Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   7 *
   8 * This file is released under the GPL.
   9 */
  10
  11#include <linux/completion.h>
  12#include <linux/err.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/key.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-integrity.h>
  20#include <linux/mempool.h>
  21#include <linux/slab.h>
  22#include <linux/crypto.h>
  23#include <linux/workqueue.h>
  24#include <linux/kthread.h>
  25#include <linux/backing-dev.h>
  26#include <linux/atomic.h>
  27#include <linux/scatterlist.h>
  28#include <linux/rbtree.h>
  29#include <linux/ctype.h>
  30#include <asm/page.h>
  31#include <asm/unaligned.h>
  32#include <crypto/hash.h>
  33#include <crypto/md5.h>
 
  34#include <crypto/skcipher.h>
  35#include <crypto/aead.h>
  36#include <crypto/authenc.h>
  37#include <crypto/utils.h>
  38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  39#include <linux/key-type.h>
  40#include <keys/user-type.h>
  41#include <keys/encrypted-type.h>
  42#include <keys/trusted-type.h>
  43
  44#include <linux/device-mapper.h>
  45
  46#include "dm-audit.h"
  47
  48#define DM_MSG_PREFIX "crypt"
  49
  50/*
  51 * context holding the current state of a multi-part conversion
  52 */
  53struct convert_context {
  54	struct completion restart;
  55	struct bio *bio_in;
  56	struct bvec_iter iter_in;
  57	struct bio *bio_out;
 
  58	struct bvec_iter iter_out;
 
  59	atomic_t cc_pending;
  60	u64 cc_sector;
  61	union {
  62		struct skcipher_request *req;
  63		struct aead_request *req_aead;
  64	} r;
  65	bool aead_recheck;
  66	bool aead_failed;
  67
  68};
  69
  70/*
  71 * per bio private data
  72 */
  73struct dm_crypt_io {
  74	struct crypt_config *cc;
  75	struct bio *base_bio;
  76	u8 *integrity_metadata;
  77	bool integrity_metadata_from_pool:1;
  78
  79	struct work_struct work;
  80
  81	struct convert_context ctx;
  82
  83	atomic_t io_pending;
  84	blk_status_t error;
  85	sector_t sector;
  86
  87	struct bvec_iter saved_bi_iter;
  88
  89	struct rb_node rb_node;
  90} CRYPTO_MINALIGN_ATTR;
  91
  92struct dm_crypt_request {
  93	struct convert_context *ctx;
  94	struct scatterlist sg_in[4];
  95	struct scatterlist sg_out[4];
  96	u64 iv_sector;
  97};
  98
  99struct crypt_config;
 100
 101struct crypt_iv_operations {
 102	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
 103		   const char *opts);
 104	void (*dtr)(struct crypt_config *cc);
 105	int (*init)(struct crypt_config *cc);
 106	int (*wipe)(struct crypt_config *cc);
 107	int (*generator)(struct crypt_config *cc, u8 *iv,
 108			 struct dm_crypt_request *dmreq);
 109	int (*post)(struct crypt_config *cc, u8 *iv,
 110		    struct dm_crypt_request *dmreq);
 111};
 112
 
 
 
 
 
 113struct iv_benbi_private {
 114	int shift;
 115};
 116
 117#define LMK_SEED_SIZE 64 /* hash + 0 */
 118struct iv_lmk_private {
 119	struct crypto_shash *hash_tfm;
 120	u8 *seed;
 121};
 122
 123#define TCW_WHITENING_SIZE 16
 124struct iv_tcw_private {
 125	struct crypto_shash *crc32_tfm;
 126	u8 *iv_seed;
 127	u8 *whitening;
 128};
 129
 130#define ELEPHANT_MAX_KEY_SIZE 32
 131struct iv_elephant_private {
 132	struct crypto_skcipher *tfm;
 133};
 134
 135/*
 136 * Crypt: maps a linear range of a block device
 137 * and encrypts / decrypts at the same time.
 138 */
 139enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 140	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 141	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
 142	     DM_CRYPT_WRITE_INLINE };
 143
 144enum cipher_flags {
 145	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
 146	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 147	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
 148};
 149
 150/*
 151 * The fields in here must be read only after initialization.
 152 */
 153struct crypt_config {
 154	struct dm_dev *dev;
 155	sector_t start;
 156
 157	struct percpu_counter n_allocated_pages;
 
 
 
 
 
 
 
 158
 159	struct workqueue_struct *io_queue;
 160	struct workqueue_struct *crypt_queue;
 161
 162	spinlock_t write_thread_lock;
 163	struct task_struct *write_thread;
 
 164	struct rb_root write_tree;
 165
 
 166	char *cipher_string;
 167	char *cipher_auth;
 168	char *key_string;
 169
 170	const struct crypt_iv_operations *iv_gen_ops;
 171	union {
 
 172		struct iv_benbi_private benbi;
 173		struct iv_lmk_private lmk;
 174		struct iv_tcw_private tcw;
 175		struct iv_elephant_private elephant;
 176	} iv_gen_private;
 177	u64 iv_offset;
 178	unsigned int iv_size;
 179	unsigned short sector_size;
 180	unsigned char sector_shift;
 181
 182	union {
 183		struct crypto_skcipher **tfms;
 184		struct crypto_aead **tfms_aead;
 185	} cipher_tfm;
 186	unsigned int tfms_count;
 187	unsigned long cipher_flags;
 188
 189	/*
 190	 * Layout of each crypto request:
 191	 *
 192	 *   struct skcipher_request
 193	 *      context
 194	 *      padding
 195	 *   struct dm_crypt_request
 196	 *      padding
 197	 *   IV
 198	 *
 199	 * The padding is added so that dm_crypt_request and the IV are
 200	 * correctly aligned.
 201	 */
 202	unsigned int dmreq_start;
 203
 204	unsigned int per_bio_data_size;
 205
 206	unsigned long flags;
 207	unsigned int key_size;
 208	unsigned int key_parts;      /* independent parts in key buffer */
 209	unsigned int key_extra_size; /* additional keys length */
 210	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 211
 212	unsigned int integrity_tag_size;
 213	unsigned int integrity_iv_size;
 214	unsigned int on_disk_tag_size;
 215
 216	/*
 217	 * pool for per bio private data, crypto requests,
 218	 * encryption requeusts/buffer pages and integrity tags
 219	 */
 220	unsigned int tag_pool_max_sectors;
 221	mempool_t tag_pool;
 222	mempool_t req_pool;
 223	mempool_t page_pool;
 224
 225	struct bio_set bs;
 226	struct mutex bio_alloc_lock;
 227
 228	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 229	u8 key[] __counted_by(key_size);
 230};
 231
 232#define MIN_IOS		64
 233#define MAX_TAG_SIZE	480
 234#define POOL_ENTRY_SIZE	512
 235
 236static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 237static unsigned int dm_crypt_clients_n;
 238static volatile unsigned long dm_crypt_pages_per_client;
 239#define DM_CRYPT_MEMORY_PERCENT			2
 240#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
 241
 242static void crypt_endio(struct bio *clone);
 243static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 244static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 245					     struct scatterlist *sg);
 246
 247static bool crypt_integrity_aead(struct crypt_config *cc);
 248
 249/*
 250 * Use this to access cipher attributes that are independent of the key.
 251 */
 252static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 253{
 254	return cc->cipher_tfm.tfms[0];
 255}
 256
 257static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 258{
 259	return cc->cipher_tfm.tfms_aead[0];
 260}
 261
 262/*
 263 * Different IV generation algorithms:
 264 *
 265 * plain: the initial vector is the 32-bit little-endian version of the sector
 266 *        number, padded with zeros if necessary.
 267 *
 268 * plain64: the initial vector is the 64-bit little-endian version of the sector
 269 *        number, padded with zeros if necessary.
 270 *
 271 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 272 *        number, padded with zeros if necessary.
 273 *
 274 * essiv: "encrypted sector|salt initial vector", the sector number is
 275 *        encrypted with the bulk cipher using a salt as key. The salt
 276 *        should be derived from the bulk cipher's key via hashing.
 277 *
 278 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 279 *        (needed for LRW-32-AES and possible other narrow block modes)
 280 *
 281 * null: the initial vector is always zero.  Provides compatibility with
 282 *       obsolete loop_fish2 devices.  Do not use for new devices.
 283 *
 284 * lmk:  Compatible implementation of the block chaining mode used
 285 *       by the Loop-AES block device encryption system
 286 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 287 *       It operates on full 512 byte sectors and uses CBC
 288 *       with an IV derived from the sector number, the data and
 289 *       optionally extra IV seed.
 290 *       This means that after decryption the first block
 291 *       of sector must be tweaked according to decrypted data.
 292 *       Loop-AES can use three encryption schemes:
 293 *         version 1: is plain aes-cbc mode
 294 *         version 2: uses 64 multikey scheme with lmk IV generator
 295 *         version 3: the same as version 2 with additional IV seed
 296 *                   (it uses 65 keys, last key is used as IV seed)
 297 *
 298 * tcw:  Compatible implementation of the block chaining mode used
 299 *       by the TrueCrypt device encryption system (prior to version 4.1).
 300 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 301 *       It operates on full 512 byte sectors and uses CBC
 302 *       with an IV derived from initial key and the sector number.
 303 *       In addition, whitening value is applied on every sector, whitening
 304 *       is calculated from initial key, sector number and mixed using CRC32.
 305 *       Note that this encryption scheme is vulnerable to watermarking attacks
 306 *       and should be used for old compatible containers access only.
 307 *
 308 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 309 *        The IV is encrypted little-endian byte-offset (with the same key
 310 *        and cipher as the volume).
 311 *
 312 * elephant: The extended version of eboiv with additional Elephant diffuser
 313 *           used with Bitlocker CBC mode.
 314 *           This mode was used in older Windows systems
 315 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 316 */
 317
 318static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 319			      struct dm_crypt_request *dmreq)
 320{
 321	memset(iv, 0, cc->iv_size);
 322	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 323
 324	return 0;
 325}
 326
 327static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 328				struct dm_crypt_request *dmreq)
 329{
 330	memset(iv, 0, cc->iv_size);
 331	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 332
 333	return 0;
 334}
 335
 336static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 337				  struct dm_crypt_request *dmreq)
 338{
 339	memset(iv, 0, cc->iv_size);
 340	/* iv_size is at least of size u64; usually it is 16 bytes */
 341	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342
 343	return 0;
 344}
 345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 347			      struct dm_crypt_request *dmreq)
 348{
 349	/*
 350	 * ESSIV encryption of the IV is now handled by the crypto API,
 351	 * so just pass the plain sector number here.
 352	 */
 353	memset(iv, 0, cc->iv_size);
 354	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 
 355
 356	return 0;
 357}
 358
 359static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 360			      const char *opts)
 361{
 362	unsigned int bs;
 363	int log;
 364
 365	if (crypt_integrity_aead(cc))
 366		bs = crypto_aead_blocksize(any_tfm_aead(cc));
 367	else
 368		bs = crypto_skcipher_blocksize(any_tfm(cc));
 369	log = ilog2(bs);
 370
 371	/*
 372	 * We need to calculate how far we must shift the sector count
 373	 * to get the cipher block count, we use this shift in _gen.
 374	 */
 375	if (1 << log != bs) {
 376		ti->error = "cypher blocksize is not a power of 2";
 377		return -EINVAL;
 378	}
 379
 380	if (log > 9) {
 381		ti->error = "cypher blocksize is > 512";
 382		return -EINVAL;
 383	}
 384
 385	cc->iv_gen_private.benbi.shift = 9 - log;
 386
 387	return 0;
 388}
 389
 390static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 391{
 392}
 393
 394static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 395			      struct dm_crypt_request *dmreq)
 396{
 397	__be64 val;
 398
 399	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 400
 401	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 402	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 403
 404	return 0;
 405}
 406
 407static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 408			     struct dm_crypt_request *dmreq)
 409{
 410	memset(iv, 0, cc->iv_size);
 411
 412	return 0;
 413}
 414
 415static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 416{
 417	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 418
 419	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 420		crypto_free_shash(lmk->hash_tfm);
 421	lmk->hash_tfm = NULL;
 422
 423	kfree_sensitive(lmk->seed);
 424	lmk->seed = NULL;
 425}
 426
 427static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 428			    const char *opts)
 429{
 430	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 431
 432	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 433		ti->error = "Unsupported sector size for LMK";
 434		return -EINVAL;
 435	}
 436
 437	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
 438					   CRYPTO_ALG_ALLOCATES_MEMORY);
 439	if (IS_ERR(lmk->hash_tfm)) {
 440		ti->error = "Error initializing LMK hash";
 441		return PTR_ERR(lmk->hash_tfm);
 442	}
 443
 444	/* No seed in LMK version 2 */
 445	if (cc->key_parts == cc->tfms_count) {
 446		lmk->seed = NULL;
 447		return 0;
 448	}
 449
 450	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 451	if (!lmk->seed) {
 452		crypt_iv_lmk_dtr(cc);
 453		ti->error = "Error kmallocing seed storage in LMK";
 454		return -ENOMEM;
 455	}
 456
 457	return 0;
 458}
 459
 460static int crypt_iv_lmk_init(struct crypt_config *cc)
 461{
 462	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 463	int subkey_size = cc->key_size / cc->key_parts;
 464
 465	/* LMK seed is on the position of LMK_KEYS + 1 key */
 466	if (lmk->seed)
 467		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 468		       crypto_shash_digestsize(lmk->hash_tfm));
 469
 470	return 0;
 471}
 472
 473static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 474{
 475	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 476
 477	if (lmk->seed)
 478		memset(lmk->seed, 0, LMK_SEED_SIZE);
 479
 480	return 0;
 481}
 482
 483static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 484			    struct dm_crypt_request *dmreq,
 485			    u8 *data)
 486{
 487	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 488	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 489	struct md5_state md5state;
 490	__le32 buf[4];
 491	int i, r;
 492
 493	desc->tfm = lmk->hash_tfm;
 
 494
 495	r = crypto_shash_init(desc);
 496	if (r)
 497		return r;
 498
 499	if (lmk->seed) {
 500		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 501		if (r)
 502			return r;
 503	}
 504
 505	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 506	r = crypto_shash_update(desc, data + 16, 16 * 31);
 507	if (r)
 508		return r;
 509
 510	/* Sector is cropped to 56 bits here */
 511	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 512	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 513	buf[2] = cpu_to_le32(4024);
 514	buf[3] = 0;
 515	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 516	if (r)
 517		return r;
 518
 519	/* No MD5 padding here */
 520	r = crypto_shash_export(desc, &md5state);
 521	if (r)
 522		return r;
 523
 524	for (i = 0; i < MD5_HASH_WORDS; i++)
 525		__cpu_to_le32s(&md5state.hash[i]);
 526	memcpy(iv, &md5state.hash, cc->iv_size);
 527
 528	return 0;
 529}
 530
 531static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 532			    struct dm_crypt_request *dmreq)
 533{
 534	struct scatterlist *sg;
 535	u8 *src;
 536	int r = 0;
 537
 538	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 539		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 540		src = kmap_local_page(sg_page(sg));
 541		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 542		kunmap_local(src);
 543	} else
 544		memset(iv, 0, cc->iv_size);
 545
 546	return r;
 547}
 548
 549static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 550			     struct dm_crypt_request *dmreq)
 551{
 552	struct scatterlist *sg;
 553	u8 *dst;
 554	int r;
 555
 556	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 557		return 0;
 558
 559	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 560	dst = kmap_local_page(sg_page(sg));
 561	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 562
 563	/* Tweak the first block of plaintext sector */
 564	if (!r)
 565		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 566
 567	kunmap_local(dst);
 568	return r;
 569}
 570
 571static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 572{
 573	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 574
 575	kfree_sensitive(tcw->iv_seed);
 576	tcw->iv_seed = NULL;
 577	kfree_sensitive(tcw->whitening);
 578	tcw->whitening = NULL;
 579
 580	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 581		crypto_free_shash(tcw->crc32_tfm);
 582	tcw->crc32_tfm = NULL;
 583}
 584
 585static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 586			    const char *opts)
 587{
 588	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 589
 590	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 591		ti->error = "Unsupported sector size for TCW";
 592		return -EINVAL;
 593	}
 594
 595	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 596		ti->error = "Wrong key size for TCW";
 597		return -EINVAL;
 598	}
 599
 600	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
 601					    CRYPTO_ALG_ALLOCATES_MEMORY);
 602	if (IS_ERR(tcw->crc32_tfm)) {
 603		ti->error = "Error initializing CRC32 in TCW";
 604		return PTR_ERR(tcw->crc32_tfm);
 605	}
 606
 607	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 608	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 609	if (!tcw->iv_seed || !tcw->whitening) {
 610		crypt_iv_tcw_dtr(cc);
 611		ti->error = "Error allocating seed storage in TCW";
 612		return -ENOMEM;
 613	}
 614
 615	return 0;
 616}
 617
 618static int crypt_iv_tcw_init(struct crypt_config *cc)
 619{
 620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 622
 623	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 624	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 625	       TCW_WHITENING_SIZE);
 626
 627	return 0;
 628}
 629
 630static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 631{
 632	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 633
 634	memset(tcw->iv_seed, 0, cc->iv_size);
 635	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 636
 637	return 0;
 638}
 639
 640static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 641				  struct dm_crypt_request *dmreq,
 642				  u8 *data)
 643{
 644	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 645	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 646	u8 buf[TCW_WHITENING_SIZE];
 647	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 648	int i, r;
 649
 650	/* xor whitening with sector number */
 651	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 652	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 
 653
 654	/* calculate crc32 for every 32bit part and xor it */
 655	desc->tfm = tcw->crc32_tfm;
 
 656	for (i = 0; i < 4; i++) {
 657		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
 
 
 
 
 
 
 658		if (r)
 659			goto out;
 660	}
 661	crypto_xor(&buf[0], &buf[12], 4);
 662	crypto_xor(&buf[4], &buf[8], 4);
 663
 664	/* apply whitening (8 bytes) to whole sector */
 665	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 666		crypto_xor(data + i * 8, buf, 8);
 667out:
 668	memzero_explicit(buf, sizeof(buf));
 669	return r;
 670}
 671
 672static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 673			    struct dm_crypt_request *dmreq)
 674{
 675	struct scatterlist *sg;
 676	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 677	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 678	u8 *src;
 679	int r = 0;
 680
 681	/* Remove whitening from ciphertext */
 682	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 683		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 684		src = kmap_local_page(sg_page(sg));
 685		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 686		kunmap_local(src);
 687	}
 688
 689	/* Calculate IV */
 690	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 
 691	if (cc->iv_size > 8)
 692		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 693			       cc->iv_size - 8);
 694
 695	return r;
 696}
 697
 698static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 699			     struct dm_crypt_request *dmreq)
 700{
 701	struct scatterlist *sg;
 702	u8 *dst;
 703	int r;
 704
 705	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 706		return 0;
 707
 708	/* Apply whitening on ciphertext */
 709	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 710	dst = kmap_local_page(sg_page(sg));
 711	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 712	kunmap_local(dst);
 713
 714	return r;
 715}
 716
 717static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 718				struct dm_crypt_request *dmreq)
 719{
 720	/* Used only for writes, there must be an additional space to store IV */
 721	get_random_bytes(iv, cc->iv_size);
 722	return 0;
 723}
 724
 725static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 726			    const char *opts)
 727{
 728	if (crypt_integrity_aead(cc)) {
 729		ti->error = "AEAD transforms not supported for EBOIV";
 730		return -EINVAL;
 731	}
 732
 733	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 734		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
 735		return -EINVAL;
 736	}
 737
 738	return 0;
 739}
 740
 741static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 742			    struct dm_crypt_request *dmreq)
 743{
 744	struct crypto_skcipher *tfm = any_tfm(cc);
 745	struct skcipher_request *req;
 746	struct scatterlist src, dst;
 747	DECLARE_CRYPTO_WAIT(wait);
 748	unsigned int reqsize;
 749	int err;
 750	u8 *buf;
 751
 752	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
 753	reqsize = ALIGN(reqsize, __alignof__(__le64));
 754
 755	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
 756	if (!req)
 757		return -ENOMEM;
 758
 759	skcipher_request_set_tfm(req, tfm);
 760
 761	buf = (u8 *)req + reqsize;
 762	memset(buf, 0, cc->iv_size);
 763	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 764
 765	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 766	sg_init_one(&dst, iv, cc->iv_size);
 767	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 768	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 769	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 770	kfree_sensitive(req);
 771
 772	return err;
 773}
 774
 775static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 776{
 777	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 778
 779	crypto_free_skcipher(elephant->tfm);
 780	elephant->tfm = NULL;
 781}
 782
 783static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 784			    const char *opts)
 785{
 786	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 787	int r;
 788
 789	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
 790					      CRYPTO_ALG_ALLOCATES_MEMORY);
 791	if (IS_ERR(elephant->tfm)) {
 792		r = PTR_ERR(elephant->tfm);
 793		elephant->tfm = NULL;
 794		return r;
 795	}
 796
 797	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 798	if (r)
 799		crypt_iv_elephant_dtr(cc);
 800	return r;
 801}
 802
 803static void diffuser_disk_to_cpu(u32 *d, size_t n)
 804{
 805#ifndef __LITTLE_ENDIAN
 806	int i;
 807
 808	for (i = 0; i < n; i++)
 809		d[i] = le32_to_cpu((__le32)d[i]);
 810#endif
 811}
 812
 813static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 814{
 815#ifndef __LITTLE_ENDIAN
 816	int i;
 817
 818	for (i = 0; i < n; i++)
 819		d[i] = cpu_to_le32((u32)d[i]);
 820#endif
 821}
 822
 823static void diffuser_a_decrypt(u32 *d, size_t n)
 824{
 825	int i, i1, i2, i3;
 826
 827	for (i = 0; i < 5; i++) {
 828		i1 = 0;
 829		i2 = n - 2;
 830		i3 = n - 5;
 831
 832		while (i1 < (n - 1)) {
 833			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 834			i1++; i2++; i3++;
 835
 836			if (i3 >= n)
 837				i3 -= n;
 838
 839			d[i1] += d[i2] ^ d[i3];
 840			i1++; i2++; i3++;
 841
 842			if (i2 >= n)
 843				i2 -= n;
 844
 845			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 846			i1++; i2++; i3++;
 847
 848			d[i1] += d[i2] ^ d[i3];
 849			i1++; i2++; i3++;
 850		}
 851	}
 852}
 853
 854static void diffuser_a_encrypt(u32 *d, size_t n)
 855{
 856	int i, i1, i2, i3;
 857
 858	for (i = 0; i < 5; i++) {
 859		i1 = n - 1;
 860		i2 = n - 2 - 1;
 861		i3 = n - 5 - 1;
 862
 863		while (i1 > 0) {
 864			d[i1] -= d[i2] ^ d[i3];
 865			i1--; i2--; i3--;
 866
 867			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 868			i1--; i2--; i3--;
 869
 870			if (i2 < 0)
 871				i2 += n;
 872
 873			d[i1] -= d[i2] ^ d[i3];
 874			i1--; i2--; i3--;
 875
 876			if (i3 < 0)
 877				i3 += n;
 878
 879			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 880			i1--; i2--; i3--;
 881		}
 882	}
 883}
 884
 885static void diffuser_b_decrypt(u32 *d, size_t n)
 886{
 887	int i, i1, i2, i3;
 888
 889	for (i = 0; i < 3; i++) {
 890		i1 = 0;
 891		i2 = 2;
 892		i3 = 5;
 893
 894		while (i1 < (n - 1)) {
 895			d[i1] += d[i2] ^ d[i3];
 896			i1++; i2++; i3++;
 897
 898			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 899			i1++; i2++; i3++;
 900
 901			if (i2 >= n)
 902				i2 -= n;
 903
 904			d[i1] += d[i2] ^ d[i3];
 905			i1++; i2++; i3++;
 906
 907			if (i3 >= n)
 908				i3 -= n;
 909
 910			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 911			i1++; i2++; i3++;
 912		}
 913	}
 914}
 915
 916static void diffuser_b_encrypt(u32 *d, size_t n)
 917{
 918	int i, i1, i2, i3;
 919
 920	for (i = 0; i < 3; i++) {
 921		i1 = n - 1;
 922		i2 = 2 - 1;
 923		i3 = 5 - 1;
 924
 925		while (i1 > 0) {
 926			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 927			i1--; i2--; i3--;
 928
 929			if (i3 < 0)
 930				i3 += n;
 931
 932			d[i1] -= d[i2] ^ d[i3];
 933			i1--; i2--; i3--;
 934
 935			if (i2 < 0)
 936				i2 += n;
 937
 938			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 939			i1--; i2--; i3--;
 940
 941			d[i1] -= d[i2] ^ d[i3];
 942			i1--; i2--; i3--;
 943		}
 944	}
 945}
 946
 947static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 948{
 949	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 950	u8 *es, *ks, *data, *data2, *data_offset;
 951	struct skcipher_request *req;
 952	struct scatterlist *sg, *sg2, src, dst;
 953	DECLARE_CRYPTO_WAIT(wait);
 954	int i, r;
 955
 956	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 957	es = kzalloc(16, GFP_NOIO); /* Key for AES */
 958	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 959
 960	if (!req || !es || !ks) {
 961		r = -ENOMEM;
 962		goto out;
 963	}
 964
 965	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 966
 967	/* E(Ks, e(s)) */
 968	sg_init_one(&src, es, 16);
 969	sg_init_one(&dst, ks, 16);
 970	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
 971	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 972	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 973	if (r)
 974		goto out;
 975
 976	/* E(Ks, e'(s)) */
 977	es[15] = 0x80;
 978	sg_init_one(&dst, &ks[16], 16);
 979	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 980	if (r)
 981		goto out;
 982
 983	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 984	data = kmap_local_page(sg_page(sg));
 985	data_offset = data + sg->offset;
 986
 987	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
 988	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 989		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
 990		data2 = kmap_local_page(sg_page(sg2));
 991		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
 992		kunmap_local(data2);
 993	}
 994
 995	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 996		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
 997		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
 998		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
 999		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1000	}
1001
1002	for (i = 0; i < (cc->sector_size / 32); i++)
1003		crypto_xor(data_offset + i * 32, ks, 32);
1004
1005	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1006		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1008		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1010	}
1011
1012	kunmap_local(data);
1013out:
1014	kfree_sensitive(ks);
1015	kfree_sensitive(es);
1016	skcipher_request_free(req);
1017	return r;
1018}
1019
1020static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1021			    struct dm_crypt_request *dmreq)
1022{
1023	int r;
1024
1025	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1026		r = crypt_iv_elephant(cc, dmreq);
1027		if (r)
1028			return r;
1029	}
1030
1031	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1032}
1033
1034static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1035				  struct dm_crypt_request *dmreq)
1036{
1037	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1038		return crypt_iv_elephant(cc, dmreq);
1039
1040	return 0;
1041}
1042
1043static int crypt_iv_elephant_init(struct crypt_config *cc)
1044{
1045	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1046	int key_offset = cc->key_size - cc->key_extra_size;
1047
1048	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1049}
1050
1051static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1052{
1053	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1054	u8 key[ELEPHANT_MAX_KEY_SIZE];
1055
1056	memset(key, 0, cc->key_extra_size);
1057	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1058}
1059
1060static const struct crypt_iv_operations crypt_iv_plain_ops = {
1061	.generator = crypt_iv_plain_gen
1062};
1063
1064static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1065	.generator = crypt_iv_plain64_gen
1066};
1067
1068static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1069	.generator = crypt_iv_plain64be_gen
1070};
1071
1072static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1073	.generator = crypt_iv_essiv_gen
1074};
1075
1076static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1077	.ctr	   = crypt_iv_benbi_ctr,
1078	.dtr	   = crypt_iv_benbi_dtr,
1079	.generator = crypt_iv_benbi_gen
1080};
1081
1082static const struct crypt_iv_operations crypt_iv_null_ops = {
1083	.generator = crypt_iv_null_gen
1084};
1085
1086static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1087	.ctr	   = crypt_iv_lmk_ctr,
1088	.dtr	   = crypt_iv_lmk_dtr,
1089	.init	   = crypt_iv_lmk_init,
1090	.wipe	   = crypt_iv_lmk_wipe,
1091	.generator = crypt_iv_lmk_gen,
1092	.post	   = crypt_iv_lmk_post
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1096	.ctr	   = crypt_iv_tcw_ctr,
1097	.dtr	   = crypt_iv_tcw_dtr,
1098	.init	   = crypt_iv_tcw_init,
1099	.wipe	   = crypt_iv_tcw_wipe,
1100	.generator = crypt_iv_tcw_gen,
1101	.post	   = crypt_iv_tcw_post
1102};
1103
1104static const struct crypt_iv_operations crypt_iv_random_ops = {
1105	.generator = crypt_iv_random_gen
1106};
1107
1108static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1109	.ctr	   = crypt_iv_eboiv_ctr,
1110	.generator = crypt_iv_eboiv_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1114	.ctr	   = crypt_iv_elephant_ctr,
1115	.dtr	   = crypt_iv_elephant_dtr,
1116	.init	   = crypt_iv_elephant_init,
1117	.wipe	   = crypt_iv_elephant_wipe,
1118	.generator = crypt_iv_elephant_gen,
1119	.post	   = crypt_iv_elephant_post
1120};
1121
1122/*
1123 * Integrity extensions
1124 */
1125static bool crypt_integrity_aead(struct crypt_config *cc)
1126{
1127	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1128}
1129
1130static bool crypt_integrity_hmac(struct crypt_config *cc)
1131{
1132	return crypt_integrity_aead(cc) && cc->key_mac_size;
1133}
1134
1135/* Get sg containing data */
1136static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1137					     struct scatterlist *sg)
1138{
1139	if (unlikely(crypt_integrity_aead(cc)))
1140		return &sg[2];
1141
1142	return sg;
1143}
1144
1145static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1146{
1147	struct bio_integrity_payload *bip;
1148	unsigned int tag_len;
1149	int ret;
1150
1151	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1152		return 0;
1153
1154	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1155	if (IS_ERR(bip))
1156		return PTR_ERR(bip);
1157
1158	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1159
1160	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1161
1162	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1163				     tag_len, offset_in_page(io->integrity_metadata));
1164	if (unlikely(ret != tag_len))
1165		return -ENOMEM;
1166
1167	return 0;
1168}
1169
1170static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1171{
1172#ifdef CONFIG_BLK_DEV_INTEGRITY
1173	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1174	struct mapped_device *md = dm_table_get_md(ti->table);
1175
1176	/* From now we require underlying device with our integrity profile */
1177	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1178		ti->error = "Integrity profile not supported.";
1179		return -EINVAL;
1180	}
1181
1182	if (bi->tag_size != cc->on_disk_tag_size ||
1183	    bi->tuple_size != cc->on_disk_tag_size) {
1184		ti->error = "Integrity profile tag size mismatch.";
1185		return -EINVAL;
1186	}
1187	if (1 << bi->interval_exp != cc->sector_size) {
1188		ti->error = "Integrity profile sector size mismatch.";
1189		return -EINVAL;
1190	}
1191
1192	if (crypt_integrity_aead(cc)) {
1193		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1194		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1195		       cc->integrity_tag_size, cc->integrity_iv_size);
1196
1197		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1198			ti->error = "Integrity AEAD auth tag size is not supported.";
1199			return -EINVAL;
1200		}
1201	} else if (cc->integrity_iv_size)
1202		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1203		       cc->integrity_iv_size);
1204
1205	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1206		ti->error = "Not enough space for integrity tag in the profile.";
1207		return -EINVAL;
1208	}
1209
1210	return 0;
1211#else
1212	ti->error = "Integrity profile not supported.";
1213	return -EINVAL;
1214#endif
1215}
1216
1217static void crypt_convert_init(struct crypt_config *cc,
1218			       struct convert_context *ctx,
1219			       struct bio *bio_out, struct bio *bio_in,
1220			       sector_t sector)
1221{
1222	ctx->bio_in = bio_in;
1223	ctx->bio_out = bio_out;
1224	if (bio_in)
1225		ctx->iter_in = bio_in->bi_iter;
1226	if (bio_out)
1227		ctx->iter_out = bio_out->bi_iter;
1228	ctx->cc_sector = sector + cc->iv_offset;
1229	init_completion(&ctx->restart);
1230}
1231
1232static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1233					     void *req)
1234{
1235	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1236}
1237
1238static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 
1239{
1240	return (void *)((char *)dmreq - cc->dmreq_start);
1241}
1242
1243static u8 *iv_of_dmreq(struct crypt_config *cc,
1244		       struct dm_crypt_request *dmreq)
1245{
1246	if (crypt_integrity_aead(cc))
1247		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1249	else
1250		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1252}
1253
1254static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1255		       struct dm_crypt_request *dmreq)
1256{
1257	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1258}
1259
1260static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1261		       struct dm_crypt_request *dmreq)
1262{
1263	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1264
1265	return (__le64 *) ptr;
1266}
1267
1268static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1269		       struct dm_crypt_request *dmreq)
1270{
1271	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1272		  cc->iv_size + sizeof(uint64_t);
1273
1274	return (unsigned int *)ptr;
1275}
1276
1277static void *tag_from_dmreq(struct crypt_config *cc,
1278				struct dm_crypt_request *dmreq)
1279{
1280	struct convert_context *ctx = dmreq->ctx;
1281	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1282
1283	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1284		cc->on_disk_tag_size];
1285}
1286
1287static void *iv_tag_from_dmreq(struct crypt_config *cc,
1288			       struct dm_crypt_request *dmreq)
1289{
1290	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1291}
1292
1293static int crypt_convert_block_aead(struct crypt_config *cc,
1294				     struct convert_context *ctx,
1295				     struct aead_request *req,
1296				     unsigned int tag_offset)
1297{
1298	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1299	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1300	struct dm_crypt_request *dmreq;
1301	u8 *iv, *org_iv, *tag_iv, *tag;
1302	__le64 *sector;
1303	int r = 0;
1304
1305	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1306
1307	/* Reject unexpected unaligned bio. */
1308	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1309		return -EIO;
1310
1311	dmreq = dmreq_of_req(cc, req);
1312	dmreq->iv_sector = ctx->cc_sector;
1313	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1314		dmreq->iv_sector >>= cc->sector_shift;
1315	dmreq->ctx = ctx;
1316
1317	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1318
1319	sector = org_sector_of_dmreq(cc, dmreq);
1320	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1321
1322	iv = iv_of_dmreq(cc, dmreq);
1323	org_iv = org_iv_of_dmreq(cc, dmreq);
1324	tag = tag_from_dmreq(cc, dmreq);
1325	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1326
1327	/* AEAD request:
1328	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1329	 *  | (authenticated) | (auth+encryption) |              |
1330	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1331	 */
1332	sg_init_table(dmreq->sg_in, 4);
1333	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1334	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1335	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1336	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1337
1338	sg_init_table(dmreq->sg_out, 4);
1339	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1340	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1341	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1342	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1343
1344	if (cc->iv_gen_ops) {
1345		/* For READs use IV stored in integrity metadata */
1346		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1347			memcpy(org_iv, tag_iv, cc->iv_size);
1348		} else {
1349			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1350			if (r < 0)
1351				return r;
1352			/* Store generated IV in integrity metadata */
1353			if (cc->integrity_iv_size)
1354				memcpy(tag_iv, org_iv, cc->iv_size);
1355		}
1356		/* Working copy of IV, to be modified in crypto API */
1357		memcpy(iv, org_iv, cc->iv_size);
1358	}
1359
1360	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1361	if (bio_data_dir(ctx->bio_in) == WRITE) {
1362		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1363				       cc->sector_size, iv);
1364		r = crypto_aead_encrypt(req);
1365		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1366			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1367			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1368	} else {
1369		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1370				       cc->sector_size + cc->integrity_tag_size, iv);
1371		r = crypto_aead_decrypt(req);
1372	}
1373
1374	if (r == -EBADMSG) {
1375		sector_t s = le64_to_cpu(*sector);
1376
1377		ctx->aead_failed = true;
1378		if (ctx->aead_recheck) {
1379			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380				    ctx->bio_in->bi_bdev, s);
1381			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1382					 ctx->bio_in, s, 0);
1383		}
1384	}
1385
1386	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1387		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1388
1389	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1390	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1391
1392	return r;
1393}
1394
1395static int crypt_convert_block_skcipher(struct crypt_config *cc,
1396					struct convert_context *ctx,
1397					struct skcipher_request *req,
1398					unsigned int tag_offset)
1399{
1400	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1401	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1402	struct scatterlist *sg_in, *sg_out;
1403	struct dm_crypt_request *dmreq;
1404	u8 *iv, *org_iv, *tag_iv;
1405	__le64 *sector;
1406	int r = 0;
1407
1408	/* Reject unexpected unaligned bio. */
1409	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1410		return -EIO;
1411
1412	dmreq = dmreq_of_req(cc, req);
1413	dmreq->iv_sector = ctx->cc_sector;
1414	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1415		dmreq->iv_sector >>= cc->sector_shift;
1416	dmreq->ctx = ctx;
 
 
 
 
 
 
 
1417
1418	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1419
1420	iv = iv_of_dmreq(cc, dmreq);
1421	org_iv = org_iv_of_dmreq(cc, dmreq);
1422	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1423
1424	sector = org_sector_of_dmreq(cc, dmreq);
1425	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1426
1427	/* For skcipher we use only the first sg item */
1428	sg_in  = &dmreq->sg_in[0];
1429	sg_out = &dmreq->sg_out[0];
1430
1431	sg_init_table(sg_in, 1);
1432	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1433
1434	sg_init_table(sg_out, 1);
1435	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1436
1437	if (cc->iv_gen_ops) {
1438		/* For READs use IV stored in integrity metadata */
1439		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1440			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1441		} else {
1442			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1443			if (r < 0)
1444				return r;
1445			/* Data can be already preprocessed in generator */
1446			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1447				sg_in = sg_out;
1448			/* Store generated IV in integrity metadata */
1449			if (cc->integrity_iv_size)
1450				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1451		}
1452		/* Working copy of IV, to be modified in crypto API */
1453		memcpy(iv, org_iv, cc->iv_size);
1454	}
1455
1456	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
 
1457
1458	if (bio_data_dir(ctx->bio_in) == WRITE)
1459		r = crypto_skcipher_encrypt(req);
1460	else
1461		r = crypto_skcipher_decrypt(req);
1462
1463	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1464		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1465
1466	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1467	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1468
1469	return r;
1470}
1471
1472static void kcryptd_async_done(void *async_req, int error);
 
1473
1474static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1475				     struct convert_context *ctx)
1476{
1477	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1478
1479	if (!ctx->r.req) {
1480		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1481		if (!ctx->r.req)
1482			return -ENOMEM;
1483	}
1484
1485	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1486
1487	/*
1488	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1489	 * requests if driver request queue is full.
1490	 */
1491	skcipher_request_set_callback(ctx->r.req,
1492	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1493	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1494
1495	return 0;
1496}
1497
1498static int crypt_alloc_req_aead(struct crypt_config *cc,
1499				 struct convert_context *ctx)
1500{
1501	if (!ctx->r.req_aead) {
1502		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1503		if (!ctx->r.req_aead)
1504			return -ENOMEM;
1505	}
1506
1507	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1508
1509	/*
1510	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1511	 * requests if driver request queue is full.
1512	 */
1513	aead_request_set_callback(ctx->r.req_aead,
1514	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1515	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1516
1517	return 0;
1518}
1519
1520static int crypt_alloc_req(struct crypt_config *cc,
1521			    struct convert_context *ctx)
1522{
1523	if (crypt_integrity_aead(cc))
1524		return crypt_alloc_req_aead(cc, ctx);
1525	else
1526		return crypt_alloc_req_skcipher(cc, ctx);
1527}
1528
1529static void crypt_free_req_skcipher(struct crypt_config *cc,
1530				    struct skcipher_request *req, struct bio *base_bio)
1531{
1532	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533
1534	if ((struct skcipher_request *)(io + 1) != req)
1535		mempool_free(req, &cc->req_pool);
1536}
1537
1538static void crypt_free_req_aead(struct crypt_config *cc,
1539				struct aead_request *req, struct bio *base_bio)
1540{
1541	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1542
1543	if ((struct aead_request *)(io + 1) != req)
1544		mempool_free(req, &cc->req_pool);
1545}
1546
1547static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1548{
1549	if (crypt_integrity_aead(cc))
1550		crypt_free_req_aead(cc, req, base_bio);
1551	else
1552		crypt_free_req_skcipher(cc, req, base_bio);
1553}
1554
1555/*
1556 * Encrypt / decrypt data from one bio to another one (can be the same one)
1557 */
1558static blk_status_t crypt_convert(struct crypt_config *cc,
1559			 struct convert_context *ctx, bool atomic, bool reset_pending)
1560{
1561	unsigned int tag_offset = 0;
1562	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1563	int r;
1564
1565	/*
1566	 * if reset_pending is set we are dealing with the bio for the first time,
1567	 * else we're continuing to work on the previous bio, so don't mess with
1568	 * the cc_pending counter
1569	 */
1570	if (reset_pending)
1571		atomic_set(&ctx->cc_pending, 1);
1572
1573	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1574
1575		r = crypt_alloc_req(cc, ctx);
1576		if (r) {
1577			complete(&ctx->restart);
1578			return BLK_STS_DEV_RESOURCE;
1579		}
1580
1581		atomic_inc(&ctx->cc_pending);
1582
1583		if (crypt_integrity_aead(cc))
1584			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1585		else
1586			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1587
1588		switch (r) {
1589		/*
1590		 * The request was queued by a crypto driver
1591		 * but the driver request queue is full, let's wait.
1592		 */
1593		case -EBUSY:
1594			if (in_interrupt()) {
1595				if (try_wait_for_completion(&ctx->restart)) {
1596					/*
1597					 * we don't have to block to wait for completion,
1598					 * so proceed
1599					 */
1600				} else {
1601					/*
1602					 * we can't wait for completion without blocking
1603					 * exit and continue processing in a workqueue
1604					 */
1605					ctx->r.req = NULL;
1606					ctx->cc_sector += sector_step;
1607					tag_offset++;
1608					return BLK_STS_DEV_RESOURCE;
1609				}
1610			} else {
1611				wait_for_completion(&ctx->restart);
1612			}
1613			reinit_completion(&ctx->restart);
1614			fallthrough;
1615		/*
1616		 * The request is queued and processed asynchronously,
1617		 * completion function kcryptd_async_done() will be called.
1618		 */
1619		case -EINPROGRESS:
1620			ctx->r.req = NULL;
1621			ctx->cc_sector += sector_step;
1622			tag_offset++;
1623			continue;
1624		/*
1625		 * The request was already processed (synchronously).
1626		 */
1627		case 0:
1628			atomic_dec(&ctx->cc_pending);
1629			ctx->cc_sector += sector_step;
1630			tag_offset++;
1631			if (!atomic)
1632				cond_resched();
1633			continue;
1634		/*
1635		 * There was a data integrity error.
1636		 */
1637		case -EBADMSG:
1638			atomic_dec(&ctx->cc_pending);
1639			return BLK_STS_PROTECTION;
1640		/*
1641		 * There was an error while processing the request.
1642		 */
1643		default:
1644			atomic_dec(&ctx->cc_pending);
1645			return BLK_STS_IOERR;
1646		}
1647	}
1648
1649	return 0;
1650}
1651
1652static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1653
1654/*
1655 * Generate a new unfragmented bio with the given size
1656 * This should never violate the device limitations (but only because
1657 * max_segment_size is being constrained to PAGE_SIZE).
1658 *
1659 * This function may be called concurrently. If we allocate from the mempool
1660 * concurrently, there is a possibility of deadlock. For example, if we have
1661 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1662 * the mempool concurrently, it may deadlock in a situation where both processes
1663 * have allocated 128 pages and the mempool is exhausted.
1664 *
1665 * In order to avoid this scenario we allocate the pages under a mutex.
1666 *
1667 * In order to not degrade performance with excessive locking, we try
1668 * non-blocking allocations without a mutex first but on failure we fallback
1669 * to blocking allocations with a mutex.
1670 *
1671 * In order to reduce allocation overhead, we try to allocate compound pages in
1672 * the first pass. If they are not available, we fall back to the mempool.
1673 */
1674static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1675{
1676	struct crypt_config *cc = io->cc;
1677	struct bio *clone;
1678	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1679	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1680	unsigned int remaining_size;
1681	unsigned int order = MAX_PAGE_ORDER;
 
1682
1683retry:
1684	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1685		mutex_lock(&cc->bio_alloc_lock);
1686
1687	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1688				 GFP_NOIO, &cc->bs);
1689	clone->bi_private = io;
1690	clone->bi_end_io = crypt_endio;
1691
1692	remaining_size = size;
1693
1694	while (remaining_size) {
1695		struct page *pages;
1696		unsigned size_to_add;
1697		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1698		order = min(order, remaining_order);
1699
1700		while (order > 0) {
1701			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1702					(1 << order) > dm_crypt_pages_per_client))
1703				goto decrease_order;
1704			pages = alloc_pages(gfp_mask
1705				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1706				order);
1707			if (likely(pages != NULL)) {
1708				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1709				goto have_pages;
1710			}
1711decrease_order:
1712			order--;
1713		}
1714
1715		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1716		if (!pages) {
 
1717			crypt_free_buffer_pages(cc, clone);
1718			bio_put(clone);
1719			gfp_mask |= __GFP_DIRECT_RECLAIM;
1720			order = 0;
1721			goto retry;
1722		}
1723
1724have_pages:
1725		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1726		__bio_add_page(clone, pages, size_to_add, 0);
1727		remaining_size -= size_to_add;
1728	}
1729
1730	/* Allocate space for integrity tags */
1731	if (dm_crypt_integrity_io_alloc(io, clone)) {
1732		crypt_free_buffer_pages(cc, clone);
1733		bio_put(clone);
1734		clone = NULL;
 
 
 
1735	}
1736
 
1737	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1738		mutex_unlock(&cc->bio_alloc_lock);
1739
1740	return clone;
1741}
1742
1743static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1744{
1745	struct folio_iter fi;
 
1746
1747	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1748		bio_for_each_folio_all(fi, clone) {
1749			if (folio_test_large(fi.folio)) {
1750				percpu_counter_sub(&cc->n_allocated_pages,
1751						1 << folio_order(fi.folio));
1752				folio_put(fi.folio);
1753			} else {
1754				mempool_free(&fi.folio->page, &cc->page_pool);
1755			}
1756		}
1757	}
1758}
1759
1760static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1761			  struct bio *bio, sector_t sector)
1762{
1763	io->cc = cc;
1764	io->base_bio = bio;
1765	io->sector = sector;
1766	io->error = 0;
1767	io->ctx.aead_recheck = false;
1768	io->ctx.aead_failed = false;
1769	io->ctx.r.req = NULL;
1770	io->integrity_metadata = NULL;
1771	io->integrity_metadata_from_pool = false;
1772	atomic_set(&io->io_pending, 0);
1773}
1774
1775static void crypt_inc_pending(struct dm_crypt_io *io)
1776{
1777	atomic_inc(&io->io_pending);
1778}
1779
1780static void kcryptd_queue_read(struct dm_crypt_io *io);
1781
1782/*
1783 * One of the bios was finished. Check for completion of
1784 * the whole request and correctly clean up the buffer.
1785 */
1786static void crypt_dec_pending(struct dm_crypt_io *io)
1787{
1788	struct crypt_config *cc = io->cc;
1789	struct bio *base_bio = io->base_bio;
1790	blk_status_t error = io->error;
1791
1792	if (!atomic_dec_and_test(&io->io_pending))
1793		return;
1794
1795	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1796	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1797		io->ctx.aead_recheck = true;
1798		io->ctx.aead_failed = false;
1799		io->error = 0;
1800		kcryptd_queue_read(io);
1801		return;
1802	}
1803
1804	if (io->ctx.r.req)
1805		crypt_free_req(cc, io->ctx.r.req, base_bio);
1806
1807	if (unlikely(io->integrity_metadata_from_pool))
1808		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1809	else
1810		kfree(io->integrity_metadata);
1811
1812	base_bio->bi_status = error;
1813
 
1814	bio_endio(base_bio);
1815}
1816
1817/*
1818 * kcryptd/kcryptd_io:
1819 *
1820 * Needed because it would be very unwise to do decryption in an
1821 * interrupt context.
1822 *
1823 * kcryptd performs the actual encryption or decryption.
1824 *
1825 * kcryptd_io performs the IO submission.
1826 *
1827 * They must be separated as otherwise the final stages could be
1828 * starved by new requests which can block in the first stages due
1829 * to memory allocation.
1830 *
1831 * The work is done per CPU global for all dm-crypt instances.
1832 * They should not depend on each other and do not block.
1833 */
1834static void crypt_endio(struct bio *clone)
1835{
1836	struct dm_crypt_io *io = clone->bi_private;
1837	struct crypt_config *cc = io->cc;
1838	unsigned int rw = bio_data_dir(clone);
1839	blk_status_t error = clone->bi_status;
1840
1841	if (io->ctx.aead_recheck && !error) {
1842		kcryptd_queue_crypt(io);
1843		return;
1844	}
1845
1846	/*
1847	 * free the processed pages
1848	 */
1849	if (rw == WRITE || io->ctx.aead_recheck)
1850		crypt_free_buffer_pages(cc, clone);
1851
 
1852	bio_put(clone);
1853
1854	if (rw == READ && !error) {
1855		kcryptd_queue_crypt(io);
1856		return;
1857	}
1858
1859	if (unlikely(error))
1860		io->error = error;
1861
1862	crypt_dec_pending(io);
1863}
1864
1865#define CRYPT_MAP_READ_GFP GFP_NOWAIT
 
 
 
 
 
 
 
 
1866
1867static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1868{
1869	struct crypt_config *cc = io->cc;
1870	struct bio *clone;
1871
1872	if (io->ctx.aead_recheck) {
1873		if (!(gfp & __GFP_DIRECT_RECLAIM))
1874			return 1;
1875		crypt_inc_pending(io);
1876		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1877		if (unlikely(!clone)) {
1878			crypt_dec_pending(io);
1879			return 1;
1880		}
1881		clone->bi_iter.bi_sector = cc->start + io->sector;
1882		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1883		io->saved_bi_iter = clone->bi_iter;
1884		dm_submit_bio_remap(io->base_bio, clone);
1885		return 0;
1886	}
1887
1888	/*
1889	 * We need the original biovec array in order to decrypt the whole bio
1890	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1891	 * worry about the block layer modifying the biovec array; so leverage
1892	 * bio_alloc_clone().
1893	 */
1894	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1895	if (!clone)
1896		return 1;
1897	clone->bi_private = io;
1898	clone->bi_end_io = crypt_endio;
1899
1900	crypt_inc_pending(io);
1901
 
1902	clone->bi_iter.bi_sector = cc->start + io->sector;
1903
1904	if (dm_crypt_integrity_io_alloc(io, clone)) {
1905		crypt_dec_pending(io);
1906		bio_put(clone);
1907		return 1;
1908	}
1909
1910	dm_submit_bio_remap(io->base_bio, clone);
1911	return 0;
1912}
1913
1914static void kcryptd_io_read_work(struct work_struct *work)
1915{
1916	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1917
1918	crypt_inc_pending(io);
1919	if (kcryptd_io_read(io, GFP_NOIO))
1920		io->error = BLK_STS_RESOURCE;
1921	crypt_dec_pending(io);
1922}
1923
1924static void kcryptd_queue_read(struct dm_crypt_io *io)
1925{
1926	struct crypt_config *cc = io->cc;
1927
1928	INIT_WORK(&io->work, kcryptd_io_read_work);
1929	queue_work(cc->io_queue, &io->work);
1930}
1931
1932static void kcryptd_io_write(struct dm_crypt_io *io)
1933{
1934	struct bio *clone = io->ctx.bio_out;
1935
1936	dm_submit_bio_remap(io->base_bio, clone);
1937}
1938
1939#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1940
1941static int dmcrypt_write(void *data)
1942{
1943	struct crypt_config *cc = data;
1944	struct dm_crypt_io *io;
1945
1946	while (1) {
1947		struct rb_root write_tree;
1948		struct blk_plug plug;
1949
1950		spin_lock_irq(&cc->write_thread_lock);
 
 
1951continue_locked:
1952
1953		if (!RB_EMPTY_ROOT(&cc->write_tree))
1954			goto pop_from_list;
1955
1956		set_current_state(TASK_INTERRUPTIBLE);
1957
1958		spin_unlock_irq(&cc->write_thread_lock);
1959
1960		if (unlikely(kthread_should_stop())) {
1961			set_current_state(TASK_RUNNING);
1962			break;
1963		}
1964
 
 
 
 
 
1965		schedule();
1966
1967		set_current_state(TASK_RUNNING);
1968		spin_lock_irq(&cc->write_thread_lock);
1969		goto continue_locked;
1970
1971pop_from_list:
1972		write_tree = cc->write_tree;
1973		cc->write_tree = RB_ROOT;
1974		spin_unlock_irq(&cc->write_thread_lock);
1975
1976		BUG_ON(rb_parent(write_tree.rb_node));
1977
1978		/*
1979		 * Note: we cannot walk the tree here with rb_next because
1980		 * the structures may be freed when kcryptd_io_write is called.
1981		 */
1982		blk_start_plug(&plug);
1983		do {
1984			io = crypt_io_from_node(rb_first(&write_tree));
1985			rb_erase(&io->rb_node, &write_tree);
1986			kcryptd_io_write(io);
1987			cond_resched();
1988		} while (!RB_EMPTY_ROOT(&write_tree));
1989		blk_finish_plug(&plug);
1990	}
1991	return 0;
1992}
1993
1994static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1995{
1996	struct bio *clone = io->ctx.bio_out;
1997	struct crypt_config *cc = io->cc;
1998	unsigned long flags;
1999	sector_t sector;
2000	struct rb_node **rbp, *parent;
2001
2002	if (unlikely(io->error)) {
2003		crypt_free_buffer_pages(cc, clone);
2004		bio_put(clone);
2005		crypt_dec_pending(io);
2006		return;
2007	}
2008
2009	/* crypt_convert should have filled the clone bio */
2010	BUG_ON(io->ctx.iter_out.bi_size);
2011
2012	clone->bi_iter.bi_sector = cc->start + io->sector;
2013
2014	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2015	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2016		dm_submit_bio_remap(io->base_bio, clone);
2017		return;
2018	}
2019
2020	spin_lock_irqsave(&cc->write_thread_lock, flags);
2021	if (RB_EMPTY_ROOT(&cc->write_tree))
2022		wake_up_process(cc->write_thread);
2023	rbp = &cc->write_tree.rb_node;
2024	parent = NULL;
2025	sector = io->sector;
2026	while (*rbp) {
2027		parent = *rbp;
2028		if (sector < crypt_io_from_node(parent)->sector)
2029			rbp = &(*rbp)->rb_left;
2030		else
2031			rbp = &(*rbp)->rb_right;
2032	}
2033	rb_link_node(&io->rb_node, parent, rbp);
2034	rb_insert_color(&io->rb_node, &cc->write_tree);
2035	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2036}
2037
2038static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2039				       struct convert_context *ctx)
2040
2041{
2042	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2043		return false;
2044
2045	/*
2046	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2047	 * constraints so they do not need to be issued inline by
2048	 * kcryptd_crypt_write_convert().
2049	 */
2050	switch (bio_op(ctx->bio_in)) {
2051	case REQ_OP_WRITE:
2052	case REQ_OP_WRITE_ZEROES:
2053		return true;
2054	default:
2055		return false;
2056	}
2057}
2058
2059static void kcryptd_crypt_write_continue(struct work_struct *work)
2060{
2061	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2062	struct crypt_config *cc = io->cc;
2063	struct convert_context *ctx = &io->ctx;
2064	int crypt_finished;
2065	sector_t sector = io->sector;
2066	blk_status_t r;
2067
2068	wait_for_completion(&ctx->restart);
2069	reinit_completion(&ctx->restart);
2070
2071	r = crypt_convert(cc, &io->ctx, true, false);
2072	if (r)
2073		io->error = r;
2074	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2075	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2076		/* Wait for completion signaled by kcryptd_async_done() */
2077		wait_for_completion(&ctx->restart);
2078		crypt_finished = 1;
2079	}
2080
2081	/* Encryption was already finished, submit io now */
2082	if (crypt_finished) {
2083		kcryptd_crypt_write_io_submit(io, 0);
2084		io->sector = sector;
2085	}
2086
2087	crypt_dec_pending(io);
2088}
2089
2090static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2091{
2092	struct crypt_config *cc = io->cc;
2093	struct convert_context *ctx = &io->ctx;
2094	struct bio *clone;
2095	int crypt_finished;
2096	sector_t sector = io->sector;
2097	blk_status_t r;
2098
2099	/*
2100	 * Prevent io from disappearing until this function completes.
2101	 */
2102	crypt_inc_pending(io);
2103	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2104
2105	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2106	if (unlikely(!clone)) {
2107		io->error = BLK_STS_IOERR;
2108		goto dec;
2109	}
2110
2111	io->ctx.bio_out = clone;
2112	io->ctx.iter_out = clone->bi_iter;
2113
2114	if (crypt_integrity_aead(cc)) {
2115		bio_copy_data(clone, io->base_bio);
2116		io->ctx.bio_in = clone;
2117		io->ctx.iter_in = clone->bi_iter;
2118	}
2119
2120	sector += bio_sectors(clone);
2121
2122	crypt_inc_pending(io);
2123	r = crypt_convert(cc, ctx,
2124			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2125	/*
2126	 * Crypto API backlogged the request, because its queue was full
2127	 * and we're in softirq context, so continue from a workqueue
2128	 * (TODO: is it actually possible to be in softirq in the write path?)
2129	 */
2130	if (r == BLK_STS_DEV_RESOURCE) {
2131		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2132		queue_work(cc->crypt_queue, &io->work);
2133		return;
2134	}
2135	if (r)
2136		io->error = r;
2137	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2138	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2139		/* Wait for completion signaled by kcryptd_async_done() */
2140		wait_for_completion(&ctx->restart);
2141		crypt_finished = 1;
2142	}
2143
2144	/* Encryption was already finished, submit io now */
2145	if (crypt_finished) {
2146		kcryptd_crypt_write_io_submit(io, 0);
2147		io->sector = sector;
2148	}
2149
2150dec:
2151	crypt_dec_pending(io);
2152}
2153
2154static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155{
2156	if (io->ctx.aead_recheck) {
2157		if (!io->error) {
2158			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159			bio_copy_data(io->base_bio, io->ctx.bio_in);
2160		}
2161		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2162		bio_put(io->ctx.bio_in);
2163	}
2164	crypt_dec_pending(io);
2165}
2166
2167static void kcryptd_crypt_read_continue(struct work_struct *work)
2168{
2169	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170	struct crypt_config *cc = io->cc;
2171	blk_status_t r;
2172
2173	wait_for_completion(&io->ctx.restart);
2174	reinit_completion(&io->ctx.restart);
2175
2176	r = crypt_convert(cc, &io->ctx, true, false);
2177	if (r)
2178		io->error = r;
2179
2180	if (atomic_dec_and_test(&io->ctx.cc_pending))
2181		kcryptd_crypt_read_done(io);
2182
2183	crypt_dec_pending(io);
2184}
2185
2186static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187{
2188	struct crypt_config *cc = io->cc;
2189	blk_status_t r;
2190
2191	crypt_inc_pending(io);
2192
2193	if (io->ctx.aead_recheck) {
2194		io->ctx.cc_sector = io->sector + cc->iv_offset;
2195		r = crypt_convert(cc, &io->ctx,
2196				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2197	} else {
2198		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2199				   io->sector);
2200
2201		r = crypt_convert(cc, &io->ctx,
2202				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203	}
2204	/*
2205	 * Crypto API backlogged the request, because its queue was full
2206	 * and we're in softirq context, so continue from a workqueue
2207	 */
2208	if (r == BLK_STS_DEV_RESOURCE) {
2209		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2210		queue_work(cc->crypt_queue, &io->work);
2211		return;
2212	}
2213	if (r)
2214		io->error = r;
2215
2216	if (atomic_dec_and_test(&io->ctx.cc_pending))
2217		kcryptd_crypt_read_done(io);
2218
2219	crypt_dec_pending(io);
2220}
2221
2222static void kcryptd_async_done(void *data, int error)
 
2223{
2224	struct dm_crypt_request *dmreq = data;
2225	struct convert_context *ctx = dmreq->ctx;
2226	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2227	struct crypt_config *cc = io->cc;
2228
2229	/*
2230	 * A request from crypto driver backlog is going to be processed now,
2231	 * finish the completion and continue in crypt_convert().
2232	 * (Callback will be called for the second time for this request.)
2233	 */
2234	if (error == -EINPROGRESS) {
2235		complete(&ctx->restart);
2236		return;
2237	}
2238
2239	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2240		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2241
2242	if (error == -EBADMSG) {
2243		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2244
2245		ctx->aead_failed = true;
2246		if (ctx->aead_recheck) {
2247			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2248				    ctx->bio_in->bi_bdev, s);
2249			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2250					 ctx->bio_in, s, 0);
2251		}
2252		io->error = BLK_STS_PROTECTION;
2253	} else if (error < 0)
2254		io->error = BLK_STS_IOERR;
2255
2256	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2257
2258	if (!atomic_dec_and_test(&ctx->cc_pending))
2259		return;
2260
2261	/*
2262	 * The request is fully completed: for inline writes, let
2263	 * kcryptd_crypt_write_convert() do the IO submission.
2264	 */
2265	if (bio_data_dir(io->base_bio) == READ) {
2266		kcryptd_crypt_read_done(io);
2267		return;
2268	}
2269
2270	if (kcryptd_crypt_write_inline(cc, ctx)) {
2271		complete(&ctx->restart);
2272		return;
2273	}
2274
2275	kcryptd_crypt_write_io_submit(io, 1);
2276}
2277
2278static void kcryptd_crypt(struct work_struct *work)
2279{
2280	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2281
2282	if (bio_data_dir(io->base_bio) == READ)
2283		kcryptd_crypt_read_convert(io);
2284	else
2285		kcryptd_crypt_write_convert(io);
2286}
2287
2288static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2289{
2290	struct crypt_config *cc = io->cc;
2291
2292	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2293	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2294		/*
2295		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2296		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2297		 * it is being executed with irqs disabled.
2298		 */
2299		if (!(in_hardirq() || irqs_disabled())) {
2300			kcryptd_crypt(&io->work);
2301			return;
2302		}
2303	}
2304
2305	INIT_WORK(&io->work, kcryptd_crypt);
2306	queue_work(cc->crypt_queue, &io->work);
2307}
2308
2309static void crypt_free_tfms_aead(struct crypt_config *cc)
 
 
 
2310{
2311	if (!cc->cipher_tfm.tfms_aead)
2312		return;
2313
2314	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2315		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2316		cc->cipher_tfm.tfms_aead[0] = NULL;
 
 
 
 
 
2317	}
2318
2319	kfree(cc->cipher_tfm.tfms_aead);
2320	cc->cipher_tfm.tfms_aead = NULL;
 
 
2321}
2322
2323static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2324{
2325	unsigned int i;
2326
2327	if (!cc->cipher_tfm.tfms)
2328		return;
2329
2330	for (i = 0; i < cc->tfms_count; i++)
2331		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2332			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2333			cc->cipher_tfm.tfms[i] = NULL;
2334		}
2335
2336	kfree(cc->cipher_tfm.tfms);
2337	cc->cipher_tfm.tfms = NULL;
2338}
2339
2340static void crypt_free_tfms(struct crypt_config *cc)
2341{
2342	if (crypt_integrity_aead(cc))
2343		crypt_free_tfms_aead(cc);
2344	else
2345		crypt_free_tfms_skcipher(cc);
2346}
2347
2348static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2349{
2350	unsigned int i;
2351	int err;
2352
2353	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2354				      sizeof(struct crypto_skcipher *),
2355				      GFP_KERNEL);
2356	if (!cc->cipher_tfm.tfms)
2357		return -ENOMEM;
2358
2359	for (i = 0; i < cc->tfms_count; i++) {
2360		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2361						CRYPTO_ALG_ALLOCATES_MEMORY);
2362		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2363			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2364			crypt_free_tfms(cc);
2365			return err;
2366		}
2367	}
2368
2369	/*
2370	 * dm-crypt performance can vary greatly depending on which crypto
2371	 * algorithm implementation is used.  Help people debug performance
2372	 * problems by logging the ->cra_driver_name.
2373	 */
2374	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2375	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2376	return 0;
2377}
2378
2379static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2380{
2381	int err;
2382
2383	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2384	if (!cc->cipher_tfm.tfms)
2385		return -ENOMEM;
2386
2387	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2388						CRYPTO_ALG_ALLOCATES_MEMORY);
2389	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2390		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2391		crypt_free_tfms(cc);
2392		return err;
2393	}
2394
2395	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2396	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2397	return 0;
2398}
2399
2400static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2401{
2402	if (crypt_integrity_aead(cc))
2403		return crypt_alloc_tfms_aead(cc, ciphermode);
2404	else
2405		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2406}
2407
2408static unsigned int crypt_subkey_size(struct crypt_config *cc)
2409{
2410	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2411}
2412
2413static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2414{
2415	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2416}
2417
2418/*
2419 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2420 * the key must be for some reason in special format.
2421 * This funcion converts cc->key to this special format.
2422 */
2423static void crypt_copy_authenckey(char *p, const void *key,
2424				  unsigned int enckeylen, unsigned int authkeylen)
2425{
2426	struct crypto_authenc_key_param *param;
2427	struct rtattr *rta;
2428
2429	rta = (struct rtattr *)p;
2430	param = RTA_DATA(rta);
2431	param->enckeylen = cpu_to_be32(enckeylen);
2432	rta->rta_len = RTA_LENGTH(sizeof(*param));
2433	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2434	p += RTA_SPACE(sizeof(*param));
2435	memcpy(p, key + enckeylen, authkeylen);
2436	p += authkeylen;
2437	memcpy(p, key, enckeylen);
2438}
2439
2440static int crypt_setkey(struct crypt_config *cc)
2441{
2442	unsigned int subkey_size;
2443	int err = 0, i, r;
2444
2445	/* Ignore extra keys (which are used for IV etc) */
2446	subkey_size = crypt_subkey_size(cc);
2447
2448	if (crypt_integrity_hmac(cc)) {
2449		if (subkey_size < cc->key_mac_size)
2450			return -EINVAL;
2451
2452		crypt_copy_authenckey(cc->authenc_key, cc->key,
2453				      subkey_size - cc->key_mac_size,
2454				      cc->key_mac_size);
2455	}
2456
2457	for (i = 0; i < cc->tfms_count; i++) {
2458		if (crypt_integrity_hmac(cc))
2459			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2460				cc->authenc_key, crypt_authenckey_size(cc));
2461		else if (crypt_integrity_aead(cc))
2462			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2463					       cc->key + (i * subkey_size),
2464					       subkey_size);
2465		else
2466			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2467						   cc->key + (i * subkey_size),
2468						   subkey_size);
2469		if (r)
2470			err = r;
2471	}
2472
2473	if (crypt_integrity_hmac(cc))
2474		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2475
2476	return err;
2477}
2478
2479#ifdef CONFIG_KEYS
2480
2481static bool contains_whitespace(const char *str)
2482{
2483	while (*str)
2484		if (isspace(*str++))
2485			return true;
2486	return false;
2487}
2488
2489static int set_key_user(struct crypt_config *cc, struct key *key)
2490{
2491	const struct user_key_payload *ukp;
2492
2493	ukp = user_key_payload_locked(key);
2494	if (!ukp)
2495		return -EKEYREVOKED;
2496
2497	if (cc->key_size != ukp->datalen)
2498		return -EINVAL;
2499
2500	memcpy(cc->key, ukp->data, cc->key_size);
2501
2502	return 0;
2503}
2504
2505static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2506{
2507	const struct encrypted_key_payload *ekp;
2508
2509	ekp = key->payload.data[0];
2510	if (!ekp)
2511		return -EKEYREVOKED;
2512
2513	if (cc->key_size != ekp->decrypted_datalen)
2514		return -EINVAL;
2515
2516	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2517
2518	return 0;
2519}
2520
2521static int set_key_trusted(struct crypt_config *cc, struct key *key)
2522{
2523	const struct trusted_key_payload *tkp;
2524
2525	tkp = key->payload.data[0];
2526	if (!tkp)
2527		return -EKEYREVOKED;
2528
2529	if (cc->key_size != tkp->key_len)
2530		return -EINVAL;
2531
2532	memcpy(cc->key, tkp->key, cc->key_size);
2533
2534	return 0;
2535}
2536
2537static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2538{
2539	char *new_key_string, *key_desc;
2540	int ret;
2541	struct key_type *type;
2542	struct key *key;
2543	int (*set_key)(struct crypt_config *cc, struct key *key);
2544
2545	/*
2546	 * Reject key_string with whitespace. dm core currently lacks code for
2547	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2548	 */
2549	if (contains_whitespace(key_string)) {
2550		DMERR("whitespace chars not allowed in key string");
2551		return -EINVAL;
2552	}
2553
2554	/* look for next ':' separating key_type from key_description */
2555	key_desc = strchr(key_string, ':');
2556	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2557		return -EINVAL;
2558
2559	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2560		type = &key_type_logon;
2561		set_key = set_key_user;
2562	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2563		type = &key_type_user;
2564		set_key = set_key_user;
2565	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2566		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2567		type = &key_type_encrypted;
2568		set_key = set_key_encrypted;
2569	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2570		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2571		type = &key_type_trusted;
2572		set_key = set_key_trusted;
2573	} else {
2574		return -EINVAL;
2575	}
2576
2577	new_key_string = kstrdup(key_string, GFP_KERNEL);
2578	if (!new_key_string)
2579		return -ENOMEM;
2580
2581	key = request_key(type, key_desc + 1, NULL);
2582	if (IS_ERR(key)) {
2583		kfree_sensitive(new_key_string);
2584		return PTR_ERR(key);
2585	}
2586
2587	down_read(&key->sem);
2588
2589	ret = set_key(cc, key);
2590	if (ret < 0) {
2591		up_read(&key->sem);
2592		key_put(key);
2593		kfree_sensitive(new_key_string);
2594		return ret;
2595	}
2596
2597	up_read(&key->sem);
2598	key_put(key);
2599
2600	/* clear the flag since following operations may invalidate previously valid key */
2601	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2602
2603	ret = crypt_setkey(cc);
2604
2605	if (!ret) {
2606		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2607		kfree_sensitive(cc->key_string);
2608		cc->key_string = new_key_string;
2609	} else
2610		kfree_sensitive(new_key_string);
2611
2612	return ret;
2613}
2614
2615static int get_key_size(char **key_string)
2616{
2617	char *colon, dummy;
2618	int ret;
2619
2620	if (*key_string[0] != ':')
2621		return strlen(*key_string) >> 1;
2622
2623	/* look for next ':' in key string */
2624	colon = strpbrk(*key_string + 1, ":");
2625	if (!colon)
2626		return -EINVAL;
2627
2628	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2629		return -EINVAL;
2630
2631	*key_string = colon;
2632
2633	/* remaining key string should be :<logon|user>:<key_desc> */
2634
2635	return ret;
2636}
2637
2638#else
2639
2640static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2641{
2642	return -EINVAL;
2643}
2644
2645static int get_key_size(char **key_string)
2646{
2647	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2648}
2649
2650#endif /* CONFIG_KEYS */
2651
2652static int crypt_set_key(struct crypt_config *cc, char *key)
2653{
2654	int r = -EINVAL;
2655	int key_string_len = strlen(key);
2656
 
 
 
 
2657	/* Hyphen (which gives a key_size of zero) means there is no key. */
2658	if (!cc->key_size && strcmp(key, "-"))
2659		goto out;
2660
2661	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2662	if (key[0] == ':') {
2663		r = crypt_set_keyring_key(cc, key + 1);
2664		goto out;
2665	}
2666
2667	/* clear the flag since following operations may invalidate previously valid key */
2668	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2669
2670	/* wipe references to any kernel keyring key */
2671	kfree_sensitive(cc->key_string);
2672	cc->key_string = NULL;
2673
2674	/* Decode key from its hex representation. */
2675	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2676		goto out;
2677
2678	r = crypt_setkey(cc);
2679	if (!r)
2680		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2681
2682out:
2683	/* Hex key string not needed after here, so wipe it. */
2684	memset(key, '0', key_string_len);
2685
2686	return r;
2687}
2688
2689static int crypt_wipe_key(struct crypt_config *cc)
2690{
2691	int r;
2692
2693	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2694	get_random_bytes(&cc->key, cc->key_size);
2695
2696	/* Wipe IV private keys */
2697	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2698		r = cc->iv_gen_ops->wipe(cc);
2699		if (r)
2700			return r;
2701	}
2702
2703	kfree_sensitive(cc->key_string);
2704	cc->key_string = NULL;
2705	r = crypt_setkey(cc);
2706	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2707
2708	return r;
2709}
2710
2711static void crypt_calculate_pages_per_client(void)
2712{
2713	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2714
2715	if (!dm_crypt_clients_n)
2716		return;
2717
2718	pages /= dm_crypt_clients_n;
2719	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2720		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2721	dm_crypt_pages_per_client = pages;
2722}
2723
2724static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2725{
2726	struct crypt_config *cc = pool_data;
2727	struct page *page;
2728
2729	/*
2730	 * Note, percpu_counter_read_positive() may over (and under) estimate
2731	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2732	 * but avoids potential spinlock contention of an exact result.
2733	 */
2734	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2735	    likely(gfp_mask & __GFP_NORETRY))
2736		return NULL;
2737
2738	page = alloc_page(gfp_mask);
2739	if (likely(page != NULL))
2740		percpu_counter_add(&cc->n_allocated_pages, 1);
2741
2742	return page;
2743}
2744
2745static void crypt_page_free(void *page, void *pool_data)
2746{
2747	struct crypt_config *cc = pool_data;
2748
2749	__free_page(page);
2750	percpu_counter_sub(&cc->n_allocated_pages, 1);
2751}
2752
2753static void crypt_dtr(struct dm_target *ti)
2754{
2755	struct crypt_config *cc = ti->private;
2756
2757	ti->private = NULL;
2758
2759	if (!cc)
2760		return;
2761
2762	if (cc->write_thread)
 
 
 
 
2763		kthread_stop(cc->write_thread);
 
2764
2765	if (cc->io_queue)
2766		destroy_workqueue(cc->io_queue);
2767	if (cc->crypt_queue)
2768		destroy_workqueue(cc->crypt_queue);
2769
2770	crypt_free_tfms(cc);
2771
2772	bioset_exit(&cc->bs);
 
2773
2774	mempool_exit(&cc->page_pool);
2775	mempool_exit(&cc->req_pool);
2776	mempool_exit(&cc->tag_pool);
2777
2778	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2779	percpu_counter_destroy(&cc->n_allocated_pages);
2780
2781	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2782		cc->iv_gen_ops->dtr(cc);
2783
2784	if (cc->dev)
2785		dm_put_device(ti, cc->dev);
2786
2787	kfree_sensitive(cc->cipher_string);
2788	kfree_sensitive(cc->key_string);
2789	kfree_sensitive(cc->cipher_auth);
2790	kfree_sensitive(cc->authenc_key);
2791
2792	mutex_destroy(&cc->bio_alloc_lock);
2793
2794	/* Must zero key material before freeing */
2795	kfree_sensitive(cc);
2796
2797	spin_lock(&dm_crypt_clients_lock);
2798	WARN_ON(!dm_crypt_clients_n);
2799	dm_crypt_clients_n--;
2800	crypt_calculate_pages_per_client();
2801	spin_unlock(&dm_crypt_clients_lock);
2802
2803	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2804}
2805
2806static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
 
2807{
2808	struct crypt_config *cc = ti->private;
2809
2810	if (crypt_integrity_aead(cc))
2811		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2812	else
2813		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2814
2815	if (cc->iv_size)
2816		/* at least a 64 bit sector number should fit in our buffer */
2817		cc->iv_size = max(cc->iv_size,
2818				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2819	else if (ivmode) {
2820		DMWARN("Selected cipher does not support IVs");
2821		ivmode = NULL;
2822	}
2823
2824	/* Choose ivmode, see comments at iv code. */
2825	if (ivmode == NULL)
2826		cc->iv_gen_ops = NULL;
2827	else if (strcmp(ivmode, "plain") == 0)
2828		cc->iv_gen_ops = &crypt_iv_plain_ops;
2829	else if (strcmp(ivmode, "plain64") == 0)
2830		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2831	else if (strcmp(ivmode, "plain64be") == 0)
2832		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2833	else if (strcmp(ivmode, "essiv") == 0)
2834		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2835	else if (strcmp(ivmode, "benbi") == 0)
2836		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2837	else if (strcmp(ivmode, "null") == 0)
2838		cc->iv_gen_ops = &crypt_iv_null_ops;
2839	else if (strcmp(ivmode, "eboiv") == 0)
2840		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2841	else if (strcmp(ivmode, "elephant") == 0) {
2842		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2843		cc->key_parts = 2;
2844		cc->key_extra_size = cc->key_size / 2;
2845		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2846			return -EINVAL;
2847		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2848	} else if (strcmp(ivmode, "lmk") == 0) {
2849		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2850		/*
2851		 * Version 2 and 3 is recognised according
2852		 * to length of provided multi-key string.
2853		 * If present (version 3), last key is used as IV seed.
2854		 * All keys (including IV seed) are always the same size.
2855		 */
2856		if (cc->key_size % cc->key_parts) {
2857			cc->key_parts++;
2858			cc->key_extra_size = cc->key_size / cc->key_parts;
2859		}
2860	} else if (strcmp(ivmode, "tcw") == 0) {
2861		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2862		cc->key_parts += 2; /* IV + whitening */
2863		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2864	} else if (strcmp(ivmode, "random") == 0) {
2865		cc->iv_gen_ops = &crypt_iv_random_ops;
2866		/* Need storage space in integrity fields. */
2867		cc->integrity_iv_size = cc->iv_size;
2868	} else {
2869		ti->error = "Invalid IV mode";
2870		return -EINVAL;
2871	}
2872
2873	return 0;
2874}
2875
2876/*
2877 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2878 * The HMAC is needed to calculate tag size (HMAC digest size).
2879 * This should be probably done by crypto-api calls (once available...)
2880 */
2881static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2882{
2883	char *start, *end, *mac_alg = NULL;
2884	struct crypto_ahash *mac;
2885
2886	if (!strstarts(cipher_api, "authenc("))
2887		return 0;
2888
2889	start = strchr(cipher_api, '(');
2890	end = strchr(cipher_api, ',');
2891	if (!start || !end || ++start > end)
2892		return -EINVAL;
2893
2894	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2895	if (!mac_alg)
2896		return -ENOMEM;
2897
2898	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2899	kfree(mac_alg);
2900
2901	if (IS_ERR(mac))
2902		return PTR_ERR(mac);
2903
2904	cc->key_mac_size = crypto_ahash_digestsize(mac);
2905	crypto_free_ahash(mac);
2906
2907	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2908	if (!cc->authenc_key)
2909		return -ENOMEM;
2910
2911	return 0;
2912}
2913
2914static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2915				char **ivmode, char **ivopts)
2916{
2917	struct crypt_config *cc = ti->private;
2918	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2919	int ret = -EINVAL;
2920
2921	cc->tfms_count = 1;
2922
2923	/*
2924	 * New format (capi: prefix)
2925	 * capi:cipher_api_spec-iv:ivopts
2926	 */
2927	tmp = &cipher_in[strlen("capi:")];
2928
2929	/* Separate IV options if present, it can contain another '-' in hash name */
2930	*ivopts = strrchr(tmp, ':');
2931	if (*ivopts) {
2932		**ivopts = '\0';
2933		(*ivopts)++;
2934	}
2935	/* Parse IV mode */
2936	*ivmode = strrchr(tmp, '-');
2937	if (*ivmode) {
2938		**ivmode = '\0';
2939		(*ivmode)++;
2940	}
2941	/* The rest is crypto API spec */
2942	cipher_api = tmp;
2943
2944	/* Alloc AEAD, can be used only in new format. */
2945	if (crypt_integrity_aead(cc)) {
2946		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2947		if (ret < 0) {
2948			ti->error = "Invalid AEAD cipher spec";
2949			return ret;
2950		}
2951	}
2952
2953	if (*ivmode && !strcmp(*ivmode, "lmk"))
2954		cc->tfms_count = 64;
2955
2956	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2957		if (!*ivopts) {
2958			ti->error = "Digest algorithm missing for ESSIV mode";
2959			return -EINVAL;
2960		}
2961		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2962			       cipher_api, *ivopts);
2963		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2964			ti->error = "Cannot allocate cipher string";
2965			return -ENOMEM;
2966		}
2967		cipher_api = buf;
2968	}
2969
2970	cc->key_parts = cc->tfms_count;
2971
2972	/* Allocate cipher */
2973	ret = crypt_alloc_tfms(cc, cipher_api);
2974	if (ret < 0) {
2975		ti->error = "Error allocating crypto tfm";
2976		return ret;
2977	}
2978
2979	if (crypt_integrity_aead(cc))
2980		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2981	else
2982		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2983
2984	return 0;
2985}
2986
2987static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2988				char **ivmode, char **ivopts)
2989{
2990	struct crypt_config *cc = ti->private;
2991	char *tmp, *cipher, *chainmode, *keycount;
2992	char *cipher_api = NULL;
2993	int ret = -EINVAL;
2994	char dummy;
2995
2996	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
 
2997		ti->error = "Bad cipher specification";
2998		return -EINVAL;
2999	}
3000
 
 
 
 
3001	/*
3002	 * Legacy dm-crypt cipher specification
3003	 * cipher[:keycount]-mode-iv:ivopts
3004	 */
3005	tmp = cipher_in;
3006	keycount = strsep(&tmp, "-");
3007	cipher = strsep(&keycount, ":");
3008
3009	if (!keycount)
3010		cc->tfms_count = 1;
3011	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3012		 !is_power_of_2(cc->tfms_count)) {
3013		ti->error = "Bad cipher key count specification";
3014		return -EINVAL;
3015	}
3016	cc->key_parts = cc->tfms_count;
 
 
 
 
 
3017
3018	chainmode = strsep(&tmp, "-");
3019	*ivmode = strsep(&tmp, ":");
3020	*ivopts = tmp;
 
 
 
3021
3022	/*
3023	 * For compatibility with the original dm-crypt mapping format, if
3024	 * only the cipher name is supplied, use cbc-plain.
3025	 */
3026	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3027		chainmode = "cbc";
3028		*ivmode = "plain";
3029	}
3030
3031	if (strcmp(chainmode, "ecb") && !*ivmode) {
3032		ti->error = "IV mechanism required";
3033		return -EINVAL;
3034	}
3035
3036	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3037	if (!cipher_api)
3038		goto bad_mem;
3039
3040	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3041		if (!*ivopts) {
3042			ti->error = "Digest algorithm missing for ESSIV mode";
3043			kfree(cipher_api);
3044			return -EINVAL;
3045		}
3046		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3047			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3048	} else {
3049		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3050			       "%s(%s)", chainmode, cipher);
3051	}
3052	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3053		kfree(cipher_api);
3054		goto bad_mem;
3055	}
3056
3057	/* Allocate cipher */
3058	ret = crypt_alloc_tfms(cc, cipher_api);
3059	if (ret < 0) {
3060		ti->error = "Error allocating crypto tfm";
3061		kfree(cipher_api);
3062		return ret;
3063	}
3064	kfree(cipher_api);
3065
3066	return 0;
3067bad_mem:
3068	ti->error = "Cannot allocate cipher strings";
3069	return -ENOMEM;
3070}
3071
3072static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3073{
3074	struct crypt_config *cc = ti->private;
3075	char *ivmode = NULL, *ivopts = NULL;
3076	int ret;
3077
3078	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3079	if (!cc->cipher_string) {
3080		ti->error = "Cannot allocate cipher strings";
3081		return -ENOMEM;
3082	}
3083
3084	if (strstarts(cipher_in, "capi:"))
3085		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3086	else
3087		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3088	if (ret)
3089		return ret;
3090
3091	/* Initialize IV */
3092	ret = crypt_ctr_ivmode(ti, ivmode);
3093	if (ret < 0)
3094		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095
3096	/* Initialize and set key */
3097	ret = crypt_set_key(cc, key);
3098	if (ret < 0) {
3099		ti->error = "Error decoding and setting key";
3100		return ret;
3101	}
3102
3103	/* Allocate IV */
3104	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3105		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3106		if (ret < 0) {
3107			ti->error = "Error creating IV";
3108			return ret;
3109		}
3110	}
3111
3112	/* Initialize IV (set keys for ESSIV etc) */
3113	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3114		ret = cc->iv_gen_ops->init(cc);
3115		if (ret < 0) {
3116			ti->error = "Error initialising IV";
3117			return ret;
3118		}
3119	}
3120
3121	/* wipe the kernel key payload copy */
3122	if (cc->key_string)
3123		memset(cc->key, 0, cc->key_size * sizeof(u8));
3124
3125	return ret;
3126}
3127
3128static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3129{
3130	struct crypt_config *cc = ti->private;
3131	struct dm_arg_set as;
3132	static const struct dm_arg _args[] = {
3133		{0, 8, "Invalid number of feature args"},
3134	};
3135	unsigned int opt_params, val;
3136	const char *opt_string, *sval;
3137	char dummy;
3138	int ret;
3139
3140	/* Optional parameters */
3141	as.argc = argc;
3142	as.argv = argv;
3143
3144	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3145	if (ret)
3146		return ret;
3147
3148	while (opt_params--) {
3149		opt_string = dm_shift_arg(&as);
3150		if (!opt_string) {
3151			ti->error = "Not enough feature arguments";
3152			return -EINVAL;
3153		}
3154
3155		if (!strcasecmp(opt_string, "allow_discards"))
3156			ti->num_discard_bios = 1;
3157
3158		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3159			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3160
3161		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3162			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3163		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3164			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3165		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3166			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3167		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3168			if (val == 0 || val > MAX_TAG_SIZE) {
3169				ti->error = "Invalid integrity arguments";
3170				return -EINVAL;
3171			}
3172			cc->on_disk_tag_size = val;
3173			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3174			if (!strcasecmp(sval, "aead")) {
3175				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3176			} else if (strcasecmp(sval, "none")) {
3177				ti->error = "Unknown integrity profile";
3178				return -EINVAL;
3179			}
3180
3181			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3182			if (!cc->cipher_auth)
3183				return -ENOMEM;
3184		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3185			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3186			    cc->sector_size > 4096 ||
3187			    (cc->sector_size & (cc->sector_size - 1))) {
3188				ti->error = "Invalid feature value for sector_size";
3189				return -EINVAL;
3190			}
3191			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3192				ti->error = "Device size is not multiple of sector_size feature";
3193				return -EINVAL;
3194			}
3195			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3196		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3197			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3198		else {
3199			ti->error = "Invalid feature arguments";
3200			return -EINVAL;
3201		}
3202	}
3203
3204	return 0;
3205}
3206
3207#ifdef CONFIG_BLK_DEV_ZONED
3208static int crypt_report_zones(struct dm_target *ti,
3209		struct dm_report_zones_args *args, unsigned int nr_zones)
3210{
3211	struct crypt_config *cc = ti->private;
3212
3213	return dm_report_zones(cc->dev->bdev, cc->start,
3214			cc->start + dm_target_offset(ti, args->next_sector),
3215			args, nr_zones);
3216}
3217#else
3218#define crypt_report_zones NULL
3219#endif
3220
3221/*
3222 * Construct an encryption mapping:
3223 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3224 */
3225static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3226{
3227	struct crypt_config *cc;
3228	const char *devname = dm_table_device_name(ti->table);
3229	int key_size;
3230	unsigned int align_mask;
3231	unsigned long long tmpll;
3232	int ret;
3233	size_t iv_size_padding, additional_req_size;
 
 
3234	char dummy;
3235
 
 
 
 
3236	if (argc < 5) {
3237		ti->error = "Not enough arguments";
3238		return -EINVAL;
3239	}
3240
3241	key_size = get_key_size(&argv[1]);
3242	if (key_size < 0) {
3243		ti->error = "Cannot parse key size";
3244		return -EINVAL;
3245	}
3246
3247	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3248	if (!cc) {
3249		ti->error = "Cannot allocate encryption context";
3250		return -ENOMEM;
3251	}
3252	cc->key_size = key_size;
3253	cc->sector_size = (1 << SECTOR_SHIFT);
3254	cc->sector_shift = 0;
3255
3256	ti->private = cc;
3257
3258	spin_lock(&dm_crypt_clients_lock);
3259	dm_crypt_clients_n++;
3260	crypt_calculate_pages_per_client();
3261	spin_unlock(&dm_crypt_clients_lock);
3262
3263	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3264	if (ret < 0)
3265		goto bad;
3266
3267	/* Optional parameters need to be read before cipher constructor */
3268	if (argc > 5) {
3269		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3270		if (ret)
3271			goto bad;
3272	}
3273
3274	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3275	if (ret < 0)
3276		goto bad;
3277
3278	if (crypt_integrity_aead(cc)) {
3279		cc->dmreq_start = sizeof(struct aead_request);
3280		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3281		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3282	} else {
3283		cc->dmreq_start = sizeof(struct skcipher_request);
3284		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3285		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3286	}
3287	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3288
3289	if (align_mask < CRYPTO_MINALIGN) {
3290		/* Allocate the padding exactly */
3291		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3292				& align_mask;
3293	} else {
3294		/*
3295		 * If the cipher requires greater alignment than kmalloc
3296		 * alignment, we don't know the exact position of the
3297		 * initialization vector. We must assume worst case.
3298		 */
3299		iv_size_padding = align_mask;
3300	}
3301
3302	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3303	additional_req_size = sizeof(struct dm_crypt_request) +
3304		iv_size_padding + cc->iv_size +
3305		cc->iv_size +
3306		sizeof(uint64_t) +
3307		sizeof(unsigned int);
3308
3309	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3310	if (ret) {
3311		ti->error = "Cannot allocate crypt request mempool";
3312		goto bad;
3313	}
3314
3315	cc->per_bio_data_size = ti->per_io_data_size =
3316		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3317		      ARCH_DMA_MINALIGN);
 
3318
3319	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3320	if (ret) {
3321		ti->error = "Cannot allocate page mempool";
3322		goto bad;
3323	}
3324
3325	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3326	if (ret) {
3327		ti->error = "Cannot allocate crypt bioset";
3328		goto bad;
3329	}
3330
3331	mutex_init(&cc->bio_alloc_lock);
3332
3333	ret = -EINVAL;
3334	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3335	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3336		ti->error = "Invalid iv_offset sector";
3337		goto bad;
3338	}
3339	cc->iv_offset = tmpll;
3340
3341	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3342	if (ret) {
3343		ti->error = "Device lookup failed";
3344		goto bad;
3345	}
3346
3347	ret = -EINVAL;
3348	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3349		ti->error = "Invalid device sector";
3350		goto bad;
3351	}
3352	cc->start = tmpll;
3353
3354	if (bdev_is_zoned(cc->dev->bdev)) {
3355		/*
3356		 * For zoned block devices, we need to preserve the issuer write
3357		 * ordering. To do so, disable write workqueues and force inline
3358		 * encryption completion.
3359		 */
3360		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3361		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3362
3363		/*
3364		 * All zone append writes to a zone of a zoned block device will
3365		 * have the same BIO sector, the start of the zone. When the
3366		 * cypher IV mode uses sector values, all data targeting a
3367		 * zone will be encrypted using the first sector numbers of the
3368		 * zone. This will not result in write errors but will
3369		 * cause most reads to fail as reads will use the sector values
3370		 * for the actual data locations, resulting in IV mismatch.
3371		 * To avoid this problem, ask DM core to emulate zone append
3372		 * operations with regular writes.
3373		 */
3374		DMDEBUG("Zone append operations will be emulated");
3375		ti->emulate_zone_append = true;
3376	}
3377
3378	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3379		ret = crypt_integrity_ctr(cc, ti);
3380		if (ret)
3381			goto bad;
3382
3383		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3384		if (!cc->tag_pool_max_sectors)
3385			cc->tag_pool_max_sectors = 1;
3386
3387		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3388			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3389		if (ret) {
3390			ti->error = "Cannot allocate integrity tags mempool";
3391			goto bad;
3392		}
3393
3394		cc->tag_pool_max_sectors <<= cc->sector_shift;
 
 
 
 
 
 
 
 
 
 
 
 
 
3395	}
3396
3397	ret = -ENOMEM;
3398	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3399	if (!cc->io_queue) {
3400		ti->error = "Couldn't create kcryptd io queue";
3401		goto bad;
3402	}
3403
3404	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3405		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3406						  1, devname);
3407	else
3408		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3409						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3410						  num_online_cpus(), devname);
3411	if (!cc->crypt_queue) {
3412		ti->error = "Couldn't create kcryptd queue";
3413		goto bad;
3414	}
3415
3416	spin_lock_init(&cc->write_thread_lock);
3417	cc->write_tree = RB_ROOT;
3418
3419	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3420	if (IS_ERR(cc->write_thread)) {
3421		ret = PTR_ERR(cc->write_thread);
3422		cc->write_thread = NULL;
3423		ti->error = "Couldn't spawn write thread";
3424		goto bad;
3425	}
 
3426
3427	ti->num_flush_bios = 1;
3428	ti->limit_swap_bios = true;
3429	ti->accounts_remapped_io = true;
3430
3431	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3432	return 0;
3433
3434bad:
3435	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3436	crypt_dtr(ti);
3437	return ret;
3438}
3439
3440static int crypt_map(struct dm_target *ti, struct bio *bio)
3441{
3442	struct dm_crypt_io *io;
3443	struct crypt_config *cc = ti->private;
3444
3445	/*
3446	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3447	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3448	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3449	 */
3450	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3451	    bio_op(bio) == REQ_OP_DISCARD)) {
3452		bio_set_dev(bio, cc->dev->bdev);
3453		if (bio_sectors(bio))
3454			bio->bi_iter.bi_sector = cc->start +
3455				dm_target_offset(ti, bio->bi_iter.bi_sector);
3456		return DM_MAPIO_REMAPPED;
3457	}
3458
3459	/*
3460	 * Check if bio is too large, split as needed.
3461	 */
3462	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3463	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3464		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3465
3466	/*
3467	 * Ensure that bio is a multiple of internal sector encryption size
3468	 * and is aligned to this size as defined in IO hints.
3469	 */
3470	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3471		return DM_MAPIO_KILL;
3472
3473	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3474		return DM_MAPIO_KILL;
3475
3476	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3477	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3478
3479	if (cc->on_disk_tag_size) {
3480		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3481
3482		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3483			io->integrity_metadata = NULL;
3484		else
3485			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3486
3487		if (unlikely(!io->integrity_metadata)) {
3488			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3489				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3490			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3491			io->integrity_metadata_from_pool = true;
3492		}
3493	}
3494
3495	if (crypt_integrity_aead(cc))
3496		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3497	else
3498		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3499
3500	if (bio_data_dir(io->base_bio) == READ) {
3501		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3502			kcryptd_queue_read(io);
3503	} else
3504		kcryptd_queue_crypt(io);
3505
3506	return DM_MAPIO_SUBMITTED;
3507}
3508
3509static char hex2asc(unsigned char c)
3510{
3511	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3512}
3513
3514static void crypt_status(struct dm_target *ti, status_type_t type,
3515			 unsigned int status_flags, char *result, unsigned int maxlen)
3516{
3517	struct crypt_config *cc = ti->private;
3518	unsigned int i, sz = 0;
3519	int num_feature_args = 0;
3520
3521	switch (type) {
3522	case STATUSTYPE_INFO:
3523		result[0] = '\0';
3524		break;
3525
3526	case STATUSTYPE_TABLE:
3527		DMEMIT("%s ", cc->cipher_string);
3528
3529		if (cc->key_size > 0) {
3530			if (cc->key_string)
3531				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3532			else {
3533				for (i = 0; i < cc->key_size; i++) {
3534					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3535					       hex2asc(cc->key[i] & 0xf));
3536				}
3537			}
3538		} else
3539			DMEMIT("-");
3540
3541		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3542				cc->dev->name, (unsigned long long)cc->start);
3543
3544		num_feature_args += !!ti->num_discard_bios;
3545		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3546		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3547		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3548		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3549		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3550		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3551		if (cc->on_disk_tag_size)
3552			num_feature_args++;
3553		if (num_feature_args) {
3554			DMEMIT(" %d", num_feature_args);
3555			if (ti->num_discard_bios)
3556				DMEMIT(" allow_discards");
3557			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3558				DMEMIT(" same_cpu_crypt");
3559			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3560				DMEMIT(" submit_from_crypt_cpus");
3561			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3562				DMEMIT(" no_read_workqueue");
3563			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3564				DMEMIT(" no_write_workqueue");
3565			if (cc->on_disk_tag_size)
3566				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3567			if (cc->sector_size != (1 << SECTOR_SHIFT))
3568				DMEMIT(" sector_size:%d", cc->sector_size);
3569			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3570				DMEMIT(" iv_large_sectors");
3571		}
3572		break;
3573
3574	case STATUSTYPE_IMA:
3575		DMEMIT_TARGET_NAME_VERSION(ti->type);
3576		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3577		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3578		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3579		       'y' : 'n');
3580		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3581		       'y' : 'n');
3582		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3583		       'y' : 'n');
3584		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3585		       'y' : 'n');
3586
3587		if (cc->on_disk_tag_size)
3588			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3589			       cc->on_disk_tag_size, cc->cipher_auth);
3590		if (cc->sector_size != (1 << SECTOR_SHIFT))
3591			DMEMIT(",sector_size=%d", cc->sector_size);
3592		if (cc->cipher_string)
3593			DMEMIT(",cipher_string=%s", cc->cipher_string);
3594
3595		DMEMIT(",key_size=%u", cc->key_size);
3596		DMEMIT(",key_parts=%u", cc->key_parts);
3597		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3598		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3599		DMEMIT(";");
3600		break;
3601	}
3602}
3603
3604static void crypt_postsuspend(struct dm_target *ti)
3605{
3606	struct crypt_config *cc = ti->private;
3607
3608	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3609}
3610
3611static int crypt_preresume(struct dm_target *ti)
3612{
3613	struct crypt_config *cc = ti->private;
3614
3615	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3616		DMERR("aborting resume - crypt key is not set.");
3617		return -EAGAIN;
3618	}
3619
3620	return 0;
3621}
3622
3623static void crypt_resume(struct dm_target *ti)
3624{
3625	struct crypt_config *cc = ti->private;
3626
3627	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3628}
3629
3630/* Message interface
3631 *	key set <key>
3632 *	key wipe
3633 */
3634static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3635			 char *result, unsigned int maxlen)
3636{
3637	struct crypt_config *cc = ti->private;
3638	int key_size, ret = -EINVAL;
3639
3640	if (argc < 2)
3641		goto error;
3642
3643	if (!strcasecmp(argv[0], "key")) {
3644		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3645			DMWARN("not suspended during key manipulation.");
3646			return -EINVAL;
3647		}
3648		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3649			/* The key size may not be changed. */
3650			key_size = get_key_size(&argv[2]);
3651			if (key_size < 0 || cc->key_size != key_size) {
3652				memset(argv[2], '0', strlen(argv[2]));
3653				return -EINVAL;
3654			}
3655
3656			ret = crypt_set_key(cc, argv[2]);
3657			if (ret)
3658				return ret;
3659			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3660				ret = cc->iv_gen_ops->init(cc);
3661			/* wipe the kernel key payload copy */
3662			if (cc->key_string)
3663				memset(cc->key, 0, cc->key_size * sizeof(u8));
3664			return ret;
3665		}
3666		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
 
 
 
 
 
3667			return crypt_wipe_key(cc);
 
3668	}
3669
3670error:
3671	DMWARN("unrecognised message received.");
3672	return -EINVAL;
3673}
3674
3675static int crypt_iterate_devices(struct dm_target *ti,
3676				 iterate_devices_callout_fn fn, void *data)
3677{
3678	struct crypt_config *cc = ti->private;
3679
3680	return fn(ti, cc->dev, cc->start, ti->len, data);
3681}
3682
3683static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3684{
3685	struct crypt_config *cc = ti->private;
3686
3687	/*
3688	 * Unfortunate constraint that is required to avoid the potential
3689	 * for exceeding underlying device's max_segments limits -- due to
3690	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3691	 * bio that are not as physically contiguous as the original bio.
3692	 */
3693	limits->max_segment_size = PAGE_SIZE;
3694
3695	limits->logical_block_size =
3696		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3697	limits->physical_block_size =
3698		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3699	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3700	limits->dma_alignment = limits->logical_block_size - 1;
3701}
3702
3703static struct target_type crypt_target = {
3704	.name   = "crypt",
3705	.version = {1, 25, 0},
3706	.module = THIS_MODULE,
3707	.ctr    = crypt_ctr,
3708	.dtr    = crypt_dtr,
3709	.features = DM_TARGET_ZONED_HM,
3710	.report_zones = crypt_report_zones,
3711	.map    = crypt_map,
3712	.status = crypt_status,
3713	.postsuspend = crypt_postsuspend,
3714	.preresume = crypt_preresume,
3715	.resume = crypt_resume,
3716	.message = crypt_message,
3717	.iterate_devices = crypt_iterate_devices,
3718	.io_hints = crypt_io_hints,
3719};
3720module_dm(crypt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721
3722MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3723MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3724MODULE_LICENSE("GPL");
v4.6
 
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
 
  15#include <linux/bio.h>
  16#include <linux/blkdev.h>
 
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/crypto.h>
  20#include <linux/workqueue.h>
  21#include <linux/kthread.h>
  22#include <linux/backing-dev.h>
  23#include <linux/atomic.h>
  24#include <linux/scatterlist.h>
  25#include <linux/rbtree.h>
 
  26#include <asm/page.h>
  27#include <asm/unaligned.h>
  28#include <crypto/hash.h>
  29#include <crypto/md5.h>
  30#include <crypto/algapi.h>
  31#include <crypto/skcipher.h>
 
 
 
 
 
 
 
 
  32
  33#include <linux/device-mapper.h>
  34
 
 
  35#define DM_MSG_PREFIX "crypt"
  36
  37/*
  38 * context holding the current state of a multi-part conversion
  39 */
  40struct convert_context {
  41	struct completion restart;
  42	struct bio *bio_in;
 
  43	struct bio *bio_out;
  44	struct bvec_iter iter_in;
  45	struct bvec_iter iter_out;
  46	sector_t cc_sector;
  47	atomic_t cc_pending;
  48	struct skcipher_request *req;
 
 
 
 
 
 
 
  49};
  50
  51/*
  52 * per bio private data
  53 */
  54struct dm_crypt_io {
  55	struct crypt_config *cc;
  56	struct bio *base_bio;
 
 
 
  57	struct work_struct work;
  58
  59	struct convert_context ctx;
  60
  61	atomic_t io_pending;
  62	int error;
  63	sector_t sector;
  64
 
 
  65	struct rb_node rb_node;
  66} CRYPTO_MINALIGN_ATTR;
  67
  68struct dm_crypt_request {
  69	struct convert_context *ctx;
  70	struct scatterlist sg_in;
  71	struct scatterlist sg_out;
  72	sector_t iv_sector;
  73};
  74
  75struct crypt_config;
  76
  77struct crypt_iv_operations {
  78	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  79		   const char *opts);
  80	void (*dtr)(struct crypt_config *cc);
  81	int (*init)(struct crypt_config *cc);
  82	int (*wipe)(struct crypt_config *cc);
  83	int (*generator)(struct crypt_config *cc, u8 *iv,
  84			 struct dm_crypt_request *dmreq);
  85	int (*post)(struct crypt_config *cc, u8 *iv,
  86		    struct dm_crypt_request *dmreq);
  87};
  88
  89struct iv_essiv_private {
  90	struct crypto_ahash *hash_tfm;
  91	u8 *salt;
  92};
  93
  94struct iv_benbi_private {
  95	int shift;
  96};
  97
  98#define LMK_SEED_SIZE 64 /* hash + 0 */
  99struct iv_lmk_private {
 100	struct crypto_shash *hash_tfm;
 101	u8 *seed;
 102};
 103
 104#define TCW_WHITENING_SIZE 16
 105struct iv_tcw_private {
 106	struct crypto_shash *crc32_tfm;
 107	u8 *iv_seed;
 108	u8 *whitening;
 109};
 110
 
 
 
 
 
 111/*
 112 * Crypt: maps a linear range of a block device
 113 * and encrypts / decrypts at the same time.
 114 */
 115enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 116	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 117	     DM_CRYPT_EXIT_THREAD};
 
 
 
 
 
 
 
 118
 119/*
 120 * The fields in here must be read only after initialization.
 121 */
 122struct crypt_config {
 123	struct dm_dev *dev;
 124	sector_t start;
 125
 126	/*
 127	 * pool for per bio private data, crypto requests and
 128	 * encryption requeusts/buffer pages
 129	 */
 130	mempool_t *req_pool;
 131	mempool_t *page_pool;
 132	struct bio_set *bs;
 133	struct mutex bio_alloc_lock;
 134
 135	struct workqueue_struct *io_queue;
 136	struct workqueue_struct *crypt_queue;
 137
 
 138	struct task_struct *write_thread;
 139	wait_queue_head_t write_thread_wait;
 140	struct rb_root write_tree;
 141
 142	char *cipher;
 143	char *cipher_string;
 
 
 144
 145	struct crypt_iv_operations *iv_gen_ops;
 146	union {
 147		struct iv_essiv_private essiv;
 148		struct iv_benbi_private benbi;
 149		struct iv_lmk_private lmk;
 150		struct iv_tcw_private tcw;
 
 151	} iv_gen_private;
 152	sector_t iv_offset;
 153	unsigned int iv_size;
 
 
 154
 155	/* ESSIV: struct crypto_cipher *essiv_tfm */
 156	void *iv_private;
 157	struct crypto_skcipher **tfms;
 158	unsigned tfms_count;
 
 
 159
 160	/*
 161	 * Layout of each crypto request:
 162	 *
 163	 *   struct skcipher_request
 164	 *      context
 165	 *      padding
 166	 *   struct dm_crypt_request
 167	 *      padding
 168	 *   IV
 169	 *
 170	 * The padding is added so that dm_crypt_request and the IV are
 171	 * correctly aligned.
 172	 */
 173	unsigned int dmreq_start;
 174
 175	unsigned int per_bio_data_size;
 176
 177	unsigned long flags;
 178	unsigned int key_size;
 179	unsigned int key_parts;      /* independent parts in key buffer */
 180	unsigned int key_extra_size; /* additional keys length */
 181	u8 key[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182};
 183
 184#define MIN_IOS        16
 
 
 
 
 
 
 
 
 185
 186static void clone_init(struct dm_crypt_io *, struct bio *);
 187static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 188static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 
 
 
 189
 190/*
 191 * Use this to access cipher attributes that are the same for each CPU.
 192 */
 193static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 194{
 195	return cc->tfms[0];
 
 
 
 
 
 196}
 197
 198/*
 199 * Different IV generation algorithms:
 200 *
 201 * plain: the initial vector is the 32-bit little-endian version of the sector
 202 *        number, padded with zeros if necessary.
 203 *
 204 * plain64: the initial vector is the 64-bit little-endian version of the sector
 205 *        number, padded with zeros if necessary.
 206 *
 
 
 
 207 * essiv: "encrypted sector|salt initial vector", the sector number is
 208 *        encrypted with the bulk cipher using a salt as key. The salt
 209 *        should be derived from the bulk cipher's key via hashing.
 210 *
 211 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 212 *        (needed for LRW-32-AES and possible other narrow block modes)
 213 *
 214 * null: the initial vector is always zero.  Provides compatibility with
 215 *       obsolete loop_fish2 devices.  Do not use for new devices.
 216 *
 217 * lmk:  Compatible implementation of the block chaining mode used
 218 *       by the Loop-AES block device encryption system
 219 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 220 *       It operates on full 512 byte sectors and uses CBC
 221 *       with an IV derived from the sector number, the data and
 222 *       optionally extra IV seed.
 223 *       This means that after decryption the first block
 224 *       of sector must be tweaked according to decrypted data.
 225 *       Loop-AES can use three encryption schemes:
 226 *         version 1: is plain aes-cbc mode
 227 *         version 2: uses 64 multikey scheme with lmk IV generator
 228 *         version 3: the same as version 2 with additional IV seed
 229 *                   (it uses 65 keys, last key is used as IV seed)
 230 *
 231 * tcw:  Compatible implementation of the block chaining mode used
 232 *       by the TrueCrypt device encryption system (prior to version 4.1).
 233 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 234 *       It operates on full 512 byte sectors and uses CBC
 235 *       with an IV derived from initial key and the sector number.
 236 *       In addition, whitening value is applied on every sector, whitening
 237 *       is calculated from initial key, sector number and mixed using CRC32.
 238 *       Note that this encryption scheme is vulnerable to watermarking attacks
 239 *       and should be used for old compatible containers access only.
 240 *
 241 * plumb: unimplemented, see:
 242 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 
 
 
 
 
 
 243 */
 244
 245static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 246			      struct dm_crypt_request *dmreq)
 247{
 248	memset(iv, 0, cc->iv_size);
 249	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 250
 251	return 0;
 252}
 253
 254static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 255				struct dm_crypt_request *dmreq)
 256{
 257	memset(iv, 0, cc->iv_size);
 258	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 259
 260	return 0;
 261}
 262
 263/* Initialise ESSIV - compute salt but no local memory allocations */
 264static int crypt_iv_essiv_init(struct crypt_config *cc)
 265{
 266	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 267	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 268	struct scatterlist sg;
 269	struct crypto_cipher *essiv_tfm;
 270	int err;
 271
 272	sg_init_one(&sg, cc->key, cc->key_size);
 273	ahash_request_set_tfm(req, essiv->hash_tfm);
 274	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 275	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 276
 277	err = crypto_ahash_digest(req);
 278	ahash_request_zero(req);
 279	if (err)
 280		return err;
 281
 282	essiv_tfm = cc->iv_private;
 283
 284	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 285			    crypto_ahash_digestsize(essiv->hash_tfm));
 286	if (err)
 287		return err;
 288
 289	return 0;
 290}
 291
 292/* Wipe salt and reset key derived from volume key */
 293static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 294{
 295	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 296	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 297	struct crypto_cipher *essiv_tfm;
 298	int r, err = 0;
 299
 300	memset(essiv->salt, 0, salt_size);
 301
 302	essiv_tfm = cc->iv_private;
 303	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 304	if (r)
 305		err = r;
 306
 307	return err;
 308}
 309
 310/* Set up per cpu cipher state */
 311static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 312					     struct dm_target *ti,
 313					     u8 *salt, unsigned saltsize)
 314{
 315	struct crypto_cipher *essiv_tfm;
 316	int err;
 317
 318	/* Setup the essiv_tfm with the given salt */
 319	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 320	if (IS_ERR(essiv_tfm)) {
 321		ti->error = "Error allocating crypto tfm for ESSIV";
 322		return essiv_tfm;
 323	}
 324
 325	if (crypto_cipher_blocksize(essiv_tfm) !=
 326	    crypto_skcipher_ivsize(any_tfm(cc))) {
 327		ti->error = "Block size of ESSIV cipher does "
 328			    "not match IV size of block cipher";
 329		crypto_free_cipher(essiv_tfm);
 330		return ERR_PTR(-EINVAL);
 331	}
 332
 333	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 334	if (err) {
 335		ti->error = "Failed to set key for ESSIV cipher";
 336		crypto_free_cipher(essiv_tfm);
 337		return ERR_PTR(err);
 338	}
 339
 340	return essiv_tfm;
 341}
 342
 343static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 344{
 345	struct crypto_cipher *essiv_tfm;
 346	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 347
 348	crypto_free_ahash(essiv->hash_tfm);
 349	essiv->hash_tfm = NULL;
 350
 351	kzfree(essiv->salt);
 352	essiv->salt = NULL;
 353
 354	essiv_tfm = cc->iv_private;
 355
 356	if (essiv_tfm)
 357		crypto_free_cipher(essiv_tfm);
 358
 359	cc->iv_private = NULL;
 360}
 361
 362static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 363			      const char *opts)
 364{
 365	struct crypto_cipher *essiv_tfm = NULL;
 366	struct crypto_ahash *hash_tfm = NULL;
 367	u8 *salt = NULL;
 368	int err;
 369
 370	if (!opts) {
 371		ti->error = "Digest algorithm missing for ESSIV mode";
 372		return -EINVAL;
 373	}
 374
 375	/* Allocate hash algorithm */
 376	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 377	if (IS_ERR(hash_tfm)) {
 378		ti->error = "Error initializing ESSIV hash";
 379		err = PTR_ERR(hash_tfm);
 380		goto bad;
 381	}
 382
 383	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 384	if (!salt) {
 385		ti->error = "Error kmallocing salt storage in ESSIV";
 386		err = -ENOMEM;
 387		goto bad;
 388	}
 389
 390	cc->iv_gen_private.essiv.salt = salt;
 391	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 392
 393	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 394				crypto_ahash_digestsize(hash_tfm));
 395	if (IS_ERR(essiv_tfm)) {
 396		crypt_iv_essiv_dtr(cc);
 397		return PTR_ERR(essiv_tfm);
 398	}
 399	cc->iv_private = essiv_tfm;
 400
 401	return 0;
 402
 403bad:
 404	if (hash_tfm && !IS_ERR(hash_tfm))
 405		crypto_free_ahash(hash_tfm);
 406	kfree(salt);
 407	return err;
 408}
 409
 410static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 411			      struct dm_crypt_request *dmreq)
 412{
 413	struct crypto_cipher *essiv_tfm = cc->iv_private;
 414
 
 
 415	memset(iv, 0, cc->iv_size);
 416	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 417	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 418
 419	return 0;
 420}
 421
 422static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 423			      const char *opts)
 424{
 425	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 426	int log = ilog2(bs);
 427
 428	/* we need to calculate how far we must shift the sector count
 429	 * to get the cipher block count, we use this shift in _gen */
 
 
 
 430
 
 
 
 
 431	if (1 << log != bs) {
 432		ti->error = "cypher blocksize is not a power of 2";
 433		return -EINVAL;
 434	}
 435
 436	if (log > 9) {
 437		ti->error = "cypher blocksize is > 512";
 438		return -EINVAL;
 439	}
 440
 441	cc->iv_gen_private.benbi.shift = 9 - log;
 442
 443	return 0;
 444}
 445
 446static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 447{
 448}
 449
 450static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 451			      struct dm_crypt_request *dmreq)
 452{
 453	__be64 val;
 454
 455	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 456
 457	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 458	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 459
 460	return 0;
 461}
 462
 463static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 464			     struct dm_crypt_request *dmreq)
 465{
 466	memset(iv, 0, cc->iv_size);
 467
 468	return 0;
 469}
 470
 471static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 472{
 473	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 474
 475	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 476		crypto_free_shash(lmk->hash_tfm);
 477	lmk->hash_tfm = NULL;
 478
 479	kzfree(lmk->seed);
 480	lmk->seed = NULL;
 481}
 482
 483static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 484			    const char *opts)
 485{
 486	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 487
 488	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 
 
 
 
 
 
 489	if (IS_ERR(lmk->hash_tfm)) {
 490		ti->error = "Error initializing LMK hash";
 491		return PTR_ERR(lmk->hash_tfm);
 492	}
 493
 494	/* No seed in LMK version 2 */
 495	if (cc->key_parts == cc->tfms_count) {
 496		lmk->seed = NULL;
 497		return 0;
 498	}
 499
 500	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 501	if (!lmk->seed) {
 502		crypt_iv_lmk_dtr(cc);
 503		ti->error = "Error kmallocing seed storage in LMK";
 504		return -ENOMEM;
 505	}
 506
 507	return 0;
 508}
 509
 510static int crypt_iv_lmk_init(struct crypt_config *cc)
 511{
 512	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 513	int subkey_size = cc->key_size / cc->key_parts;
 514
 515	/* LMK seed is on the position of LMK_KEYS + 1 key */
 516	if (lmk->seed)
 517		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 518		       crypto_shash_digestsize(lmk->hash_tfm));
 519
 520	return 0;
 521}
 522
 523static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 524{
 525	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 526
 527	if (lmk->seed)
 528		memset(lmk->seed, 0, LMK_SEED_SIZE);
 529
 530	return 0;
 531}
 532
 533static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 534			    struct dm_crypt_request *dmreq,
 535			    u8 *data)
 536{
 537	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 538	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 539	struct md5_state md5state;
 540	__le32 buf[4];
 541	int i, r;
 542
 543	desc->tfm = lmk->hash_tfm;
 544	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 545
 546	r = crypto_shash_init(desc);
 547	if (r)
 548		return r;
 549
 550	if (lmk->seed) {
 551		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 552		if (r)
 553			return r;
 554	}
 555
 556	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 557	r = crypto_shash_update(desc, data + 16, 16 * 31);
 558	if (r)
 559		return r;
 560
 561	/* Sector is cropped to 56 bits here */
 562	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 563	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 564	buf[2] = cpu_to_le32(4024);
 565	buf[3] = 0;
 566	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 567	if (r)
 568		return r;
 569
 570	/* No MD5 padding here */
 571	r = crypto_shash_export(desc, &md5state);
 572	if (r)
 573		return r;
 574
 575	for (i = 0; i < MD5_HASH_WORDS; i++)
 576		__cpu_to_le32s(&md5state.hash[i]);
 577	memcpy(iv, &md5state.hash, cc->iv_size);
 578
 579	return 0;
 580}
 581
 582static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 583			    struct dm_crypt_request *dmreq)
 584{
 
 585	u8 *src;
 586	int r = 0;
 587
 588	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 589		src = kmap_atomic(sg_page(&dmreq->sg_in));
 590		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 591		kunmap_atomic(src);
 
 592	} else
 593		memset(iv, 0, cc->iv_size);
 594
 595	return r;
 596}
 597
 598static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 599			     struct dm_crypt_request *dmreq)
 600{
 
 601	u8 *dst;
 602	int r;
 603
 604	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 605		return 0;
 606
 607	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 608	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 
 609
 610	/* Tweak the first block of plaintext sector */
 611	if (!r)
 612		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 613
 614	kunmap_atomic(dst);
 615	return r;
 616}
 617
 618static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 619{
 620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621
 622	kzfree(tcw->iv_seed);
 623	tcw->iv_seed = NULL;
 624	kzfree(tcw->whitening);
 625	tcw->whitening = NULL;
 626
 627	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 628		crypto_free_shash(tcw->crc32_tfm);
 629	tcw->crc32_tfm = NULL;
 630}
 631
 632static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 633			    const char *opts)
 634{
 635	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 636
 
 
 
 
 
 637	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 638		ti->error = "Wrong key size for TCW";
 639		return -EINVAL;
 640	}
 641
 642	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 
 643	if (IS_ERR(tcw->crc32_tfm)) {
 644		ti->error = "Error initializing CRC32 in TCW";
 645		return PTR_ERR(tcw->crc32_tfm);
 646	}
 647
 648	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 649	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 650	if (!tcw->iv_seed || !tcw->whitening) {
 651		crypt_iv_tcw_dtr(cc);
 652		ti->error = "Error allocating seed storage in TCW";
 653		return -ENOMEM;
 654	}
 655
 656	return 0;
 657}
 658
 659static int crypt_iv_tcw_init(struct crypt_config *cc)
 660{
 661	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 662	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 663
 664	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 665	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 666	       TCW_WHITENING_SIZE);
 667
 668	return 0;
 669}
 670
 671static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 672{
 673	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 674
 675	memset(tcw->iv_seed, 0, cc->iv_size);
 676	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 677
 678	return 0;
 679}
 680
 681static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 682				  struct dm_crypt_request *dmreq,
 683				  u8 *data)
 684{
 685	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 686	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 687	u8 buf[TCW_WHITENING_SIZE];
 688	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 689	int i, r;
 690
 691	/* xor whitening with sector number */
 692	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 693	crypto_xor(buf, (u8 *)&sector, 8);
 694	crypto_xor(&buf[8], (u8 *)&sector, 8);
 695
 696	/* calculate crc32 for every 32bit part and xor it */
 697	desc->tfm = tcw->crc32_tfm;
 698	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 699	for (i = 0; i < 4; i++) {
 700		r = crypto_shash_init(desc);
 701		if (r)
 702			goto out;
 703		r = crypto_shash_update(desc, &buf[i * 4], 4);
 704		if (r)
 705			goto out;
 706		r = crypto_shash_final(desc, &buf[i * 4]);
 707		if (r)
 708			goto out;
 709	}
 710	crypto_xor(&buf[0], &buf[12], 4);
 711	crypto_xor(&buf[4], &buf[8], 4);
 712
 713	/* apply whitening (8 bytes) to whole sector */
 714	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 715		crypto_xor(data + i * 8, buf, 8);
 716out:
 717	memzero_explicit(buf, sizeof(buf));
 718	return r;
 719}
 720
 721static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 722			    struct dm_crypt_request *dmreq)
 723{
 
 724	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 725	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 726	u8 *src;
 727	int r = 0;
 728
 729	/* Remove whitening from ciphertext */
 730	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 731		src = kmap_atomic(sg_page(&dmreq->sg_in));
 732		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 733		kunmap_atomic(src);
 
 734	}
 735
 736	/* Calculate IV */
 737	memcpy(iv, tcw->iv_seed, cc->iv_size);
 738	crypto_xor(iv, (u8 *)&sector, 8);
 739	if (cc->iv_size > 8)
 740		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 
 741
 742	return r;
 743}
 744
 745static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 746			     struct dm_crypt_request *dmreq)
 747{
 
 748	u8 *dst;
 749	int r;
 750
 751	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 752		return 0;
 753
 754	/* Apply whitening on ciphertext */
 755	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 756	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 757	kunmap_atomic(dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758
 
 
 
 759	return r;
 760}
 761
 762static struct crypt_iv_operations crypt_iv_plain_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	.generator = crypt_iv_plain_gen
 764};
 765
 766static struct crypt_iv_operations crypt_iv_plain64_ops = {
 767	.generator = crypt_iv_plain64_gen
 768};
 769
 770static struct crypt_iv_operations crypt_iv_essiv_ops = {
 771	.ctr       = crypt_iv_essiv_ctr,
 772	.dtr       = crypt_iv_essiv_dtr,
 773	.init      = crypt_iv_essiv_init,
 774	.wipe      = crypt_iv_essiv_wipe,
 775	.generator = crypt_iv_essiv_gen
 776};
 777
 778static struct crypt_iv_operations crypt_iv_benbi_ops = {
 779	.ctr	   = crypt_iv_benbi_ctr,
 780	.dtr	   = crypt_iv_benbi_dtr,
 781	.generator = crypt_iv_benbi_gen
 782};
 783
 784static struct crypt_iv_operations crypt_iv_null_ops = {
 785	.generator = crypt_iv_null_gen
 786};
 787
 788static struct crypt_iv_operations crypt_iv_lmk_ops = {
 789	.ctr	   = crypt_iv_lmk_ctr,
 790	.dtr	   = crypt_iv_lmk_dtr,
 791	.init	   = crypt_iv_lmk_init,
 792	.wipe	   = crypt_iv_lmk_wipe,
 793	.generator = crypt_iv_lmk_gen,
 794	.post	   = crypt_iv_lmk_post
 795};
 796
 797static struct crypt_iv_operations crypt_iv_tcw_ops = {
 798	.ctr	   = crypt_iv_tcw_ctr,
 799	.dtr	   = crypt_iv_tcw_dtr,
 800	.init	   = crypt_iv_tcw_init,
 801	.wipe	   = crypt_iv_tcw_wipe,
 802	.generator = crypt_iv_tcw_gen,
 803	.post	   = crypt_iv_tcw_post
 804};
 805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806static void crypt_convert_init(struct crypt_config *cc,
 807			       struct convert_context *ctx,
 808			       struct bio *bio_out, struct bio *bio_in,
 809			       sector_t sector)
 810{
 811	ctx->bio_in = bio_in;
 812	ctx->bio_out = bio_out;
 813	if (bio_in)
 814		ctx->iter_in = bio_in->bi_iter;
 815	if (bio_out)
 816		ctx->iter_out = bio_out->bi_iter;
 817	ctx->cc_sector = sector + cc->iv_offset;
 818	init_completion(&ctx->restart);
 819}
 820
 821static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 822					     struct skcipher_request *req)
 823{
 824	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 825}
 826
 827static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
 828					       struct dm_crypt_request *dmreq)
 829{
 830	return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
 831}
 832
 833static u8 *iv_of_dmreq(struct crypt_config *cc,
 834		       struct dm_crypt_request *dmreq)
 835{
 836	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 837		crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 
 
 
 
 
 
 
 
 
 
 838}
 839
 840static int crypt_convert_block(struct crypt_config *cc,
 841			       struct convert_context *ctx,
 842			       struct skcipher_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843{
 844	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 845	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 846	struct dm_crypt_request *dmreq;
 847	u8 *iv;
 848	int r;
 
 
 
 
 
 
 
 849
 850	dmreq = dmreq_of_req(cc, req);
 
 
 
 
 
 
 
 
 
 
 851	iv = iv_of_dmreq(cc, dmreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853	dmreq->iv_sector = ctx->cc_sector;
 
 
 854	dmreq->ctx = ctx;
 855	sg_init_table(&dmreq->sg_in, 1);
 856	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 857		    bv_in.bv_offset);
 858
 859	sg_init_table(&dmreq->sg_out, 1);
 860	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 861		    bv_out.bv_offset);
 862
 863	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 864	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865
 866	if (cc->iv_gen_ops) {
 867		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 868		if (r < 0)
 869			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 870	}
 871
 872	skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 873				   1 << SECTOR_SHIFT, iv);
 874
 875	if (bio_data_dir(ctx->bio_in) == WRITE)
 876		r = crypto_skcipher_encrypt(req);
 877	else
 878		r = crypto_skcipher_decrypt(req);
 879
 880	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 881		r = cc->iv_gen_ops->post(cc, iv, dmreq);
 
 
 
 882
 883	return r;
 884}
 885
 886static void kcryptd_async_done(struct crypto_async_request *async_req,
 887			       int error);
 888
 889static void crypt_alloc_req(struct crypt_config *cc,
 890			    struct convert_context *ctx)
 891{
 892	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	if (!ctx->req)
 895		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 
 
 
 
 
 
 896
 897	skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
 898
 899	/*
 900	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
 901	 * requests if driver request queue is full.
 902	 */
 903	skcipher_request_set_callback(ctx->req,
 904	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 905	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
 
 
 906}
 907
 908static void crypt_free_req(struct crypt_config *cc,
 909			   struct skcipher_request *req, struct bio *base_bio)
 
 
 
 
 
 
 
 
 
 910{
 911	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
 912
 913	if ((struct skcipher_request *)(io + 1) != req)
 914		mempool_free(req, cc->req_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915}
 916
 917/*
 918 * Encrypt / decrypt data from one bio to another one (can be the same one)
 919 */
 920static int crypt_convert(struct crypt_config *cc,
 921			 struct convert_context *ctx)
 922{
 
 
 923	int r;
 924
 925	atomic_set(&ctx->cc_pending, 1);
 
 
 
 
 
 
 926
 927	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 928
 929		crypt_alloc_req(cc, ctx);
 
 
 
 
 930
 931		atomic_inc(&ctx->cc_pending);
 932
 933		r = crypt_convert_block(cc, ctx, ctx->req);
 
 
 
 934
 935		switch (r) {
 936		/*
 937		 * The request was queued by a crypto driver
 938		 * but the driver request queue is full, let's wait.
 939		 */
 940		case -EBUSY:
 941			wait_for_completion(&ctx->restart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942			reinit_completion(&ctx->restart);
 943			/* fall through */
 944		/*
 945		 * The request is queued and processed asynchronously,
 946		 * completion function kcryptd_async_done() will be called.
 947		 */
 948		case -EINPROGRESS:
 949			ctx->req = NULL;
 950			ctx->cc_sector++;
 
 951			continue;
 952		/*
 953		 * The request was already processed (synchronously).
 954		 */
 955		case 0:
 956			atomic_dec(&ctx->cc_pending);
 957			ctx->cc_sector++;
 958			cond_resched();
 
 
 959			continue;
 960
 961		/* There was an error while processing the request. */
 
 
 
 
 
 
 
 962		default:
 963			atomic_dec(&ctx->cc_pending);
 964			return r;
 965		}
 966	}
 967
 968	return 0;
 969}
 970
 971static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 972
 973/*
 974 * Generate a new unfragmented bio with the given size
 975 * This should never violate the device limitations (but only because
 976 * max_segment_size is being constrained to PAGE_SIZE).
 977 *
 978 * This function may be called concurrently. If we allocate from the mempool
 979 * concurrently, there is a possibility of deadlock. For example, if we have
 980 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
 981 * the mempool concurrently, it may deadlock in a situation where both processes
 982 * have allocated 128 pages and the mempool is exhausted.
 983 *
 984 * In order to avoid this scenario we allocate the pages under a mutex.
 985 *
 986 * In order to not degrade performance with excessive locking, we try
 987 * non-blocking allocations without a mutex first but on failure we fallback
 988 * to blocking allocations with a mutex.
 
 
 
 989 */
 990static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 991{
 992	struct crypt_config *cc = io->cc;
 993	struct bio *clone;
 994	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 995	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
 996	unsigned i, len, remaining_size;
 997	struct page *page;
 998	struct bio_vec *bvec;
 999
1000retry:
1001	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1002		mutex_lock(&cc->bio_alloc_lock);
1003
1004	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1005	if (!clone)
1006		goto return_clone;
 
1007
1008	clone_init(io, clone);
1009
1010	remaining_size = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012	for (i = 0; i < nr_iovecs; i++) {
1013		page = mempool_alloc(cc->page_pool, gfp_mask);
1014		if (!page) {
1015			crypt_free_buffer_pages(cc, clone);
1016			bio_put(clone);
1017			gfp_mask |= __GFP_DIRECT_RECLAIM;
 
1018			goto retry;
1019		}
1020
1021		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
 
 
 
 
1022
1023		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1024		bvec->bv_page = page;
1025		bvec->bv_len = len;
1026		bvec->bv_offset = 0;
1027
1028		clone->bi_iter.bi_size += len;
1029
1030		remaining_size -= len;
1031	}
1032
1033return_clone:
1034	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1035		mutex_unlock(&cc->bio_alloc_lock);
1036
1037	return clone;
1038}
1039
1040static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1041{
1042	unsigned int i;
1043	struct bio_vec *bv;
1044
1045	bio_for_each_segment_all(bv, clone, i) {
1046		BUG_ON(!bv->bv_page);
1047		mempool_free(bv->bv_page, cc->page_pool);
1048		bv->bv_page = NULL;
 
 
 
 
 
 
1049	}
1050}
1051
1052static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1053			  struct bio *bio, sector_t sector)
1054{
1055	io->cc = cc;
1056	io->base_bio = bio;
1057	io->sector = sector;
1058	io->error = 0;
1059	io->ctx.req = NULL;
 
 
 
 
1060	atomic_set(&io->io_pending, 0);
1061}
1062
1063static void crypt_inc_pending(struct dm_crypt_io *io)
1064{
1065	atomic_inc(&io->io_pending);
1066}
1067
 
 
1068/*
1069 * One of the bios was finished. Check for completion of
1070 * the whole request and correctly clean up the buffer.
1071 */
1072static void crypt_dec_pending(struct dm_crypt_io *io)
1073{
1074	struct crypt_config *cc = io->cc;
1075	struct bio *base_bio = io->base_bio;
1076	int error = io->error;
1077
1078	if (!atomic_dec_and_test(&io->io_pending))
1079		return;
1080
1081	if (io->ctx.req)
1082		crypt_free_req(cc, io->ctx.req, base_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083
1084	base_bio->bi_error = error;
1085	bio_endio(base_bio);
1086}
1087
1088/*
1089 * kcryptd/kcryptd_io:
1090 *
1091 * Needed because it would be very unwise to do decryption in an
1092 * interrupt context.
1093 *
1094 * kcryptd performs the actual encryption or decryption.
1095 *
1096 * kcryptd_io performs the IO submission.
1097 *
1098 * They must be separated as otherwise the final stages could be
1099 * starved by new requests which can block in the first stages due
1100 * to memory allocation.
1101 *
1102 * The work is done per CPU global for all dm-crypt instances.
1103 * They should not depend on each other and do not block.
1104 */
1105static void crypt_endio(struct bio *clone)
1106{
1107	struct dm_crypt_io *io = clone->bi_private;
1108	struct crypt_config *cc = io->cc;
1109	unsigned rw = bio_data_dir(clone);
1110	int error;
 
 
 
 
 
1111
1112	/*
1113	 * free the processed pages
1114	 */
1115	if (rw == WRITE)
1116		crypt_free_buffer_pages(cc, clone);
1117
1118	error = clone->bi_error;
1119	bio_put(clone);
1120
1121	if (rw == READ && !error) {
1122		kcryptd_queue_crypt(io);
1123		return;
1124	}
1125
1126	if (unlikely(error))
1127		io->error = error;
1128
1129	crypt_dec_pending(io);
1130}
1131
1132static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1133{
1134	struct crypt_config *cc = io->cc;
1135
1136	clone->bi_private = io;
1137	clone->bi_end_io  = crypt_endio;
1138	clone->bi_bdev    = cc->dev->bdev;
1139	clone->bi_rw      = io->base_bio->bi_rw;
1140}
1141
1142static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1143{
1144	struct crypt_config *cc = io->cc;
1145	struct bio *clone;
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	/*
1148	 * We need the original biovec array in order to decrypt
1149	 * the whole bio data *afterwards* -- thanks to immutable
1150	 * biovecs we don't need to worry about the block layer
1151	 * modifying the biovec array; so leverage bio_clone_fast().
1152	 */
1153	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1154	if (!clone)
1155		return 1;
 
 
1156
1157	crypt_inc_pending(io);
1158
1159	clone_init(io, clone);
1160	clone->bi_iter.bi_sector = cc->start + io->sector;
1161
1162	generic_make_request(clone);
 
 
 
 
 
 
1163	return 0;
1164}
1165
1166static void kcryptd_io_read_work(struct work_struct *work)
1167{
1168	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1169
1170	crypt_inc_pending(io);
1171	if (kcryptd_io_read(io, GFP_NOIO))
1172		io->error = -ENOMEM;
1173	crypt_dec_pending(io);
1174}
1175
1176static void kcryptd_queue_read(struct dm_crypt_io *io)
1177{
1178	struct crypt_config *cc = io->cc;
1179
1180	INIT_WORK(&io->work, kcryptd_io_read_work);
1181	queue_work(cc->io_queue, &io->work);
1182}
1183
1184static void kcryptd_io_write(struct dm_crypt_io *io)
1185{
1186	struct bio *clone = io->ctx.bio_out;
1187
1188	generic_make_request(clone);
1189}
1190
1191#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1192
1193static int dmcrypt_write(void *data)
1194{
1195	struct crypt_config *cc = data;
1196	struct dm_crypt_io *io;
1197
1198	while (1) {
1199		struct rb_root write_tree;
1200		struct blk_plug plug;
1201
1202		DECLARE_WAITQUEUE(wait, current);
1203
1204		spin_lock_irq(&cc->write_thread_wait.lock);
1205continue_locked:
1206
1207		if (!RB_EMPTY_ROOT(&cc->write_tree))
1208			goto pop_from_list;
1209
1210		if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1211			spin_unlock_irq(&cc->write_thread_wait.lock);
 
 
 
 
1212			break;
1213		}
1214
1215		__set_current_state(TASK_INTERRUPTIBLE);
1216		__add_wait_queue(&cc->write_thread_wait, &wait);
1217
1218		spin_unlock_irq(&cc->write_thread_wait.lock);
1219
1220		schedule();
1221
1222		spin_lock_irq(&cc->write_thread_wait.lock);
1223		__remove_wait_queue(&cc->write_thread_wait, &wait);
1224		goto continue_locked;
1225
1226pop_from_list:
1227		write_tree = cc->write_tree;
1228		cc->write_tree = RB_ROOT;
1229		spin_unlock_irq(&cc->write_thread_wait.lock);
1230
1231		BUG_ON(rb_parent(write_tree.rb_node));
1232
1233		/*
1234		 * Note: we cannot walk the tree here with rb_next because
1235		 * the structures may be freed when kcryptd_io_write is called.
1236		 */
1237		blk_start_plug(&plug);
1238		do {
1239			io = crypt_io_from_node(rb_first(&write_tree));
1240			rb_erase(&io->rb_node, &write_tree);
1241			kcryptd_io_write(io);
 
1242		} while (!RB_EMPTY_ROOT(&write_tree));
1243		blk_finish_plug(&plug);
1244	}
1245	return 0;
1246}
1247
1248static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1249{
1250	struct bio *clone = io->ctx.bio_out;
1251	struct crypt_config *cc = io->cc;
1252	unsigned long flags;
1253	sector_t sector;
1254	struct rb_node **rbp, *parent;
1255
1256	if (unlikely(io->error < 0)) {
1257		crypt_free_buffer_pages(cc, clone);
1258		bio_put(clone);
1259		crypt_dec_pending(io);
1260		return;
1261	}
1262
1263	/* crypt_convert should have filled the clone bio */
1264	BUG_ON(io->ctx.iter_out.bi_size);
1265
1266	clone->bi_iter.bi_sector = cc->start + io->sector;
1267
1268	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1269		generic_make_request(clone);
 
1270		return;
1271	}
1272
1273	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
 
 
1274	rbp = &cc->write_tree.rb_node;
1275	parent = NULL;
1276	sector = io->sector;
1277	while (*rbp) {
1278		parent = *rbp;
1279		if (sector < crypt_io_from_node(parent)->sector)
1280			rbp = &(*rbp)->rb_left;
1281		else
1282			rbp = &(*rbp)->rb_right;
1283	}
1284	rb_link_node(&io->rb_node, parent, rbp);
1285	rb_insert_color(&io->rb_node, &cc->write_tree);
 
 
1286
1287	wake_up_locked(&cc->write_thread_wait);
1288	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289}
1290
1291static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1292{
1293	struct crypt_config *cc = io->cc;
 
1294	struct bio *clone;
1295	int crypt_finished;
1296	sector_t sector = io->sector;
1297	int r;
1298
1299	/*
1300	 * Prevent io from disappearing until this function completes.
1301	 */
1302	crypt_inc_pending(io);
1303	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1304
1305	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1306	if (unlikely(!clone)) {
1307		io->error = -EIO;
1308		goto dec;
1309	}
1310
1311	io->ctx.bio_out = clone;
1312	io->ctx.iter_out = clone->bi_iter;
1313
 
 
 
 
 
 
1314	sector += bio_sectors(clone);
1315
1316	crypt_inc_pending(io);
1317	r = crypt_convert(cc, &io->ctx);
 
 
 
 
 
 
 
 
 
 
 
1318	if (r)
1319		io->error = -EIO;
1320	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
 
 
 
 
 
1321
1322	/* Encryption was already finished, submit io now */
1323	if (crypt_finished) {
1324		kcryptd_crypt_write_io_submit(io, 0);
1325		io->sector = sector;
1326	}
1327
1328dec:
1329	crypt_dec_pending(io);
1330}
1331
1332static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1333{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334	crypt_dec_pending(io);
1335}
1336
1337static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1338{
1339	struct crypt_config *cc = io->cc;
1340	int r = 0;
1341
1342	crypt_inc_pending(io);
1343
1344	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1345			   io->sector);
 
 
 
 
 
1346
1347	r = crypt_convert(cc, &io->ctx);
1348	if (r < 0)
1349		io->error = -EIO;
 
 
 
 
 
 
 
 
 
 
 
1350
1351	if (atomic_dec_and_test(&io->ctx.cc_pending))
1352		kcryptd_crypt_read_done(io);
1353
1354	crypt_dec_pending(io);
1355}
1356
1357static void kcryptd_async_done(struct crypto_async_request *async_req,
1358			       int error)
1359{
1360	struct dm_crypt_request *dmreq = async_req->data;
1361	struct convert_context *ctx = dmreq->ctx;
1362	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1363	struct crypt_config *cc = io->cc;
1364
1365	/*
1366	 * A request from crypto driver backlog is going to be processed now,
1367	 * finish the completion and continue in crypt_convert().
1368	 * (Callback will be called for the second time for this request.)
1369	 */
1370	if (error == -EINPROGRESS) {
1371		complete(&ctx->restart);
1372		return;
1373	}
1374
1375	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
 
 
 
1377
1378	if (error < 0)
1379		io->error = -EIO;
 
 
 
 
 
 
 
 
1380
1381	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1382
1383	if (!atomic_dec_and_test(&ctx->cc_pending))
1384		return;
1385
1386	if (bio_data_dir(io->base_bio) == READ)
 
 
 
 
1387		kcryptd_crypt_read_done(io);
1388	else
1389		kcryptd_crypt_write_io_submit(io, 1);
 
 
 
 
 
 
 
1390}
1391
1392static void kcryptd_crypt(struct work_struct *work)
1393{
1394	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1395
1396	if (bio_data_dir(io->base_bio) == READ)
1397		kcryptd_crypt_read_convert(io);
1398	else
1399		kcryptd_crypt_write_convert(io);
1400}
1401
1402static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1403{
1404	struct crypt_config *cc = io->cc;
1405
 
 
 
 
 
 
 
 
 
 
 
 
 
1406	INIT_WORK(&io->work, kcryptd_crypt);
1407	queue_work(cc->crypt_queue, &io->work);
1408}
1409
1410/*
1411 * Decode key from its hex representation
1412 */
1413static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1414{
1415	char buffer[3];
1416	unsigned int i;
1417
1418	buffer[2] = '\0';
1419
1420	for (i = 0; i < size; i++) {
1421		buffer[0] = *hex++;
1422		buffer[1] = *hex++;
1423
1424		if (kstrtou8(buffer, 16, &key[i]))
1425			return -EINVAL;
1426	}
1427
1428	if (*hex != '\0')
1429		return -EINVAL;
1430
1431	return 0;
1432}
1433
1434static void crypt_free_tfms(struct crypt_config *cc)
1435{
1436	unsigned i;
1437
1438	if (!cc->tfms)
1439		return;
1440
1441	for (i = 0; i < cc->tfms_count; i++)
1442		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1443			crypto_free_skcipher(cc->tfms[i]);
1444			cc->tfms[i] = NULL;
1445		}
1446
1447	kfree(cc->tfms);
1448	cc->tfms = NULL;
 
 
 
 
 
 
 
 
1449}
1450
1451static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1452{
1453	unsigned i;
1454	int err;
1455
1456	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1457			   GFP_KERNEL);
1458	if (!cc->tfms)
 
1459		return -ENOMEM;
1460
1461	for (i = 0; i < cc->tfms_count; i++) {
1462		cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1463		if (IS_ERR(cc->tfms[i])) {
1464			err = PTR_ERR(cc->tfms[i]);
 
1465			crypt_free_tfms(cc);
1466			return err;
1467		}
1468	}
1469
 
 
 
 
 
 
 
1470	return 0;
1471}
1472
1473static int crypt_setkey_allcpus(struct crypt_config *cc)
1474{
1475	unsigned subkey_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476	int err = 0, i, r;
1477
1478	/* Ignore extra keys (which are used for IV etc) */
1479	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
 
 
 
 
 
 
 
 
 
1480
1481	for (i = 0; i < cc->tfms_count; i++) {
1482		r = crypto_skcipher_setkey(cc->tfms[i],
1483					   cc->key + (i * subkey_size),
1484					   subkey_size);
 
 
 
 
 
 
 
 
1485		if (r)
1486			err = r;
1487	}
1488
 
 
 
1489	return err;
1490}
1491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492static int crypt_set_key(struct crypt_config *cc, char *key)
1493{
1494	int r = -EINVAL;
1495	int key_string_len = strlen(key);
1496
1497	/* The key size may not be changed. */
1498	if (cc->key_size != (key_string_len >> 1))
1499		goto out;
1500
1501	/* Hyphen (which gives a key_size of zero) means there is no key. */
1502	if (!cc->key_size && strcmp(key, "-"))
1503		goto out;
1504
1505	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
 
 
1506		goto out;
 
 
 
 
 
 
 
 
1507
1508	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
1509
1510	r = crypt_setkey_allcpus(cc);
 
 
1511
1512out:
1513	/* Hex key string not needed after here, so wipe it. */
1514	memset(key, '0', key_string_len);
1515
1516	return r;
1517}
1518
1519static int crypt_wipe_key(struct crypt_config *cc)
1520{
 
 
1521	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
 
 
 
 
 
 
 
 
 
 
1522	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1523
1524	return crypt_setkey_allcpus(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525}
1526
1527static void crypt_dtr(struct dm_target *ti)
1528{
1529	struct crypt_config *cc = ti->private;
1530
1531	ti->private = NULL;
1532
1533	if (!cc)
1534		return;
1535
1536	if (cc->write_thread) {
1537		spin_lock_irq(&cc->write_thread_wait.lock);
1538		set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1539		wake_up_locked(&cc->write_thread_wait);
1540		spin_unlock_irq(&cc->write_thread_wait.lock);
1541		kthread_stop(cc->write_thread);
1542	}
1543
1544	if (cc->io_queue)
1545		destroy_workqueue(cc->io_queue);
1546	if (cc->crypt_queue)
1547		destroy_workqueue(cc->crypt_queue);
1548
1549	crypt_free_tfms(cc);
1550
1551	if (cc->bs)
1552		bioset_free(cc->bs);
1553
1554	mempool_destroy(cc->page_pool);
1555	mempool_destroy(cc->req_pool);
 
 
 
 
1556
1557	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1558		cc->iv_gen_ops->dtr(cc);
1559
1560	if (cc->dev)
1561		dm_put_device(ti, cc->dev);
1562
1563	kzfree(cc->cipher);
1564	kzfree(cc->cipher_string);
 
 
 
 
1565
1566	/* Must zero key material before freeing */
1567	kzfree(cc);
 
 
 
 
 
 
 
 
1568}
1569
1570static int crypt_ctr_cipher(struct dm_target *ti,
1571			    char *cipher_in, char *key)
1572{
1573	struct crypt_config *cc = ti->private;
1574	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575	char *cipher_api = NULL;
1576	int ret = -EINVAL;
1577	char dummy;
1578
1579	/* Convert to crypto api definition? */
1580	if (strchr(cipher_in, '(')) {
1581		ti->error = "Bad cipher specification";
1582		return -EINVAL;
1583	}
1584
1585	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1586	if (!cc->cipher_string)
1587		goto bad_mem;
1588
1589	/*
1590	 * Legacy dm-crypt cipher specification
1591	 * cipher[:keycount]-mode-iv:ivopts
1592	 */
1593	tmp = cipher_in;
1594	keycount = strsep(&tmp, "-");
1595	cipher = strsep(&keycount, ":");
1596
1597	if (!keycount)
1598		cc->tfms_count = 1;
1599	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1600		 !is_power_of_2(cc->tfms_count)) {
1601		ti->error = "Bad cipher key count specification";
1602		return -EINVAL;
1603	}
1604	cc->key_parts = cc->tfms_count;
1605	cc->key_extra_size = 0;
1606
1607	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1608	if (!cc->cipher)
1609		goto bad_mem;
1610
1611	chainmode = strsep(&tmp, "-");
1612	ivopts = strsep(&tmp, "-");
1613	ivmode = strsep(&ivopts, ":");
1614
1615	if (tmp)
1616		DMWARN("Ignoring unexpected additional cipher options");
1617
1618	/*
1619	 * For compatibility with the original dm-crypt mapping format, if
1620	 * only the cipher name is supplied, use cbc-plain.
1621	 */
1622	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1623		chainmode = "cbc";
1624		ivmode = "plain";
1625	}
1626
1627	if (strcmp(chainmode, "ecb") && !ivmode) {
1628		ti->error = "IV mechanism required";
1629		return -EINVAL;
1630	}
1631
1632	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1633	if (!cipher_api)
1634		goto bad_mem;
1635
1636	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1637		       "%s(%s)", chainmode, cipher);
1638	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
1639		kfree(cipher_api);
1640		goto bad_mem;
1641	}
1642
1643	/* Allocate cipher */
1644	ret = crypt_alloc_tfms(cc, cipher_api);
1645	if (ret < 0) {
1646		ti->error = "Error allocating crypto tfm";
1647		goto bad;
 
1648	}
 
1649
1650	/* Initialize IV */
1651	cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1652	if (cc->iv_size)
1653		/* at least a 64 bit sector number should fit in our buffer */
1654		cc->iv_size = max(cc->iv_size,
1655				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1656	else if (ivmode) {
1657		DMWARN("Selected cipher does not support IVs");
1658		ivmode = NULL;
 
 
 
 
 
 
 
1659	}
1660
1661	/* Choose ivmode, see comments at iv code. */
1662	if (ivmode == NULL)
1663		cc->iv_gen_ops = NULL;
1664	else if (strcmp(ivmode, "plain") == 0)
1665		cc->iv_gen_ops = &crypt_iv_plain_ops;
1666	else if (strcmp(ivmode, "plain64") == 0)
1667		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1668	else if (strcmp(ivmode, "essiv") == 0)
1669		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1670	else if (strcmp(ivmode, "benbi") == 0)
1671		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1672	else if (strcmp(ivmode, "null") == 0)
1673		cc->iv_gen_ops = &crypt_iv_null_ops;
1674	else if (strcmp(ivmode, "lmk") == 0) {
1675		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1676		/*
1677		 * Version 2 and 3 is recognised according
1678		 * to length of provided multi-key string.
1679		 * If present (version 3), last key is used as IV seed.
1680		 * All keys (including IV seed) are always the same size.
1681		 */
1682		if (cc->key_size % cc->key_parts) {
1683			cc->key_parts++;
1684			cc->key_extra_size = cc->key_size / cc->key_parts;
1685		}
1686	} else if (strcmp(ivmode, "tcw") == 0) {
1687		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1688		cc->key_parts += 2; /* IV + whitening */
1689		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1690	} else {
1691		ret = -EINVAL;
1692		ti->error = "Invalid IV mode";
1693		goto bad;
1694	}
1695
1696	/* Initialize and set key */
1697	ret = crypt_set_key(cc, key);
1698	if (ret < 0) {
1699		ti->error = "Error decoding and setting key";
1700		goto bad;
1701	}
1702
1703	/* Allocate IV */
1704	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1705		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1706		if (ret < 0) {
1707			ti->error = "Error creating IV";
1708			goto bad;
1709		}
1710	}
1711
1712	/* Initialize IV (set keys for ESSIV etc) */
1713	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1714		ret = cc->iv_gen_ops->init(cc);
1715		if (ret < 0) {
1716			ti->error = "Error initialising IV";
1717			goto bad;
1718		}
1719	}
1720
1721	ret = 0;
1722bad:
1723	kfree(cipher_api);
 
1724	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725
1726bad_mem:
1727	ti->error = "Cannot allocate cipher strings";
1728	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729}
1730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731/*
1732 * Construct an encryption mapping:
1733 * <cipher> <key> <iv_offset> <dev_path> <start>
1734 */
1735static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1736{
1737	struct crypt_config *cc;
1738	unsigned int key_size, opt_params;
 
 
1739	unsigned long long tmpll;
1740	int ret;
1741	size_t iv_size_padding;
1742	struct dm_arg_set as;
1743	const char *opt_string;
1744	char dummy;
1745
1746	static struct dm_arg _args[] = {
1747		{0, 3, "Invalid number of feature args"},
1748	};
1749
1750	if (argc < 5) {
1751		ti->error = "Not enough arguments";
1752		return -EINVAL;
1753	}
1754
1755	key_size = strlen(argv[1]) >> 1;
 
 
 
 
1756
1757	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1758	if (!cc) {
1759		ti->error = "Cannot allocate encryption context";
1760		return -ENOMEM;
1761	}
1762	cc->key_size = key_size;
 
 
1763
1764	ti->private = cc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1766	if (ret < 0)
1767		goto bad;
1768
1769	cc->dmreq_start = sizeof(struct skcipher_request);
1770	cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
 
 
 
 
 
 
 
1771	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1772
1773	if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1774		/* Allocate the padding exactly */
1775		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1776				& crypto_skcipher_alignmask(any_tfm(cc));
1777	} else {
1778		/*
1779		 * If the cipher requires greater alignment than kmalloc
1780		 * alignment, we don't know the exact position of the
1781		 * initialization vector. We must assume worst case.
1782		 */
1783		iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1784	}
1785
1786	ret = -ENOMEM;
1787	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1788			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1789	if (!cc->req_pool) {
 
 
 
 
 
1790		ti->error = "Cannot allocate crypt request mempool";
1791		goto bad;
1792	}
1793
1794	cc->per_bio_data_size = ti->per_io_data_size =
1795		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1796		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1797		      ARCH_KMALLOC_MINALIGN);
1798
1799	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1800	if (!cc->page_pool) {
1801		ti->error = "Cannot allocate page mempool";
1802		goto bad;
1803	}
1804
1805	cc->bs = bioset_create(MIN_IOS, 0);
1806	if (!cc->bs) {
1807		ti->error = "Cannot allocate crypt bioset";
1808		goto bad;
1809	}
1810
1811	mutex_init(&cc->bio_alloc_lock);
1812
1813	ret = -EINVAL;
1814	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
 
1815		ti->error = "Invalid iv_offset sector";
1816		goto bad;
1817	}
1818	cc->iv_offset = tmpll;
1819
1820	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1821	if (ret) {
1822		ti->error = "Device lookup failed";
1823		goto bad;
1824	}
1825
1826	ret = -EINVAL;
1827	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1828		ti->error = "Invalid device sector";
1829		goto bad;
1830	}
1831	cc->start = tmpll;
1832
1833	argv += 5;
1834	argc -= 5;
 
 
 
 
 
 
1835
1836	/* Optional parameters */
1837	if (argc) {
1838		as.argc = argc;
1839		as.argv = argv;
 
 
 
 
 
 
 
 
 
 
1840
1841		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
 
1842		if (ret)
1843			goto bad;
1844
1845		ret = -EINVAL;
1846		while (opt_params--) {
1847			opt_string = dm_shift_arg(&as);
1848			if (!opt_string) {
1849				ti->error = "Not enough feature arguments";
1850				goto bad;
1851			}
 
 
 
1852
1853			if (!strcasecmp(opt_string, "allow_discards"))
1854				ti->num_discard_bios = 1;
1855
1856			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1857				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1858
1859			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1860				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1861
1862			else {
1863				ti->error = "Invalid feature arguments";
1864				goto bad;
1865			}
1866		}
1867	}
1868
1869	ret = -ENOMEM;
1870	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1871	if (!cc->io_queue) {
1872		ti->error = "Couldn't create kcryptd io queue";
1873		goto bad;
1874	}
1875
1876	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1877		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
 
1878	else
1879		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1880						  num_online_cpus());
 
1881	if (!cc->crypt_queue) {
1882		ti->error = "Couldn't create kcryptd queue";
1883		goto bad;
1884	}
1885
1886	init_waitqueue_head(&cc->write_thread_wait);
1887	cc->write_tree = RB_ROOT;
1888
1889	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1890	if (IS_ERR(cc->write_thread)) {
1891		ret = PTR_ERR(cc->write_thread);
1892		cc->write_thread = NULL;
1893		ti->error = "Couldn't spawn write thread";
1894		goto bad;
1895	}
1896	wake_up_process(cc->write_thread);
1897
1898	ti->num_flush_bios = 1;
1899	ti->discard_zeroes_data_unsupported = true;
 
1900
 
1901	return 0;
1902
1903bad:
 
1904	crypt_dtr(ti);
1905	return ret;
1906}
1907
1908static int crypt_map(struct dm_target *ti, struct bio *bio)
1909{
1910	struct dm_crypt_io *io;
1911	struct crypt_config *cc = ti->private;
1912
1913	/*
1914	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1915	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1916	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1917	 */
1918	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1919		bio->bi_bdev = cc->dev->bdev;
 
1920		if (bio_sectors(bio))
1921			bio->bi_iter.bi_sector = cc->start +
1922				dm_target_offset(ti, bio->bi_iter.bi_sector);
1923		return DM_MAPIO_REMAPPED;
1924	}
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1927	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1928	io->ctx.req = (struct skcipher_request *)(io + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929
1930	if (bio_data_dir(io->base_bio) == READ) {
1931		if (kcryptd_io_read(io, GFP_NOWAIT))
1932			kcryptd_queue_read(io);
1933	} else
1934		kcryptd_queue_crypt(io);
1935
1936	return DM_MAPIO_SUBMITTED;
1937}
1938
 
 
 
 
 
1939static void crypt_status(struct dm_target *ti, status_type_t type,
1940			 unsigned status_flags, char *result, unsigned maxlen)
1941{
1942	struct crypt_config *cc = ti->private;
1943	unsigned i, sz = 0;
1944	int num_feature_args = 0;
1945
1946	switch (type) {
1947	case STATUSTYPE_INFO:
1948		result[0] = '\0';
1949		break;
1950
1951	case STATUSTYPE_TABLE:
1952		DMEMIT("%s ", cc->cipher_string);
1953
1954		if (cc->key_size > 0)
1955			for (i = 0; i < cc->key_size; i++)
1956				DMEMIT("%02x", cc->key[i]);
1957		else
 
 
 
 
 
 
1958			DMEMIT("-");
1959
1960		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1961				cc->dev->name, (unsigned long long)cc->start);
1962
1963		num_feature_args += !!ti->num_discard_bios;
1964		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1965		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
 
 
 
 
 
 
1966		if (num_feature_args) {
1967			DMEMIT(" %d", num_feature_args);
1968			if (ti->num_discard_bios)
1969				DMEMIT(" allow_discards");
1970			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1971				DMEMIT(" same_cpu_crypt");
1972			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1973				DMEMIT(" submit_from_crypt_cpus");
 
 
 
 
 
 
 
 
 
 
1974		}
 
1975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976		break;
1977	}
1978}
1979
1980static void crypt_postsuspend(struct dm_target *ti)
1981{
1982	struct crypt_config *cc = ti->private;
1983
1984	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1985}
1986
1987static int crypt_preresume(struct dm_target *ti)
1988{
1989	struct crypt_config *cc = ti->private;
1990
1991	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1992		DMERR("aborting resume - crypt key is not set.");
1993		return -EAGAIN;
1994	}
1995
1996	return 0;
1997}
1998
1999static void crypt_resume(struct dm_target *ti)
2000{
2001	struct crypt_config *cc = ti->private;
2002
2003	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2004}
2005
2006/* Message interface
2007 *	key set <key>
2008 *	key wipe
2009 */
2010static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
 
2011{
2012	struct crypt_config *cc = ti->private;
2013	int ret = -EINVAL;
2014
2015	if (argc < 2)
2016		goto error;
2017
2018	if (!strcasecmp(argv[0], "key")) {
2019		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2020			DMWARN("not suspended during key manipulation.");
2021			return -EINVAL;
2022		}
2023		if (argc == 3 && !strcasecmp(argv[1], "set")) {
 
 
 
 
 
 
 
2024			ret = crypt_set_key(cc, argv[2]);
2025			if (ret)
2026				return ret;
2027			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2028				ret = cc->iv_gen_ops->init(cc);
 
 
 
2029			return ret;
2030		}
2031		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2032			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2033				ret = cc->iv_gen_ops->wipe(cc);
2034				if (ret)
2035					return ret;
2036			}
2037			return crypt_wipe_key(cc);
2038		}
2039	}
2040
2041error:
2042	DMWARN("unrecognised message received.");
2043	return -EINVAL;
2044}
2045
2046static int crypt_iterate_devices(struct dm_target *ti,
2047				 iterate_devices_callout_fn fn, void *data)
2048{
2049	struct crypt_config *cc = ti->private;
2050
2051	return fn(ti, cc->dev, cc->start, ti->len, data);
2052}
2053
2054static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2055{
 
 
2056	/*
2057	 * Unfortunate constraint that is required to avoid the potential
2058	 * for exceeding underlying device's max_segments limits -- due to
2059	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2060	 * bio that are not as physically contiguous as the original bio.
2061	 */
2062	limits->max_segment_size = PAGE_SIZE;
 
 
 
 
 
 
 
2063}
2064
2065static struct target_type crypt_target = {
2066	.name   = "crypt",
2067	.version = {1, 14, 1},
2068	.module = THIS_MODULE,
2069	.ctr    = crypt_ctr,
2070	.dtr    = crypt_dtr,
 
 
2071	.map    = crypt_map,
2072	.status = crypt_status,
2073	.postsuspend = crypt_postsuspend,
2074	.preresume = crypt_preresume,
2075	.resume = crypt_resume,
2076	.message = crypt_message,
2077	.iterate_devices = crypt_iterate_devices,
2078	.io_hints = crypt_io_hints,
2079};
2080
2081static int __init dm_crypt_init(void)
2082{
2083	int r;
2084
2085	r = dm_register_target(&crypt_target);
2086	if (r < 0)
2087		DMERR("register failed %d", r);
2088
2089	return r;
2090}
2091
2092static void __exit dm_crypt_exit(void)
2093{
2094	dm_unregister_target(&crypt_target);
2095}
2096
2097module_init(dm_crypt_init);
2098module_exit(dm_crypt_exit);
2099
2100MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2101MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2102MODULE_LICENSE("GPL");