Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/completion.h>
  10#include <linux/err.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/bio.h>
  15#include <linux/blkdev.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/crypto.h>
  19#include <linux/workqueue.h>
  20#include <linux/backing-dev.h>
  21#include <linux/percpu.h>
  22#include <linux/atomic.h>
  23#include <linux/scatterlist.h>
  24#include <asm/page.h>
  25#include <asm/unaligned.h>
  26#include <crypto/hash.h>
  27#include <crypto/md5.h>
  28#include <crypto/algapi.h>
  29
  30#include <linux/device-mapper.h>
  31
  32#define DM_MSG_PREFIX "crypt"
  33
  34/*
  35 * context holding the current state of a multi-part conversion
  36 */
  37struct convert_context {
  38	struct completion restart;
  39	struct bio *bio_in;
  40	struct bio *bio_out;
  41	unsigned int offset_in;
  42	unsigned int offset_out;
  43	unsigned int idx_in;
  44	unsigned int idx_out;
  45	sector_t sector;
  46	atomic_t pending;
  47};
  48
  49/*
  50 * per bio private data
  51 */
  52struct dm_crypt_io {
  53	struct dm_target *target;
  54	struct bio *base_bio;
  55	struct work_struct work;
  56
  57	struct convert_context ctx;
  58
  59	atomic_t pending;
  60	int error;
  61	sector_t sector;
  62	struct dm_crypt_io *base_io;
  63};
  64
  65struct dm_crypt_request {
  66	struct convert_context *ctx;
  67	struct scatterlist sg_in;
  68	struct scatterlist sg_out;
  69	sector_t iv_sector;
  70};
  71
  72struct crypt_config;
  73
  74struct crypt_iv_operations {
  75	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  76		   const char *opts);
  77	void (*dtr)(struct crypt_config *cc);
  78	int (*init)(struct crypt_config *cc);
  79	int (*wipe)(struct crypt_config *cc);
  80	int (*generator)(struct crypt_config *cc, u8 *iv,
  81			 struct dm_crypt_request *dmreq);
  82	int (*post)(struct crypt_config *cc, u8 *iv,
  83		    struct dm_crypt_request *dmreq);
  84};
  85
  86struct iv_essiv_private {
  87	struct crypto_hash *hash_tfm;
  88	u8 *salt;
  89};
  90
  91struct iv_benbi_private {
  92	int shift;
  93};
  94
  95#define LMK_SEED_SIZE 64 /* hash + 0 */
  96struct iv_lmk_private {
  97	struct crypto_shash *hash_tfm;
  98	u8 *seed;
  99};
 100
 101/*
 102 * Crypt: maps a linear range of a block device
 103 * and encrypts / decrypts at the same time.
 104 */
 105enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
 106
 107/*
 108 * Duplicated per-CPU state for cipher.
 109 */
 110struct crypt_cpu {
 111	struct ablkcipher_request *req;
 112	/* ESSIV: struct crypto_cipher *essiv_tfm */
 113	void *iv_private;
 114	struct crypto_ablkcipher *tfms[0];
 115};
 116
 117/*
 118 * The fields in here must be read only after initialization,
 119 * changing state should be in crypt_cpu.
 120 */
 121struct crypt_config {
 122	struct dm_dev *dev;
 123	sector_t start;
 124
 125	/*
 126	 * pool for per bio private data, crypto requests and
 127	 * encryption requeusts/buffer pages
 128	 */
 129	mempool_t *io_pool;
 130	mempool_t *req_pool;
 131	mempool_t *page_pool;
 132	struct bio_set *bs;
 133
 134	struct workqueue_struct *io_queue;
 135	struct workqueue_struct *crypt_queue;
 136
 137	char *cipher;
 138	char *cipher_string;
 139
 140	struct crypt_iv_operations *iv_gen_ops;
 141	union {
 142		struct iv_essiv_private essiv;
 143		struct iv_benbi_private benbi;
 144		struct iv_lmk_private lmk;
 145	} iv_gen_private;
 146	sector_t iv_offset;
 147	unsigned int iv_size;
 148
 149	/*
 150	 * Duplicated per cpu state. Access through
 151	 * per_cpu_ptr() only.
 152	 */
 153	struct crypt_cpu __percpu *cpu;
 154	unsigned tfms_count;
 155
 156	/*
 157	 * Layout of each crypto request:
 158	 *
 159	 *   struct ablkcipher_request
 160	 *      context
 161	 *      padding
 162	 *   struct dm_crypt_request
 163	 *      padding
 164	 *   IV
 165	 *
 166	 * The padding is added so that dm_crypt_request and the IV are
 167	 * correctly aligned.
 168	 */
 169	unsigned int dmreq_start;
 170
 171	unsigned long flags;
 172	unsigned int key_size;
 173	unsigned int key_parts;
 174	u8 key[0];
 175};
 176
 177#define MIN_IOS        16
 178#define MIN_POOL_PAGES 32
 179
 180static struct kmem_cache *_crypt_io_pool;
 181
 182static void clone_init(struct dm_crypt_io *, struct bio *);
 183static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 184static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 185
 186static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
 187{
 188	return this_cpu_ptr(cc->cpu);
 189}
 190
 191/*
 192 * Use this to access cipher attributes that are the same for each CPU.
 193 */
 194static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
 195{
 196	return __this_cpu_ptr(cc->cpu)->tfms[0];
 197}
 198
 199/*
 200 * Different IV generation algorithms:
 201 *
 202 * plain: the initial vector is the 32-bit little-endian version of the sector
 203 *        number, padded with zeros if necessary.
 204 *
 205 * plain64: the initial vector is the 64-bit little-endian version of the sector
 206 *        number, padded with zeros if necessary.
 207 *
 208 * essiv: "encrypted sector|salt initial vector", the sector number is
 209 *        encrypted with the bulk cipher using a salt as key. The salt
 210 *        should be derived from the bulk cipher's key via hashing.
 211 *
 212 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 213 *        (needed for LRW-32-AES and possible other narrow block modes)
 214 *
 215 * null: the initial vector is always zero.  Provides compatibility with
 216 *       obsolete loop_fish2 devices.  Do not use for new devices.
 217 *
 218 * lmk:  Compatible implementation of the block chaining mode used
 219 *       by the Loop-AES block device encryption system
 220 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 221 *       It operates on full 512 byte sectors and uses CBC
 222 *       with an IV derived from the sector number, the data and
 223 *       optionally extra IV seed.
 224 *       This means that after decryption the first block
 225 *       of sector must be tweaked according to decrypted data.
 226 *       Loop-AES can use three encryption schemes:
 227 *         version 1: is plain aes-cbc mode
 228 *         version 2: uses 64 multikey scheme with lmk IV generator
 229 *         version 3: the same as version 2 with additional IV seed
 230 *                   (it uses 65 keys, last key is used as IV seed)
 231 *
 232 * plumb: unimplemented, see:
 233 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 234 */
 235
 236static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 237			      struct dm_crypt_request *dmreq)
 238{
 239	memset(iv, 0, cc->iv_size);
 240	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 241
 242	return 0;
 243}
 244
 245static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 246				struct dm_crypt_request *dmreq)
 247{
 248	memset(iv, 0, cc->iv_size);
 249	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 250
 251	return 0;
 252}
 253
 254/* Initialise ESSIV - compute salt but no local memory allocations */
 255static int crypt_iv_essiv_init(struct crypt_config *cc)
 256{
 257	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 258	struct hash_desc desc;
 259	struct scatterlist sg;
 260	struct crypto_cipher *essiv_tfm;
 261	int err, cpu;
 262
 263	sg_init_one(&sg, cc->key, cc->key_size);
 264	desc.tfm = essiv->hash_tfm;
 265	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 266
 267	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 268	if (err)
 269		return err;
 270
 271	for_each_possible_cpu(cpu) {
 272		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
 273
 274		err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 275				    crypto_hash_digestsize(essiv->hash_tfm));
 276		if (err)
 277			return err;
 278	}
 279
 280	return 0;
 281}
 282
 283/* Wipe salt and reset key derived from volume key */
 284static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 285{
 286	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 287	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 288	struct crypto_cipher *essiv_tfm;
 289	int cpu, r, err = 0;
 290
 291	memset(essiv->salt, 0, salt_size);
 292
 293	for_each_possible_cpu(cpu) {
 294		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
 295		r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 296		if (r)
 297			err = r;
 298	}
 299
 300	return err;
 301}
 302
 303/* Set up per cpu cipher state */
 304static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 305					     struct dm_target *ti,
 306					     u8 *salt, unsigned saltsize)
 307{
 308	struct crypto_cipher *essiv_tfm;
 309	int err;
 310
 311	/* Setup the essiv_tfm with the given salt */
 312	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 313	if (IS_ERR(essiv_tfm)) {
 314		ti->error = "Error allocating crypto tfm for ESSIV";
 315		return essiv_tfm;
 316	}
 317
 318	if (crypto_cipher_blocksize(essiv_tfm) !=
 319	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
 320		ti->error = "Block size of ESSIV cipher does "
 321			    "not match IV size of block cipher";
 322		crypto_free_cipher(essiv_tfm);
 323		return ERR_PTR(-EINVAL);
 324	}
 325
 326	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 327	if (err) {
 328		ti->error = "Failed to set key for ESSIV cipher";
 329		crypto_free_cipher(essiv_tfm);
 330		return ERR_PTR(err);
 331	}
 332
 333	return essiv_tfm;
 334}
 335
 336static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 337{
 338	int cpu;
 339	struct crypt_cpu *cpu_cc;
 340	struct crypto_cipher *essiv_tfm;
 341	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 342
 343	crypto_free_hash(essiv->hash_tfm);
 344	essiv->hash_tfm = NULL;
 345
 346	kzfree(essiv->salt);
 347	essiv->salt = NULL;
 348
 349	for_each_possible_cpu(cpu) {
 350		cpu_cc = per_cpu_ptr(cc->cpu, cpu);
 351		essiv_tfm = cpu_cc->iv_private;
 352
 353		if (essiv_tfm)
 354			crypto_free_cipher(essiv_tfm);
 355
 356		cpu_cc->iv_private = NULL;
 357	}
 358}
 359
 360static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 361			      const char *opts)
 362{
 363	struct crypto_cipher *essiv_tfm = NULL;
 364	struct crypto_hash *hash_tfm = NULL;
 365	u8 *salt = NULL;
 366	int err, cpu;
 367
 368	if (!opts) {
 369		ti->error = "Digest algorithm missing for ESSIV mode";
 370		return -EINVAL;
 371	}
 372
 373	/* Allocate hash algorithm */
 374	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 375	if (IS_ERR(hash_tfm)) {
 376		ti->error = "Error initializing ESSIV hash";
 377		err = PTR_ERR(hash_tfm);
 378		goto bad;
 379	}
 380
 381	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 382	if (!salt) {
 383		ti->error = "Error kmallocing salt storage in ESSIV";
 384		err = -ENOMEM;
 385		goto bad;
 386	}
 387
 388	cc->iv_gen_private.essiv.salt = salt;
 389	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 390
 391	for_each_possible_cpu(cpu) {
 392		essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 393					crypto_hash_digestsize(hash_tfm));
 394		if (IS_ERR(essiv_tfm)) {
 395			crypt_iv_essiv_dtr(cc);
 396			return PTR_ERR(essiv_tfm);
 397		}
 398		per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
 399	}
 400
 401	return 0;
 402
 403bad:
 404	if (hash_tfm && !IS_ERR(hash_tfm))
 405		crypto_free_hash(hash_tfm);
 406	kfree(salt);
 407	return err;
 408}
 409
 410static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 411			      struct dm_crypt_request *dmreq)
 412{
 413	struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
 414
 415	memset(iv, 0, cc->iv_size);
 416	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 417	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 418
 419	return 0;
 420}
 421
 422static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 423			      const char *opts)
 424{
 425	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
 426	int log = ilog2(bs);
 427
 428	/* we need to calculate how far we must shift the sector count
 429	 * to get the cipher block count, we use this shift in _gen */
 430
 431	if (1 << log != bs) {
 432		ti->error = "cypher blocksize is not a power of 2";
 433		return -EINVAL;
 434	}
 435
 436	if (log > 9) {
 437		ti->error = "cypher blocksize is > 512";
 438		return -EINVAL;
 439	}
 440
 441	cc->iv_gen_private.benbi.shift = 9 - log;
 442
 443	return 0;
 444}
 445
 446static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 447{
 448}
 449
 450static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 451			      struct dm_crypt_request *dmreq)
 452{
 453	__be64 val;
 454
 455	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 456
 457	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 458	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 459
 460	return 0;
 461}
 462
 463static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 464			     struct dm_crypt_request *dmreq)
 465{
 466	memset(iv, 0, cc->iv_size);
 467
 468	return 0;
 469}
 470
 471static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 472{
 473	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 474
 475	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 476		crypto_free_shash(lmk->hash_tfm);
 477	lmk->hash_tfm = NULL;
 478
 479	kzfree(lmk->seed);
 480	lmk->seed = NULL;
 481}
 482
 483static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 484			    const char *opts)
 485{
 486	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 487
 488	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 489	if (IS_ERR(lmk->hash_tfm)) {
 490		ti->error = "Error initializing LMK hash";
 491		return PTR_ERR(lmk->hash_tfm);
 492	}
 493
 494	/* No seed in LMK version 2 */
 495	if (cc->key_parts == cc->tfms_count) {
 496		lmk->seed = NULL;
 497		return 0;
 498	}
 499
 500	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 501	if (!lmk->seed) {
 502		crypt_iv_lmk_dtr(cc);
 503		ti->error = "Error kmallocing seed storage in LMK";
 504		return -ENOMEM;
 505	}
 506
 507	return 0;
 508}
 509
 510static int crypt_iv_lmk_init(struct crypt_config *cc)
 511{
 512	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 513	int subkey_size = cc->key_size / cc->key_parts;
 514
 515	/* LMK seed is on the position of LMK_KEYS + 1 key */
 516	if (lmk->seed)
 517		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 518		       crypto_shash_digestsize(lmk->hash_tfm));
 519
 520	return 0;
 521}
 522
 523static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 524{
 525	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 526
 527	if (lmk->seed)
 528		memset(lmk->seed, 0, LMK_SEED_SIZE);
 529
 530	return 0;
 531}
 532
 533static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 534			    struct dm_crypt_request *dmreq,
 535			    u8 *data)
 536{
 537	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 538	struct {
 539		struct shash_desc desc;
 540		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
 541	} sdesc;
 542	struct md5_state md5state;
 543	u32 buf[4];
 544	int i, r;
 545
 546	sdesc.desc.tfm = lmk->hash_tfm;
 547	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 548
 549	r = crypto_shash_init(&sdesc.desc);
 550	if (r)
 551		return r;
 552
 553	if (lmk->seed) {
 554		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
 555		if (r)
 556			return r;
 557	}
 558
 559	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 560	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
 561	if (r)
 562		return r;
 563
 564	/* Sector is cropped to 56 bits here */
 565	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 566	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 567	buf[2] = cpu_to_le32(4024);
 568	buf[3] = 0;
 569	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
 570	if (r)
 571		return r;
 572
 573	/* No MD5 padding here */
 574	r = crypto_shash_export(&sdesc.desc, &md5state);
 575	if (r)
 576		return r;
 577
 578	for (i = 0; i < MD5_HASH_WORDS; i++)
 579		__cpu_to_le32s(&md5state.hash[i]);
 580	memcpy(iv, &md5state.hash, cc->iv_size);
 581
 582	return 0;
 583}
 584
 585static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 586			    struct dm_crypt_request *dmreq)
 587{
 588	u8 *src;
 589	int r = 0;
 590
 591	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 592		src = kmap_atomic(sg_page(&dmreq->sg_in));
 593		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 594		kunmap_atomic(src);
 595	} else
 596		memset(iv, 0, cc->iv_size);
 597
 598	return r;
 599}
 600
 601static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 602			     struct dm_crypt_request *dmreq)
 603{
 604	u8 *dst;
 605	int r;
 606
 607	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 608		return 0;
 609
 610	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 611	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 612
 613	/* Tweak the first block of plaintext sector */
 614	if (!r)
 615		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 616
 617	kunmap_atomic(dst);
 618	return r;
 619}
 620
 621static struct crypt_iv_operations crypt_iv_plain_ops = {
 622	.generator = crypt_iv_plain_gen
 623};
 624
 625static struct crypt_iv_operations crypt_iv_plain64_ops = {
 626	.generator = crypt_iv_plain64_gen
 627};
 628
 629static struct crypt_iv_operations crypt_iv_essiv_ops = {
 630	.ctr       = crypt_iv_essiv_ctr,
 631	.dtr       = crypt_iv_essiv_dtr,
 632	.init      = crypt_iv_essiv_init,
 633	.wipe      = crypt_iv_essiv_wipe,
 634	.generator = crypt_iv_essiv_gen
 635};
 636
 637static struct crypt_iv_operations crypt_iv_benbi_ops = {
 638	.ctr	   = crypt_iv_benbi_ctr,
 639	.dtr	   = crypt_iv_benbi_dtr,
 640	.generator = crypt_iv_benbi_gen
 641};
 642
 643static struct crypt_iv_operations crypt_iv_null_ops = {
 644	.generator = crypt_iv_null_gen
 645};
 646
 647static struct crypt_iv_operations crypt_iv_lmk_ops = {
 648	.ctr	   = crypt_iv_lmk_ctr,
 649	.dtr	   = crypt_iv_lmk_dtr,
 650	.init	   = crypt_iv_lmk_init,
 651	.wipe	   = crypt_iv_lmk_wipe,
 652	.generator = crypt_iv_lmk_gen,
 653	.post	   = crypt_iv_lmk_post
 654};
 655
 656static void crypt_convert_init(struct crypt_config *cc,
 657			       struct convert_context *ctx,
 658			       struct bio *bio_out, struct bio *bio_in,
 659			       sector_t sector)
 660{
 661	ctx->bio_in = bio_in;
 662	ctx->bio_out = bio_out;
 663	ctx->offset_in = 0;
 664	ctx->offset_out = 0;
 665	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
 666	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
 667	ctx->sector = sector + cc->iv_offset;
 668	init_completion(&ctx->restart);
 669}
 670
 671static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 672					     struct ablkcipher_request *req)
 673{
 674	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 675}
 676
 677static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 678					       struct dm_crypt_request *dmreq)
 679{
 680	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 681}
 682
 683static u8 *iv_of_dmreq(struct crypt_config *cc,
 684		       struct dm_crypt_request *dmreq)
 685{
 686	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 687		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
 688}
 689
 690static int crypt_convert_block(struct crypt_config *cc,
 691			       struct convert_context *ctx,
 692			       struct ablkcipher_request *req)
 693{
 694	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
 695	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
 696	struct dm_crypt_request *dmreq;
 697	u8 *iv;
 698	int r = 0;
 699
 700	dmreq = dmreq_of_req(cc, req);
 701	iv = iv_of_dmreq(cc, dmreq);
 702
 703	dmreq->iv_sector = ctx->sector;
 704	dmreq->ctx = ctx;
 705	sg_init_table(&dmreq->sg_in, 1);
 706	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
 707		    bv_in->bv_offset + ctx->offset_in);
 708
 709	sg_init_table(&dmreq->sg_out, 1);
 710	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
 711		    bv_out->bv_offset + ctx->offset_out);
 712
 713	ctx->offset_in += 1 << SECTOR_SHIFT;
 714	if (ctx->offset_in >= bv_in->bv_len) {
 715		ctx->offset_in = 0;
 716		ctx->idx_in++;
 717	}
 718
 719	ctx->offset_out += 1 << SECTOR_SHIFT;
 720	if (ctx->offset_out >= bv_out->bv_len) {
 721		ctx->offset_out = 0;
 722		ctx->idx_out++;
 723	}
 724
 725	if (cc->iv_gen_ops) {
 726		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 727		if (r < 0)
 728			return r;
 729	}
 730
 731	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 732				     1 << SECTOR_SHIFT, iv);
 733
 734	if (bio_data_dir(ctx->bio_in) == WRITE)
 735		r = crypto_ablkcipher_encrypt(req);
 736	else
 737		r = crypto_ablkcipher_decrypt(req);
 738
 739	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 740		r = cc->iv_gen_ops->post(cc, iv, dmreq);
 741
 742	return r;
 743}
 744
 745static void kcryptd_async_done(struct crypto_async_request *async_req,
 746			       int error);
 747
 748static void crypt_alloc_req(struct crypt_config *cc,
 749			    struct convert_context *ctx)
 750{
 751	struct crypt_cpu *this_cc = this_crypt_config(cc);
 752	unsigned key_index = ctx->sector & (cc->tfms_count - 1);
 753
 754	if (!this_cc->req)
 755		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 756
 757	ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
 758	ablkcipher_request_set_callback(this_cc->req,
 759	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 760	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
 761}
 762
 763/*
 764 * Encrypt / decrypt data from one bio to another one (can be the same one)
 765 */
 766static int crypt_convert(struct crypt_config *cc,
 767			 struct convert_context *ctx)
 768{
 769	struct crypt_cpu *this_cc = this_crypt_config(cc);
 770	int r;
 771
 772	atomic_set(&ctx->pending, 1);
 773
 774	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
 775	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
 776
 777		crypt_alloc_req(cc, ctx);
 778
 779		atomic_inc(&ctx->pending);
 780
 781		r = crypt_convert_block(cc, ctx, this_cc->req);
 782
 783		switch (r) {
 784		/* async */
 785		case -EBUSY:
 786			wait_for_completion(&ctx->restart);
 787			INIT_COMPLETION(ctx->restart);
 788			/* fall through*/
 789		case -EINPROGRESS:
 790			this_cc->req = NULL;
 791			ctx->sector++;
 792			continue;
 793
 794		/* sync */
 795		case 0:
 796			atomic_dec(&ctx->pending);
 797			ctx->sector++;
 798			cond_resched();
 799			continue;
 800
 801		/* error */
 802		default:
 803			atomic_dec(&ctx->pending);
 804			return r;
 805		}
 806	}
 807
 808	return 0;
 809}
 810
 811static void dm_crypt_bio_destructor(struct bio *bio)
 812{
 813	struct dm_crypt_io *io = bio->bi_private;
 814	struct crypt_config *cc = io->target->private;
 815
 816	bio_free(bio, cc->bs);
 817}
 818
 819/*
 820 * Generate a new unfragmented bio with the given size
 821 * This should never violate the device limitations
 822 * May return a smaller bio when running out of pages, indicated by
 823 * *out_of_pages set to 1.
 824 */
 825static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 826				      unsigned *out_of_pages)
 827{
 828	struct crypt_config *cc = io->target->private;
 829	struct bio *clone;
 830	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 831	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 832	unsigned i, len;
 833	struct page *page;
 834
 835	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 836	if (!clone)
 837		return NULL;
 838
 839	clone_init(io, clone);
 840	*out_of_pages = 0;
 841
 842	for (i = 0; i < nr_iovecs; i++) {
 843		page = mempool_alloc(cc->page_pool, gfp_mask);
 844		if (!page) {
 845			*out_of_pages = 1;
 846			break;
 847		}
 848
 849		/*
 850		 * If additional pages cannot be allocated without waiting,
 851		 * return a partially-allocated bio.  The caller will then try
 852		 * to allocate more bios while submitting this partial bio.
 853		 */
 854		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
 855
 856		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
 857
 858		if (!bio_add_page(clone, page, len, 0)) {
 859			mempool_free(page, cc->page_pool);
 860			break;
 861		}
 862
 863		size -= len;
 864	}
 865
 866	if (!clone->bi_size) {
 867		bio_put(clone);
 868		return NULL;
 869	}
 870
 871	return clone;
 872}
 873
 874static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
 875{
 876	unsigned int i;
 877	struct bio_vec *bv;
 878
 879	for (i = 0; i < clone->bi_vcnt; i++) {
 880		bv = bio_iovec_idx(clone, i);
 881		BUG_ON(!bv->bv_page);
 882		mempool_free(bv->bv_page, cc->page_pool);
 883		bv->bv_page = NULL;
 884	}
 885}
 886
 887static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
 888					  struct bio *bio, sector_t sector)
 889{
 890	struct crypt_config *cc = ti->private;
 891	struct dm_crypt_io *io;
 892
 893	io = mempool_alloc(cc->io_pool, GFP_NOIO);
 894	io->target = ti;
 895	io->base_bio = bio;
 896	io->sector = sector;
 897	io->error = 0;
 898	io->base_io = NULL;
 899	atomic_set(&io->pending, 0);
 900
 901	return io;
 902}
 903
 904static void crypt_inc_pending(struct dm_crypt_io *io)
 905{
 906	atomic_inc(&io->pending);
 907}
 908
 909/*
 910 * One of the bios was finished. Check for completion of
 911 * the whole request and correctly clean up the buffer.
 912 * If base_io is set, wait for the last fragment to complete.
 913 */
 914static void crypt_dec_pending(struct dm_crypt_io *io)
 915{
 916	struct crypt_config *cc = io->target->private;
 917	struct bio *base_bio = io->base_bio;
 918	struct dm_crypt_io *base_io = io->base_io;
 919	int error = io->error;
 920
 921	if (!atomic_dec_and_test(&io->pending))
 922		return;
 923
 924	mempool_free(io, cc->io_pool);
 925
 926	if (likely(!base_io))
 927		bio_endio(base_bio, error);
 928	else {
 929		if (error && !base_io->error)
 930			base_io->error = error;
 931		crypt_dec_pending(base_io);
 932	}
 933}
 934
 935/*
 936 * kcryptd/kcryptd_io:
 937 *
 938 * Needed because it would be very unwise to do decryption in an
 939 * interrupt context.
 940 *
 941 * kcryptd performs the actual encryption or decryption.
 942 *
 943 * kcryptd_io performs the IO submission.
 944 *
 945 * They must be separated as otherwise the final stages could be
 946 * starved by new requests which can block in the first stages due
 947 * to memory allocation.
 948 *
 949 * The work is done per CPU global for all dm-crypt instances.
 950 * They should not depend on each other and do not block.
 951 */
 952static void crypt_endio(struct bio *clone, int error)
 953{
 954	struct dm_crypt_io *io = clone->bi_private;
 955	struct crypt_config *cc = io->target->private;
 956	unsigned rw = bio_data_dir(clone);
 957
 958	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
 959		error = -EIO;
 960
 961	/*
 962	 * free the processed pages
 963	 */
 964	if (rw == WRITE)
 965		crypt_free_buffer_pages(cc, clone);
 966
 967	bio_put(clone);
 968
 969	if (rw == READ && !error) {
 970		kcryptd_queue_crypt(io);
 971		return;
 972	}
 973
 974	if (unlikely(error))
 975		io->error = error;
 976
 977	crypt_dec_pending(io);
 978}
 979
 980static void clone_init(struct dm_crypt_io *io, struct bio *clone)
 981{
 982	struct crypt_config *cc = io->target->private;
 983
 984	clone->bi_private = io;
 985	clone->bi_end_io  = crypt_endio;
 986	clone->bi_bdev    = cc->dev->bdev;
 987	clone->bi_rw      = io->base_bio->bi_rw;
 988	clone->bi_destructor = dm_crypt_bio_destructor;
 989}
 990
 991static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
 992{
 993	struct crypt_config *cc = io->target->private;
 994	struct bio *base_bio = io->base_bio;
 995	struct bio *clone;
 996
 997	/*
 998	 * The block layer might modify the bvec array, so always
 999	 * copy the required bvecs because we need the original
1000	 * one in order to decrypt the whole bio data *afterwards*.
1001	 */
1002	clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1003	if (!clone)
1004		return 1;
1005
1006	crypt_inc_pending(io);
1007
1008	clone_init(io, clone);
1009	clone->bi_idx = 0;
1010	clone->bi_vcnt = bio_segments(base_bio);
1011	clone->bi_size = base_bio->bi_size;
1012	clone->bi_sector = cc->start + io->sector;
1013	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1014	       sizeof(struct bio_vec) * clone->bi_vcnt);
1015
1016	generic_make_request(clone);
1017	return 0;
1018}
1019
1020static void kcryptd_io_write(struct dm_crypt_io *io)
1021{
1022	struct bio *clone = io->ctx.bio_out;
1023	generic_make_request(clone);
1024}
1025
1026static void kcryptd_io(struct work_struct *work)
1027{
1028	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1029
1030	if (bio_data_dir(io->base_bio) == READ) {
1031		crypt_inc_pending(io);
1032		if (kcryptd_io_read(io, GFP_NOIO))
1033			io->error = -ENOMEM;
1034		crypt_dec_pending(io);
1035	} else
1036		kcryptd_io_write(io);
1037}
1038
1039static void kcryptd_queue_io(struct dm_crypt_io *io)
1040{
1041	struct crypt_config *cc = io->target->private;
1042
1043	INIT_WORK(&io->work, kcryptd_io);
1044	queue_work(cc->io_queue, &io->work);
1045}
1046
1047static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1048{
1049	struct bio *clone = io->ctx.bio_out;
1050	struct crypt_config *cc = io->target->private;
1051
1052	if (unlikely(io->error < 0)) {
1053		crypt_free_buffer_pages(cc, clone);
1054		bio_put(clone);
1055		crypt_dec_pending(io);
1056		return;
1057	}
1058
1059	/* crypt_convert should have filled the clone bio */
1060	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1061
1062	clone->bi_sector = cc->start + io->sector;
1063
1064	if (async)
1065		kcryptd_queue_io(io);
1066	else
1067		generic_make_request(clone);
1068}
1069
1070static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1071{
1072	struct crypt_config *cc = io->target->private;
1073	struct bio *clone;
1074	struct dm_crypt_io *new_io;
1075	int crypt_finished;
1076	unsigned out_of_pages = 0;
1077	unsigned remaining = io->base_bio->bi_size;
1078	sector_t sector = io->sector;
1079	int r;
1080
1081	/*
1082	 * Prevent io from disappearing until this function completes.
1083	 */
1084	crypt_inc_pending(io);
1085	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1086
1087	/*
1088	 * The allocated buffers can be smaller than the whole bio,
1089	 * so repeat the whole process until all the data can be handled.
1090	 */
1091	while (remaining) {
1092		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1093		if (unlikely(!clone)) {
1094			io->error = -ENOMEM;
1095			break;
1096		}
1097
1098		io->ctx.bio_out = clone;
1099		io->ctx.idx_out = 0;
1100
1101		remaining -= clone->bi_size;
1102		sector += bio_sectors(clone);
1103
1104		crypt_inc_pending(io);
1105
1106		r = crypt_convert(cc, &io->ctx);
1107		if (r < 0)
1108			io->error = -EIO;
1109
1110		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1111
1112		/* Encryption was already finished, submit io now */
1113		if (crypt_finished) {
1114			kcryptd_crypt_write_io_submit(io, 0);
1115
1116			/*
1117			 * If there was an error, do not try next fragments.
1118			 * For async, error is processed in async handler.
1119			 */
1120			if (unlikely(r < 0))
1121				break;
1122
1123			io->sector = sector;
1124		}
1125
1126		/*
1127		 * Out of memory -> run queues
1128		 * But don't wait if split was due to the io size restriction
1129		 */
1130		if (unlikely(out_of_pages))
1131			congestion_wait(BLK_RW_ASYNC, HZ/100);
1132
1133		/*
1134		 * With async crypto it is unsafe to share the crypto context
1135		 * between fragments, so switch to a new dm_crypt_io structure.
1136		 */
1137		if (unlikely(!crypt_finished && remaining)) {
1138			new_io = crypt_io_alloc(io->target, io->base_bio,
1139						sector);
1140			crypt_inc_pending(new_io);
1141			crypt_convert_init(cc, &new_io->ctx, NULL,
1142					   io->base_bio, sector);
1143			new_io->ctx.idx_in = io->ctx.idx_in;
1144			new_io->ctx.offset_in = io->ctx.offset_in;
1145
1146			/*
1147			 * Fragments after the first use the base_io
1148			 * pending count.
1149			 */
1150			if (!io->base_io)
1151				new_io->base_io = io;
1152			else {
1153				new_io->base_io = io->base_io;
1154				crypt_inc_pending(io->base_io);
1155				crypt_dec_pending(io);
1156			}
1157
1158			io = new_io;
1159		}
1160	}
1161
1162	crypt_dec_pending(io);
1163}
1164
1165static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1166{
1167	crypt_dec_pending(io);
1168}
1169
1170static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1171{
1172	struct crypt_config *cc = io->target->private;
1173	int r = 0;
1174
1175	crypt_inc_pending(io);
1176
1177	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1178			   io->sector);
1179
1180	r = crypt_convert(cc, &io->ctx);
1181	if (r < 0)
1182		io->error = -EIO;
1183
1184	if (atomic_dec_and_test(&io->ctx.pending))
1185		kcryptd_crypt_read_done(io);
1186
1187	crypt_dec_pending(io);
1188}
1189
1190static void kcryptd_async_done(struct crypto_async_request *async_req,
1191			       int error)
1192{
1193	struct dm_crypt_request *dmreq = async_req->data;
1194	struct convert_context *ctx = dmreq->ctx;
1195	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1196	struct crypt_config *cc = io->target->private;
1197
1198	if (error == -EINPROGRESS) {
1199		complete(&ctx->restart);
1200		return;
1201	}
1202
1203	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1204		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1205
1206	if (error < 0)
1207		io->error = -EIO;
1208
1209	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1210
1211	if (!atomic_dec_and_test(&ctx->pending))
1212		return;
1213
1214	if (bio_data_dir(io->base_bio) == READ)
1215		kcryptd_crypt_read_done(io);
1216	else
1217		kcryptd_crypt_write_io_submit(io, 1);
1218}
1219
1220static void kcryptd_crypt(struct work_struct *work)
1221{
1222	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1223
1224	if (bio_data_dir(io->base_bio) == READ)
1225		kcryptd_crypt_read_convert(io);
1226	else
1227		kcryptd_crypt_write_convert(io);
1228}
1229
1230static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1231{
1232	struct crypt_config *cc = io->target->private;
1233
1234	INIT_WORK(&io->work, kcryptd_crypt);
1235	queue_work(cc->crypt_queue, &io->work);
1236}
1237
1238/*
1239 * Decode key from its hex representation
1240 */
1241static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1242{
1243	char buffer[3];
1244	char *endp;
1245	unsigned int i;
1246
1247	buffer[2] = '\0';
1248
1249	for (i = 0; i < size; i++) {
1250		buffer[0] = *hex++;
1251		buffer[1] = *hex++;
1252
1253		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1254
1255		if (endp != &buffer[2])
1256			return -EINVAL;
1257	}
1258
1259	if (*hex != '\0')
1260		return -EINVAL;
1261
1262	return 0;
1263}
1264
1265/*
1266 * Encode key into its hex representation
1267 */
1268static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1269{
1270	unsigned int i;
1271
1272	for (i = 0; i < size; i++) {
1273		sprintf(hex, "%02x", *key);
1274		hex += 2;
1275		key++;
1276	}
1277}
1278
1279static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1280{
1281	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1282	unsigned i;
1283
1284	for (i = 0; i < cc->tfms_count; i++)
1285		if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1286			crypto_free_ablkcipher(cpu_cc->tfms[i]);
1287			cpu_cc->tfms[i] = NULL;
1288		}
1289}
1290
1291static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1292{
1293	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1294	unsigned i;
1295	int err;
1296
1297	for (i = 0; i < cc->tfms_count; i++) {
1298		cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1299		if (IS_ERR(cpu_cc->tfms[i])) {
1300			err = PTR_ERR(cpu_cc->tfms[i]);
1301			crypt_free_tfms(cc, cpu);
1302			return err;
1303		}
1304	}
1305
1306	return 0;
1307}
1308
1309static int crypt_setkey_allcpus(struct crypt_config *cc)
1310{
1311	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1312	int cpu, err = 0, i, r;
1313
1314	for_each_possible_cpu(cpu) {
1315		for (i = 0; i < cc->tfms_count; i++) {
1316			r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1317						     cc->key + (i * subkey_size), subkey_size);
1318			if (r)
1319				err = r;
1320		}
1321	}
1322
1323	return err;
1324}
1325
1326static int crypt_set_key(struct crypt_config *cc, char *key)
1327{
1328	int r = -EINVAL;
1329	int key_string_len = strlen(key);
1330
1331	/* The key size may not be changed. */
1332	if (cc->key_size != (key_string_len >> 1))
1333		goto out;
1334
1335	/* Hyphen (which gives a key_size of zero) means there is no key. */
1336	if (!cc->key_size && strcmp(key, "-"))
1337		goto out;
1338
1339	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1340		goto out;
1341
1342	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1343
1344	r = crypt_setkey_allcpus(cc);
1345
1346out:
1347	/* Hex key string not needed after here, so wipe it. */
1348	memset(key, '0', key_string_len);
1349
1350	return r;
1351}
1352
1353static int crypt_wipe_key(struct crypt_config *cc)
1354{
1355	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1356	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1357
1358	return crypt_setkey_allcpus(cc);
1359}
1360
1361static void crypt_dtr(struct dm_target *ti)
1362{
1363	struct crypt_config *cc = ti->private;
1364	struct crypt_cpu *cpu_cc;
1365	int cpu;
1366
1367	ti->private = NULL;
1368
1369	if (!cc)
1370		return;
1371
1372	if (cc->io_queue)
1373		destroy_workqueue(cc->io_queue);
1374	if (cc->crypt_queue)
1375		destroy_workqueue(cc->crypt_queue);
1376
1377	if (cc->cpu)
1378		for_each_possible_cpu(cpu) {
1379			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1380			if (cpu_cc->req)
1381				mempool_free(cpu_cc->req, cc->req_pool);
1382			crypt_free_tfms(cc, cpu);
1383		}
1384
1385	if (cc->bs)
1386		bioset_free(cc->bs);
1387
1388	if (cc->page_pool)
1389		mempool_destroy(cc->page_pool);
1390	if (cc->req_pool)
1391		mempool_destroy(cc->req_pool);
1392	if (cc->io_pool)
1393		mempool_destroy(cc->io_pool);
1394
1395	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1396		cc->iv_gen_ops->dtr(cc);
1397
1398	if (cc->dev)
1399		dm_put_device(ti, cc->dev);
1400
1401	if (cc->cpu)
1402		free_percpu(cc->cpu);
1403
1404	kzfree(cc->cipher);
1405	kzfree(cc->cipher_string);
1406
1407	/* Must zero key material before freeing */
1408	kzfree(cc);
1409}
1410
1411static int crypt_ctr_cipher(struct dm_target *ti,
1412			    char *cipher_in, char *key)
1413{
1414	struct crypt_config *cc = ti->private;
1415	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1416	char *cipher_api = NULL;
1417	int cpu, ret = -EINVAL;
1418	char dummy;
1419
1420	/* Convert to crypto api definition? */
1421	if (strchr(cipher_in, '(')) {
1422		ti->error = "Bad cipher specification";
1423		return -EINVAL;
1424	}
1425
1426	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1427	if (!cc->cipher_string)
1428		goto bad_mem;
1429
1430	/*
1431	 * Legacy dm-crypt cipher specification
1432	 * cipher[:keycount]-mode-iv:ivopts
1433	 */
1434	tmp = cipher_in;
1435	keycount = strsep(&tmp, "-");
1436	cipher = strsep(&keycount, ":");
1437
1438	if (!keycount)
1439		cc->tfms_count = 1;
1440	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1441		 !is_power_of_2(cc->tfms_count)) {
1442		ti->error = "Bad cipher key count specification";
1443		return -EINVAL;
1444	}
1445	cc->key_parts = cc->tfms_count;
1446
1447	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1448	if (!cc->cipher)
1449		goto bad_mem;
1450
1451	chainmode = strsep(&tmp, "-");
1452	ivopts = strsep(&tmp, "-");
1453	ivmode = strsep(&ivopts, ":");
1454
1455	if (tmp)
1456		DMWARN("Ignoring unexpected additional cipher options");
1457
1458	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1459				 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1460				 __alignof__(struct crypt_cpu));
1461	if (!cc->cpu) {
1462		ti->error = "Cannot allocate per cpu state";
1463		goto bad_mem;
1464	}
1465
1466	/*
1467	 * For compatibility with the original dm-crypt mapping format, if
1468	 * only the cipher name is supplied, use cbc-plain.
1469	 */
1470	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1471		chainmode = "cbc";
1472		ivmode = "plain";
1473	}
1474
1475	if (strcmp(chainmode, "ecb") && !ivmode) {
1476		ti->error = "IV mechanism required";
1477		return -EINVAL;
1478	}
1479
1480	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1481	if (!cipher_api)
1482		goto bad_mem;
1483
1484	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1485		       "%s(%s)", chainmode, cipher);
1486	if (ret < 0) {
1487		kfree(cipher_api);
1488		goto bad_mem;
1489	}
1490
1491	/* Allocate cipher */
1492	for_each_possible_cpu(cpu) {
1493		ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1494		if (ret < 0) {
1495			ti->error = "Error allocating crypto tfm";
1496			goto bad;
1497		}
1498	}
1499
1500	/* Initialize and set key */
1501	ret = crypt_set_key(cc, key);
1502	if (ret < 0) {
1503		ti->error = "Error decoding and setting key";
1504		goto bad;
1505	}
1506
1507	/* Initialize IV */
1508	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1509	if (cc->iv_size)
1510		/* at least a 64 bit sector number should fit in our buffer */
1511		cc->iv_size = max(cc->iv_size,
1512				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1513	else if (ivmode) {
1514		DMWARN("Selected cipher does not support IVs");
1515		ivmode = NULL;
1516	}
1517
1518	/* Choose ivmode, see comments at iv code. */
1519	if (ivmode == NULL)
1520		cc->iv_gen_ops = NULL;
1521	else if (strcmp(ivmode, "plain") == 0)
1522		cc->iv_gen_ops = &crypt_iv_plain_ops;
1523	else if (strcmp(ivmode, "plain64") == 0)
1524		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1525	else if (strcmp(ivmode, "essiv") == 0)
1526		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1527	else if (strcmp(ivmode, "benbi") == 0)
1528		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1529	else if (strcmp(ivmode, "null") == 0)
1530		cc->iv_gen_ops = &crypt_iv_null_ops;
1531	else if (strcmp(ivmode, "lmk") == 0) {
1532		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1533		/* Version 2 and 3 is recognised according
1534		 * to length of provided multi-key string.
1535		 * If present (version 3), last key is used as IV seed.
1536		 */
1537		if (cc->key_size % cc->key_parts)
1538			cc->key_parts++;
1539	} else {
1540		ret = -EINVAL;
1541		ti->error = "Invalid IV mode";
1542		goto bad;
1543	}
1544
1545	/* Allocate IV */
1546	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1547		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1548		if (ret < 0) {
1549			ti->error = "Error creating IV";
1550			goto bad;
1551		}
1552	}
1553
1554	/* Initialize IV (set keys for ESSIV etc) */
1555	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1556		ret = cc->iv_gen_ops->init(cc);
1557		if (ret < 0) {
1558			ti->error = "Error initialising IV";
1559			goto bad;
1560		}
1561	}
1562
1563	ret = 0;
1564bad:
1565	kfree(cipher_api);
1566	return ret;
1567
1568bad_mem:
1569	ti->error = "Cannot allocate cipher strings";
1570	return -ENOMEM;
1571}
1572
1573/*
1574 * Construct an encryption mapping:
1575 * <cipher> <key> <iv_offset> <dev_path> <start>
1576 */
1577static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1578{
1579	struct crypt_config *cc;
1580	unsigned int key_size, opt_params;
1581	unsigned long long tmpll;
1582	int ret;
1583	struct dm_arg_set as;
1584	const char *opt_string;
1585	char dummy;
1586
1587	static struct dm_arg _args[] = {
1588		{0, 1, "Invalid number of feature args"},
1589	};
1590
1591	if (argc < 5) {
1592		ti->error = "Not enough arguments";
1593		return -EINVAL;
1594	}
1595
1596	key_size = strlen(argv[1]) >> 1;
1597
1598	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1599	if (!cc) {
1600		ti->error = "Cannot allocate encryption context";
1601		return -ENOMEM;
1602	}
1603	cc->key_size = key_size;
1604
1605	ti->private = cc;
1606	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1607	if (ret < 0)
1608		goto bad;
1609
1610	ret = -ENOMEM;
1611	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1612	if (!cc->io_pool) {
1613		ti->error = "Cannot allocate crypt io mempool";
1614		goto bad;
1615	}
1616
1617	cc->dmreq_start = sizeof(struct ablkcipher_request);
1618	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1619	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1620	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1621			   ~(crypto_tfm_ctx_alignment() - 1);
1622
1623	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1624			sizeof(struct dm_crypt_request) + cc->iv_size);
1625	if (!cc->req_pool) {
1626		ti->error = "Cannot allocate crypt request mempool";
1627		goto bad;
1628	}
1629
1630	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1631	if (!cc->page_pool) {
1632		ti->error = "Cannot allocate page mempool";
1633		goto bad;
1634	}
1635
1636	cc->bs = bioset_create(MIN_IOS, 0);
1637	if (!cc->bs) {
1638		ti->error = "Cannot allocate crypt bioset";
1639		goto bad;
1640	}
1641
1642	ret = -EINVAL;
1643	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1644		ti->error = "Invalid iv_offset sector";
1645		goto bad;
1646	}
1647	cc->iv_offset = tmpll;
1648
1649	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1650		ti->error = "Device lookup failed";
1651		goto bad;
1652	}
1653
1654	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1655		ti->error = "Invalid device sector";
1656		goto bad;
1657	}
1658	cc->start = tmpll;
1659
1660	argv += 5;
1661	argc -= 5;
1662
1663	/* Optional parameters */
1664	if (argc) {
1665		as.argc = argc;
1666		as.argv = argv;
1667
1668		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1669		if (ret)
1670			goto bad;
1671
1672		opt_string = dm_shift_arg(&as);
1673
1674		if (opt_params == 1 && opt_string &&
1675		    !strcasecmp(opt_string, "allow_discards"))
1676			ti->num_discard_requests = 1;
1677		else if (opt_params) {
1678			ret = -EINVAL;
1679			ti->error = "Invalid feature arguments";
1680			goto bad;
1681		}
1682	}
1683
1684	ret = -ENOMEM;
1685	cc->io_queue = alloc_workqueue("kcryptd_io",
1686				       WQ_NON_REENTRANT|
1687				       WQ_MEM_RECLAIM,
1688				       1);
1689	if (!cc->io_queue) {
1690		ti->error = "Couldn't create kcryptd io queue";
1691		goto bad;
1692	}
1693
1694	cc->crypt_queue = alloc_workqueue("kcryptd",
1695					  WQ_NON_REENTRANT|
1696					  WQ_CPU_INTENSIVE|
1697					  WQ_MEM_RECLAIM,
1698					  1);
1699	if (!cc->crypt_queue) {
1700		ti->error = "Couldn't create kcryptd queue";
1701		goto bad;
1702	}
1703
1704	ti->num_flush_requests = 1;
1705	ti->discard_zeroes_data_unsupported = 1;
1706
1707	return 0;
1708
1709bad:
1710	crypt_dtr(ti);
1711	return ret;
1712}
1713
1714static int crypt_map(struct dm_target *ti, struct bio *bio,
1715		     union map_info *map_context)
1716{
1717	struct dm_crypt_io *io;
1718	struct crypt_config *cc;
1719
1720	/*
1721	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1722	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1723	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1724	 */
1725	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1726		cc = ti->private;
1727		bio->bi_bdev = cc->dev->bdev;
1728		if (bio_sectors(bio))
1729			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1730		return DM_MAPIO_REMAPPED;
1731	}
1732
1733	io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1734
1735	if (bio_data_dir(io->base_bio) == READ) {
1736		if (kcryptd_io_read(io, GFP_NOWAIT))
1737			kcryptd_queue_io(io);
1738	} else
1739		kcryptd_queue_crypt(io);
1740
1741	return DM_MAPIO_SUBMITTED;
1742}
1743
1744static int crypt_status(struct dm_target *ti, status_type_t type,
1745			char *result, unsigned int maxlen)
1746{
1747	struct crypt_config *cc = ti->private;
1748	unsigned int sz = 0;
1749
1750	switch (type) {
1751	case STATUSTYPE_INFO:
1752		result[0] = '\0';
1753		break;
1754
1755	case STATUSTYPE_TABLE:
1756		DMEMIT("%s ", cc->cipher_string);
1757
1758		if (cc->key_size > 0) {
1759			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1760				return -ENOMEM;
1761
1762			crypt_encode_key(result + sz, cc->key, cc->key_size);
1763			sz += cc->key_size << 1;
1764		} else {
1765			if (sz >= maxlen)
1766				return -ENOMEM;
1767			result[sz++] = '-';
1768		}
1769
1770		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1771				cc->dev->name, (unsigned long long)cc->start);
1772
1773		if (ti->num_discard_requests)
1774			DMEMIT(" 1 allow_discards");
1775
1776		break;
1777	}
1778	return 0;
1779}
1780
1781static void crypt_postsuspend(struct dm_target *ti)
1782{
1783	struct crypt_config *cc = ti->private;
1784
1785	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1786}
1787
1788static int crypt_preresume(struct dm_target *ti)
1789{
1790	struct crypt_config *cc = ti->private;
1791
1792	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1793		DMERR("aborting resume - crypt key is not set.");
1794		return -EAGAIN;
1795	}
1796
1797	return 0;
1798}
1799
1800static void crypt_resume(struct dm_target *ti)
1801{
1802	struct crypt_config *cc = ti->private;
1803
1804	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1805}
1806
1807/* Message interface
1808 *	key set <key>
1809 *	key wipe
1810 */
1811static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1812{
1813	struct crypt_config *cc = ti->private;
1814	int ret = -EINVAL;
1815
1816	if (argc < 2)
1817		goto error;
1818
1819	if (!strcasecmp(argv[0], "key")) {
1820		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1821			DMWARN("not suspended during key manipulation.");
1822			return -EINVAL;
1823		}
1824		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1825			ret = crypt_set_key(cc, argv[2]);
1826			if (ret)
1827				return ret;
1828			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1829				ret = cc->iv_gen_ops->init(cc);
1830			return ret;
1831		}
1832		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1833			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1834				ret = cc->iv_gen_ops->wipe(cc);
1835				if (ret)
1836					return ret;
1837			}
1838			return crypt_wipe_key(cc);
1839		}
1840	}
1841
1842error:
1843	DMWARN("unrecognised message received.");
1844	return -EINVAL;
1845}
1846
1847static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1848		       struct bio_vec *biovec, int max_size)
1849{
1850	struct crypt_config *cc = ti->private;
1851	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1852
1853	if (!q->merge_bvec_fn)
1854		return max_size;
1855
1856	bvm->bi_bdev = cc->dev->bdev;
1857	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1858
1859	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1860}
1861
1862static int crypt_iterate_devices(struct dm_target *ti,
1863				 iterate_devices_callout_fn fn, void *data)
1864{
1865	struct crypt_config *cc = ti->private;
1866
1867	return fn(ti, cc->dev, cc->start, ti->len, data);
1868}
1869
1870static struct target_type crypt_target = {
1871	.name   = "crypt",
1872	.version = {1, 11, 0},
1873	.module = THIS_MODULE,
1874	.ctr    = crypt_ctr,
1875	.dtr    = crypt_dtr,
1876	.map    = crypt_map,
1877	.status = crypt_status,
1878	.postsuspend = crypt_postsuspend,
1879	.preresume = crypt_preresume,
1880	.resume = crypt_resume,
1881	.message = crypt_message,
1882	.merge  = crypt_merge,
1883	.iterate_devices = crypt_iterate_devices,
1884};
1885
1886static int __init dm_crypt_init(void)
1887{
1888	int r;
1889
1890	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1891	if (!_crypt_io_pool)
1892		return -ENOMEM;
1893
1894	r = dm_register_target(&crypt_target);
1895	if (r < 0) {
1896		DMERR("register failed %d", r);
1897		kmem_cache_destroy(_crypt_io_pool);
1898	}
1899
1900	return r;
1901}
1902
1903static void __exit dm_crypt_exit(void)
1904{
1905	dm_unregister_target(&crypt_target);
1906	kmem_cache_destroy(_crypt_io_pool);
1907}
1908
1909module_init(dm_crypt_init);
1910module_exit(dm_crypt_exit);
1911
1912MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1913MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1914MODULE_LICENSE("GPL");