *
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/highmem.h>
  31#include <linux/pci.h>
  32#include <linux/interrupt.h>
  33#include <linux/kmod.h>
  34#include <linux/delay.h>
  35#include <linux/workqueue.h>
  36#include <linux/nmi.h>
  37#include <linux/acpi.h>
 
  38#include <linux/efi.h>
  39#include <linux/ioport.h>
  40#include <linux/list.h>
  41#include <linux/jiffies.h>
  42#include <linux/semaphore.h>
  43
  44#include <asm/io.h>
  45#include <linux/uaccess.h>
  46#include <linux/io-64-nonatomic-lo-hi.h>
  47
  48#include "internal.h"
 
 
  49
  50#define _COMPONENT		ACPI_OS_SERVICES
  51ACPI_MODULE_NAME("osl");
  52
  53struct acpi_os_dpc {
  54	acpi_osd_exec_callback function;
  55	void *context;
  56	struct work_struct work;
 
  57};
  58
 
 
 
 
  59#ifdef ENABLE_DEBUGGER
  60#include <linux/kdb.h>
  61
  62/* stuff for debugger support */
  63int acpi_in_debugger;
  64EXPORT_SYMBOL(acpi_in_debugger);
 
 
  65#endif				/*ENABLE_DEBUGGER */
  66
  67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  68				      u32 pm1b_ctrl);
  69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  70				      u32 val_b);
  71
  72static acpi_osd_handler acpi_irq_handler;
  73static void *acpi_irq_context;
  74static struct workqueue_struct *kacpid_wq;
  75static struct workqueue_struct *kacpi_notify_wq;
  76static struct workqueue_struct *kacpi_hotplug_wq;
  77static bool acpi_os_initialized;
  78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  79bool acpi_permanent_mmap = false;
 
 
 
 
 
 
 
 
 
 
  80
  81/*
  82 * This list of permanent mappings is for memory that may be accessed from
  83 * interrupt context, where we can't do the ioremap().
  84 */
  85struct acpi_ioremap {
  86	struct list_head list;
  87	void __iomem *virt;
  88	acpi_physical_address phys;
  89	acpi_size size;
  90	unsigned long refcount;
  91};
  92
  93static LIST_HEAD(acpi_ioremaps);
  94static DEFINE_MUTEX(acpi_ioremap_lock);
  95
  96static void __init acpi_request_region (struct acpi_generic_address *gas,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97	unsigned int length, char *desc)
  98{
  99	u64 addr;
 100
 101	/* Handle possible alignment issues */
 102	memcpy(&addr, &gas->address, sizeof(addr));
 103	if (!addr || !length)
 104		return;
 105
 106	/* Resources are never freed */
 107	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 108		request_region(addr, length, desc);
 109	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 110		request_mem_region(addr, length, desc);
 111}
 112
 113static int __init acpi_reserve_resources(void)
 114{
 115	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 116		"ACPI PM1a_EVT_BLK");
 117
 118	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 119		"ACPI PM1b_EVT_BLK");
 120
 121	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 122		"ACPI PM1a_CNT_BLK");
 123
 124	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 125		"ACPI PM1b_CNT_BLK");
 126
 127	if (acpi_gbl_FADT.pm_timer_length == 4)
 128		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 129
 130	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 131		"ACPI PM2_CNT_BLK");
 132
 133	/* Length of GPE blocks must be a non-negative multiple of 2 */
 134
 135	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 136		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 137			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 138
 139	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 140		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 141			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 142
 143	return 0;
 144}
 145fs_initcall_sync(acpi_reserve_resources);
 146
 147void acpi_os_printf(const char *fmt, ...)
 148{
 149	va_list args;
 150	va_start(args, fmt);
 151	acpi_os_vprintf(fmt, args);
 152	va_end(args);
 153}
 154EXPORT_SYMBOL(acpi_os_printf);
 155
 156void acpi_os_vprintf(const char *fmt, va_list args)
 157{
 158	static char buffer[512];
 159
 160	vsprintf(buffer, fmt, args);
 161
 162#ifdef ENABLE_DEBUGGER
 163	if (acpi_in_debugger) {
 164		kdb_printf("%s", buffer);
 165	} else {
 166		if (printk_get_level(buffer))
 167			printk("%s", buffer);
 168		else
 169			printk(KERN_CONT "%s", buffer);
 170	}
 171#else
 172	if (acpi_debugger_write_log(buffer) < 0) {
 173		if (printk_get_level(buffer))
 174			printk("%s", buffer);
 175		else
 176			printk(KERN_CONT "%s", buffer);
 177	}
 178#endif
 179}
 180
 181#ifdef CONFIG_KEXEC
 182static unsigned long acpi_rsdp;
 183static int __init setup_acpi_rsdp(char *arg)
 184{
 185	return kstrtoul(arg, 16, &acpi_rsdp);
 
 186}
 187early_param("acpi_rsdp", setup_acpi_rsdp);
 188#endif
 189
 190acpi_physical_address __init acpi_os_get_root_pointer(void)
 191{
 192	acpi_physical_address pa = 0;
 193
 194#ifdef CONFIG_KEXEC
 195	if (acpi_rsdp)
 196		return acpi_rsdp;
 197#endif
 198
 199	if (efi_enabled(EFI_CONFIG_TABLES)) {
 200		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 201			return efi.acpi20;
 202		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 203			return efi.acpi;
 204		pr_err(PREFIX "System description tables not found\n");
 205	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 
 
 
 
 
 
 206		acpi_find_root_pointer(&pa);
 
 207	}
 208
 209	return pa;
 210}
 211
 212/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 213static struct acpi_ioremap *
 214acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 215{
 216	struct acpi_ioremap *map;
 217
 218	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 219		if (map->phys <= phys &&
 220		    phys + size <= map->phys + map->size)
 221			return map;
 222
 223	return NULL;
 224}
 225
 226/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 227static void __iomem *
 228acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 229{
 230	struct acpi_ioremap *map;
 231
 232	map = acpi_map_lookup(phys, size);
 233	if (map)
 234		return map->virt + (phys - map->phys);
 235
 236	return NULL;
 237}
 238
 239void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 240{
 241	struct acpi_ioremap *map;
 242	void __iomem *virt = NULL;
 243
 244	mutex_lock(&acpi_ioremap_lock);
 245	map = acpi_map_lookup(phys, size);
 246	if (map) {
 247		virt = map->virt + (phys - map->phys);
 248		map->refcount++;
 249	}
 250	mutex_unlock(&acpi_ioremap_lock);
 251	return virt;
 252}
 253EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 254
 255/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 256static struct acpi_ioremap *
 257acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 258{
 259	struct acpi_ioremap *map;
 260
 261	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 262		if (map->virt <= virt &&
 263		    virt + size <= map->virt + map->size)
 264			return map;
 265
 266	return NULL;
 267}
 268
 269#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 270/* ioremap will take care of cache attributes */
 271#define should_use_kmap(pfn)   0
 272#else
 273#define should_use_kmap(pfn)   page_is_ram(pfn)
 274#endif
 275
 276static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 277{
 278	unsigned long pfn;
 279
 280	pfn = pg_off >> PAGE_SHIFT;
 281	if (should_use_kmap(pfn)) {
 282		if (pg_sz > PAGE_SIZE)
 283			return NULL;
 284		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 285	} else
 286		return acpi_os_ioremap(pg_off, pg_sz);
 287}
 288
 289static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 290{
 291	unsigned long pfn;
 292
 293	pfn = pg_off >> PAGE_SHIFT;
 294	if (should_use_kmap(pfn))
 295		kunmap(pfn_to_page(pfn));
 296	else
 297		iounmap(vaddr);
 298}
 299
 300/**
 301 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 302 * @phys: Start of the physical address range to map.
 303 * @size: Size of the physical address range to map.
 304 *
 305 * Look up the given physical address range in the list of existing ACPI memory
 306 * mappings.  If found, get a reference to it and return a pointer to it (its
 307 * virtual address).  If not found, map it, add it to that list and return a
 308 * pointer to it.
 309 *
 310 * During early init (when acpi_permanent_mmap has not been set yet) this
 311 * routine simply calls __acpi_map_table() to get the job done.
 312 */
 313void __iomem *__ref
 314acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 315{
 316	struct acpi_ioremap *map;
 317	void __iomem *virt;
 318	acpi_physical_address pg_off;
 319	acpi_size pg_sz;
 320
 321	if (phys > ULONG_MAX) {
 322		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 323		return NULL;
 324	}
 325
 326	if (!acpi_permanent_mmap)
 327		return __acpi_map_table((unsigned long)phys, size);
 328
 329	mutex_lock(&acpi_ioremap_lock);
 330	/* Check if there's a suitable mapping already. */
 331	map = acpi_map_lookup(phys, size);
 332	if (map) {
 333		map->refcount++;
 334		goto out;
 335	}
 336
 337	map = kzalloc(sizeof(*map), GFP_KERNEL);
 338	if (!map) {
 339		mutex_unlock(&acpi_ioremap_lock);
 340		return NULL;
 341	}
 342
 343	pg_off = round_down(phys, PAGE_SIZE);
 344	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 345	virt = acpi_map(pg_off, pg_sz);
 346	if (!virt) {
 347		mutex_unlock(&acpi_ioremap_lock);
 348		kfree(map);
 349		return NULL;
 350	}
 351
 352	INIT_LIST_HEAD(&map->list);
 353	map->virt = virt;
 354	map->phys = pg_off;
 355	map->size = pg_sz;
 356	map->refcount = 1;
 357
 358	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 359
 360out:
 361	mutex_unlock(&acpi_ioremap_lock);
 362	return map->virt + (phys - map->phys);
 363}
 364EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 365
 366void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 367{
 368	return (void *)acpi_os_map_iomem(phys, size);
 369}
 370EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 371
 372static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 373{
 374	if (!--map->refcount)
 375		list_del_rcu(&map->list);
 376}
 377
 378static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 379{
 380	if (!map->refcount) {
 381		synchronize_rcu_expedited();
 382		acpi_unmap(map->phys, map->virt);
 383		kfree(map);
 384	}
 385}
 386
 387/**
 388 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 389 * @virt: Start of the address range to drop a reference to.
 390 * @size: Size of the address range to drop a reference to.
 391 *
 392 * Look up the given virtual address range in the list of existing ACPI memory
 393 * mappings, drop a reference to it and unmap it if there are no more active
 394 * references to it.
 395 *
 396 * During early init (when acpi_permanent_mmap has not been set yet) this
 397 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 398 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 399 * here.
 400 */
 401void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 402{
 403	struct acpi_ioremap *map;
 404
 405	if (!acpi_permanent_mmap) {
 406		__acpi_unmap_table(virt, size);
 407		return;
 408	}
 409
 410	mutex_lock(&acpi_ioremap_lock);
 411	map = acpi_map_lookup_virt(virt, size);
 412	if (!map) {
 413		mutex_unlock(&acpi_ioremap_lock);
 414		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 415		return;
 416	}
 417	acpi_os_drop_map_ref(map);
 418	mutex_unlock(&acpi_ioremap_lock);
 419
 420	acpi_os_map_cleanup(map);
 421}
 422EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 423
 424void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 425{
 426	return acpi_os_unmap_iomem((void __iomem *)virt, size);
 
 427}
 428EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 429
 430int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 431{
 432	u64 addr;
 433	void __iomem *virt;
 434
 435	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 436		return 0;
 437
 438	/* Handle possible alignment issues */
 439	memcpy(&addr, &gas->address, sizeof(addr));
 440	if (!addr || !gas->bit_width)
 441		return -EINVAL;
 442
 443	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 444	if (!virt)
 445		return -EIO;
 446
 447	return 0;
 448}
 449EXPORT_SYMBOL(acpi_os_map_generic_address);
 450
 451void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 452{
 453	u64 addr;
 454	struct acpi_ioremap *map;
 455
 456	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 457		return;
 458
 459	/* Handle possible alignment issues */
 460	memcpy(&addr, &gas->address, sizeof(addr));
 461	if (!addr || !gas->bit_width)
 462		return;
 463
 464	mutex_lock(&acpi_ioremap_lock);
 465	map = acpi_map_lookup(addr, gas->bit_width / 8);
 466	if (!map) {
 467		mutex_unlock(&acpi_ioremap_lock);
 468		return;
 469	}
 470	acpi_os_drop_map_ref(map);
 471	mutex_unlock(&acpi_ioremap_lock);
 472
 473	acpi_os_map_cleanup(map);
 474}
 475EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 476
 477#ifdef ACPI_FUTURE_USAGE
 478acpi_status
 479acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 480{
 481	if (!phys || !virt)
 482		return AE_BAD_PARAMETER;
 483
 484	*phys = virt_to_phys(virt);
 485
 486	return AE_OK;
 487}
 488#endif
 489
 490#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 491static bool acpi_rev_override;
 492
 493int __init acpi_rev_override_setup(char *str)
 494{
 495	acpi_rev_override = true;
 496	return 1;
 497}
 498__setup("acpi_rev_override", acpi_rev_override_setup);
 499#else
 500#define acpi_rev_override	false
 501#endif
 502
 503#define ACPI_MAX_OVERRIDE_LEN 100
 504
 505static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 506
 507acpi_status
 508acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 509			    acpi_string *new_val)
 510{
 511	if (!init_val || !new_val)
 512		return AE_BAD_PARAMETER;
 513
 514	*new_val = NULL;
 515	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 516		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 517		       acpi_os_name);
 518		*new_val = acpi_os_name;
 519	}
 520
 521	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 522		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 523		*new_val = (char *)5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524	}
 525
 526	return AE_OK;
 527}
 528
 529static irqreturn_t acpi_irq(int irq, void *dev_id)
 530{
 531	u32 handled;
 532
 533	handled = (*acpi_irq_handler) (acpi_irq_context);
 534
 535	if (handled) {
 536		acpi_irq_handled++;
 537		return IRQ_HANDLED;
 538	} else {
 539		acpi_irq_not_handled++;
 540		return IRQ_NONE;
 541	}
 542}
 543
 544acpi_status
 545acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 546				  void *context)
 547{
 548	unsigned int irq;
 549
 550	acpi_irq_stats_init();
 551
 552	/*
 553	 * ACPI interrupts different from the SCI in our copy of the FADT are
 554	 * not supported.
 555	 */
 556	if (gsi != acpi_gbl_FADT.sci_interrupt)
 557		return AE_BAD_PARAMETER;
 558
 559	if (acpi_irq_handler)
 560		return AE_ALREADY_ACQUIRED;
 561
 562	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 563		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 564		       gsi);
 565		return AE_OK;
 566	}
 567
 568	acpi_irq_handler = handler;
 569	acpi_irq_context = context;
 570	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 571		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 572		acpi_irq_handler = NULL;
 573		return AE_NOT_ACQUIRED;
 574	}
 575	acpi_sci_irq = irq;
 576
 577	return AE_OK;
 578}
 579
 580acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 581{
 582	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 583		return AE_BAD_PARAMETER;
 584
 585	free_irq(acpi_sci_irq, acpi_irq);
 586	acpi_irq_handler = NULL;
 587	acpi_sci_irq = INVALID_ACPI_IRQ;
 588
 589	return AE_OK;
 590}
 591
 592/*
 593 * Running in interpreter thread context, safe to sleep
 594 */
 595
 596void acpi_os_sleep(u64 ms)
 597{
 598	msleep(ms);
 599}
 600
 601void acpi_os_stall(u32 us)
 602{
 603	while (us) {
 604		u32 delay = 1000;
 605
 606		if (delay > us)
 607			delay = us;
 608		udelay(delay);
 609		touch_nmi_watchdog();
 610		us -= delay;
 611	}
 612}
 613
 614/*
 615 * Support ACPI 3.0 AML Timer operand
 616 * Returns 64-bit free-running, monotonically increasing timer
 617 * with 100ns granularity
 618 */
 619u64 acpi_os_get_timer(void)
 620{
 621	u64 time_ns = ktime_to_ns(ktime_get());
 622	do_div(time_ns, 100);
 623	return time_ns;
 
 
 
 
 
 
 
 
 
 
 624}
 625
 626acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 627{
 628	u32 dummy;
 629
 630	if (!value)
 631		value = &dummy;
 632
 633	*value = 0;
 634	if (width <= 8) {
 635		*(u8 *) value = inb(port);
 636	} else if (width <= 16) {
 637		*(u16 *) value = inw(port);
 638	} else if (width <= 32) {
 639		*(u32 *) value = inl(port);
 640	} else {
 641		BUG();
 642	}
 643
 644	return AE_OK;
 645}
 646
 647EXPORT_SYMBOL(acpi_os_read_port);
 648
 649acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 650{
 651	if (width <= 8) {
 652		outb(value, port);
 653	} else if (width <= 16) {
 654		outw(value, port);
 655	} else if (width <= 32) {
 656		outl(value, port);
 657	} else {
 658		BUG();
 659	}
 660
 661	return AE_OK;
 662}
 663
 664EXPORT_SYMBOL(acpi_os_write_port);
 665
 666acpi_status
 667acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 668{
 669	void __iomem *virt_addr;
 670	unsigned int size = width / 8;
 671	bool unmap = false;
 672	u64 dummy;
 673
 674	rcu_read_lock();
 675	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 676	if (!virt_addr) {
 677		rcu_read_unlock();
 678		virt_addr = acpi_os_ioremap(phys_addr, size);
 679		if (!virt_addr)
 680			return AE_BAD_ADDRESS;
 681		unmap = true;
 682	}
 683
 684	if (!value)
 685		value = &dummy;
 686
 687	switch (width) {
 688	case 8:
 689		*(u8 *) value = readb(virt_addr);
 690		break;
 691	case 16:
 692		*(u16 *) value = readw(virt_addr);
 693		break;
 694	case 32:
 695		*(u32 *) value = readl(virt_addr);
 696		break;
 697	case 64:
 698		*(u64 *) value = readq(virt_addr);
 699		break;
 700	default:
 701		BUG();
 702	}
 703
 704	if (unmap)
 705		iounmap(virt_addr);
 706	else
 707		rcu_read_unlock();
 708
 709	return AE_OK;
 710}
 711
 712acpi_status
 713acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 714{
 715	void __iomem *virt_addr;
 716	unsigned int size = width / 8;
 717	bool unmap = false;
 718
 719	rcu_read_lock();
 720	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 721	if (!virt_addr) {
 722		rcu_read_unlock();
 723		virt_addr = acpi_os_ioremap(phys_addr, size);
 724		if (!virt_addr)
 725			return AE_BAD_ADDRESS;
 726		unmap = true;
 727	}
 728
 729	switch (width) {
 730	case 8:
 731		writeb(value, virt_addr);
 732		break;
 733	case 16:
 734		writew(value, virt_addr);
 735		break;
 736	case 32:
 737		writel(value, virt_addr);
 738		break;
 739	case 64:
 740		writeq(value, virt_addr);
 741		break;
 742	default:
 743		BUG();
 744	}
 745
 746	if (unmap)
 747		iounmap(virt_addr);
 748	else
 749		rcu_read_unlock();
 750
 751	return AE_OK;
 752}
 753
 754acpi_status
 755acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 756			       u64 *value, u32 width)
 757{
 758	int result, size;
 759	u32 value32;
 760
 761	if (!value)
 762		return AE_BAD_PARAMETER;
 763
 764	switch (width) {
 765	case 8:
 766		size = 1;
 767		break;
 768	case 16:
 769		size = 2;
 770		break;
 771	case 32:
 772		size = 4;
 773		break;
 774	default:
 775		return AE_ERROR;
 776	}
 777
 778	result = raw_pci_read(pci_id->segment, pci_id->bus,
 779				PCI_DEVFN(pci_id->device, pci_id->function),
 780				reg, size, &value32);
 781	*value = value32;
 782
 783	return (result ? AE_ERROR : AE_OK);
 784}
 785
 786acpi_status
 787acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 788				u64 value, u32 width)
 789{
 790	int result, size;
 791
 792	switch (width) {
 793	case 8:
 794		size = 1;
 795		break;
 796	case 16:
 797		size = 2;
 798		break;
 799	case 32:
 800		size = 4;
 801		break;
 802	default:
 803		return AE_ERROR;
 804	}
 805
 806	result = raw_pci_write(pci_id->segment, pci_id->bus,
 807				PCI_DEVFN(pci_id->device, pci_id->function),
 808				reg, size, value);
 809
 810	return (result ? AE_ERROR : AE_OK);
 811}
 812
 813static void acpi_os_execute_deferred(struct work_struct *work)
 814{
 815	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 816
 
 
 
 817	dpc->function(dpc->context);
 818	kfree(dpc);
 819}
 820
 821#ifdef CONFIG_ACPI_DEBUGGER
 822static struct acpi_debugger acpi_debugger;
 823static bool acpi_debugger_initialized;
 824
 825int acpi_register_debugger(struct module *owner,
 826			   const struct acpi_debugger_ops *ops)
 827{
 828	int ret = 0;
 829
 830	mutex_lock(&acpi_debugger.lock);
 831	if (acpi_debugger.ops) {
 832		ret = -EBUSY;
 833		goto err_lock;
 834	}
 835
 836	acpi_debugger.owner = owner;
 837	acpi_debugger.ops = ops;
 838
 839err_lock:
 840	mutex_unlock(&acpi_debugger.lock);
 841	return ret;
 842}
 843EXPORT_SYMBOL(acpi_register_debugger);
 844
 845void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 846{
 847	mutex_lock(&acpi_debugger.lock);
 848	if (ops == acpi_debugger.ops) {
 849		acpi_debugger.ops = NULL;
 850		acpi_debugger.owner = NULL;
 851	}
 852	mutex_unlock(&acpi_debugger.lock);
 853}
 854EXPORT_SYMBOL(acpi_unregister_debugger);
 855
 856int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 857{
 858	int ret;
 859	int (*func)(acpi_osd_exec_callback, void *);
 860	struct module *owner;
 861
 862	if (!acpi_debugger_initialized)
 863		return -ENODEV;
 864	mutex_lock(&acpi_debugger.lock);
 865	if (!acpi_debugger.ops) {
 866		ret = -ENODEV;
 867		goto err_lock;
 868	}
 869	if (!try_module_get(acpi_debugger.owner)) {
 870		ret = -ENODEV;
 871		goto err_lock;
 872	}
 873	func = acpi_debugger.ops->create_thread;
 874	owner = acpi_debugger.owner;
 875	mutex_unlock(&acpi_debugger.lock);
 876
 877	ret = func(function, context);
 878
 879	mutex_lock(&acpi_debugger.lock);
 880	module_put(owner);
 881err_lock:
 882	mutex_unlock(&acpi_debugger.lock);
 883	return ret;
 884}
 885
 886ssize_t acpi_debugger_write_log(const char *msg)
 887{
 888	ssize_t ret;
 889	ssize_t (*func)(const char *);
 890	struct module *owner;
 891
 892	if (!acpi_debugger_initialized)
 893		return -ENODEV;
 894	mutex_lock(&acpi_debugger.lock);
 895	if (!acpi_debugger.ops) {
 896		ret = -ENODEV;
 897		goto err_lock;
 898	}
 899	if (!try_module_get(acpi_debugger.owner)) {
 900		ret = -ENODEV;
 901		goto err_lock;
 902	}
 903	func = acpi_debugger.ops->write_log;
 904	owner = acpi_debugger.owner;
 905	mutex_unlock(&acpi_debugger.lock);
 906
 907	ret = func(msg);
 908
 909	mutex_lock(&acpi_debugger.lock);
 910	module_put(owner);
 911err_lock:
 912	mutex_unlock(&acpi_debugger.lock);
 913	return ret;
 914}
 915
 916ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 917{
 918	ssize_t ret;
 919	ssize_t (*func)(char *, size_t);
 920	struct module *owner;
 921
 922	if (!acpi_debugger_initialized)
 923		return -ENODEV;
 924	mutex_lock(&acpi_debugger.lock);
 925	if (!acpi_debugger.ops) {
 926		ret = -ENODEV;
 927		goto err_lock;
 928	}
 929	if (!try_module_get(acpi_debugger.owner)) {
 930		ret = -ENODEV;
 931		goto err_lock;
 932	}
 933	func = acpi_debugger.ops->read_cmd;
 934	owner = acpi_debugger.owner;
 935	mutex_unlock(&acpi_debugger.lock);
 936
 937	ret = func(buffer, buffer_length);
 938
 939	mutex_lock(&acpi_debugger.lock);
 940	module_put(owner);
 941err_lock:
 942	mutex_unlock(&acpi_debugger.lock);
 943	return ret;
 944}
 945
 946int acpi_debugger_wait_command_ready(void)
 947{
 948	int ret;
 949	int (*func)(bool, char *, size_t);
 950	struct module *owner;
 951
 952	if (!acpi_debugger_initialized)
 953		return -ENODEV;
 954	mutex_lock(&acpi_debugger.lock);
 955	if (!acpi_debugger.ops) {
 956		ret = -ENODEV;
 957		goto err_lock;
 958	}
 959	if (!try_module_get(acpi_debugger.owner)) {
 960		ret = -ENODEV;
 961		goto err_lock;
 962	}
 963	func = acpi_debugger.ops->wait_command_ready;
 964	owner = acpi_debugger.owner;
 965	mutex_unlock(&acpi_debugger.lock);
 966
 967	ret = func(acpi_gbl_method_executing,
 968		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 969
 970	mutex_lock(&acpi_debugger.lock);
 971	module_put(owner);
 972err_lock:
 973	mutex_unlock(&acpi_debugger.lock);
 974	return ret;
 975}
 976
 977int acpi_debugger_notify_command_complete(void)
 978{
 979	int ret;
 980	int (*func)(void);
 981	struct module *owner;
 982
 983	if (!acpi_debugger_initialized)
 984		return -ENODEV;
 985	mutex_lock(&acpi_debugger.lock);
 986	if (!acpi_debugger.ops) {
 987		ret = -ENODEV;
 988		goto err_lock;
 989	}
 990	if (!try_module_get(acpi_debugger.owner)) {
 991		ret = -ENODEV;
 992		goto err_lock;
 993	}
 994	func = acpi_debugger.ops->notify_command_complete;
 995	owner = acpi_debugger.owner;
 996	mutex_unlock(&acpi_debugger.lock);
 997
 998	ret = func();
 999
1000	mutex_lock(&acpi_debugger.lock);
1001	module_put(owner);
1002err_lock:
1003	mutex_unlock(&acpi_debugger.lock);
1004	return ret;
1005}
1006
1007int __init acpi_debugger_init(void)
1008{
1009	mutex_init(&acpi_debugger.lock);
1010	acpi_debugger_initialized = true;
1011	return 0;
1012}
1013#endif
1014
1015/*******************************************************************************
1016 *
1017 * FUNCTION:    acpi_os_execute
1018 *
1019 * PARAMETERS:  Type               - Type of the callback
1020 *              Function           - Function to be executed
1021 *              Context            - Function parameters
1022 *
1023 * RETURN:      Status
1024 *
1025 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1026 *              immediately executes function on a separate thread.
1027 *
1028 ******************************************************************************/
1029
1030acpi_status acpi_os_execute(acpi_execute_type type,
1031			    acpi_osd_exec_callback function, void *context)
1032{
1033	acpi_status status = AE_OK;
1034	struct acpi_os_dpc *dpc;
1035	struct workqueue_struct *queue;
1036	int ret;
1037	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1038			  "Scheduling function [%p(%p)] for deferred execution.\n",
1039			  function, context));
1040
1041	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1042		ret = acpi_debugger_create_thread(function, context);
1043		if (ret) {
1044			pr_err("Call to kthread_create() failed.\n");
1045			status = AE_ERROR;
1046		}
1047		goto out_thread;
1048	}
1049
1050	/*
1051	 * Allocate/initialize DPC structure.  Note that this memory will be
1052	 * freed by the callee.  The kernel handles the work_struct list  in a
1053	 * way that allows us to also free its memory inside the callee.
1054	 * Because we may want to schedule several tasks with different
1055	 * parameters we can't use the approach some kernel code uses of
1056	 * having a static work_struct.
1057	 */
1058
1059	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1060	if (!dpc)
1061		return AE_NO_MEMORY;
1062
1063	dpc->function = function;
1064	dpc->context = context;
1065
1066	/*
1067	 * To prevent lockdep from complaining unnecessarily, make sure that
1068	 * there is a different static lockdep key for each workqueue by using
1069	 * INIT_WORK() for each of them separately.
 
1070	 */
1071	if (type == OSL_NOTIFY_HANDLER) {
1072		queue = kacpi_notify_wq;
 
 
 
1073		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1074	} else if (type == OSL_GPE_HANDLER) {
1075		queue = kacpid_wq;
 
1076		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1077	} else {
1078		pr_err("Unsupported os_execute type %d.\n", type);
1079		status = AE_ERROR;
1080	}
1081
1082	if (ACPI_FAILURE(status))
1083		goto err_workqueue;
1084
1085	/*
1086	 * On some machines, a software-initiated SMI causes corruption unless
1087	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1088	 * typically it's done in GPE-related methods that are run via
1089	 * workqueues, so we can avoid the known corruption cases by always
1090	 * queueing on CPU 0.
1091	 */
1092	ret = queue_work_on(0, queue, &dpc->work);
 
1093	if (!ret) {
1094		printk(KERN_ERR PREFIX
1095			  "Call to queue_work() failed.\n");
1096		status = AE_ERROR;
 
1097	}
1098err_workqueue:
1099	if (ACPI_FAILURE(status))
1100		kfree(dpc);
1101out_thread:
1102	return status;
1103}
1104EXPORT_SYMBOL(acpi_os_execute);
1105
1106void acpi_os_wait_events_complete(void)
 
1107{
1108	/*
1109	 * Make sure the GPE handler or the fixed event handler is not used
1110	 * on another CPU after removal.
1111	 */
1112	if (acpi_sci_irq_valid())
1113		synchronize_hardirq(acpi_sci_irq);
1114	flush_workqueue(kacpid_wq);
1115	flush_workqueue(kacpi_notify_wq);
1116}
 
1117
1118struct acpi_hp_work {
1119	struct work_struct work;
1120	struct acpi_device *adev;
1121	u32 src;
1122};
1123
1124static void acpi_hotplug_work_fn(struct work_struct *work)
1125{
1126	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1127
1128	acpi_os_wait_events_complete();
1129	acpi_device_hotplug(hpw->adev, hpw->src);
1130	kfree(hpw);
1131}
1132
1133acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1134{
1135	struct acpi_hp_work *hpw;
1136
1137	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1138		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1139		  adev, src));
1140
1141	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1142	if (!hpw)
1143		return AE_NO_MEMORY;
1144
1145	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1146	hpw->adev = adev;
1147	hpw->src = src;
1148	/*
1149	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1150	 * the hotplug code may call driver .remove() functions, which may
1151	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1152	 * these workqueues.
1153	 */
1154	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1155		kfree(hpw);
1156		return AE_ERROR;
1157	}
1158	return AE_OK;
1159}
1160
1161bool acpi_queue_hotplug_work(struct work_struct *work)
1162{
1163	return queue_work(kacpi_hotplug_wq, work);
1164}
1165
1166acpi_status
1167acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1168{
1169	struct semaphore *sem = NULL;
1170
1171	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1172	if (!sem)
1173		return AE_NO_MEMORY;
 
1174
1175	sema_init(sem, initial_units);
1176
1177	*handle = (acpi_handle *) sem;
1178
1179	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1180			  *handle, initial_units));
1181
1182	return AE_OK;
1183}
1184
1185/*
1186 * TODO: A better way to delete semaphores?  Linux doesn't have a
1187 * 'delete_semaphore()' function -- may result in an invalid
1188 * pointer dereference for non-synchronized consumers.	Should
1189 * we at least check for blocked threads and signal/cancel them?
1190 */
1191
1192acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1193{
1194	struct semaphore *sem = (struct semaphore *)handle;
1195
1196	if (!sem)
1197		return AE_BAD_PARAMETER;
1198
1199	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1200
1201	BUG_ON(!list_empty(&sem->wait_list));
1202	kfree(sem);
1203	sem = NULL;
1204
1205	return AE_OK;
1206}
1207
1208/*
1209 * TODO: Support for units > 1?
1210 */
1211acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1212{
1213	acpi_status status = AE_OK;
1214	struct semaphore *sem = (struct semaphore *)handle;
1215	long jiffies;
1216	int ret = 0;
1217
1218	if (!acpi_os_initialized)
1219		return AE_OK;
1220
1221	if (!sem || (units < 1))
1222		return AE_BAD_PARAMETER;
1223
1224	if (units > 1)
1225		return AE_SUPPORT;
1226
1227	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1228			  handle, units, timeout));
1229
1230	if (timeout == ACPI_WAIT_FOREVER)
1231		jiffies = MAX_SCHEDULE_TIMEOUT;
1232	else
1233		jiffies = msecs_to_jiffies(timeout);
1234
1235	ret = down_timeout(sem, jiffies);
1236	if (ret)
1237		status = AE_TIME;
1238
1239	if (ACPI_FAILURE(status)) {
1240		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1241				  "Failed to acquire semaphore[%p|%d|%d], %s",
1242				  handle, units, timeout,
1243				  acpi_format_exception(status)));
1244	} else {
1245		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1246				  "Acquired semaphore[%p|%d|%d]", handle,
1247				  units, timeout));
1248	}
1249
1250	return status;
1251}
1252
1253/*
1254 * TODO: Support for units > 1?
1255 */
1256acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1257{
1258	struct semaphore *sem = (struct semaphore *)handle;
1259
1260	if (!acpi_os_initialized)
1261		return AE_OK;
1262
1263	if (!sem || (units < 1))
1264		return AE_BAD_PARAMETER;
1265
1266	if (units > 1)
1267		return AE_SUPPORT;
1268
1269	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1270			  units));
1271
1272	up(sem);
1273
1274	return AE_OK;
1275}
1276
1277acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
 
1278{
 
1279#ifdef ENABLE_DEBUGGER
1280	if (acpi_in_debugger) {
1281		u32 chars;
1282
1283		kdb_read(buffer, buffer_length);
1284
1285		/* remove the CR kdb includes */
1286		chars = strlen(buffer) - 1;
1287		buffer[chars] = '\0';
1288	}
1289#else
1290	int ret;
1291
1292	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1293	if (ret < 0)
1294		return AE_ERROR;
1295	if (bytes_read)
1296		*bytes_read = ret;
1297#endif
1298
1299	return AE_OK;
1300}
1301EXPORT_SYMBOL(acpi_os_get_line);
1302
1303acpi_status acpi_os_wait_command_ready(void)
1304{
1305	int ret;
1306
1307	ret = acpi_debugger_wait_command_ready();
1308	if (ret < 0)
1309		return AE_ERROR;
1310	return AE_OK;
1311}
1312
1313acpi_status acpi_os_notify_command_complete(void)
1314{
1315	int ret;
1316
1317	ret = acpi_debugger_notify_command_complete();
1318	if (ret < 0)
1319		return AE_ERROR;
1320	return AE_OK;
1321}
 
1322
1323acpi_status acpi_os_signal(u32 function, void *info)
1324{
1325	switch (function) {
1326	case ACPI_SIGNAL_FATAL:
1327		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1328		break;
1329	case ACPI_SIGNAL_BREAKPOINT:
1330		/*
1331		 * AML Breakpoint
1332		 * ACPI spec. says to treat it as a NOP unless
1333		 * you are debugging.  So if/when we integrate
1334		 * AML debugger into the kernel debugger its
1335		 * hook will go here.  But until then it is
1336		 * not useful to print anything on breakpoints.
1337		 */
1338		break;
1339	default:
1340		break;
1341	}
1342
1343	return AE_OK;
1344}
1345
1346static int __init acpi_os_name_setup(char *str)
1347{
1348	char *p = acpi_os_name;
1349	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1350
1351	if (!str || !*str)
1352		return 0;
1353
1354	for (; count-- && *str; str++) {
1355		if (isalnum(*str) || *str == ' ' || *str == ':')
1356			*p++ = *str;
1357		else if (*str == '\'' || *str == '"')
1358			continue;
1359		else
1360			break;
1361	}
1362	*p = 0;
1363
1364	return 1;
1365
1366}
1367
1368__setup("acpi_os_name=", acpi_os_name_setup);
1369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370/*
1371 * Disable the auto-serialization of named objects creation methods.
1372 *
1373 * This feature is enabled by default.  It marks the AML control methods
1374 * that contain the opcodes to create named objects as "Serialized".
 
1375 */
1376static int __init acpi_no_auto_serialize_setup(char *str)
1377{
1378	acpi_gbl_auto_serialize_methods = FALSE;
1379	pr_info("ACPI: auto-serialization disabled\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380
1381	return 1;
1382}
1383
1384__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
 
 
 
 
 
 
 
 
 
 
 
 
1385
1386/* Check of resource interference between native drivers and ACPI
1387 * OperationRegions (SystemIO and System Memory only).
1388 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1389 * in arbitrary AML code and can interfere with legacy drivers.
1390 * acpi_enforce_resources= can be set to:
1391 *
1392 *   - strict (default) (2)
1393 *     -> further driver trying to access the resources will not load
1394 *   - lax              (1)
1395 *     -> further driver trying to access the resources will load, but you
1396 *     get a system message that something might go wrong...
1397 *
1398 *   - no               (0)
1399 *     -> ACPI Operation Region resources will not be registered
1400 *
1401 */
1402#define ENFORCE_RESOURCES_STRICT 2
1403#define ENFORCE_RESOURCES_LAX    1
1404#define ENFORCE_RESOURCES_NO     0
1405
1406static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1407
1408static int __init acpi_enforce_resources_setup(char *str)
1409{
1410	if (str == NULL || *str == '\0')
1411		return 0;
1412
1413	if (!strcmp("strict", str))
1414		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1415	else if (!strcmp("lax", str))
1416		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1417	else if (!strcmp("no", str))
1418		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1419
1420	return 1;
1421}
1422
1423__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1424
1425/* Check for resource conflicts between ACPI OperationRegions and native
1426 * drivers */
1427int acpi_check_resource_conflict(const struct resource *res)
1428{
1429	acpi_adr_space_type space_id;
1430	acpi_size length;
1431	u8 warn = 0;
1432	int clash = 0;
1433
1434	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1435		return 0;
1436	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1437		return 0;
1438
1439	if (res->flags & IORESOURCE_IO)
1440		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1441	else
1442		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
 
 
 
 
 
 
 
1443
1444	length = resource_size(res);
1445	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1446		warn = 1;
1447	clash = acpi_check_address_range(space_id, res->start, length, warn);
 
 
 
1448
1449	if (clash) {
1450		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
 
 
 
 
 
 
 
 
1451			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1452				printk(KERN_NOTICE "ACPI: This conflict may"
1453				       " cause random problems and system"
1454				       " instability\n");
1455			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1456			       " for this device, you should use it instead of"
1457			       " the native driver\n");
1458		}
1459		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1460			return -EBUSY;
1461	}
1462	return 0;
1463}
1464EXPORT_SYMBOL(acpi_check_resource_conflict);
1465
1466int acpi_check_region(resource_size_t start, resource_size_t n,
1467		      const char *name)
1468{
1469	struct resource res = {
1470		.start = start,
1471		.end   = start + n - 1,
1472		.name  = name,
1473		.flags = IORESOURCE_IO,
1474	};
1475
1476	return acpi_check_resource_conflict(&res);
1477}
1478EXPORT_SYMBOL(acpi_check_region);
1479
1480/*
1481 * Let drivers know whether the resource checks are effective
1482 */
1483int acpi_resources_are_enforced(void)
1484{
1485	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1486}
1487EXPORT_SYMBOL(acpi_resources_are_enforced);
1488
1489/*
1490 * Deallocate the memory for a spinlock.
1491 */
1492void acpi_os_delete_lock(acpi_spinlock handle)
1493{
1494	ACPI_FREE(handle);
1495}
1496
1497/*
1498 * Acquire a spinlock.
1499 *
1500 * handle is a pointer to the spinlock_t.
1501 */
1502
1503acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1504{
1505	acpi_cpu_flags flags;
1506	spin_lock_irqsave(lockp, flags);
1507	return flags;
1508}
1509
1510/*
1511 * Release a spinlock. See above.
1512 */
1513
1514void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1515{
1516	spin_unlock_irqrestore(lockp, flags);
1517}
1518
1519#ifndef ACPI_USE_LOCAL_CACHE
1520
1521/*******************************************************************************
1522 *
1523 * FUNCTION:    acpi_os_create_cache
1524 *
1525 * PARAMETERS:  name      - Ascii name for the cache
1526 *              size      - Size of each cached object
1527 *              depth     - Maximum depth of the cache (in objects) <ignored>
1528 *              cache     - Where the new cache object is returned
1529 *
1530 * RETURN:      status
1531 *
1532 * DESCRIPTION: Create a cache object
1533 *
1534 ******************************************************************************/
1535
1536acpi_status
1537acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1538{
1539	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1540	if (*cache == NULL)
1541		return AE_ERROR;
1542	else
1543		return AE_OK;
1544}
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION:    acpi_os_purge_cache
1549 *
1550 * PARAMETERS:  Cache           - Handle to cache object
1551 *
1552 * RETURN:      Status
1553 *
1554 * DESCRIPTION: Free all objects within the requested cache.
1555 *
1556 ******************************************************************************/
1557
1558acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1559{
1560	kmem_cache_shrink(cache);
1561	return (AE_OK);
1562}
1563
1564/*******************************************************************************
1565 *
1566 * FUNCTION:    acpi_os_delete_cache
1567 *
1568 * PARAMETERS:  Cache           - Handle to cache object
1569 *
1570 * RETURN:      Status
1571 *
1572 * DESCRIPTION: Free all objects within the requested cache and delete the
1573 *              cache object.
1574 *
1575 ******************************************************************************/
1576
1577acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1578{
1579	kmem_cache_destroy(cache);
1580	return (AE_OK);
1581}
1582
1583/*******************************************************************************
1584 *
1585 * FUNCTION:    acpi_os_release_object
1586 *
1587 * PARAMETERS:  Cache       - Handle to cache object
1588 *              Object      - The object to be released
1589 *
1590 * RETURN:      None
1591 *
1592 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1593 *              the object is deleted.
1594 *
1595 ******************************************************************************/
1596
1597acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1598{
1599	kmem_cache_free(cache, object);
1600	return (AE_OK);
1601}
1602#endif
1603
1604static int __init acpi_no_static_ssdt_setup(char *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605{
1606	acpi_gbl_disable_ssdt_table_install = TRUE;
1607	pr_info("ACPI: static SSDT installation disabled\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1608
1609	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610}
1611
1612early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613
1614static int __init acpi_disable_return_repair(char *s)
 
 
 
 
 
1615{
1616	printk(KERN_NOTICE PREFIX
1617	       "ACPI: Predefined validation mechanism disabled\n");
1618	acpi_gbl_disable_auto_repair = TRUE;
 
1619
1620	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621}
1622
1623__setup("acpica_no_return_repair", acpi_disable_return_repair);
1624
1625acpi_status __init acpi_os_initialize(void)
1626{
1627	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1628	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1629	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1630	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1631	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1632		/*
1633		 * Use acpi_os_map_generic_address to pre-map the reset
1634		 * register if it's in system memory.
1635		 */
1636		int rv;
1637
1638		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1639		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1640	}
1641	acpi_os_initialized = true;
1642
1643	return AE_OK;
1644}
1645
1646acpi_status __init acpi_os_initialize1(void)
1647{
1648	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1649	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1650	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1651	BUG_ON(!kacpid_wq);
1652	BUG_ON(!kacpi_notify_wq);
1653	BUG_ON(!kacpi_hotplug_wq);
1654	acpi_osi_init();
 
1655	return AE_OK;
1656}
1657
1658acpi_status acpi_os_terminate(void)
1659{
1660	if (acpi_irq_handler) {
1661		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1662						 acpi_irq_handler);
1663	}
1664
1665	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1666	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1667	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1668	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1669	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1670		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1671
1672	destroy_workqueue(kacpid_wq);
1673	destroy_workqueue(kacpi_notify_wq);
1674	destroy_workqueue(kacpi_hotplug_wq);
1675
1676	return AE_OK;
1677}
1678
1679acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1680				  u32 pm1b_control)
1681{
1682	int rc = 0;
1683	if (__acpi_os_prepare_sleep)
1684		rc = __acpi_os_prepare_sleep(sleep_state,
1685					     pm1a_control, pm1b_control);
1686	if (rc < 0)
1687		return AE_ERROR;
1688	else if (rc > 0)
1689		return AE_CTRL_SKIP;
1690
1691	return AE_OK;
1692}
1693
1694void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1695			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1696{
1697	__acpi_os_prepare_sleep = func;
1698}
1699
1700acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1701				  u32 val_b)
1702{
1703	int rc = 0;
1704	if (__acpi_os_prepare_extended_sleep)
1705		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1706					     val_a, val_b);
1707	if (rc < 0)
1708		return AE_ERROR;
1709	else if (rc > 0)
1710		return AE_CTRL_SKIP;
1711
1712	return AE_OK;
1713}
1714
1715void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1716			       u32 val_a, u32 val_b))
1717{
1718	__acpi_os_prepare_extended_sleep = func;
1719}