Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   7 *
   8 * This file is released under the GPL.
   9 */
  10
  11#include <linux/completion.h>
  12#include <linux/err.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/key.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-integrity.h>
  20#include <linux/mempool.h>
  21#include <linux/slab.h>
  22#include <linux/crypto.h>
  23#include <linux/workqueue.h>
  24#include <linux/kthread.h>
  25#include <linux/backing-dev.h>
  26#include <linux/atomic.h>
  27#include <linux/scatterlist.h>
  28#include <linux/rbtree.h>
  29#include <linux/ctype.h>
  30#include <asm/page.h>
  31#include <asm/unaligned.h>
  32#include <crypto/hash.h>
  33#include <crypto/md5.h>
  34#include <crypto/skcipher.h>
  35#include <crypto/aead.h>
  36#include <crypto/authenc.h>
  37#include <crypto/utils.h>
  38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  39#include <linux/key-type.h>
  40#include <keys/user-type.h>
  41#include <keys/encrypted-type.h>
  42#include <keys/trusted-type.h>
  43
  44#include <linux/device-mapper.h>
  45
  46#include "dm-audit.h"
  47
  48#define DM_MSG_PREFIX "crypt"
  49
 
 
  50/*
  51 * context holding the current state of a multi-part conversion
  52 */
  53struct convert_context {
  54	struct completion restart;
  55	struct bio *bio_in;
  56	struct bvec_iter iter_in;
  57	struct bio *bio_out;
  58	struct bvec_iter iter_out;
  59	atomic_t cc_pending;
 
  60	u64 cc_sector;
  61	union {
  62		struct skcipher_request *req;
  63		struct aead_request *req_aead;
  64	} r;
  65	bool aead_recheck;
  66	bool aead_failed;
  67
  68};
  69
  70/*
  71 * per bio private data
  72 */
  73struct dm_crypt_io {
  74	struct crypt_config *cc;
  75	struct bio *base_bio;
  76	u8 *integrity_metadata;
  77	bool integrity_metadata_from_pool:1;
  78
  79	struct work_struct work;
  80
  81	struct convert_context ctx;
  82
  83	atomic_t io_pending;
  84	blk_status_t error;
  85	sector_t sector;
  86
  87	struct bvec_iter saved_bi_iter;
  88
  89	struct rb_node rb_node;
  90} CRYPTO_MINALIGN_ATTR;
  91
  92struct dm_crypt_request {
  93	struct convert_context *ctx;
  94	struct scatterlist sg_in[4];
  95	struct scatterlist sg_out[4];
  96	u64 iv_sector;
  97};
  98
  99struct crypt_config;
 100
 101struct crypt_iv_operations {
 102	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
 103		   const char *opts);
 104	void (*dtr)(struct crypt_config *cc);
 105	int (*init)(struct crypt_config *cc);
 106	int (*wipe)(struct crypt_config *cc);
 107	int (*generator)(struct crypt_config *cc, u8 *iv,
 108			 struct dm_crypt_request *dmreq);
 109	int (*post)(struct crypt_config *cc, u8 *iv,
 110		    struct dm_crypt_request *dmreq);
 111};
 112
 113struct iv_benbi_private {
 114	int shift;
 115};
 116
 117#define LMK_SEED_SIZE 64 /* hash + 0 */
 118struct iv_lmk_private {
 119	struct crypto_shash *hash_tfm;
 120	u8 *seed;
 121};
 122
 123#define TCW_WHITENING_SIZE 16
 124struct iv_tcw_private {
 125	struct crypto_shash *crc32_tfm;
 126	u8 *iv_seed;
 127	u8 *whitening;
 128};
 129
 130#define ELEPHANT_MAX_KEY_SIZE 32
 131struct iv_elephant_private {
 132	struct crypto_skcipher *tfm;
 133};
 134
 135/*
 136 * Crypt: maps a linear range of a block device
 137 * and encrypts / decrypts at the same time.
 138 */
 139enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 140	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 141	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
 142	     DM_CRYPT_WRITE_INLINE };
 143
 144enum cipher_flags {
 145	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
 146	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 147	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
 
 148};
 149
 150/*
 151 * The fields in here must be read only after initialization.
 152 */
 153struct crypt_config {
 154	struct dm_dev *dev;
 155	sector_t start;
 156
 157	struct percpu_counter n_allocated_pages;
 158
 159	struct workqueue_struct *io_queue;
 160	struct workqueue_struct *crypt_queue;
 161
 162	spinlock_t write_thread_lock;
 163	struct task_struct *write_thread;
 164	struct rb_root write_tree;
 165
 166	char *cipher_string;
 167	char *cipher_auth;
 168	char *key_string;
 169
 170	const struct crypt_iv_operations *iv_gen_ops;
 171	union {
 172		struct iv_benbi_private benbi;
 173		struct iv_lmk_private lmk;
 174		struct iv_tcw_private tcw;
 175		struct iv_elephant_private elephant;
 176	} iv_gen_private;
 177	u64 iv_offset;
 178	unsigned int iv_size;
 179	unsigned short sector_size;
 180	unsigned char sector_shift;
 181
 182	union {
 183		struct crypto_skcipher **tfms;
 184		struct crypto_aead **tfms_aead;
 185	} cipher_tfm;
 186	unsigned int tfms_count;
 
 187	unsigned long cipher_flags;
 188
 189	/*
 190	 * Layout of each crypto request:
 191	 *
 192	 *   struct skcipher_request
 193	 *      context
 194	 *      padding
 195	 *   struct dm_crypt_request
 196	 *      padding
 197	 *   IV
 198	 *
 199	 * The padding is added so that dm_crypt_request and the IV are
 200	 * correctly aligned.
 201	 */
 202	unsigned int dmreq_start;
 203
 204	unsigned int per_bio_data_size;
 205
 206	unsigned long flags;
 207	unsigned int key_size;
 208	unsigned int key_parts;      /* independent parts in key buffer */
 209	unsigned int key_extra_size; /* additional keys length */
 210	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 211
 212	unsigned int integrity_tag_size;
 213	unsigned int integrity_iv_size;
 214	unsigned int on_disk_tag_size;
 
 215
 216	/*
 217	 * pool for per bio private data, crypto requests,
 218	 * encryption requeusts/buffer pages and integrity tags
 219	 */
 220	unsigned int tag_pool_max_sectors;
 221	mempool_t tag_pool;
 222	mempool_t req_pool;
 223	mempool_t page_pool;
 224
 225	struct bio_set bs;
 226	struct mutex bio_alloc_lock;
 227
 228	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 229	u8 key[] __counted_by(key_size);
 230};
 231
 232#define MIN_IOS		64
 233#define MAX_TAG_SIZE	480
 234#define POOL_ENTRY_SIZE	512
 235
 236static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 237static unsigned int dm_crypt_clients_n;
 238static volatile unsigned long dm_crypt_pages_per_client;
 239#define DM_CRYPT_MEMORY_PERCENT			2
 240#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241
 242static void crypt_endio(struct bio *clone);
 243static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 244static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 245					     struct scatterlist *sg);
 246
 247static bool crypt_integrity_aead(struct crypt_config *cc);
 248
 249/*
 250 * Use this to access cipher attributes that are independent of the key.
 251 */
 252static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 253{
 254	return cc->cipher_tfm.tfms[0];
 255}
 256
 257static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 258{
 259	return cc->cipher_tfm.tfms_aead[0];
 260}
 261
 262/*
 263 * Different IV generation algorithms:
 264 *
 265 * plain: the initial vector is the 32-bit little-endian version of the sector
 266 *        number, padded with zeros if necessary.
 267 *
 268 * plain64: the initial vector is the 64-bit little-endian version of the sector
 269 *        number, padded with zeros if necessary.
 270 *
 271 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 272 *        number, padded with zeros if necessary.
 273 *
 274 * essiv: "encrypted sector|salt initial vector", the sector number is
 275 *        encrypted with the bulk cipher using a salt as key. The salt
 276 *        should be derived from the bulk cipher's key via hashing.
 277 *
 278 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 279 *        (needed for LRW-32-AES and possible other narrow block modes)
 280 *
 281 * null: the initial vector is always zero.  Provides compatibility with
 282 *       obsolete loop_fish2 devices.  Do not use for new devices.
 283 *
 284 * lmk:  Compatible implementation of the block chaining mode used
 285 *       by the Loop-AES block device encryption system
 286 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 287 *       It operates on full 512 byte sectors and uses CBC
 288 *       with an IV derived from the sector number, the data and
 289 *       optionally extra IV seed.
 290 *       This means that after decryption the first block
 291 *       of sector must be tweaked according to decrypted data.
 292 *       Loop-AES can use three encryption schemes:
 293 *         version 1: is plain aes-cbc mode
 294 *         version 2: uses 64 multikey scheme with lmk IV generator
 295 *         version 3: the same as version 2 with additional IV seed
 296 *                   (it uses 65 keys, last key is used as IV seed)
 297 *
 298 * tcw:  Compatible implementation of the block chaining mode used
 299 *       by the TrueCrypt device encryption system (prior to version 4.1).
 300 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 301 *       It operates on full 512 byte sectors and uses CBC
 302 *       with an IV derived from initial key and the sector number.
 303 *       In addition, whitening value is applied on every sector, whitening
 304 *       is calculated from initial key, sector number and mixed using CRC32.
 305 *       Note that this encryption scheme is vulnerable to watermarking attacks
 306 *       and should be used for old compatible containers access only.
 307 *
 308 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 309 *        The IV is encrypted little-endian byte-offset (with the same key
 310 *        and cipher as the volume).
 311 *
 312 * elephant: The extended version of eboiv with additional Elephant diffuser
 313 *           used with Bitlocker CBC mode.
 314 *           This mode was used in older Windows systems
 315 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 316 */
 317
 318static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 319			      struct dm_crypt_request *dmreq)
 320{
 321	memset(iv, 0, cc->iv_size);
 322	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 323
 324	return 0;
 325}
 326
 327static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 328				struct dm_crypt_request *dmreq)
 329{
 330	memset(iv, 0, cc->iv_size);
 331	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 332
 333	return 0;
 334}
 335
 336static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 337				  struct dm_crypt_request *dmreq)
 338{
 339	memset(iv, 0, cc->iv_size);
 340	/* iv_size is at least of size u64; usually it is 16 bytes */
 341	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 342
 343	return 0;
 344}
 345
 346static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 347			      struct dm_crypt_request *dmreq)
 348{
 349	/*
 350	 * ESSIV encryption of the IV is now handled by the crypto API,
 351	 * so just pass the plain sector number here.
 352	 */
 353	memset(iv, 0, cc->iv_size);
 354	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 355
 356	return 0;
 357}
 358
 359static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 360			      const char *opts)
 361{
 362	unsigned int bs;
 363	int log;
 364
 365	if (crypt_integrity_aead(cc))
 366		bs = crypto_aead_blocksize(any_tfm_aead(cc));
 367	else
 368		bs = crypto_skcipher_blocksize(any_tfm(cc));
 369	log = ilog2(bs);
 370
 371	/*
 372	 * We need to calculate how far we must shift the sector count
 373	 * to get the cipher block count, we use this shift in _gen.
 374	 */
 375	if (1 << log != bs) {
 376		ti->error = "cypher blocksize is not a power of 2";
 377		return -EINVAL;
 378	}
 379
 380	if (log > 9) {
 381		ti->error = "cypher blocksize is > 512";
 382		return -EINVAL;
 383	}
 384
 385	cc->iv_gen_private.benbi.shift = 9 - log;
 386
 387	return 0;
 388}
 389
 390static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 391{
 392}
 393
 394static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 395			      struct dm_crypt_request *dmreq)
 396{
 397	__be64 val;
 398
 399	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 400
 401	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 402	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 403
 404	return 0;
 405}
 406
 407static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 408			     struct dm_crypt_request *dmreq)
 409{
 410	memset(iv, 0, cc->iv_size);
 411
 412	return 0;
 413}
 414
 415static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 416{
 417	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 418
 419	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 420		crypto_free_shash(lmk->hash_tfm);
 421	lmk->hash_tfm = NULL;
 422
 423	kfree_sensitive(lmk->seed);
 424	lmk->seed = NULL;
 425}
 426
 427static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 428			    const char *opts)
 429{
 430	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 431
 432	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 433		ti->error = "Unsupported sector size for LMK";
 434		return -EINVAL;
 435	}
 436
 437	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
 438					   CRYPTO_ALG_ALLOCATES_MEMORY);
 439	if (IS_ERR(lmk->hash_tfm)) {
 440		ti->error = "Error initializing LMK hash";
 441		return PTR_ERR(lmk->hash_tfm);
 442	}
 443
 444	/* No seed in LMK version 2 */
 445	if (cc->key_parts == cc->tfms_count) {
 446		lmk->seed = NULL;
 447		return 0;
 448	}
 449
 450	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 451	if (!lmk->seed) {
 452		crypt_iv_lmk_dtr(cc);
 453		ti->error = "Error kmallocing seed storage in LMK";
 454		return -ENOMEM;
 455	}
 456
 457	return 0;
 458}
 459
 460static int crypt_iv_lmk_init(struct crypt_config *cc)
 461{
 462	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 463	int subkey_size = cc->key_size / cc->key_parts;
 464
 465	/* LMK seed is on the position of LMK_KEYS + 1 key */
 466	if (lmk->seed)
 467		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 468		       crypto_shash_digestsize(lmk->hash_tfm));
 469
 470	return 0;
 471}
 472
 473static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 474{
 475	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 476
 477	if (lmk->seed)
 478		memset(lmk->seed, 0, LMK_SEED_SIZE);
 479
 480	return 0;
 481}
 482
 483static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 484			    struct dm_crypt_request *dmreq,
 485			    u8 *data)
 486{
 487	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 488	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 489	struct md5_state md5state;
 490	__le32 buf[4];
 491	int i, r;
 492
 493	desc->tfm = lmk->hash_tfm;
 494
 495	r = crypto_shash_init(desc);
 496	if (r)
 497		return r;
 498
 499	if (lmk->seed) {
 500		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 501		if (r)
 502			return r;
 503	}
 504
 505	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 506	r = crypto_shash_update(desc, data + 16, 16 * 31);
 507	if (r)
 508		return r;
 509
 510	/* Sector is cropped to 56 bits here */
 511	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 512	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 513	buf[2] = cpu_to_le32(4024);
 514	buf[3] = 0;
 515	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 516	if (r)
 517		return r;
 518
 519	/* No MD5 padding here */
 520	r = crypto_shash_export(desc, &md5state);
 521	if (r)
 522		return r;
 523
 524	for (i = 0; i < MD5_HASH_WORDS; i++)
 525		__cpu_to_le32s(&md5state.hash[i]);
 526	memcpy(iv, &md5state.hash, cc->iv_size);
 527
 528	return 0;
 529}
 530
 531static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 532			    struct dm_crypt_request *dmreq)
 533{
 534	struct scatterlist *sg;
 535	u8 *src;
 536	int r = 0;
 537
 538	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 539		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 540		src = kmap_local_page(sg_page(sg));
 541		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 542		kunmap_local(src);
 543	} else
 544		memset(iv, 0, cc->iv_size);
 545
 546	return r;
 547}
 548
 549static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 550			     struct dm_crypt_request *dmreq)
 551{
 552	struct scatterlist *sg;
 553	u8 *dst;
 554	int r;
 555
 556	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 557		return 0;
 558
 559	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 560	dst = kmap_local_page(sg_page(sg));
 561	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 562
 563	/* Tweak the first block of plaintext sector */
 564	if (!r)
 565		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 566
 567	kunmap_local(dst);
 568	return r;
 569}
 570
 571static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 572{
 573	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 574
 575	kfree_sensitive(tcw->iv_seed);
 576	tcw->iv_seed = NULL;
 577	kfree_sensitive(tcw->whitening);
 578	tcw->whitening = NULL;
 579
 580	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 581		crypto_free_shash(tcw->crc32_tfm);
 582	tcw->crc32_tfm = NULL;
 583}
 584
 585static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 586			    const char *opts)
 587{
 588	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 589
 590	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 591		ti->error = "Unsupported sector size for TCW";
 592		return -EINVAL;
 593	}
 594
 595	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 596		ti->error = "Wrong key size for TCW";
 597		return -EINVAL;
 598	}
 599
 600	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
 601					    CRYPTO_ALG_ALLOCATES_MEMORY);
 602	if (IS_ERR(tcw->crc32_tfm)) {
 603		ti->error = "Error initializing CRC32 in TCW";
 604		return PTR_ERR(tcw->crc32_tfm);
 605	}
 606
 607	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 608	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 609	if (!tcw->iv_seed || !tcw->whitening) {
 610		crypt_iv_tcw_dtr(cc);
 611		ti->error = "Error allocating seed storage in TCW";
 612		return -ENOMEM;
 613	}
 614
 615	return 0;
 616}
 617
 618static int crypt_iv_tcw_init(struct crypt_config *cc)
 619{
 620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 622
 623	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 624	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 625	       TCW_WHITENING_SIZE);
 626
 627	return 0;
 628}
 629
 630static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 631{
 632	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 633
 634	memset(tcw->iv_seed, 0, cc->iv_size);
 635	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 636
 637	return 0;
 638}
 639
 640static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 641				  struct dm_crypt_request *dmreq,
 642				  u8 *data)
 643{
 644	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 645	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 646	u8 buf[TCW_WHITENING_SIZE];
 647	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 648	int i, r;
 649
 650	/* xor whitening with sector number */
 651	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 652	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 653
 654	/* calculate crc32 for every 32bit part and xor it */
 655	desc->tfm = tcw->crc32_tfm;
 656	for (i = 0; i < 4; i++) {
 657		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
 658		if (r)
 659			goto out;
 660	}
 661	crypto_xor(&buf[0], &buf[12], 4);
 662	crypto_xor(&buf[4], &buf[8], 4);
 663
 664	/* apply whitening (8 bytes) to whole sector */
 665	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 666		crypto_xor(data + i * 8, buf, 8);
 667out:
 668	memzero_explicit(buf, sizeof(buf));
 669	return r;
 670}
 671
 672static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 673			    struct dm_crypt_request *dmreq)
 674{
 675	struct scatterlist *sg;
 676	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 677	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 678	u8 *src;
 679	int r = 0;
 680
 681	/* Remove whitening from ciphertext */
 682	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 683		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 684		src = kmap_local_page(sg_page(sg));
 685		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 686		kunmap_local(src);
 687	}
 688
 689	/* Calculate IV */
 690	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 691	if (cc->iv_size > 8)
 692		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 693			       cc->iv_size - 8);
 694
 695	return r;
 696}
 697
 698static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 699			     struct dm_crypt_request *dmreq)
 700{
 701	struct scatterlist *sg;
 702	u8 *dst;
 703	int r;
 704
 705	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 706		return 0;
 707
 708	/* Apply whitening on ciphertext */
 709	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 710	dst = kmap_local_page(sg_page(sg));
 711	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 712	kunmap_local(dst);
 713
 714	return r;
 715}
 716
 717static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 718				struct dm_crypt_request *dmreq)
 719{
 720	/* Used only for writes, there must be an additional space to store IV */
 721	get_random_bytes(iv, cc->iv_size);
 722	return 0;
 723}
 724
 725static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 726			    const char *opts)
 727{
 728	if (crypt_integrity_aead(cc)) {
 729		ti->error = "AEAD transforms not supported for EBOIV";
 730		return -EINVAL;
 731	}
 732
 733	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 734		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
 735		return -EINVAL;
 736	}
 737
 738	return 0;
 739}
 740
 741static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 742			    struct dm_crypt_request *dmreq)
 743{
 744	struct crypto_skcipher *tfm = any_tfm(cc);
 745	struct skcipher_request *req;
 746	struct scatterlist src, dst;
 747	DECLARE_CRYPTO_WAIT(wait);
 748	unsigned int reqsize;
 749	int err;
 750	u8 *buf;
 751
 752	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
 753	reqsize = ALIGN(reqsize, __alignof__(__le64));
 754
 755	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
 756	if (!req)
 757		return -ENOMEM;
 758
 759	skcipher_request_set_tfm(req, tfm);
 760
 761	buf = (u8 *)req + reqsize;
 762	memset(buf, 0, cc->iv_size);
 763	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 764
 765	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 766	sg_init_one(&dst, iv, cc->iv_size);
 767	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 768	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 769	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 770	kfree_sensitive(req);
 771
 772	return err;
 773}
 774
 775static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 776{
 777	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 778
 779	crypto_free_skcipher(elephant->tfm);
 780	elephant->tfm = NULL;
 781}
 782
 783static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 784			    const char *opts)
 785{
 786	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 787	int r;
 788
 789	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
 790					      CRYPTO_ALG_ALLOCATES_MEMORY);
 791	if (IS_ERR(elephant->tfm)) {
 792		r = PTR_ERR(elephant->tfm);
 793		elephant->tfm = NULL;
 794		return r;
 795	}
 796
 797	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 798	if (r)
 799		crypt_iv_elephant_dtr(cc);
 800	return r;
 801}
 802
 803static void diffuser_disk_to_cpu(u32 *d, size_t n)
 804{
 805#ifndef __LITTLE_ENDIAN
 806	int i;
 807
 808	for (i = 0; i < n; i++)
 809		d[i] = le32_to_cpu((__le32)d[i]);
 810#endif
 811}
 812
 813static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 814{
 815#ifndef __LITTLE_ENDIAN
 816	int i;
 817
 818	for (i = 0; i < n; i++)
 819		d[i] = cpu_to_le32((u32)d[i]);
 820#endif
 821}
 822
 823static void diffuser_a_decrypt(u32 *d, size_t n)
 824{
 825	int i, i1, i2, i3;
 826
 827	for (i = 0; i < 5; i++) {
 828		i1 = 0;
 829		i2 = n - 2;
 830		i3 = n - 5;
 831
 832		while (i1 < (n - 1)) {
 833			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 834			i1++; i2++; i3++;
 835
 836			if (i3 >= n)
 837				i3 -= n;
 838
 839			d[i1] += d[i2] ^ d[i3];
 840			i1++; i2++; i3++;
 841
 842			if (i2 >= n)
 843				i2 -= n;
 844
 845			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 846			i1++; i2++; i3++;
 847
 848			d[i1] += d[i2] ^ d[i3];
 849			i1++; i2++; i3++;
 850		}
 851	}
 852}
 853
 854static void diffuser_a_encrypt(u32 *d, size_t n)
 855{
 856	int i, i1, i2, i3;
 857
 858	for (i = 0; i < 5; i++) {
 859		i1 = n - 1;
 860		i2 = n - 2 - 1;
 861		i3 = n - 5 - 1;
 862
 863		while (i1 > 0) {
 864			d[i1] -= d[i2] ^ d[i3];
 865			i1--; i2--; i3--;
 866
 867			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 868			i1--; i2--; i3--;
 869
 870			if (i2 < 0)
 871				i2 += n;
 872
 873			d[i1] -= d[i2] ^ d[i3];
 874			i1--; i2--; i3--;
 875
 876			if (i3 < 0)
 877				i3 += n;
 878
 879			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 880			i1--; i2--; i3--;
 881		}
 882	}
 883}
 884
 885static void diffuser_b_decrypt(u32 *d, size_t n)
 886{
 887	int i, i1, i2, i3;
 888
 889	for (i = 0; i < 3; i++) {
 890		i1 = 0;
 891		i2 = 2;
 892		i3 = 5;
 893
 894		while (i1 < (n - 1)) {
 895			d[i1] += d[i2] ^ d[i3];
 896			i1++; i2++; i3++;
 897
 898			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 899			i1++; i2++; i3++;
 900
 901			if (i2 >= n)
 902				i2 -= n;
 903
 904			d[i1] += d[i2] ^ d[i3];
 905			i1++; i2++; i3++;
 906
 907			if (i3 >= n)
 908				i3 -= n;
 909
 910			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 911			i1++; i2++; i3++;
 912		}
 913	}
 914}
 915
 916static void diffuser_b_encrypt(u32 *d, size_t n)
 917{
 918	int i, i1, i2, i3;
 919
 920	for (i = 0; i < 3; i++) {
 921		i1 = n - 1;
 922		i2 = 2 - 1;
 923		i3 = 5 - 1;
 924
 925		while (i1 > 0) {
 926			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 927			i1--; i2--; i3--;
 928
 929			if (i3 < 0)
 930				i3 += n;
 931
 932			d[i1] -= d[i2] ^ d[i3];
 933			i1--; i2--; i3--;
 934
 935			if (i2 < 0)
 936				i2 += n;
 937
 938			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 939			i1--; i2--; i3--;
 940
 941			d[i1] -= d[i2] ^ d[i3];
 942			i1--; i2--; i3--;
 943		}
 944	}
 945}
 946
 947static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 948{
 949	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 950	u8 *es, *ks, *data, *data2, *data_offset;
 951	struct skcipher_request *req;
 952	struct scatterlist *sg, *sg2, src, dst;
 953	DECLARE_CRYPTO_WAIT(wait);
 954	int i, r;
 955
 956	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 957	es = kzalloc(16, GFP_NOIO); /* Key for AES */
 958	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 959
 960	if (!req || !es || !ks) {
 961		r = -ENOMEM;
 962		goto out;
 963	}
 964
 965	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 966
 967	/* E(Ks, e(s)) */
 968	sg_init_one(&src, es, 16);
 969	sg_init_one(&dst, ks, 16);
 970	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
 971	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 972	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 973	if (r)
 974		goto out;
 975
 976	/* E(Ks, e'(s)) */
 977	es[15] = 0x80;
 978	sg_init_one(&dst, &ks[16], 16);
 979	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 980	if (r)
 981		goto out;
 982
 983	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 984	data = kmap_local_page(sg_page(sg));
 985	data_offset = data + sg->offset;
 986
 987	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
 988	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 989		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
 990		data2 = kmap_local_page(sg_page(sg2));
 991		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
 992		kunmap_local(data2);
 993	}
 994
 995	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 996		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
 997		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
 998		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
 999		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1000	}
1001
1002	for (i = 0; i < (cc->sector_size / 32); i++)
1003		crypto_xor(data_offset + i * 32, ks, 32);
1004
1005	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1006		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1008		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1010	}
1011
1012	kunmap_local(data);
1013out:
1014	kfree_sensitive(ks);
1015	kfree_sensitive(es);
1016	skcipher_request_free(req);
1017	return r;
1018}
1019
1020static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1021			    struct dm_crypt_request *dmreq)
1022{
1023	int r;
1024
1025	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1026		r = crypt_iv_elephant(cc, dmreq);
1027		if (r)
1028			return r;
1029	}
1030
1031	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1032}
1033
1034static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1035				  struct dm_crypt_request *dmreq)
1036{
1037	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1038		return crypt_iv_elephant(cc, dmreq);
1039
1040	return 0;
1041}
1042
1043static int crypt_iv_elephant_init(struct crypt_config *cc)
1044{
1045	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1046	int key_offset = cc->key_size - cc->key_extra_size;
1047
1048	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1049}
1050
1051static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1052{
1053	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1054	u8 key[ELEPHANT_MAX_KEY_SIZE];
1055
1056	memset(key, 0, cc->key_extra_size);
1057	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1058}
1059
1060static const struct crypt_iv_operations crypt_iv_plain_ops = {
1061	.generator = crypt_iv_plain_gen
1062};
1063
1064static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1065	.generator = crypt_iv_plain64_gen
1066};
1067
1068static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1069	.generator = crypt_iv_plain64be_gen
1070};
1071
1072static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1073	.generator = crypt_iv_essiv_gen
1074};
1075
1076static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1077	.ctr	   = crypt_iv_benbi_ctr,
1078	.dtr	   = crypt_iv_benbi_dtr,
1079	.generator = crypt_iv_benbi_gen
1080};
1081
1082static const struct crypt_iv_operations crypt_iv_null_ops = {
1083	.generator = crypt_iv_null_gen
1084};
1085
1086static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1087	.ctr	   = crypt_iv_lmk_ctr,
1088	.dtr	   = crypt_iv_lmk_dtr,
1089	.init	   = crypt_iv_lmk_init,
1090	.wipe	   = crypt_iv_lmk_wipe,
1091	.generator = crypt_iv_lmk_gen,
1092	.post	   = crypt_iv_lmk_post
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1096	.ctr	   = crypt_iv_tcw_ctr,
1097	.dtr	   = crypt_iv_tcw_dtr,
1098	.init	   = crypt_iv_tcw_init,
1099	.wipe	   = crypt_iv_tcw_wipe,
1100	.generator = crypt_iv_tcw_gen,
1101	.post	   = crypt_iv_tcw_post
1102};
1103
1104static const struct crypt_iv_operations crypt_iv_random_ops = {
1105	.generator = crypt_iv_random_gen
1106};
1107
1108static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1109	.ctr	   = crypt_iv_eboiv_ctr,
1110	.generator = crypt_iv_eboiv_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1114	.ctr	   = crypt_iv_elephant_ctr,
1115	.dtr	   = crypt_iv_elephant_dtr,
1116	.init	   = crypt_iv_elephant_init,
1117	.wipe	   = crypt_iv_elephant_wipe,
1118	.generator = crypt_iv_elephant_gen,
1119	.post	   = crypt_iv_elephant_post
1120};
1121
1122/*
1123 * Integrity extensions
1124 */
1125static bool crypt_integrity_aead(struct crypt_config *cc)
1126{
1127	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1128}
1129
1130static bool crypt_integrity_hmac(struct crypt_config *cc)
1131{
1132	return crypt_integrity_aead(cc) && cc->key_mac_size;
1133}
1134
1135/* Get sg containing data */
1136static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1137					     struct scatterlist *sg)
1138{
1139	if (unlikely(crypt_integrity_aead(cc)))
1140		return &sg[2];
1141
1142	return sg;
1143}
1144
1145static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1146{
1147	struct bio_integrity_payload *bip;
1148	unsigned int tag_len;
1149	int ret;
1150
1151	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1152		return 0;
1153
1154	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1155	if (IS_ERR(bip))
1156		return PTR_ERR(bip);
1157
1158	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1159
1160	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1161
1162	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1163				     tag_len, offset_in_page(io->integrity_metadata));
1164	if (unlikely(ret != tag_len))
1165		return -ENOMEM;
1166
1167	return 0;
1168}
1169
1170static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1171{
1172#ifdef CONFIG_BLK_DEV_INTEGRITY
1173	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1174	struct mapped_device *md = dm_table_get_md(ti->table);
1175
1176	/* From now we require underlying device with our integrity profile */
1177	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1178		ti->error = "Integrity profile not supported.";
1179		return -EINVAL;
1180	}
1181
1182	if (bi->tag_size != cc->on_disk_tag_size ||
1183	    bi->tuple_size != cc->on_disk_tag_size) {
1184		ti->error = "Integrity profile tag size mismatch.";
1185		return -EINVAL;
1186	}
 
1187	if (1 << bi->interval_exp != cc->sector_size) {
1188		ti->error = "Integrity profile sector size mismatch.";
1189		return -EINVAL;
1190	}
1191
1192	if (crypt_integrity_aead(cc)) {
1193		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1194		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1195		       cc->integrity_tag_size, cc->integrity_iv_size);
1196
1197		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1198			ti->error = "Integrity AEAD auth tag size is not supported.";
1199			return -EINVAL;
1200		}
1201	} else if (cc->integrity_iv_size)
1202		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1203		       cc->integrity_iv_size);
1204
1205	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1206		ti->error = "Not enough space for integrity tag in the profile.";
1207		return -EINVAL;
1208	}
1209
1210	return 0;
1211#else
1212	ti->error = "Integrity profile not supported.";
1213	return -EINVAL;
1214#endif
1215}
1216
1217static void crypt_convert_init(struct crypt_config *cc,
1218			       struct convert_context *ctx,
1219			       struct bio *bio_out, struct bio *bio_in,
1220			       sector_t sector)
1221{
1222	ctx->bio_in = bio_in;
1223	ctx->bio_out = bio_out;
1224	if (bio_in)
1225		ctx->iter_in = bio_in->bi_iter;
1226	if (bio_out)
1227		ctx->iter_out = bio_out->bi_iter;
1228	ctx->cc_sector = sector + cc->iv_offset;
 
1229	init_completion(&ctx->restart);
1230}
1231
1232static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1233					     void *req)
1234{
1235	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1236}
1237
1238static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1239{
1240	return (void *)((char *)dmreq - cc->dmreq_start);
1241}
1242
1243static u8 *iv_of_dmreq(struct crypt_config *cc,
1244		       struct dm_crypt_request *dmreq)
1245{
1246	if (crypt_integrity_aead(cc))
1247		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1249	else
1250		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1252}
1253
1254static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1255		       struct dm_crypt_request *dmreq)
1256{
1257	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1258}
1259
1260static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1261		       struct dm_crypt_request *dmreq)
1262{
1263	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1264
1265	return (__le64 *) ptr;
1266}
1267
1268static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1269		       struct dm_crypt_request *dmreq)
1270{
1271	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1272		  cc->iv_size + sizeof(uint64_t);
1273
1274	return (unsigned int *)ptr;
1275}
1276
1277static void *tag_from_dmreq(struct crypt_config *cc,
1278				struct dm_crypt_request *dmreq)
1279{
1280	struct convert_context *ctx = dmreq->ctx;
1281	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1282
1283	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1284		cc->on_disk_tag_size];
1285}
1286
1287static void *iv_tag_from_dmreq(struct crypt_config *cc,
1288			       struct dm_crypt_request *dmreq)
1289{
1290	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1291}
1292
1293static int crypt_convert_block_aead(struct crypt_config *cc,
1294				     struct convert_context *ctx,
1295				     struct aead_request *req,
1296				     unsigned int tag_offset)
1297{
1298	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1299	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1300	struct dm_crypt_request *dmreq;
1301	u8 *iv, *org_iv, *tag_iv, *tag;
1302	__le64 *sector;
1303	int r = 0;
1304
1305	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1306
1307	/* Reject unexpected unaligned bio. */
1308	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1309		return -EIO;
1310
1311	dmreq = dmreq_of_req(cc, req);
1312	dmreq->iv_sector = ctx->cc_sector;
1313	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1314		dmreq->iv_sector >>= cc->sector_shift;
1315	dmreq->ctx = ctx;
1316
1317	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1318
1319	sector = org_sector_of_dmreq(cc, dmreq);
1320	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1321
1322	iv = iv_of_dmreq(cc, dmreq);
1323	org_iv = org_iv_of_dmreq(cc, dmreq);
1324	tag = tag_from_dmreq(cc, dmreq);
1325	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1326
1327	/* AEAD request:
1328	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1329	 *  | (authenticated) | (auth+encryption) |              |
1330	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1331	 */
1332	sg_init_table(dmreq->sg_in, 4);
1333	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1334	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1335	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1336	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1337
1338	sg_init_table(dmreq->sg_out, 4);
1339	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1340	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1341	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1342	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1343
1344	if (cc->iv_gen_ops) {
1345		/* For READs use IV stored in integrity metadata */
1346		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1347			memcpy(org_iv, tag_iv, cc->iv_size);
1348		} else {
1349			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1350			if (r < 0)
1351				return r;
1352			/* Store generated IV in integrity metadata */
1353			if (cc->integrity_iv_size)
1354				memcpy(tag_iv, org_iv, cc->iv_size);
1355		}
1356		/* Working copy of IV, to be modified in crypto API */
1357		memcpy(iv, org_iv, cc->iv_size);
1358	}
1359
1360	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1361	if (bio_data_dir(ctx->bio_in) == WRITE) {
1362		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1363				       cc->sector_size, iv);
1364		r = crypto_aead_encrypt(req);
1365		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1366			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1367			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1368	} else {
1369		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1370				       cc->sector_size + cc->integrity_tag_size, iv);
1371		r = crypto_aead_decrypt(req);
1372	}
1373
1374	if (r == -EBADMSG) {
1375		sector_t s = le64_to_cpu(*sector);
1376
1377		ctx->aead_failed = true;
1378		if (ctx->aead_recheck) {
1379			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380				    ctx->bio_in->bi_bdev, s);
1381			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1382					 ctx->bio_in, s, 0);
1383		}
1384	}
1385
1386	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1387		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1388
1389	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1390	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1391
1392	return r;
1393}
1394
1395static int crypt_convert_block_skcipher(struct crypt_config *cc,
1396					struct convert_context *ctx,
1397					struct skcipher_request *req,
1398					unsigned int tag_offset)
1399{
1400	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1401	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1402	struct scatterlist *sg_in, *sg_out;
1403	struct dm_crypt_request *dmreq;
1404	u8 *iv, *org_iv, *tag_iv;
1405	__le64 *sector;
1406	int r = 0;
1407
1408	/* Reject unexpected unaligned bio. */
1409	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1410		return -EIO;
1411
1412	dmreq = dmreq_of_req(cc, req);
1413	dmreq->iv_sector = ctx->cc_sector;
1414	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1415		dmreq->iv_sector >>= cc->sector_shift;
1416	dmreq->ctx = ctx;
1417
1418	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1419
1420	iv = iv_of_dmreq(cc, dmreq);
1421	org_iv = org_iv_of_dmreq(cc, dmreq);
1422	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1423
1424	sector = org_sector_of_dmreq(cc, dmreq);
1425	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1426
1427	/* For skcipher we use only the first sg item */
1428	sg_in  = &dmreq->sg_in[0];
1429	sg_out = &dmreq->sg_out[0];
1430
1431	sg_init_table(sg_in, 1);
1432	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1433
1434	sg_init_table(sg_out, 1);
1435	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1436
1437	if (cc->iv_gen_ops) {
1438		/* For READs use IV stored in integrity metadata */
1439		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1440			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1441		} else {
1442			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1443			if (r < 0)
1444				return r;
1445			/* Data can be already preprocessed in generator */
1446			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1447				sg_in = sg_out;
1448			/* Store generated IV in integrity metadata */
1449			if (cc->integrity_iv_size)
1450				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1451		}
1452		/* Working copy of IV, to be modified in crypto API */
1453		memcpy(iv, org_iv, cc->iv_size);
1454	}
1455
1456	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1457
1458	if (bio_data_dir(ctx->bio_in) == WRITE)
1459		r = crypto_skcipher_encrypt(req);
1460	else
1461		r = crypto_skcipher_decrypt(req);
1462
1463	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1464		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1465
1466	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1467	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1468
1469	return r;
1470}
1471
1472static void kcryptd_async_done(void *async_req, int error);
1473
1474static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1475				     struct convert_context *ctx)
1476{
1477	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1478
1479	if (!ctx->r.req) {
1480		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1481		if (!ctx->r.req)
1482			return -ENOMEM;
1483	}
1484
1485	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1486
1487	/*
1488	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1489	 * requests if driver request queue is full.
1490	 */
1491	skcipher_request_set_callback(ctx->r.req,
1492	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1493	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1494
1495	return 0;
1496}
1497
1498static int crypt_alloc_req_aead(struct crypt_config *cc,
1499				 struct convert_context *ctx)
1500{
1501	if (!ctx->r.req_aead) {
1502		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1503		if (!ctx->r.req_aead)
1504			return -ENOMEM;
1505	}
1506
1507	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1508
1509	/*
1510	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1511	 * requests if driver request queue is full.
1512	 */
1513	aead_request_set_callback(ctx->r.req_aead,
1514	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1515	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1516
1517	return 0;
1518}
1519
1520static int crypt_alloc_req(struct crypt_config *cc,
1521			    struct convert_context *ctx)
1522{
1523	if (crypt_integrity_aead(cc))
1524		return crypt_alloc_req_aead(cc, ctx);
1525	else
1526		return crypt_alloc_req_skcipher(cc, ctx);
1527}
1528
1529static void crypt_free_req_skcipher(struct crypt_config *cc,
1530				    struct skcipher_request *req, struct bio *base_bio)
1531{
1532	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533
1534	if ((struct skcipher_request *)(io + 1) != req)
1535		mempool_free(req, &cc->req_pool);
1536}
1537
1538static void crypt_free_req_aead(struct crypt_config *cc,
1539				struct aead_request *req, struct bio *base_bio)
1540{
1541	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1542
1543	if ((struct aead_request *)(io + 1) != req)
1544		mempool_free(req, &cc->req_pool);
1545}
1546
1547static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1548{
1549	if (crypt_integrity_aead(cc))
1550		crypt_free_req_aead(cc, req, base_bio);
1551	else
1552		crypt_free_req_skcipher(cc, req, base_bio);
1553}
1554
1555/*
1556 * Encrypt / decrypt data from one bio to another one (can be the same one)
1557 */
1558static blk_status_t crypt_convert(struct crypt_config *cc,
1559			 struct convert_context *ctx, bool atomic, bool reset_pending)
1560{
1561	unsigned int tag_offset = 0;
1562	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1563	int r;
1564
1565	/*
1566	 * if reset_pending is set we are dealing with the bio for the first time,
1567	 * else we're continuing to work on the previous bio, so don't mess with
1568	 * the cc_pending counter
1569	 */
1570	if (reset_pending)
1571		atomic_set(&ctx->cc_pending, 1);
1572
1573	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1574
1575		r = crypt_alloc_req(cc, ctx);
1576		if (r) {
1577			complete(&ctx->restart);
1578			return BLK_STS_DEV_RESOURCE;
1579		}
1580
1581		atomic_inc(&ctx->cc_pending);
1582
1583		if (crypt_integrity_aead(cc))
1584			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1585		else
1586			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1587
1588		switch (r) {
1589		/*
1590		 * The request was queued by a crypto driver
1591		 * but the driver request queue is full, let's wait.
1592		 */
1593		case -EBUSY:
1594			if (in_interrupt()) {
1595				if (try_wait_for_completion(&ctx->restart)) {
1596					/*
1597					 * we don't have to block to wait for completion,
1598					 * so proceed
1599					 */
1600				} else {
1601					/*
1602					 * we can't wait for completion without blocking
1603					 * exit and continue processing in a workqueue
1604					 */
1605					ctx->r.req = NULL;
 
1606					ctx->cc_sector += sector_step;
1607					tag_offset++;
1608					return BLK_STS_DEV_RESOURCE;
1609				}
1610			} else {
1611				wait_for_completion(&ctx->restart);
1612			}
1613			reinit_completion(&ctx->restart);
1614			fallthrough;
1615		/*
1616		 * The request is queued and processed asynchronously,
1617		 * completion function kcryptd_async_done() will be called.
1618		 */
1619		case -EINPROGRESS:
1620			ctx->r.req = NULL;
 
1621			ctx->cc_sector += sector_step;
1622			tag_offset++;
1623			continue;
1624		/*
1625		 * The request was already processed (synchronously).
1626		 */
1627		case 0:
1628			atomic_dec(&ctx->cc_pending);
1629			ctx->cc_sector += sector_step;
1630			tag_offset++;
1631			if (!atomic)
1632				cond_resched();
1633			continue;
1634		/*
1635		 * There was a data integrity error.
1636		 */
1637		case -EBADMSG:
1638			atomic_dec(&ctx->cc_pending);
1639			return BLK_STS_PROTECTION;
1640		/*
1641		 * There was an error while processing the request.
1642		 */
1643		default:
1644			atomic_dec(&ctx->cc_pending);
1645			return BLK_STS_IOERR;
1646		}
1647	}
1648
1649	return 0;
1650}
1651
1652static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1653
1654/*
1655 * Generate a new unfragmented bio with the given size
1656 * This should never violate the device limitations (but only because
1657 * max_segment_size is being constrained to PAGE_SIZE).
1658 *
1659 * This function may be called concurrently. If we allocate from the mempool
1660 * concurrently, there is a possibility of deadlock. For example, if we have
1661 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1662 * the mempool concurrently, it may deadlock in a situation where both processes
1663 * have allocated 128 pages and the mempool is exhausted.
1664 *
1665 * In order to avoid this scenario we allocate the pages under a mutex.
1666 *
1667 * In order to not degrade performance with excessive locking, we try
1668 * non-blocking allocations without a mutex first but on failure we fallback
1669 * to blocking allocations with a mutex.
1670 *
1671 * In order to reduce allocation overhead, we try to allocate compound pages in
1672 * the first pass. If they are not available, we fall back to the mempool.
1673 */
1674static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1675{
1676	struct crypt_config *cc = io->cc;
1677	struct bio *clone;
1678	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1679	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1680	unsigned int remaining_size;
1681	unsigned int order = MAX_PAGE_ORDER;
1682
1683retry:
1684	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1685		mutex_lock(&cc->bio_alloc_lock);
1686
1687	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1688				 GFP_NOIO, &cc->bs);
1689	clone->bi_private = io;
1690	clone->bi_end_io = crypt_endio;
 
1691
1692	remaining_size = size;
1693
1694	while (remaining_size) {
1695		struct page *pages;
1696		unsigned size_to_add;
1697		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1698		order = min(order, remaining_order);
1699
1700		while (order > 0) {
1701			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1702					(1 << order) > dm_crypt_pages_per_client))
1703				goto decrease_order;
1704			pages = alloc_pages(gfp_mask
1705				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1706				order);
1707			if (likely(pages != NULL)) {
1708				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1709				goto have_pages;
1710			}
1711decrease_order:
1712			order--;
1713		}
1714
1715		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1716		if (!pages) {
1717			crypt_free_buffer_pages(cc, clone);
1718			bio_put(clone);
1719			gfp_mask |= __GFP_DIRECT_RECLAIM;
1720			order = 0;
1721			goto retry;
1722		}
1723
1724have_pages:
1725		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1726		__bio_add_page(clone, pages, size_to_add, 0);
1727		remaining_size -= size_to_add;
1728	}
1729
1730	/* Allocate space for integrity tags */
1731	if (dm_crypt_integrity_io_alloc(io, clone)) {
1732		crypt_free_buffer_pages(cc, clone);
1733		bio_put(clone);
1734		clone = NULL;
1735	}
1736
1737	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1738		mutex_unlock(&cc->bio_alloc_lock);
1739
1740	return clone;
1741}
1742
1743static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1744{
1745	struct folio_iter fi;
1746
1747	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1748		bio_for_each_folio_all(fi, clone) {
1749			if (folio_test_large(fi.folio)) {
1750				percpu_counter_sub(&cc->n_allocated_pages,
1751						1 << folio_order(fi.folio));
1752				folio_put(fi.folio);
1753			} else {
1754				mempool_free(&fi.folio->page, &cc->page_pool);
1755			}
1756		}
1757	}
1758}
1759
1760static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1761			  struct bio *bio, sector_t sector)
1762{
1763	io->cc = cc;
1764	io->base_bio = bio;
1765	io->sector = sector;
1766	io->error = 0;
1767	io->ctx.aead_recheck = false;
1768	io->ctx.aead_failed = false;
1769	io->ctx.r.req = NULL;
1770	io->integrity_metadata = NULL;
1771	io->integrity_metadata_from_pool = false;
1772	atomic_set(&io->io_pending, 0);
1773}
1774
1775static void crypt_inc_pending(struct dm_crypt_io *io)
1776{
1777	atomic_inc(&io->io_pending);
1778}
1779
1780static void kcryptd_queue_read(struct dm_crypt_io *io);
1781
1782/*
1783 * One of the bios was finished. Check for completion of
1784 * the whole request and correctly clean up the buffer.
1785 */
1786static void crypt_dec_pending(struct dm_crypt_io *io)
1787{
1788	struct crypt_config *cc = io->cc;
1789	struct bio *base_bio = io->base_bio;
1790	blk_status_t error = io->error;
1791
1792	if (!atomic_dec_and_test(&io->io_pending))
1793		return;
1794
1795	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1796	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1797		io->ctx.aead_recheck = true;
1798		io->ctx.aead_failed = false;
1799		io->error = 0;
1800		kcryptd_queue_read(io);
1801		return;
1802	}
1803
1804	if (io->ctx.r.req)
1805		crypt_free_req(cc, io->ctx.r.req, base_bio);
1806
1807	if (unlikely(io->integrity_metadata_from_pool))
1808		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1809	else
1810		kfree(io->integrity_metadata);
1811
1812	base_bio->bi_status = error;
1813
1814	bio_endio(base_bio);
1815}
1816
1817/*
1818 * kcryptd/kcryptd_io:
1819 *
1820 * Needed because it would be very unwise to do decryption in an
1821 * interrupt context.
1822 *
1823 * kcryptd performs the actual encryption or decryption.
1824 *
1825 * kcryptd_io performs the IO submission.
1826 *
1827 * They must be separated as otherwise the final stages could be
1828 * starved by new requests which can block in the first stages due
1829 * to memory allocation.
1830 *
1831 * The work is done per CPU global for all dm-crypt instances.
1832 * They should not depend on each other and do not block.
1833 */
1834static void crypt_endio(struct bio *clone)
1835{
1836	struct dm_crypt_io *io = clone->bi_private;
1837	struct crypt_config *cc = io->cc;
1838	unsigned int rw = bio_data_dir(clone);
1839	blk_status_t error = clone->bi_status;
1840
1841	if (io->ctx.aead_recheck && !error) {
1842		kcryptd_queue_crypt(io);
1843		return;
1844	}
1845
1846	/*
1847	 * free the processed pages
1848	 */
1849	if (rw == WRITE || io->ctx.aead_recheck)
1850		crypt_free_buffer_pages(cc, clone);
1851
1852	bio_put(clone);
1853
1854	if (rw == READ && !error) {
1855		kcryptd_queue_crypt(io);
1856		return;
1857	}
1858
1859	if (unlikely(error))
1860		io->error = error;
1861
1862	crypt_dec_pending(io);
1863}
1864
1865#define CRYPT_MAP_READ_GFP GFP_NOWAIT
1866
1867static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1868{
1869	struct crypt_config *cc = io->cc;
1870	struct bio *clone;
1871
1872	if (io->ctx.aead_recheck) {
1873		if (!(gfp & __GFP_DIRECT_RECLAIM))
1874			return 1;
1875		crypt_inc_pending(io);
1876		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1877		if (unlikely(!clone)) {
1878			crypt_dec_pending(io);
1879			return 1;
1880		}
1881		clone->bi_iter.bi_sector = cc->start + io->sector;
1882		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1883		io->saved_bi_iter = clone->bi_iter;
1884		dm_submit_bio_remap(io->base_bio, clone);
1885		return 0;
1886	}
1887
1888	/*
1889	 * We need the original biovec array in order to decrypt the whole bio
1890	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1891	 * worry about the block layer modifying the biovec array; so leverage
1892	 * bio_alloc_clone().
1893	 */
1894	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1895	if (!clone)
1896		return 1;
1897	clone->bi_private = io;
1898	clone->bi_end_io = crypt_endio;
1899
1900	crypt_inc_pending(io);
1901
1902	clone->bi_iter.bi_sector = cc->start + io->sector;
1903
1904	if (dm_crypt_integrity_io_alloc(io, clone)) {
1905		crypt_dec_pending(io);
1906		bio_put(clone);
1907		return 1;
1908	}
1909
1910	dm_submit_bio_remap(io->base_bio, clone);
1911	return 0;
1912}
1913
1914static void kcryptd_io_read_work(struct work_struct *work)
1915{
1916	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1917
1918	crypt_inc_pending(io);
1919	if (kcryptd_io_read(io, GFP_NOIO))
1920		io->error = BLK_STS_RESOURCE;
1921	crypt_dec_pending(io);
1922}
1923
1924static void kcryptd_queue_read(struct dm_crypt_io *io)
1925{
1926	struct crypt_config *cc = io->cc;
1927
1928	INIT_WORK(&io->work, kcryptd_io_read_work);
1929	queue_work(cc->io_queue, &io->work);
1930}
1931
1932static void kcryptd_io_write(struct dm_crypt_io *io)
1933{
1934	struct bio *clone = io->ctx.bio_out;
1935
1936	dm_submit_bio_remap(io->base_bio, clone);
1937}
1938
1939#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1940
1941static int dmcrypt_write(void *data)
1942{
1943	struct crypt_config *cc = data;
1944	struct dm_crypt_io *io;
1945
1946	while (1) {
1947		struct rb_root write_tree;
1948		struct blk_plug plug;
1949
1950		spin_lock_irq(&cc->write_thread_lock);
1951continue_locked:
1952
1953		if (!RB_EMPTY_ROOT(&cc->write_tree))
1954			goto pop_from_list;
1955
1956		set_current_state(TASK_INTERRUPTIBLE);
1957
1958		spin_unlock_irq(&cc->write_thread_lock);
1959
1960		if (unlikely(kthread_should_stop())) {
1961			set_current_state(TASK_RUNNING);
1962			break;
1963		}
1964
1965		schedule();
1966
1967		set_current_state(TASK_RUNNING);
1968		spin_lock_irq(&cc->write_thread_lock);
1969		goto continue_locked;
1970
1971pop_from_list:
1972		write_tree = cc->write_tree;
1973		cc->write_tree = RB_ROOT;
1974		spin_unlock_irq(&cc->write_thread_lock);
1975
1976		BUG_ON(rb_parent(write_tree.rb_node));
1977
1978		/*
1979		 * Note: we cannot walk the tree here with rb_next because
1980		 * the structures may be freed when kcryptd_io_write is called.
1981		 */
1982		blk_start_plug(&plug);
1983		do {
1984			io = crypt_io_from_node(rb_first(&write_tree));
1985			rb_erase(&io->rb_node, &write_tree);
1986			kcryptd_io_write(io);
1987			cond_resched();
1988		} while (!RB_EMPTY_ROOT(&write_tree));
1989		blk_finish_plug(&plug);
1990	}
1991	return 0;
1992}
1993
1994static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1995{
1996	struct bio *clone = io->ctx.bio_out;
1997	struct crypt_config *cc = io->cc;
1998	unsigned long flags;
1999	sector_t sector;
2000	struct rb_node **rbp, *parent;
2001
2002	if (unlikely(io->error)) {
2003		crypt_free_buffer_pages(cc, clone);
2004		bio_put(clone);
2005		crypt_dec_pending(io);
2006		return;
2007	}
2008
2009	/* crypt_convert should have filled the clone bio */
2010	BUG_ON(io->ctx.iter_out.bi_size);
2011
2012	clone->bi_iter.bi_sector = cc->start + io->sector;
2013
2014	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2015	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2016		dm_submit_bio_remap(io->base_bio, clone);
2017		return;
2018	}
2019
2020	spin_lock_irqsave(&cc->write_thread_lock, flags);
2021	if (RB_EMPTY_ROOT(&cc->write_tree))
2022		wake_up_process(cc->write_thread);
2023	rbp = &cc->write_tree.rb_node;
2024	parent = NULL;
2025	sector = io->sector;
2026	while (*rbp) {
2027		parent = *rbp;
2028		if (sector < crypt_io_from_node(parent)->sector)
2029			rbp = &(*rbp)->rb_left;
2030		else
2031			rbp = &(*rbp)->rb_right;
2032	}
2033	rb_link_node(&io->rb_node, parent, rbp);
2034	rb_insert_color(&io->rb_node, &cc->write_tree);
2035	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2036}
2037
2038static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2039				       struct convert_context *ctx)
2040
2041{
2042	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2043		return false;
2044
2045	/*
2046	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2047	 * constraints so they do not need to be issued inline by
2048	 * kcryptd_crypt_write_convert().
2049	 */
2050	switch (bio_op(ctx->bio_in)) {
2051	case REQ_OP_WRITE:
2052	case REQ_OP_WRITE_ZEROES:
2053		return true;
2054	default:
2055		return false;
2056	}
2057}
2058
2059static void kcryptd_crypt_write_continue(struct work_struct *work)
2060{
2061	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2062	struct crypt_config *cc = io->cc;
2063	struct convert_context *ctx = &io->ctx;
2064	int crypt_finished;
2065	sector_t sector = io->sector;
2066	blk_status_t r;
2067
2068	wait_for_completion(&ctx->restart);
2069	reinit_completion(&ctx->restart);
2070
2071	r = crypt_convert(cc, &io->ctx, true, false);
2072	if (r)
2073		io->error = r;
2074	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2075	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2076		/* Wait for completion signaled by kcryptd_async_done() */
2077		wait_for_completion(&ctx->restart);
2078		crypt_finished = 1;
2079	}
2080
2081	/* Encryption was already finished, submit io now */
2082	if (crypt_finished) {
2083		kcryptd_crypt_write_io_submit(io, 0);
2084		io->sector = sector;
2085	}
2086
2087	crypt_dec_pending(io);
2088}
2089
2090static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2091{
2092	struct crypt_config *cc = io->cc;
2093	struct convert_context *ctx = &io->ctx;
2094	struct bio *clone;
2095	int crypt_finished;
2096	sector_t sector = io->sector;
2097	blk_status_t r;
2098
2099	/*
2100	 * Prevent io from disappearing until this function completes.
2101	 */
2102	crypt_inc_pending(io);
2103	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2104
2105	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2106	if (unlikely(!clone)) {
2107		io->error = BLK_STS_IOERR;
2108		goto dec;
2109	}
2110
2111	io->ctx.bio_out = clone;
2112	io->ctx.iter_out = clone->bi_iter;
2113
2114	if (crypt_integrity_aead(cc)) {
2115		bio_copy_data(clone, io->base_bio);
2116		io->ctx.bio_in = clone;
2117		io->ctx.iter_in = clone->bi_iter;
2118	}
2119
2120	sector += bio_sectors(clone);
2121
2122	crypt_inc_pending(io);
2123	r = crypt_convert(cc, ctx,
2124			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2125	/*
2126	 * Crypto API backlogged the request, because its queue was full
2127	 * and we're in softirq context, so continue from a workqueue
2128	 * (TODO: is it actually possible to be in softirq in the write path?)
2129	 */
2130	if (r == BLK_STS_DEV_RESOURCE) {
2131		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2132		queue_work(cc->crypt_queue, &io->work);
2133		return;
2134	}
2135	if (r)
2136		io->error = r;
2137	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2138	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2139		/* Wait for completion signaled by kcryptd_async_done() */
2140		wait_for_completion(&ctx->restart);
2141		crypt_finished = 1;
2142	}
2143
2144	/* Encryption was already finished, submit io now */
2145	if (crypt_finished) {
2146		kcryptd_crypt_write_io_submit(io, 0);
2147		io->sector = sector;
2148	}
2149
2150dec:
2151	crypt_dec_pending(io);
2152}
2153
2154static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155{
2156	if (io->ctx.aead_recheck) {
2157		if (!io->error) {
2158			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159			bio_copy_data(io->base_bio, io->ctx.bio_in);
2160		}
2161		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2162		bio_put(io->ctx.bio_in);
2163	}
2164	crypt_dec_pending(io);
2165}
2166
2167static void kcryptd_crypt_read_continue(struct work_struct *work)
2168{
2169	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170	struct crypt_config *cc = io->cc;
2171	blk_status_t r;
2172
2173	wait_for_completion(&io->ctx.restart);
2174	reinit_completion(&io->ctx.restart);
2175
2176	r = crypt_convert(cc, &io->ctx, true, false);
2177	if (r)
2178		io->error = r;
2179
2180	if (atomic_dec_and_test(&io->ctx.cc_pending))
2181		kcryptd_crypt_read_done(io);
2182
2183	crypt_dec_pending(io);
2184}
2185
2186static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187{
2188	struct crypt_config *cc = io->cc;
2189	blk_status_t r;
2190
2191	crypt_inc_pending(io);
2192
2193	if (io->ctx.aead_recheck) {
2194		io->ctx.cc_sector = io->sector + cc->iv_offset;
2195		r = crypt_convert(cc, &io->ctx,
2196				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2197	} else {
2198		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2199				   io->sector);
2200
2201		r = crypt_convert(cc, &io->ctx,
2202				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203	}
2204	/*
2205	 * Crypto API backlogged the request, because its queue was full
2206	 * and we're in softirq context, so continue from a workqueue
2207	 */
2208	if (r == BLK_STS_DEV_RESOURCE) {
2209		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2210		queue_work(cc->crypt_queue, &io->work);
2211		return;
2212	}
2213	if (r)
2214		io->error = r;
2215
2216	if (atomic_dec_and_test(&io->ctx.cc_pending))
2217		kcryptd_crypt_read_done(io);
2218
2219	crypt_dec_pending(io);
2220}
2221
2222static void kcryptd_async_done(void *data, int error)
2223{
2224	struct dm_crypt_request *dmreq = data;
2225	struct convert_context *ctx = dmreq->ctx;
2226	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2227	struct crypt_config *cc = io->cc;
2228
2229	/*
2230	 * A request from crypto driver backlog is going to be processed now,
2231	 * finish the completion and continue in crypt_convert().
2232	 * (Callback will be called for the second time for this request.)
2233	 */
2234	if (error == -EINPROGRESS) {
2235		complete(&ctx->restart);
2236		return;
2237	}
2238
2239	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2240		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2241
2242	if (error == -EBADMSG) {
2243		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2244
2245		ctx->aead_failed = true;
2246		if (ctx->aead_recheck) {
2247			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2248				    ctx->bio_in->bi_bdev, s);
2249			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2250					 ctx->bio_in, s, 0);
2251		}
2252		io->error = BLK_STS_PROTECTION;
2253	} else if (error < 0)
2254		io->error = BLK_STS_IOERR;
2255
2256	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2257
2258	if (!atomic_dec_and_test(&ctx->cc_pending))
2259		return;
2260
2261	/*
2262	 * The request is fully completed: for inline writes, let
2263	 * kcryptd_crypt_write_convert() do the IO submission.
2264	 */
2265	if (bio_data_dir(io->base_bio) == READ) {
2266		kcryptd_crypt_read_done(io);
2267		return;
2268	}
2269
2270	if (kcryptd_crypt_write_inline(cc, ctx)) {
2271		complete(&ctx->restart);
2272		return;
2273	}
2274
2275	kcryptd_crypt_write_io_submit(io, 1);
2276}
2277
2278static void kcryptd_crypt(struct work_struct *work)
2279{
2280	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2281
2282	if (bio_data_dir(io->base_bio) == READ)
2283		kcryptd_crypt_read_convert(io);
2284	else
2285		kcryptd_crypt_write_convert(io);
2286}
2287
2288static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2289{
2290	struct crypt_config *cc = io->cc;
2291
2292	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2293	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2294		/*
2295		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2296		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2297		 * it is being executed with irqs disabled.
2298		 */
2299		if (!(in_hardirq() || irqs_disabled())) {
 
 
 
 
2300			kcryptd_crypt(&io->work);
2301			return;
2302		}
2303	}
2304
2305	INIT_WORK(&io->work, kcryptd_crypt);
2306	queue_work(cc->crypt_queue, &io->work);
2307}
2308
2309static void crypt_free_tfms_aead(struct crypt_config *cc)
2310{
2311	if (!cc->cipher_tfm.tfms_aead)
2312		return;
2313
2314	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2315		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2316		cc->cipher_tfm.tfms_aead[0] = NULL;
2317	}
2318
2319	kfree(cc->cipher_tfm.tfms_aead);
2320	cc->cipher_tfm.tfms_aead = NULL;
2321}
2322
2323static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2324{
2325	unsigned int i;
2326
2327	if (!cc->cipher_tfm.tfms)
2328		return;
2329
2330	for (i = 0; i < cc->tfms_count; i++)
2331		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2332			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2333			cc->cipher_tfm.tfms[i] = NULL;
2334		}
2335
2336	kfree(cc->cipher_tfm.tfms);
2337	cc->cipher_tfm.tfms = NULL;
2338}
2339
2340static void crypt_free_tfms(struct crypt_config *cc)
2341{
2342	if (crypt_integrity_aead(cc))
2343		crypt_free_tfms_aead(cc);
2344	else
2345		crypt_free_tfms_skcipher(cc);
2346}
2347
2348static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2349{
2350	unsigned int i;
2351	int err;
2352
2353	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2354				      sizeof(struct crypto_skcipher *),
2355				      GFP_KERNEL);
2356	if (!cc->cipher_tfm.tfms)
2357		return -ENOMEM;
2358
2359	for (i = 0; i < cc->tfms_count; i++) {
2360		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2361						CRYPTO_ALG_ALLOCATES_MEMORY);
2362		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2363			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2364			crypt_free_tfms(cc);
2365			return err;
2366		}
2367	}
2368
2369	/*
2370	 * dm-crypt performance can vary greatly depending on which crypto
2371	 * algorithm implementation is used.  Help people debug performance
2372	 * problems by logging the ->cra_driver_name.
2373	 */
2374	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2375	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2376	return 0;
2377}
2378
2379static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2380{
2381	int err;
2382
2383	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2384	if (!cc->cipher_tfm.tfms)
2385		return -ENOMEM;
2386
2387	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2388						CRYPTO_ALG_ALLOCATES_MEMORY);
2389	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2390		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2391		crypt_free_tfms(cc);
2392		return err;
2393	}
2394
2395	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2396	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2397	return 0;
2398}
2399
2400static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2401{
2402	if (crypt_integrity_aead(cc))
2403		return crypt_alloc_tfms_aead(cc, ciphermode);
2404	else
2405		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2406}
2407
2408static unsigned int crypt_subkey_size(struct crypt_config *cc)
2409{
2410	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2411}
2412
2413static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2414{
2415	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2416}
2417
2418/*
2419 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2420 * the key must be for some reason in special format.
2421 * This funcion converts cc->key to this special format.
2422 */
2423static void crypt_copy_authenckey(char *p, const void *key,
2424				  unsigned int enckeylen, unsigned int authkeylen)
2425{
2426	struct crypto_authenc_key_param *param;
2427	struct rtattr *rta;
2428
2429	rta = (struct rtattr *)p;
2430	param = RTA_DATA(rta);
2431	param->enckeylen = cpu_to_be32(enckeylen);
2432	rta->rta_len = RTA_LENGTH(sizeof(*param));
2433	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2434	p += RTA_SPACE(sizeof(*param));
2435	memcpy(p, key + enckeylen, authkeylen);
2436	p += authkeylen;
2437	memcpy(p, key, enckeylen);
2438}
2439
2440static int crypt_setkey(struct crypt_config *cc)
2441{
2442	unsigned int subkey_size;
2443	int err = 0, i, r;
2444
2445	/* Ignore extra keys (which are used for IV etc) */
2446	subkey_size = crypt_subkey_size(cc);
2447
2448	if (crypt_integrity_hmac(cc)) {
2449		if (subkey_size < cc->key_mac_size)
2450			return -EINVAL;
2451
2452		crypt_copy_authenckey(cc->authenc_key, cc->key,
2453				      subkey_size - cc->key_mac_size,
2454				      cc->key_mac_size);
2455	}
2456
2457	for (i = 0; i < cc->tfms_count; i++) {
2458		if (crypt_integrity_hmac(cc))
2459			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2460				cc->authenc_key, crypt_authenckey_size(cc));
2461		else if (crypt_integrity_aead(cc))
2462			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2463					       cc->key + (i * subkey_size),
2464					       subkey_size);
2465		else
2466			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2467						   cc->key + (i * subkey_size),
2468						   subkey_size);
2469		if (r)
2470			err = r;
2471	}
2472
2473	if (crypt_integrity_hmac(cc))
2474		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2475
2476	return err;
2477}
2478
2479#ifdef CONFIG_KEYS
2480
2481static bool contains_whitespace(const char *str)
2482{
2483	while (*str)
2484		if (isspace(*str++))
2485			return true;
2486	return false;
2487}
2488
2489static int set_key_user(struct crypt_config *cc, struct key *key)
2490{
2491	const struct user_key_payload *ukp;
2492
2493	ukp = user_key_payload_locked(key);
2494	if (!ukp)
2495		return -EKEYREVOKED;
2496
2497	if (cc->key_size != ukp->datalen)
2498		return -EINVAL;
2499
2500	memcpy(cc->key, ukp->data, cc->key_size);
2501
2502	return 0;
2503}
2504
2505static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2506{
2507	const struct encrypted_key_payload *ekp;
2508
2509	ekp = key->payload.data[0];
2510	if (!ekp)
2511		return -EKEYREVOKED;
2512
2513	if (cc->key_size != ekp->decrypted_datalen)
2514		return -EINVAL;
2515
2516	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2517
2518	return 0;
2519}
2520
2521static int set_key_trusted(struct crypt_config *cc, struct key *key)
2522{
2523	const struct trusted_key_payload *tkp;
2524
2525	tkp = key->payload.data[0];
2526	if (!tkp)
2527		return -EKEYREVOKED;
2528
2529	if (cc->key_size != tkp->key_len)
2530		return -EINVAL;
2531
2532	memcpy(cc->key, tkp->key, cc->key_size);
2533
2534	return 0;
2535}
2536
2537static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2538{
2539	char *new_key_string, *key_desc;
2540	int ret;
2541	struct key_type *type;
2542	struct key *key;
2543	int (*set_key)(struct crypt_config *cc, struct key *key);
2544
2545	/*
2546	 * Reject key_string with whitespace. dm core currently lacks code for
2547	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2548	 */
2549	if (contains_whitespace(key_string)) {
2550		DMERR("whitespace chars not allowed in key string");
2551		return -EINVAL;
2552	}
2553
2554	/* look for next ':' separating key_type from key_description */
2555	key_desc = strchr(key_string, ':');
2556	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2557		return -EINVAL;
2558
2559	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2560		type = &key_type_logon;
2561		set_key = set_key_user;
2562	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2563		type = &key_type_user;
2564		set_key = set_key_user;
2565	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2566		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2567		type = &key_type_encrypted;
2568		set_key = set_key_encrypted;
2569	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2570		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2571		type = &key_type_trusted;
2572		set_key = set_key_trusted;
2573	} else {
2574		return -EINVAL;
2575	}
2576
2577	new_key_string = kstrdup(key_string, GFP_KERNEL);
2578	if (!new_key_string)
2579		return -ENOMEM;
2580
2581	key = request_key(type, key_desc + 1, NULL);
2582	if (IS_ERR(key)) {
2583		kfree_sensitive(new_key_string);
2584		return PTR_ERR(key);
2585	}
2586
2587	down_read(&key->sem);
2588
2589	ret = set_key(cc, key);
2590	if (ret < 0) {
2591		up_read(&key->sem);
2592		key_put(key);
2593		kfree_sensitive(new_key_string);
2594		return ret;
2595	}
2596
2597	up_read(&key->sem);
2598	key_put(key);
 
 
2599
2600	/* clear the flag since following operations may invalidate previously valid key */
2601	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2602
2603	ret = crypt_setkey(cc);
 
 
2604
2605	if (!ret) {
2606		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2607		kfree_sensitive(cc->key_string);
2608		cc->key_string = new_key_string;
2609	} else
2610		kfree_sensitive(new_key_string);
2611
 
 
2612	return ret;
2613}
2614
2615static int get_key_size(char **key_string)
2616{
2617	char *colon, dummy;
2618	int ret;
2619
2620	if (*key_string[0] != ':')
2621		return strlen(*key_string) >> 1;
2622
2623	/* look for next ':' in key string */
2624	colon = strpbrk(*key_string + 1, ":");
2625	if (!colon)
2626		return -EINVAL;
2627
2628	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2629		return -EINVAL;
2630
2631	*key_string = colon;
2632
2633	/* remaining key string should be :<logon|user>:<key_desc> */
2634
2635	return ret;
2636}
2637
2638#else
2639
2640static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2641{
2642	return -EINVAL;
2643}
2644
2645static int get_key_size(char **key_string)
2646{
2647	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2648}
2649
2650#endif /* CONFIG_KEYS */
2651
2652static int crypt_set_key(struct crypt_config *cc, char *key)
2653{
2654	int r = -EINVAL;
2655	int key_string_len = strlen(key);
2656
2657	/* Hyphen (which gives a key_size of zero) means there is no key. */
2658	if (!cc->key_size && strcmp(key, "-"))
2659		goto out;
2660
2661	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2662	if (key[0] == ':') {
2663		r = crypt_set_keyring_key(cc, key + 1);
2664		goto out;
2665	}
2666
2667	/* clear the flag since following operations may invalidate previously valid key */
2668	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2669
2670	/* wipe references to any kernel keyring key */
2671	kfree_sensitive(cc->key_string);
2672	cc->key_string = NULL;
2673
2674	/* Decode key from its hex representation. */
2675	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2676		goto out;
2677
2678	r = crypt_setkey(cc);
2679	if (!r)
2680		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2681
2682out:
2683	/* Hex key string not needed after here, so wipe it. */
2684	memset(key, '0', key_string_len);
2685
2686	return r;
2687}
2688
2689static int crypt_wipe_key(struct crypt_config *cc)
2690{
2691	int r;
2692
2693	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2694	get_random_bytes(&cc->key, cc->key_size);
2695
2696	/* Wipe IV private keys */
2697	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2698		r = cc->iv_gen_ops->wipe(cc);
2699		if (r)
2700			return r;
2701	}
2702
2703	kfree_sensitive(cc->key_string);
2704	cc->key_string = NULL;
2705	r = crypt_setkey(cc);
2706	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2707
2708	return r;
2709}
2710
2711static void crypt_calculate_pages_per_client(void)
2712{
2713	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2714
2715	if (!dm_crypt_clients_n)
2716		return;
2717
2718	pages /= dm_crypt_clients_n;
2719	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2720		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2721	dm_crypt_pages_per_client = pages;
2722}
2723
2724static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2725{
2726	struct crypt_config *cc = pool_data;
2727	struct page *page;
2728
2729	/*
2730	 * Note, percpu_counter_read_positive() may over (and under) estimate
2731	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2732	 * but avoids potential spinlock contention of an exact result.
2733	 */
2734	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2735	    likely(gfp_mask & __GFP_NORETRY))
2736		return NULL;
2737
2738	page = alloc_page(gfp_mask);
2739	if (likely(page != NULL))
2740		percpu_counter_add(&cc->n_allocated_pages, 1);
2741
2742	return page;
2743}
2744
2745static void crypt_page_free(void *page, void *pool_data)
2746{
2747	struct crypt_config *cc = pool_data;
2748
2749	__free_page(page);
2750	percpu_counter_sub(&cc->n_allocated_pages, 1);
2751}
2752
2753static void crypt_dtr(struct dm_target *ti)
2754{
2755	struct crypt_config *cc = ti->private;
2756
2757	ti->private = NULL;
2758
2759	if (!cc)
2760		return;
2761
2762	if (cc->write_thread)
2763		kthread_stop(cc->write_thread);
2764
2765	if (cc->io_queue)
2766		destroy_workqueue(cc->io_queue);
2767	if (cc->crypt_queue)
2768		destroy_workqueue(cc->crypt_queue);
2769
 
 
 
2770	crypt_free_tfms(cc);
2771
2772	bioset_exit(&cc->bs);
2773
2774	mempool_exit(&cc->page_pool);
2775	mempool_exit(&cc->req_pool);
2776	mempool_exit(&cc->tag_pool);
2777
2778	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2779	percpu_counter_destroy(&cc->n_allocated_pages);
2780
2781	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2782		cc->iv_gen_ops->dtr(cc);
2783
2784	if (cc->dev)
2785		dm_put_device(ti, cc->dev);
2786
2787	kfree_sensitive(cc->cipher_string);
2788	kfree_sensitive(cc->key_string);
2789	kfree_sensitive(cc->cipher_auth);
2790	kfree_sensitive(cc->authenc_key);
2791
2792	mutex_destroy(&cc->bio_alloc_lock);
2793
2794	/* Must zero key material before freeing */
2795	kfree_sensitive(cc);
2796
2797	spin_lock(&dm_crypt_clients_lock);
2798	WARN_ON(!dm_crypt_clients_n);
2799	dm_crypt_clients_n--;
2800	crypt_calculate_pages_per_client();
2801	spin_unlock(&dm_crypt_clients_lock);
2802
2803	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2804}
2805
2806static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2807{
2808	struct crypt_config *cc = ti->private;
2809
2810	if (crypt_integrity_aead(cc))
2811		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2812	else
2813		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2814
2815	if (cc->iv_size)
2816		/* at least a 64 bit sector number should fit in our buffer */
2817		cc->iv_size = max(cc->iv_size,
2818				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2819	else if (ivmode) {
2820		DMWARN("Selected cipher does not support IVs");
2821		ivmode = NULL;
2822	}
2823
2824	/* Choose ivmode, see comments at iv code. */
2825	if (ivmode == NULL)
2826		cc->iv_gen_ops = NULL;
2827	else if (strcmp(ivmode, "plain") == 0)
2828		cc->iv_gen_ops = &crypt_iv_plain_ops;
2829	else if (strcmp(ivmode, "plain64") == 0)
2830		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2831	else if (strcmp(ivmode, "plain64be") == 0)
2832		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2833	else if (strcmp(ivmode, "essiv") == 0)
2834		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2835	else if (strcmp(ivmode, "benbi") == 0)
2836		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2837	else if (strcmp(ivmode, "null") == 0)
2838		cc->iv_gen_ops = &crypt_iv_null_ops;
2839	else if (strcmp(ivmode, "eboiv") == 0)
2840		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2841	else if (strcmp(ivmode, "elephant") == 0) {
2842		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2843		cc->key_parts = 2;
2844		cc->key_extra_size = cc->key_size / 2;
2845		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2846			return -EINVAL;
2847		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2848	} else if (strcmp(ivmode, "lmk") == 0) {
2849		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2850		/*
2851		 * Version 2 and 3 is recognised according
2852		 * to length of provided multi-key string.
2853		 * If present (version 3), last key is used as IV seed.
2854		 * All keys (including IV seed) are always the same size.
2855		 */
2856		if (cc->key_size % cc->key_parts) {
2857			cc->key_parts++;
2858			cc->key_extra_size = cc->key_size / cc->key_parts;
2859		}
2860	} else if (strcmp(ivmode, "tcw") == 0) {
2861		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2862		cc->key_parts += 2; /* IV + whitening */
2863		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2864	} else if (strcmp(ivmode, "random") == 0) {
2865		cc->iv_gen_ops = &crypt_iv_random_ops;
2866		/* Need storage space in integrity fields. */
2867		cc->integrity_iv_size = cc->iv_size;
2868	} else {
2869		ti->error = "Invalid IV mode";
2870		return -EINVAL;
2871	}
2872
2873	return 0;
2874}
2875
2876/*
2877 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2878 * The HMAC is needed to calculate tag size (HMAC digest size).
2879 * This should be probably done by crypto-api calls (once available...)
2880 */
2881static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2882{
2883	char *start, *end, *mac_alg = NULL;
2884	struct crypto_ahash *mac;
2885
2886	if (!strstarts(cipher_api, "authenc("))
2887		return 0;
2888
2889	start = strchr(cipher_api, '(');
2890	end = strchr(cipher_api, ',');
2891	if (!start || !end || ++start > end)
2892		return -EINVAL;
2893
2894	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2895	if (!mac_alg)
2896		return -ENOMEM;
2897
2898	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2899	kfree(mac_alg);
2900
2901	if (IS_ERR(mac))
2902		return PTR_ERR(mac);
2903
2904	cc->key_mac_size = crypto_ahash_digestsize(mac);
 
2905	crypto_free_ahash(mac);
2906
2907	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2908	if (!cc->authenc_key)
2909		return -ENOMEM;
2910
2911	return 0;
2912}
2913
2914static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2915				char **ivmode, char **ivopts)
2916{
2917	struct crypt_config *cc = ti->private;
2918	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2919	int ret = -EINVAL;
2920
2921	cc->tfms_count = 1;
2922
2923	/*
2924	 * New format (capi: prefix)
2925	 * capi:cipher_api_spec-iv:ivopts
2926	 */
2927	tmp = &cipher_in[strlen("capi:")];
2928
2929	/* Separate IV options if present, it can contain another '-' in hash name */
2930	*ivopts = strrchr(tmp, ':');
2931	if (*ivopts) {
2932		**ivopts = '\0';
2933		(*ivopts)++;
2934	}
2935	/* Parse IV mode */
2936	*ivmode = strrchr(tmp, '-');
2937	if (*ivmode) {
2938		**ivmode = '\0';
2939		(*ivmode)++;
2940	}
2941	/* The rest is crypto API spec */
2942	cipher_api = tmp;
2943
2944	/* Alloc AEAD, can be used only in new format. */
2945	if (crypt_integrity_aead(cc)) {
2946		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2947		if (ret < 0) {
2948			ti->error = "Invalid AEAD cipher spec";
2949			return ret;
2950		}
2951	}
2952
2953	if (*ivmode && !strcmp(*ivmode, "lmk"))
2954		cc->tfms_count = 64;
2955
2956	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2957		if (!*ivopts) {
2958			ti->error = "Digest algorithm missing for ESSIV mode";
2959			return -EINVAL;
2960		}
2961		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2962			       cipher_api, *ivopts);
2963		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2964			ti->error = "Cannot allocate cipher string";
2965			return -ENOMEM;
2966		}
2967		cipher_api = buf;
2968	}
2969
2970	cc->key_parts = cc->tfms_count;
2971
2972	/* Allocate cipher */
2973	ret = crypt_alloc_tfms(cc, cipher_api);
2974	if (ret < 0) {
2975		ti->error = "Error allocating crypto tfm";
2976		return ret;
2977	}
2978
2979	if (crypt_integrity_aead(cc))
2980		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2981	else
2982		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2983
2984	return 0;
2985}
2986
2987static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2988				char **ivmode, char **ivopts)
2989{
2990	struct crypt_config *cc = ti->private;
2991	char *tmp, *cipher, *chainmode, *keycount;
2992	char *cipher_api = NULL;
2993	int ret = -EINVAL;
2994	char dummy;
2995
2996	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2997		ti->error = "Bad cipher specification";
2998		return -EINVAL;
2999	}
3000
3001	/*
3002	 * Legacy dm-crypt cipher specification
3003	 * cipher[:keycount]-mode-iv:ivopts
3004	 */
3005	tmp = cipher_in;
3006	keycount = strsep(&tmp, "-");
3007	cipher = strsep(&keycount, ":");
3008
3009	if (!keycount)
3010		cc->tfms_count = 1;
3011	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3012		 !is_power_of_2(cc->tfms_count)) {
3013		ti->error = "Bad cipher key count specification";
3014		return -EINVAL;
3015	}
3016	cc->key_parts = cc->tfms_count;
3017
3018	chainmode = strsep(&tmp, "-");
3019	*ivmode = strsep(&tmp, ":");
3020	*ivopts = tmp;
3021
3022	/*
3023	 * For compatibility with the original dm-crypt mapping format, if
3024	 * only the cipher name is supplied, use cbc-plain.
3025	 */
3026	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3027		chainmode = "cbc";
3028		*ivmode = "plain";
3029	}
3030
3031	if (strcmp(chainmode, "ecb") && !*ivmode) {
3032		ti->error = "IV mechanism required";
3033		return -EINVAL;
3034	}
3035
3036	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3037	if (!cipher_api)
3038		goto bad_mem;
3039
3040	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3041		if (!*ivopts) {
3042			ti->error = "Digest algorithm missing for ESSIV mode";
3043			kfree(cipher_api);
3044			return -EINVAL;
3045		}
3046		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3047			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3048	} else {
3049		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3050			       "%s(%s)", chainmode, cipher);
3051	}
3052	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3053		kfree(cipher_api);
3054		goto bad_mem;
3055	}
3056
3057	/* Allocate cipher */
3058	ret = crypt_alloc_tfms(cc, cipher_api);
3059	if (ret < 0) {
3060		ti->error = "Error allocating crypto tfm";
3061		kfree(cipher_api);
3062		return ret;
3063	}
3064	kfree(cipher_api);
3065
3066	return 0;
3067bad_mem:
3068	ti->error = "Cannot allocate cipher strings";
3069	return -ENOMEM;
3070}
3071
3072static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3073{
3074	struct crypt_config *cc = ti->private;
3075	char *ivmode = NULL, *ivopts = NULL;
3076	int ret;
3077
3078	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3079	if (!cc->cipher_string) {
3080		ti->error = "Cannot allocate cipher strings";
3081		return -ENOMEM;
3082	}
3083
3084	if (strstarts(cipher_in, "capi:"))
3085		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3086	else
3087		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3088	if (ret)
3089		return ret;
3090
3091	/* Initialize IV */
3092	ret = crypt_ctr_ivmode(ti, ivmode);
3093	if (ret < 0)
3094		return ret;
3095
3096	/* Initialize and set key */
3097	ret = crypt_set_key(cc, key);
3098	if (ret < 0) {
3099		ti->error = "Error decoding and setting key";
3100		return ret;
3101	}
3102
3103	/* Allocate IV */
3104	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3105		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3106		if (ret < 0) {
3107			ti->error = "Error creating IV";
3108			return ret;
3109		}
3110	}
3111
3112	/* Initialize IV (set keys for ESSIV etc) */
3113	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3114		ret = cc->iv_gen_ops->init(cc);
3115		if (ret < 0) {
3116			ti->error = "Error initialising IV";
3117			return ret;
3118		}
3119	}
3120
3121	/* wipe the kernel key payload copy */
3122	if (cc->key_string)
3123		memset(cc->key, 0, cc->key_size * sizeof(u8));
3124
3125	return ret;
3126}
3127
3128static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3129{
3130	struct crypt_config *cc = ti->private;
3131	struct dm_arg_set as;
3132	static const struct dm_arg _args[] = {
3133		{0, 8, "Invalid number of feature args"},
3134	};
3135	unsigned int opt_params, val;
3136	const char *opt_string, *sval;
3137	char dummy;
3138	int ret;
3139
3140	/* Optional parameters */
3141	as.argc = argc;
3142	as.argv = argv;
3143
3144	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3145	if (ret)
3146		return ret;
3147
3148	while (opt_params--) {
3149		opt_string = dm_shift_arg(&as);
3150		if (!opt_string) {
3151			ti->error = "Not enough feature arguments";
3152			return -EINVAL;
3153		}
3154
3155		if (!strcasecmp(opt_string, "allow_discards"))
3156			ti->num_discard_bios = 1;
3157
3158		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3159			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
 
 
3160
3161		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3162			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3163		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3164			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3165		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3166			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3167		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3168			if (val == 0 || val > MAX_TAG_SIZE) {
3169				ti->error = "Invalid integrity arguments";
3170				return -EINVAL;
3171			}
3172			cc->on_disk_tag_size = val;
3173			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3174			if (!strcasecmp(sval, "aead")) {
3175				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3176			} else if (strcasecmp(sval, "none")) {
3177				ti->error = "Unknown integrity profile";
3178				return -EINVAL;
3179			}
3180
3181			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3182			if (!cc->cipher_auth)
3183				return -ENOMEM;
 
 
 
 
 
 
 
3184		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3185			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3186			    cc->sector_size > 4096 ||
3187			    (cc->sector_size & (cc->sector_size - 1))) {
3188				ti->error = "Invalid feature value for sector_size";
3189				return -EINVAL;
3190			}
3191			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3192				ti->error = "Device size is not multiple of sector_size feature";
3193				return -EINVAL;
3194			}
3195			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3196		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3197			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3198		else {
3199			ti->error = "Invalid feature arguments";
3200			return -EINVAL;
3201		}
3202	}
3203
3204	return 0;
3205}
3206
3207#ifdef CONFIG_BLK_DEV_ZONED
3208static int crypt_report_zones(struct dm_target *ti,
3209		struct dm_report_zones_args *args, unsigned int nr_zones)
3210{
3211	struct crypt_config *cc = ti->private;
3212
3213	return dm_report_zones(cc->dev->bdev, cc->start,
3214			cc->start + dm_target_offset(ti, args->next_sector),
3215			args, nr_zones);
3216}
3217#else
3218#define crypt_report_zones NULL
3219#endif
3220
3221/*
3222 * Construct an encryption mapping:
3223 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3224 */
3225static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3226{
3227	struct crypt_config *cc;
3228	const char *devname = dm_table_device_name(ti->table);
3229	int key_size;
3230	unsigned int align_mask;
 
3231	unsigned long long tmpll;
3232	int ret;
3233	size_t iv_size_padding, additional_req_size;
3234	char dummy;
3235
3236	if (argc < 5) {
3237		ti->error = "Not enough arguments";
3238		return -EINVAL;
3239	}
3240
3241	key_size = get_key_size(&argv[1]);
3242	if (key_size < 0) {
3243		ti->error = "Cannot parse key size";
3244		return -EINVAL;
3245	}
3246
3247	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3248	if (!cc) {
3249		ti->error = "Cannot allocate encryption context";
3250		return -ENOMEM;
3251	}
3252	cc->key_size = key_size;
3253	cc->sector_size = (1 << SECTOR_SHIFT);
3254	cc->sector_shift = 0;
3255
3256	ti->private = cc;
3257
3258	spin_lock(&dm_crypt_clients_lock);
3259	dm_crypt_clients_n++;
3260	crypt_calculate_pages_per_client();
3261	spin_unlock(&dm_crypt_clients_lock);
3262
3263	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3264	if (ret < 0)
3265		goto bad;
3266
3267	/* Optional parameters need to be read before cipher constructor */
3268	if (argc > 5) {
3269		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3270		if (ret)
3271			goto bad;
3272	}
3273
3274	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3275	if (ret < 0)
3276		goto bad;
3277
3278	if (crypt_integrity_aead(cc)) {
3279		cc->dmreq_start = sizeof(struct aead_request);
3280		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3281		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3282	} else {
3283		cc->dmreq_start = sizeof(struct skcipher_request);
3284		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3285		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3286	}
3287	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3288
3289	if (align_mask < CRYPTO_MINALIGN) {
3290		/* Allocate the padding exactly */
3291		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3292				& align_mask;
3293	} else {
3294		/*
3295		 * If the cipher requires greater alignment than kmalloc
3296		 * alignment, we don't know the exact position of the
3297		 * initialization vector. We must assume worst case.
3298		 */
3299		iv_size_padding = align_mask;
3300	}
3301
3302	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3303	additional_req_size = sizeof(struct dm_crypt_request) +
3304		iv_size_padding + cc->iv_size +
3305		cc->iv_size +
3306		sizeof(uint64_t) +
3307		sizeof(unsigned int);
3308
3309	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3310	if (ret) {
3311		ti->error = "Cannot allocate crypt request mempool";
3312		goto bad;
3313	}
3314
3315	cc->per_bio_data_size = ti->per_io_data_size =
3316		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3317		      ARCH_DMA_MINALIGN);
3318
3319	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3320	if (ret) {
3321		ti->error = "Cannot allocate page mempool";
3322		goto bad;
3323	}
3324
3325	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3326	if (ret) {
3327		ti->error = "Cannot allocate crypt bioset";
3328		goto bad;
3329	}
3330
3331	mutex_init(&cc->bio_alloc_lock);
3332
3333	ret = -EINVAL;
3334	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3335	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3336		ti->error = "Invalid iv_offset sector";
3337		goto bad;
3338	}
3339	cc->iv_offset = tmpll;
3340
3341	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3342	if (ret) {
3343		ti->error = "Device lookup failed";
3344		goto bad;
3345	}
3346
3347	ret = -EINVAL;
3348	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3349		ti->error = "Invalid device sector";
3350		goto bad;
3351	}
3352	cc->start = tmpll;
3353
3354	if (bdev_is_zoned(cc->dev->bdev)) {
3355		/*
3356		 * For zoned block devices, we need to preserve the issuer write
3357		 * ordering. To do so, disable write workqueues and force inline
3358		 * encryption completion.
3359		 */
3360		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3361		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3362
3363		/*
3364		 * All zone append writes to a zone of a zoned block device will
3365		 * have the same BIO sector, the start of the zone. When the
3366		 * cypher IV mode uses sector values, all data targeting a
3367		 * zone will be encrypted using the first sector numbers of the
3368		 * zone. This will not result in write errors but will
3369		 * cause most reads to fail as reads will use the sector values
3370		 * for the actual data locations, resulting in IV mismatch.
3371		 * To avoid this problem, ask DM core to emulate zone append
3372		 * operations with regular writes.
3373		 */
3374		DMDEBUG("Zone append operations will be emulated");
3375		ti->emulate_zone_append = true;
3376	}
3377
3378	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3379		ret = crypt_integrity_ctr(cc, ti);
3380		if (ret)
3381			goto bad;
3382
3383		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3384		if (!cc->tag_pool_max_sectors)
3385			cc->tag_pool_max_sectors = 1;
3386
3387		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3388			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3389		if (ret) {
3390			ti->error = "Cannot allocate integrity tags mempool";
3391			goto bad;
3392		}
3393
3394		cc->tag_pool_max_sectors <<= cc->sector_shift;
3395	}
3396
 
 
 
 
 
 
 
 
3397	ret = -ENOMEM;
3398	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
 
 
 
 
3399	if (!cc->io_queue) {
3400		ti->error = "Couldn't create kcryptd io queue";
3401		goto bad;
3402	}
3403
3404	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3405		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3406						  1, devname);
3407	else
3408		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3409						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3410						  num_online_cpus(), devname);
 
 
 
 
 
 
3411	if (!cc->crypt_queue) {
3412		ti->error = "Couldn't create kcryptd queue";
3413		goto bad;
3414	}
3415
3416	spin_lock_init(&cc->write_thread_lock);
3417	cc->write_tree = RB_ROOT;
3418
3419	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3420	if (IS_ERR(cc->write_thread)) {
3421		ret = PTR_ERR(cc->write_thread);
3422		cc->write_thread = NULL;
3423		ti->error = "Couldn't spawn write thread";
3424		goto bad;
3425	}
 
 
3426
3427	ti->num_flush_bios = 1;
3428	ti->limit_swap_bios = true;
3429	ti->accounts_remapped_io = true;
3430
3431	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3432	return 0;
3433
3434bad:
3435	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3436	crypt_dtr(ti);
3437	return ret;
3438}
3439
3440static int crypt_map(struct dm_target *ti, struct bio *bio)
3441{
3442	struct dm_crypt_io *io;
3443	struct crypt_config *cc = ti->private;
 
3444
3445	/*
3446	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3447	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3448	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3449	 */
3450	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3451	    bio_op(bio) == REQ_OP_DISCARD)) {
3452		bio_set_dev(bio, cc->dev->bdev);
3453		if (bio_sectors(bio))
3454			bio->bi_iter.bi_sector = cc->start +
3455				dm_target_offset(ti, bio->bi_iter.bi_sector);
3456		return DM_MAPIO_REMAPPED;
3457	}
3458
3459	/*
3460	 * Check if bio is too large, split as needed.
3461	 */
3462	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3463	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3464		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3465
3466	/*
3467	 * Ensure that bio is a multiple of internal sector encryption size
3468	 * and is aligned to this size as defined in IO hints.
3469	 */
3470	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3471		return DM_MAPIO_KILL;
3472
3473	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3474		return DM_MAPIO_KILL;
3475
3476	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3477	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3478
3479	if (cc->on_disk_tag_size) {
3480		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3481
3482		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3483			io->integrity_metadata = NULL;
3484		else
3485			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3486
3487		if (unlikely(!io->integrity_metadata)) {
3488			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3489				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3490			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3491			io->integrity_metadata_from_pool = true;
3492		}
3493	}
3494
3495	if (crypt_integrity_aead(cc))
3496		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3497	else
3498		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3499
3500	if (bio_data_dir(io->base_bio) == READ) {
3501		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3502			kcryptd_queue_read(io);
3503	} else
3504		kcryptd_queue_crypt(io);
3505
3506	return DM_MAPIO_SUBMITTED;
3507}
3508
3509static char hex2asc(unsigned char c)
3510{
3511	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3512}
3513
3514static void crypt_status(struct dm_target *ti, status_type_t type,
3515			 unsigned int status_flags, char *result, unsigned int maxlen)
3516{
3517	struct crypt_config *cc = ti->private;
3518	unsigned int i, sz = 0;
3519	int num_feature_args = 0;
3520
3521	switch (type) {
3522	case STATUSTYPE_INFO:
3523		result[0] = '\0';
3524		break;
3525
3526	case STATUSTYPE_TABLE:
3527		DMEMIT("%s ", cc->cipher_string);
3528
3529		if (cc->key_size > 0) {
3530			if (cc->key_string)
3531				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3532			else {
3533				for (i = 0; i < cc->key_size; i++) {
3534					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3535					       hex2asc(cc->key[i] & 0xf));
3536				}
3537			}
3538		} else
3539			DMEMIT("-");
3540
3541		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3542				cc->dev->name, (unsigned long long)cc->start);
3543
3544		num_feature_args += !!ti->num_discard_bios;
3545		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
 
3546		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3547		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3548		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
 
3549		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3550		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3551		if (cc->on_disk_tag_size)
3552			num_feature_args++;
3553		if (num_feature_args) {
3554			DMEMIT(" %d", num_feature_args);
3555			if (ti->num_discard_bios)
3556				DMEMIT(" allow_discards");
3557			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3558				DMEMIT(" same_cpu_crypt");
 
 
3559			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3560				DMEMIT(" submit_from_crypt_cpus");
3561			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3562				DMEMIT(" no_read_workqueue");
3563			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3564				DMEMIT(" no_write_workqueue");
3565			if (cc->on_disk_tag_size)
3566				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3567			if (cc->sector_size != (1 << SECTOR_SHIFT))
3568				DMEMIT(" sector_size:%d", cc->sector_size);
3569			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3570				DMEMIT(" iv_large_sectors");
 
 
3571		}
3572		break;
3573
3574	case STATUSTYPE_IMA:
3575		DMEMIT_TARGET_NAME_VERSION(ti->type);
3576		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3577		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
 
3578		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3579		       'y' : 'n');
3580		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3581		       'y' : 'n');
3582		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3583		       'y' : 'n');
3584		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3585		       'y' : 'n');
3586
3587		if (cc->on_disk_tag_size)
3588			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3589			       cc->on_disk_tag_size, cc->cipher_auth);
3590		if (cc->sector_size != (1 << SECTOR_SHIFT))
3591			DMEMIT(",sector_size=%d", cc->sector_size);
3592		if (cc->cipher_string)
3593			DMEMIT(",cipher_string=%s", cc->cipher_string);
3594
3595		DMEMIT(",key_size=%u", cc->key_size);
3596		DMEMIT(",key_parts=%u", cc->key_parts);
3597		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3598		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3599		DMEMIT(";");
3600		break;
3601	}
3602}
3603
3604static void crypt_postsuspend(struct dm_target *ti)
3605{
3606	struct crypt_config *cc = ti->private;
3607
3608	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3609}
3610
3611static int crypt_preresume(struct dm_target *ti)
3612{
3613	struct crypt_config *cc = ti->private;
3614
3615	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3616		DMERR("aborting resume - crypt key is not set.");
3617		return -EAGAIN;
3618	}
3619
3620	return 0;
3621}
3622
3623static void crypt_resume(struct dm_target *ti)
3624{
3625	struct crypt_config *cc = ti->private;
3626
3627	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3628}
3629
3630/* Message interface
3631 *	key set <key>
3632 *	key wipe
3633 */
3634static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3635			 char *result, unsigned int maxlen)
3636{
3637	struct crypt_config *cc = ti->private;
3638	int key_size, ret = -EINVAL;
3639
3640	if (argc < 2)
3641		goto error;
3642
3643	if (!strcasecmp(argv[0], "key")) {
3644		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3645			DMWARN("not suspended during key manipulation.");
3646			return -EINVAL;
3647		}
3648		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3649			/* The key size may not be changed. */
3650			key_size = get_key_size(&argv[2]);
3651			if (key_size < 0 || cc->key_size != key_size) {
3652				memset(argv[2], '0', strlen(argv[2]));
3653				return -EINVAL;
3654			}
3655
3656			ret = crypt_set_key(cc, argv[2]);
3657			if (ret)
3658				return ret;
3659			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3660				ret = cc->iv_gen_ops->init(cc);
3661			/* wipe the kernel key payload copy */
3662			if (cc->key_string)
3663				memset(cc->key, 0, cc->key_size * sizeof(u8));
3664			return ret;
3665		}
3666		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3667			return crypt_wipe_key(cc);
3668	}
3669
3670error:
3671	DMWARN("unrecognised message received.");
3672	return -EINVAL;
3673}
3674
3675static int crypt_iterate_devices(struct dm_target *ti,
3676				 iterate_devices_callout_fn fn, void *data)
3677{
3678	struct crypt_config *cc = ti->private;
3679
3680	return fn(ti, cc->dev, cc->start, ti->len, data);
3681}
3682
3683static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3684{
3685	struct crypt_config *cc = ti->private;
3686
3687	/*
3688	 * Unfortunate constraint that is required to avoid the potential
3689	 * for exceeding underlying device's max_segments limits -- due to
3690	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3691	 * bio that are not as physically contiguous as the original bio.
3692	 */
3693	limits->max_segment_size = PAGE_SIZE;
3694
3695	limits->logical_block_size =
3696		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3697	limits->physical_block_size =
3698		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3699	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3700	limits->dma_alignment = limits->logical_block_size - 1;
3701}
3702
3703static struct target_type crypt_target = {
3704	.name   = "crypt",
3705	.version = {1, 25, 0},
3706	.module = THIS_MODULE,
3707	.ctr    = crypt_ctr,
3708	.dtr    = crypt_dtr,
3709	.features = DM_TARGET_ZONED_HM,
3710	.report_zones = crypt_report_zones,
3711	.map    = crypt_map,
3712	.status = crypt_status,
3713	.postsuspend = crypt_postsuspend,
3714	.preresume = crypt_preresume,
3715	.resume = crypt_resume,
3716	.message = crypt_message,
3717	.iterate_devices = crypt_iterate_devices,
3718	.io_hints = crypt_io_hints,
3719};
3720module_dm(crypt);
3721
3722MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3723MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3724MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   7 *
   8 * This file is released under the GPL.
   9 */
  10
  11#include <linux/completion.h>
  12#include <linux/err.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/key.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-integrity.h>
  20#include <linux/mempool.h>
  21#include <linux/slab.h>
  22#include <linux/crypto.h>
  23#include <linux/workqueue.h>
  24#include <linux/kthread.h>
  25#include <linux/backing-dev.h>
  26#include <linux/atomic.h>
  27#include <linux/scatterlist.h>
  28#include <linux/rbtree.h>
  29#include <linux/ctype.h>
  30#include <asm/page.h>
  31#include <linux/unaligned.h>
  32#include <crypto/hash.h>
  33#include <crypto/md5.h>
  34#include <crypto/skcipher.h>
  35#include <crypto/aead.h>
  36#include <crypto/authenc.h>
  37#include <crypto/utils.h>
  38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  39#include <linux/key-type.h>
  40#include <keys/user-type.h>
  41#include <keys/encrypted-type.h>
  42#include <keys/trusted-type.h>
  43
  44#include <linux/device-mapper.h>
  45
  46#include "dm-audit.h"
  47
  48#define DM_MSG_PREFIX "crypt"
  49
  50static DEFINE_IDA(workqueue_ida);
  51
  52/*
  53 * context holding the current state of a multi-part conversion
  54 */
  55struct convert_context {
  56	struct completion restart;
  57	struct bio *bio_in;
  58	struct bvec_iter iter_in;
  59	struct bio *bio_out;
  60	struct bvec_iter iter_out;
  61	atomic_t cc_pending;
  62	unsigned int tag_offset;
  63	u64 cc_sector;
  64	union {
  65		struct skcipher_request *req;
  66		struct aead_request *req_aead;
  67	} r;
  68	bool aead_recheck;
  69	bool aead_failed;
  70
  71};
  72
  73/*
  74 * per bio private data
  75 */
  76struct dm_crypt_io {
  77	struct crypt_config *cc;
  78	struct bio *base_bio;
  79	u8 *integrity_metadata;
  80	bool integrity_metadata_from_pool:1;
  81
  82	struct work_struct work;
  83
  84	struct convert_context ctx;
  85
  86	atomic_t io_pending;
  87	blk_status_t error;
  88	sector_t sector;
  89
  90	struct bvec_iter saved_bi_iter;
  91
  92	struct rb_node rb_node;
  93} CRYPTO_MINALIGN_ATTR;
  94
  95struct dm_crypt_request {
  96	struct convert_context *ctx;
  97	struct scatterlist sg_in[4];
  98	struct scatterlist sg_out[4];
  99	u64 iv_sector;
 100};
 101
 102struct crypt_config;
 103
 104struct crypt_iv_operations {
 105	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
 106		   const char *opts);
 107	void (*dtr)(struct crypt_config *cc);
 108	int (*init)(struct crypt_config *cc);
 109	int (*wipe)(struct crypt_config *cc);
 110	int (*generator)(struct crypt_config *cc, u8 *iv,
 111			 struct dm_crypt_request *dmreq);
 112	int (*post)(struct crypt_config *cc, u8 *iv,
 113		    struct dm_crypt_request *dmreq);
 114};
 115
 116struct iv_benbi_private {
 117	int shift;
 118};
 119
 120#define LMK_SEED_SIZE 64 /* hash + 0 */
 121struct iv_lmk_private {
 122	struct crypto_shash *hash_tfm;
 123	u8 *seed;
 124};
 125
 126#define TCW_WHITENING_SIZE 16
 127struct iv_tcw_private {
 128	struct crypto_shash *crc32_tfm;
 129	u8 *iv_seed;
 130	u8 *whitening;
 131};
 132
 133#define ELEPHANT_MAX_KEY_SIZE 32
 134struct iv_elephant_private {
 135	struct crypto_skcipher *tfm;
 136};
 137
 138/*
 139 * Crypt: maps a linear range of a block device
 140 * and encrypts / decrypts at the same time.
 141 */
 142enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 143	     DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
 144	     DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
 145	     DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
 146
 147enum cipher_flags {
 148	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
 149	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 150	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
 151	CRYPT_KEY_MAC_SIZE_SET,		/* The integrity_key_size option was used */
 152};
 153
 154/*
 155 * The fields in here must be read only after initialization.
 156 */
 157struct crypt_config {
 158	struct dm_dev *dev;
 159	sector_t start;
 160
 161	struct percpu_counter n_allocated_pages;
 162
 163	struct workqueue_struct *io_queue;
 164	struct workqueue_struct *crypt_queue;
 165
 166	spinlock_t write_thread_lock;
 167	struct task_struct *write_thread;
 168	struct rb_root write_tree;
 169
 170	char *cipher_string;
 171	char *cipher_auth;
 172	char *key_string;
 173
 174	const struct crypt_iv_operations *iv_gen_ops;
 175	union {
 176		struct iv_benbi_private benbi;
 177		struct iv_lmk_private lmk;
 178		struct iv_tcw_private tcw;
 179		struct iv_elephant_private elephant;
 180	} iv_gen_private;
 181	u64 iv_offset;
 182	unsigned int iv_size;
 183	unsigned short sector_size;
 184	unsigned char sector_shift;
 185
 186	union {
 187		struct crypto_skcipher **tfms;
 188		struct crypto_aead **tfms_aead;
 189	} cipher_tfm;
 190	unsigned int tfms_count;
 191	int workqueue_id;
 192	unsigned long cipher_flags;
 193
 194	/*
 195	 * Layout of each crypto request:
 196	 *
 197	 *   struct skcipher_request
 198	 *      context
 199	 *      padding
 200	 *   struct dm_crypt_request
 201	 *      padding
 202	 *   IV
 203	 *
 204	 * The padding is added so that dm_crypt_request and the IV are
 205	 * correctly aligned.
 206	 */
 207	unsigned int dmreq_start;
 208
 209	unsigned int per_bio_data_size;
 210
 211	unsigned long flags;
 212	unsigned int key_size;
 213	unsigned int key_parts;      /* independent parts in key buffer */
 214	unsigned int key_extra_size; /* additional keys length */
 215	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 216
 217	unsigned int integrity_tag_size;
 218	unsigned int integrity_iv_size;
 219	unsigned int used_tag_size;
 220	unsigned int tuple_size;
 221
 222	/*
 223	 * pool for per bio private data, crypto requests,
 224	 * encryption requeusts/buffer pages and integrity tags
 225	 */
 226	unsigned int tag_pool_max_sectors;
 227	mempool_t tag_pool;
 228	mempool_t req_pool;
 229	mempool_t page_pool;
 230
 231	struct bio_set bs;
 232	struct mutex bio_alloc_lock;
 233
 234	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 235	u8 key[] __counted_by(key_size);
 236};
 237
 238#define MIN_IOS		64
 239#define MAX_TAG_SIZE	480
 240#define POOL_ENTRY_SIZE	512
 241
 242static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 243static unsigned int dm_crypt_clients_n;
 244static volatile unsigned long dm_crypt_pages_per_client;
 245#define DM_CRYPT_MEMORY_PERCENT			2
 246#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
 247#define DM_CRYPT_DEFAULT_MAX_READ_SIZE		131072
 248#define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE		131072
 249
 250static unsigned int max_read_size = 0;
 251module_param(max_read_size, uint, 0644);
 252MODULE_PARM_DESC(max_read_size, "Maximum size of a read request");
 253static unsigned int max_write_size = 0;
 254module_param(max_write_size, uint, 0644);
 255MODULE_PARM_DESC(max_write_size, "Maximum size of a write request");
 256static unsigned get_max_request_size(struct crypt_config *cc, bool wrt)
 257{
 258	unsigned val, sector_align;
 259	val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size);
 260	if (likely(!val))
 261		val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE;
 262	if (wrt || cc->used_tag_size) {
 263		if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT))
 264			val = BIO_MAX_VECS << PAGE_SHIFT;
 265	}
 266	sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size);
 267	val = round_down(val, sector_align);
 268	if (unlikely(!val))
 269		val = sector_align;
 270	return val >> SECTOR_SHIFT;
 271}
 272
 273static void crypt_endio(struct bio *clone);
 274static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 275static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 276					     struct scatterlist *sg);
 277
 278static bool crypt_integrity_aead(struct crypt_config *cc);
 279
 280/*
 281 * Use this to access cipher attributes that are independent of the key.
 282 */
 283static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 284{
 285	return cc->cipher_tfm.tfms[0];
 286}
 287
 288static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 289{
 290	return cc->cipher_tfm.tfms_aead[0];
 291}
 292
 293/*
 294 * Different IV generation algorithms:
 295 *
 296 * plain: the initial vector is the 32-bit little-endian version of the sector
 297 *        number, padded with zeros if necessary.
 298 *
 299 * plain64: the initial vector is the 64-bit little-endian version of the sector
 300 *        number, padded with zeros if necessary.
 301 *
 302 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 303 *        number, padded with zeros if necessary.
 304 *
 305 * essiv: "encrypted sector|salt initial vector", the sector number is
 306 *        encrypted with the bulk cipher using a salt as key. The salt
 307 *        should be derived from the bulk cipher's key via hashing.
 308 *
 309 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 310 *        (needed for LRW-32-AES and possible other narrow block modes)
 311 *
 312 * null: the initial vector is always zero.  Provides compatibility with
 313 *       obsolete loop_fish2 devices.  Do not use for new devices.
 314 *
 315 * lmk:  Compatible implementation of the block chaining mode used
 316 *       by the Loop-AES block device encryption system
 317 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 318 *       It operates on full 512 byte sectors and uses CBC
 319 *       with an IV derived from the sector number, the data and
 320 *       optionally extra IV seed.
 321 *       This means that after decryption the first block
 322 *       of sector must be tweaked according to decrypted data.
 323 *       Loop-AES can use three encryption schemes:
 324 *         version 1: is plain aes-cbc mode
 325 *         version 2: uses 64 multikey scheme with lmk IV generator
 326 *         version 3: the same as version 2 with additional IV seed
 327 *                   (it uses 65 keys, last key is used as IV seed)
 328 *
 329 * tcw:  Compatible implementation of the block chaining mode used
 330 *       by the TrueCrypt device encryption system (prior to version 4.1).
 331 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 332 *       It operates on full 512 byte sectors and uses CBC
 333 *       with an IV derived from initial key and the sector number.
 334 *       In addition, whitening value is applied on every sector, whitening
 335 *       is calculated from initial key, sector number and mixed using CRC32.
 336 *       Note that this encryption scheme is vulnerable to watermarking attacks
 337 *       and should be used for old compatible containers access only.
 338 *
 339 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 340 *        The IV is encrypted little-endian byte-offset (with the same key
 341 *        and cipher as the volume).
 342 *
 343 * elephant: The extended version of eboiv with additional Elephant diffuser
 344 *           used with Bitlocker CBC mode.
 345 *           This mode was used in older Windows systems
 346 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 347 */
 348
 349static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 350			      struct dm_crypt_request *dmreq)
 351{
 352	memset(iv, 0, cc->iv_size);
 353	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 354
 355	return 0;
 356}
 357
 358static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 359				struct dm_crypt_request *dmreq)
 360{
 361	memset(iv, 0, cc->iv_size);
 362	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 363
 364	return 0;
 365}
 366
 367static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 368				  struct dm_crypt_request *dmreq)
 369{
 370	memset(iv, 0, cc->iv_size);
 371	/* iv_size is at least of size u64; usually it is 16 bytes */
 372	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 373
 374	return 0;
 375}
 376
 377static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 378			      struct dm_crypt_request *dmreq)
 379{
 380	/*
 381	 * ESSIV encryption of the IV is now handled by the crypto API,
 382	 * so just pass the plain sector number here.
 383	 */
 384	memset(iv, 0, cc->iv_size);
 385	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 386
 387	return 0;
 388}
 389
 390static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 391			      const char *opts)
 392{
 393	unsigned int bs;
 394	int log;
 395
 396	if (crypt_integrity_aead(cc))
 397		bs = crypto_aead_blocksize(any_tfm_aead(cc));
 398	else
 399		bs = crypto_skcipher_blocksize(any_tfm(cc));
 400	log = ilog2(bs);
 401
 402	/*
 403	 * We need to calculate how far we must shift the sector count
 404	 * to get the cipher block count, we use this shift in _gen.
 405	 */
 406	if (1 << log != bs) {
 407		ti->error = "cypher blocksize is not a power of 2";
 408		return -EINVAL;
 409	}
 410
 411	if (log > 9) {
 412		ti->error = "cypher blocksize is > 512";
 413		return -EINVAL;
 414	}
 415
 416	cc->iv_gen_private.benbi.shift = 9 - log;
 417
 418	return 0;
 419}
 420
 421static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 422{
 423}
 424
 425static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 426			      struct dm_crypt_request *dmreq)
 427{
 428	__be64 val;
 429
 430	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 431
 432	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 433	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 434
 435	return 0;
 436}
 437
 438static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 439			     struct dm_crypt_request *dmreq)
 440{
 441	memset(iv, 0, cc->iv_size);
 442
 443	return 0;
 444}
 445
 446static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 447{
 448	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 449
 450	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 451		crypto_free_shash(lmk->hash_tfm);
 452	lmk->hash_tfm = NULL;
 453
 454	kfree_sensitive(lmk->seed);
 455	lmk->seed = NULL;
 456}
 457
 458static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 459			    const char *opts)
 460{
 461	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 462
 463	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 464		ti->error = "Unsupported sector size for LMK";
 465		return -EINVAL;
 466	}
 467
 468	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
 469					   CRYPTO_ALG_ALLOCATES_MEMORY);
 470	if (IS_ERR(lmk->hash_tfm)) {
 471		ti->error = "Error initializing LMK hash";
 472		return PTR_ERR(lmk->hash_tfm);
 473	}
 474
 475	/* No seed in LMK version 2 */
 476	if (cc->key_parts == cc->tfms_count) {
 477		lmk->seed = NULL;
 478		return 0;
 479	}
 480
 481	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 482	if (!lmk->seed) {
 483		crypt_iv_lmk_dtr(cc);
 484		ti->error = "Error kmallocing seed storage in LMK";
 485		return -ENOMEM;
 486	}
 487
 488	return 0;
 489}
 490
 491static int crypt_iv_lmk_init(struct crypt_config *cc)
 492{
 493	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 494	int subkey_size = cc->key_size / cc->key_parts;
 495
 496	/* LMK seed is on the position of LMK_KEYS + 1 key */
 497	if (lmk->seed)
 498		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 499		       crypto_shash_digestsize(lmk->hash_tfm));
 500
 501	return 0;
 502}
 503
 504static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 505{
 506	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 507
 508	if (lmk->seed)
 509		memset(lmk->seed, 0, LMK_SEED_SIZE);
 510
 511	return 0;
 512}
 513
 514static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 515			    struct dm_crypt_request *dmreq,
 516			    u8 *data)
 517{
 518	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 519	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 520	struct md5_state md5state;
 521	__le32 buf[4];
 522	int i, r;
 523
 524	desc->tfm = lmk->hash_tfm;
 525
 526	r = crypto_shash_init(desc);
 527	if (r)
 528		return r;
 529
 530	if (lmk->seed) {
 531		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 532		if (r)
 533			return r;
 534	}
 535
 536	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 537	r = crypto_shash_update(desc, data + 16, 16 * 31);
 538	if (r)
 539		return r;
 540
 541	/* Sector is cropped to 56 bits here */
 542	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 543	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 544	buf[2] = cpu_to_le32(4024);
 545	buf[3] = 0;
 546	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 547	if (r)
 548		return r;
 549
 550	/* No MD5 padding here */
 551	r = crypto_shash_export(desc, &md5state);
 552	if (r)
 553		return r;
 554
 555	for (i = 0; i < MD5_HASH_WORDS; i++)
 556		__cpu_to_le32s(&md5state.hash[i]);
 557	memcpy(iv, &md5state.hash, cc->iv_size);
 558
 559	return 0;
 560}
 561
 562static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 563			    struct dm_crypt_request *dmreq)
 564{
 565	struct scatterlist *sg;
 566	u8 *src;
 567	int r = 0;
 568
 569	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 570		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 571		src = kmap_local_page(sg_page(sg));
 572		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 573		kunmap_local(src);
 574	} else
 575		memset(iv, 0, cc->iv_size);
 576
 577	return r;
 578}
 579
 580static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 581			     struct dm_crypt_request *dmreq)
 582{
 583	struct scatterlist *sg;
 584	u8 *dst;
 585	int r;
 586
 587	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 588		return 0;
 589
 590	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 591	dst = kmap_local_page(sg_page(sg));
 592	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 593
 594	/* Tweak the first block of plaintext sector */
 595	if (!r)
 596		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 597
 598	kunmap_local(dst);
 599	return r;
 600}
 601
 602static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 603{
 604	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 605
 606	kfree_sensitive(tcw->iv_seed);
 607	tcw->iv_seed = NULL;
 608	kfree_sensitive(tcw->whitening);
 609	tcw->whitening = NULL;
 610
 611	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 612		crypto_free_shash(tcw->crc32_tfm);
 613	tcw->crc32_tfm = NULL;
 614}
 615
 616static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 617			    const char *opts)
 618{
 619	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 620
 621	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 622		ti->error = "Unsupported sector size for TCW";
 623		return -EINVAL;
 624	}
 625
 626	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 627		ti->error = "Wrong key size for TCW";
 628		return -EINVAL;
 629	}
 630
 631	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
 632					    CRYPTO_ALG_ALLOCATES_MEMORY);
 633	if (IS_ERR(tcw->crc32_tfm)) {
 634		ti->error = "Error initializing CRC32 in TCW";
 635		return PTR_ERR(tcw->crc32_tfm);
 636	}
 637
 638	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 639	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 640	if (!tcw->iv_seed || !tcw->whitening) {
 641		crypt_iv_tcw_dtr(cc);
 642		ti->error = "Error allocating seed storage in TCW";
 643		return -ENOMEM;
 644	}
 645
 646	return 0;
 647}
 648
 649static int crypt_iv_tcw_init(struct crypt_config *cc)
 650{
 651	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 652	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 653
 654	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 655	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 656	       TCW_WHITENING_SIZE);
 657
 658	return 0;
 659}
 660
 661static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 662{
 663	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 664
 665	memset(tcw->iv_seed, 0, cc->iv_size);
 666	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 667
 668	return 0;
 669}
 670
 671static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 672				  struct dm_crypt_request *dmreq,
 673				  u8 *data)
 674{
 675	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 676	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 677	u8 buf[TCW_WHITENING_SIZE];
 678	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 679	int i, r;
 680
 681	/* xor whitening with sector number */
 682	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 683	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 684
 685	/* calculate crc32 for every 32bit part and xor it */
 686	desc->tfm = tcw->crc32_tfm;
 687	for (i = 0; i < 4; i++) {
 688		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
 689		if (r)
 690			goto out;
 691	}
 692	crypto_xor(&buf[0], &buf[12], 4);
 693	crypto_xor(&buf[4], &buf[8], 4);
 694
 695	/* apply whitening (8 bytes) to whole sector */
 696	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 697		crypto_xor(data + i * 8, buf, 8);
 698out:
 699	memzero_explicit(buf, sizeof(buf));
 700	return r;
 701}
 702
 703static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 704			    struct dm_crypt_request *dmreq)
 705{
 706	struct scatterlist *sg;
 707	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 708	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 709	u8 *src;
 710	int r = 0;
 711
 712	/* Remove whitening from ciphertext */
 713	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 714		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 715		src = kmap_local_page(sg_page(sg));
 716		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 717		kunmap_local(src);
 718	}
 719
 720	/* Calculate IV */
 721	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 722	if (cc->iv_size > 8)
 723		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 724			       cc->iv_size - 8);
 725
 726	return r;
 727}
 728
 729static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 730			     struct dm_crypt_request *dmreq)
 731{
 732	struct scatterlist *sg;
 733	u8 *dst;
 734	int r;
 735
 736	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 737		return 0;
 738
 739	/* Apply whitening on ciphertext */
 740	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 741	dst = kmap_local_page(sg_page(sg));
 742	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 743	kunmap_local(dst);
 744
 745	return r;
 746}
 747
 748static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 749				struct dm_crypt_request *dmreq)
 750{
 751	/* Used only for writes, there must be an additional space to store IV */
 752	get_random_bytes(iv, cc->iv_size);
 753	return 0;
 754}
 755
 756static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 757			    const char *opts)
 758{
 759	if (crypt_integrity_aead(cc)) {
 760		ti->error = "AEAD transforms not supported for EBOIV";
 761		return -EINVAL;
 762	}
 763
 764	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 765		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
 766		return -EINVAL;
 767	}
 768
 769	return 0;
 770}
 771
 772static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 773			    struct dm_crypt_request *dmreq)
 774{
 775	struct crypto_skcipher *tfm = any_tfm(cc);
 776	struct skcipher_request *req;
 777	struct scatterlist src, dst;
 778	DECLARE_CRYPTO_WAIT(wait);
 779	unsigned int reqsize;
 780	int err;
 781	u8 *buf;
 782
 783	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
 784	reqsize = ALIGN(reqsize, __alignof__(__le64));
 785
 786	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
 787	if (!req)
 788		return -ENOMEM;
 789
 790	skcipher_request_set_tfm(req, tfm);
 791
 792	buf = (u8 *)req + reqsize;
 793	memset(buf, 0, cc->iv_size);
 794	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 795
 796	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 797	sg_init_one(&dst, iv, cc->iv_size);
 798	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 799	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 800	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 801	kfree_sensitive(req);
 802
 803	return err;
 804}
 805
 806static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 807{
 808	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 809
 810	crypto_free_skcipher(elephant->tfm);
 811	elephant->tfm = NULL;
 812}
 813
 814static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 815			    const char *opts)
 816{
 817	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 818	int r;
 819
 820	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
 821					      CRYPTO_ALG_ALLOCATES_MEMORY);
 822	if (IS_ERR(elephant->tfm)) {
 823		r = PTR_ERR(elephant->tfm);
 824		elephant->tfm = NULL;
 825		return r;
 826	}
 827
 828	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 829	if (r)
 830		crypt_iv_elephant_dtr(cc);
 831	return r;
 832}
 833
 834static void diffuser_disk_to_cpu(u32 *d, size_t n)
 835{
 836#ifndef __LITTLE_ENDIAN
 837	int i;
 838
 839	for (i = 0; i < n; i++)
 840		d[i] = le32_to_cpu((__le32)d[i]);
 841#endif
 842}
 843
 844static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 845{
 846#ifndef __LITTLE_ENDIAN
 847	int i;
 848
 849	for (i = 0; i < n; i++)
 850		d[i] = cpu_to_le32((u32)d[i]);
 851#endif
 852}
 853
 854static void diffuser_a_decrypt(u32 *d, size_t n)
 855{
 856	int i, i1, i2, i3;
 857
 858	for (i = 0; i < 5; i++) {
 859		i1 = 0;
 860		i2 = n - 2;
 861		i3 = n - 5;
 862
 863		while (i1 < (n - 1)) {
 864			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 865			i1++; i2++; i3++;
 866
 867			if (i3 >= n)
 868				i3 -= n;
 869
 870			d[i1] += d[i2] ^ d[i3];
 871			i1++; i2++; i3++;
 872
 873			if (i2 >= n)
 874				i2 -= n;
 875
 876			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 877			i1++; i2++; i3++;
 878
 879			d[i1] += d[i2] ^ d[i3];
 880			i1++; i2++; i3++;
 881		}
 882	}
 883}
 884
 885static void diffuser_a_encrypt(u32 *d, size_t n)
 886{
 887	int i, i1, i2, i3;
 888
 889	for (i = 0; i < 5; i++) {
 890		i1 = n - 1;
 891		i2 = n - 2 - 1;
 892		i3 = n - 5 - 1;
 893
 894		while (i1 > 0) {
 895			d[i1] -= d[i2] ^ d[i3];
 896			i1--; i2--; i3--;
 897
 898			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 899			i1--; i2--; i3--;
 900
 901			if (i2 < 0)
 902				i2 += n;
 903
 904			d[i1] -= d[i2] ^ d[i3];
 905			i1--; i2--; i3--;
 906
 907			if (i3 < 0)
 908				i3 += n;
 909
 910			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 911			i1--; i2--; i3--;
 912		}
 913	}
 914}
 915
 916static void diffuser_b_decrypt(u32 *d, size_t n)
 917{
 918	int i, i1, i2, i3;
 919
 920	for (i = 0; i < 3; i++) {
 921		i1 = 0;
 922		i2 = 2;
 923		i3 = 5;
 924
 925		while (i1 < (n - 1)) {
 926			d[i1] += d[i2] ^ d[i3];
 927			i1++; i2++; i3++;
 928
 929			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 930			i1++; i2++; i3++;
 931
 932			if (i2 >= n)
 933				i2 -= n;
 934
 935			d[i1] += d[i2] ^ d[i3];
 936			i1++; i2++; i3++;
 937
 938			if (i3 >= n)
 939				i3 -= n;
 940
 941			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 942			i1++; i2++; i3++;
 943		}
 944	}
 945}
 946
 947static void diffuser_b_encrypt(u32 *d, size_t n)
 948{
 949	int i, i1, i2, i3;
 950
 951	for (i = 0; i < 3; i++) {
 952		i1 = n - 1;
 953		i2 = 2 - 1;
 954		i3 = 5 - 1;
 955
 956		while (i1 > 0) {
 957			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 958			i1--; i2--; i3--;
 959
 960			if (i3 < 0)
 961				i3 += n;
 962
 963			d[i1] -= d[i2] ^ d[i3];
 964			i1--; i2--; i3--;
 965
 966			if (i2 < 0)
 967				i2 += n;
 968
 969			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 970			i1--; i2--; i3--;
 971
 972			d[i1] -= d[i2] ^ d[i3];
 973			i1--; i2--; i3--;
 974		}
 975	}
 976}
 977
 978static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 979{
 980	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 981	u8 *es, *ks, *data, *data2, *data_offset;
 982	struct skcipher_request *req;
 983	struct scatterlist *sg, *sg2, src, dst;
 984	DECLARE_CRYPTO_WAIT(wait);
 985	int i, r;
 986
 987	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 988	es = kzalloc(16, GFP_NOIO); /* Key for AES */
 989	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 990
 991	if (!req || !es || !ks) {
 992		r = -ENOMEM;
 993		goto out;
 994	}
 995
 996	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 997
 998	/* E(Ks, e(s)) */
 999	sg_init_one(&src, es, 16);
1000	sg_init_one(&dst, ks, 16);
1001	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
1002	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
1003	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1004	if (r)
1005		goto out;
1006
1007	/* E(Ks, e'(s)) */
1008	es[15] = 0x80;
1009	sg_init_one(&dst, &ks[16], 16);
1010	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1011	if (r)
1012		goto out;
1013
1014	sg = crypt_get_sg_data(cc, dmreq->sg_out);
1015	data = kmap_local_page(sg_page(sg));
1016	data_offset = data + sg->offset;
1017
1018	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
1019	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1020		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
1021		data2 = kmap_local_page(sg_page(sg2));
1022		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
1023		kunmap_local(data2);
1024	}
1025
1026	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1027		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1028		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1029		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1030		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1031	}
1032
1033	for (i = 0; i < (cc->sector_size / 32); i++)
1034		crypto_xor(data_offset + i * 32, ks, 32);
1035
1036	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1037		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1038		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1039		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1040		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1041	}
1042
1043	kunmap_local(data);
1044out:
1045	kfree_sensitive(ks);
1046	kfree_sensitive(es);
1047	skcipher_request_free(req);
1048	return r;
1049}
1050
1051static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1052			    struct dm_crypt_request *dmreq)
1053{
1054	int r;
1055
1056	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1057		r = crypt_iv_elephant(cc, dmreq);
1058		if (r)
1059			return r;
1060	}
1061
1062	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1063}
1064
1065static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1066				  struct dm_crypt_request *dmreq)
1067{
1068	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1069		return crypt_iv_elephant(cc, dmreq);
1070
1071	return 0;
1072}
1073
1074static int crypt_iv_elephant_init(struct crypt_config *cc)
1075{
1076	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1077	int key_offset = cc->key_size - cc->key_extra_size;
1078
1079	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1080}
1081
1082static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1083{
1084	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1085	u8 key[ELEPHANT_MAX_KEY_SIZE];
1086
1087	memset(key, 0, cc->key_extra_size);
1088	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1089}
1090
1091static const struct crypt_iv_operations crypt_iv_plain_ops = {
1092	.generator = crypt_iv_plain_gen
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1096	.generator = crypt_iv_plain64_gen
1097};
1098
1099static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1100	.generator = crypt_iv_plain64be_gen
1101};
1102
1103static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1104	.generator = crypt_iv_essiv_gen
1105};
1106
1107static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1108	.ctr	   = crypt_iv_benbi_ctr,
1109	.dtr	   = crypt_iv_benbi_dtr,
1110	.generator = crypt_iv_benbi_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_null_ops = {
1114	.generator = crypt_iv_null_gen
1115};
1116
1117static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1118	.ctr	   = crypt_iv_lmk_ctr,
1119	.dtr	   = crypt_iv_lmk_dtr,
1120	.init	   = crypt_iv_lmk_init,
1121	.wipe	   = crypt_iv_lmk_wipe,
1122	.generator = crypt_iv_lmk_gen,
1123	.post	   = crypt_iv_lmk_post
1124};
1125
1126static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1127	.ctr	   = crypt_iv_tcw_ctr,
1128	.dtr	   = crypt_iv_tcw_dtr,
1129	.init	   = crypt_iv_tcw_init,
1130	.wipe	   = crypt_iv_tcw_wipe,
1131	.generator = crypt_iv_tcw_gen,
1132	.post	   = crypt_iv_tcw_post
1133};
1134
1135static const struct crypt_iv_operations crypt_iv_random_ops = {
1136	.generator = crypt_iv_random_gen
1137};
1138
1139static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1140	.ctr	   = crypt_iv_eboiv_ctr,
1141	.generator = crypt_iv_eboiv_gen
1142};
1143
1144static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1145	.ctr	   = crypt_iv_elephant_ctr,
1146	.dtr	   = crypt_iv_elephant_dtr,
1147	.init	   = crypt_iv_elephant_init,
1148	.wipe	   = crypt_iv_elephant_wipe,
1149	.generator = crypt_iv_elephant_gen,
1150	.post	   = crypt_iv_elephant_post
1151};
1152
1153/*
1154 * Integrity extensions
1155 */
1156static bool crypt_integrity_aead(struct crypt_config *cc)
1157{
1158	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1159}
1160
1161static bool crypt_integrity_hmac(struct crypt_config *cc)
1162{
1163	return crypt_integrity_aead(cc) && cc->key_mac_size;
1164}
1165
1166/* Get sg containing data */
1167static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1168					     struct scatterlist *sg)
1169{
1170	if (unlikely(crypt_integrity_aead(cc)))
1171		return &sg[2];
1172
1173	return sg;
1174}
1175
1176static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1177{
1178	struct bio_integrity_payload *bip;
1179	unsigned int tag_len;
1180	int ret;
1181
1182	if (!bio_sectors(bio) || !io->cc->tuple_size)
1183		return 0;
1184
1185	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1186	if (IS_ERR(bip))
1187		return PTR_ERR(bip);
1188
1189	tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift);
1190
1191	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1192
1193	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1194				     tag_len, offset_in_page(io->integrity_metadata));
1195	if (unlikely(ret != tag_len))
1196		return -ENOMEM;
1197
1198	return 0;
1199}
1200
1201static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1202{
1203#ifdef CONFIG_BLK_DEV_INTEGRITY
1204	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1205	struct mapped_device *md = dm_table_get_md(ti->table);
1206
1207	/* We require an underlying device with non-PI metadata */
1208	if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
1209		ti->error = "Integrity profile not supported.";
1210		return -EINVAL;
1211	}
1212
1213	if (bi->tuple_size < cc->used_tag_size) {
 
1214		ti->error = "Integrity profile tag size mismatch.";
1215		return -EINVAL;
1216	}
1217	cc->tuple_size = bi->tuple_size;
1218	if (1 << bi->interval_exp != cc->sector_size) {
1219		ti->error = "Integrity profile sector size mismatch.";
1220		return -EINVAL;
1221	}
1222
1223	if (crypt_integrity_aead(cc)) {
1224		cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size;
1225		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1226		       cc->integrity_tag_size, cc->integrity_iv_size);
1227
1228		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1229			ti->error = "Integrity AEAD auth tag size is not supported.";
1230			return -EINVAL;
1231		}
1232	} else if (cc->integrity_iv_size)
1233		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1234		       cc->integrity_iv_size);
1235
1236	if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) {
1237		ti->error = "Not enough space for integrity tag in the profile.";
1238		return -EINVAL;
1239	}
1240
1241	return 0;
1242#else
1243	ti->error = "Integrity profile not supported.";
1244	return -EINVAL;
1245#endif
1246}
1247
1248static void crypt_convert_init(struct crypt_config *cc,
1249			       struct convert_context *ctx,
1250			       struct bio *bio_out, struct bio *bio_in,
1251			       sector_t sector)
1252{
1253	ctx->bio_in = bio_in;
1254	ctx->bio_out = bio_out;
1255	if (bio_in)
1256		ctx->iter_in = bio_in->bi_iter;
1257	if (bio_out)
1258		ctx->iter_out = bio_out->bi_iter;
1259	ctx->cc_sector = sector + cc->iv_offset;
1260	ctx->tag_offset = 0;
1261	init_completion(&ctx->restart);
1262}
1263
1264static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1265					     void *req)
1266{
1267	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1268}
1269
1270static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1271{
1272	return (void *)((char *)dmreq - cc->dmreq_start);
1273}
1274
1275static u8 *iv_of_dmreq(struct crypt_config *cc,
1276		       struct dm_crypt_request *dmreq)
1277{
1278	if (crypt_integrity_aead(cc))
1279		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1280			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1281	else
1282		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1283			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1284}
1285
1286static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1287		       struct dm_crypt_request *dmreq)
1288{
1289	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1290}
1291
1292static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1293		       struct dm_crypt_request *dmreq)
1294{
1295	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1296
1297	return (__le64 *) ptr;
1298}
1299
1300static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1301		       struct dm_crypt_request *dmreq)
1302{
1303	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1304		  cc->iv_size + sizeof(uint64_t);
1305
1306	return (unsigned int *)ptr;
1307}
1308
1309static void *tag_from_dmreq(struct crypt_config *cc,
1310				struct dm_crypt_request *dmreq)
1311{
1312	struct convert_context *ctx = dmreq->ctx;
1313	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1314
1315	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1316		cc->tuple_size];
1317}
1318
1319static void *iv_tag_from_dmreq(struct crypt_config *cc,
1320			       struct dm_crypt_request *dmreq)
1321{
1322	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1323}
1324
1325static int crypt_convert_block_aead(struct crypt_config *cc,
1326				     struct convert_context *ctx,
1327				     struct aead_request *req,
1328				     unsigned int tag_offset)
1329{
1330	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1331	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1332	struct dm_crypt_request *dmreq;
1333	u8 *iv, *org_iv, *tag_iv, *tag;
1334	__le64 *sector;
1335	int r = 0;
1336
1337	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1338
1339	/* Reject unexpected unaligned bio. */
1340	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1341		return -EIO;
1342
1343	dmreq = dmreq_of_req(cc, req);
1344	dmreq->iv_sector = ctx->cc_sector;
1345	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1346		dmreq->iv_sector >>= cc->sector_shift;
1347	dmreq->ctx = ctx;
1348
1349	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1350
1351	sector = org_sector_of_dmreq(cc, dmreq);
1352	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1353
1354	iv = iv_of_dmreq(cc, dmreq);
1355	org_iv = org_iv_of_dmreq(cc, dmreq);
1356	tag = tag_from_dmreq(cc, dmreq);
1357	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1358
1359	/* AEAD request:
1360	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1361	 *  | (authenticated) | (auth+encryption) |              |
1362	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1363	 */
1364	sg_init_table(dmreq->sg_in, 4);
1365	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1366	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1367	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1368	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1369
1370	sg_init_table(dmreq->sg_out, 4);
1371	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1372	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1373	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1374	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1375
1376	if (cc->iv_gen_ops) {
1377		/* For READs use IV stored in integrity metadata */
1378		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1379			memcpy(org_iv, tag_iv, cc->iv_size);
1380		} else {
1381			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1382			if (r < 0)
1383				return r;
1384			/* Store generated IV in integrity metadata */
1385			if (cc->integrity_iv_size)
1386				memcpy(tag_iv, org_iv, cc->iv_size);
1387		}
1388		/* Working copy of IV, to be modified in crypto API */
1389		memcpy(iv, org_iv, cc->iv_size);
1390	}
1391
1392	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1393	if (bio_data_dir(ctx->bio_in) == WRITE) {
1394		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1395				       cc->sector_size, iv);
1396		r = crypto_aead_encrypt(req);
1397		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size)
1398			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1399			       cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1400	} else {
1401		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1402				       cc->sector_size + cc->integrity_tag_size, iv);
1403		r = crypto_aead_decrypt(req);
1404	}
1405
1406	if (r == -EBADMSG) {
1407		sector_t s = le64_to_cpu(*sector);
1408
1409		ctx->aead_failed = true;
1410		if (ctx->aead_recheck) {
1411			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1412				    ctx->bio_in->bi_bdev, s);
1413			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1414					 ctx->bio_in, s, 0);
1415		}
1416	}
1417
1418	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1419		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1420
1421	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1422	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1423
1424	return r;
1425}
1426
1427static int crypt_convert_block_skcipher(struct crypt_config *cc,
1428					struct convert_context *ctx,
1429					struct skcipher_request *req,
1430					unsigned int tag_offset)
1431{
1432	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1433	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1434	struct scatterlist *sg_in, *sg_out;
1435	struct dm_crypt_request *dmreq;
1436	u8 *iv, *org_iv, *tag_iv;
1437	__le64 *sector;
1438	int r = 0;
1439
1440	/* Reject unexpected unaligned bio. */
1441	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1442		return -EIO;
1443
1444	dmreq = dmreq_of_req(cc, req);
1445	dmreq->iv_sector = ctx->cc_sector;
1446	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1447		dmreq->iv_sector >>= cc->sector_shift;
1448	dmreq->ctx = ctx;
1449
1450	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1451
1452	iv = iv_of_dmreq(cc, dmreq);
1453	org_iv = org_iv_of_dmreq(cc, dmreq);
1454	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1455
1456	sector = org_sector_of_dmreq(cc, dmreq);
1457	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1458
1459	/* For skcipher we use only the first sg item */
1460	sg_in  = &dmreq->sg_in[0];
1461	sg_out = &dmreq->sg_out[0];
1462
1463	sg_init_table(sg_in, 1);
1464	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1465
1466	sg_init_table(sg_out, 1);
1467	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1468
1469	if (cc->iv_gen_ops) {
1470		/* For READs use IV stored in integrity metadata */
1471		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1472			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1473		} else {
1474			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1475			if (r < 0)
1476				return r;
1477			/* Data can be already preprocessed in generator */
1478			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1479				sg_in = sg_out;
1480			/* Store generated IV in integrity metadata */
1481			if (cc->integrity_iv_size)
1482				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1483		}
1484		/* Working copy of IV, to be modified in crypto API */
1485		memcpy(iv, org_iv, cc->iv_size);
1486	}
1487
1488	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1489
1490	if (bio_data_dir(ctx->bio_in) == WRITE)
1491		r = crypto_skcipher_encrypt(req);
1492	else
1493		r = crypto_skcipher_decrypt(req);
1494
1495	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1496		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1497
1498	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1499	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1500
1501	return r;
1502}
1503
1504static void kcryptd_async_done(void *async_req, int error);
1505
1506static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1507				     struct convert_context *ctx)
1508{
1509	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1510
1511	if (!ctx->r.req) {
1512		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1513		if (!ctx->r.req)
1514			return -ENOMEM;
1515	}
1516
1517	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1518
1519	/*
1520	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1521	 * requests if driver request queue is full.
1522	 */
1523	skcipher_request_set_callback(ctx->r.req,
1524	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1525	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1526
1527	return 0;
1528}
1529
1530static int crypt_alloc_req_aead(struct crypt_config *cc,
1531				 struct convert_context *ctx)
1532{
1533	if (!ctx->r.req_aead) {
1534		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1535		if (!ctx->r.req_aead)
1536			return -ENOMEM;
1537	}
1538
1539	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1540
1541	/*
1542	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1543	 * requests if driver request queue is full.
1544	 */
1545	aead_request_set_callback(ctx->r.req_aead,
1546	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1547	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1548
1549	return 0;
1550}
1551
1552static int crypt_alloc_req(struct crypt_config *cc,
1553			    struct convert_context *ctx)
1554{
1555	if (crypt_integrity_aead(cc))
1556		return crypt_alloc_req_aead(cc, ctx);
1557	else
1558		return crypt_alloc_req_skcipher(cc, ctx);
1559}
1560
1561static void crypt_free_req_skcipher(struct crypt_config *cc,
1562				    struct skcipher_request *req, struct bio *base_bio)
1563{
1564	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1565
1566	if ((struct skcipher_request *)(io + 1) != req)
1567		mempool_free(req, &cc->req_pool);
1568}
1569
1570static void crypt_free_req_aead(struct crypt_config *cc,
1571				struct aead_request *req, struct bio *base_bio)
1572{
1573	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1574
1575	if ((struct aead_request *)(io + 1) != req)
1576		mempool_free(req, &cc->req_pool);
1577}
1578
1579static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1580{
1581	if (crypt_integrity_aead(cc))
1582		crypt_free_req_aead(cc, req, base_bio);
1583	else
1584		crypt_free_req_skcipher(cc, req, base_bio);
1585}
1586
1587/*
1588 * Encrypt / decrypt data from one bio to another one (can be the same one)
1589 */
1590static blk_status_t crypt_convert(struct crypt_config *cc,
1591			 struct convert_context *ctx, bool atomic, bool reset_pending)
1592{
 
1593	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1594	int r;
1595
1596	/*
1597	 * if reset_pending is set we are dealing with the bio for the first time,
1598	 * else we're continuing to work on the previous bio, so don't mess with
1599	 * the cc_pending counter
1600	 */
1601	if (reset_pending)
1602		atomic_set(&ctx->cc_pending, 1);
1603
1604	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1605
1606		r = crypt_alloc_req(cc, ctx);
1607		if (r) {
1608			complete(&ctx->restart);
1609			return BLK_STS_DEV_RESOURCE;
1610		}
1611
1612		atomic_inc(&ctx->cc_pending);
1613
1614		if (crypt_integrity_aead(cc))
1615			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset);
1616		else
1617			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset);
1618
1619		switch (r) {
1620		/*
1621		 * The request was queued by a crypto driver
1622		 * but the driver request queue is full, let's wait.
1623		 */
1624		case -EBUSY:
1625			if (in_interrupt()) {
1626				if (try_wait_for_completion(&ctx->restart)) {
1627					/*
1628					 * we don't have to block to wait for completion,
1629					 * so proceed
1630					 */
1631				} else {
1632					/*
1633					 * we can't wait for completion without blocking
1634					 * exit and continue processing in a workqueue
1635					 */
1636					ctx->r.req = NULL;
1637					ctx->tag_offset++;
1638					ctx->cc_sector += sector_step;
 
1639					return BLK_STS_DEV_RESOURCE;
1640				}
1641			} else {
1642				wait_for_completion(&ctx->restart);
1643			}
1644			reinit_completion(&ctx->restart);
1645			fallthrough;
1646		/*
1647		 * The request is queued and processed asynchronously,
1648		 * completion function kcryptd_async_done() will be called.
1649		 */
1650		case -EINPROGRESS:
1651			ctx->r.req = NULL;
1652			ctx->tag_offset++;
1653			ctx->cc_sector += sector_step;
 
1654			continue;
1655		/*
1656		 * The request was already processed (synchronously).
1657		 */
1658		case 0:
1659			atomic_dec(&ctx->cc_pending);
1660			ctx->cc_sector += sector_step;
1661			ctx->tag_offset++;
1662			if (!atomic)
1663				cond_resched();
1664			continue;
1665		/*
1666		 * There was a data integrity error.
1667		 */
1668		case -EBADMSG:
1669			atomic_dec(&ctx->cc_pending);
1670			return BLK_STS_PROTECTION;
1671		/*
1672		 * There was an error while processing the request.
1673		 */
1674		default:
1675			atomic_dec(&ctx->cc_pending);
1676			return BLK_STS_IOERR;
1677		}
1678	}
1679
1680	return 0;
1681}
1682
1683static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1684
1685/*
1686 * Generate a new unfragmented bio with the given size
1687 * This should never violate the device limitations (but if it did then block
1688 * core should split the bio as needed).
1689 *
1690 * This function may be called concurrently. If we allocate from the mempool
1691 * concurrently, there is a possibility of deadlock. For example, if we have
1692 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1693 * the mempool concurrently, it may deadlock in a situation where both processes
1694 * have allocated 128 pages and the mempool is exhausted.
1695 *
1696 * In order to avoid this scenario we allocate the pages under a mutex.
1697 *
1698 * In order to not degrade performance with excessive locking, we try
1699 * non-blocking allocations without a mutex first but on failure we fallback
1700 * to blocking allocations with a mutex.
1701 *
1702 * In order to reduce allocation overhead, we try to allocate compound pages in
1703 * the first pass. If they are not available, we fall back to the mempool.
1704 */
1705static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1706{
1707	struct crypt_config *cc = io->cc;
1708	struct bio *clone;
1709	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1710	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1711	unsigned int remaining_size;
1712	unsigned int order = MAX_PAGE_ORDER;
1713
1714retry:
1715	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1716		mutex_lock(&cc->bio_alloc_lock);
1717
1718	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1719				 GFP_NOIO, &cc->bs);
1720	clone->bi_private = io;
1721	clone->bi_end_io = crypt_endio;
1722	clone->bi_ioprio = io->base_bio->bi_ioprio;
1723
1724	remaining_size = size;
1725
1726	while (remaining_size) {
1727		struct page *pages;
1728		unsigned size_to_add;
1729		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1730		order = min(order, remaining_order);
1731
1732		while (order > 0) {
1733			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1734					(1 << order) > dm_crypt_pages_per_client))
1735				goto decrease_order;
1736			pages = alloc_pages(gfp_mask
1737				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1738				order);
1739			if (likely(pages != NULL)) {
1740				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1741				goto have_pages;
1742			}
1743decrease_order:
1744			order--;
1745		}
1746
1747		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1748		if (!pages) {
1749			crypt_free_buffer_pages(cc, clone);
1750			bio_put(clone);
1751			gfp_mask |= __GFP_DIRECT_RECLAIM;
1752			order = 0;
1753			goto retry;
1754		}
1755
1756have_pages:
1757		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1758		__bio_add_page(clone, pages, size_to_add, 0);
1759		remaining_size -= size_to_add;
1760	}
1761
1762	/* Allocate space for integrity tags */
1763	if (dm_crypt_integrity_io_alloc(io, clone)) {
1764		crypt_free_buffer_pages(cc, clone);
1765		bio_put(clone);
1766		clone = NULL;
1767	}
1768
1769	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1770		mutex_unlock(&cc->bio_alloc_lock);
1771
1772	return clone;
1773}
1774
1775static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1776{
1777	struct folio_iter fi;
1778
1779	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1780		bio_for_each_folio_all(fi, clone) {
1781			if (folio_test_large(fi.folio)) {
1782				percpu_counter_sub(&cc->n_allocated_pages,
1783						1 << folio_order(fi.folio));
1784				folio_put(fi.folio);
1785			} else {
1786				mempool_free(&fi.folio->page, &cc->page_pool);
1787			}
1788		}
1789	}
1790}
1791
1792static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1793			  struct bio *bio, sector_t sector)
1794{
1795	io->cc = cc;
1796	io->base_bio = bio;
1797	io->sector = sector;
1798	io->error = 0;
1799	io->ctx.aead_recheck = false;
1800	io->ctx.aead_failed = false;
1801	io->ctx.r.req = NULL;
1802	io->integrity_metadata = NULL;
1803	io->integrity_metadata_from_pool = false;
1804	atomic_set(&io->io_pending, 0);
1805}
1806
1807static void crypt_inc_pending(struct dm_crypt_io *io)
1808{
1809	atomic_inc(&io->io_pending);
1810}
1811
1812static void kcryptd_queue_read(struct dm_crypt_io *io);
1813
1814/*
1815 * One of the bios was finished. Check for completion of
1816 * the whole request and correctly clean up the buffer.
1817 */
1818static void crypt_dec_pending(struct dm_crypt_io *io)
1819{
1820	struct crypt_config *cc = io->cc;
1821	struct bio *base_bio = io->base_bio;
1822	blk_status_t error = io->error;
1823
1824	if (!atomic_dec_and_test(&io->io_pending))
1825		return;
1826
1827	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1828	    cc->used_tag_size && bio_data_dir(base_bio) == READ) {
1829		io->ctx.aead_recheck = true;
1830		io->ctx.aead_failed = false;
1831		io->error = 0;
1832		kcryptd_queue_read(io);
1833		return;
1834	}
1835
1836	if (io->ctx.r.req)
1837		crypt_free_req(cc, io->ctx.r.req, base_bio);
1838
1839	if (unlikely(io->integrity_metadata_from_pool))
1840		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1841	else
1842		kfree(io->integrity_metadata);
1843
1844	base_bio->bi_status = error;
1845
1846	bio_endio(base_bio);
1847}
1848
1849/*
1850 * kcryptd/kcryptd_io:
1851 *
1852 * Needed because it would be very unwise to do decryption in an
1853 * interrupt context.
1854 *
1855 * kcryptd performs the actual encryption or decryption.
1856 *
1857 * kcryptd_io performs the IO submission.
1858 *
1859 * They must be separated as otherwise the final stages could be
1860 * starved by new requests which can block in the first stages due
1861 * to memory allocation.
1862 *
1863 * The work is done per CPU global for all dm-crypt instances.
1864 * They should not depend on each other and do not block.
1865 */
1866static void crypt_endio(struct bio *clone)
1867{
1868	struct dm_crypt_io *io = clone->bi_private;
1869	struct crypt_config *cc = io->cc;
1870	unsigned int rw = bio_data_dir(clone);
1871	blk_status_t error = clone->bi_status;
1872
1873	if (io->ctx.aead_recheck && !error) {
1874		kcryptd_queue_crypt(io);
1875		return;
1876	}
1877
1878	/*
1879	 * free the processed pages
1880	 */
1881	if (rw == WRITE || io->ctx.aead_recheck)
1882		crypt_free_buffer_pages(cc, clone);
1883
1884	bio_put(clone);
1885
1886	if (rw == READ && !error) {
1887		kcryptd_queue_crypt(io);
1888		return;
1889	}
1890
1891	if (unlikely(error))
1892		io->error = error;
1893
1894	crypt_dec_pending(io);
1895}
1896
1897#define CRYPT_MAP_READ_GFP GFP_NOWAIT
1898
1899static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1900{
1901	struct crypt_config *cc = io->cc;
1902	struct bio *clone;
1903
1904	if (io->ctx.aead_recheck) {
1905		if (!(gfp & __GFP_DIRECT_RECLAIM))
1906			return 1;
1907		crypt_inc_pending(io);
1908		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1909		if (unlikely(!clone)) {
1910			crypt_dec_pending(io);
1911			return 1;
1912		}
1913		clone->bi_iter.bi_sector = cc->start + io->sector;
1914		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1915		io->saved_bi_iter = clone->bi_iter;
1916		dm_submit_bio_remap(io->base_bio, clone);
1917		return 0;
1918	}
1919
1920	/*
1921	 * We need the original biovec array in order to decrypt the whole bio
1922	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1923	 * worry about the block layer modifying the biovec array; so leverage
1924	 * bio_alloc_clone().
1925	 */
1926	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1927	if (!clone)
1928		return 1;
1929	clone->bi_private = io;
1930	clone->bi_end_io = crypt_endio;
1931
1932	crypt_inc_pending(io);
1933
1934	clone->bi_iter.bi_sector = cc->start + io->sector;
1935
1936	if (dm_crypt_integrity_io_alloc(io, clone)) {
1937		crypt_dec_pending(io);
1938		bio_put(clone);
1939		return 1;
1940	}
1941
1942	dm_submit_bio_remap(io->base_bio, clone);
1943	return 0;
1944}
1945
1946static void kcryptd_io_read_work(struct work_struct *work)
1947{
1948	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1949
1950	crypt_inc_pending(io);
1951	if (kcryptd_io_read(io, GFP_NOIO))
1952		io->error = BLK_STS_RESOURCE;
1953	crypt_dec_pending(io);
1954}
1955
1956static void kcryptd_queue_read(struct dm_crypt_io *io)
1957{
1958	struct crypt_config *cc = io->cc;
1959
1960	INIT_WORK(&io->work, kcryptd_io_read_work);
1961	queue_work(cc->io_queue, &io->work);
1962}
1963
1964static void kcryptd_io_write(struct dm_crypt_io *io)
1965{
1966	struct bio *clone = io->ctx.bio_out;
1967
1968	dm_submit_bio_remap(io->base_bio, clone);
1969}
1970
1971#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1972
1973static int dmcrypt_write(void *data)
1974{
1975	struct crypt_config *cc = data;
1976	struct dm_crypt_io *io;
1977
1978	while (1) {
1979		struct rb_root write_tree;
1980		struct blk_plug plug;
1981
1982		spin_lock_irq(&cc->write_thread_lock);
1983continue_locked:
1984
1985		if (!RB_EMPTY_ROOT(&cc->write_tree))
1986			goto pop_from_list;
1987
1988		set_current_state(TASK_INTERRUPTIBLE);
1989
1990		spin_unlock_irq(&cc->write_thread_lock);
1991
1992		if (unlikely(kthread_should_stop())) {
1993			set_current_state(TASK_RUNNING);
1994			break;
1995		}
1996
1997		schedule();
1998
 
1999		spin_lock_irq(&cc->write_thread_lock);
2000		goto continue_locked;
2001
2002pop_from_list:
2003		write_tree = cc->write_tree;
2004		cc->write_tree = RB_ROOT;
2005		spin_unlock_irq(&cc->write_thread_lock);
2006
2007		BUG_ON(rb_parent(write_tree.rb_node));
2008
2009		/*
2010		 * Note: we cannot walk the tree here with rb_next because
2011		 * the structures may be freed when kcryptd_io_write is called.
2012		 */
2013		blk_start_plug(&plug);
2014		do {
2015			io = crypt_io_from_node(rb_first(&write_tree));
2016			rb_erase(&io->rb_node, &write_tree);
2017			kcryptd_io_write(io);
2018			cond_resched();
2019		} while (!RB_EMPTY_ROOT(&write_tree));
2020		blk_finish_plug(&plug);
2021	}
2022	return 0;
2023}
2024
2025static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2026{
2027	struct bio *clone = io->ctx.bio_out;
2028	struct crypt_config *cc = io->cc;
2029	unsigned long flags;
2030	sector_t sector;
2031	struct rb_node **rbp, *parent;
2032
2033	if (unlikely(io->error)) {
2034		crypt_free_buffer_pages(cc, clone);
2035		bio_put(clone);
2036		crypt_dec_pending(io);
2037		return;
2038	}
2039
2040	/* crypt_convert should have filled the clone bio */
2041	BUG_ON(io->ctx.iter_out.bi_size);
2042
2043	clone->bi_iter.bi_sector = cc->start + io->sector;
2044
2045	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2046	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2047		dm_submit_bio_remap(io->base_bio, clone);
2048		return;
2049	}
2050
2051	spin_lock_irqsave(&cc->write_thread_lock, flags);
2052	if (RB_EMPTY_ROOT(&cc->write_tree))
2053		wake_up_process(cc->write_thread);
2054	rbp = &cc->write_tree.rb_node;
2055	parent = NULL;
2056	sector = io->sector;
2057	while (*rbp) {
2058		parent = *rbp;
2059		if (sector < crypt_io_from_node(parent)->sector)
2060			rbp = &(*rbp)->rb_left;
2061		else
2062			rbp = &(*rbp)->rb_right;
2063	}
2064	rb_link_node(&io->rb_node, parent, rbp);
2065	rb_insert_color(&io->rb_node, &cc->write_tree);
2066	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2067}
2068
2069static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2070				       struct convert_context *ctx)
2071
2072{
2073	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2074		return false;
2075
2076	/*
2077	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2078	 * constraints so they do not need to be issued inline by
2079	 * kcryptd_crypt_write_convert().
2080	 */
2081	switch (bio_op(ctx->bio_in)) {
2082	case REQ_OP_WRITE:
2083	case REQ_OP_WRITE_ZEROES:
2084		return true;
2085	default:
2086		return false;
2087	}
2088}
2089
2090static void kcryptd_crypt_write_continue(struct work_struct *work)
2091{
2092	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2093	struct crypt_config *cc = io->cc;
2094	struct convert_context *ctx = &io->ctx;
2095	int crypt_finished;
 
2096	blk_status_t r;
2097
2098	wait_for_completion(&ctx->restart);
2099	reinit_completion(&ctx->restart);
2100
2101	r = crypt_convert(cc, &io->ctx, true, false);
2102	if (r)
2103		io->error = r;
2104	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2105	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2106		/* Wait for completion signaled by kcryptd_async_done() */
2107		wait_for_completion(&ctx->restart);
2108		crypt_finished = 1;
2109	}
2110
2111	/* Encryption was already finished, submit io now */
2112	if (crypt_finished)
2113		kcryptd_crypt_write_io_submit(io, 0);
 
 
2114
2115	crypt_dec_pending(io);
2116}
2117
2118static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2119{
2120	struct crypt_config *cc = io->cc;
2121	struct convert_context *ctx = &io->ctx;
2122	struct bio *clone;
2123	int crypt_finished;
 
2124	blk_status_t r;
2125
2126	/*
2127	 * Prevent io from disappearing until this function completes.
2128	 */
2129	crypt_inc_pending(io);
2130	crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector);
2131
2132	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2133	if (unlikely(!clone)) {
2134		io->error = BLK_STS_IOERR;
2135		goto dec;
2136	}
2137
2138	io->ctx.bio_out = clone;
2139	io->ctx.iter_out = clone->bi_iter;
2140
2141	if (crypt_integrity_aead(cc)) {
2142		bio_copy_data(clone, io->base_bio);
2143		io->ctx.bio_in = clone;
2144		io->ctx.iter_in = clone->bi_iter;
2145	}
2146
 
 
2147	crypt_inc_pending(io);
2148	r = crypt_convert(cc, ctx,
2149			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2150	/*
2151	 * Crypto API backlogged the request, because its queue was full
2152	 * and we're in softirq context, so continue from a workqueue
2153	 * (TODO: is it actually possible to be in softirq in the write path?)
2154	 */
2155	if (r == BLK_STS_DEV_RESOURCE) {
2156		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2157		queue_work(cc->crypt_queue, &io->work);
2158		return;
2159	}
2160	if (r)
2161		io->error = r;
2162	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2163	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2164		/* Wait for completion signaled by kcryptd_async_done() */
2165		wait_for_completion(&ctx->restart);
2166		crypt_finished = 1;
2167	}
2168
2169	/* Encryption was already finished, submit io now */
2170	if (crypt_finished)
2171		kcryptd_crypt_write_io_submit(io, 0);
 
 
2172
2173dec:
2174	crypt_dec_pending(io);
2175}
2176
2177static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2178{
2179	if (io->ctx.aead_recheck) {
2180		if (!io->error) {
2181			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2182			bio_copy_data(io->base_bio, io->ctx.bio_in);
2183		}
2184		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2185		bio_put(io->ctx.bio_in);
2186	}
2187	crypt_dec_pending(io);
2188}
2189
2190static void kcryptd_crypt_read_continue(struct work_struct *work)
2191{
2192	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2193	struct crypt_config *cc = io->cc;
2194	blk_status_t r;
2195
2196	wait_for_completion(&io->ctx.restart);
2197	reinit_completion(&io->ctx.restart);
2198
2199	r = crypt_convert(cc, &io->ctx, true, false);
2200	if (r)
2201		io->error = r;
2202
2203	if (atomic_dec_and_test(&io->ctx.cc_pending))
2204		kcryptd_crypt_read_done(io);
2205
2206	crypt_dec_pending(io);
2207}
2208
2209static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2210{
2211	struct crypt_config *cc = io->cc;
2212	blk_status_t r;
2213
2214	crypt_inc_pending(io);
2215
2216	if (io->ctx.aead_recheck) {
2217		io->ctx.cc_sector = io->sector + cc->iv_offset;
2218		r = crypt_convert(cc, &io->ctx,
2219				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2220	} else {
2221		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2222				   io->sector);
2223
2224		r = crypt_convert(cc, &io->ctx,
2225				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2226	}
2227	/*
2228	 * Crypto API backlogged the request, because its queue was full
2229	 * and we're in softirq context, so continue from a workqueue
2230	 */
2231	if (r == BLK_STS_DEV_RESOURCE) {
2232		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2233		queue_work(cc->crypt_queue, &io->work);
2234		return;
2235	}
2236	if (r)
2237		io->error = r;
2238
2239	if (atomic_dec_and_test(&io->ctx.cc_pending))
2240		kcryptd_crypt_read_done(io);
2241
2242	crypt_dec_pending(io);
2243}
2244
2245static void kcryptd_async_done(void *data, int error)
2246{
2247	struct dm_crypt_request *dmreq = data;
2248	struct convert_context *ctx = dmreq->ctx;
2249	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2250	struct crypt_config *cc = io->cc;
2251
2252	/*
2253	 * A request from crypto driver backlog is going to be processed now,
2254	 * finish the completion and continue in crypt_convert().
2255	 * (Callback will be called for the second time for this request.)
2256	 */
2257	if (error == -EINPROGRESS) {
2258		complete(&ctx->restart);
2259		return;
2260	}
2261
2262	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2263		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2264
2265	if (error == -EBADMSG) {
2266		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2267
2268		ctx->aead_failed = true;
2269		if (ctx->aead_recheck) {
2270			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2271				    ctx->bio_in->bi_bdev, s);
2272			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2273					 ctx->bio_in, s, 0);
2274		}
2275		io->error = BLK_STS_PROTECTION;
2276	} else if (error < 0)
2277		io->error = BLK_STS_IOERR;
2278
2279	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2280
2281	if (!atomic_dec_and_test(&ctx->cc_pending))
2282		return;
2283
2284	/*
2285	 * The request is fully completed: for inline writes, let
2286	 * kcryptd_crypt_write_convert() do the IO submission.
2287	 */
2288	if (bio_data_dir(io->base_bio) == READ) {
2289		kcryptd_crypt_read_done(io);
2290		return;
2291	}
2292
2293	if (kcryptd_crypt_write_inline(cc, ctx)) {
2294		complete(&ctx->restart);
2295		return;
2296	}
2297
2298	kcryptd_crypt_write_io_submit(io, 1);
2299}
2300
2301static void kcryptd_crypt(struct work_struct *work)
2302{
2303	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2304
2305	if (bio_data_dir(io->base_bio) == READ)
2306		kcryptd_crypt_read_convert(io);
2307	else
2308		kcryptd_crypt_write_convert(io);
2309}
2310
2311static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2312{
2313	struct crypt_config *cc = io->cc;
2314
2315	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2316	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2317		/*
2318		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2319		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2320		 * it is being executed with irqs disabled.
2321		 */
2322		if (in_hardirq() || irqs_disabled()) {
2323			INIT_WORK(&io->work, kcryptd_crypt);
2324			queue_work(system_bh_wq, &io->work);
2325			return;
2326		} else {
2327			kcryptd_crypt(&io->work);
2328			return;
2329		}
2330	}
2331
2332	INIT_WORK(&io->work, kcryptd_crypt);
2333	queue_work(cc->crypt_queue, &io->work);
2334}
2335
2336static void crypt_free_tfms_aead(struct crypt_config *cc)
2337{
2338	if (!cc->cipher_tfm.tfms_aead)
2339		return;
2340
2341	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2342		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2343		cc->cipher_tfm.tfms_aead[0] = NULL;
2344	}
2345
2346	kfree(cc->cipher_tfm.tfms_aead);
2347	cc->cipher_tfm.tfms_aead = NULL;
2348}
2349
2350static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2351{
2352	unsigned int i;
2353
2354	if (!cc->cipher_tfm.tfms)
2355		return;
2356
2357	for (i = 0; i < cc->tfms_count; i++)
2358		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2359			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2360			cc->cipher_tfm.tfms[i] = NULL;
2361		}
2362
2363	kfree(cc->cipher_tfm.tfms);
2364	cc->cipher_tfm.tfms = NULL;
2365}
2366
2367static void crypt_free_tfms(struct crypt_config *cc)
2368{
2369	if (crypt_integrity_aead(cc))
2370		crypt_free_tfms_aead(cc);
2371	else
2372		crypt_free_tfms_skcipher(cc);
2373}
2374
2375static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2376{
2377	unsigned int i;
2378	int err;
2379
2380	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2381				      sizeof(struct crypto_skcipher *),
2382				      GFP_KERNEL);
2383	if (!cc->cipher_tfm.tfms)
2384		return -ENOMEM;
2385
2386	for (i = 0; i < cc->tfms_count; i++) {
2387		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2388						CRYPTO_ALG_ALLOCATES_MEMORY);
2389		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2390			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2391			crypt_free_tfms(cc);
2392			return err;
2393		}
2394	}
2395
2396	/*
2397	 * dm-crypt performance can vary greatly depending on which crypto
2398	 * algorithm implementation is used.  Help people debug performance
2399	 * problems by logging the ->cra_driver_name.
2400	 */
2401	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2402	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2403	return 0;
2404}
2405
2406static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2407{
2408	int err;
2409
2410	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2411	if (!cc->cipher_tfm.tfms)
2412		return -ENOMEM;
2413
2414	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2415						CRYPTO_ALG_ALLOCATES_MEMORY);
2416	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2417		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2418		crypt_free_tfms(cc);
2419		return err;
2420	}
2421
2422	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2423	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2424	return 0;
2425}
2426
2427static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2428{
2429	if (crypt_integrity_aead(cc))
2430		return crypt_alloc_tfms_aead(cc, ciphermode);
2431	else
2432		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2433}
2434
2435static unsigned int crypt_subkey_size(struct crypt_config *cc)
2436{
2437	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2438}
2439
2440static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2441{
2442	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2443}
2444
2445/*
2446 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2447 * the key must be for some reason in special format.
2448 * This funcion converts cc->key to this special format.
2449 */
2450static void crypt_copy_authenckey(char *p, const void *key,
2451				  unsigned int enckeylen, unsigned int authkeylen)
2452{
2453	struct crypto_authenc_key_param *param;
2454	struct rtattr *rta;
2455
2456	rta = (struct rtattr *)p;
2457	param = RTA_DATA(rta);
2458	param->enckeylen = cpu_to_be32(enckeylen);
2459	rta->rta_len = RTA_LENGTH(sizeof(*param));
2460	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2461	p += RTA_SPACE(sizeof(*param));
2462	memcpy(p, key + enckeylen, authkeylen);
2463	p += authkeylen;
2464	memcpy(p, key, enckeylen);
2465}
2466
2467static int crypt_setkey(struct crypt_config *cc)
2468{
2469	unsigned int subkey_size;
2470	int err = 0, i, r;
2471
2472	/* Ignore extra keys (which are used for IV etc) */
2473	subkey_size = crypt_subkey_size(cc);
2474
2475	if (crypt_integrity_hmac(cc)) {
2476		if (subkey_size < cc->key_mac_size)
2477			return -EINVAL;
2478
2479		crypt_copy_authenckey(cc->authenc_key, cc->key,
2480				      subkey_size - cc->key_mac_size,
2481				      cc->key_mac_size);
2482	}
2483
2484	for (i = 0; i < cc->tfms_count; i++) {
2485		if (crypt_integrity_hmac(cc))
2486			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2487				cc->authenc_key, crypt_authenckey_size(cc));
2488		else if (crypt_integrity_aead(cc))
2489			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2490					       cc->key + (i * subkey_size),
2491					       subkey_size);
2492		else
2493			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2494						   cc->key + (i * subkey_size),
2495						   subkey_size);
2496		if (r)
2497			err = r;
2498	}
2499
2500	if (crypt_integrity_hmac(cc))
2501		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2502
2503	return err;
2504}
2505
2506#ifdef CONFIG_KEYS
2507
2508static bool contains_whitespace(const char *str)
2509{
2510	while (*str)
2511		if (isspace(*str++))
2512			return true;
2513	return false;
2514}
2515
2516static int set_key_user(struct crypt_config *cc, struct key *key)
2517{
2518	const struct user_key_payload *ukp;
2519
2520	ukp = user_key_payload_locked(key);
2521	if (!ukp)
2522		return -EKEYREVOKED;
2523
2524	if (cc->key_size != ukp->datalen)
2525		return -EINVAL;
2526
2527	memcpy(cc->key, ukp->data, cc->key_size);
2528
2529	return 0;
2530}
2531
2532static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2533{
2534	const struct encrypted_key_payload *ekp;
2535
2536	ekp = key->payload.data[0];
2537	if (!ekp)
2538		return -EKEYREVOKED;
2539
2540	if (cc->key_size != ekp->decrypted_datalen)
2541		return -EINVAL;
2542
2543	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2544
2545	return 0;
2546}
2547
2548static int set_key_trusted(struct crypt_config *cc, struct key *key)
2549{
2550	const struct trusted_key_payload *tkp;
2551
2552	tkp = key->payload.data[0];
2553	if (!tkp)
2554		return -EKEYREVOKED;
2555
2556	if (cc->key_size != tkp->key_len)
2557		return -EINVAL;
2558
2559	memcpy(cc->key, tkp->key, cc->key_size);
2560
2561	return 0;
2562}
2563
2564static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2565{
2566	char *new_key_string, *key_desc;
2567	int ret;
2568	struct key_type *type;
2569	struct key *key;
2570	int (*set_key)(struct crypt_config *cc, struct key *key);
2571
2572	/*
2573	 * Reject key_string with whitespace. dm core currently lacks code for
2574	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2575	 */
2576	if (contains_whitespace(key_string)) {
2577		DMERR("whitespace chars not allowed in key string");
2578		return -EINVAL;
2579	}
2580
2581	/* look for next ':' separating key_type from key_description */
2582	key_desc = strchr(key_string, ':');
2583	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2584		return -EINVAL;
2585
2586	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2587		type = &key_type_logon;
2588		set_key = set_key_user;
2589	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2590		type = &key_type_user;
2591		set_key = set_key_user;
2592	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2593		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2594		type = &key_type_encrypted;
2595		set_key = set_key_encrypted;
2596	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2597		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2598		type = &key_type_trusted;
2599		set_key = set_key_trusted;
2600	} else {
2601		return -EINVAL;
2602	}
2603
2604	new_key_string = kstrdup(key_string, GFP_KERNEL);
2605	if (!new_key_string)
2606		return -ENOMEM;
2607
2608	key = request_key(type, key_desc + 1, NULL);
2609	if (IS_ERR(key)) {
2610		ret = PTR_ERR(key);
2611		goto free_new_key_string;
2612	}
2613
2614	down_read(&key->sem);
 
2615	ret = set_key(cc, key);
 
 
 
 
 
 
 
2616	up_read(&key->sem);
2617	key_put(key);
2618	if (ret < 0)
2619		goto free_new_key_string;
2620
2621	/* clear the flag since following operations may invalidate previously valid key */
2622	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2623
2624	ret = crypt_setkey(cc);
2625	if (ret)
2626		goto free_new_key_string;
2627
2628	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2629	kfree_sensitive(cc->key_string);
2630	cc->key_string = new_key_string;
2631	return 0;
 
 
2632
2633free_new_key_string:
2634	kfree_sensitive(new_key_string);
2635	return ret;
2636}
2637
2638static int get_key_size(char **key_string)
2639{
2640	char *colon, dummy;
2641	int ret;
2642
2643	if (*key_string[0] != ':')
2644		return strlen(*key_string) >> 1;
2645
2646	/* look for next ':' in key string */
2647	colon = strpbrk(*key_string + 1, ":");
2648	if (!colon)
2649		return -EINVAL;
2650
2651	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2652		return -EINVAL;
2653
2654	*key_string = colon;
2655
2656	/* remaining key string should be :<logon|user>:<key_desc> */
2657
2658	return ret;
2659}
2660
2661#else
2662
2663static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2664{
2665	return -EINVAL;
2666}
2667
2668static int get_key_size(char **key_string)
2669{
2670	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2671}
2672
2673#endif /* CONFIG_KEYS */
2674
2675static int crypt_set_key(struct crypt_config *cc, char *key)
2676{
2677	int r = -EINVAL;
2678	int key_string_len = strlen(key);
2679
2680	/* Hyphen (which gives a key_size of zero) means there is no key. */
2681	if (!cc->key_size && strcmp(key, "-"))
2682		goto out;
2683
2684	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2685	if (key[0] == ':') {
2686		r = crypt_set_keyring_key(cc, key + 1);
2687		goto out;
2688	}
2689
2690	/* clear the flag since following operations may invalidate previously valid key */
2691	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2692
2693	/* wipe references to any kernel keyring key */
2694	kfree_sensitive(cc->key_string);
2695	cc->key_string = NULL;
2696
2697	/* Decode key from its hex representation. */
2698	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2699		goto out;
2700
2701	r = crypt_setkey(cc);
2702	if (!r)
2703		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2704
2705out:
2706	/* Hex key string not needed after here, so wipe it. */
2707	memset(key, '0', key_string_len);
2708
2709	return r;
2710}
2711
2712static int crypt_wipe_key(struct crypt_config *cc)
2713{
2714	int r;
2715
2716	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2717	get_random_bytes(&cc->key, cc->key_size);
2718
2719	/* Wipe IV private keys */
2720	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2721		r = cc->iv_gen_ops->wipe(cc);
2722		if (r)
2723			return r;
2724	}
2725
2726	kfree_sensitive(cc->key_string);
2727	cc->key_string = NULL;
2728	r = crypt_setkey(cc);
2729	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2730
2731	return r;
2732}
2733
2734static void crypt_calculate_pages_per_client(void)
2735{
2736	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2737
2738	if (!dm_crypt_clients_n)
2739		return;
2740
2741	pages /= dm_crypt_clients_n;
2742	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2743		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2744	dm_crypt_pages_per_client = pages;
2745}
2746
2747static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2748{
2749	struct crypt_config *cc = pool_data;
2750	struct page *page;
2751
2752	/*
2753	 * Note, percpu_counter_read_positive() may over (and under) estimate
2754	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2755	 * but avoids potential spinlock contention of an exact result.
2756	 */
2757	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2758	    likely(gfp_mask & __GFP_NORETRY))
2759		return NULL;
2760
2761	page = alloc_page(gfp_mask);
2762	if (likely(page != NULL))
2763		percpu_counter_add(&cc->n_allocated_pages, 1);
2764
2765	return page;
2766}
2767
2768static void crypt_page_free(void *page, void *pool_data)
2769{
2770	struct crypt_config *cc = pool_data;
2771
2772	__free_page(page);
2773	percpu_counter_sub(&cc->n_allocated_pages, 1);
2774}
2775
2776static void crypt_dtr(struct dm_target *ti)
2777{
2778	struct crypt_config *cc = ti->private;
2779
2780	ti->private = NULL;
2781
2782	if (!cc)
2783		return;
2784
2785	if (cc->write_thread)
2786		kthread_stop(cc->write_thread);
2787
2788	if (cc->io_queue)
2789		destroy_workqueue(cc->io_queue);
2790	if (cc->crypt_queue)
2791		destroy_workqueue(cc->crypt_queue);
2792
2793	if (cc->workqueue_id)
2794		ida_free(&workqueue_ida, cc->workqueue_id);
2795
2796	crypt_free_tfms(cc);
2797
2798	bioset_exit(&cc->bs);
2799
2800	mempool_exit(&cc->page_pool);
2801	mempool_exit(&cc->req_pool);
2802	mempool_exit(&cc->tag_pool);
2803
2804	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2805	percpu_counter_destroy(&cc->n_allocated_pages);
2806
2807	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2808		cc->iv_gen_ops->dtr(cc);
2809
2810	if (cc->dev)
2811		dm_put_device(ti, cc->dev);
2812
2813	kfree_sensitive(cc->cipher_string);
2814	kfree_sensitive(cc->key_string);
2815	kfree_sensitive(cc->cipher_auth);
2816	kfree_sensitive(cc->authenc_key);
2817
2818	mutex_destroy(&cc->bio_alloc_lock);
2819
2820	/* Must zero key material before freeing */
2821	kfree_sensitive(cc);
2822
2823	spin_lock(&dm_crypt_clients_lock);
2824	WARN_ON(!dm_crypt_clients_n);
2825	dm_crypt_clients_n--;
2826	crypt_calculate_pages_per_client();
2827	spin_unlock(&dm_crypt_clients_lock);
2828
2829	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2830}
2831
2832static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2833{
2834	struct crypt_config *cc = ti->private;
2835
2836	if (crypt_integrity_aead(cc))
2837		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2838	else
2839		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2840
2841	if (cc->iv_size)
2842		/* at least a 64 bit sector number should fit in our buffer */
2843		cc->iv_size = max(cc->iv_size,
2844				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2845	else if (ivmode) {
2846		DMWARN("Selected cipher does not support IVs");
2847		ivmode = NULL;
2848	}
2849
2850	/* Choose ivmode, see comments at iv code. */
2851	if (ivmode == NULL)
2852		cc->iv_gen_ops = NULL;
2853	else if (strcmp(ivmode, "plain") == 0)
2854		cc->iv_gen_ops = &crypt_iv_plain_ops;
2855	else if (strcmp(ivmode, "plain64") == 0)
2856		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2857	else if (strcmp(ivmode, "plain64be") == 0)
2858		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2859	else if (strcmp(ivmode, "essiv") == 0)
2860		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2861	else if (strcmp(ivmode, "benbi") == 0)
2862		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2863	else if (strcmp(ivmode, "null") == 0)
2864		cc->iv_gen_ops = &crypt_iv_null_ops;
2865	else if (strcmp(ivmode, "eboiv") == 0)
2866		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2867	else if (strcmp(ivmode, "elephant") == 0) {
2868		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2869		cc->key_parts = 2;
2870		cc->key_extra_size = cc->key_size / 2;
2871		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2872			return -EINVAL;
2873		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2874	} else if (strcmp(ivmode, "lmk") == 0) {
2875		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2876		/*
2877		 * Version 2 and 3 is recognised according
2878		 * to length of provided multi-key string.
2879		 * If present (version 3), last key is used as IV seed.
2880		 * All keys (including IV seed) are always the same size.
2881		 */
2882		if (cc->key_size % cc->key_parts) {
2883			cc->key_parts++;
2884			cc->key_extra_size = cc->key_size / cc->key_parts;
2885		}
2886	} else if (strcmp(ivmode, "tcw") == 0) {
2887		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2888		cc->key_parts += 2; /* IV + whitening */
2889		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2890	} else if (strcmp(ivmode, "random") == 0) {
2891		cc->iv_gen_ops = &crypt_iv_random_ops;
2892		/* Need storage space in integrity fields. */
2893		cc->integrity_iv_size = cc->iv_size;
2894	} else {
2895		ti->error = "Invalid IV mode";
2896		return -EINVAL;
2897	}
2898
2899	return 0;
2900}
2901
2902/*
2903 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2904 * The HMAC is needed to calculate tag size (HMAC digest size).
2905 * This should be probably done by crypto-api calls (once available...)
2906 */
2907static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2908{
2909	char *start, *end, *mac_alg = NULL;
2910	struct crypto_ahash *mac;
2911
2912	if (!strstarts(cipher_api, "authenc("))
2913		return 0;
2914
2915	start = strchr(cipher_api, '(');
2916	end = strchr(cipher_api, ',');
2917	if (!start || !end || ++start > end)
2918		return -EINVAL;
2919
2920	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2921	if (!mac_alg)
2922		return -ENOMEM;
2923
2924	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2925	kfree(mac_alg);
2926
2927	if (IS_ERR(mac))
2928		return PTR_ERR(mac);
2929
2930	if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
2931		cc->key_mac_size = crypto_ahash_digestsize(mac);
2932	crypto_free_ahash(mac);
2933
2934	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2935	if (!cc->authenc_key)
2936		return -ENOMEM;
2937
2938	return 0;
2939}
2940
2941static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2942				char **ivmode, char **ivopts)
2943{
2944	struct crypt_config *cc = ti->private;
2945	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2946	int ret = -EINVAL;
2947
2948	cc->tfms_count = 1;
2949
2950	/*
2951	 * New format (capi: prefix)
2952	 * capi:cipher_api_spec-iv:ivopts
2953	 */
2954	tmp = &cipher_in[strlen("capi:")];
2955
2956	/* Separate IV options if present, it can contain another '-' in hash name */
2957	*ivopts = strrchr(tmp, ':');
2958	if (*ivopts) {
2959		**ivopts = '\0';
2960		(*ivopts)++;
2961	}
2962	/* Parse IV mode */
2963	*ivmode = strrchr(tmp, '-');
2964	if (*ivmode) {
2965		**ivmode = '\0';
2966		(*ivmode)++;
2967	}
2968	/* The rest is crypto API spec */
2969	cipher_api = tmp;
2970
2971	/* Alloc AEAD, can be used only in new format. */
2972	if (crypt_integrity_aead(cc)) {
2973		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2974		if (ret < 0) {
2975			ti->error = "Invalid AEAD cipher spec";
2976			return ret;
2977		}
2978	}
2979
2980	if (*ivmode && !strcmp(*ivmode, "lmk"))
2981		cc->tfms_count = 64;
2982
2983	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2984		if (!*ivopts) {
2985			ti->error = "Digest algorithm missing for ESSIV mode";
2986			return -EINVAL;
2987		}
2988		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2989			       cipher_api, *ivopts);
2990		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2991			ti->error = "Cannot allocate cipher string";
2992			return -ENOMEM;
2993		}
2994		cipher_api = buf;
2995	}
2996
2997	cc->key_parts = cc->tfms_count;
2998
2999	/* Allocate cipher */
3000	ret = crypt_alloc_tfms(cc, cipher_api);
3001	if (ret < 0) {
3002		ti->error = "Error allocating crypto tfm";
3003		return ret;
3004	}
3005
3006	if (crypt_integrity_aead(cc))
3007		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
3008	else
3009		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
3010
3011	return 0;
3012}
3013
3014static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
3015				char **ivmode, char **ivopts)
3016{
3017	struct crypt_config *cc = ti->private;
3018	char *tmp, *cipher, *chainmode, *keycount;
3019	char *cipher_api = NULL;
3020	int ret = -EINVAL;
3021	char dummy;
3022
3023	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3024		ti->error = "Bad cipher specification";
3025		return -EINVAL;
3026	}
3027
3028	/*
3029	 * Legacy dm-crypt cipher specification
3030	 * cipher[:keycount]-mode-iv:ivopts
3031	 */
3032	tmp = cipher_in;
3033	keycount = strsep(&tmp, "-");
3034	cipher = strsep(&keycount, ":");
3035
3036	if (!keycount)
3037		cc->tfms_count = 1;
3038	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3039		 !is_power_of_2(cc->tfms_count)) {
3040		ti->error = "Bad cipher key count specification";
3041		return -EINVAL;
3042	}
3043	cc->key_parts = cc->tfms_count;
3044
3045	chainmode = strsep(&tmp, "-");
3046	*ivmode = strsep(&tmp, ":");
3047	*ivopts = tmp;
3048
3049	/*
3050	 * For compatibility with the original dm-crypt mapping format, if
3051	 * only the cipher name is supplied, use cbc-plain.
3052	 */
3053	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3054		chainmode = "cbc";
3055		*ivmode = "plain";
3056	}
3057
3058	if (strcmp(chainmode, "ecb") && !*ivmode) {
3059		ti->error = "IV mechanism required";
3060		return -EINVAL;
3061	}
3062
3063	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3064	if (!cipher_api)
3065		goto bad_mem;
3066
3067	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3068		if (!*ivopts) {
3069			ti->error = "Digest algorithm missing for ESSIV mode";
3070			kfree(cipher_api);
3071			return -EINVAL;
3072		}
3073		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3074			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3075	} else {
3076		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3077			       "%s(%s)", chainmode, cipher);
3078	}
3079	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3080		kfree(cipher_api);
3081		goto bad_mem;
3082	}
3083
3084	/* Allocate cipher */
3085	ret = crypt_alloc_tfms(cc, cipher_api);
3086	if (ret < 0) {
3087		ti->error = "Error allocating crypto tfm";
3088		kfree(cipher_api);
3089		return ret;
3090	}
3091	kfree(cipher_api);
3092
3093	return 0;
3094bad_mem:
3095	ti->error = "Cannot allocate cipher strings";
3096	return -ENOMEM;
3097}
3098
3099static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3100{
3101	struct crypt_config *cc = ti->private;
3102	char *ivmode = NULL, *ivopts = NULL;
3103	int ret;
3104
3105	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3106	if (!cc->cipher_string) {
3107		ti->error = "Cannot allocate cipher strings";
3108		return -ENOMEM;
3109	}
3110
3111	if (strstarts(cipher_in, "capi:"))
3112		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3113	else
3114		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3115	if (ret)
3116		return ret;
3117
3118	/* Initialize IV */
3119	ret = crypt_ctr_ivmode(ti, ivmode);
3120	if (ret < 0)
3121		return ret;
3122
3123	/* Initialize and set key */
3124	ret = crypt_set_key(cc, key);
3125	if (ret < 0) {
3126		ti->error = "Error decoding and setting key";
3127		return ret;
3128	}
3129
3130	/* Allocate IV */
3131	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3132		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3133		if (ret < 0) {
3134			ti->error = "Error creating IV";
3135			return ret;
3136		}
3137	}
3138
3139	/* Initialize IV (set keys for ESSIV etc) */
3140	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3141		ret = cc->iv_gen_ops->init(cc);
3142		if (ret < 0) {
3143			ti->error = "Error initialising IV";
3144			return ret;
3145		}
3146	}
3147
3148	/* wipe the kernel key payload copy */
3149	if (cc->key_string)
3150		memset(cc->key, 0, cc->key_size * sizeof(u8));
3151
3152	return ret;
3153}
3154
3155static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3156{
3157	struct crypt_config *cc = ti->private;
3158	struct dm_arg_set as;
3159	static const struct dm_arg _args[] = {
3160		{0, 9, "Invalid number of feature args"},
3161	};
3162	unsigned int opt_params, val;
3163	const char *opt_string, *sval;
3164	char dummy;
3165	int ret;
3166
3167	/* Optional parameters */
3168	as.argc = argc;
3169	as.argv = argv;
3170
3171	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3172	if (ret)
3173		return ret;
3174
3175	while (opt_params--) {
3176		opt_string = dm_shift_arg(&as);
3177		if (!opt_string) {
3178			ti->error = "Not enough feature arguments";
3179			return -EINVAL;
3180		}
3181
3182		if (!strcasecmp(opt_string, "allow_discards"))
3183			ti->num_discard_bios = 1;
3184
3185		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3186			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3187		else if (!strcasecmp(opt_string, "high_priority"))
3188			set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3189
3190		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3191			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3192		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3193			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3194		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3195			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3196		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3197			if (val == 0 || val > MAX_TAG_SIZE) {
3198				ti->error = "Invalid integrity arguments";
3199				return -EINVAL;
3200			}
3201			cc->used_tag_size = val;
3202			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3203			if (!strcasecmp(sval, "aead")) {
3204				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3205			} else if (strcasecmp(sval, "none")) {
3206				ti->error = "Unknown integrity profile";
3207				return -EINVAL;
3208			}
3209
3210			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3211			if (!cc->cipher_auth)
3212				return -ENOMEM;
3213		} else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) {
3214			if (!val) {
3215				ti->error = "Invalid integrity_key_size argument";
3216				return -EINVAL;
3217			}
3218			cc->key_mac_size = val;
3219			set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3220		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3221			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3222			    cc->sector_size > 4096 ||
3223			    (cc->sector_size & (cc->sector_size - 1))) {
3224				ti->error = "Invalid feature value for sector_size";
3225				return -EINVAL;
3226			}
3227			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3228				ti->error = "Device size is not multiple of sector_size feature";
3229				return -EINVAL;
3230			}
3231			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3232		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3233			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3234		else {
3235			ti->error = "Invalid feature arguments";
3236			return -EINVAL;
3237		}
3238	}
3239
3240	return 0;
3241}
3242
3243#ifdef CONFIG_BLK_DEV_ZONED
3244static int crypt_report_zones(struct dm_target *ti,
3245		struct dm_report_zones_args *args, unsigned int nr_zones)
3246{
3247	struct crypt_config *cc = ti->private;
3248
3249	return dm_report_zones(cc->dev->bdev, cc->start,
3250			cc->start + dm_target_offset(ti, args->next_sector),
3251			args, nr_zones);
3252}
3253#else
3254#define crypt_report_zones NULL
3255#endif
3256
3257/*
3258 * Construct an encryption mapping:
3259 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3260 */
3261static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3262{
3263	struct crypt_config *cc;
3264	const char *devname = dm_table_device_name(ti->table);
3265	int key_size, wq_id;
3266	unsigned int align_mask;
3267	unsigned int common_wq_flags;
3268	unsigned long long tmpll;
3269	int ret;
3270	size_t iv_size_padding, additional_req_size;
3271	char dummy;
3272
3273	if (argc < 5) {
3274		ti->error = "Not enough arguments";
3275		return -EINVAL;
3276	}
3277
3278	key_size = get_key_size(&argv[1]);
3279	if (key_size < 0) {
3280		ti->error = "Cannot parse key size";
3281		return -EINVAL;
3282	}
3283
3284	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3285	if (!cc) {
3286		ti->error = "Cannot allocate encryption context";
3287		return -ENOMEM;
3288	}
3289	cc->key_size = key_size;
3290	cc->sector_size = (1 << SECTOR_SHIFT);
3291	cc->sector_shift = 0;
3292
3293	ti->private = cc;
3294
3295	spin_lock(&dm_crypt_clients_lock);
3296	dm_crypt_clients_n++;
3297	crypt_calculate_pages_per_client();
3298	spin_unlock(&dm_crypt_clients_lock);
3299
3300	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3301	if (ret < 0)
3302		goto bad;
3303
3304	/* Optional parameters need to be read before cipher constructor */
3305	if (argc > 5) {
3306		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3307		if (ret)
3308			goto bad;
3309	}
3310
3311	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3312	if (ret < 0)
3313		goto bad;
3314
3315	if (crypt_integrity_aead(cc)) {
3316		cc->dmreq_start = sizeof(struct aead_request);
3317		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3318		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3319	} else {
3320		cc->dmreq_start = sizeof(struct skcipher_request);
3321		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3322		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3323	}
3324	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3325
3326	if (align_mask < CRYPTO_MINALIGN) {
3327		/* Allocate the padding exactly */
3328		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3329				& align_mask;
3330	} else {
3331		/*
3332		 * If the cipher requires greater alignment than kmalloc
3333		 * alignment, we don't know the exact position of the
3334		 * initialization vector. We must assume worst case.
3335		 */
3336		iv_size_padding = align_mask;
3337	}
3338
3339	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3340	additional_req_size = sizeof(struct dm_crypt_request) +
3341		iv_size_padding + cc->iv_size +
3342		cc->iv_size +
3343		sizeof(uint64_t) +
3344		sizeof(unsigned int);
3345
3346	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3347	if (ret) {
3348		ti->error = "Cannot allocate crypt request mempool";
3349		goto bad;
3350	}
3351
3352	cc->per_bio_data_size = ti->per_io_data_size =
3353		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3354		      ARCH_DMA_MINALIGN);
3355
3356	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3357	if (ret) {
3358		ti->error = "Cannot allocate page mempool";
3359		goto bad;
3360	}
3361
3362	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3363	if (ret) {
3364		ti->error = "Cannot allocate crypt bioset";
3365		goto bad;
3366	}
3367
3368	mutex_init(&cc->bio_alloc_lock);
3369
3370	ret = -EINVAL;
3371	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3372	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3373		ti->error = "Invalid iv_offset sector";
3374		goto bad;
3375	}
3376	cc->iv_offset = tmpll;
3377
3378	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3379	if (ret) {
3380		ti->error = "Device lookup failed";
3381		goto bad;
3382	}
3383
3384	ret = -EINVAL;
3385	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3386		ti->error = "Invalid device sector";
3387		goto bad;
3388	}
3389	cc->start = tmpll;
3390
3391	if (bdev_is_zoned(cc->dev->bdev)) {
3392		/*
3393		 * For zoned block devices, we need to preserve the issuer write
3394		 * ordering. To do so, disable write workqueues and force inline
3395		 * encryption completion.
3396		 */
3397		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3398		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3399
3400		/*
3401		 * All zone append writes to a zone of a zoned block device will
3402		 * have the same BIO sector, the start of the zone. When the
3403		 * cypher IV mode uses sector values, all data targeting a
3404		 * zone will be encrypted using the first sector numbers of the
3405		 * zone. This will not result in write errors but will
3406		 * cause most reads to fail as reads will use the sector values
3407		 * for the actual data locations, resulting in IV mismatch.
3408		 * To avoid this problem, ask DM core to emulate zone append
3409		 * operations with regular writes.
3410		 */
3411		DMDEBUG("Zone append operations will be emulated");
3412		ti->emulate_zone_append = true;
3413	}
3414
3415	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3416		ret = crypt_integrity_ctr(cc, ti);
3417		if (ret)
3418			goto bad;
3419
3420		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size;
3421		if (!cc->tag_pool_max_sectors)
3422			cc->tag_pool_max_sectors = 1;
3423
3424		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3425			cc->tag_pool_max_sectors * cc->tuple_size);
3426		if (ret) {
3427			ti->error = "Cannot allocate integrity tags mempool";
3428			goto bad;
3429		}
3430
3431		cc->tag_pool_max_sectors <<= cc->sector_shift;
3432	}
3433
3434	wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3435	if (wq_id < 0) {
3436		ti->error = "Couldn't get workqueue id";
3437		ret = wq_id;
3438		goto bad;
3439	}
3440	cc->workqueue_id = wq_id;
3441
3442	ret = -ENOMEM;
3443	common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3444	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3445		common_wq_flags |= WQ_HIGHPRI;
3446
3447	cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3448	if (!cc->io_queue) {
3449		ti->error = "Couldn't create kcryptd io queue";
3450		goto bad;
3451	}
3452
3453	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3454		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3455						  common_wq_flags | WQ_CPU_INTENSIVE,
3456						  1, devname, wq_id);
3457	} else {
3458		/*
3459		 * While crypt_queue is certainly CPU intensive, the use of
3460		 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3461		 */
3462		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3463						  common_wq_flags | WQ_UNBOUND,
3464						  num_online_cpus(), devname, wq_id);
3465	}
3466	if (!cc->crypt_queue) {
3467		ti->error = "Couldn't create kcryptd queue";
3468		goto bad;
3469	}
3470
3471	spin_lock_init(&cc->write_thread_lock);
3472	cc->write_tree = RB_ROOT;
3473
3474	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3475	if (IS_ERR(cc->write_thread)) {
3476		ret = PTR_ERR(cc->write_thread);
3477		cc->write_thread = NULL;
3478		ti->error = "Couldn't spawn write thread";
3479		goto bad;
3480	}
3481	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3482		set_user_nice(cc->write_thread, MIN_NICE);
3483
3484	ti->num_flush_bios = 1;
3485	ti->limit_swap_bios = true;
3486	ti->accounts_remapped_io = true;
3487
3488	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3489	return 0;
3490
3491bad:
3492	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3493	crypt_dtr(ti);
3494	return ret;
3495}
3496
3497static int crypt_map(struct dm_target *ti, struct bio *bio)
3498{
3499	struct dm_crypt_io *io;
3500	struct crypt_config *cc = ti->private;
3501	unsigned max_sectors;
3502
3503	/*
3504	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3505	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3506	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3507	 */
3508	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3509	    bio_op(bio) == REQ_OP_DISCARD)) {
3510		bio_set_dev(bio, cc->dev->bdev);
3511		if (bio_sectors(bio))
3512			bio->bi_iter.bi_sector = cc->start +
3513				dm_target_offset(ti, bio->bi_iter.bi_sector);
3514		return DM_MAPIO_REMAPPED;
3515	}
3516
3517	/*
3518	 * Check if bio is too large, split as needed.
3519	 */
3520	max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE);
3521	if (unlikely(bio_sectors(bio) > max_sectors))
3522		dm_accept_partial_bio(bio, max_sectors);
3523
3524	/*
3525	 * Ensure that bio is a multiple of internal sector encryption size
3526	 * and is aligned to this size as defined in IO hints.
3527	 */
3528	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3529		return DM_MAPIO_KILL;
3530
3531	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3532		return DM_MAPIO_KILL;
3533
3534	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3535	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3536
3537	if (cc->tuple_size) {
3538		unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift);
3539
3540		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3541			io->integrity_metadata = NULL;
3542		else
3543			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3544
3545		if (unlikely(!io->integrity_metadata)) {
3546			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3547				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3548			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3549			io->integrity_metadata_from_pool = true;
3550		}
3551	}
3552
3553	if (crypt_integrity_aead(cc))
3554		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3555	else
3556		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3557
3558	if (bio_data_dir(io->base_bio) == READ) {
3559		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3560			kcryptd_queue_read(io);
3561	} else
3562		kcryptd_queue_crypt(io);
3563
3564	return DM_MAPIO_SUBMITTED;
3565}
3566
3567static char hex2asc(unsigned char c)
3568{
3569	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3570}
3571
3572static void crypt_status(struct dm_target *ti, status_type_t type,
3573			 unsigned int status_flags, char *result, unsigned int maxlen)
3574{
3575	struct crypt_config *cc = ti->private;
3576	unsigned int i, sz = 0;
3577	int num_feature_args = 0;
3578
3579	switch (type) {
3580	case STATUSTYPE_INFO:
3581		result[0] = '\0';
3582		break;
3583
3584	case STATUSTYPE_TABLE:
3585		DMEMIT("%s ", cc->cipher_string);
3586
3587		if (cc->key_size > 0) {
3588			if (cc->key_string)
3589				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3590			else {
3591				for (i = 0; i < cc->key_size; i++) {
3592					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3593					       hex2asc(cc->key[i] & 0xf));
3594				}
3595			}
3596		} else
3597			DMEMIT("-");
3598
3599		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3600				cc->dev->name, (unsigned long long)cc->start);
3601
3602		num_feature_args += !!ti->num_discard_bios;
3603		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3604		num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3605		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3606		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3607		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3608		num_feature_args += !!cc->used_tag_size;
3609		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3610		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3611		num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
 
3612		if (num_feature_args) {
3613			DMEMIT(" %d", num_feature_args);
3614			if (ti->num_discard_bios)
3615				DMEMIT(" allow_discards");
3616			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3617				DMEMIT(" same_cpu_crypt");
3618			if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3619				DMEMIT(" high_priority");
3620			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3621				DMEMIT(" submit_from_crypt_cpus");
3622			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3623				DMEMIT(" no_read_workqueue");
3624			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3625				DMEMIT(" no_write_workqueue");
3626			if (cc->used_tag_size)
3627				DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth);
3628			if (cc->sector_size != (1 << SECTOR_SHIFT))
3629				DMEMIT(" sector_size:%d", cc->sector_size);
3630			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3631				DMEMIT(" iv_large_sectors");
3632			if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
3633				DMEMIT(" integrity_key_size:%u", cc->key_mac_size);
3634		}
3635		break;
3636
3637	case STATUSTYPE_IMA:
3638		DMEMIT_TARGET_NAME_VERSION(ti->type);
3639		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3640		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3641		DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3642		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3643		       'y' : 'n');
3644		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3645		       'y' : 'n');
3646		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3647		       'y' : 'n');
3648		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3649		       'y' : 'n');
3650
3651		if (cc->used_tag_size)
3652			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3653			       cc->used_tag_size, cc->cipher_auth);
3654		if (cc->sector_size != (1 << SECTOR_SHIFT))
3655			DMEMIT(",sector_size=%d", cc->sector_size);
3656		if (cc->cipher_string)
3657			DMEMIT(",cipher_string=%s", cc->cipher_string);
3658
3659		DMEMIT(",key_size=%u", cc->key_size);
3660		DMEMIT(",key_parts=%u", cc->key_parts);
3661		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3662		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3663		DMEMIT(";");
3664		break;
3665	}
3666}
3667
3668static void crypt_postsuspend(struct dm_target *ti)
3669{
3670	struct crypt_config *cc = ti->private;
3671
3672	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3673}
3674
3675static int crypt_preresume(struct dm_target *ti)
3676{
3677	struct crypt_config *cc = ti->private;
3678
3679	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3680		DMERR("aborting resume - crypt key is not set.");
3681		return -EAGAIN;
3682	}
3683
3684	return 0;
3685}
3686
3687static void crypt_resume(struct dm_target *ti)
3688{
3689	struct crypt_config *cc = ti->private;
3690
3691	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3692}
3693
3694/* Message interface
3695 *	key set <key>
3696 *	key wipe
3697 */
3698static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3699			 char *result, unsigned int maxlen)
3700{
3701	struct crypt_config *cc = ti->private;
3702	int key_size, ret = -EINVAL;
3703
3704	if (argc < 2)
3705		goto error;
3706
3707	if (!strcasecmp(argv[0], "key")) {
3708		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3709			DMWARN("not suspended during key manipulation.");
3710			return -EINVAL;
3711		}
3712		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3713			/* The key size may not be changed. */
3714			key_size = get_key_size(&argv[2]);
3715			if (key_size < 0 || cc->key_size != key_size) {
3716				memset(argv[2], '0', strlen(argv[2]));
3717				return -EINVAL;
3718			}
3719
3720			ret = crypt_set_key(cc, argv[2]);
3721			if (ret)
3722				return ret;
3723			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3724				ret = cc->iv_gen_ops->init(cc);
3725			/* wipe the kernel key payload copy */
3726			if (cc->key_string)
3727				memset(cc->key, 0, cc->key_size * sizeof(u8));
3728			return ret;
3729		}
3730		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3731			return crypt_wipe_key(cc);
3732	}
3733
3734error:
3735	DMWARN("unrecognised message received.");
3736	return -EINVAL;
3737}
3738
3739static int crypt_iterate_devices(struct dm_target *ti,
3740				 iterate_devices_callout_fn fn, void *data)
3741{
3742	struct crypt_config *cc = ti->private;
3743
3744	return fn(ti, cc->dev, cc->start, ti->len, data);
3745}
3746
3747static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3748{
3749	struct crypt_config *cc = ti->private;
3750
 
 
 
 
 
 
 
 
3751	limits->logical_block_size =
3752		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3753	limits->physical_block_size =
3754		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3755	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3756	limits->dma_alignment = limits->logical_block_size - 1;
3757}
3758
3759static struct target_type crypt_target = {
3760	.name   = "crypt",
3761	.version = {1, 28, 0},
3762	.module = THIS_MODULE,
3763	.ctr    = crypt_ctr,
3764	.dtr    = crypt_dtr,
3765	.features = DM_TARGET_ZONED_HM,
3766	.report_zones = crypt_report_zones,
3767	.map    = crypt_map,
3768	.status = crypt_status,
3769	.postsuspend = crypt_postsuspend,
3770	.preresume = crypt_preresume,
3771	.resume = crypt_resume,
3772	.message = crypt_message,
3773	.iterate_devices = crypt_iterate_devices,
3774	.io_hints = crypt_io_hints,
3775};
3776module_dm(crypt);
3777
3778MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3779MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3780MODULE_LICENSE("GPL");