Loading...
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 *
28 */
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/mm.h>
34#include <linux/pci.h>
35#include <linux/interrupt.h>
36#include <linux/kmod.h>
37#include <linux/delay.h>
38#include <linux/workqueue.h>
39#include <linux/nmi.h>
40#include <linux/acpi.h>
41#include <linux/acpi_io.h>
42#include <linux/efi.h>
43#include <linux/ioport.h>
44#include <linux/list.h>
45#include <linux/jiffies.h>
46#include <linux/semaphore.h>
47
48#include <asm/io.h>
49#include <asm/uaccess.h>
50
51#include <acpi/acpi.h>
52#include <acpi/acpi_bus.h>
53#include <acpi/processor.h>
54
55#define _COMPONENT ACPI_OS_SERVICES
56ACPI_MODULE_NAME("osl");
57#define PREFIX "ACPI: "
58struct acpi_os_dpc {
59 acpi_osd_exec_callback function;
60 void *context;
61 struct work_struct work;
62 int wait;
63};
64
65#ifdef CONFIG_ACPI_CUSTOM_DSDT
66#include CONFIG_ACPI_CUSTOM_DSDT_FILE
67#endif
68
69#ifdef ENABLE_DEBUGGER
70#include <linux/kdb.h>
71
72/* stuff for debugger support */
73int acpi_in_debugger;
74EXPORT_SYMBOL(acpi_in_debugger);
75
76extern char line_buf[80];
77#endif /*ENABLE_DEBUGGER */
78
79static acpi_osd_handler acpi_irq_handler;
80static void *acpi_irq_context;
81static struct workqueue_struct *kacpid_wq;
82static struct workqueue_struct *kacpi_notify_wq;
83static struct workqueue_struct *kacpi_hotplug_wq;
84
85struct acpi_res_list {
86 resource_size_t start;
87 resource_size_t end;
88 acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 char name[5]; /* only can have a length of 4 chars, make use of this
90 one instead of res->name, no need to kalloc then */
91 struct list_head resource_list;
92 int count;
93};
94
95static LIST_HEAD(resource_list_head);
96static DEFINE_SPINLOCK(acpi_res_lock);
97
98/*
99 * This list of permanent mappings is for memory that may be accessed from
100 * interrupt context, where we can't do the ioremap().
101 */
102struct acpi_ioremap {
103 struct list_head list;
104 void __iomem *virt;
105 acpi_physical_address phys;
106 acpi_size size;
107 unsigned long refcount;
108};
109
110static LIST_HEAD(acpi_ioremaps);
111static DEFINE_MUTEX(acpi_ioremap_lock);
112
113static void __init acpi_osi_setup_late(void);
114
115/*
116 * The story of _OSI(Linux)
117 *
118 * From pre-history through Linux-2.6.22,
119 * Linux responded TRUE upon a BIOS OSI(Linux) query.
120 *
121 * Unfortunately, reference BIOS writers got wind of this
122 * and put OSI(Linux) in their example code, quickly exposing
123 * this string as ill-conceived and opening the door to
124 * an un-bounded number of BIOS incompatibilities.
125 *
126 * For example, OSI(Linux) was used on resume to re-POST a
127 * video card on one system, because Linux at that time
128 * could not do a speedy restore in its native driver.
129 * But then upon gaining quick native restore capability,
130 * Linux has no way to tell the BIOS to skip the time-consuming
131 * POST -- putting Linux at a permanent performance disadvantage.
132 * On another system, the BIOS writer used OSI(Linux)
133 * to infer native OS support for IPMI! On other systems,
134 * OSI(Linux) simply got in the way of Linux claiming to
135 * be compatible with other operating systems, exposing
136 * BIOS issues such as skipped device initialization.
137 *
138 * So "Linux" turned out to be a really poor chose of
139 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
140 *
141 * BIOS writers should NOT query _OSI(Linux) on future systems.
142 * Linux will complain on the console when it sees it, and return FALSE.
143 * To get Linux to return TRUE for your system will require
144 * a kernel source update to add a DMI entry,
145 * or boot with "acpi_osi=Linux"
146 */
147
148static struct osi_linux {
149 unsigned int enable:1;
150 unsigned int dmi:1;
151 unsigned int cmdline:1;
152} osi_linux = {0, 0, 0};
153
154static u32 acpi_osi_handler(acpi_string interface, u32 supported)
155{
156 if (!strcmp("Linux", interface)) {
157
158 printk_once(KERN_NOTICE FW_BUG PREFIX
159 "BIOS _OSI(Linux) query %s%s\n",
160 osi_linux.enable ? "honored" : "ignored",
161 osi_linux.cmdline ? " via cmdline" :
162 osi_linux.dmi ? " via DMI" : "");
163 }
164
165 return supported;
166}
167
168static void __init acpi_request_region (struct acpi_generic_address *addr,
169 unsigned int length, char *desc)
170{
171 if (!addr->address || !length)
172 return;
173
174 /* Resources are never freed */
175 if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
176 request_region(addr->address, length, desc);
177 else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
178 request_mem_region(addr->address, length, desc);
179}
180
181static int __init acpi_reserve_resources(void)
182{
183 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
184 "ACPI PM1a_EVT_BLK");
185
186 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
187 "ACPI PM1b_EVT_BLK");
188
189 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
190 "ACPI PM1a_CNT_BLK");
191
192 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
193 "ACPI PM1b_CNT_BLK");
194
195 if (acpi_gbl_FADT.pm_timer_length == 4)
196 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
197
198 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
199 "ACPI PM2_CNT_BLK");
200
201 /* Length of GPE blocks must be a non-negative multiple of 2 */
202
203 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
204 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
205 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
206
207 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
208 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
209 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
210
211 return 0;
212}
213device_initcall(acpi_reserve_resources);
214
215void acpi_os_printf(const char *fmt, ...)
216{
217 va_list args;
218 va_start(args, fmt);
219 acpi_os_vprintf(fmt, args);
220 va_end(args);
221}
222
223void acpi_os_vprintf(const char *fmt, va_list args)
224{
225 static char buffer[512];
226
227 vsprintf(buffer, fmt, args);
228
229#ifdef ENABLE_DEBUGGER
230 if (acpi_in_debugger) {
231 kdb_printf("%s", buffer);
232 } else {
233 printk(KERN_CONT "%s", buffer);
234 }
235#else
236 printk(KERN_CONT "%s", buffer);
237#endif
238}
239
240#ifdef CONFIG_KEXEC
241static unsigned long acpi_rsdp;
242static int __init setup_acpi_rsdp(char *arg)
243{
244 acpi_rsdp = simple_strtoul(arg, NULL, 16);
245 return 0;
246}
247early_param("acpi_rsdp", setup_acpi_rsdp);
248#endif
249
250acpi_physical_address __init acpi_os_get_root_pointer(void)
251{
252#ifdef CONFIG_KEXEC
253 if (acpi_rsdp)
254 return acpi_rsdp;
255#endif
256
257 if (efi_enabled) {
258 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
259 return efi.acpi20;
260 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
261 return efi.acpi;
262 else {
263 printk(KERN_ERR PREFIX
264 "System description tables not found\n");
265 return 0;
266 }
267 } else {
268 acpi_physical_address pa = 0;
269
270 acpi_find_root_pointer(&pa);
271 return pa;
272 }
273}
274
275/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
276static struct acpi_ioremap *
277acpi_map_lookup(acpi_physical_address phys, acpi_size size)
278{
279 struct acpi_ioremap *map;
280
281 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
282 if (map->phys <= phys &&
283 phys + size <= map->phys + map->size)
284 return map;
285
286 return NULL;
287}
288
289/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
290static void __iomem *
291acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
292{
293 struct acpi_ioremap *map;
294
295 map = acpi_map_lookup(phys, size);
296 if (map)
297 return map->virt + (phys - map->phys);
298
299 return NULL;
300}
301
302void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
303{
304 struct acpi_ioremap *map;
305 void __iomem *virt = NULL;
306
307 mutex_lock(&acpi_ioremap_lock);
308 map = acpi_map_lookup(phys, size);
309 if (map) {
310 virt = map->virt + (phys - map->phys);
311 map->refcount++;
312 }
313 mutex_unlock(&acpi_ioremap_lock);
314 return virt;
315}
316EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
317
318/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
319static struct acpi_ioremap *
320acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
321{
322 struct acpi_ioremap *map;
323
324 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
325 if (map->virt <= virt &&
326 virt + size <= map->virt + map->size)
327 return map;
328
329 return NULL;
330}
331
332void __iomem *__init_refok
333acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
334{
335 struct acpi_ioremap *map;
336 void __iomem *virt;
337 acpi_physical_address pg_off;
338 acpi_size pg_sz;
339
340 if (phys > ULONG_MAX) {
341 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
342 return NULL;
343 }
344
345 if (!acpi_gbl_permanent_mmap)
346 return __acpi_map_table((unsigned long)phys, size);
347
348 mutex_lock(&acpi_ioremap_lock);
349 /* Check if there's a suitable mapping already. */
350 map = acpi_map_lookup(phys, size);
351 if (map) {
352 map->refcount++;
353 goto out;
354 }
355
356 map = kzalloc(sizeof(*map), GFP_KERNEL);
357 if (!map) {
358 mutex_unlock(&acpi_ioremap_lock);
359 return NULL;
360 }
361
362 pg_off = round_down(phys, PAGE_SIZE);
363 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
364 virt = acpi_os_ioremap(pg_off, pg_sz);
365 if (!virt) {
366 mutex_unlock(&acpi_ioremap_lock);
367 kfree(map);
368 return NULL;
369 }
370
371 INIT_LIST_HEAD(&map->list);
372 map->virt = virt;
373 map->phys = pg_off;
374 map->size = pg_sz;
375 map->refcount = 1;
376
377 list_add_tail_rcu(&map->list, &acpi_ioremaps);
378
379 out:
380 mutex_unlock(&acpi_ioremap_lock);
381 return map->virt + (phys - map->phys);
382}
383EXPORT_SYMBOL_GPL(acpi_os_map_memory);
384
385static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
386{
387 if (!--map->refcount)
388 list_del_rcu(&map->list);
389}
390
391static void acpi_os_map_cleanup(struct acpi_ioremap *map)
392{
393 if (!map->refcount) {
394 synchronize_rcu();
395 iounmap(map->virt);
396 kfree(map);
397 }
398}
399
400void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
401{
402 struct acpi_ioremap *map;
403
404 if (!acpi_gbl_permanent_mmap) {
405 __acpi_unmap_table(virt, size);
406 return;
407 }
408
409 mutex_lock(&acpi_ioremap_lock);
410 map = acpi_map_lookup_virt(virt, size);
411 if (!map) {
412 mutex_unlock(&acpi_ioremap_lock);
413 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
414 return;
415 }
416 acpi_os_drop_map_ref(map);
417 mutex_unlock(&acpi_ioremap_lock);
418
419 acpi_os_map_cleanup(map);
420}
421EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
422
423void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
424{
425 if (!acpi_gbl_permanent_mmap)
426 __acpi_unmap_table(virt, size);
427}
428
429static int acpi_os_map_generic_address(struct acpi_generic_address *addr)
430{
431 void __iomem *virt;
432
433 if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
434 return 0;
435
436 if (!addr->address || !addr->bit_width)
437 return -EINVAL;
438
439 virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
440 if (!virt)
441 return -EIO;
442
443 return 0;
444}
445
446static void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
447{
448 struct acpi_ioremap *map;
449
450 if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
451 return;
452
453 if (!addr->address || !addr->bit_width)
454 return;
455
456 mutex_lock(&acpi_ioremap_lock);
457 map = acpi_map_lookup(addr->address, addr->bit_width / 8);
458 if (!map) {
459 mutex_unlock(&acpi_ioremap_lock);
460 return;
461 }
462 acpi_os_drop_map_ref(map);
463 mutex_unlock(&acpi_ioremap_lock);
464
465 acpi_os_map_cleanup(map);
466}
467
468#ifdef ACPI_FUTURE_USAGE
469acpi_status
470acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
471{
472 if (!phys || !virt)
473 return AE_BAD_PARAMETER;
474
475 *phys = virt_to_phys(virt);
476
477 return AE_OK;
478}
479#endif
480
481#define ACPI_MAX_OVERRIDE_LEN 100
482
483static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
484
485acpi_status
486acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
487 acpi_string * new_val)
488{
489 if (!init_val || !new_val)
490 return AE_BAD_PARAMETER;
491
492 *new_val = NULL;
493 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
494 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
495 acpi_os_name);
496 *new_val = acpi_os_name;
497 }
498
499 return AE_OK;
500}
501
502acpi_status
503acpi_os_table_override(struct acpi_table_header * existing_table,
504 struct acpi_table_header ** new_table)
505{
506 if (!existing_table || !new_table)
507 return AE_BAD_PARAMETER;
508
509 *new_table = NULL;
510
511#ifdef CONFIG_ACPI_CUSTOM_DSDT
512 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
513 *new_table = (struct acpi_table_header *)AmlCode;
514#endif
515 if (*new_table != NULL) {
516 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
517 "this is unsafe: tainting kernel\n",
518 existing_table->signature,
519 existing_table->oem_table_id);
520 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
521 }
522 return AE_OK;
523}
524
525static irqreturn_t acpi_irq(int irq, void *dev_id)
526{
527 u32 handled;
528
529 handled = (*acpi_irq_handler) (acpi_irq_context);
530
531 if (handled) {
532 acpi_irq_handled++;
533 return IRQ_HANDLED;
534 } else {
535 acpi_irq_not_handled++;
536 return IRQ_NONE;
537 }
538}
539
540acpi_status
541acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
542 void *context)
543{
544 unsigned int irq;
545
546 acpi_irq_stats_init();
547
548 /*
549 * ACPI interrupts different from the SCI in our copy of the FADT are
550 * not supported.
551 */
552 if (gsi != acpi_gbl_FADT.sci_interrupt)
553 return AE_BAD_PARAMETER;
554
555 if (acpi_irq_handler)
556 return AE_ALREADY_ACQUIRED;
557
558 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
559 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
560 gsi);
561 return AE_OK;
562 }
563
564 acpi_irq_handler = handler;
565 acpi_irq_context = context;
566 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
567 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
568 acpi_irq_handler = NULL;
569 return AE_NOT_ACQUIRED;
570 }
571
572 return AE_OK;
573}
574
575acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
576{
577 if (irq != acpi_gbl_FADT.sci_interrupt)
578 return AE_BAD_PARAMETER;
579
580 free_irq(irq, acpi_irq);
581 acpi_irq_handler = NULL;
582
583 return AE_OK;
584}
585
586/*
587 * Running in interpreter thread context, safe to sleep
588 */
589
590void acpi_os_sleep(u64 ms)
591{
592 schedule_timeout_interruptible(msecs_to_jiffies(ms));
593}
594
595void acpi_os_stall(u32 us)
596{
597 while (us) {
598 u32 delay = 1000;
599
600 if (delay > us)
601 delay = us;
602 udelay(delay);
603 touch_nmi_watchdog();
604 us -= delay;
605 }
606}
607
608/*
609 * Support ACPI 3.0 AML Timer operand
610 * Returns 64-bit free-running, monotonically increasing timer
611 * with 100ns granularity
612 */
613u64 acpi_os_get_timer(void)
614{
615 static u64 t;
616
617#ifdef CONFIG_HPET
618 /* TBD: use HPET if available */
619#endif
620
621#ifdef CONFIG_X86_PM_TIMER
622 /* TBD: default to PM timer if HPET was not available */
623#endif
624 if (!t)
625 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
626
627 return ++t;
628}
629
630acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
631{
632 u32 dummy;
633
634 if (!value)
635 value = &dummy;
636
637 *value = 0;
638 if (width <= 8) {
639 *(u8 *) value = inb(port);
640 } else if (width <= 16) {
641 *(u16 *) value = inw(port);
642 } else if (width <= 32) {
643 *(u32 *) value = inl(port);
644 } else {
645 BUG();
646 }
647
648 return AE_OK;
649}
650
651EXPORT_SYMBOL(acpi_os_read_port);
652
653acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
654{
655 if (width <= 8) {
656 outb(value, port);
657 } else if (width <= 16) {
658 outw(value, port);
659 } else if (width <= 32) {
660 outl(value, port);
661 } else {
662 BUG();
663 }
664
665 return AE_OK;
666}
667
668EXPORT_SYMBOL(acpi_os_write_port);
669
670acpi_status
671acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
672{
673 void __iomem *virt_addr;
674 unsigned int size = width / 8;
675 bool unmap = false;
676 u32 dummy;
677
678 rcu_read_lock();
679 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
680 if (!virt_addr) {
681 rcu_read_unlock();
682 virt_addr = acpi_os_ioremap(phys_addr, size);
683 if (!virt_addr)
684 return AE_BAD_ADDRESS;
685 unmap = true;
686 }
687
688 if (!value)
689 value = &dummy;
690
691 switch (width) {
692 case 8:
693 *(u8 *) value = readb(virt_addr);
694 break;
695 case 16:
696 *(u16 *) value = readw(virt_addr);
697 break;
698 case 32:
699 *(u32 *) value = readl(virt_addr);
700 break;
701 default:
702 BUG();
703 }
704
705 if (unmap)
706 iounmap(virt_addr);
707 else
708 rcu_read_unlock();
709
710 return AE_OK;
711}
712
713acpi_status
714acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
715{
716 void __iomem *virt_addr;
717 unsigned int size = width / 8;
718 bool unmap = false;
719
720 rcu_read_lock();
721 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
722 if (!virt_addr) {
723 rcu_read_unlock();
724 virt_addr = acpi_os_ioremap(phys_addr, size);
725 if (!virt_addr)
726 return AE_BAD_ADDRESS;
727 unmap = true;
728 }
729
730 switch (width) {
731 case 8:
732 writeb(value, virt_addr);
733 break;
734 case 16:
735 writew(value, virt_addr);
736 break;
737 case 32:
738 writel(value, virt_addr);
739 break;
740 default:
741 BUG();
742 }
743
744 if (unmap)
745 iounmap(virt_addr);
746 else
747 rcu_read_unlock();
748
749 return AE_OK;
750}
751
752acpi_status
753acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
754 u64 *value, u32 width)
755{
756 int result, size;
757 u32 value32;
758
759 if (!value)
760 return AE_BAD_PARAMETER;
761
762 switch (width) {
763 case 8:
764 size = 1;
765 break;
766 case 16:
767 size = 2;
768 break;
769 case 32:
770 size = 4;
771 break;
772 default:
773 return AE_ERROR;
774 }
775
776 result = raw_pci_read(pci_id->segment, pci_id->bus,
777 PCI_DEVFN(pci_id->device, pci_id->function),
778 reg, size, &value32);
779 *value = value32;
780
781 return (result ? AE_ERROR : AE_OK);
782}
783
784acpi_status
785acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786 u64 value, u32 width)
787{
788 int result, size;
789
790 switch (width) {
791 case 8:
792 size = 1;
793 break;
794 case 16:
795 size = 2;
796 break;
797 case 32:
798 size = 4;
799 break;
800 default:
801 return AE_ERROR;
802 }
803
804 result = raw_pci_write(pci_id->segment, pci_id->bus,
805 PCI_DEVFN(pci_id->device, pci_id->function),
806 reg, size, value);
807
808 return (result ? AE_ERROR : AE_OK);
809}
810
811static void acpi_os_execute_deferred(struct work_struct *work)
812{
813 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
814
815 if (dpc->wait)
816 acpi_os_wait_events_complete(NULL);
817
818 dpc->function(dpc->context);
819 kfree(dpc);
820}
821
822/*******************************************************************************
823 *
824 * FUNCTION: acpi_os_execute
825 *
826 * PARAMETERS: Type - Type of the callback
827 * Function - Function to be executed
828 * Context - Function parameters
829 *
830 * RETURN: Status
831 *
832 * DESCRIPTION: Depending on type, either queues function for deferred execution or
833 * immediately executes function on a separate thread.
834 *
835 ******************************************************************************/
836
837static acpi_status __acpi_os_execute(acpi_execute_type type,
838 acpi_osd_exec_callback function, void *context, int hp)
839{
840 acpi_status status = AE_OK;
841 struct acpi_os_dpc *dpc;
842 struct workqueue_struct *queue;
843 int ret;
844 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
845 "Scheduling function [%p(%p)] for deferred execution.\n",
846 function, context));
847
848 /*
849 * Allocate/initialize DPC structure. Note that this memory will be
850 * freed by the callee. The kernel handles the work_struct list in a
851 * way that allows us to also free its memory inside the callee.
852 * Because we may want to schedule several tasks with different
853 * parameters we can't use the approach some kernel code uses of
854 * having a static work_struct.
855 */
856
857 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
858 if (!dpc)
859 return AE_NO_MEMORY;
860
861 dpc->function = function;
862 dpc->context = context;
863
864 /*
865 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
866 * because the hotplug code may call driver .remove() functions,
867 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
868 * to flush these workqueues.
869 */
870 queue = hp ? kacpi_hotplug_wq :
871 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
872 dpc->wait = hp ? 1 : 0;
873
874 if (queue == kacpi_hotplug_wq)
875 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
876 else if (queue == kacpi_notify_wq)
877 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
878 else
879 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
880
881 /*
882 * On some machines, a software-initiated SMI causes corruption unless
883 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
884 * typically it's done in GPE-related methods that are run via
885 * workqueues, so we can avoid the known corruption cases by always
886 * queueing on CPU 0.
887 */
888 ret = queue_work_on(0, queue, &dpc->work);
889
890 if (!ret) {
891 printk(KERN_ERR PREFIX
892 "Call to queue_work() failed.\n");
893 status = AE_ERROR;
894 kfree(dpc);
895 }
896 return status;
897}
898
899acpi_status acpi_os_execute(acpi_execute_type type,
900 acpi_osd_exec_callback function, void *context)
901{
902 return __acpi_os_execute(type, function, context, 0);
903}
904EXPORT_SYMBOL(acpi_os_execute);
905
906acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
907 void *context)
908{
909 return __acpi_os_execute(0, function, context, 1);
910}
911
912void acpi_os_wait_events_complete(void *context)
913{
914 flush_workqueue(kacpid_wq);
915 flush_workqueue(kacpi_notify_wq);
916}
917
918EXPORT_SYMBOL(acpi_os_wait_events_complete);
919
920acpi_status
921acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
922{
923 struct semaphore *sem = NULL;
924
925 sem = acpi_os_allocate(sizeof(struct semaphore));
926 if (!sem)
927 return AE_NO_MEMORY;
928 memset(sem, 0, sizeof(struct semaphore));
929
930 sema_init(sem, initial_units);
931
932 *handle = (acpi_handle *) sem;
933
934 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
935 *handle, initial_units));
936
937 return AE_OK;
938}
939
940/*
941 * TODO: A better way to delete semaphores? Linux doesn't have a
942 * 'delete_semaphore()' function -- may result in an invalid
943 * pointer dereference for non-synchronized consumers. Should
944 * we at least check for blocked threads and signal/cancel them?
945 */
946
947acpi_status acpi_os_delete_semaphore(acpi_handle handle)
948{
949 struct semaphore *sem = (struct semaphore *)handle;
950
951 if (!sem)
952 return AE_BAD_PARAMETER;
953
954 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
955
956 BUG_ON(!list_empty(&sem->wait_list));
957 kfree(sem);
958 sem = NULL;
959
960 return AE_OK;
961}
962
963/*
964 * TODO: Support for units > 1?
965 */
966acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
967{
968 acpi_status status = AE_OK;
969 struct semaphore *sem = (struct semaphore *)handle;
970 long jiffies;
971 int ret = 0;
972
973 if (!sem || (units < 1))
974 return AE_BAD_PARAMETER;
975
976 if (units > 1)
977 return AE_SUPPORT;
978
979 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
980 handle, units, timeout));
981
982 if (timeout == ACPI_WAIT_FOREVER)
983 jiffies = MAX_SCHEDULE_TIMEOUT;
984 else
985 jiffies = msecs_to_jiffies(timeout);
986
987 ret = down_timeout(sem, jiffies);
988 if (ret)
989 status = AE_TIME;
990
991 if (ACPI_FAILURE(status)) {
992 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
993 "Failed to acquire semaphore[%p|%d|%d], %s",
994 handle, units, timeout,
995 acpi_format_exception(status)));
996 } else {
997 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
998 "Acquired semaphore[%p|%d|%d]", handle,
999 units, timeout));
1000 }
1001
1002 return status;
1003}
1004
1005/*
1006 * TODO: Support for units > 1?
1007 */
1008acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1009{
1010 struct semaphore *sem = (struct semaphore *)handle;
1011
1012 if (!sem || (units < 1))
1013 return AE_BAD_PARAMETER;
1014
1015 if (units > 1)
1016 return AE_SUPPORT;
1017
1018 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1019 units));
1020
1021 up(sem);
1022
1023 return AE_OK;
1024}
1025
1026#ifdef ACPI_FUTURE_USAGE
1027u32 acpi_os_get_line(char *buffer)
1028{
1029
1030#ifdef ENABLE_DEBUGGER
1031 if (acpi_in_debugger) {
1032 u32 chars;
1033
1034 kdb_read(buffer, sizeof(line_buf));
1035
1036 /* remove the CR kdb includes */
1037 chars = strlen(buffer) - 1;
1038 buffer[chars] = '\0';
1039 }
1040#endif
1041
1042 return 0;
1043}
1044#endif /* ACPI_FUTURE_USAGE */
1045
1046acpi_status acpi_os_signal(u32 function, void *info)
1047{
1048 switch (function) {
1049 case ACPI_SIGNAL_FATAL:
1050 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1051 break;
1052 case ACPI_SIGNAL_BREAKPOINT:
1053 /*
1054 * AML Breakpoint
1055 * ACPI spec. says to treat it as a NOP unless
1056 * you are debugging. So if/when we integrate
1057 * AML debugger into the kernel debugger its
1058 * hook will go here. But until then it is
1059 * not useful to print anything on breakpoints.
1060 */
1061 break;
1062 default:
1063 break;
1064 }
1065
1066 return AE_OK;
1067}
1068
1069static int __init acpi_os_name_setup(char *str)
1070{
1071 char *p = acpi_os_name;
1072 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1073
1074 if (!str || !*str)
1075 return 0;
1076
1077 for (; count-- && str && *str; str++) {
1078 if (isalnum(*str) || *str == ' ' || *str == ':')
1079 *p++ = *str;
1080 else if (*str == '\'' || *str == '"')
1081 continue;
1082 else
1083 break;
1084 }
1085 *p = 0;
1086
1087 return 1;
1088
1089}
1090
1091__setup("acpi_os_name=", acpi_os_name_setup);
1092
1093#define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1094#define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1095
1096struct osi_setup_entry {
1097 char string[OSI_STRING_LENGTH_MAX];
1098 bool enable;
1099};
1100
1101static struct osi_setup_entry __initdata
1102 osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1103 {"Module Device", true},
1104 {"Processor Device", true},
1105 {"3.0 _SCP Extensions", true},
1106 {"Processor Aggregator Device", true},
1107};
1108
1109void __init acpi_osi_setup(char *str)
1110{
1111 struct osi_setup_entry *osi;
1112 bool enable = true;
1113 int i;
1114
1115 if (!acpi_gbl_create_osi_method)
1116 return;
1117
1118 if (str == NULL || *str == '\0') {
1119 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1120 acpi_gbl_create_osi_method = FALSE;
1121 return;
1122 }
1123
1124 if (*str == '!') {
1125 str++;
1126 enable = false;
1127 }
1128
1129 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1130 osi = &osi_setup_entries[i];
1131 if (!strcmp(osi->string, str)) {
1132 osi->enable = enable;
1133 break;
1134 } else if (osi->string[0] == '\0') {
1135 osi->enable = enable;
1136 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1137 break;
1138 }
1139 }
1140}
1141
1142static void __init set_osi_linux(unsigned int enable)
1143{
1144 if (osi_linux.enable != enable)
1145 osi_linux.enable = enable;
1146
1147 if (osi_linux.enable)
1148 acpi_osi_setup("Linux");
1149 else
1150 acpi_osi_setup("!Linux");
1151
1152 return;
1153}
1154
1155static void __init acpi_cmdline_osi_linux(unsigned int enable)
1156{
1157 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1158 osi_linux.dmi = 0;
1159 set_osi_linux(enable);
1160
1161 return;
1162}
1163
1164void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1165{
1166 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1167
1168 if (enable == -1)
1169 return;
1170
1171 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1172 set_osi_linux(enable);
1173
1174 return;
1175}
1176
1177/*
1178 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1179 *
1180 * empty string disables _OSI
1181 * string starting with '!' disables that string
1182 * otherwise string is added to list, augmenting built-in strings
1183 */
1184static void __init acpi_osi_setup_late(void)
1185{
1186 struct osi_setup_entry *osi;
1187 char *str;
1188 int i;
1189 acpi_status status;
1190
1191 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1192 osi = &osi_setup_entries[i];
1193 str = osi->string;
1194
1195 if (*str == '\0')
1196 break;
1197 if (osi->enable) {
1198 status = acpi_install_interface(str);
1199
1200 if (ACPI_SUCCESS(status))
1201 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1202 } else {
1203 status = acpi_remove_interface(str);
1204
1205 if (ACPI_SUCCESS(status))
1206 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1207 }
1208 }
1209}
1210
1211static int __init osi_setup(char *str)
1212{
1213 if (str && !strcmp("Linux", str))
1214 acpi_cmdline_osi_linux(1);
1215 else if (str && !strcmp("!Linux", str))
1216 acpi_cmdline_osi_linux(0);
1217 else
1218 acpi_osi_setup(str);
1219
1220 return 1;
1221}
1222
1223__setup("acpi_osi=", osi_setup);
1224
1225/* enable serialization to combat AE_ALREADY_EXISTS errors */
1226static int __init acpi_serialize_setup(char *str)
1227{
1228 printk(KERN_INFO PREFIX "serialize enabled\n");
1229
1230 acpi_gbl_all_methods_serialized = TRUE;
1231
1232 return 1;
1233}
1234
1235__setup("acpi_serialize", acpi_serialize_setup);
1236
1237/* Check of resource interference between native drivers and ACPI
1238 * OperationRegions (SystemIO and System Memory only).
1239 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1240 * in arbitrary AML code and can interfere with legacy drivers.
1241 * acpi_enforce_resources= can be set to:
1242 *
1243 * - strict (default) (2)
1244 * -> further driver trying to access the resources will not load
1245 * - lax (1)
1246 * -> further driver trying to access the resources will load, but you
1247 * get a system message that something might go wrong...
1248 *
1249 * - no (0)
1250 * -> ACPI Operation Region resources will not be registered
1251 *
1252 */
1253#define ENFORCE_RESOURCES_STRICT 2
1254#define ENFORCE_RESOURCES_LAX 1
1255#define ENFORCE_RESOURCES_NO 0
1256
1257static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1258
1259static int __init acpi_enforce_resources_setup(char *str)
1260{
1261 if (str == NULL || *str == '\0')
1262 return 0;
1263
1264 if (!strcmp("strict", str))
1265 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1266 else if (!strcmp("lax", str))
1267 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1268 else if (!strcmp("no", str))
1269 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1270
1271 return 1;
1272}
1273
1274__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1275
1276/* Check for resource conflicts between ACPI OperationRegions and native
1277 * drivers */
1278int acpi_check_resource_conflict(const struct resource *res)
1279{
1280 struct acpi_res_list *res_list_elem;
1281 int ioport = 0, clash = 0;
1282
1283 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1284 return 0;
1285 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1286 return 0;
1287
1288 ioport = res->flags & IORESOURCE_IO;
1289
1290 spin_lock(&acpi_res_lock);
1291 list_for_each_entry(res_list_elem, &resource_list_head,
1292 resource_list) {
1293 if (ioport && (res_list_elem->resource_type
1294 != ACPI_ADR_SPACE_SYSTEM_IO))
1295 continue;
1296 if (!ioport && (res_list_elem->resource_type
1297 != ACPI_ADR_SPACE_SYSTEM_MEMORY))
1298 continue;
1299
1300 if (res->end < res_list_elem->start
1301 || res_list_elem->end < res->start)
1302 continue;
1303 clash = 1;
1304 break;
1305 }
1306 spin_unlock(&acpi_res_lock);
1307
1308 if (clash) {
1309 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1310 printk(KERN_WARNING "ACPI: resource %s %pR"
1311 " conflicts with ACPI region %s "
1312 "[%s 0x%zx-0x%zx]\n",
1313 res->name, res, res_list_elem->name,
1314 (res_list_elem->resource_type ==
1315 ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1316 (size_t) res_list_elem->start,
1317 (size_t) res_list_elem->end);
1318 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1319 printk(KERN_NOTICE "ACPI: This conflict may"
1320 " cause random problems and system"
1321 " instability\n");
1322 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1323 " for this device, you should use it instead of"
1324 " the native driver\n");
1325 }
1326 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1327 return -EBUSY;
1328 }
1329 return 0;
1330}
1331EXPORT_SYMBOL(acpi_check_resource_conflict);
1332
1333int acpi_check_region(resource_size_t start, resource_size_t n,
1334 const char *name)
1335{
1336 struct resource res = {
1337 .start = start,
1338 .end = start + n - 1,
1339 .name = name,
1340 .flags = IORESOURCE_IO,
1341 };
1342
1343 return acpi_check_resource_conflict(&res);
1344}
1345EXPORT_SYMBOL(acpi_check_region);
1346
1347/*
1348 * Let drivers know whether the resource checks are effective
1349 */
1350int acpi_resources_are_enforced(void)
1351{
1352 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1353}
1354EXPORT_SYMBOL(acpi_resources_are_enforced);
1355
1356/*
1357 * Deallocate the memory for a spinlock.
1358 */
1359void acpi_os_delete_lock(acpi_spinlock handle)
1360{
1361 ACPI_FREE(handle);
1362}
1363
1364/*
1365 * Acquire a spinlock.
1366 *
1367 * handle is a pointer to the spinlock_t.
1368 */
1369
1370acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1371{
1372 acpi_cpu_flags flags;
1373 spin_lock_irqsave(lockp, flags);
1374 return flags;
1375}
1376
1377/*
1378 * Release a spinlock. See above.
1379 */
1380
1381void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1382{
1383 spin_unlock_irqrestore(lockp, flags);
1384}
1385
1386#ifndef ACPI_USE_LOCAL_CACHE
1387
1388/*******************************************************************************
1389 *
1390 * FUNCTION: acpi_os_create_cache
1391 *
1392 * PARAMETERS: name - Ascii name for the cache
1393 * size - Size of each cached object
1394 * depth - Maximum depth of the cache (in objects) <ignored>
1395 * cache - Where the new cache object is returned
1396 *
1397 * RETURN: status
1398 *
1399 * DESCRIPTION: Create a cache object
1400 *
1401 ******************************************************************************/
1402
1403acpi_status
1404acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1405{
1406 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1407 if (*cache == NULL)
1408 return AE_ERROR;
1409 else
1410 return AE_OK;
1411}
1412
1413/*******************************************************************************
1414 *
1415 * FUNCTION: acpi_os_purge_cache
1416 *
1417 * PARAMETERS: Cache - Handle to cache object
1418 *
1419 * RETURN: Status
1420 *
1421 * DESCRIPTION: Free all objects within the requested cache.
1422 *
1423 ******************************************************************************/
1424
1425acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1426{
1427 kmem_cache_shrink(cache);
1428 return (AE_OK);
1429}
1430
1431/*******************************************************************************
1432 *
1433 * FUNCTION: acpi_os_delete_cache
1434 *
1435 * PARAMETERS: Cache - Handle to cache object
1436 *
1437 * RETURN: Status
1438 *
1439 * DESCRIPTION: Free all objects within the requested cache and delete the
1440 * cache object.
1441 *
1442 ******************************************************************************/
1443
1444acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1445{
1446 kmem_cache_destroy(cache);
1447 return (AE_OK);
1448}
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION: acpi_os_release_object
1453 *
1454 * PARAMETERS: Cache - Handle to cache object
1455 * Object - The object to be released
1456 *
1457 * RETURN: None
1458 *
1459 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1460 * the object is deleted.
1461 *
1462 ******************************************************************************/
1463
1464acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1465{
1466 kmem_cache_free(cache, object);
1467 return (AE_OK);
1468}
1469
1470static inline int acpi_res_list_add(struct acpi_res_list *res)
1471{
1472 struct acpi_res_list *res_list_elem;
1473
1474 list_for_each_entry(res_list_elem, &resource_list_head,
1475 resource_list) {
1476
1477 if (res->resource_type == res_list_elem->resource_type &&
1478 res->start == res_list_elem->start &&
1479 res->end == res_list_elem->end) {
1480
1481 /*
1482 * The Region(addr,len) already exist in the list,
1483 * just increase the count
1484 */
1485
1486 res_list_elem->count++;
1487 return 0;
1488 }
1489 }
1490
1491 res->count = 1;
1492 list_add(&res->resource_list, &resource_list_head);
1493 return 1;
1494}
1495
1496static inline void acpi_res_list_del(struct acpi_res_list *res)
1497{
1498 struct acpi_res_list *res_list_elem;
1499
1500 list_for_each_entry(res_list_elem, &resource_list_head,
1501 resource_list) {
1502
1503 if (res->resource_type == res_list_elem->resource_type &&
1504 res->start == res_list_elem->start &&
1505 res->end == res_list_elem->end) {
1506
1507 /*
1508 * If the res count is decreased to 0,
1509 * remove and free it
1510 */
1511
1512 if (--res_list_elem->count == 0) {
1513 list_del(&res_list_elem->resource_list);
1514 kfree(res_list_elem);
1515 }
1516 return;
1517 }
1518 }
1519}
1520
1521acpi_status
1522acpi_os_invalidate_address(
1523 u8 space_id,
1524 acpi_physical_address address,
1525 acpi_size length)
1526{
1527 struct acpi_res_list res;
1528
1529 switch (space_id) {
1530 case ACPI_ADR_SPACE_SYSTEM_IO:
1531 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1532 /* Only interference checks against SystemIO and SystemMemory
1533 are needed */
1534 res.start = address;
1535 res.end = address + length - 1;
1536 res.resource_type = space_id;
1537 spin_lock(&acpi_res_lock);
1538 acpi_res_list_del(&res);
1539 spin_unlock(&acpi_res_lock);
1540 break;
1541 case ACPI_ADR_SPACE_PCI_CONFIG:
1542 case ACPI_ADR_SPACE_EC:
1543 case ACPI_ADR_SPACE_SMBUS:
1544 case ACPI_ADR_SPACE_CMOS:
1545 case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1546 case ACPI_ADR_SPACE_DATA_TABLE:
1547 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1548 break;
1549 }
1550 return AE_OK;
1551}
1552
1553/******************************************************************************
1554 *
1555 * FUNCTION: acpi_os_validate_address
1556 *
1557 * PARAMETERS: space_id - ACPI space ID
1558 * address - Physical address
1559 * length - Address length
1560 *
1561 * RETURN: AE_OK if address/length is valid for the space_id. Otherwise,
1562 * should return AE_AML_ILLEGAL_ADDRESS.
1563 *
1564 * DESCRIPTION: Validate a system address via the host OS. Used to validate
1565 * the addresses accessed by AML operation regions.
1566 *
1567 *****************************************************************************/
1568
1569acpi_status
1570acpi_os_validate_address (
1571 u8 space_id,
1572 acpi_physical_address address,
1573 acpi_size length,
1574 char *name)
1575{
1576 struct acpi_res_list *res;
1577 int added;
1578 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1579 return AE_OK;
1580
1581 switch (space_id) {
1582 case ACPI_ADR_SPACE_SYSTEM_IO:
1583 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1584 /* Only interference checks against SystemIO and SystemMemory
1585 are needed */
1586 res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1587 if (!res)
1588 return AE_OK;
1589 /* ACPI names are fixed to 4 bytes, still better use strlcpy */
1590 strlcpy(res->name, name, 5);
1591 res->start = address;
1592 res->end = address + length - 1;
1593 res->resource_type = space_id;
1594 spin_lock(&acpi_res_lock);
1595 added = acpi_res_list_add(res);
1596 spin_unlock(&acpi_res_lock);
1597 pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1598 "name: %s\n", added ? "Added" : "Already exist",
1599 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1600 ? "SystemIO" : "System Memory",
1601 (unsigned long long)res->start,
1602 (unsigned long long)res->end,
1603 res->name);
1604 if (!added)
1605 kfree(res);
1606 break;
1607 case ACPI_ADR_SPACE_PCI_CONFIG:
1608 case ACPI_ADR_SPACE_EC:
1609 case ACPI_ADR_SPACE_SMBUS:
1610 case ACPI_ADR_SPACE_CMOS:
1611 case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1612 case ACPI_ADR_SPACE_DATA_TABLE:
1613 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1614 break;
1615 }
1616 return AE_OK;
1617}
1618#endif
1619
1620acpi_status __init acpi_os_initialize(void)
1621{
1622 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1623 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1624 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1625 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1626
1627 return AE_OK;
1628}
1629
1630acpi_status __init acpi_os_initialize1(void)
1631{
1632 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1633 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1634 kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1635 BUG_ON(!kacpid_wq);
1636 BUG_ON(!kacpi_notify_wq);
1637 BUG_ON(!kacpi_hotplug_wq);
1638 acpi_install_interface_handler(acpi_osi_handler);
1639 acpi_osi_setup_late();
1640 return AE_OK;
1641}
1642
1643acpi_status acpi_os_terminate(void)
1644{
1645 if (acpi_irq_handler) {
1646 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1647 acpi_irq_handler);
1648 }
1649
1650 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1651 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1652 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1654
1655 destroy_workqueue(kacpid_wq);
1656 destroy_workqueue(kacpi_notify_wq);
1657 destroy_workqueue(kacpi_hotplug_wq);
1658
1659 return AE_OK;
1660}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 unsigned long refcount;
81};
82
83static LIST_HEAD(acpi_ioremaps);
84static DEFINE_MUTEX(acpi_ioremap_lock);
85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
86
87static void __init acpi_request_region (struct acpi_generic_address *gas,
88 unsigned int length, char *desc)
89{
90 u64 addr;
91
92 /* Handle possible alignment issues */
93 memcpy(&addr, &gas->address, sizeof(addr));
94 if (!addr || !length)
95 return;
96
97 /* Resources are never freed */
98 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
99 request_region(addr, length, desc);
100 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
101 request_mem_region(addr, length, desc);
102}
103
104static int __init acpi_reserve_resources(void)
105{
106 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
107 "ACPI PM1a_EVT_BLK");
108
109 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1b_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
113 "ACPI PM1a_CNT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1b_CNT_BLK");
117
118 if (acpi_gbl_FADT.pm_timer_length == 4)
119 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
122 "ACPI PM2_CNT_BLK");
123
124 /* Length of GPE blocks must be a non-negative multiple of 2 */
125
126 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
127 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
128 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
129
130 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
131 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
132 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
133
134 return 0;
135}
136fs_initcall_sync(acpi_reserve_resources);
137
138void acpi_os_printf(const char *fmt, ...)
139{
140 va_list args;
141 va_start(args, fmt);
142 acpi_os_vprintf(fmt, args);
143 va_end(args);
144}
145EXPORT_SYMBOL(acpi_os_printf);
146
147void acpi_os_vprintf(const char *fmt, va_list args)
148{
149 static char buffer[512];
150
151 vsprintf(buffer, fmt, args);
152
153#ifdef ENABLE_DEBUGGER
154 if (acpi_in_debugger) {
155 kdb_printf("%s", buffer);
156 } else {
157 if (printk_get_level(buffer))
158 printk("%s", buffer);
159 else
160 printk(KERN_CONT "%s", buffer);
161 }
162#else
163 if (acpi_debugger_write_log(buffer) < 0) {
164 if (printk_get_level(buffer))
165 printk("%s", buffer);
166 else
167 printk(KERN_CONT "%s", buffer);
168 }
169#endif
170}
171
172#ifdef CONFIG_KEXEC
173static unsigned long acpi_rsdp;
174static int __init setup_acpi_rsdp(char *arg)
175{
176 return kstrtoul(arg, 16, &acpi_rsdp);
177}
178early_param("acpi_rsdp", setup_acpi_rsdp);
179#endif
180
181acpi_physical_address __init acpi_os_get_root_pointer(void)
182{
183 acpi_physical_address pa;
184
185#ifdef CONFIG_KEXEC
186 /*
187 * We may have been provided with an RSDP on the command line,
188 * but if a malicious user has done so they may be pointing us
189 * at modified ACPI tables that could alter kernel behaviour -
190 * so, we check the lockdown status before making use of
191 * it. If we trust it then also stash it in an architecture
192 * specific location (if appropriate) so it can be carried
193 * over further kexec()s.
194 */
195 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
196 acpi_arch_set_root_pointer(acpi_rsdp);
197 return acpi_rsdp;
198 }
199#endif
200 pa = acpi_arch_get_root_pointer();
201 if (pa)
202 return pa;
203
204 if (efi_enabled(EFI_CONFIG_TABLES)) {
205 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi20;
207 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 return efi.acpi;
209 pr_err(PREFIX "System description tables not found\n");
210 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 acpi_find_root_pointer(&pa);
212 }
213
214 return pa;
215}
216
217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218static struct acpi_ioremap *
219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220{
221 struct acpi_ioremap *map;
222
223 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
224 if (map->phys <= phys &&
225 phys + size <= map->phys + map->size)
226 return map;
227
228 return NULL;
229}
230
231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232static void __iomem *
233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234{
235 struct acpi_ioremap *map;
236
237 map = acpi_map_lookup(phys, size);
238 if (map)
239 return map->virt + (phys - map->phys);
240
241 return NULL;
242}
243
244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245{
246 struct acpi_ioremap *map;
247 void __iomem *virt = NULL;
248
249 mutex_lock(&acpi_ioremap_lock);
250 map = acpi_map_lookup(phys, size);
251 if (map) {
252 virt = map->virt + (phys - map->phys);
253 map->refcount++;
254 }
255 mutex_unlock(&acpi_ioremap_lock);
256 return virt;
257}
258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261static struct acpi_ioremap *
262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263{
264 struct acpi_ioremap *map;
265
266 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
267 if (map->virt <= virt &&
268 virt + size <= map->virt + map->size)
269 return map;
270
271 return NULL;
272}
273
274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275/* ioremap will take care of cache attributes */
276#define should_use_kmap(pfn) 0
277#else
278#define should_use_kmap(pfn) page_is_ram(pfn)
279#endif
280
281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282{
283 unsigned long pfn;
284
285 pfn = pg_off >> PAGE_SHIFT;
286 if (should_use_kmap(pfn)) {
287 if (pg_sz > PAGE_SIZE)
288 return NULL;
289 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 } else
291 return acpi_os_ioremap(pg_off, pg_sz);
292}
293
294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295{
296 unsigned long pfn;
297
298 pfn = pg_off >> PAGE_SHIFT;
299 if (should_use_kmap(pfn))
300 kunmap(pfn_to_page(pfn));
301 else
302 iounmap(vaddr);
303}
304
305/**
306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307 * @phys: Start of the physical address range to map.
308 * @size: Size of the physical address range to map.
309 *
310 * Look up the given physical address range in the list of existing ACPI memory
311 * mappings. If found, get a reference to it and return a pointer to it (its
312 * virtual address). If not found, map it, add it to that list and return a
313 * pointer to it.
314 *
315 * During early init (when acpi_permanent_mmap has not been set yet) this
316 * routine simply calls __acpi_map_table() to get the job done.
317 */
318void __iomem __ref
319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320{
321 struct acpi_ioremap *map;
322 void __iomem *virt;
323 acpi_physical_address pg_off;
324 acpi_size pg_sz;
325
326 if (phys > ULONG_MAX) {
327 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 return NULL;
329 }
330
331 if (!acpi_permanent_mmap)
332 return __acpi_map_table((unsigned long)phys, size);
333
334 mutex_lock(&acpi_ioremap_lock);
335 /* Check if there's a suitable mapping already. */
336 map = acpi_map_lookup(phys, size);
337 if (map) {
338 map->refcount++;
339 goto out;
340 }
341
342 map = kzalloc(sizeof(*map), GFP_KERNEL);
343 if (!map) {
344 mutex_unlock(&acpi_ioremap_lock);
345 return NULL;
346 }
347
348 pg_off = round_down(phys, PAGE_SIZE);
349 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 virt = acpi_map(pg_off, pg_sz);
351 if (!virt) {
352 mutex_unlock(&acpi_ioremap_lock);
353 kfree(map);
354 return NULL;
355 }
356
357 INIT_LIST_HEAD(&map->list);
358 map->virt = virt;
359 map->phys = pg_off;
360 map->size = pg_sz;
361 map->refcount = 1;
362
363 list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365out:
366 mutex_unlock(&acpi_ioremap_lock);
367 return map->virt + (phys - map->phys);
368}
369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372{
373 return (void *)acpi_os_map_iomem(phys, size);
374}
375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378{
379 if (!--map->refcount)
380 list_del_rcu(&map->list);
381}
382
383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384{
385 if (!map->refcount) {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390}
391
392/**
393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
394 * @virt: Start of the address range to drop a reference to.
395 * @size: Size of the address range to drop a reference to.
396 *
397 * Look up the given virtual address range in the list of existing ACPI memory
398 * mappings, drop a reference to it and unmap it if there are no more active
399 * references to it.
400 *
401 * During early init (when acpi_permanent_mmap has not been set yet) this
402 * routine simply calls __acpi_unmap_table() to get the job done. Since
403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404 * here.
405 */
406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407{
408 struct acpi_ioremap *map;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 acpi_os_map_cleanup(map);
426}
427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430{
431 return acpi_os_unmap_iomem((void __iomem *)virt, size);
432}
433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436{
437 u64 addr;
438 void __iomem *virt;
439
440 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 return 0;
442
443 /* Handle possible alignment issues */
444 memcpy(&addr, &gas->address, sizeof(addr));
445 if (!addr || !gas->bit_width)
446 return -EINVAL;
447
448 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 if (!virt)
450 return -EIO;
451
452 return 0;
453}
454EXPORT_SYMBOL(acpi_os_map_generic_address);
455
456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457{
458 u64 addr;
459 struct acpi_ioremap *map;
460
461 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 return;
463
464 /* Handle possible alignment issues */
465 memcpy(&addr, &gas->address, sizeof(addr));
466 if (!addr || !gas->bit_width)
467 return;
468
469 mutex_lock(&acpi_ioremap_lock);
470 map = acpi_map_lookup(addr, gas->bit_width / 8);
471 if (!map) {
472 mutex_unlock(&acpi_ioremap_lock);
473 return;
474 }
475 acpi_os_drop_map_ref(map);
476 mutex_unlock(&acpi_ioremap_lock);
477
478 acpi_os_map_cleanup(map);
479}
480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482#ifdef ACPI_FUTURE_USAGE
483acpi_status
484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485{
486 if (!phys || !virt)
487 return AE_BAD_PARAMETER;
488
489 *phys = virt_to_phys(virt);
490
491 return AE_OK;
492}
493#endif
494
495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496static bool acpi_rev_override;
497
498int __init acpi_rev_override_setup(char *str)
499{
500 acpi_rev_override = true;
501 return 1;
502}
503__setup("acpi_rev_override", acpi_rev_override_setup);
504#else
505#define acpi_rev_override false
506#endif
507
508#define ACPI_MAX_OVERRIDE_LEN 100
509
510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512acpi_status
513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 acpi_string *new_val)
515{
516 if (!init_val || !new_val)
517 return AE_BAD_PARAMETER;
518
519 *new_val = NULL;
520 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 acpi_os_name);
523 *new_val = acpi_os_name;
524 }
525
526 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 *new_val = (char *)5;
529 }
530
531 return AE_OK;
532}
533
534static irqreturn_t acpi_irq(int irq, void *dev_id)
535{
536 u32 handled;
537
538 handled = (*acpi_irq_handler) (acpi_irq_context);
539
540 if (handled) {
541 acpi_irq_handled++;
542 return IRQ_HANDLED;
543 } else {
544 acpi_irq_not_handled++;
545 return IRQ_NONE;
546 }
547}
548
549acpi_status
550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 void *context)
552{
553 unsigned int irq;
554
555 acpi_irq_stats_init();
556
557 /*
558 * ACPI interrupts different from the SCI in our copy of the FADT are
559 * not supported.
560 */
561 if (gsi != acpi_gbl_FADT.sci_interrupt)
562 return AE_BAD_PARAMETER;
563
564 if (acpi_irq_handler)
565 return AE_ALREADY_ACQUIRED;
566
567 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 gsi);
570 return AE_OK;
571 }
572
573 acpi_irq_handler = handler;
574 acpi_irq_context = context;
575 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 acpi_irq_handler = NULL;
578 return AE_NOT_ACQUIRED;
579 }
580 acpi_sci_irq = irq;
581
582 return AE_OK;
583}
584
585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586{
587 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 return AE_BAD_PARAMETER;
589
590 free_irq(acpi_sci_irq, acpi_irq);
591 acpi_irq_handler = NULL;
592 acpi_sci_irq = INVALID_ACPI_IRQ;
593
594 return AE_OK;
595}
596
597/*
598 * Running in interpreter thread context, safe to sleep
599 */
600
601void acpi_os_sleep(u64 ms)
602{
603 msleep(ms);
604}
605
606void acpi_os_stall(u32 us)
607{
608 while (us) {
609 u32 delay = 1000;
610
611 if (delay > us)
612 delay = us;
613 udelay(delay);
614 touch_nmi_watchdog();
615 us -= delay;
616 }
617}
618
619/*
620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621 * monotonically increasing timer with 100ns granularity. Do not use
622 * ktime_get() to implement this function because this function may get
623 * called after timekeeping has been suspended. Note: calling this function
624 * after timekeeping has been suspended may lead to unexpected results
625 * because when timekeeping is suspended the jiffies counter is not
626 * incremented. See also timekeeping_suspend().
627 */
628u64 acpi_os_get_timer(void)
629{
630 return (get_jiffies_64() - INITIAL_JIFFIES) *
631 (ACPI_100NSEC_PER_SEC / HZ);
632}
633
634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635{
636 u32 dummy;
637
638 if (!value)
639 value = &dummy;
640
641 *value = 0;
642 if (width <= 8) {
643 *(u8 *) value = inb(port);
644 } else if (width <= 16) {
645 *(u16 *) value = inw(port);
646 } else if (width <= 32) {
647 *(u32 *) value = inl(port);
648 } else {
649 BUG();
650 }
651
652 return AE_OK;
653}
654
655EXPORT_SYMBOL(acpi_os_read_port);
656
657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658{
659 if (width <= 8) {
660 outb(value, port);
661 } else if (width <= 16) {
662 outw(value, port);
663 } else if (width <= 32) {
664 outl(value, port);
665 } else {
666 BUG();
667 }
668
669 return AE_OK;
670}
671
672EXPORT_SYMBOL(acpi_os_write_port);
673
674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675{
676
677 switch (width) {
678 case 8:
679 *(u8 *) value = readb(virt_addr);
680 break;
681 case 16:
682 *(u16 *) value = readw(virt_addr);
683 break;
684 case 32:
685 *(u32 *) value = readl(virt_addr);
686 break;
687 case 64:
688 *(u64 *) value = readq(virt_addr);
689 break;
690 default:
691 return -EINVAL;
692 }
693
694 return 0;
695}
696
697acpi_status
698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699{
700 void __iomem *virt_addr;
701 unsigned int size = width / 8;
702 bool unmap = false;
703 u64 dummy;
704 int error;
705
706 rcu_read_lock();
707 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708 if (!virt_addr) {
709 rcu_read_unlock();
710 virt_addr = acpi_os_ioremap(phys_addr, size);
711 if (!virt_addr)
712 return AE_BAD_ADDRESS;
713 unmap = true;
714 }
715
716 if (!value)
717 value = &dummy;
718
719 error = acpi_os_read_iomem(virt_addr, value, width);
720 BUG_ON(error);
721
722 if (unmap)
723 iounmap(virt_addr);
724 else
725 rcu_read_unlock();
726
727 return AE_OK;
728}
729
730acpi_status
731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732{
733 void __iomem *virt_addr;
734 unsigned int size = width / 8;
735 bool unmap = false;
736
737 rcu_read_lock();
738 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 if (!virt_addr) {
740 rcu_read_unlock();
741 virt_addr = acpi_os_ioremap(phys_addr, size);
742 if (!virt_addr)
743 return AE_BAD_ADDRESS;
744 unmap = true;
745 }
746
747 switch (width) {
748 case 8:
749 writeb(value, virt_addr);
750 break;
751 case 16:
752 writew(value, virt_addr);
753 break;
754 case 32:
755 writel(value, virt_addr);
756 break;
757 case 64:
758 writeq(value, virt_addr);
759 break;
760 default:
761 BUG();
762 }
763
764 if (unmap)
765 iounmap(virt_addr);
766 else
767 rcu_read_unlock();
768
769 return AE_OK;
770}
771
772#ifdef CONFIG_PCI
773acpi_status
774acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
775 u64 *value, u32 width)
776{
777 int result, size;
778 u32 value32;
779
780 if (!value)
781 return AE_BAD_PARAMETER;
782
783 switch (width) {
784 case 8:
785 size = 1;
786 break;
787 case 16:
788 size = 2;
789 break;
790 case 32:
791 size = 4;
792 break;
793 default:
794 return AE_ERROR;
795 }
796
797 result = raw_pci_read(pci_id->segment, pci_id->bus,
798 PCI_DEVFN(pci_id->device, pci_id->function),
799 reg, size, &value32);
800 *value = value32;
801
802 return (result ? AE_ERROR : AE_OK);
803}
804
805acpi_status
806acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
807 u64 value, u32 width)
808{
809 int result, size;
810
811 switch (width) {
812 case 8:
813 size = 1;
814 break;
815 case 16:
816 size = 2;
817 break;
818 case 32:
819 size = 4;
820 break;
821 default:
822 return AE_ERROR;
823 }
824
825 result = raw_pci_write(pci_id->segment, pci_id->bus,
826 PCI_DEVFN(pci_id->device, pci_id->function),
827 reg, size, value);
828
829 return (result ? AE_ERROR : AE_OK);
830}
831#endif
832
833static void acpi_os_execute_deferred(struct work_struct *work)
834{
835 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
836
837 dpc->function(dpc->context);
838 kfree(dpc);
839}
840
841#ifdef CONFIG_ACPI_DEBUGGER
842static struct acpi_debugger acpi_debugger;
843static bool acpi_debugger_initialized;
844
845int acpi_register_debugger(struct module *owner,
846 const struct acpi_debugger_ops *ops)
847{
848 int ret = 0;
849
850 mutex_lock(&acpi_debugger.lock);
851 if (acpi_debugger.ops) {
852 ret = -EBUSY;
853 goto err_lock;
854 }
855
856 acpi_debugger.owner = owner;
857 acpi_debugger.ops = ops;
858
859err_lock:
860 mutex_unlock(&acpi_debugger.lock);
861 return ret;
862}
863EXPORT_SYMBOL(acpi_register_debugger);
864
865void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
866{
867 mutex_lock(&acpi_debugger.lock);
868 if (ops == acpi_debugger.ops) {
869 acpi_debugger.ops = NULL;
870 acpi_debugger.owner = NULL;
871 }
872 mutex_unlock(&acpi_debugger.lock);
873}
874EXPORT_SYMBOL(acpi_unregister_debugger);
875
876int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
877{
878 int ret;
879 int (*func)(acpi_osd_exec_callback, void *);
880 struct module *owner;
881
882 if (!acpi_debugger_initialized)
883 return -ENODEV;
884 mutex_lock(&acpi_debugger.lock);
885 if (!acpi_debugger.ops) {
886 ret = -ENODEV;
887 goto err_lock;
888 }
889 if (!try_module_get(acpi_debugger.owner)) {
890 ret = -ENODEV;
891 goto err_lock;
892 }
893 func = acpi_debugger.ops->create_thread;
894 owner = acpi_debugger.owner;
895 mutex_unlock(&acpi_debugger.lock);
896
897 ret = func(function, context);
898
899 mutex_lock(&acpi_debugger.lock);
900 module_put(owner);
901err_lock:
902 mutex_unlock(&acpi_debugger.lock);
903 return ret;
904}
905
906ssize_t acpi_debugger_write_log(const char *msg)
907{
908 ssize_t ret;
909 ssize_t (*func)(const char *);
910 struct module *owner;
911
912 if (!acpi_debugger_initialized)
913 return -ENODEV;
914 mutex_lock(&acpi_debugger.lock);
915 if (!acpi_debugger.ops) {
916 ret = -ENODEV;
917 goto err_lock;
918 }
919 if (!try_module_get(acpi_debugger.owner)) {
920 ret = -ENODEV;
921 goto err_lock;
922 }
923 func = acpi_debugger.ops->write_log;
924 owner = acpi_debugger.owner;
925 mutex_unlock(&acpi_debugger.lock);
926
927 ret = func(msg);
928
929 mutex_lock(&acpi_debugger.lock);
930 module_put(owner);
931err_lock:
932 mutex_unlock(&acpi_debugger.lock);
933 return ret;
934}
935
936ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
937{
938 ssize_t ret;
939 ssize_t (*func)(char *, size_t);
940 struct module *owner;
941
942 if (!acpi_debugger_initialized)
943 return -ENODEV;
944 mutex_lock(&acpi_debugger.lock);
945 if (!acpi_debugger.ops) {
946 ret = -ENODEV;
947 goto err_lock;
948 }
949 if (!try_module_get(acpi_debugger.owner)) {
950 ret = -ENODEV;
951 goto err_lock;
952 }
953 func = acpi_debugger.ops->read_cmd;
954 owner = acpi_debugger.owner;
955 mutex_unlock(&acpi_debugger.lock);
956
957 ret = func(buffer, buffer_length);
958
959 mutex_lock(&acpi_debugger.lock);
960 module_put(owner);
961err_lock:
962 mutex_unlock(&acpi_debugger.lock);
963 return ret;
964}
965
966int acpi_debugger_wait_command_ready(void)
967{
968 int ret;
969 int (*func)(bool, char *, size_t);
970 struct module *owner;
971
972 if (!acpi_debugger_initialized)
973 return -ENODEV;
974 mutex_lock(&acpi_debugger.lock);
975 if (!acpi_debugger.ops) {
976 ret = -ENODEV;
977 goto err_lock;
978 }
979 if (!try_module_get(acpi_debugger.owner)) {
980 ret = -ENODEV;
981 goto err_lock;
982 }
983 func = acpi_debugger.ops->wait_command_ready;
984 owner = acpi_debugger.owner;
985 mutex_unlock(&acpi_debugger.lock);
986
987 ret = func(acpi_gbl_method_executing,
988 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
989
990 mutex_lock(&acpi_debugger.lock);
991 module_put(owner);
992err_lock:
993 mutex_unlock(&acpi_debugger.lock);
994 return ret;
995}
996
997int acpi_debugger_notify_command_complete(void)
998{
999 int ret;
1000 int (*func)(void);
1001 struct module *owner;
1002
1003 if (!acpi_debugger_initialized)
1004 return -ENODEV;
1005 mutex_lock(&acpi_debugger.lock);
1006 if (!acpi_debugger.ops) {
1007 ret = -ENODEV;
1008 goto err_lock;
1009 }
1010 if (!try_module_get(acpi_debugger.owner)) {
1011 ret = -ENODEV;
1012 goto err_lock;
1013 }
1014 func = acpi_debugger.ops->notify_command_complete;
1015 owner = acpi_debugger.owner;
1016 mutex_unlock(&acpi_debugger.lock);
1017
1018 ret = func();
1019
1020 mutex_lock(&acpi_debugger.lock);
1021 module_put(owner);
1022err_lock:
1023 mutex_unlock(&acpi_debugger.lock);
1024 return ret;
1025}
1026
1027int __init acpi_debugger_init(void)
1028{
1029 mutex_init(&acpi_debugger.lock);
1030 acpi_debugger_initialized = true;
1031 return 0;
1032}
1033#endif
1034
1035/*******************************************************************************
1036 *
1037 * FUNCTION: acpi_os_execute
1038 *
1039 * PARAMETERS: Type - Type of the callback
1040 * Function - Function to be executed
1041 * Context - Function parameters
1042 *
1043 * RETURN: Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 * immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
1050acpi_status acpi_os_execute(acpi_execute_type type,
1051 acpi_osd_exec_callback function, void *context)
1052{
1053 acpi_status status = AE_OK;
1054 struct acpi_os_dpc *dpc;
1055 struct workqueue_struct *queue;
1056 int ret;
1057 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058 "Scheduling function [%p(%p)] for deferred execution.\n",
1059 function, context));
1060
1061 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062 ret = acpi_debugger_create_thread(function, context);
1063 if (ret) {
1064 pr_err("Call to kthread_create() failed.\n");
1065 status = AE_ERROR;
1066 }
1067 goto out_thread;
1068 }
1069
1070 /*
1071 * Allocate/initialize DPC structure. Note that this memory will be
1072 * freed by the callee. The kernel handles the work_struct list in a
1073 * way that allows us to also free its memory inside the callee.
1074 * Because we may want to schedule several tasks with different
1075 * parameters we can't use the approach some kernel code uses of
1076 * having a static work_struct.
1077 */
1078
1079 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080 if (!dpc)
1081 return AE_NO_MEMORY;
1082
1083 dpc->function = function;
1084 dpc->context = context;
1085
1086 /*
1087 * To prevent lockdep from complaining unnecessarily, make sure that
1088 * there is a different static lockdep key for each workqueue by using
1089 * INIT_WORK() for each of them separately.
1090 */
1091 if (type == OSL_NOTIFY_HANDLER) {
1092 queue = kacpi_notify_wq;
1093 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094 } else if (type == OSL_GPE_HANDLER) {
1095 queue = kacpid_wq;
1096 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097 } else {
1098 pr_err("Unsupported os_execute type %d.\n", type);
1099 status = AE_ERROR;
1100 }
1101
1102 if (ACPI_FAILURE(status))
1103 goto err_workqueue;
1104
1105 /*
1106 * On some machines, a software-initiated SMI causes corruption unless
1107 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1108 * typically it's done in GPE-related methods that are run via
1109 * workqueues, so we can avoid the known corruption cases by always
1110 * queueing on CPU 0.
1111 */
1112 ret = queue_work_on(0, queue, &dpc->work);
1113 if (!ret) {
1114 printk(KERN_ERR PREFIX
1115 "Call to queue_work() failed.\n");
1116 status = AE_ERROR;
1117 }
1118err_workqueue:
1119 if (ACPI_FAILURE(status))
1120 kfree(dpc);
1121out_thread:
1122 return status;
1123}
1124EXPORT_SYMBOL(acpi_os_execute);
1125
1126void acpi_os_wait_events_complete(void)
1127{
1128 /*
1129 * Make sure the GPE handler or the fixed event handler is not used
1130 * on another CPU after removal.
1131 */
1132 if (acpi_sci_irq_valid())
1133 synchronize_hardirq(acpi_sci_irq);
1134 flush_workqueue(kacpid_wq);
1135 flush_workqueue(kacpi_notify_wq);
1136}
1137EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139struct acpi_hp_work {
1140 struct work_struct work;
1141 struct acpi_device *adev;
1142 u32 src;
1143};
1144
1145static void acpi_hotplug_work_fn(struct work_struct *work)
1146{
1147 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149 acpi_os_wait_events_complete();
1150 acpi_device_hotplug(hpw->adev, hpw->src);
1151 kfree(hpw);
1152}
1153
1154acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155{
1156 struct acpi_hp_work *hpw;
1157
1158 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160 adev, src));
1161
1162 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163 if (!hpw)
1164 return AE_NO_MEMORY;
1165
1166 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167 hpw->adev = adev;
1168 hpw->src = src;
1169 /*
1170 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171 * the hotplug code may call driver .remove() functions, which may
1172 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173 * these workqueues.
1174 */
1175 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176 kfree(hpw);
1177 return AE_ERROR;
1178 }
1179 return AE_OK;
1180}
1181
1182bool acpi_queue_hotplug_work(struct work_struct *work)
1183{
1184 return queue_work(kacpi_hotplug_wq, work);
1185}
1186
1187acpi_status
1188acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189{
1190 struct semaphore *sem = NULL;
1191
1192 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193 if (!sem)
1194 return AE_NO_MEMORY;
1195
1196 sema_init(sem, initial_units);
1197
1198 *handle = (acpi_handle *) sem;
1199
1200 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201 *handle, initial_units));
1202
1203 return AE_OK;
1204}
1205
1206/*
1207 * TODO: A better way to delete semaphores? Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers. Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
1213acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214{
1215 struct semaphore *sem = (struct semaphore *)handle;
1216
1217 if (!sem)
1218 return AE_BAD_PARAMETER;
1219
1220 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222 BUG_ON(!list_empty(&sem->wait_list));
1223 kfree(sem);
1224 sem = NULL;
1225
1226 return AE_OK;
1227}
1228
1229/*
1230 * TODO: Support for units > 1?
1231 */
1232acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233{
1234 acpi_status status = AE_OK;
1235 struct semaphore *sem = (struct semaphore *)handle;
1236 long jiffies;
1237 int ret = 0;
1238
1239 if (!acpi_os_initialized)
1240 return AE_OK;
1241
1242 if (!sem || (units < 1))
1243 return AE_BAD_PARAMETER;
1244
1245 if (units > 1)
1246 return AE_SUPPORT;
1247
1248 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249 handle, units, timeout));
1250
1251 if (timeout == ACPI_WAIT_FOREVER)
1252 jiffies = MAX_SCHEDULE_TIMEOUT;
1253 else
1254 jiffies = msecs_to_jiffies(timeout);
1255
1256 ret = down_timeout(sem, jiffies);
1257 if (ret)
1258 status = AE_TIME;
1259
1260 if (ACPI_FAILURE(status)) {
1261 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262 "Failed to acquire semaphore[%p|%d|%d], %s",
1263 handle, units, timeout,
1264 acpi_format_exception(status)));
1265 } else {
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267 "Acquired semaphore[%p|%d|%d]", handle,
1268 units, timeout));
1269 }
1270
1271 return status;
1272}
1273
1274/*
1275 * TODO: Support for units > 1?
1276 */
1277acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278{
1279 struct semaphore *sem = (struct semaphore *)handle;
1280
1281 if (!acpi_os_initialized)
1282 return AE_OK;
1283
1284 if (!sem || (units < 1))
1285 return AE_BAD_PARAMETER;
1286
1287 if (units > 1)
1288 return AE_SUPPORT;
1289
1290 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291 units));
1292
1293 up(sem);
1294
1295 return AE_OK;
1296}
1297
1298acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299{
1300#ifdef ENABLE_DEBUGGER
1301 if (acpi_in_debugger) {
1302 u32 chars;
1303
1304 kdb_read(buffer, buffer_length);
1305
1306 /* remove the CR kdb includes */
1307 chars = strlen(buffer) - 1;
1308 buffer[chars] = '\0';
1309 }
1310#else
1311 int ret;
1312
1313 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314 if (ret < 0)
1315 return AE_ERROR;
1316 if (bytes_read)
1317 *bytes_read = ret;
1318#endif
1319
1320 return AE_OK;
1321}
1322EXPORT_SYMBOL(acpi_os_get_line);
1323
1324acpi_status acpi_os_wait_command_ready(void)
1325{
1326 int ret;
1327
1328 ret = acpi_debugger_wait_command_ready();
1329 if (ret < 0)
1330 return AE_ERROR;
1331 return AE_OK;
1332}
1333
1334acpi_status acpi_os_notify_command_complete(void)
1335{
1336 int ret;
1337
1338 ret = acpi_debugger_notify_command_complete();
1339 if (ret < 0)
1340 return AE_ERROR;
1341 return AE_OK;
1342}
1343
1344acpi_status acpi_os_signal(u32 function, void *info)
1345{
1346 switch (function) {
1347 case ACPI_SIGNAL_FATAL:
1348 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349 break;
1350 case ACPI_SIGNAL_BREAKPOINT:
1351 /*
1352 * AML Breakpoint
1353 * ACPI spec. says to treat it as a NOP unless
1354 * you are debugging. So if/when we integrate
1355 * AML debugger into the kernel debugger its
1356 * hook will go here. But until then it is
1357 * not useful to print anything on breakpoints.
1358 */
1359 break;
1360 default:
1361 break;
1362 }
1363
1364 return AE_OK;
1365}
1366
1367static int __init acpi_os_name_setup(char *str)
1368{
1369 char *p = acpi_os_name;
1370 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372 if (!str || !*str)
1373 return 0;
1374
1375 for (; count-- && *str; str++) {
1376 if (isalnum(*str) || *str == ' ' || *str == ':')
1377 *p++ = *str;
1378 else if (*str == '\'' || *str == '"')
1379 continue;
1380 else
1381 break;
1382 }
1383 *p = 0;
1384
1385 return 1;
1386
1387}
1388
1389__setup("acpi_os_name=", acpi_os_name_setup);
1390
1391/*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default. It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
1396 */
1397static int __init acpi_no_auto_serialize_setup(char *str)
1398{
1399 acpi_gbl_auto_serialize_methods = FALSE;
1400 pr_info("ACPI: auto-serialization disabled\n");
1401
1402 return 1;
1403}
1404
1405__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407/* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 * - strict (default) (2)
1414 * -> further driver trying to access the resources will not load
1415 * - lax (1)
1416 * -> further driver trying to access the resources will load, but you
1417 * get a system message that something might go wrong...
1418 *
1419 * - no (0)
1420 * -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423#define ENFORCE_RESOURCES_STRICT 2
1424#define ENFORCE_RESOURCES_LAX 1
1425#define ENFORCE_RESOURCES_NO 0
1426
1427static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429static int __init acpi_enforce_resources_setup(char *str)
1430{
1431 if (str == NULL || *str == '\0')
1432 return 0;
1433
1434 if (!strcmp("strict", str))
1435 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436 else if (!strcmp("lax", str))
1437 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438 else if (!strcmp("no", str))
1439 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441 return 1;
1442}
1443
1444__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446/* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
1448int acpi_check_resource_conflict(const struct resource *res)
1449{
1450 acpi_adr_space_type space_id;
1451 acpi_size length;
1452 u8 warn = 0;
1453 int clash = 0;
1454
1455 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456 return 0;
1457 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458 return 0;
1459
1460 if (res->flags & IORESOURCE_IO)
1461 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462 else
1463 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465 length = resource_size(res);
1466 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467 warn = 1;
1468 clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470 if (clash) {
1471 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473 printk(KERN_NOTICE "ACPI: This conflict may"
1474 " cause random problems and system"
1475 " instability\n");
1476 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477 " for this device, you should use it instead of"
1478 " the native driver\n");
1479 }
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481 return -EBUSY;
1482 }
1483 return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488 const char *name)
1489{
1490 struct resource res = {
1491 .start = start,
1492 .end = start + n - 1,
1493 .name = name,
1494 .flags = IORESOURCE_IO,
1495 };
1496
1497 return acpi_check_resource_conflict(&res);
1498}
1499EXPORT_SYMBOL(acpi_check_region);
1500
1501static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502 void *_res, void **return_value)
1503{
1504 struct acpi_mem_space_context **mem_ctx;
1505 union acpi_operand_object *handler_obj;
1506 union acpi_operand_object *region_obj2;
1507 union acpi_operand_object *region_obj;
1508 struct resource *res = _res;
1509 acpi_status status;
1510
1511 region_obj = acpi_ns_get_attached_object(handle);
1512 if (!region_obj)
1513 return AE_OK;
1514
1515 handler_obj = region_obj->region.handler;
1516 if (!handler_obj)
1517 return AE_OK;
1518
1519 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520 return AE_OK;
1521
1522 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523 return AE_OK;
1524
1525 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526 if (!region_obj2)
1527 return AE_OK;
1528
1529 mem_ctx = (void *)®ion_obj2->extra.region_context;
1530
1531 if (!(mem_ctx[0]->address >= res->start &&
1532 mem_ctx[0]->address < res->end))
1533 return AE_OK;
1534
1535 status = handler_obj->address_space.setup(region_obj,
1536 ACPI_REGION_DEACTIVATE,
1537 NULL, (void **)mem_ctx);
1538 if (ACPI_SUCCESS(status))
1539 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541 return status;
1542}
1543
1544/**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
1560acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561 u32 level)
1562{
1563 if (!(res->flags & IORESOURCE_MEM))
1564 return AE_TYPE;
1565
1566 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567 acpi_deactivate_mem_region, NULL, res, NULL);
1568}
1569EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571/*
1572 * Let drivers know whether the resource checks are effective
1573 */
1574int acpi_resources_are_enforced(void)
1575{
1576 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577}
1578EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580/*
1581 * Deallocate the memory for a spinlock.
1582 */
1583void acpi_os_delete_lock(acpi_spinlock handle)
1584{
1585 ACPI_FREE(handle);
1586}
1587
1588/*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
1594acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595{
1596 acpi_cpu_flags flags;
1597 spin_lock_irqsave(lockp, flags);
1598 return flags;
1599}
1600
1601/*
1602 * Release a spinlock. See above.
1603 */
1604
1605void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606{
1607 spin_unlock_irqrestore(lockp, flags);
1608}
1609
1610#ifndef ACPI_USE_LOCAL_CACHE
1611
1612/*******************************************************************************
1613 *
1614 * FUNCTION: acpi_os_create_cache
1615 *
1616 * PARAMETERS: name - Ascii name for the cache
1617 * size - Size of each cached object
1618 * depth - Maximum depth of the cache (in objects) <ignored>
1619 * cache - Where the new cache object is returned
1620 *
1621 * RETURN: status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627acpi_status
1628acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629{
1630 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1631 if (*cache == NULL)
1632 return AE_ERROR;
1633 else
1634 return AE_OK;
1635}
1636
1637/*******************************************************************************
1638 *
1639 * FUNCTION: acpi_os_purge_cache
1640 *
1641 * PARAMETERS: Cache - Handle to cache object
1642 *
1643 * RETURN: Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
1649acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650{
1651 kmem_cache_shrink(cache);
1652 return (AE_OK);
1653}
1654
1655/*******************************************************************************
1656 *
1657 * FUNCTION: acpi_os_delete_cache
1658 *
1659 * PARAMETERS: Cache - Handle to cache object
1660 *
1661 * RETURN: Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 * cache object.
1665 *
1666 ******************************************************************************/
1667
1668acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669{
1670 kmem_cache_destroy(cache);
1671 return (AE_OK);
1672}
1673
1674/*******************************************************************************
1675 *
1676 * FUNCTION: acpi_os_release_object
1677 *
1678 * PARAMETERS: Cache - Handle to cache object
1679 * Object - The object to be released
1680 *
1681 * RETURN: None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1684 * the object is deleted.
1685 *
1686 ******************************************************************************/
1687
1688acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689{
1690 kmem_cache_free(cache, object);
1691 return (AE_OK);
1692}
1693#endif
1694
1695static int __init acpi_no_static_ssdt_setup(char *s)
1696{
1697 acpi_gbl_disable_ssdt_table_install = TRUE;
1698 pr_info("ACPI: static SSDT installation disabled\n");
1699
1700 return 0;
1701}
1702
1703early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705static int __init acpi_disable_return_repair(char *s)
1706{
1707 printk(KERN_NOTICE PREFIX
1708 "ACPI: Predefined validation mechanism disabled\n");
1709 acpi_gbl_disable_auto_repair = TRUE;
1710
1711 return 1;
1712}
1713
1714__setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716acpi_status __init acpi_os_initialize(void)
1717{
1718 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723 /*
1724 * Use acpi_os_map_generic_address to pre-map the reset
1725 * register if it's in system memory.
1726 */
1727 int rv;
1728
1729 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731 }
1732 acpi_os_initialized = true;
1733
1734 return AE_OK;
1735}
1736
1737acpi_status __init acpi_os_initialize1(void)
1738{
1739 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742 BUG_ON(!kacpid_wq);
1743 BUG_ON(!kacpi_notify_wq);
1744 BUG_ON(!kacpi_hotplug_wq);
1745 acpi_osi_init();
1746 return AE_OK;
1747}
1748
1749acpi_status acpi_os_terminate(void)
1750{
1751 if (acpi_irq_handler) {
1752 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753 acpi_irq_handler);
1754 }
1755
1756 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763 destroy_workqueue(kacpid_wq);
1764 destroy_workqueue(kacpi_notify_wq);
1765 destroy_workqueue(kacpi_hotplug_wq);
1766
1767 return AE_OK;
1768}
1769
1770acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771 u32 pm1b_control)
1772{
1773 int rc = 0;
1774 if (__acpi_os_prepare_sleep)
1775 rc = __acpi_os_prepare_sleep(sleep_state,
1776 pm1a_control, pm1b_control);
1777 if (rc < 0)
1778 return AE_ERROR;
1779 else if (rc > 0)
1780 return AE_CTRL_TERMINATE;
1781
1782 return AE_OK;
1783}
1784
1785void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786 u32 pm1a_ctrl, u32 pm1b_ctrl))
1787{
1788 __acpi_os_prepare_sleep = func;
1789}
1790
1791#if (ACPI_REDUCED_HARDWARE)
1792acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793 u32 val_b)
1794{
1795 int rc = 0;
1796 if (__acpi_os_prepare_extended_sleep)
1797 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798 val_a, val_b);
1799 if (rc < 0)
1800 return AE_ERROR;
1801 else if (rc > 0)
1802 return AE_CTRL_TERMINATE;
1803
1804 return AE_OK;
1805}
1806#else
1807acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808 u32 val_b)
1809{
1810 return AE_OK;
1811}
1812#endif
1813
1814void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815 u32 val_a, u32 val_b))
1816{
1817 __acpi_os_prepare_extended_sleep = func;
1818}
1819
1820acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821 u32 reg_a_value, u32 reg_b_value)
1822{
1823 acpi_status status;
1824
1825 if (acpi_gbl_reduced_hardware)
1826 status = acpi_os_prepare_extended_sleep(sleep_state,
1827 reg_a_value,
1828 reg_b_value);
1829 else
1830 status = acpi_os_prepare_sleep(sleep_state,
1831 reg_a_value, reg_b_value);
1832 return status;
1833}