Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   7 *
   8 * This file is released under the GPL.
   9 */
  10
  11#include <linux/completion.h>
  12#include <linux/err.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/key.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-integrity.h>
  20#include <linux/mempool.h>
  21#include <linux/slab.h>
  22#include <linux/crypto.h>
  23#include <linux/workqueue.h>
  24#include <linux/kthread.h>
  25#include <linux/backing-dev.h>
  26#include <linux/atomic.h>
  27#include <linux/scatterlist.h>
  28#include <linux/rbtree.h>
  29#include <linux/ctype.h>
  30#include <asm/page.h>
  31#include <asm/unaligned.h>
  32#include <crypto/hash.h>
  33#include <crypto/md5.h>
 
  34#include <crypto/skcipher.h>
  35#include <crypto/aead.h>
  36#include <crypto/authenc.h>
  37#include <crypto/utils.h>
  38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  39#include <linux/key-type.h>
  40#include <keys/user-type.h>
  41#include <keys/encrypted-type.h>
  42#include <keys/trusted-type.h>
  43
  44#include <linux/device-mapper.h>
  45
  46#include "dm-audit.h"
  47
  48#define DM_MSG_PREFIX "crypt"
  49
  50/*
  51 * context holding the current state of a multi-part conversion
  52 */
  53struct convert_context {
  54	struct completion restart;
  55	struct bio *bio_in;
  56	struct bvec_iter iter_in;
  57	struct bio *bio_out;
 
  58	struct bvec_iter iter_out;
  59	atomic_t cc_pending;
  60	u64 cc_sector;
 
  61	union {
  62		struct skcipher_request *req;
  63		struct aead_request *req_aead;
  64	} r;
  65	bool aead_recheck;
  66	bool aead_failed;
  67
  68};
  69
  70/*
  71 * per bio private data
  72 */
  73struct dm_crypt_io {
  74	struct crypt_config *cc;
  75	struct bio *base_bio;
  76	u8 *integrity_metadata;
  77	bool integrity_metadata_from_pool:1;
  78
  79	struct work_struct work;
  80
  81	struct convert_context ctx;
  82
  83	atomic_t io_pending;
  84	blk_status_t error;
  85	sector_t sector;
  86
  87	struct bvec_iter saved_bi_iter;
  88
  89	struct rb_node rb_node;
  90} CRYPTO_MINALIGN_ATTR;
  91
  92struct dm_crypt_request {
  93	struct convert_context *ctx;
  94	struct scatterlist sg_in[4];
  95	struct scatterlist sg_out[4];
  96	u64 iv_sector;
  97};
  98
  99struct crypt_config;
 100
 101struct crypt_iv_operations {
 102	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
 103		   const char *opts);
 104	void (*dtr)(struct crypt_config *cc);
 105	int (*init)(struct crypt_config *cc);
 106	int (*wipe)(struct crypt_config *cc);
 107	int (*generator)(struct crypt_config *cc, u8 *iv,
 108			 struct dm_crypt_request *dmreq);
 109	int (*post)(struct crypt_config *cc, u8 *iv,
 110		    struct dm_crypt_request *dmreq);
 111};
 112
 113struct iv_benbi_private {
 114	int shift;
 115};
 116
 117#define LMK_SEED_SIZE 64 /* hash + 0 */
 118struct iv_lmk_private {
 119	struct crypto_shash *hash_tfm;
 120	u8 *seed;
 121};
 122
 123#define TCW_WHITENING_SIZE 16
 124struct iv_tcw_private {
 125	struct crypto_shash *crc32_tfm;
 126	u8 *iv_seed;
 127	u8 *whitening;
 128};
 129
 130#define ELEPHANT_MAX_KEY_SIZE 32
 131struct iv_elephant_private {
 132	struct crypto_skcipher *tfm;
 133};
 134
 135/*
 136 * Crypt: maps a linear range of a block device
 137 * and encrypts / decrypts at the same time.
 138 */
 139enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 140	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 141	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
 142	     DM_CRYPT_WRITE_INLINE };
 143
 144enum cipher_flags {
 145	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
 146	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 147	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
 148};
 149
 150/*
 151 * The fields in here must be read only after initialization.
 152 */
 153struct crypt_config {
 154	struct dm_dev *dev;
 155	sector_t start;
 156
 157	struct percpu_counter n_allocated_pages;
 158
 159	struct workqueue_struct *io_queue;
 160	struct workqueue_struct *crypt_queue;
 161
 162	spinlock_t write_thread_lock;
 163	struct task_struct *write_thread;
 164	struct rb_root write_tree;
 165
 166	char *cipher_string;
 167	char *cipher_auth;
 168	char *key_string;
 169
 170	const struct crypt_iv_operations *iv_gen_ops;
 171	union {
 172		struct iv_benbi_private benbi;
 173		struct iv_lmk_private lmk;
 174		struct iv_tcw_private tcw;
 175		struct iv_elephant_private elephant;
 176	} iv_gen_private;
 177	u64 iv_offset;
 178	unsigned int iv_size;
 179	unsigned short sector_size;
 180	unsigned char sector_shift;
 181
 182	union {
 183		struct crypto_skcipher **tfms;
 184		struct crypto_aead **tfms_aead;
 185	} cipher_tfm;
 186	unsigned int tfms_count;
 187	unsigned long cipher_flags;
 188
 189	/*
 190	 * Layout of each crypto request:
 191	 *
 192	 *   struct skcipher_request
 193	 *      context
 194	 *      padding
 195	 *   struct dm_crypt_request
 196	 *      padding
 197	 *   IV
 198	 *
 199	 * The padding is added so that dm_crypt_request and the IV are
 200	 * correctly aligned.
 201	 */
 202	unsigned int dmreq_start;
 203
 204	unsigned int per_bio_data_size;
 205
 206	unsigned long flags;
 207	unsigned int key_size;
 208	unsigned int key_parts;      /* independent parts in key buffer */
 209	unsigned int key_extra_size; /* additional keys length */
 210	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 211
 212	unsigned int integrity_tag_size;
 213	unsigned int integrity_iv_size;
 214	unsigned int on_disk_tag_size;
 215
 216	/*
 217	 * pool for per bio private data, crypto requests,
 218	 * encryption requeusts/buffer pages and integrity tags
 219	 */
 220	unsigned int tag_pool_max_sectors;
 221	mempool_t tag_pool;
 222	mempool_t req_pool;
 223	mempool_t page_pool;
 224
 225	struct bio_set bs;
 226	struct mutex bio_alloc_lock;
 227
 228	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 229	u8 key[] __counted_by(key_size);
 230};
 231
 232#define MIN_IOS		64
 233#define MAX_TAG_SIZE	480
 234#define POOL_ENTRY_SIZE	512
 235
 236static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 237static unsigned int dm_crypt_clients_n;
 238static volatile unsigned long dm_crypt_pages_per_client;
 239#define DM_CRYPT_MEMORY_PERCENT			2
 240#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
 241
 242static void crypt_endio(struct bio *clone);
 243static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 244static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 245					     struct scatterlist *sg);
 246
 247static bool crypt_integrity_aead(struct crypt_config *cc);
 248
 249/*
 250 * Use this to access cipher attributes that are independent of the key.
 251 */
 252static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 253{
 254	return cc->cipher_tfm.tfms[0];
 255}
 256
 257static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 258{
 259	return cc->cipher_tfm.tfms_aead[0];
 260}
 261
 262/*
 263 * Different IV generation algorithms:
 264 *
 265 * plain: the initial vector is the 32-bit little-endian version of the sector
 266 *        number, padded with zeros if necessary.
 267 *
 268 * plain64: the initial vector is the 64-bit little-endian version of the sector
 269 *        number, padded with zeros if necessary.
 270 *
 271 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 272 *        number, padded with zeros if necessary.
 273 *
 274 * essiv: "encrypted sector|salt initial vector", the sector number is
 275 *        encrypted with the bulk cipher using a salt as key. The salt
 276 *        should be derived from the bulk cipher's key via hashing.
 277 *
 278 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 279 *        (needed for LRW-32-AES and possible other narrow block modes)
 280 *
 281 * null: the initial vector is always zero.  Provides compatibility with
 282 *       obsolete loop_fish2 devices.  Do not use for new devices.
 283 *
 284 * lmk:  Compatible implementation of the block chaining mode used
 285 *       by the Loop-AES block device encryption system
 286 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 287 *       It operates on full 512 byte sectors and uses CBC
 288 *       with an IV derived from the sector number, the data and
 289 *       optionally extra IV seed.
 290 *       This means that after decryption the first block
 291 *       of sector must be tweaked according to decrypted data.
 292 *       Loop-AES can use three encryption schemes:
 293 *         version 1: is plain aes-cbc mode
 294 *         version 2: uses 64 multikey scheme with lmk IV generator
 295 *         version 3: the same as version 2 with additional IV seed
 296 *                   (it uses 65 keys, last key is used as IV seed)
 297 *
 298 * tcw:  Compatible implementation of the block chaining mode used
 299 *       by the TrueCrypt device encryption system (prior to version 4.1).
 300 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 301 *       It operates on full 512 byte sectors and uses CBC
 302 *       with an IV derived from initial key and the sector number.
 303 *       In addition, whitening value is applied on every sector, whitening
 304 *       is calculated from initial key, sector number and mixed using CRC32.
 305 *       Note that this encryption scheme is vulnerable to watermarking attacks
 306 *       and should be used for old compatible containers access only.
 307 *
 308 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 309 *        The IV is encrypted little-endian byte-offset (with the same key
 310 *        and cipher as the volume).
 311 *
 312 * elephant: The extended version of eboiv with additional Elephant diffuser
 313 *           used with Bitlocker CBC mode.
 314 *           This mode was used in older Windows systems
 315 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 316 */
 317
 318static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 319			      struct dm_crypt_request *dmreq)
 320{
 321	memset(iv, 0, cc->iv_size);
 322	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 323
 324	return 0;
 325}
 326
 327static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 328				struct dm_crypt_request *dmreq)
 329{
 330	memset(iv, 0, cc->iv_size);
 331	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 332
 333	return 0;
 334}
 335
 336static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 337				  struct dm_crypt_request *dmreq)
 338{
 339	memset(iv, 0, cc->iv_size);
 340	/* iv_size is at least of size u64; usually it is 16 bytes */
 341	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 342
 343	return 0;
 344}
 345
 346static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 347			      struct dm_crypt_request *dmreq)
 348{
 349	/*
 350	 * ESSIV encryption of the IV is now handled by the crypto API,
 351	 * so just pass the plain sector number here.
 352	 */
 353	memset(iv, 0, cc->iv_size);
 354	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 355
 356	return 0;
 357}
 358
 359static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 360			      const char *opts)
 361{
 362	unsigned int bs;
 363	int log;
 364
 365	if (crypt_integrity_aead(cc))
 366		bs = crypto_aead_blocksize(any_tfm_aead(cc));
 367	else
 368		bs = crypto_skcipher_blocksize(any_tfm(cc));
 369	log = ilog2(bs);
 370
 371	/*
 372	 * We need to calculate how far we must shift the sector count
 373	 * to get the cipher block count, we use this shift in _gen.
 374	 */
 375	if (1 << log != bs) {
 376		ti->error = "cypher blocksize is not a power of 2";
 377		return -EINVAL;
 378	}
 379
 380	if (log > 9) {
 381		ti->error = "cypher blocksize is > 512";
 382		return -EINVAL;
 383	}
 384
 385	cc->iv_gen_private.benbi.shift = 9 - log;
 386
 387	return 0;
 388}
 389
 390static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 391{
 392}
 393
 394static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 395			      struct dm_crypt_request *dmreq)
 396{
 397	__be64 val;
 398
 399	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 400
 401	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 402	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 403
 404	return 0;
 405}
 406
 407static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 408			     struct dm_crypt_request *dmreq)
 409{
 410	memset(iv, 0, cc->iv_size);
 411
 412	return 0;
 413}
 414
 415static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 416{
 417	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 418
 419	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 420		crypto_free_shash(lmk->hash_tfm);
 421	lmk->hash_tfm = NULL;
 422
 423	kfree_sensitive(lmk->seed);
 424	lmk->seed = NULL;
 425}
 426
 427static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 428			    const char *opts)
 429{
 430	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 431
 432	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 433		ti->error = "Unsupported sector size for LMK";
 434		return -EINVAL;
 435	}
 436
 437	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
 438					   CRYPTO_ALG_ALLOCATES_MEMORY);
 439	if (IS_ERR(lmk->hash_tfm)) {
 440		ti->error = "Error initializing LMK hash";
 441		return PTR_ERR(lmk->hash_tfm);
 442	}
 443
 444	/* No seed in LMK version 2 */
 445	if (cc->key_parts == cc->tfms_count) {
 446		lmk->seed = NULL;
 447		return 0;
 448	}
 449
 450	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 451	if (!lmk->seed) {
 452		crypt_iv_lmk_dtr(cc);
 453		ti->error = "Error kmallocing seed storage in LMK";
 454		return -ENOMEM;
 455	}
 456
 457	return 0;
 458}
 459
 460static int crypt_iv_lmk_init(struct crypt_config *cc)
 461{
 462	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 463	int subkey_size = cc->key_size / cc->key_parts;
 464
 465	/* LMK seed is on the position of LMK_KEYS + 1 key */
 466	if (lmk->seed)
 467		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 468		       crypto_shash_digestsize(lmk->hash_tfm));
 469
 470	return 0;
 471}
 472
 473static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 474{
 475	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 476
 477	if (lmk->seed)
 478		memset(lmk->seed, 0, LMK_SEED_SIZE);
 479
 480	return 0;
 481}
 482
 483static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 484			    struct dm_crypt_request *dmreq,
 485			    u8 *data)
 486{
 487	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 488	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 489	struct md5_state md5state;
 490	__le32 buf[4];
 491	int i, r;
 492
 493	desc->tfm = lmk->hash_tfm;
 494
 495	r = crypto_shash_init(desc);
 496	if (r)
 497		return r;
 498
 499	if (lmk->seed) {
 500		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 501		if (r)
 502			return r;
 503	}
 504
 505	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 506	r = crypto_shash_update(desc, data + 16, 16 * 31);
 507	if (r)
 508		return r;
 509
 510	/* Sector is cropped to 56 bits here */
 511	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 512	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 513	buf[2] = cpu_to_le32(4024);
 514	buf[3] = 0;
 515	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 516	if (r)
 517		return r;
 518
 519	/* No MD5 padding here */
 520	r = crypto_shash_export(desc, &md5state);
 521	if (r)
 522		return r;
 523
 524	for (i = 0; i < MD5_HASH_WORDS; i++)
 525		__cpu_to_le32s(&md5state.hash[i]);
 526	memcpy(iv, &md5state.hash, cc->iv_size);
 527
 528	return 0;
 529}
 530
 531static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 532			    struct dm_crypt_request *dmreq)
 533{
 534	struct scatterlist *sg;
 535	u8 *src;
 536	int r = 0;
 537
 538	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 539		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 540		src = kmap_local_page(sg_page(sg));
 541		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 542		kunmap_local(src);
 543	} else
 544		memset(iv, 0, cc->iv_size);
 545
 546	return r;
 547}
 548
 549static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 550			     struct dm_crypt_request *dmreq)
 551{
 552	struct scatterlist *sg;
 553	u8 *dst;
 554	int r;
 555
 556	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 557		return 0;
 558
 559	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 560	dst = kmap_local_page(sg_page(sg));
 561	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 562
 563	/* Tweak the first block of plaintext sector */
 564	if (!r)
 565		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 566
 567	kunmap_local(dst);
 568	return r;
 569}
 570
 571static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 572{
 573	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 574
 575	kfree_sensitive(tcw->iv_seed);
 576	tcw->iv_seed = NULL;
 577	kfree_sensitive(tcw->whitening);
 578	tcw->whitening = NULL;
 579
 580	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 581		crypto_free_shash(tcw->crc32_tfm);
 582	tcw->crc32_tfm = NULL;
 583}
 584
 585static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 586			    const char *opts)
 587{
 588	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 589
 590	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 591		ti->error = "Unsupported sector size for TCW";
 592		return -EINVAL;
 593	}
 594
 595	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 596		ti->error = "Wrong key size for TCW";
 597		return -EINVAL;
 598	}
 599
 600	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
 601					    CRYPTO_ALG_ALLOCATES_MEMORY);
 602	if (IS_ERR(tcw->crc32_tfm)) {
 603		ti->error = "Error initializing CRC32 in TCW";
 604		return PTR_ERR(tcw->crc32_tfm);
 605	}
 606
 607	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 608	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 609	if (!tcw->iv_seed || !tcw->whitening) {
 610		crypt_iv_tcw_dtr(cc);
 611		ti->error = "Error allocating seed storage in TCW";
 612		return -ENOMEM;
 613	}
 614
 615	return 0;
 616}
 617
 618static int crypt_iv_tcw_init(struct crypt_config *cc)
 619{
 620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 622
 623	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 624	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 625	       TCW_WHITENING_SIZE);
 626
 627	return 0;
 628}
 629
 630static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 631{
 632	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 633
 634	memset(tcw->iv_seed, 0, cc->iv_size);
 635	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 636
 637	return 0;
 638}
 639
 640static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 641				  struct dm_crypt_request *dmreq,
 642				  u8 *data)
 643{
 644	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 645	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 646	u8 buf[TCW_WHITENING_SIZE];
 647	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 648	int i, r;
 649
 650	/* xor whitening with sector number */
 651	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 652	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 653
 654	/* calculate crc32 for every 32bit part and xor it */
 655	desc->tfm = tcw->crc32_tfm;
 656	for (i = 0; i < 4; i++) {
 657		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
 
 
 
 
 
 
 658		if (r)
 659			goto out;
 660	}
 661	crypto_xor(&buf[0], &buf[12], 4);
 662	crypto_xor(&buf[4], &buf[8], 4);
 663
 664	/* apply whitening (8 bytes) to whole sector */
 665	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 666		crypto_xor(data + i * 8, buf, 8);
 667out:
 668	memzero_explicit(buf, sizeof(buf));
 669	return r;
 670}
 671
 672static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 673			    struct dm_crypt_request *dmreq)
 674{
 675	struct scatterlist *sg;
 676	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 677	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 678	u8 *src;
 679	int r = 0;
 680
 681	/* Remove whitening from ciphertext */
 682	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 683		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 684		src = kmap_local_page(sg_page(sg));
 685		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 686		kunmap_local(src);
 687	}
 688
 689	/* Calculate IV */
 690	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 691	if (cc->iv_size > 8)
 692		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 693			       cc->iv_size - 8);
 694
 695	return r;
 696}
 697
 698static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 699			     struct dm_crypt_request *dmreq)
 700{
 701	struct scatterlist *sg;
 702	u8 *dst;
 703	int r;
 704
 705	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 706		return 0;
 707
 708	/* Apply whitening on ciphertext */
 709	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 710	dst = kmap_local_page(sg_page(sg));
 711	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 712	kunmap_local(dst);
 713
 714	return r;
 715}
 716
 717static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 718				struct dm_crypt_request *dmreq)
 719{
 720	/* Used only for writes, there must be an additional space to store IV */
 721	get_random_bytes(iv, cc->iv_size);
 722	return 0;
 723}
 724
 725static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 726			    const char *opts)
 727{
 728	if (crypt_integrity_aead(cc)) {
 729		ti->error = "AEAD transforms not supported for EBOIV";
 730		return -EINVAL;
 731	}
 732
 733	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 734		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
 
 735		return -EINVAL;
 736	}
 737
 738	return 0;
 739}
 740
 741static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 742			    struct dm_crypt_request *dmreq)
 743{
 744	struct crypto_skcipher *tfm = any_tfm(cc);
 745	struct skcipher_request *req;
 746	struct scatterlist src, dst;
 747	DECLARE_CRYPTO_WAIT(wait);
 748	unsigned int reqsize;
 749	int err;
 750	u8 *buf;
 751
 752	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
 753	reqsize = ALIGN(reqsize, __alignof__(__le64));
 754
 755	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
 756	if (!req)
 757		return -ENOMEM;
 758
 759	skcipher_request_set_tfm(req, tfm);
 760
 761	buf = (u8 *)req + reqsize;
 762	memset(buf, 0, cc->iv_size);
 763	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 764
 765	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 766	sg_init_one(&dst, iv, cc->iv_size);
 767	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 768	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 769	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 770	kfree_sensitive(req);
 771
 772	return err;
 773}
 774
 775static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 776{
 777	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 778
 779	crypto_free_skcipher(elephant->tfm);
 780	elephant->tfm = NULL;
 781}
 782
 783static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 784			    const char *opts)
 785{
 786	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 787	int r;
 788
 789	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
 790					      CRYPTO_ALG_ALLOCATES_MEMORY);
 791	if (IS_ERR(elephant->tfm)) {
 792		r = PTR_ERR(elephant->tfm);
 793		elephant->tfm = NULL;
 794		return r;
 795	}
 796
 797	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 798	if (r)
 799		crypt_iv_elephant_dtr(cc);
 800	return r;
 801}
 802
 803static void diffuser_disk_to_cpu(u32 *d, size_t n)
 804{
 805#ifndef __LITTLE_ENDIAN
 806	int i;
 807
 808	for (i = 0; i < n; i++)
 809		d[i] = le32_to_cpu((__le32)d[i]);
 810#endif
 811}
 812
 813static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 814{
 815#ifndef __LITTLE_ENDIAN
 816	int i;
 817
 818	for (i = 0; i < n; i++)
 819		d[i] = cpu_to_le32((u32)d[i]);
 820#endif
 821}
 822
 823static void diffuser_a_decrypt(u32 *d, size_t n)
 824{
 825	int i, i1, i2, i3;
 826
 827	for (i = 0; i < 5; i++) {
 828		i1 = 0;
 829		i2 = n - 2;
 830		i3 = n - 5;
 831
 832		while (i1 < (n - 1)) {
 833			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 834			i1++; i2++; i3++;
 835
 836			if (i3 >= n)
 837				i3 -= n;
 838
 839			d[i1] += d[i2] ^ d[i3];
 840			i1++; i2++; i3++;
 841
 842			if (i2 >= n)
 843				i2 -= n;
 844
 845			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 846			i1++; i2++; i3++;
 847
 848			d[i1] += d[i2] ^ d[i3];
 849			i1++; i2++; i3++;
 850		}
 851	}
 852}
 853
 854static void diffuser_a_encrypt(u32 *d, size_t n)
 855{
 856	int i, i1, i2, i3;
 857
 858	for (i = 0; i < 5; i++) {
 859		i1 = n - 1;
 860		i2 = n - 2 - 1;
 861		i3 = n - 5 - 1;
 862
 863		while (i1 > 0) {
 864			d[i1] -= d[i2] ^ d[i3];
 865			i1--; i2--; i3--;
 866
 867			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 868			i1--; i2--; i3--;
 869
 870			if (i2 < 0)
 871				i2 += n;
 872
 873			d[i1] -= d[i2] ^ d[i3];
 874			i1--; i2--; i3--;
 875
 876			if (i3 < 0)
 877				i3 += n;
 878
 879			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 880			i1--; i2--; i3--;
 881		}
 882	}
 883}
 884
 885static void diffuser_b_decrypt(u32 *d, size_t n)
 886{
 887	int i, i1, i2, i3;
 888
 889	for (i = 0; i < 3; i++) {
 890		i1 = 0;
 891		i2 = 2;
 892		i3 = 5;
 893
 894		while (i1 < (n - 1)) {
 895			d[i1] += d[i2] ^ d[i3];
 896			i1++; i2++; i3++;
 897
 898			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 899			i1++; i2++; i3++;
 900
 901			if (i2 >= n)
 902				i2 -= n;
 903
 904			d[i1] += d[i2] ^ d[i3];
 905			i1++; i2++; i3++;
 906
 907			if (i3 >= n)
 908				i3 -= n;
 909
 910			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 911			i1++; i2++; i3++;
 912		}
 913	}
 914}
 915
 916static void diffuser_b_encrypt(u32 *d, size_t n)
 917{
 918	int i, i1, i2, i3;
 919
 920	for (i = 0; i < 3; i++) {
 921		i1 = n - 1;
 922		i2 = 2 - 1;
 923		i3 = 5 - 1;
 924
 925		while (i1 > 0) {
 926			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 927			i1--; i2--; i3--;
 928
 929			if (i3 < 0)
 930				i3 += n;
 931
 932			d[i1] -= d[i2] ^ d[i3];
 933			i1--; i2--; i3--;
 934
 935			if (i2 < 0)
 936				i2 += n;
 937
 938			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 939			i1--; i2--; i3--;
 940
 941			d[i1] -= d[i2] ^ d[i3];
 942			i1--; i2--; i3--;
 943		}
 944	}
 945}
 946
 947static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 948{
 949	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 950	u8 *es, *ks, *data, *data2, *data_offset;
 951	struct skcipher_request *req;
 952	struct scatterlist *sg, *sg2, src, dst;
 953	DECLARE_CRYPTO_WAIT(wait);
 954	int i, r;
 955
 956	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 957	es = kzalloc(16, GFP_NOIO); /* Key for AES */
 958	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 959
 960	if (!req || !es || !ks) {
 961		r = -ENOMEM;
 962		goto out;
 963	}
 964
 965	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 966
 967	/* E(Ks, e(s)) */
 968	sg_init_one(&src, es, 16);
 969	sg_init_one(&dst, ks, 16);
 970	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
 971	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 972	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 973	if (r)
 974		goto out;
 975
 976	/* E(Ks, e'(s)) */
 977	es[15] = 0x80;
 978	sg_init_one(&dst, &ks[16], 16);
 979	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 980	if (r)
 981		goto out;
 982
 983	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 984	data = kmap_local_page(sg_page(sg));
 985	data_offset = data + sg->offset;
 986
 987	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
 988	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 989		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
 990		data2 = kmap_local_page(sg_page(sg2));
 991		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
 992		kunmap_local(data2);
 993	}
 994
 995	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 996		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
 997		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
 998		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
 999		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1000	}
1001
1002	for (i = 0; i < (cc->sector_size / 32); i++)
1003		crypto_xor(data_offset + i * 32, ks, 32);
1004
1005	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1006		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1008		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1010	}
1011
1012	kunmap_local(data);
1013out:
1014	kfree_sensitive(ks);
1015	kfree_sensitive(es);
1016	skcipher_request_free(req);
1017	return r;
1018}
1019
1020static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1021			    struct dm_crypt_request *dmreq)
1022{
1023	int r;
1024
1025	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1026		r = crypt_iv_elephant(cc, dmreq);
1027		if (r)
1028			return r;
1029	}
1030
1031	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1032}
1033
1034static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1035				  struct dm_crypt_request *dmreq)
1036{
1037	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1038		return crypt_iv_elephant(cc, dmreq);
1039
1040	return 0;
1041}
1042
1043static int crypt_iv_elephant_init(struct crypt_config *cc)
1044{
1045	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1046	int key_offset = cc->key_size - cc->key_extra_size;
1047
1048	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1049}
1050
1051static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1052{
1053	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1054	u8 key[ELEPHANT_MAX_KEY_SIZE];
1055
1056	memset(key, 0, cc->key_extra_size);
1057	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1058}
1059
1060static const struct crypt_iv_operations crypt_iv_plain_ops = {
1061	.generator = crypt_iv_plain_gen
1062};
1063
1064static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1065	.generator = crypt_iv_plain64_gen
1066};
1067
1068static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1069	.generator = crypt_iv_plain64be_gen
1070};
1071
1072static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1073	.generator = crypt_iv_essiv_gen
1074};
1075
1076static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1077	.ctr	   = crypt_iv_benbi_ctr,
1078	.dtr	   = crypt_iv_benbi_dtr,
1079	.generator = crypt_iv_benbi_gen
1080};
1081
1082static const struct crypt_iv_operations crypt_iv_null_ops = {
1083	.generator = crypt_iv_null_gen
1084};
1085
1086static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1087	.ctr	   = crypt_iv_lmk_ctr,
1088	.dtr	   = crypt_iv_lmk_dtr,
1089	.init	   = crypt_iv_lmk_init,
1090	.wipe	   = crypt_iv_lmk_wipe,
1091	.generator = crypt_iv_lmk_gen,
1092	.post	   = crypt_iv_lmk_post
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1096	.ctr	   = crypt_iv_tcw_ctr,
1097	.dtr	   = crypt_iv_tcw_dtr,
1098	.init	   = crypt_iv_tcw_init,
1099	.wipe	   = crypt_iv_tcw_wipe,
1100	.generator = crypt_iv_tcw_gen,
1101	.post	   = crypt_iv_tcw_post
1102};
1103
1104static const struct crypt_iv_operations crypt_iv_random_ops = {
1105	.generator = crypt_iv_random_gen
1106};
1107
1108static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1109	.ctr	   = crypt_iv_eboiv_ctr,
1110	.generator = crypt_iv_eboiv_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1114	.ctr	   = crypt_iv_elephant_ctr,
1115	.dtr	   = crypt_iv_elephant_dtr,
1116	.init	   = crypt_iv_elephant_init,
1117	.wipe	   = crypt_iv_elephant_wipe,
1118	.generator = crypt_iv_elephant_gen,
1119	.post	   = crypt_iv_elephant_post
1120};
1121
1122/*
1123 * Integrity extensions
1124 */
1125static bool crypt_integrity_aead(struct crypt_config *cc)
1126{
1127	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1128}
1129
1130static bool crypt_integrity_hmac(struct crypt_config *cc)
1131{
1132	return crypt_integrity_aead(cc) && cc->key_mac_size;
1133}
1134
1135/* Get sg containing data */
1136static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1137					     struct scatterlist *sg)
1138{
1139	if (unlikely(crypt_integrity_aead(cc)))
1140		return &sg[2];
1141
1142	return sg;
1143}
1144
1145static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1146{
1147	struct bio_integrity_payload *bip;
1148	unsigned int tag_len;
1149	int ret;
1150
1151	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1152		return 0;
1153
1154	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1155	if (IS_ERR(bip))
1156		return PTR_ERR(bip);
1157
1158	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1159
 
1160	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1161
1162	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1163				     tag_len, offset_in_page(io->integrity_metadata));
1164	if (unlikely(ret != tag_len))
1165		return -ENOMEM;
1166
1167	return 0;
1168}
1169
1170static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1171{
1172#ifdef CONFIG_BLK_DEV_INTEGRITY
1173	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1174	struct mapped_device *md = dm_table_get_md(ti->table);
1175
1176	/* From now we require underlying device with our integrity profile */
1177	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1178		ti->error = "Integrity profile not supported.";
1179		return -EINVAL;
1180	}
1181
1182	if (bi->tag_size != cc->on_disk_tag_size ||
1183	    bi->tuple_size != cc->on_disk_tag_size) {
1184		ti->error = "Integrity profile tag size mismatch.";
1185		return -EINVAL;
1186	}
1187	if (1 << bi->interval_exp != cc->sector_size) {
1188		ti->error = "Integrity profile sector size mismatch.";
1189		return -EINVAL;
1190	}
1191
1192	if (crypt_integrity_aead(cc)) {
1193		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1194		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1195		       cc->integrity_tag_size, cc->integrity_iv_size);
1196
1197		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1198			ti->error = "Integrity AEAD auth tag size is not supported.";
1199			return -EINVAL;
1200		}
1201	} else if (cc->integrity_iv_size)
1202		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1203		       cc->integrity_iv_size);
1204
1205	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1206		ti->error = "Not enough space for integrity tag in the profile.";
1207		return -EINVAL;
1208	}
1209
1210	return 0;
1211#else
1212	ti->error = "Integrity profile not supported.";
1213	return -EINVAL;
1214#endif
1215}
1216
1217static void crypt_convert_init(struct crypt_config *cc,
1218			       struct convert_context *ctx,
1219			       struct bio *bio_out, struct bio *bio_in,
1220			       sector_t sector)
1221{
1222	ctx->bio_in = bio_in;
1223	ctx->bio_out = bio_out;
1224	if (bio_in)
1225		ctx->iter_in = bio_in->bi_iter;
1226	if (bio_out)
1227		ctx->iter_out = bio_out->bi_iter;
1228	ctx->cc_sector = sector + cc->iv_offset;
1229	init_completion(&ctx->restart);
1230}
1231
1232static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1233					     void *req)
1234{
1235	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1236}
1237
1238static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1239{
1240	return (void *)((char *)dmreq - cc->dmreq_start);
1241}
1242
1243static u8 *iv_of_dmreq(struct crypt_config *cc,
1244		       struct dm_crypt_request *dmreq)
1245{
1246	if (crypt_integrity_aead(cc))
1247		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1249	else
1250		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1252}
1253
1254static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1255		       struct dm_crypt_request *dmreq)
1256{
1257	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1258}
1259
1260static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1261		       struct dm_crypt_request *dmreq)
1262{
1263	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1264
1265	return (__le64 *) ptr;
1266}
1267
1268static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1269		       struct dm_crypt_request *dmreq)
1270{
1271	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1272		  cc->iv_size + sizeof(uint64_t);
1273
1274	return (unsigned int *)ptr;
1275}
1276
1277static void *tag_from_dmreq(struct crypt_config *cc,
1278				struct dm_crypt_request *dmreq)
1279{
1280	struct convert_context *ctx = dmreq->ctx;
1281	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1282
1283	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1284		cc->on_disk_tag_size];
1285}
1286
1287static void *iv_tag_from_dmreq(struct crypt_config *cc,
1288			       struct dm_crypt_request *dmreq)
1289{
1290	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1291}
1292
1293static int crypt_convert_block_aead(struct crypt_config *cc,
1294				     struct convert_context *ctx,
1295				     struct aead_request *req,
1296				     unsigned int tag_offset)
1297{
1298	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1299	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1300	struct dm_crypt_request *dmreq;
1301	u8 *iv, *org_iv, *tag_iv, *tag;
1302	__le64 *sector;
1303	int r = 0;
1304
1305	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1306
1307	/* Reject unexpected unaligned bio. */
1308	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1309		return -EIO;
1310
1311	dmreq = dmreq_of_req(cc, req);
1312	dmreq->iv_sector = ctx->cc_sector;
1313	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1314		dmreq->iv_sector >>= cc->sector_shift;
1315	dmreq->ctx = ctx;
1316
1317	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1318
1319	sector = org_sector_of_dmreq(cc, dmreq);
1320	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1321
1322	iv = iv_of_dmreq(cc, dmreq);
1323	org_iv = org_iv_of_dmreq(cc, dmreq);
1324	tag = tag_from_dmreq(cc, dmreq);
1325	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1326
1327	/* AEAD request:
1328	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1329	 *  | (authenticated) | (auth+encryption) |              |
1330	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1331	 */
1332	sg_init_table(dmreq->sg_in, 4);
1333	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1334	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1335	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1336	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1337
1338	sg_init_table(dmreq->sg_out, 4);
1339	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1340	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1341	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1342	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1343
1344	if (cc->iv_gen_ops) {
1345		/* For READs use IV stored in integrity metadata */
1346		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1347			memcpy(org_iv, tag_iv, cc->iv_size);
1348		} else {
1349			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1350			if (r < 0)
1351				return r;
1352			/* Store generated IV in integrity metadata */
1353			if (cc->integrity_iv_size)
1354				memcpy(tag_iv, org_iv, cc->iv_size);
1355		}
1356		/* Working copy of IV, to be modified in crypto API */
1357		memcpy(iv, org_iv, cc->iv_size);
1358	}
1359
1360	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1361	if (bio_data_dir(ctx->bio_in) == WRITE) {
1362		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1363				       cc->sector_size, iv);
1364		r = crypto_aead_encrypt(req);
1365		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1366			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1367			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1368	} else {
1369		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1370				       cc->sector_size + cc->integrity_tag_size, iv);
1371		r = crypto_aead_decrypt(req);
1372	}
1373
1374	if (r == -EBADMSG) {
1375		sector_t s = le64_to_cpu(*sector);
1376
1377		ctx->aead_failed = true;
1378		if (ctx->aead_recheck) {
1379			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380				    ctx->bio_in->bi_bdev, s);
1381			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1382					 ctx->bio_in, s, 0);
1383		}
1384	}
1385
1386	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1387		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1388
1389	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1390	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1391
1392	return r;
1393}
1394
1395static int crypt_convert_block_skcipher(struct crypt_config *cc,
1396					struct convert_context *ctx,
1397					struct skcipher_request *req,
1398					unsigned int tag_offset)
1399{
1400	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1401	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1402	struct scatterlist *sg_in, *sg_out;
1403	struct dm_crypt_request *dmreq;
1404	u8 *iv, *org_iv, *tag_iv;
1405	__le64 *sector;
1406	int r = 0;
1407
1408	/* Reject unexpected unaligned bio. */
1409	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1410		return -EIO;
1411
1412	dmreq = dmreq_of_req(cc, req);
1413	dmreq->iv_sector = ctx->cc_sector;
1414	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1415		dmreq->iv_sector >>= cc->sector_shift;
1416	dmreq->ctx = ctx;
1417
1418	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1419
1420	iv = iv_of_dmreq(cc, dmreq);
1421	org_iv = org_iv_of_dmreq(cc, dmreq);
1422	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1423
1424	sector = org_sector_of_dmreq(cc, dmreq);
1425	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1426
1427	/* For skcipher we use only the first sg item */
1428	sg_in  = &dmreq->sg_in[0];
1429	sg_out = &dmreq->sg_out[0];
1430
1431	sg_init_table(sg_in, 1);
1432	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1433
1434	sg_init_table(sg_out, 1);
1435	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1436
1437	if (cc->iv_gen_ops) {
1438		/* For READs use IV stored in integrity metadata */
1439		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1440			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1441		} else {
1442			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1443			if (r < 0)
1444				return r;
1445			/* Data can be already preprocessed in generator */
1446			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1447				sg_in = sg_out;
1448			/* Store generated IV in integrity metadata */
1449			if (cc->integrity_iv_size)
1450				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1451		}
1452		/* Working copy of IV, to be modified in crypto API */
1453		memcpy(iv, org_iv, cc->iv_size);
1454	}
1455
1456	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1457
1458	if (bio_data_dir(ctx->bio_in) == WRITE)
1459		r = crypto_skcipher_encrypt(req);
1460	else
1461		r = crypto_skcipher_decrypt(req);
1462
1463	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1464		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1465
1466	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1467	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1468
1469	return r;
1470}
1471
1472static void kcryptd_async_done(void *async_req, int error);
 
1473
1474static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1475				     struct convert_context *ctx)
1476{
1477	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1478
1479	if (!ctx->r.req) {
1480		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1481		if (!ctx->r.req)
1482			return -ENOMEM;
1483	}
1484
1485	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1486
1487	/*
1488	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1489	 * requests if driver request queue is full.
1490	 */
1491	skcipher_request_set_callback(ctx->r.req,
1492	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1493	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1494
1495	return 0;
1496}
1497
1498static int crypt_alloc_req_aead(struct crypt_config *cc,
1499				 struct convert_context *ctx)
1500{
1501	if (!ctx->r.req_aead) {
1502		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1503		if (!ctx->r.req_aead)
1504			return -ENOMEM;
1505	}
1506
1507	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1508
1509	/*
1510	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1511	 * requests if driver request queue is full.
1512	 */
1513	aead_request_set_callback(ctx->r.req_aead,
1514	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1515	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1516
1517	return 0;
1518}
1519
1520static int crypt_alloc_req(struct crypt_config *cc,
1521			    struct convert_context *ctx)
1522{
1523	if (crypt_integrity_aead(cc))
1524		return crypt_alloc_req_aead(cc, ctx);
1525	else
1526		return crypt_alloc_req_skcipher(cc, ctx);
1527}
1528
1529static void crypt_free_req_skcipher(struct crypt_config *cc,
1530				    struct skcipher_request *req, struct bio *base_bio)
1531{
1532	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533
1534	if ((struct skcipher_request *)(io + 1) != req)
1535		mempool_free(req, &cc->req_pool);
1536}
1537
1538static void crypt_free_req_aead(struct crypt_config *cc,
1539				struct aead_request *req, struct bio *base_bio)
1540{
1541	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1542
1543	if ((struct aead_request *)(io + 1) != req)
1544		mempool_free(req, &cc->req_pool);
1545}
1546
1547static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1548{
1549	if (crypt_integrity_aead(cc))
1550		crypt_free_req_aead(cc, req, base_bio);
1551	else
1552		crypt_free_req_skcipher(cc, req, base_bio);
1553}
1554
1555/*
1556 * Encrypt / decrypt data from one bio to another one (can be the same one)
1557 */
1558static blk_status_t crypt_convert(struct crypt_config *cc,
1559			 struct convert_context *ctx, bool atomic, bool reset_pending)
1560{
1561	unsigned int tag_offset = 0;
1562	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1563	int r;
1564
1565	/*
1566	 * if reset_pending is set we are dealing with the bio for the first time,
1567	 * else we're continuing to work on the previous bio, so don't mess with
1568	 * the cc_pending counter
1569	 */
1570	if (reset_pending)
1571		atomic_set(&ctx->cc_pending, 1);
1572
1573	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1574
1575		r = crypt_alloc_req(cc, ctx);
1576		if (r) {
1577			complete(&ctx->restart);
1578			return BLK_STS_DEV_RESOURCE;
1579		}
1580
1581		atomic_inc(&ctx->cc_pending);
1582
1583		if (crypt_integrity_aead(cc))
1584			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1585		else
1586			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1587
1588		switch (r) {
1589		/*
1590		 * The request was queued by a crypto driver
1591		 * but the driver request queue is full, let's wait.
1592		 */
1593		case -EBUSY:
1594			if (in_interrupt()) {
1595				if (try_wait_for_completion(&ctx->restart)) {
1596					/*
1597					 * we don't have to block to wait for completion,
1598					 * so proceed
1599					 */
1600				} else {
1601					/*
1602					 * we can't wait for completion without blocking
1603					 * exit and continue processing in a workqueue
1604					 */
1605					ctx->r.req = NULL;
1606					ctx->cc_sector += sector_step;
1607					tag_offset++;
1608					return BLK_STS_DEV_RESOURCE;
1609				}
1610			} else {
1611				wait_for_completion(&ctx->restart);
1612			}
1613			reinit_completion(&ctx->restart);
1614			fallthrough;
1615		/*
1616		 * The request is queued and processed asynchronously,
1617		 * completion function kcryptd_async_done() will be called.
1618		 */
1619		case -EINPROGRESS:
1620			ctx->r.req = NULL;
1621			ctx->cc_sector += sector_step;
1622			tag_offset++;
1623			continue;
1624		/*
1625		 * The request was already processed (synchronously).
1626		 */
1627		case 0:
1628			atomic_dec(&ctx->cc_pending);
1629			ctx->cc_sector += sector_step;
1630			tag_offset++;
1631			if (!atomic)
1632				cond_resched();
1633			continue;
1634		/*
1635		 * There was a data integrity error.
1636		 */
1637		case -EBADMSG:
1638			atomic_dec(&ctx->cc_pending);
1639			return BLK_STS_PROTECTION;
1640		/*
1641		 * There was an error while processing the request.
1642		 */
1643		default:
1644			atomic_dec(&ctx->cc_pending);
1645			return BLK_STS_IOERR;
1646		}
1647	}
1648
1649	return 0;
1650}
1651
1652static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1653
1654/*
1655 * Generate a new unfragmented bio with the given size
1656 * This should never violate the device limitations (but only because
1657 * max_segment_size is being constrained to PAGE_SIZE).
1658 *
1659 * This function may be called concurrently. If we allocate from the mempool
1660 * concurrently, there is a possibility of deadlock. For example, if we have
1661 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1662 * the mempool concurrently, it may deadlock in a situation where both processes
1663 * have allocated 128 pages and the mempool is exhausted.
1664 *
1665 * In order to avoid this scenario we allocate the pages under a mutex.
1666 *
1667 * In order to not degrade performance with excessive locking, we try
1668 * non-blocking allocations without a mutex first but on failure we fallback
1669 * to blocking allocations with a mutex.
1670 *
1671 * In order to reduce allocation overhead, we try to allocate compound pages in
1672 * the first pass. If they are not available, we fall back to the mempool.
1673 */
1674static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1675{
1676	struct crypt_config *cc = io->cc;
1677	struct bio *clone;
1678	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1679	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1680	unsigned int remaining_size;
1681	unsigned int order = MAX_PAGE_ORDER;
1682
1683retry:
1684	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1685		mutex_lock(&cc->bio_alloc_lock);
1686
1687	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1688				 GFP_NOIO, &cc->bs);
1689	clone->bi_private = io;
1690	clone->bi_end_io = crypt_endio;
1691
1692	remaining_size = size;
1693
1694	while (remaining_size) {
1695		struct page *pages;
1696		unsigned size_to_add;
1697		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1698		order = min(order, remaining_order);
1699
1700		while (order > 0) {
1701			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1702					(1 << order) > dm_crypt_pages_per_client))
1703				goto decrease_order;
1704			pages = alloc_pages(gfp_mask
1705				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1706				order);
1707			if (likely(pages != NULL)) {
1708				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1709				goto have_pages;
1710			}
1711decrease_order:
1712			order--;
1713		}
1714
1715		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1716		if (!pages) {
 
1717			crypt_free_buffer_pages(cc, clone);
1718			bio_put(clone);
1719			gfp_mask |= __GFP_DIRECT_RECLAIM;
1720			order = 0;
1721			goto retry;
1722		}
1723
1724have_pages:
1725		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1726		__bio_add_page(clone, pages, size_to_add, 0);
1727		remaining_size -= size_to_add;
 
1728	}
1729
1730	/* Allocate space for integrity tags */
1731	if (dm_crypt_integrity_io_alloc(io, clone)) {
1732		crypt_free_buffer_pages(cc, clone);
1733		bio_put(clone);
1734		clone = NULL;
1735	}
1736
1737	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1738		mutex_unlock(&cc->bio_alloc_lock);
1739
1740	return clone;
1741}
1742
1743static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1744{
1745	struct folio_iter fi;
 
1746
1747	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1748		bio_for_each_folio_all(fi, clone) {
1749			if (folio_test_large(fi.folio)) {
1750				percpu_counter_sub(&cc->n_allocated_pages,
1751						1 << folio_order(fi.folio));
1752				folio_put(fi.folio);
1753			} else {
1754				mempool_free(&fi.folio->page, &cc->page_pool);
1755			}
1756		}
1757	}
1758}
1759
1760static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1761			  struct bio *bio, sector_t sector)
1762{
1763	io->cc = cc;
1764	io->base_bio = bio;
1765	io->sector = sector;
1766	io->error = 0;
1767	io->ctx.aead_recheck = false;
1768	io->ctx.aead_failed = false;
1769	io->ctx.r.req = NULL;
1770	io->integrity_metadata = NULL;
1771	io->integrity_metadata_from_pool = false;
1772	atomic_set(&io->io_pending, 0);
1773}
1774
1775static void crypt_inc_pending(struct dm_crypt_io *io)
1776{
1777	atomic_inc(&io->io_pending);
1778}
1779
1780static void kcryptd_queue_read(struct dm_crypt_io *io);
1781
1782/*
1783 * One of the bios was finished. Check for completion of
1784 * the whole request and correctly clean up the buffer.
1785 */
1786static void crypt_dec_pending(struct dm_crypt_io *io)
1787{
1788	struct crypt_config *cc = io->cc;
1789	struct bio *base_bio = io->base_bio;
1790	blk_status_t error = io->error;
1791
1792	if (!atomic_dec_and_test(&io->io_pending))
1793		return;
1794
1795	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1796	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1797		io->ctx.aead_recheck = true;
1798		io->ctx.aead_failed = false;
1799		io->error = 0;
1800		kcryptd_queue_read(io);
1801		return;
1802	}
1803
1804	if (io->ctx.r.req)
1805		crypt_free_req(cc, io->ctx.r.req, base_bio);
1806
1807	if (unlikely(io->integrity_metadata_from_pool))
1808		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1809	else
1810		kfree(io->integrity_metadata);
1811
1812	base_bio->bi_status = error;
1813
1814	bio_endio(base_bio);
1815}
1816
1817/*
1818 * kcryptd/kcryptd_io:
1819 *
1820 * Needed because it would be very unwise to do decryption in an
1821 * interrupt context.
1822 *
1823 * kcryptd performs the actual encryption or decryption.
1824 *
1825 * kcryptd_io performs the IO submission.
1826 *
1827 * They must be separated as otherwise the final stages could be
1828 * starved by new requests which can block in the first stages due
1829 * to memory allocation.
1830 *
1831 * The work is done per CPU global for all dm-crypt instances.
1832 * They should not depend on each other and do not block.
1833 */
1834static void crypt_endio(struct bio *clone)
1835{
1836	struct dm_crypt_io *io = clone->bi_private;
1837	struct crypt_config *cc = io->cc;
1838	unsigned int rw = bio_data_dir(clone);
1839	blk_status_t error = clone->bi_status;
1840
1841	if (io->ctx.aead_recheck && !error) {
1842		kcryptd_queue_crypt(io);
1843		return;
1844	}
1845
1846	/*
1847	 * free the processed pages
1848	 */
1849	if (rw == WRITE || io->ctx.aead_recheck)
1850		crypt_free_buffer_pages(cc, clone);
1851
 
1852	bio_put(clone);
1853
1854	if (rw == READ && !error) {
1855		kcryptd_queue_crypt(io);
1856		return;
1857	}
1858
1859	if (unlikely(error))
1860		io->error = error;
1861
1862	crypt_dec_pending(io);
1863}
1864
1865#define CRYPT_MAP_READ_GFP GFP_NOWAIT
 
 
 
 
 
 
 
 
1866
1867static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1868{
1869	struct crypt_config *cc = io->cc;
1870	struct bio *clone;
1871
1872	if (io->ctx.aead_recheck) {
1873		if (!(gfp & __GFP_DIRECT_RECLAIM))
1874			return 1;
1875		crypt_inc_pending(io);
1876		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1877		if (unlikely(!clone)) {
1878			crypt_dec_pending(io);
1879			return 1;
1880		}
1881		clone->bi_iter.bi_sector = cc->start + io->sector;
1882		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1883		io->saved_bi_iter = clone->bi_iter;
1884		dm_submit_bio_remap(io->base_bio, clone);
1885		return 0;
1886	}
1887
1888	/*
1889	 * We need the original biovec array in order to decrypt the whole bio
1890	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1891	 * worry about the block layer modifying the biovec array; so leverage
1892	 * bio_alloc_clone().
1893	 */
1894	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1895	if (!clone)
1896		return 1;
1897	clone->bi_private = io;
1898	clone->bi_end_io = crypt_endio;
1899
1900	crypt_inc_pending(io);
1901
 
1902	clone->bi_iter.bi_sector = cc->start + io->sector;
1903
1904	if (dm_crypt_integrity_io_alloc(io, clone)) {
1905		crypt_dec_pending(io);
1906		bio_put(clone);
1907		return 1;
1908	}
1909
1910	dm_submit_bio_remap(io->base_bio, clone);
1911	return 0;
1912}
1913
1914static void kcryptd_io_read_work(struct work_struct *work)
1915{
1916	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1917
1918	crypt_inc_pending(io);
1919	if (kcryptd_io_read(io, GFP_NOIO))
1920		io->error = BLK_STS_RESOURCE;
1921	crypt_dec_pending(io);
1922}
1923
1924static void kcryptd_queue_read(struct dm_crypt_io *io)
1925{
1926	struct crypt_config *cc = io->cc;
1927
1928	INIT_WORK(&io->work, kcryptd_io_read_work);
1929	queue_work(cc->io_queue, &io->work);
1930}
1931
1932static void kcryptd_io_write(struct dm_crypt_io *io)
1933{
1934	struct bio *clone = io->ctx.bio_out;
1935
1936	dm_submit_bio_remap(io->base_bio, clone);
1937}
1938
1939#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1940
1941static int dmcrypt_write(void *data)
1942{
1943	struct crypt_config *cc = data;
1944	struct dm_crypt_io *io;
1945
1946	while (1) {
1947		struct rb_root write_tree;
1948		struct blk_plug plug;
1949
1950		spin_lock_irq(&cc->write_thread_lock);
1951continue_locked:
1952
1953		if (!RB_EMPTY_ROOT(&cc->write_tree))
1954			goto pop_from_list;
1955
1956		set_current_state(TASK_INTERRUPTIBLE);
1957
1958		spin_unlock_irq(&cc->write_thread_lock);
1959
1960		if (unlikely(kthread_should_stop())) {
1961			set_current_state(TASK_RUNNING);
1962			break;
1963		}
1964
1965		schedule();
1966
1967		set_current_state(TASK_RUNNING);
1968		spin_lock_irq(&cc->write_thread_lock);
1969		goto continue_locked;
1970
1971pop_from_list:
1972		write_tree = cc->write_tree;
1973		cc->write_tree = RB_ROOT;
1974		spin_unlock_irq(&cc->write_thread_lock);
1975
1976		BUG_ON(rb_parent(write_tree.rb_node));
1977
1978		/*
1979		 * Note: we cannot walk the tree here with rb_next because
1980		 * the structures may be freed when kcryptd_io_write is called.
1981		 */
1982		blk_start_plug(&plug);
1983		do {
1984			io = crypt_io_from_node(rb_first(&write_tree));
1985			rb_erase(&io->rb_node, &write_tree);
1986			kcryptd_io_write(io);
1987			cond_resched();
1988		} while (!RB_EMPTY_ROOT(&write_tree));
1989		blk_finish_plug(&plug);
1990	}
1991	return 0;
1992}
1993
1994static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1995{
1996	struct bio *clone = io->ctx.bio_out;
1997	struct crypt_config *cc = io->cc;
1998	unsigned long flags;
1999	sector_t sector;
2000	struct rb_node **rbp, *parent;
2001
2002	if (unlikely(io->error)) {
2003		crypt_free_buffer_pages(cc, clone);
2004		bio_put(clone);
2005		crypt_dec_pending(io);
2006		return;
2007	}
2008
2009	/* crypt_convert should have filled the clone bio */
2010	BUG_ON(io->ctx.iter_out.bi_size);
2011
2012	clone->bi_iter.bi_sector = cc->start + io->sector;
2013
2014	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2015	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2016		dm_submit_bio_remap(io->base_bio, clone);
2017		return;
2018	}
2019
2020	spin_lock_irqsave(&cc->write_thread_lock, flags);
2021	if (RB_EMPTY_ROOT(&cc->write_tree))
2022		wake_up_process(cc->write_thread);
2023	rbp = &cc->write_tree.rb_node;
2024	parent = NULL;
2025	sector = io->sector;
2026	while (*rbp) {
2027		parent = *rbp;
2028		if (sector < crypt_io_from_node(parent)->sector)
2029			rbp = &(*rbp)->rb_left;
2030		else
2031			rbp = &(*rbp)->rb_right;
2032	}
2033	rb_link_node(&io->rb_node, parent, rbp);
2034	rb_insert_color(&io->rb_node, &cc->write_tree);
2035	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2036}
2037
2038static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2039				       struct convert_context *ctx)
2040
2041{
2042	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2043		return false;
2044
2045	/*
2046	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2047	 * constraints so they do not need to be issued inline by
2048	 * kcryptd_crypt_write_convert().
2049	 */
2050	switch (bio_op(ctx->bio_in)) {
2051	case REQ_OP_WRITE:
2052	case REQ_OP_WRITE_ZEROES:
2053		return true;
2054	default:
2055		return false;
2056	}
2057}
2058
2059static void kcryptd_crypt_write_continue(struct work_struct *work)
2060{
2061	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2062	struct crypt_config *cc = io->cc;
2063	struct convert_context *ctx = &io->ctx;
2064	int crypt_finished;
2065	sector_t sector = io->sector;
2066	blk_status_t r;
2067
2068	wait_for_completion(&ctx->restart);
2069	reinit_completion(&ctx->restart);
2070
2071	r = crypt_convert(cc, &io->ctx, true, false);
2072	if (r)
2073		io->error = r;
2074	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2075	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2076		/* Wait for completion signaled by kcryptd_async_done() */
2077		wait_for_completion(&ctx->restart);
2078		crypt_finished = 1;
2079	}
2080
2081	/* Encryption was already finished, submit io now */
2082	if (crypt_finished) {
2083		kcryptd_crypt_write_io_submit(io, 0);
2084		io->sector = sector;
2085	}
2086
2087	crypt_dec_pending(io);
2088}
2089
2090static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2091{
2092	struct crypt_config *cc = io->cc;
2093	struct convert_context *ctx = &io->ctx;
2094	struct bio *clone;
2095	int crypt_finished;
2096	sector_t sector = io->sector;
2097	blk_status_t r;
2098
2099	/*
2100	 * Prevent io from disappearing until this function completes.
2101	 */
2102	crypt_inc_pending(io);
2103	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2104
2105	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2106	if (unlikely(!clone)) {
2107		io->error = BLK_STS_IOERR;
2108		goto dec;
2109	}
2110
2111	io->ctx.bio_out = clone;
2112	io->ctx.iter_out = clone->bi_iter;
2113
2114	if (crypt_integrity_aead(cc)) {
2115		bio_copy_data(clone, io->base_bio);
2116		io->ctx.bio_in = clone;
2117		io->ctx.iter_in = clone->bi_iter;
2118	}
2119
2120	sector += bio_sectors(clone);
2121
2122	crypt_inc_pending(io);
2123	r = crypt_convert(cc, ctx,
2124			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2125	/*
2126	 * Crypto API backlogged the request, because its queue was full
2127	 * and we're in softirq context, so continue from a workqueue
2128	 * (TODO: is it actually possible to be in softirq in the write path?)
2129	 */
2130	if (r == BLK_STS_DEV_RESOURCE) {
2131		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2132		queue_work(cc->crypt_queue, &io->work);
2133		return;
2134	}
2135	if (r)
2136		io->error = r;
2137	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2138	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2139		/* Wait for completion signaled by kcryptd_async_done() */
2140		wait_for_completion(&ctx->restart);
2141		crypt_finished = 1;
2142	}
2143
2144	/* Encryption was already finished, submit io now */
2145	if (crypt_finished) {
2146		kcryptd_crypt_write_io_submit(io, 0);
2147		io->sector = sector;
2148	}
2149
2150dec:
2151	crypt_dec_pending(io);
2152}
2153
2154static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155{
2156	if (io->ctx.aead_recheck) {
2157		if (!io->error) {
2158			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159			bio_copy_data(io->base_bio, io->ctx.bio_in);
2160		}
2161		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2162		bio_put(io->ctx.bio_in);
2163	}
2164	crypt_dec_pending(io);
2165}
2166
2167static void kcryptd_crypt_read_continue(struct work_struct *work)
2168{
2169	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170	struct crypt_config *cc = io->cc;
2171	blk_status_t r;
2172
2173	wait_for_completion(&io->ctx.restart);
2174	reinit_completion(&io->ctx.restart);
2175
2176	r = crypt_convert(cc, &io->ctx, true, false);
2177	if (r)
2178		io->error = r;
2179
2180	if (atomic_dec_and_test(&io->ctx.cc_pending))
2181		kcryptd_crypt_read_done(io);
2182
2183	crypt_dec_pending(io);
2184}
2185
2186static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187{
2188	struct crypt_config *cc = io->cc;
2189	blk_status_t r;
2190
2191	crypt_inc_pending(io);
2192
2193	if (io->ctx.aead_recheck) {
2194		io->ctx.cc_sector = io->sector + cc->iv_offset;
2195		r = crypt_convert(cc, &io->ctx,
2196				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2197	} else {
2198		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2199				   io->sector);
2200
2201		r = crypt_convert(cc, &io->ctx,
2202				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203	}
2204	/*
2205	 * Crypto API backlogged the request, because its queue was full
2206	 * and we're in softirq context, so continue from a workqueue
2207	 */
2208	if (r == BLK_STS_DEV_RESOURCE) {
2209		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2210		queue_work(cc->crypt_queue, &io->work);
2211		return;
2212	}
2213	if (r)
2214		io->error = r;
2215
2216	if (atomic_dec_and_test(&io->ctx.cc_pending))
2217		kcryptd_crypt_read_done(io);
2218
2219	crypt_dec_pending(io);
2220}
2221
2222static void kcryptd_async_done(void *data, int error)
 
2223{
2224	struct dm_crypt_request *dmreq = data;
2225	struct convert_context *ctx = dmreq->ctx;
2226	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2227	struct crypt_config *cc = io->cc;
2228
2229	/*
2230	 * A request from crypto driver backlog is going to be processed now,
2231	 * finish the completion and continue in crypt_convert().
2232	 * (Callback will be called for the second time for this request.)
2233	 */
2234	if (error == -EINPROGRESS) {
2235		complete(&ctx->restart);
2236		return;
2237	}
2238
2239	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2240		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2241
2242	if (error == -EBADMSG) {
2243		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2244
2245		ctx->aead_failed = true;
2246		if (ctx->aead_recheck) {
2247			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2248				    ctx->bio_in->bi_bdev, s);
2249			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2250					 ctx->bio_in, s, 0);
2251		}
2252		io->error = BLK_STS_PROTECTION;
2253	} else if (error < 0)
2254		io->error = BLK_STS_IOERR;
2255
2256	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2257
2258	if (!atomic_dec_and_test(&ctx->cc_pending))
2259		return;
2260
2261	/*
2262	 * The request is fully completed: for inline writes, let
2263	 * kcryptd_crypt_write_convert() do the IO submission.
2264	 */
2265	if (bio_data_dir(io->base_bio) == READ) {
2266		kcryptd_crypt_read_done(io);
2267		return;
2268	}
2269
2270	if (kcryptd_crypt_write_inline(cc, ctx)) {
2271		complete(&ctx->restart);
2272		return;
2273	}
2274
2275	kcryptd_crypt_write_io_submit(io, 1);
2276}
2277
2278static void kcryptd_crypt(struct work_struct *work)
2279{
2280	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2281
2282	if (bio_data_dir(io->base_bio) == READ)
2283		kcryptd_crypt_read_convert(io);
2284	else
2285		kcryptd_crypt_write_convert(io);
2286}
2287
2288static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2289{
2290	struct crypt_config *cc = io->cc;
2291
2292	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2293	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2294		/*
2295		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2296		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2297		 * it is being executed with irqs disabled.
2298		 */
2299		if (!(in_hardirq() || irqs_disabled())) {
2300			kcryptd_crypt(&io->work);
2301			return;
2302		}
2303	}
2304
2305	INIT_WORK(&io->work, kcryptd_crypt);
2306	queue_work(cc->crypt_queue, &io->work);
2307}
2308
2309static void crypt_free_tfms_aead(struct crypt_config *cc)
2310{
2311	if (!cc->cipher_tfm.tfms_aead)
2312		return;
2313
2314	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2315		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2316		cc->cipher_tfm.tfms_aead[0] = NULL;
2317	}
2318
2319	kfree(cc->cipher_tfm.tfms_aead);
2320	cc->cipher_tfm.tfms_aead = NULL;
2321}
2322
2323static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2324{
2325	unsigned int i;
2326
2327	if (!cc->cipher_tfm.tfms)
2328		return;
2329
2330	for (i = 0; i < cc->tfms_count; i++)
2331		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2332			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2333			cc->cipher_tfm.tfms[i] = NULL;
2334		}
2335
2336	kfree(cc->cipher_tfm.tfms);
2337	cc->cipher_tfm.tfms = NULL;
2338}
2339
2340static void crypt_free_tfms(struct crypt_config *cc)
2341{
2342	if (crypt_integrity_aead(cc))
2343		crypt_free_tfms_aead(cc);
2344	else
2345		crypt_free_tfms_skcipher(cc);
2346}
2347
2348static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2349{
2350	unsigned int i;
2351	int err;
2352
2353	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2354				      sizeof(struct crypto_skcipher *),
2355				      GFP_KERNEL);
2356	if (!cc->cipher_tfm.tfms)
2357		return -ENOMEM;
2358
2359	for (i = 0; i < cc->tfms_count; i++) {
2360		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2361						CRYPTO_ALG_ALLOCATES_MEMORY);
2362		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2363			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2364			crypt_free_tfms(cc);
2365			return err;
2366		}
2367	}
2368
2369	/*
2370	 * dm-crypt performance can vary greatly depending on which crypto
2371	 * algorithm implementation is used.  Help people debug performance
2372	 * problems by logging the ->cra_driver_name.
2373	 */
2374	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2375	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2376	return 0;
2377}
2378
2379static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2380{
2381	int err;
2382
2383	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2384	if (!cc->cipher_tfm.tfms)
2385		return -ENOMEM;
2386
2387	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2388						CRYPTO_ALG_ALLOCATES_MEMORY);
2389	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2390		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2391		crypt_free_tfms(cc);
2392		return err;
2393	}
2394
2395	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2396	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2397	return 0;
2398}
2399
2400static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2401{
2402	if (crypt_integrity_aead(cc))
2403		return crypt_alloc_tfms_aead(cc, ciphermode);
2404	else
2405		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2406}
2407
2408static unsigned int crypt_subkey_size(struct crypt_config *cc)
2409{
2410	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2411}
2412
2413static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2414{
2415	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2416}
2417
2418/*
2419 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2420 * the key must be for some reason in special format.
2421 * This funcion converts cc->key to this special format.
2422 */
2423static void crypt_copy_authenckey(char *p, const void *key,
2424				  unsigned int enckeylen, unsigned int authkeylen)
2425{
2426	struct crypto_authenc_key_param *param;
2427	struct rtattr *rta;
2428
2429	rta = (struct rtattr *)p;
2430	param = RTA_DATA(rta);
2431	param->enckeylen = cpu_to_be32(enckeylen);
2432	rta->rta_len = RTA_LENGTH(sizeof(*param));
2433	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2434	p += RTA_SPACE(sizeof(*param));
2435	memcpy(p, key + enckeylen, authkeylen);
2436	p += authkeylen;
2437	memcpy(p, key, enckeylen);
2438}
2439
2440static int crypt_setkey(struct crypt_config *cc)
2441{
2442	unsigned int subkey_size;
2443	int err = 0, i, r;
2444
2445	/* Ignore extra keys (which are used for IV etc) */
2446	subkey_size = crypt_subkey_size(cc);
2447
2448	if (crypt_integrity_hmac(cc)) {
2449		if (subkey_size < cc->key_mac_size)
2450			return -EINVAL;
2451
2452		crypt_copy_authenckey(cc->authenc_key, cc->key,
2453				      subkey_size - cc->key_mac_size,
2454				      cc->key_mac_size);
2455	}
2456
2457	for (i = 0; i < cc->tfms_count; i++) {
2458		if (crypt_integrity_hmac(cc))
2459			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2460				cc->authenc_key, crypt_authenckey_size(cc));
2461		else if (crypt_integrity_aead(cc))
2462			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2463					       cc->key + (i * subkey_size),
2464					       subkey_size);
2465		else
2466			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2467						   cc->key + (i * subkey_size),
2468						   subkey_size);
2469		if (r)
2470			err = r;
2471	}
2472
2473	if (crypt_integrity_hmac(cc))
2474		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2475
2476	return err;
2477}
2478
2479#ifdef CONFIG_KEYS
2480
2481static bool contains_whitespace(const char *str)
2482{
2483	while (*str)
2484		if (isspace(*str++))
2485			return true;
2486	return false;
2487}
2488
2489static int set_key_user(struct crypt_config *cc, struct key *key)
2490{
2491	const struct user_key_payload *ukp;
2492
2493	ukp = user_key_payload_locked(key);
2494	if (!ukp)
2495		return -EKEYREVOKED;
2496
2497	if (cc->key_size != ukp->datalen)
2498		return -EINVAL;
2499
2500	memcpy(cc->key, ukp->data, cc->key_size);
2501
2502	return 0;
2503}
2504
2505static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2506{
2507	const struct encrypted_key_payload *ekp;
2508
2509	ekp = key->payload.data[0];
2510	if (!ekp)
2511		return -EKEYREVOKED;
2512
2513	if (cc->key_size != ekp->decrypted_datalen)
2514		return -EINVAL;
2515
2516	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2517
2518	return 0;
2519}
2520
2521static int set_key_trusted(struct crypt_config *cc, struct key *key)
2522{
2523	const struct trusted_key_payload *tkp;
2524
2525	tkp = key->payload.data[0];
2526	if (!tkp)
2527		return -EKEYREVOKED;
2528
2529	if (cc->key_size != tkp->key_len)
2530		return -EINVAL;
2531
2532	memcpy(cc->key, tkp->key, cc->key_size);
2533
2534	return 0;
2535}
2536
2537static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2538{
2539	char *new_key_string, *key_desc;
2540	int ret;
2541	struct key_type *type;
2542	struct key *key;
2543	int (*set_key)(struct crypt_config *cc, struct key *key);
2544
2545	/*
2546	 * Reject key_string with whitespace. dm core currently lacks code for
2547	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2548	 */
2549	if (contains_whitespace(key_string)) {
2550		DMERR("whitespace chars not allowed in key string");
2551		return -EINVAL;
2552	}
2553
2554	/* look for next ':' separating key_type from key_description */
2555	key_desc = strchr(key_string, ':');
2556	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2557		return -EINVAL;
2558
2559	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2560		type = &key_type_logon;
2561		set_key = set_key_user;
2562	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2563		type = &key_type_user;
2564		set_key = set_key_user;
2565	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2566		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2567		type = &key_type_encrypted;
2568		set_key = set_key_encrypted;
2569	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2570		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2571		type = &key_type_trusted;
2572		set_key = set_key_trusted;
2573	} else {
2574		return -EINVAL;
2575	}
2576
2577	new_key_string = kstrdup(key_string, GFP_KERNEL);
2578	if (!new_key_string)
2579		return -ENOMEM;
2580
2581	key = request_key(type, key_desc + 1, NULL);
 
2582	if (IS_ERR(key)) {
2583		kfree_sensitive(new_key_string);
2584		return PTR_ERR(key);
2585	}
2586
2587	down_read(&key->sem);
2588
2589	ret = set_key(cc, key);
2590	if (ret < 0) {
2591		up_read(&key->sem);
2592		key_put(key);
2593		kfree_sensitive(new_key_string);
2594		return ret;
 
 
 
 
 
 
 
2595	}
2596
 
 
2597	up_read(&key->sem);
2598	key_put(key);
2599
2600	/* clear the flag since following operations may invalidate previously valid key */
2601	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2602
2603	ret = crypt_setkey(cc);
2604
2605	if (!ret) {
2606		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2607		kfree_sensitive(cc->key_string);
2608		cc->key_string = new_key_string;
2609	} else
2610		kfree_sensitive(new_key_string);
2611
2612	return ret;
2613}
2614
2615static int get_key_size(char **key_string)
2616{
2617	char *colon, dummy;
2618	int ret;
2619
2620	if (*key_string[0] != ':')
2621		return strlen(*key_string) >> 1;
2622
2623	/* look for next ':' in key string */
2624	colon = strpbrk(*key_string + 1, ":");
2625	if (!colon)
2626		return -EINVAL;
2627
2628	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2629		return -EINVAL;
2630
2631	*key_string = colon;
2632
2633	/* remaining key string should be :<logon|user>:<key_desc> */
2634
2635	return ret;
2636}
2637
2638#else
2639
2640static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2641{
2642	return -EINVAL;
2643}
2644
2645static int get_key_size(char **key_string)
2646{
2647	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2648}
2649
2650#endif /* CONFIG_KEYS */
2651
2652static int crypt_set_key(struct crypt_config *cc, char *key)
2653{
2654	int r = -EINVAL;
2655	int key_string_len = strlen(key);
2656
2657	/* Hyphen (which gives a key_size of zero) means there is no key. */
2658	if (!cc->key_size && strcmp(key, "-"))
2659		goto out;
2660
2661	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2662	if (key[0] == ':') {
2663		r = crypt_set_keyring_key(cc, key + 1);
2664		goto out;
2665	}
2666
2667	/* clear the flag since following operations may invalidate previously valid key */
2668	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2669
2670	/* wipe references to any kernel keyring key */
2671	kfree_sensitive(cc->key_string);
2672	cc->key_string = NULL;
2673
2674	/* Decode key from its hex representation. */
2675	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2676		goto out;
2677
2678	r = crypt_setkey(cc);
2679	if (!r)
2680		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2681
2682out:
2683	/* Hex key string not needed after here, so wipe it. */
2684	memset(key, '0', key_string_len);
2685
2686	return r;
2687}
2688
2689static int crypt_wipe_key(struct crypt_config *cc)
2690{
2691	int r;
2692
2693	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2694	get_random_bytes(&cc->key, cc->key_size);
2695
2696	/* Wipe IV private keys */
2697	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2698		r = cc->iv_gen_ops->wipe(cc);
2699		if (r)
2700			return r;
2701	}
2702
2703	kfree_sensitive(cc->key_string);
2704	cc->key_string = NULL;
2705	r = crypt_setkey(cc);
2706	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2707
2708	return r;
2709}
2710
2711static void crypt_calculate_pages_per_client(void)
2712{
2713	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2714
2715	if (!dm_crypt_clients_n)
2716		return;
2717
2718	pages /= dm_crypt_clients_n;
2719	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2720		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2721	dm_crypt_pages_per_client = pages;
2722}
2723
2724static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2725{
2726	struct crypt_config *cc = pool_data;
2727	struct page *page;
2728
2729	/*
2730	 * Note, percpu_counter_read_positive() may over (and under) estimate
2731	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2732	 * but avoids potential spinlock contention of an exact result.
2733	 */
2734	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2735	    likely(gfp_mask & __GFP_NORETRY))
2736		return NULL;
2737
2738	page = alloc_page(gfp_mask);
2739	if (likely(page != NULL))
2740		percpu_counter_add(&cc->n_allocated_pages, 1);
2741
2742	return page;
2743}
2744
2745static void crypt_page_free(void *page, void *pool_data)
2746{
2747	struct crypt_config *cc = pool_data;
2748
2749	__free_page(page);
2750	percpu_counter_sub(&cc->n_allocated_pages, 1);
2751}
2752
2753static void crypt_dtr(struct dm_target *ti)
2754{
2755	struct crypt_config *cc = ti->private;
2756
2757	ti->private = NULL;
2758
2759	if (!cc)
2760		return;
2761
2762	if (cc->write_thread)
2763		kthread_stop(cc->write_thread);
2764
2765	if (cc->io_queue)
2766		destroy_workqueue(cc->io_queue);
2767	if (cc->crypt_queue)
2768		destroy_workqueue(cc->crypt_queue);
2769
2770	crypt_free_tfms(cc);
2771
2772	bioset_exit(&cc->bs);
2773
2774	mempool_exit(&cc->page_pool);
2775	mempool_exit(&cc->req_pool);
2776	mempool_exit(&cc->tag_pool);
2777
2778	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2779	percpu_counter_destroy(&cc->n_allocated_pages);
2780
2781	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2782		cc->iv_gen_ops->dtr(cc);
2783
2784	if (cc->dev)
2785		dm_put_device(ti, cc->dev);
2786
2787	kfree_sensitive(cc->cipher_string);
2788	kfree_sensitive(cc->key_string);
2789	kfree_sensitive(cc->cipher_auth);
2790	kfree_sensitive(cc->authenc_key);
2791
2792	mutex_destroy(&cc->bio_alloc_lock);
2793
2794	/* Must zero key material before freeing */
2795	kfree_sensitive(cc);
2796
2797	spin_lock(&dm_crypt_clients_lock);
2798	WARN_ON(!dm_crypt_clients_n);
2799	dm_crypt_clients_n--;
2800	crypt_calculate_pages_per_client();
2801	spin_unlock(&dm_crypt_clients_lock);
2802
2803	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2804}
2805
2806static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2807{
2808	struct crypt_config *cc = ti->private;
2809
2810	if (crypt_integrity_aead(cc))
2811		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2812	else
2813		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2814
2815	if (cc->iv_size)
2816		/* at least a 64 bit sector number should fit in our buffer */
2817		cc->iv_size = max(cc->iv_size,
2818				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2819	else if (ivmode) {
2820		DMWARN("Selected cipher does not support IVs");
2821		ivmode = NULL;
2822	}
2823
2824	/* Choose ivmode, see comments at iv code. */
2825	if (ivmode == NULL)
2826		cc->iv_gen_ops = NULL;
2827	else if (strcmp(ivmode, "plain") == 0)
2828		cc->iv_gen_ops = &crypt_iv_plain_ops;
2829	else if (strcmp(ivmode, "plain64") == 0)
2830		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2831	else if (strcmp(ivmode, "plain64be") == 0)
2832		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2833	else if (strcmp(ivmode, "essiv") == 0)
2834		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2835	else if (strcmp(ivmode, "benbi") == 0)
2836		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2837	else if (strcmp(ivmode, "null") == 0)
2838		cc->iv_gen_ops = &crypt_iv_null_ops;
2839	else if (strcmp(ivmode, "eboiv") == 0)
2840		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2841	else if (strcmp(ivmode, "elephant") == 0) {
2842		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2843		cc->key_parts = 2;
2844		cc->key_extra_size = cc->key_size / 2;
2845		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2846			return -EINVAL;
2847		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2848	} else if (strcmp(ivmode, "lmk") == 0) {
2849		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2850		/*
2851		 * Version 2 and 3 is recognised according
2852		 * to length of provided multi-key string.
2853		 * If present (version 3), last key is used as IV seed.
2854		 * All keys (including IV seed) are always the same size.
2855		 */
2856		if (cc->key_size % cc->key_parts) {
2857			cc->key_parts++;
2858			cc->key_extra_size = cc->key_size / cc->key_parts;
2859		}
2860	} else if (strcmp(ivmode, "tcw") == 0) {
2861		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2862		cc->key_parts += 2; /* IV + whitening */
2863		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2864	} else if (strcmp(ivmode, "random") == 0) {
2865		cc->iv_gen_ops = &crypt_iv_random_ops;
2866		/* Need storage space in integrity fields. */
2867		cc->integrity_iv_size = cc->iv_size;
2868	} else {
2869		ti->error = "Invalid IV mode";
2870		return -EINVAL;
2871	}
2872
2873	return 0;
2874}
2875
2876/*
2877 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2878 * The HMAC is needed to calculate tag size (HMAC digest size).
2879 * This should be probably done by crypto-api calls (once available...)
2880 */
2881static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2882{
2883	char *start, *end, *mac_alg = NULL;
2884	struct crypto_ahash *mac;
2885
2886	if (!strstarts(cipher_api, "authenc("))
2887		return 0;
2888
2889	start = strchr(cipher_api, '(');
2890	end = strchr(cipher_api, ',');
2891	if (!start || !end || ++start > end)
2892		return -EINVAL;
2893
2894	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2895	if (!mac_alg)
2896		return -ENOMEM;
 
2897
2898	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2899	kfree(mac_alg);
2900
2901	if (IS_ERR(mac))
2902		return PTR_ERR(mac);
2903
2904	cc->key_mac_size = crypto_ahash_digestsize(mac);
2905	crypto_free_ahash(mac);
2906
2907	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2908	if (!cc->authenc_key)
2909		return -ENOMEM;
2910
2911	return 0;
2912}
2913
2914static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2915				char **ivmode, char **ivopts)
2916{
2917	struct crypt_config *cc = ti->private;
2918	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2919	int ret = -EINVAL;
2920
2921	cc->tfms_count = 1;
2922
2923	/*
2924	 * New format (capi: prefix)
2925	 * capi:cipher_api_spec-iv:ivopts
2926	 */
2927	tmp = &cipher_in[strlen("capi:")];
2928
2929	/* Separate IV options if present, it can contain another '-' in hash name */
2930	*ivopts = strrchr(tmp, ':');
2931	if (*ivopts) {
2932		**ivopts = '\0';
2933		(*ivopts)++;
2934	}
2935	/* Parse IV mode */
2936	*ivmode = strrchr(tmp, '-');
2937	if (*ivmode) {
2938		**ivmode = '\0';
2939		(*ivmode)++;
2940	}
2941	/* The rest is crypto API spec */
2942	cipher_api = tmp;
2943
2944	/* Alloc AEAD, can be used only in new format. */
2945	if (crypt_integrity_aead(cc)) {
2946		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2947		if (ret < 0) {
2948			ti->error = "Invalid AEAD cipher spec";
2949			return ret;
2950		}
2951	}
2952
2953	if (*ivmode && !strcmp(*ivmode, "lmk"))
2954		cc->tfms_count = 64;
2955
2956	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2957		if (!*ivopts) {
2958			ti->error = "Digest algorithm missing for ESSIV mode";
2959			return -EINVAL;
2960		}
2961		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2962			       cipher_api, *ivopts);
2963		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2964			ti->error = "Cannot allocate cipher string";
2965			return -ENOMEM;
2966		}
2967		cipher_api = buf;
2968	}
2969
2970	cc->key_parts = cc->tfms_count;
2971
2972	/* Allocate cipher */
2973	ret = crypt_alloc_tfms(cc, cipher_api);
2974	if (ret < 0) {
2975		ti->error = "Error allocating crypto tfm";
2976		return ret;
2977	}
2978
2979	if (crypt_integrity_aead(cc))
2980		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2981	else
2982		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2983
2984	return 0;
2985}
2986
2987static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2988				char **ivmode, char **ivopts)
2989{
2990	struct crypt_config *cc = ti->private;
2991	char *tmp, *cipher, *chainmode, *keycount;
2992	char *cipher_api = NULL;
2993	int ret = -EINVAL;
2994	char dummy;
2995
2996	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2997		ti->error = "Bad cipher specification";
2998		return -EINVAL;
2999	}
3000
3001	/*
3002	 * Legacy dm-crypt cipher specification
3003	 * cipher[:keycount]-mode-iv:ivopts
3004	 */
3005	tmp = cipher_in;
3006	keycount = strsep(&tmp, "-");
3007	cipher = strsep(&keycount, ":");
3008
3009	if (!keycount)
3010		cc->tfms_count = 1;
3011	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3012		 !is_power_of_2(cc->tfms_count)) {
3013		ti->error = "Bad cipher key count specification";
3014		return -EINVAL;
3015	}
3016	cc->key_parts = cc->tfms_count;
3017
3018	chainmode = strsep(&tmp, "-");
3019	*ivmode = strsep(&tmp, ":");
3020	*ivopts = tmp;
3021
3022	/*
3023	 * For compatibility with the original dm-crypt mapping format, if
3024	 * only the cipher name is supplied, use cbc-plain.
3025	 */
3026	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3027		chainmode = "cbc";
3028		*ivmode = "plain";
3029	}
3030
3031	if (strcmp(chainmode, "ecb") && !*ivmode) {
3032		ti->error = "IV mechanism required";
3033		return -EINVAL;
3034	}
3035
3036	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3037	if (!cipher_api)
3038		goto bad_mem;
3039
3040	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3041		if (!*ivopts) {
3042			ti->error = "Digest algorithm missing for ESSIV mode";
3043			kfree(cipher_api);
3044			return -EINVAL;
3045		}
3046		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3047			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3048	} else {
3049		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3050			       "%s(%s)", chainmode, cipher);
3051	}
3052	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3053		kfree(cipher_api);
3054		goto bad_mem;
3055	}
3056
3057	/* Allocate cipher */
3058	ret = crypt_alloc_tfms(cc, cipher_api);
3059	if (ret < 0) {
3060		ti->error = "Error allocating crypto tfm";
3061		kfree(cipher_api);
3062		return ret;
3063	}
3064	kfree(cipher_api);
3065
3066	return 0;
3067bad_mem:
3068	ti->error = "Cannot allocate cipher strings";
3069	return -ENOMEM;
3070}
3071
3072static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3073{
3074	struct crypt_config *cc = ti->private;
3075	char *ivmode = NULL, *ivopts = NULL;
3076	int ret;
3077
3078	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3079	if (!cc->cipher_string) {
3080		ti->error = "Cannot allocate cipher strings";
3081		return -ENOMEM;
3082	}
3083
3084	if (strstarts(cipher_in, "capi:"))
3085		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3086	else
3087		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3088	if (ret)
3089		return ret;
3090
3091	/* Initialize IV */
3092	ret = crypt_ctr_ivmode(ti, ivmode);
3093	if (ret < 0)
3094		return ret;
3095
3096	/* Initialize and set key */
3097	ret = crypt_set_key(cc, key);
3098	if (ret < 0) {
3099		ti->error = "Error decoding and setting key";
3100		return ret;
3101	}
3102
3103	/* Allocate IV */
3104	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3105		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3106		if (ret < 0) {
3107			ti->error = "Error creating IV";
3108			return ret;
3109		}
3110	}
3111
3112	/* Initialize IV (set keys for ESSIV etc) */
3113	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3114		ret = cc->iv_gen_ops->init(cc);
3115		if (ret < 0) {
3116			ti->error = "Error initialising IV";
3117			return ret;
3118		}
3119	}
3120
3121	/* wipe the kernel key payload copy */
3122	if (cc->key_string)
3123		memset(cc->key, 0, cc->key_size * sizeof(u8));
3124
3125	return ret;
3126}
3127
3128static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3129{
3130	struct crypt_config *cc = ti->private;
3131	struct dm_arg_set as;
3132	static const struct dm_arg _args[] = {
3133		{0, 8, "Invalid number of feature args"},
3134	};
3135	unsigned int opt_params, val;
3136	const char *opt_string, *sval;
3137	char dummy;
3138	int ret;
3139
3140	/* Optional parameters */
3141	as.argc = argc;
3142	as.argv = argv;
3143
3144	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3145	if (ret)
3146		return ret;
3147
3148	while (opt_params--) {
3149		opt_string = dm_shift_arg(&as);
3150		if (!opt_string) {
3151			ti->error = "Not enough feature arguments";
3152			return -EINVAL;
3153		}
3154
3155		if (!strcasecmp(opt_string, "allow_discards"))
3156			ti->num_discard_bios = 1;
3157
3158		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3159			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3160
3161		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3162			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3163		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3164			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3165		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3166			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3167		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3168			if (val == 0 || val > MAX_TAG_SIZE) {
3169				ti->error = "Invalid integrity arguments";
3170				return -EINVAL;
3171			}
3172			cc->on_disk_tag_size = val;
3173			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3174			if (!strcasecmp(sval, "aead")) {
3175				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3176			} else if (strcasecmp(sval, "none")) {
3177				ti->error = "Unknown integrity profile";
3178				return -EINVAL;
3179			}
3180
3181			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3182			if (!cc->cipher_auth)
3183				return -ENOMEM;
3184		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3185			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3186			    cc->sector_size > 4096 ||
3187			    (cc->sector_size & (cc->sector_size - 1))) {
3188				ti->error = "Invalid feature value for sector_size";
3189				return -EINVAL;
3190			}
3191			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3192				ti->error = "Device size is not multiple of sector_size feature";
3193				return -EINVAL;
3194			}
3195			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3196		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3197			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3198		else {
3199			ti->error = "Invalid feature arguments";
3200			return -EINVAL;
3201		}
3202	}
3203
3204	return 0;
3205}
3206
3207#ifdef CONFIG_BLK_DEV_ZONED
3208static int crypt_report_zones(struct dm_target *ti,
3209		struct dm_report_zones_args *args, unsigned int nr_zones)
3210{
3211	struct crypt_config *cc = ti->private;
3212
3213	return dm_report_zones(cc->dev->bdev, cc->start,
3214			cc->start + dm_target_offset(ti, args->next_sector),
3215			args, nr_zones);
3216}
3217#else
3218#define crypt_report_zones NULL
3219#endif
3220
3221/*
3222 * Construct an encryption mapping:
3223 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3224 */
3225static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3226{
3227	struct crypt_config *cc;
3228	const char *devname = dm_table_device_name(ti->table);
3229	int key_size;
3230	unsigned int align_mask;
3231	unsigned long long tmpll;
3232	int ret;
3233	size_t iv_size_padding, additional_req_size;
3234	char dummy;
3235
3236	if (argc < 5) {
3237		ti->error = "Not enough arguments";
3238		return -EINVAL;
3239	}
3240
3241	key_size = get_key_size(&argv[1]);
3242	if (key_size < 0) {
3243		ti->error = "Cannot parse key size";
3244		return -EINVAL;
3245	}
3246
3247	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3248	if (!cc) {
3249		ti->error = "Cannot allocate encryption context";
3250		return -ENOMEM;
3251	}
3252	cc->key_size = key_size;
3253	cc->sector_size = (1 << SECTOR_SHIFT);
3254	cc->sector_shift = 0;
3255
3256	ti->private = cc;
3257
3258	spin_lock(&dm_crypt_clients_lock);
3259	dm_crypt_clients_n++;
3260	crypt_calculate_pages_per_client();
3261	spin_unlock(&dm_crypt_clients_lock);
3262
3263	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3264	if (ret < 0)
3265		goto bad;
3266
3267	/* Optional parameters need to be read before cipher constructor */
3268	if (argc > 5) {
3269		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3270		if (ret)
3271			goto bad;
3272	}
3273
3274	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3275	if (ret < 0)
3276		goto bad;
3277
3278	if (crypt_integrity_aead(cc)) {
3279		cc->dmreq_start = sizeof(struct aead_request);
3280		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3281		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3282	} else {
3283		cc->dmreq_start = sizeof(struct skcipher_request);
3284		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3285		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3286	}
3287	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3288
3289	if (align_mask < CRYPTO_MINALIGN) {
3290		/* Allocate the padding exactly */
3291		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3292				& align_mask;
3293	} else {
3294		/*
3295		 * If the cipher requires greater alignment than kmalloc
3296		 * alignment, we don't know the exact position of the
3297		 * initialization vector. We must assume worst case.
3298		 */
3299		iv_size_padding = align_mask;
3300	}
3301
3302	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3303	additional_req_size = sizeof(struct dm_crypt_request) +
3304		iv_size_padding + cc->iv_size +
3305		cc->iv_size +
3306		sizeof(uint64_t) +
3307		sizeof(unsigned int);
3308
3309	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3310	if (ret) {
3311		ti->error = "Cannot allocate crypt request mempool";
3312		goto bad;
3313	}
3314
3315	cc->per_bio_data_size = ti->per_io_data_size =
3316		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3317		      ARCH_DMA_MINALIGN);
3318
3319	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3320	if (ret) {
3321		ti->error = "Cannot allocate page mempool";
3322		goto bad;
3323	}
3324
3325	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3326	if (ret) {
3327		ti->error = "Cannot allocate crypt bioset";
3328		goto bad;
3329	}
3330
3331	mutex_init(&cc->bio_alloc_lock);
3332
3333	ret = -EINVAL;
3334	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3335	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3336		ti->error = "Invalid iv_offset sector";
3337		goto bad;
3338	}
3339	cc->iv_offset = tmpll;
3340
3341	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3342	if (ret) {
3343		ti->error = "Device lookup failed";
3344		goto bad;
3345	}
3346
3347	ret = -EINVAL;
3348	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3349		ti->error = "Invalid device sector";
3350		goto bad;
3351	}
3352	cc->start = tmpll;
3353
3354	if (bdev_is_zoned(cc->dev->bdev)) {
3355		/*
3356		 * For zoned block devices, we need to preserve the issuer write
3357		 * ordering. To do so, disable write workqueues and force inline
3358		 * encryption completion.
3359		 */
3360		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3361		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3362
3363		/*
3364		 * All zone append writes to a zone of a zoned block device will
3365		 * have the same BIO sector, the start of the zone. When the
3366		 * cypher IV mode uses sector values, all data targeting a
3367		 * zone will be encrypted using the first sector numbers of the
3368		 * zone. This will not result in write errors but will
3369		 * cause most reads to fail as reads will use the sector values
3370		 * for the actual data locations, resulting in IV mismatch.
3371		 * To avoid this problem, ask DM core to emulate zone append
3372		 * operations with regular writes.
3373		 */
3374		DMDEBUG("Zone append operations will be emulated");
3375		ti->emulate_zone_append = true;
3376	}
3377
3378	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3379		ret = crypt_integrity_ctr(cc, ti);
3380		if (ret)
3381			goto bad;
3382
3383		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3384		if (!cc->tag_pool_max_sectors)
3385			cc->tag_pool_max_sectors = 1;
3386
3387		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3388			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3389		if (ret) {
3390			ti->error = "Cannot allocate integrity tags mempool";
3391			goto bad;
3392		}
3393
3394		cc->tag_pool_max_sectors <<= cc->sector_shift;
3395	}
3396
3397	ret = -ENOMEM;
3398	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
 
 
3399	if (!cc->io_queue) {
3400		ti->error = "Couldn't create kcryptd io queue";
3401		goto bad;
3402	}
3403
3404	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3405		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
 
3406						  1, devname);
3407	else
3408		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3409						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3410						  num_online_cpus(), devname);
3411	if (!cc->crypt_queue) {
3412		ti->error = "Couldn't create kcryptd queue";
3413		goto bad;
3414	}
3415
3416	spin_lock_init(&cc->write_thread_lock);
3417	cc->write_tree = RB_ROOT;
3418
3419	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3420	if (IS_ERR(cc->write_thread)) {
3421		ret = PTR_ERR(cc->write_thread);
3422		cc->write_thread = NULL;
3423		ti->error = "Couldn't spawn write thread";
3424		goto bad;
3425	}
 
3426
3427	ti->num_flush_bios = 1;
3428	ti->limit_swap_bios = true;
3429	ti->accounts_remapped_io = true;
3430
3431	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3432	return 0;
3433
3434bad:
3435	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3436	crypt_dtr(ti);
3437	return ret;
3438}
3439
3440static int crypt_map(struct dm_target *ti, struct bio *bio)
3441{
3442	struct dm_crypt_io *io;
3443	struct crypt_config *cc = ti->private;
3444
3445	/*
3446	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3447	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3448	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3449	 */
3450	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3451	    bio_op(bio) == REQ_OP_DISCARD)) {
3452		bio_set_dev(bio, cc->dev->bdev);
3453		if (bio_sectors(bio))
3454			bio->bi_iter.bi_sector = cc->start +
3455				dm_target_offset(ti, bio->bi_iter.bi_sector);
3456		return DM_MAPIO_REMAPPED;
3457	}
3458
3459	/*
3460	 * Check if bio is too large, split as needed.
3461	 */
3462	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3463	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3464		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3465
3466	/*
3467	 * Ensure that bio is a multiple of internal sector encryption size
3468	 * and is aligned to this size as defined in IO hints.
3469	 */
3470	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3471		return DM_MAPIO_KILL;
3472
3473	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3474		return DM_MAPIO_KILL;
3475
3476	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3477	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3478
3479	if (cc->on_disk_tag_size) {
3480		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3481
3482		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3483			io->integrity_metadata = NULL;
3484		else
3485			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3486
3487		if (unlikely(!io->integrity_metadata)) {
3488			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3489				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3490			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3491			io->integrity_metadata_from_pool = true;
3492		}
3493	}
3494
3495	if (crypt_integrity_aead(cc))
3496		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3497	else
3498		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3499
3500	if (bio_data_dir(io->base_bio) == READ) {
3501		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3502			kcryptd_queue_read(io);
3503	} else
3504		kcryptd_queue_crypt(io);
3505
3506	return DM_MAPIO_SUBMITTED;
3507}
3508
3509static char hex2asc(unsigned char c)
3510{
3511	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3512}
3513
3514static void crypt_status(struct dm_target *ti, status_type_t type,
3515			 unsigned int status_flags, char *result, unsigned int maxlen)
3516{
3517	struct crypt_config *cc = ti->private;
3518	unsigned int i, sz = 0;
3519	int num_feature_args = 0;
3520
3521	switch (type) {
3522	case STATUSTYPE_INFO:
3523		result[0] = '\0';
3524		break;
3525
3526	case STATUSTYPE_TABLE:
3527		DMEMIT("%s ", cc->cipher_string);
3528
3529		if (cc->key_size > 0) {
3530			if (cc->key_string)
3531				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3532			else {
3533				for (i = 0; i < cc->key_size; i++) {
3534					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3535					       hex2asc(cc->key[i] & 0xf));
3536				}
3537			}
3538		} else
3539			DMEMIT("-");
3540
3541		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3542				cc->dev->name, (unsigned long long)cc->start);
3543
3544		num_feature_args += !!ti->num_discard_bios;
3545		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3546		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3547		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3548		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3549		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3550		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3551		if (cc->on_disk_tag_size)
3552			num_feature_args++;
3553		if (num_feature_args) {
3554			DMEMIT(" %d", num_feature_args);
3555			if (ti->num_discard_bios)
3556				DMEMIT(" allow_discards");
3557			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3558				DMEMIT(" same_cpu_crypt");
3559			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3560				DMEMIT(" submit_from_crypt_cpus");
3561			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3562				DMEMIT(" no_read_workqueue");
3563			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3564				DMEMIT(" no_write_workqueue");
3565			if (cc->on_disk_tag_size)
3566				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3567			if (cc->sector_size != (1 << SECTOR_SHIFT))
3568				DMEMIT(" sector_size:%d", cc->sector_size);
3569			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3570				DMEMIT(" iv_large_sectors");
3571		}
3572		break;
3573
3574	case STATUSTYPE_IMA:
3575		DMEMIT_TARGET_NAME_VERSION(ti->type);
3576		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3577		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3578		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3579		       'y' : 'n');
3580		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3581		       'y' : 'n');
3582		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3583		       'y' : 'n');
3584		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3585		       'y' : 'n');
3586
3587		if (cc->on_disk_tag_size)
3588			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3589			       cc->on_disk_tag_size, cc->cipher_auth);
3590		if (cc->sector_size != (1 << SECTOR_SHIFT))
3591			DMEMIT(",sector_size=%d", cc->sector_size);
3592		if (cc->cipher_string)
3593			DMEMIT(",cipher_string=%s", cc->cipher_string);
3594
3595		DMEMIT(",key_size=%u", cc->key_size);
3596		DMEMIT(",key_parts=%u", cc->key_parts);
3597		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3598		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3599		DMEMIT(";");
3600		break;
3601	}
3602}
3603
3604static void crypt_postsuspend(struct dm_target *ti)
3605{
3606	struct crypt_config *cc = ti->private;
3607
3608	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3609}
3610
3611static int crypt_preresume(struct dm_target *ti)
3612{
3613	struct crypt_config *cc = ti->private;
3614
3615	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3616		DMERR("aborting resume - crypt key is not set.");
3617		return -EAGAIN;
3618	}
3619
3620	return 0;
3621}
3622
3623static void crypt_resume(struct dm_target *ti)
3624{
3625	struct crypt_config *cc = ti->private;
3626
3627	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3628}
3629
3630/* Message interface
3631 *	key set <key>
3632 *	key wipe
3633 */
3634static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3635			 char *result, unsigned int maxlen)
3636{
3637	struct crypt_config *cc = ti->private;
3638	int key_size, ret = -EINVAL;
3639
3640	if (argc < 2)
3641		goto error;
3642
3643	if (!strcasecmp(argv[0], "key")) {
3644		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3645			DMWARN("not suspended during key manipulation.");
3646			return -EINVAL;
3647		}
3648		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3649			/* The key size may not be changed. */
3650			key_size = get_key_size(&argv[2]);
3651			if (key_size < 0 || cc->key_size != key_size) {
3652				memset(argv[2], '0', strlen(argv[2]));
3653				return -EINVAL;
3654			}
3655
3656			ret = crypt_set_key(cc, argv[2]);
3657			if (ret)
3658				return ret;
3659			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3660				ret = cc->iv_gen_ops->init(cc);
3661			/* wipe the kernel key payload copy */
3662			if (cc->key_string)
3663				memset(cc->key, 0, cc->key_size * sizeof(u8));
3664			return ret;
3665		}
3666		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3667			return crypt_wipe_key(cc);
3668	}
3669
3670error:
3671	DMWARN("unrecognised message received.");
3672	return -EINVAL;
3673}
3674
3675static int crypt_iterate_devices(struct dm_target *ti,
3676				 iterate_devices_callout_fn fn, void *data)
3677{
3678	struct crypt_config *cc = ti->private;
3679
3680	return fn(ti, cc->dev, cc->start, ti->len, data);
3681}
3682
3683static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3684{
3685	struct crypt_config *cc = ti->private;
3686
3687	/*
3688	 * Unfortunate constraint that is required to avoid the potential
3689	 * for exceeding underlying device's max_segments limits -- due to
3690	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3691	 * bio that are not as physically contiguous as the original bio.
3692	 */
3693	limits->max_segment_size = PAGE_SIZE;
3694
3695	limits->logical_block_size =
3696		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3697	limits->physical_block_size =
3698		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3699	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3700	limits->dma_alignment = limits->logical_block_size - 1;
3701}
3702
3703static struct target_type crypt_target = {
3704	.name   = "crypt",
3705	.version = {1, 25, 0},
3706	.module = THIS_MODULE,
3707	.ctr    = crypt_ctr,
3708	.dtr    = crypt_dtr,
3709	.features = DM_TARGET_ZONED_HM,
3710	.report_zones = crypt_report_zones,
3711	.map    = crypt_map,
3712	.status = crypt_status,
3713	.postsuspend = crypt_postsuspend,
3714	.preresume = crypt_preresume,
3715	.resume = crypt_resume,
3716	.message = crypt_message,
3717	.iterate_devices = crypt_iterate_devices,
3718	.io_hints = crypt_io_hints,
3719};
3720module_dm(crypt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721
3722MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3723MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3724MODULE_LICENSE("GPL");
v5.4
 
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
 
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
 
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
 
  37#include <keys/user-type.h>
 
 
  38
  39#include <linux/device-mapper.h>
  40
 
 
  41#define DM_MSG_PREFIX "crypt"
  42
  43/*
  44 * context holding the current state of a multi-part conversion
  45 */
  46struct convert_context {
  47	struct completion restart;
  48	struct bio *bio_in;
 
  49	struct bio *bio_out;
  50	struct bvec_iter iter_in;
  51	struct bvec_iter iter_out;
 
  52	u64 cc_sector;
  53	atomic_t cc_pending;
  54	union {
  55		struct skcipher_request *req;
  56		struct aead_request *req_aead;
  57	} r;
 
 
  58
  59};
  60
  61/*
  62 * per bio private data
  63 */
  64struct dm_crypt_io {
  65	struct crypt_config *cc;
  66	struct bio *base_bio;
  67	u8 *integrity_metadata;
  68	bool integrity_metadata_from_pool;
 
  69	struct work_struct work;
  70
  71	struct convert_context ctx;
  72
  73	atomic_t io_pending;
  74	blk_status_t error;
  75	sector_t sector;
  76
 
 
  77	struct rb_node rb_node;
  78} CRYPTO_MINALIGN_ATTR;
  79
  80struct dm_crypt_request {
  81	struct convert_context *ctx;
  82	struct scatterlist sg_in[4];
  83	struct scatterlist sg_out[4];
  84	u64 iv_sector;
  85};
  86
  87struct crypt_config;
  88
  89struct crypt_iv_operations {
  90	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  91		   const char *opts);
  92	void (*dtr)(struct crypt_config *cc);
  93	int (*init)(struct crypt_config *cc);
  94	int (*wipe)(struct crypt_config *cc);
  95	int (*generator)(struct crypt_config *cc, u8 *iv,
  96			 struct dm_crypt_request *dmreq);
  97	int (*post)(struct crypt_config *cc, u8 *iv,
  98		    struct dm_crypt_request *dmreq);
  99};
 100
 101struct iv_benbi_private {
 102	int shift;
 103};
 104
 105#define LMK_SEED_SIZE 64 /* hash + 0 */
 106struct iv_lmk_private {
 107	struct crypto_shash *hash_tfm;
 108	u8 *seed;
 109};
 110
 111#define TCW_WHITENING_SIZE 16
 112struct iv_tcw_private {
 113	struct crypto_shash *crc32_tfm;
 114	u8 *iv_seed;
 115	u8 *whitening;
 116};
 117
 
 
 
 
 
 118/*
 119 * Crypt: maps a linear range of a block device
 120 * and encrypts / decrypts at the same time.
 121 */
 122enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 123	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 
 
 124
 125enum cipher_flags {
 126	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
 127	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 
 128};
 129
 130/*
 131 * The fields in here must be read only after initialization.
 132 */
 133struct crypt_config {
 134	struct dm_dev *dev;
 135	sector_t start;
 136
 137	struct percpu_counter n_allocated_pages;
 138
 139	struct workqueue_struct *io_queue;
 140	struct workqueue_struct *crypt_queue;
 141
 142	spinlock_t write_thread_lock;
 143	struct task_struct *write_thread;
 144	struct rb_root write_tree;
 145
 146	char *cipher_string;
 147	char *cipher_auth;
 148	char *key_string;
 149
 150	const struct crypt_iv_operations *iv_gen_ops;
 151	union {
 152		struct iv_benbi_private benbi;
 153		struct iv_lmk_private lmk;
 154		struct iv_tcw_private tcw;
 
 155	} iv_gen_private;
 156	u64 iv_offset;
 157	unsigned int iv_size;
 158	unsigned short int sector_size;
 159	unsigned char sector_shift;
 160
 161	union {
 162		struct crypto_skcipher **tfms;
 163		struct crypto_aead **tfms_aead;
 164	} cipher_tfm;
 165	unsigned tfms_count;
 166	unsigned long cipher_flags;
 167
 168	/*
 169	 * Layout of each crypto request:
 170	 *
 171	 *   struct skcipher_request
 172	 *      context
 173	 *      padding
 174	 *   struct dm_crypt_request
 175	 *      padding
 176	 *   IV
 177	 *
 178	 * The padding is added so that dm_crypt_request and the IV are
 179	 * correctly aligned.
 180	 */
 181	unsigned int dmreq_start;
 182
 183	unsigned int per_bio_data_size;
 184
 185	unsigned long flags;
 186	unsigned int key_size;
 187	unsigned int key_parts;      /* independent parts in key buffer */
 188	unsigned int key_extra_size; /* additional keys length */
 189	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 190
 191	unsigned int integrity_tag_size;
 192	unsigned int integrity_iv_size;
 193	unsigned int on_disk_tag_size;
 194
 195	/*
 196	 * pool for per bio private data, crypto requests,
 197	 * encryption requeusts/buffer pages and integrity tags
 198	 */
 199	unsigned tag_pool_max_sectors;
 200	mempool_t tag_pool;
 201	mempool_t req_pool;
 202	mempool_t page_pool;
 203
 204	struct bio_set bs;
 205	struct mutex bio_alloc_lock;
 206
 207	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 208	u8 key[0];
 209};
 210
 211#define MIN_IOS		64
 212#define MAX_TAG_SIZE	480
 213#define POOL_ENTRY_SIZE	512
 214
 215static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 216static unsigned dm_crypt_clients_n = 0;
 217static volatile unsigned long dm_crypt_pages_per_client;
 218#define DM_CRYPT_MEMORY_PERCENT			2
 219#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16)
 220
 221static void clone_init(struct dm_crypt_io *, struct bio *);
 222static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 223static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 224					     struct scatterlist *sg);
 225
 
 
 226/*
 227 * Use this to access cipher attributes that are independent of the key.
 228 */
 229static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 230{
 231	return cc->cipher_tfm.tfms[0];
 232}
 233
 234static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 235{
 236	return cc->cipher_tfm.tfms_aead[0];
 237}
 238
 239/*
 240 * Different IV generation algorithms:
 241 *
 242 * plain: the initial vector is the 32-bit little-endian version of the sector
 243 *        number, padded with zeros if necessary.
 244 *
 245 * plain64: the initial vector is the 64-bit little-endian version of the sector
 246 *        number, padded with zeros if necessary.
 247 *
 248 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 249 *        number, padded with zeros if necessary.
 250 *
 251 * essiv: "encrypted sector|salt initial vector", the sector number is
 252 *        encrypted with the bulk cipher using a salt as key. The salt
 253 *        should be derived from the bulk cipher's key via hashing.
 254 *
 255 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 256 *        (needed for LRW-32-AES and possible other narrow block modes)
 257 *
 258 * null: the initial vector is always zero.  Provides compatibility with
 259 *       obsolete loop_fish2 devices.  Do not use for new devices.
 260 *
 261 * lmk:  Compatible implementation of the block chaining mode used
 262 *       by the Loop-AES block device encryption system
 263 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 264 *       It operates on full 512 byte sectors and uses CBC
 265 *       with an IV derived from the sector number, the data and
 266 *       optionally extra IV seed.
 267 *       This means that after decryption the first block
 268 *       of sector must be tweaked according to decrypted data.
 269 *       Loop-AES can use three encryption schemes:
 270 *         version 1: is plain aes-cbc mode
 271 *         version 2: uses 64 multikey scheme with lmk IV generator
 272 *         version 3: the same as version 2 with additional IV seed
 273 *                   (it uses 65 keys, last key is used as IV seed)
 274 *
 275 * tcw:  Compatible implementation of the block chaining mode used
 276 *       by the TrueCrypt device encryption system (prior to version 4.1).
 277 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 278 *       It operates on full 512 byte sectors and uses CBC
 279 *       with an IV derived from initial key and the sector number.
 280 *       In addition, whitening value is applied on every sector, whitening
 281 *       is calculated from initial key, sector number and mixed using CRC32.
 282 *       Note that this encryption scheme is vulnerable to watermarking attacks
 283 *       and should be used for old compatible containers access only.
 284 *
 285 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 286 *        The IV is encrypted little-endian byte-offset (with the same key
 287 *        and cipher as the volume).
 
 
 
 
 
 288 */
 289
 290static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 291			      struct dm_crypt_request *dmreq)
 292{
 293	memset(iv, 0, cc->iv_size);
 294	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 295
 296	return 0;
 297}
 298
 299static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 300				struct dm_crypt_request *dmreq)
 301{
 302	memset(iv, 0, cc->iv_size);
 303	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 304
 305	return 0;
 306}
 307
 308static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 309				  struct dm_crypt_request *dmreq)
 310{
 311	memset(iv, 0, cc->iv_size);
 312	/* iv_size is at least of size u64; usually it is 16 bytes */
 313	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 314
 315	return 0;
 316}
 317
 318static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 319			      struct dm_crypt_request *dmreq)
 320{
 321	/*
 322	 * ESSIV encryption of the IV is now handled by the crypto API,
 323	 * so just pass the plain sector number here.
 324	 */
 325	memset(iv, 0, cc->iv_size);
 326	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 327
 328	return 0;
 329}
 330
 331static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 332			      const char *opts)
 333{
 334	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 335	int log = ilog2(bs);
 336
 337	/* we need to calculate how far we must shift the sector count
 338	 * to get the cipher block count, we use this shift in _gen */
 
 
 
 339
 
 
 
 
 340	if (1 << log != bs) {
 341		ti->error = "cypher blocksize is not a power of 2";
 342		return -EINVAL;
 343	}
 344
 345	if (log > 9) {
 346		ti->error = "cypher blocksize is > 512";
 347		return -EINVAL;
 348	}
 349
 350	cc->iv_gen_private.benbi.shift = 9 - log;
 351
 352	return 0;
 353}
 354
 355static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 356{
 357}
 358
 359static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 360			      struct dm_crypt_request *dmreq)
 361{
 362	__be64 val;
 363
 364	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 365
 366	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 367	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 368
 369	return 0;
 370}
 371
 372static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 373			     struct dm_crypt_request *dmreq)
 374{
 375	memset(iv, 0, cc->iv_size);
 376
 377	return 0;
 378}
 379
 380static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 381{
 382	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 383
 384	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 385		crypto_free_shash(lmk->hash_tfm);
 386	lmk->hash_tfm = NULL;
 387
 388	kzfree(lmk->seed);
 389	lmk->seed = NULL;
 390}
 391
 392static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 393			    const char *opts)
 394{
 395	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 396
 397	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 398		ti->error = "Unsupported sector size for LMK";
 399		return -EINVAL;
 400	}
 401
 402	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 
 403	if (IS_ERR(lmk->hash_tfm)) {
 404		ti->error = "Error initializing LMK hash";
 405		return PTR_ERR(lmk->hash_tfm);
 406	}
 407
 408	/* No seed in LMK version 2 */
 409	if (cc->key_parts == cc->tfms_count) {
 410		lmk->seed = NULL;
 411		return 0;
 412	}
 413
 414	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 415	if (!lmk->seed) {
 416		crypt_iv_lmk_dtr(cc);
 417		ti->error = "Error kmallocing seed storage in LMK";
 418		return -ENOMEM;
 419	}
 420
 421	return 0;
 422}
 423
 424static int crypt_iv_lmk_init(struct crypt_config *cc)
 425{
 426	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 427	int subkey_size = cc->key_size / cc->key_parts;
 428
 429	/* LMK seed is on the position of LMK_KEYS + 1 key */
 430	if (lmk->seed)
 431		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 432		       crypto_shash_digestsize(lmk->hash_tfm));
 433
 434	return 0;
 435}
 436
 437static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 438{
 439	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 440
 441	if (lmk->seed)
 442		memset(lmk->seed, 0, LMK_SEED_SIZE);
 443
 444	return 0;
 445}
 446
 447static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 448			    struct dm_crypt_request *dmreq,
 449			    u8 *data)
 450{
 451	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 452	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 453	struct md5_state md5state;
 454	__le32 buf[4];
 455	int i, r;
 456
 457	desc->tfm = lmk->hash_tfm;
 458
 459	r = crypto_shash_init(desc);
 460	if (r)
 461		return r;
 462
 463	if (lmk->seed) {
 464		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 465		if (r)
 466			return r;
 467	}
 468
 469	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 470	r = crypto_shash_update(desc, data + 16, 16 * 31);
 471	if (r)
 472		return r;
 473
 474	/* Sector is cropped to 56 bits here */
 475	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 476	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 477	buf[2] = cpu_to_le32(4024);
 478	buf[3] = 0;
 479	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 480	if (r)
 481		return r;
 482
 483	/* No MD5 padding here */
 484	r = crypto_shash_export(desc, &md5state);
 485	if (r)
 486		return r;
 487
 488	for (i = 0; i < MD5_HASH_WORDS; i++)
 489		__cpu_to_le32s(&md5state.hash[i]);
 490	memcpy(iv, &md5state.hash, cc->iv_size);
 491
 492	return 0;
 493}
 494
 495static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 496			    struct dm_crypt_request *dmreq)
 497{
 498	struct scatterlist *sg;
 499	u8 *src;
 500	int r = 0;
 501
 502	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 503		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 504		src = kmap_atomic(sg_page(sg));
 505		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 506		kunmap_atomic(src);
 507	} else
 508		memset(iv, 0, cc->iv_size);
 509
 510	return r;
 511}
 512
 513static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 514			     struct dm_crypt_request *dmreq)
 515{
 516	struct scatterlist *sg;
 517	u8 *dst;
 518	int r;
 519
 520	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 521		return 0;
 522
 523	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 524	dst = kmap_atomic(sg_page(sg));
 525	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 526
 527	/* Tweak the first block of plaintext sector */
 528	if (!r)
 529		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 530
 531	kunmap_atomic(dst);
 532	return r;
 533}
 534
 535static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 536{
 537	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 538
 539	kzfree(tcw->iv_seed);
 540	tcw->iv_seed = NULL;
 541	kzfree(tcw->whitening);
 542	tcw->whitening = NULL;
 543
 544	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 545		crypto_free_shash(tcw->crc32_tfm);
 546	tcw->crc32_tfm = NULL;
 547}
 548
 549static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 550			    const char *opts)
 551{
 552	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 553
 554	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 555		ti->error = "Unsupported sector size for TCW";
 556		return -EINVAL;
 557	}
 558
 559	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 560		ti->error = "Wrong key size for TCW";
 561		return -EINVAL;
 562	}
 563
 564	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 
 565	if (IS_ERR(tcw->crc32_tfm)) {
 566		ti->error = "Error initializing CRC32 in TCW";
 567		return PTR_ERR(tcw->crc32_tfm);
 568	}
 569
 570	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 571	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 572	if (!tcw->iv_seed || !tcw->whitening) {
 573		crypt_iv_tcw_dtr(cc);
 574		ti->error = "Error allocating seed storage in TCW";
 575		return -ENOMEM;
 576	}
 577
 578	return 0;
 579}
 580
 581static int crypt_iv_tcw_init(struct crypt_config *cc)
 582{
 583	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 584	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 585
 586	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 587	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 588	       TCW_WHITENING_SIZE);
 589
 590	return 0;
 591}
 592
 593static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 594{
 595	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 596
 597	memset(tcw->iv_seed, 0, cc->iv_size);
 598	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 599
 600	return 0;
 601}
 602
 603static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 604				  struct dm_crypt_request *dmreq,
 605				  u8 *data)
 606{
 607	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 608	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 609	u8 buf[TCW_WHITENING_SIZE];
 610	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 611	int i, r;
 612
 613	/* xor whitening with sector number */
 614	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 615	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 616
 617	/* calculate crc32 for every 32bit part and xor it */
 618	desc->tfm = tcw->crc32_tfm;
 619	for (i = 0; i < 4; i++) {
 620		r = crypto_shash_init(desc);
 621		if (r)
 622			goto out;
 623		r = crypto_shash_update(desc, &buf[i * 4], 4);
 624		if (r)
 625			goto out;
 626		r = crypto_shash_final(desc, &buf[i * 4]);
 627		if (r)
 628			goto out;
 629	}
 630	crypto_xor(&buf[0], &buf[12], 4);
 631	crypto_xor(&buf[4], &buf[8], 4);
 632
 633	/* apply whitening (8 bytes) to whole sector */
 634	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 635		crypto_xor(data + i * 8, buf, 8);
 636out:
 637	memzero_explicit(buf, sizeof(buf));
 638	return r;
 639}
 640
 641static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 642			    struct dm_crypt_request *dmreq)
 643{
 644	struct scatterlist *sg;
 645	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 646	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 647	u8 *src;
 648	int r = 0;
 649
 650	/* Remove whitening from ciphertext */
 651	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 652		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 653		src = kmap_atomic(sg_page(sg));
 654		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 655		kunmap_atomic(src);
 656	}
 657
 658	/* Calculate IV */
 659	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 660	if (cc->iv_size > 8)
 661		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 662			       cc->iv_size - 8);
 663
 664	return r;
 665}
 666
 667static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 668			     struct dm_crypt_request *dmreq)
 669{
 670	struct scatterlist *sg;
 671	u8 *dst;
 672	int r;
 673
 674	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 675		return 0;
 676
 677	/* Apply whitening on ciphertext */
 678	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 679	dst = kmap_atomic(sg_page(sg));
 680	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 681	kunmap_atomic(dst);
 682
 683	return r;
 684}
 685
 686static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 687				struct dm_crypt_request *dmreq)
 688{
 689	/* Used only for writes, there must be an additional space to store IV */
 690	get_random_bytes(iv, cc->iv_size);
 691	return 0;
 692}
 693
 694static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 695			    const char *opts)
 696{
 697	if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags)) {
 698		ti->error = "AEAD transforms not supported for EBOIV";
 699		return -EINVAL;
 700	}
 701
 702	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 703		ti->error = "Block size of EBOIV cipher does "
 704			    "not match IV size of block cipher";
 705		return -EINVAL;
 706	}
 707
 708	return 0;
 709}
 710
 711static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 712			    struct dm_crypt_request *dmreq)
 713{
 714	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
 715	struct skcipher_request *req;
 716	struct scatterlist src, dst;
 717	struct crypto_wait wait;
 
 718	int err;
 
 
 
 
 719
 720	req = skcipher_request_alloc(any_tfm(cc), GFP_KERNEL | GFP_NOFS);
 721	if (!req)
 722		return -ENOMEM;
 723
 
 
 
 724	memset(buf, 0, cc->iv_size);
 725	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 726
 727	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 728	sg_init_one(&dst, iv, cc->iv_size);
 729	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 730	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 731	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	skcipher_request_free(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733
 734	return err;
 
 735}
 736
 737static const struct crypt_iv_operations crypt_iv_plain_ops = {
 738	.generator = crypt_iv_plain_gen
 739};
 740
 741static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 742	.generator = crypt_iv_plain64_gen
 743};
 744
 745static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
 746	.generator = crypt_iv_plain64be_gen
 747};
 748
 749static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 750	.generator = crypt_iv_essiv_gen
 751};
 752
 753static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 754	.ctr	   = crypt_iv_benbi_ctr,
 755	.dtr	   = crypt_iv_benbi_dtr,
 756	.generator = crypt_iv_benbi_gen
 757};
 758
 759static const struct crypt_iv_operations crypt_iv_null_ops = {
 760	.generator = crypt_iv_null_gen
 761};
 762
 763static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 764	.ctr	   = crypt_iv_lmk_ctr,
 765	.dtr	   = crypt_iv_lmk_dtr,
 766	.init	   = crypt_iv_lmk_init,
 767	.wipe	   = crypt_iv_lmk_wipe,
 768	.generator = crypt_iv_lmk_gen,
 769	.post	   = crypt_iv_lmk_post
 770};
 771
 772static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 773	.ctr	   = crypt_iv_tcw_ctr,
 774	.dtr	   = crypt_iv_tcw_dtr,
 775	.init	   = crypt_iv_tcw_init,
 776	.wipe	   = crypt_iv_tcw_wipe,
 777	.generator = crypt_iv_tcw_gen,
 778	.post	   = crypt_iv_tcw_post
 779};
 780
 781static struct crypt_iv_operations crypt_iv_random_ops = {
 782	.generator = crypt_iv_random_gen
 783};
 784
 785static struct crypt_iv_operations crypt_iv_eboiv_ops = {
 786	.ctr	   = crypt_iv_eboiv_ctr,
 787	.generator = crypt_iv_eboiv_gen
 788};
 789
 
 
 
 
 
 
 
 
 
 790/*
 791 * Integrity extensions
 792 */
 793static bool crypt_integrity_aead(struct crypt_config *cc)
 794{
 795	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
 796}
 797
 798static bool crypt_integrity_hmac(struct crypt_config *cc)
 799{
 800	return crypt_integrity_aead(cc) && cc->key_mac_size;
 801}
 802
 803/* Get sg containing data */
 804static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 805					     struct scatterlist *sg)
 806{
 807	if (unlikely(crypt_integrity_aead(cc)))
 808		return &sg[2];
 809
 810	return sg;
 811}
 812
 813static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
 814{
 815	struct bio_integrity_payload *bip;
 816	unsigned int tag_len;
 817	int ret;
 818
 819	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
 820		return 0;
 821
 822	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
 823	if (IS_ERR(bip))
 824		return PTR_ERR(bip);
 825
 826	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
 827
 828	bip->bip_iter.bi_size = tag_len;
 829	bip->bip_iter.bi_sector = io->cc->start + io->sector;
 830
 831	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
 832				     tag_len, offset_in_page(io->integrity_metadata));
 833	if (unlikely(ret != tag_len))
 834		return -ENOMEM;
 835
 836	return 0;
 837}
 838
 839static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
 840{
 841#ifdef CONFIG_BLK_DEV_INTEGRITY
 842	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
 843	struct mapped_device *md = dm_table_get_md(ti->table);
 844
 845	/* From now we require underlying device with our integrity profile */
 846	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
 847		ti->error = "Integrity profile not supported.";
 848		return -EINVAL;
 849	}
 850
 851	if (bi->tag_size != cc->on_disk_tag_size ||
 852	    bi->tuple_size != cc->on_disk_tag_size) {
 853		ti->error = "Integrity profile tag size mismatch.";
 854		return -EINVAL;
 855	}
 856	if (1 << bi->interval_exp != cc->sector_size) {
 857		ti->error = "Integrity profile sector size mismatch.";
 858		return -EINVAL;
 859	}
 860
 861	if (crypt_integrity_aead(cc)) {
 862		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
 863		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
 864		       cc->integrity_tag_size, cc->integrity_iv_size);
 865
 866		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
 867			ti->error = "Integrity AEAD auth tag size is not supported.";
 868			return -EINVAL;
 869		}
 870	} else if (cc->integrity_iv_size)
 871		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
 872		       cc->integrity_iv_size);
 873
 874	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
 875		ti->error = "Not enough space for integrity tag in the profile.";
 876		return -EINVAL;
 877	}
 878
 879	return 0;
 880#else
 881	ti->error = "Integrity profile not supported.";
 882	return -EINVAL;
 883#endif
 884}
 885
 886static void crypt_convert_init(struct crypt_config *cc,
 887			       struct convert_context *ctx,
 888			       struct bio *bio_out, struct bio *bio_in,
 889			       sector_t sector)
 890{
 891	ctx->bio_in = bio_in;
 892	ctx->bio_out = bio_out;
 893	if (bio_in)
 894		ctx->iter_in = bio_in->bi_iter;
 895	if (bio_out)
 896		ctx->iter_out = bio_out->bi_iter;
 897	ctx->cc_sector = sector + cc->iv_offset;
 898	init_completion(&ctx->restart);
 899}
 900
 901static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 902					     void *req)
 903{
 904	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 905}
 906
 907static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 908{
 909	return (void *)((char *)dmreq - cc->dmreq_start);
 910}
 911
 912static u8 *iv_of_dmreq(struct crypt_config *cc,
 913		       struct dm_crypt_request *dmreq)
 914{
 915	if (crypt_integrity_aead(cc))
 916		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 917			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
 918	else
 919		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 920			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 921}
 922
 923static u8 *org_iv_of_dmreq(struct crypt_config *cc,
 924		       struct dm_crypt_request *dmreq)
 925{
 926	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
 927}
 928
 929static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
 930		       struct dm_crypt_request *dmreq)
 931{
 932	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
 
 933	return (__le64 *) ptr;
 934}
 935
 936static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
 937		       struct dm_crypt_request *dmreq)
 938{
 939	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
 940		  cc->iv_size + sizeof(uint64_t);
 941	return (unsigned int*)ptr;
 
 942}
 943
 944static void *tag_from_dmreq(struct crypt_config *cc,
 945				struct dm_crypt_request *dmreq)
 946{
 947	struct convert_context *ctx = dmreq->ctx;
 948	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
 949
 950	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
 951		cc->on_disk_tag_size];
 952}
 953
 954static void *iv_tag_from_dmreq(struct crypt_config *cc,
 955			       struct dm_crypt_request *dmreq)
 956{
 957	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
 958}
 959
 960static int crypt_convert_block_aead(struct crypt_config *cc,
 961				     struct convert_context *ctx,
 962				     struct aead_request *req,
 963				     unsigned int tag_offset)
 964{
 965	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 966	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 967	struct dm_crypt_request *dmreq;
 968	u8 *iv, *org_iv, *tag_iv, *tag;
 969	__le64 *sector;
 970	int r = 0;
 971
 972	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
 973
 974	/* Reject unexpected unaligned bio. */
 975	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
 976		return -EIO;
 977
 978	dmreq = dmreq_of_req(cc, req);
 979	dmreq->iv_sector = ctx->cc_sector;
 980	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
 981		dmreq->iv_sector >>= cc->sector_shift;
 982	dmreq->ctx = ctx;
 983
 984	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
 985
 986	sector = org_sector_of_dmreq(cc, dmreq);
 987	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
 988
 989	iv = iv_of_dmreq(cc, dmreq);
 990	org_iv = org_iv_of_dmreq(cc, dmreq);
 991	tag = tag_from_dmreq(cc, dmreq);
 992	tag_iv = iv_tag_from_dmreq(cc, dmreq);
 993
 994	/* AEAD request:
 995	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
 996	 *  | (authenticated) | (auth+encryption) |              |
 997	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
 998	 */
 999	sg_init_table(dmreq->sg_in, 4);
1000	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1001	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1002	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1003	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1004
1005	sg_init_table(dmreq->sg_out, 4);
1006	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1007	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1008	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1009	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1010
1011	if (cc->iv_gen_ops) {
1012		/* For READs use IV stored in integrity metadata */
1013		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1014			memcpy(org_iv, tag_iv, cc->iv_size);
1015		} else {
1016			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1017			if (r < 0)
1018				return r;
1019			/* Store generated IV in integrity metadata */
1020			if (cc->integrity_iv_size)
1021				memcpy(tag_iv, org_iv, cc->iv_size);
1022		}
1023		/* Working copy of IV, to be modified in crypto API */
1024		memcpy(iv, org_iv, cc->iv_size);
1025	}
1026
1027	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1028	if (bio_data_dir(ctx->bio_in) == WRITE) {
1029		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1030				       cc->sector_size, iv);
1031		r = crypto_aead_encrypt(req);
1032		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1033			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1034			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1035	} else {
1036		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1037				       cc->sector_size + cc->integrity_tag_size, iv);
1038		r = crypto_aead_decrypt(req);
1039	}
1040
1041	if (r == -EBADMSG) {
1042		char b[BDEVNAME_SIZE];
1043		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1044			    (unsigned long long)le64_to_cpu(*sector));
 
 
 
 
 
 
1045	}
1046
1047	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1048		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1049
1050	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1051	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1052
1053	return r;
1054}
1055
1056static int crypt_convert_block_skcipher(struct crypt_config *cc,
1057					struct convert_context *ctx,
1058					struct skcipher_request *req,
1059					unsigned int tag_offset)
1060{
1061	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1062	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1063	struct scatterlist *sg_in, *sg_out;
1064	struct dm_crypt_request *dmreq;
1065	u8 *iv, *org_iv, *tag_iv;
1066	__le64 *sector;
1067	int r = 0;
1068
1069	/* Reject unexpected unaligned bio. */
1070	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1071		return -EIO;
1072
1073	dmreq = dmreq_of_req(cc, req);
1074	dmreq->iv_sector = ctx->cc_sector;
1075	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1076		dmreq->iv_sector >>= cc->sector_shift;
1077	dmreq->ctx = ctx;
1078
1079	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1080
1081	iv = iv_of_dmreq(cc, dmreq);
1082	org_iv = org_iv_of_dmreq(cc, dmreq);
1083	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1084
1085	sector = org_sector_of_dmreq(cc, dmreq);
1086	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1087
1088	/* For skcipher we use only the first sg item */
1089	sg_in  = &dmreq->sg_in[0];
1090	sg_out = &dmreq->sg_out[0];
1091
1092	sg_init_table(sg_in, 1);
1093	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1094
1095	sg_init_table(sg_out, 1);
1096	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1097
1098	if (cc->iv_gen_ops) {
1099		/* For READs use IV stored in integrity metadata */
1100		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1101			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1102		} else {
1103			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1104			if (r < 0)
1105				return r;
 
 
 
1106			/* Store generated IV in integrity metadata */
1107			if (cc->integrity_iv_size)
1108				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1109		}
1110		/* Working copy of IV, to be modified in crypto API */
1111		memcpy(iv, org_iv, cc->iv_size);
1112	}
1113
1114	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1115
1116	if (bio_data_dir(ctx->bio_in) == WRITE)
1117		r = crypto_skcipher_encrypt(req);
1118	else
1119		r = crypto_skcipher_decrypt(req);
1120
1121	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1122		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1123
1124	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1125	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1126
1127	return r;
1128}
1129
1130static void kcryptd_async_done(struct crypto_async_request *async_req,
1131			       int error);
1132
1133static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1134				     struct convert_context *ctx)
1135{
1136	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1137
1138	if (!ctx->r.req)
1139		ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
 
 
 
1140
1141	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1142
1143	/*
1144	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1145	 * requests if driver request queue is full.
1146	 */
1147	skcipher_request_set_callback(ctx->r.req,
1148	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1149	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
 
 
1150}
1151
1152static void crypt_alloc_req_aead(struct crypt_config *cc,
1153				 struct convert_context *ctx)
1154{
1155	if (!ctx->r.req_aead)
1156		ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
 
 
 
1157
1158	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1159
1160	/*
1161	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1162	 * requests if driver request queue is full.
1163	 */
1164	aead_request_set_callback(ctx->r.req_aead,
1165	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1166	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
 
 
1167}
1168
1169static void crypt_alloc_req(struct crypt_config *cc,
1170			    struct convert_context *ctx)
1171{
1172	if (crypt_integrity_aead(cc))
1173		crypt_alloc_req_aead(cc, ctx);
1174	else
1175		crypt_alloc_req_skcipher(cc, ctx);
1176}
1177
1178static void crypt_free_req_skcipher(struct crypt_config *cc,
1179				    struct skcipher_request *req, struct bio *base_bio)
1180{
1181	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1182
1183	if ((struct skcipher_request *)(io + 1) != req)
1184		mempool_free(req, &cc->req_pool);
1185}
1186
1187static void crypt_free_req_aead(struct crypt_config *cc,
1188				struct aead_request *req, struct bio *base_bio)
1189{
1190	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1191
1192	if ((struct aead_request *)(io + 1) != req)
1193		mempool_free(req, &cc->req_pool);
1194}
1195
1196static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1197{
1198	if (crypt_integrity_aead(cc))
1199		crypt_free_req_aead(cc, req, base_bio);
1200	else
1201		crypt_free_req_skcipher(cc, req, base_bio);
1202}
1203
1204/*
1205 * Encrypt / decrypt data from one bio to another one (can be the same one)
1206 */
1207static blk_status_t crypt_convert(struct crypt_config *cc,
1208			 struct convert_context *ctx)
1209{
1210	unsigned int tag_offset = 0;
1211	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1212	int r;
1213
1214	atomic_set(&ctx->cc_pending, 1);
 
 
 
 
 
 
1215
1216	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1217
1218		crypt_alloc_req(cc, ctx);
 
 
 
 
 
1219		atomic_inc(&ctx->cc_pending);
1220
1221		if (crypt_integrity_aead(cc))
1222			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1223		else
1224			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1225
1226		switch (r) {
1227		/*
1228		 * The request was queued by a crypto driver
1229		 * but the driver request queue is full, let's wait.
1230		 */
1231		case -EBUSY:
1232			wait_for_completion(&ctx->restart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233			reinit_completion(&ctx->restart);
1234			/* fall through */
1235		/*
1236		 * The request is queued and processed asynchronously,
1237		 * completion function kcryptd_async_done() will be called.
1238		 */
1239		case -EINPROGRESS:
1240			ctx->r.req = NULL;
1241			ctx->cc_sector += sector_step;
1242			tag_offset++;
1243			continue;
1244		/*
1245		 * The request was already processed (synchronously).
1246		 */
1247		case 0:
1248			atomic_dec(&ctx->cc_pending);
1249			ctx->cc_sector += sector_step;
1250			tag_offset++;
1251			cond_resched();
 
1252			continue;
1253		/*
1254		 * There was a data integrity error.
1255		 */
1256		case -EBADMSG:
1257			atomic_dec(&ctx->cc_pending);
1258			return BLK_STS_PROTECTION;
1259		/*
1260		 * There was an error while processing the request.
1261		 */
1262		default:
1263			atomic_dec(&ctx->cc_pending);
1264			return BLK_STS_IOERR;
1265		}
1266	}
1267
1268	return 0;
1269}
1270
1271static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1272
1273/*
1274 * Generate a new unfragmented bio with the given size
1275 * This should never violate the device limitations (but only because
1276 * max_segment_size is being constrained to PAGE_SIZE).
1277 *
1278 * This function may be called concurrently. If we allocate from the mempool
1279 * concurrently, there is a possibility of deadlock. For example, if we have
1280 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1281 * the mempool concurrently, it may deadlock in a situation where both processes
1282 * have allocated 128 pages and the mempool is exhausted.
1283 *
1284 * In order to avoid this scenario we allocate the pages under a mutex.
1285 *
1286 * In order to not degrade performance with excessive locking, we try
1287 * non-blocking allocations without a mutex first but on failure we fallback
1288 * to blocking allocations with a mutex.
 
 
 
1289 */
1290static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1291{
1292	struct crypt_config *cc = io->cc;
1293	struct bio *clone;
1294	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1296	unsigned i, len, remaining_size;
1297	struct page *page;
1298
1299retry:
1300	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1301		mutex_lock(&cc->bio_alloc_lock);
1302
1303	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1304	if (!clone)
1305		goto out;
 
1306
1307	clone_init(io, clone);
1308
1309	remaining_size = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310
1311	for (i = 0; i < nr_iovecs; i++) {
1312		page = mempool_alloc(&cc->page_pool, gfp_mask);
1313		if (!page) {
1314			crypt_free_buffer_pages(cc, clone);
1315			bio_put(clone);
1316			gfp_mask |= __GFP_DIRECT_RECLAIM;
 
1317			goto retry;
1318		}
1319
1320		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1321
1322		bio_add_page(clone, page, len, 0);
1323
1324		remaining_size -= len;
1325	}
1326
1327	/* Allocate space for integrity tags */
1328	if (dm_crypt_integrity_io_alloc(io, clone)) {
1329		crypt_free_buffer_pages(cc, clone);
1330		bio_put(clone);
1331		clone = NULL;
1332	}
1333out:
1334	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1335		mutex_unlock(&cc->bio_alloc_lock);
1336
1337	return clone;
1338}
1339
1340static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1341{
1342	struct bio_vec *bv;
1343	struct bvec_iter_all iter_all;
1344
1345	bio_for_each_segment_all(bv, clone, iter_all) {
1346		BUG_ON(!bv->bv_page);
1347		mempool_free(bv->bv_page, &cc->page_pool);
 
 
 
 
 
 
 
1348	}
1349}
1350
1351static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1352			  struct bio *bio, sector_t sector)
1353{
1354	io->cc = cc;
1355	io->base_bio = bio;
1356	io->sector = sector;
1357	io->error = 0;
 
 
1358	io->ctx.r.req = NULL;
1359	io->integrity_metadata = NULL;
1360	io->integrity_metadata_from_pool = false;
1361	atomic_set(&io->io_pending, 0);
1362}
1363
1364static void crypt_inc_pending(struct dm_crypt_io *io)
1365{
1366	atomic_inc(&io->io_pending);
1367}
1368
 
 
1369/*
1370 * One of the bios was finished. Check for completion of
1371 * the whole request and correctly clean up the buffer.
1372 */
1373static void crypt_dec_pending(struct dm_crypt_io *io)
1374{
1375	struct crypt_config *cc = io->cc;
1376	struct bio *base_bio = io->base_bio;
1377	blk_status_t error = io->error;
1378
1379	if (!atomic_dec_and_test(&io->io_pending))
1380		return;
1381
 
 
 
 
 
 
 
 
 
1382	if (io->ctx.r.req)
1383		crypt_free_req(cc, io->ctx.r.req, base_bio);
1384
1385	if (unlikely(io->integrity_metadata_from_pool))
1386		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1387	else
1388		kfree(io->integrity_metadata);
1389
1390	base_bio->bi_status = error;
 
1391	bio_endio(base_bio);
1392}
1393
1394/*
1395 * kcryptd/kcryptd_io:
1396 *
1397 * Needed because it would be very unwise to do decryption in an
1398 * interrupt context.
1399 *
1400 * kcryptd performs the actual encryption or decryption.
1401 *
1402 * kcryptd_io performs the IO submission.
1403 *
1404 * They must be separated as otherwise the final stages could be
1405 * starved by new requests which can block in the first stages due
1406 * to memory allocation.
1407 *
1408 * The work is done per CPU global for all dm-crypt instances.
1409 * They should not depend on each other and do not block.
1410 */
1411static void crypt_endio(struct bio *clone)
1412{
1413	struct dm_crypt_io *io = clone->bi_private;
1414	struct crypt_config *cc = io->cc;
1415	unsigned rw = bio_data_dir(clone);
1416	blk_status_t error;
 
 
 
 
 
1417
1418	/*
1419	 * free the processed pages
1420	 */
1421	if (rw == WRITE)
1422		crypt_free_buffer_pages(cc, clone);
1423
1424	error = clone->bi_status;
1425	bio_put(clone);
1426
1427	if (rw == READ && !error) {
1428		kcryptd_queue_crypt(io);
1429		return;
1430	}
1431
1432	if (unlikely(error))
1433		io->error = error;
1434
1435	crypt_dec_pending(io);
1436}
1437
1438static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1439{
1440	struct crypt_config *cc = io->cc;
1441
1442	clone->bi_private = io;
1443	clone->bi_end_io  = crypt_endio;
1444	bio_set_dev(clone, cc->dev->bdev);
1445	clone->bi_opf	  = io->base_bio->bi_opf;
1446}
1447
1448static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1449{
1450	struct crypt_config *cc = io->cc;
1451	struct bio *clone;
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453	/*
1454	 * We need the original biovec array in order to decrypt
1455	 * the whole bio data *afterwards* -- thanks to immutable
1456	 * biovecs we don't need to worry about the block layer
1457	 * modifying the biovec array; so leverage bio_clone_fast().
1458	 */
1459	clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1460	if (!clone)
1461		return 1;
 
 
1462
1463	crypt_inc_pending(io);
1464
1465	clone_init(io, clone);
1466	clone->bi_iter.bi_sector = cc->start + io->sector;
1467
1468	if (dm_crypt_integrity_io_alloc(io, clone)) {
1469		crypt_dec_pending(io);
1470		bio_put(clone);
1471		return 1;
1472	}
1473
1474	generic_make_request(clone);
1475	return 0;
1476}
1477
1478static void kcryptd_io_read_work(struct work_struct *work)
1479{
1480	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1481
1482	crypt_inc_pending(io);
1483	if (kcryptd_io_read(io, GFP_NOIO))
1484		io->error = BLK_STS_RESOURCE;
1485	crypt_dec_pending(io);
1486}
1487
1488static void kcryptd_queue_read(struct dm_crypt_io *io)
1489{
1490	struct crypt_config *cc = io->cc;
1491
1492	INIT_WORK(&io->work, kcryptd_io_read_work);
1493	queue_work(cc->io_queue, &io->work);
1494}
1495
1496static void kcryptd_io_write(struct dm_crypt_io *io)
1497{
1498	struct bio *clone = io->ctx.bio_out;
1499
1500	generic_make_request(clone);
1501}
1502
1503#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1504
1505static int dmcrypt_write(void *data)
1506{
1507	struct crypt_config *cc = data;
1508	struct dm_crypt_io *io;
1509
1510	while (1) {
1511		struct rb_root write_tree;
1512		struct blk_plug plug;
1513
1514		spin_lock_irq(&cc->write_thread_lock);
1515continue_locked:
1516
1517		if (!RB_EMPTY_ROOT(&cc->write_tree))
1518			goto pop_from_list;
1519
1520		set_current_state(TASK_INTERRUPTIBLE);
1521
1522		spin_unlock_irq(&cc->write_thread_lock);
1523
1524		if (unlikely(kthread_should_stop())) {
1525			set_current_state(TASK_RUNNING);
1526			break;
1527		}
1528
1529		schedule();
1530
1531		set_current_state(TASK_RUNNING);
1532		spin_lock_irq(&cc->write_thread_lock);
1533		goto continue_locked;
1534
1535pop_from_list:
1536		write_tree = cc->write_tree;
1537		cc->write_tree = RB_ROOT;
1538		spin_unlock_irq(&cc->write_thread_lock);
1539
1540		BUG_ON(rb_parent(write_tree.rb_node));
1541
1542		/*
1543		 * Note: we cannot walk the tree here with rb_next because
1544		 * the structures may be freed when kcryptd_io_write is called.
1545		 */
1546		blk_start_plug(&plug);
1547		do {
1548			io = crypt_io_from_node(rb_first(&write_tree));
1549			rb_erase(&io->rb_node, &write_tree);
1550			kcryptd_io_write(io);
 
1551		} while (!RB_EMPTY_ROOT(&write_tree));
1552		blk_finish_plug(&plug);
1553	}
1554	return 0;
1555}
1556
1557static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1558{
1559	struct bio *clone = io->ctx.bio_out;
1560	struct crypt_config *cc = io->cc;
1561	unsigned long flags;
1562	sector_t sector;
1563	struct rb_node **rbp, *parent;
1564
1565	if (unlikely(io->error)) {
1566		crypt_free_buffer_pages(cc, clone);
1567		bio_put(clone);
1568		crypt_dec_pending(io);
1569		return;
1570	}
1571
1572	/* crypt_convert should have filled the clone bio */
1573	BUG_ON(io->ctx.iter_out.bi_size);
1574
1575	clone->bi_iter.bi_sector = cc->start + io->sector;
1576
1577	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1578		generic_make_request(clone);
 
1579		return;
1580	}
1581
1582	spin_lock_irqsave(&cc->write_thread_lock, flags);
1583	if (RB_EMPTY_ROOT(&cc->write_tree))
1584		wake_up_process(cc->write_thread);
1585	rbp = &cc->write_tree.rb_node;
1586	parent = NULL;
1587	sector = io->sector;
1588	while (*rbp) {
1589		parent = *rbp;
1590		if (sector < crypt_io_from_node(parent)->sector)
1591			rbp = &(*rbp)->rb_left;
1592		else
1593			rbp = &(*rbp)->rb_right;
1594	}
1595	rb_link_node(&io->rb_node, parent, rbp);
1596	rb_insert_color(&io->rb_node, &cc->write_tree);
1597	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1598}
1599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1601{
1602	struct crypt_config *cc = io->cc;
 
1603	struct bio *clone;
1604	int crypt_finished;
1605	sector_t sector = io->sector;
1606	blk_status_t r;
1607
1608	/*
1609	 * Prevent io from disappearing until this function completes.
1610	 */
1611	crypt_inc_pending(io);
1612	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1613
1614	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1615	if (unlikely(!clone)) {
1616		io->error = BLK_STS_IOERR;
1617		goto dec;
1618	}
1619
1620	io->ctx.bio_out = clone;
1621	io->ctx.iter_out = clone->bi_iter;
1622
 
 
 
 
 
 
1623	sector += bio_sectors(clone);
1624
1625	crypt_inc_pending(io);
1626	r = crypt_convert(cc, &io->ctx);
 
 
 
 
 
 
 
 
 
 
 
1627	if (r)
1628		io->error = r;
1629	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
 
 
 
 
 
1630
1631	/* Encryption was already finished, submit io now */
1632	if (crypt_finished) {
1633		kcryptd_crypt_write_io_submit(io, 0);
1634		io->sector = sector;
1635	}
1636
1637dec:
1638	crypt_dec_pending(io);
1639}
1640
1641static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1642{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643	crypt_dec_pending(io);
1644}
1645
1646static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1647{
1648	struct crypt_config *cc = io->cc;
1649	blk_status_t r;
1650
1651	crypt_inc_pending(io);
1652
1653	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1654			   io->sector);
 
 
 
 
 
1655
1656	r = crypt_convert(cc, &io->ctx);
 
 
 
 
 
 
 
 
 
 
 
1657	if (r)
1658		io->error = r;
1659
1660	if (atomic_dec_and_test(&io->ctx.cc_pending))
1661		kcryptd_crypt_read_done(io);
1662
1663	crypt_dec_pending(io);
1664}
1665
1666static void kcryptd_async_done(struct crypto_async_request *async_req,
1667			       int error)
1668{
1669	struct dm_crypt_request *dmreq = async_req->data;
1670	struct convert_context *ctx = dmreq->ctx;
1671	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1672	struct crypt_config *cc = io->cc;
1673
1674	/*
1675	 * A request from crypto driver backlog is going to be processed now,
1676	 * finish the completion and continue in crypt_convert().
1677	 * (Callback will be called for the second time for this request.)
1678	 */
1679	if (error == -EINPROGRESS) {
1680		complete(&ctx->restart);
1681		return;
1682	}
1683
1684	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1685		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1686
1687	if (error == -EBADMSG) {
1688		char b[BDEVNAME_SIZE];
1689		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1690			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
 
 
 
 
 
 
1691		io->error = BLK_STS_PROTECTION;
1692	} else if (error < 0)
1693		io->error = BLK_STS_IOERR;
1694
1695	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1696
1697	if (!atomic_dec_and_test(&ctx->cc_pending))
1698		return;
1699
1700	if (bio_data_dir(io->base_bio) == READ)
 
 
 
 
1701		kcryptd_crypt_read_done(io);
1702	else
1703		kcryptd_crypt_write_io_submit(io, 1);
 
 
 
 
 
 
 
1704}
1705
1706static void kcryptd_crypt(struct work_struct *work)
1707{
1708	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1709
1710	if (bio_data_dir(io->base_bio) == READ)
1711		kcryptd_crypt_read_convert(io);
1712	else
1713		kcryptd_crypt_write_convert(io);
1714}
1715
1716static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1717{
1718	struct crypt_config *cc = io->cc;
1719
 
 
 
 
 
 
 
 
 
 
 
 
 
1720	INIT_WORK(&io->work, kcryptd_crypt);
1721	queue_work(cc->crypt_queue, &io->work);
1722}
1723
1724static void crypt_free_tfms_aead(struct crypt_config *cc)
1725{
1726	if (!cc->cipher_tfm.tfms_aead)
1727		return;
1728
1729	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1730		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1731		cc->cipher_tfm.tfms_aead[0] = NULL;
1732	}
1733
1734	kfree(cc->cipher_tfm.tfms_aead);
1735	cc->cipher_tfm.tfms_aead = NULL;
1736}
1737
1738static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1739{
1740	unsigned i;
1741
1742	if (!cc->cipher_tfm.tfms)
1743		return;
1744
1745	for (i = 0; i < cc->tfms_count; i++)
1746		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1747			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1748			cc->cipher_tfm.tfms[i] = NULL;
1749		}
1750
1751	kfree(cc->cipher_tfm.tfms);
1752	cc->cipher_tfm.tfms = NULL;
1753}
1754
1755static void crypt_free_tfms(struct crypt_config *cc)
1756{
1757	if (crypt_integrity_aead(cc))
1758		crypt_free_tfms_aead(cc);
1759	else
1760		crypt_free_tfms_skcipher(cc);
1761}
1762
1763static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1764{
1765	unsigned i;
1766	int err;
1767
1768	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1769				      sizeof(struct crypto_skcipher *),
1770				      GFP_KERNEL);
1771	if (!cc->cipher_tfm.tfms)
1772		return -ENOMEM;
1773
1774	for (i = 0; i < cc->tfms_count; i++) {
1775		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
 
1776		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1777			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1778			crypt_free_tfms(cc);
1779			return err;
1780		}
1781	}
1782
1783	/*
1784	 * dm-crypt performance can vary greatly depending on which crypto
1785	 * algorithm implementation is used.  Help people debug performance
1786	 * problems by logging the ->cra_driver_name.
1787	 */
1788	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1789	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
1790	return 0;
1791}
1792
1793static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1794{
1795	int err;
1796
1797	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1798	if (!cc->cipher_tfm.tfms)
1799		return -ENOMEM;
1800
1801	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
 
1802	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1803		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1804		crypt_free_tfms(cc);
1805		return err;
1806	}
1807
1808	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1809	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
1810	return 0;
1811}
1812
1813static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1814{
1815	if (crypt_integrity_aead(cc))
1816		return crypt_alloc_tfms_aead(cc, ciphermode);
1817	else
1818		return crypt_alloc_tfms_skcipher(cc, ciphermode);
1819}
1820
1821static unsigned crypt_subkey_size(struct crypt_config *cc)
1822{
1823	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1824}
1825
1826static unsigned crypt_authenckey_size(struct crypt_config *cc)
1827{
1828	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1829}
1830
1831/*
1832 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1833 * the key must be for some reason in special format.
1834 * This funcion converts cc->key to this special format.
1835 */
1836static void crypt_copy_authenckey(char *p, const void *key,
1837				  unsigned enckeylen, unsigned authkeylen)
1838{
1839	struct crypto_authenc_key_param *param;
1840	struct rtattr *rta;
1841
1842	rta = (struct rtattr *)p;
1843	param = RTA_DATA(rta);
1844	param->enckeylen = cpu_to_be32(enckeylen);
1845	rta->rta_len = RTA_LENGTH(sizeof(*param));
1846	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1847	p += RTA_SPACE(sizeof(*param));
1848	memcpy(p, key + enckeylen, authkeylen);
1849	p += authkeylen;
1850	memcpy(p, key, enckeylen);
1851}
1852
1853static int crypt_setkey(struct crypt_config *cc)
1854{
1855	unsigned subkey_size;
1856	int err = 0, i, r;
1857
1858	/* Ignore extra keys (which are used for IV etc) */
1859	subkey_size = crypt_subkey_size(cc);
1860
1861	if (crypt_integrity_hmac(cc)) {
1862		if (subkey_size < cc->key_mac_size)
1863			return -EINVAL;
1864
1865		crypt_copy_authenckey(cc->authenc_key, cc->key,
1866				      subkey_size - cc->key_mac_size,
1867				      cc->key_mac_size);
1868	}
1869
1870	for (i = 0; i < cc->tfms_count; i++) {
1871		if (crypt_integrity_hmac(cc))
1872			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1873				cc->authenc_key, crypt_authenckey_size(cc));
1874		else if (crypt_integrity_aead(cc))
1875			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1876					       cc->key + (i * subkey_size),
1877					       subkey_size);
1878		else
1879			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1880						   cc->key + (i * subkey_size),
1881						   subkey_size);
1882		if (r)
1883			err = r;
1884	}
1885
1886	if (crypt_integrity_hmac(cc))
1887		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1888
1889	return err;
1890}
1891
1892#ifdef CONFIG_KEYS
1893
1894static bool contains_whitespace(const char *str)
1895{
1896	while (*str)
1897		if (isspace(*str++))
1898			return true;
1899	return false;
1900}
1901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1903{
1904	char *new_key_string, *key_desc;
1905	int ret;
 
1906	struct key *key;
1907	const struct user_key_payload *ukp;
1908
1909	/*
1910	 * Reject key_string with whitespace. dm core currently lacks code for
1911	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1912	 */
1913	if (contains_whitespace(key_string)) {
1914		DMERR("whitespace chars not allowed in key string");
1915		return -EINVAL;
1916	}
1917
1918	/* look for next ':' separating key_type from key_description */
1919	key_desc = strpbrk(key_string, ":");
1920	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1921		return -EINVAL;
1922
1923	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1924	    strncmp(key_string, "user:", key_desc - key_string + 1))
 
 
 
 
 
 
 
 
 
 
 
 
 
1925		return -EINVAL;
 
1926
1927	new_key_string = kstrdup(key_string, GFP_KERNEL);
1928	if (!new_key_string)
1929		return -ENOMEM;
1930
1931	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1932			  key_desc + 1, NULL);
1933	if (IS_ERR(key)) {
1934		kzfree(new_key_string);
1935		return PTR_ERR(key);
1936	}
1937
1938	down_read(&key->sem);
1939
1940	ukp = user_key_payload_locked(key);
1941	if (!ukp) {
1942		up_read(&key->sem);
1943		key_put(key);
1944		kzfree(new_key_string);
1945		return -EKEYREVOKED;
1946	}
1947
1948	if (cc->key_size != ukp->datalen) {
1949		up_read(&key->sem);
1950		key_put(key);
1951		kzfree(new_key_string);
1952		return -EINVAL;
1953	}
1954
1955	memcpy(cc->key, ukp->data, cc->key_size);
1956
1957	up_read(&key->sem);
1958	key_put(key);
1959
1960	/* clear the flag since following operations may invalidate previously valid key */
1961	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1962
1963	ret = crypt_setkey(cc);
1964
1965	if (!ret) {
1966		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1967		kzfree(cc->key_string);
1968		cc->key_string = new_key_string;
1969	} else
1970		kzfree(new_key_string);
1971
1972	return ret;
1973}
1974
1975static int get_key_size(char **key_string)
1976{
1977	char *colon, dummy;
1978	int ret;
1979
1980	if (*key_string[0] != ':')
1981		return strlen(*key_string) >> 1;
1982
1983	/* look for next ':' in key string */
1984	colon = strpbrk(*key_string + 1, ":");
1985	if (!colon)
1986		return -EINVAL;
1987
1988	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1989		return -EINVAL;
1990
1991	*key_string = colon;
1992
1993	/* remaining key string should be :<logon|user>:<key_desc> */
1994
1995	return ret;
1996}
1997
1998#else
1999
2000static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2001{
2002	return -EINVAL;
2003}
2004
2005static int get_key_size(char **key_string)
2006{
2007	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2008}
2009
2010#endif
2011
2012static int crypt_set_key(struct crypt_config *cc, char *key)
2013{
2014	int r = -EINVAL;
2015	int key_string_len = strlen(key);
2016
2017	/* Hyphen (which gives a key_size of zero) means there is no key. */
2018	if (!cc->key_size && strcmp(key, "-"))
2019		goto out;
2020
2021	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2022	if (key[0] == ':') {
2023		r = crypt_set_keyring_key(cc, key + 1);
2024		goto out;
2025	}
2026
2027	/* clear the flag since following operations may invalidate previously valid key */
2028	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2029
2030	/* wipe references to any kernel keyring key */
2031	kzfree(cc->key_string);
2032	cc->key_string = NULL;
2033
2034	/* Decode key from its hex representation. */
2035	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2036		goto out;
2037
2038	r = crypt_setkey(cc);
2039	if (!r)
2040		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2041
2042out:
2043	/* Hex key string not needed after here, so wipe it. */
2044	memset(key, '0', key_string_len);
2045
2046	return r;
2047}
2048
2049static int crypt_wipe_key(struct crypt_config *cc)
2050{
2051	int r;
2052
2053	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2054	get_random_bytes(&cc->key, cc->key_size);
2055
2056	/* Wipe IV private keys */
2057	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2058		r = cc->iv_gen_ops->wipe(cc);
2059		if (r)
2060			return r;
2061	}
2062
2063	kzfree(cc->key_string);
2064	cc->key_string = NULL;
2065	r = crypt_setkey(cc);
2066	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2067
2068	return r;
2069}
2070
2071static void crypt_calculate_pages_per_client(void)
2072{
2073	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2074
2075	if (!dm_crypt_clients_n)
2076		return;
2077
2078	pages /= dm_crypt_clients_n;
2079	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2080		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2081	dm_crypt_pages_per_client = pages;
2082}
2083
2084static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2085{
2086	struct crypt_config *cc = pool_data;
2087	struct page *page;
2088
2089	if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
 
 
 
 
 
2090	    likely(gfp_mask & __GFP_NORETRY))
2091		return NULL;
2092
2093	page = alloc_page(gfp_mask);
2094	if (likely(page != NULL))
2095		percpu_counter_add(&cc->n_allocated_pages, 1);
2096
2097	return page;
2098}
2099
2100static void crypt_page_free(void *page, void *pool_data)
2101{
2102	struct crypt_config *cc = pool_data;
2103
2104	__free_page(page);
2105	percpu_counter_sub(&cc->n_allocated_pages, 1);
2106}
2107
2108static void crypt_dtr(struct dm_target *ti)
2109{
2110	struct crypt_config *cc = ti->private;
2111
2112	ti->private = NULL;
2113
2114	if (!cc)
2115		return;
2116
2117	if (cc->write_thread)
2118		kthread_stop(cc->write_thread);
2119
2120	if (cc->io_queue)
2121		destroy_workqueue(cc->io_queue);
2122	if (cc->crypt_queue)
2123		destroy_workqueue(cc->crypt_queue);
2124
2125	crypt_free_tfms(cc);
2126
2127	bioset_exit(&cc->bs);
2128
2129	mempool_exit(&cc->page_pool);
2130	mempool_exit(&cc->req_pool);
2131	mempool_exit(&cc->tag_pool);
2132
2133	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2134	percpu_counter_destroy(&cc->n_allocated_pages);
2135
2136	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2137		cc->iv_gen_ops->dtr(cc);
2138
2139	if (cc->dev)
2140		dm_put_device(ti, cc->dev);
2141
2142	kzfree(cc->cipher_string);
2143	kzfree(cc->key_string);
2144	kzfree(cc->cipher_auth);
2145	kzfree(cc->authenc_key);
2146
2147	mutex_destroy(&cc->bio_alloc_lock);
2148
2149	/* Must zero key material before freeing */
2150	kzfree(cc);
2151
2152	spin_lock(&dm_crypt_clients_lock);
2153	WARN_ON(!dm_crypt_clients_n);
2154	dm_crypt_clients_n--;
2155	crypt_calculate_pages_per_client();
2156	spin_unlock(&dm_crypt_clients_lock);
 
 
2157}
2158
2159static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2160{
2161	struct crypt_config *cc = ti->private;
2162
2163	if (crypt_integrity_aead(cc))
2164		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2165	else
2166		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2167
2168	if (cc->iv_size)
2169		/* at least a 64 bit sector number should fit in our buffer */
2170		cc->iv_size = max(cc->iv_size,
2171				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2172	else if (ivmode) {
2173		DMWARN("Selected cipher does not support IVs");
2174		ivmode = NULL;
2175	}
2176
2177	/* Choose ivmode, see comments at iv code. */
2178	if (ivmode == NULL)
2179		cc->iv_gen_ops = NULL;
2180	else if (strcmp(ivmode, "plain") == 0)
2181		cc->iv_gen_ops = &crypt_iv_plain_ops;
2182	else if (strcmp(ivmode, "plain64") == 0)
2183		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2184	else if (strcmp(ivmode, "plain64be") == 0)
2185		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2186	else if (strcmp(ivmode, "essiv") == 0)
2187		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2188	else if (strcmp(ivmode, "benbi") == 0)
2189		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2190	else if (strcmp(ivmode, "null") == 0)
2191		cc->iv_gen_ops = &crypt_iv_null_ops;
2192	else if (strcmp(ivmode, "eboiv") == 0)
2193		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2194	else if (strcmp(ivmode, "lmk") == 0) {
 
 
 
 
 
 
 
2195		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2196		/*
2197		 * Version 2 and 3 is recognised according
2198		 * to length of provided multi-key string.
2199		 * If present (version 3), last key is used as IV seed.
2200		 * All keys (including IV seed) are always the same size.
2201		 */
2202		if (cc->key_size % cc->key_parts) {
2203			cc->key_parts++;
2204			cc->key_extra_size = cc->key_size / cc->key_parts;
2205		}
2206	} else if (strcmp(ivmode, "tcw") == 0) {
2207		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2208		cc->key_parts += 2; /* IV + whitening */
2209		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2210	} else if (strcmp(ivmode, "random") == 0) {
2211		cc->iv_gen_ops = &crypt_iv_random_ops;
2212		/* Need storage space in integrity fields. */
2213		cc->integrity_iv_size = cc->iv_size;
2214	} else {
2215		ti->error = "Invalid IV mode";
2216		return -EINVAL;
2217	}
2218
2219	return 0;
2220}
2221
2222/*
2223 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2224 * The HMAC is needed to calculate tag size (HMAC digest size).
2225 * This should be probably done by crypto-api calls (once available...)
2226 */
2227static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2228{
2229	char *start, *end, *mac_alg = NULL;
2230	struct crypto_ahash *mac;
2231
2232	if (!strstarts(cipher_api, "authenc("))
2233		return 0;
2234
2235	start = strchr(cipher_api, '(');
2236	end = strchr(cipher_api, ',');
2237	if (!start || !end || ++start > end)
2238		return -EINVAL;
2239
2240	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2241	if (!mac_alg)
2242		return -ENOMEM;
2243	strncpy(mac_alg, start, end - start);
2244
2245	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2246	kfree(mac_alg);
2247
2248	if (IS_ERR(mac))
2249		return PTR_ERR(mac);
2250
2251	cc->key_mac_size = crypto_ahash_digestsize(mac);
2252	crypto_free_ahash(mac);
2253
2254	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2255	if (!cc->authenc_key)
2256		return -ENOMEM;
2257
2258	return 0;
2259}
2260
2261static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2262				char **ivmode, char **ivopts)
2263{
2264	struct crypt_config *cc = ti->private;
2265	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2266	int ret = -EINVAL;
2267
2268	cc->tfms_count = 1;
2269
2270	/*
2271	 * New format (capi: prefix)
2272	 * capi:cipher_api_spec-iv:ivopts
2273	 */
2274	tmp = &cipher_in[strlen("capi:")];
2275
2276	/* Separate IV options if present, it can contain another '-' in hash name */
2277	*ivopts = strrchr(tmp, ':');
2278	if (*ivopts) {
2279		**ivopts = '\0';
2280		(*ivopts)++;
2281	}
2282	/* Parse IV mode */
2283	*ivmode = strrchr(tmp, '-');
2284	if (*ivmode) {
2285		**ivmode = '\0';
2286		(*ivmode)++;
2287	}
2288	/* The rest is crypto API spec */
2289	cipher_api = tmp;
2290
2291	/* Alloc AEAD, can be used only in new format. */
2292	if (crypt_integrity_aead(cc)) {
2293		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2294		if (ret < 0) {
2295			ti->error = "Invalid AEAD cipher spec";
2296			return -ENOMEM;
2297		}
2298	}
2299
2300	if (*ivmode && !strcmp(*ivmode, "lmk"))
2301		cc->tfms_count = 64;
2302
2303	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2304		if (!*ivopts) {
2305			ti->error = "Digest algorithm missing for ESSIV mode";
2306			return -EINVAL;
2307		}
2308		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2309			       cipher_api, *ivopts);
2310		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2311			ti->error = "Cannot allocate cipher string";
2312			return -ENOMEM;
2313		}
2314		cipher_api = buf;
2315	}
2316
2317	cc->key_parts = cc->tfms_count;
2318
2319	/* Allocate cipher */
2320	ret = crypt_alloc_tfms(cc, cipher_api);
2321	if (ret < 0) {
2322		ti->error = "Error allocating crypto tfm";
2323		return ret;
2324	}
2325
2326	if (crypt_integrity_aead(cc))
2327		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2328	else
2329		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2330
2331	return 0;
2332}
2333
2334static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2335				char **ivmode, char **ivopts)
2336{
2337	struct crypt_config *cc = ti->private;
2338	char *tmp, *cipher, *chainmode, *keycount;
2339	char *cipher_api = NULL;
2340	int ret = -EINVAL;
2341	char dummy;
2342
2343	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2344		ti->error = "Bad cipher specification";
2345		return -EINVAL;
2346	}
2347
2348	/*
2349	 * Legacy dm-crypt cipher specification
2350	 * cipher[:keycount]-mode-iv:ivopts
2351	 */
2352	tmp = cipher_in;
2353	keycount = strsep(&tmp, "-");
2354	cipher = strsep(&keycount, ":");
2355
2356	if (!keycount)
2357		cc->tfms_count = 1;
2358	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2359		 !is_power_of_2(cc->tfms_count)) {
2360		ti->error = "Bad cipher key count specification";
2361		return -EINVAL;
2362	}
2363	cc->key_parts = cc->tfms_count;
2364
2365	chainmode = strsep(&tmp, "-");
2366	*ivmode = strsep(&tmp, ":");
2367	*ivopts = tmp;
2368
2369	/*
2370	 * For compatibility with the original dm-crypt mapping format, if
2371	 * only the cipher name is supplied, use cbc-plain.
2372	 */
2373	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2374		chainmode = "cbc";
2375		*ivmode = "plain";
2376	}
2377
2378	if (strcmp(chainmode, "ecb") && !*ivmode) {
2379		ti->error = "IV mechanism required";
2380		return -EINVAL;
2381	}
2382
2383	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2384	if (!cipher_api)
2385		goto bad_mem;
2386
2387	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2388		if (!*ivopts) {
2389			ti->error = "Digest algorithm missing for ESSIV mode";
2390			kfree(cipher_api);
2391			return -EINVAL;
2392		}
2393		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2394			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2395	} else {
2396		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2397			       "%s(%s)", chainmode, cipher);
2398	}
2399	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2400		kfree(cipher_api);
2401		goto bad_mem;
2402	}
2403
2404	/* Allocate cipher */
2405	ret = crypt_alloc_tfms(cc, cipher_api);
2406	if (ret < 0) {
2407		ti->error = "Error allocating crypto tfm";
2408		kfree(cipher_api);
2409		return ret;
2410	}
2411	kfree(cipher_api);
2412
2413	return 0;
2414bad_mem:
2415	ti->error = "Cannot allocate cipher strings";
2416	return -ENOMEM;
2417}
2418
2419static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2420{
2421	struct crypt_config *cc = ti->private;
2422	char *ivmode = NULL, *ivopts = NULL;
2423	int ret;
2424
2425	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2426	if (!cc->cipher_string) {
2427		ti->error = "Cannot allocate cipher strings";
2428		return -ENOMEM;
2429	}
2430
2431	if (strstarts(cipher_in, "capi:"))
2432		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2433	else
2434		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2435	if (ret)
2436		return ret;
2437
2438	/* Initialize IV */
2439	ret = crypt_ctr_ivmode(ti, ivmode);
2440	if (ret < 0)
2441		return ret;
2442
2443	/* Initialize and set key */
2444	ret = crypt_set_key(cc, key);
2445	if (ret < 0) {
2446		ti->error = "Error decoding and setting key";
2447		return ret;
2448	}
2449
2450	/* Allocate IV */
2451	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2452		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2453		if (ret < 0) {
2454			ti->error = "Error creating IV";
2455			return ret;
2456		}
2457	}
2458
2459	/* Initialize IV (set keys for ESSIV etc) */
2460	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2461		ret = cc->iv_gen_ops->init(cc);
2462		if (ret < 0) {
2463			ti->error = "Error initialising IV";
2464			return ret;
2465		}
2466	}
2467
2468	/* wipe the kernel key payload copy */
2469	if (cc->key_string)
2470		memset(cc->key, 0, cc->key_size * sizeof(u8));
2471
2472	return ret;
2473}
2474
2475static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2476{
2477	struct crypt_config *cc = ti->private;
2478	struct dm_arg_set as;
2479	static const struct dm_arg _args[] = {
2480		{0, 6, "Invalid number of feature args"},
2481	};
2482	unsigned int opt_params, val;
2483	const char *opt_string, *sval;
2484	char dummy;
2485	int ret;
2486
2487	/* Optional parameters */
2488	as.argc = argc;
2489	as.argv = argv;
2490
2491	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2492	if (ret)
2493		return ret;
2494
2495	while (opt_params--) {
2496		opt_string = dm_shift_arg(&as);
2497		if (!opt_string) {
2498			ti->error = "Not enough feature arguments";
2499			return -EINVAL;
2500		}
2501
2502		if (!strcasecmp(opt_string, "allow_discards"))
2503			ti->num_discard_bios = 1;
2504
2505		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2506			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2507
2508		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2509			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
 
 
 
 
2510		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2511			if (val == 0 || val > MAX_TAG_SIZE) {
2512				ti->error = "Invalid integrity arguments";
2513				return -EINVAL;
2514			}
2515			cc->on_disk_tag_size = val;
2516			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2517			if (!strcasecmp(sval, "aead")) {
2518				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2519			} else  if (strcasecmp(sval, "none")) {
2520				ti->error = "Unknown integrity profile";
2521				return -EINVAL;
2522			}
2523
2524			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2525			if (!cc->cipher_auth)
2526				return -ENOMEM;
2527		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2528			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2529			    cc->sector_size > 4096 ||
2530			    (cc->sector_size & (cc->sector_size - 1))) {
2531				ti->error = "Invalid feature value for sector_size";
2532				return -EINVAL;
2533			}
2534			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2535				ti->error = "Device size is not multiple of sector_size feature";
2536				return -EINVAL;
2537			}
2538			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2539		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2540			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2541		else {
2542			ti->error = "Invalid feature arguments";
2543			return -EINVAL;
2544		}
2545	}
2546
2547	return 0;
2548}
2549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550/*
2551 * Construct an encryption mapping:
2552 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2553 */
2554static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2555{
2556	struct crypt_config *cc;
2557	const char *devname = dm_table_device_name(ti->table);
2558	int key_size;
2559	unsigned int align_mask;
2560	unsigned long long tmpll;
2561	int ret;
2562	size_t iv_size_padding, additional_req_size;
2563	char dummy;
2564
2565	if (argc < 5) {
2566		ti->error = "Not enough arguments";
2567		return -EINVAL;
2568	}
2569
2570	key_size = get_key_size(&argv[1]);
2571	if (key_size < 0) {
2572		ti->error = "Cannot parse key size";
2573		return -EINVAL;
2574	}
2575
2576	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2577	if (!cc) {
2578		ti->error = "Cannot allocate encryption context";
2579		return -ENOMEM;
2580	}
2581	cc->key_size = key_size;
2582	cc->sector_size = (1 << SECTOR_SHIFT);
2583	cc->sector_shift = 0;
2584
2585	ti->private = cc;
2586
2587	spin_lock(&dm_crypt_clients_lock);
2588	dm_crypt_clients_n++;
2589	crypt_calculate_pages_per_client();
2590	spin_unlock(&dm_crypt_clients_lock);
2591
2592	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2593	if (ret < 0)
2594		goto bad;
2595
2596	/* Optional parameters need to be read before cipher constructor */
2597	if (argc > 5) {
2598		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2599		if (ret)
2600			goto bad;
2601	}
2602
2603	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2604	if (ret < 0)
2605		goto bad;
2606
2607	if (crypt_integrity_aead(cc)) {
2608		cc->dmreq_start = sizeof(struct aead_request);
2609		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2610		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2611	} else {
2612		cc->dmreq_start = sizeof(struct skcipher_request);
2613		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2614		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2615	}
2616	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2617
2618	if (align_mask < CRYPTO_MINALIGN) {
2619		/* Allocate the padding exactly */
2620		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2621				& align_mask;
2622	} else {
2623		/*
2624		 * If the cipher requires greater alignment than kmalloc
2625		 * alignment, we don't know the exact position of the
2626		 * initialization vector. We must assume worst case.
2627		 */
2628		iv_size_padding = align_mask;
2629	}
2630
2631	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2632	additional_req_size = sizeof(struct dm_crypt_request) +
2633		iv_size_padding + cc->iv_size +
2634		cc->iv_size +
2635		sizeof(uint64_t) +
2636		sizeof(unsigned int);
2637
2638	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2639	if (ret) {
2640		ti->error = "Cannot allocate crypt request mempool";
2641		goto bad;
2642	}
2643
2644	cc->per_bio_data_size = ti->per_io_data_size =
2645		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2646		      ARCH_KMALLOC_MINALIGN);
2647
2648	ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2649	if (ret) {
2650		ti->error = "Cannot allocate page mempool";
2651		goto bad;
2652	}
2653
2654	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2655	if (ret) {
2656		ti->error = "Cannot allocate crypt bioset";
2657		goto bad;
2658	}
2659
2660	mutex_init(&cc->bio_alloc_lock);
2661
2662	ret = -EINVAL;
2663	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2664	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2665		ti->error = "Invalid iv_offset sector";
2666		goto bad;
2667	}
2668	cc->iv_offset = tmpll;
2669
2670	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2671	if (ret) {
2672		ti->error = "Device lookup failed";
2673		goto bad;
2674	}
2675
2676	ret = -EINVAL;
2677	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2678		ti->error = "Invalid device sector";
2679		goto bad;
2680	}
2681	cc->start = tmpll;
2682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2684		ret = crypt_integrity_ctr(cc, ti);
2685		if (ret)
2686			goto bad;
2687
2688		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2689		if (!cc->tag_pool_max_sectors)
2690			cc->tag_pool_max_sectors = 1;
2691
2692		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2693			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2694		if (ret) {
2695			ti->error = "Cannot allocate integrity tags mempool";
2696			goto bad;
2697		}
2698
2699		cc->tag_pool_max_sectors <<= cc->sector_shift;
2700	}
2701
2702	ret = -ENOMEM;
2703	cc->io_queue = alloc_workqueue("kcryptd_io/%s",
2704				       WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2705				       1, devname);
2706	if (!cc->io_queue) {
2707		ti->error = "Couldn't create kcryptd io queue";
2708		goto bad;
2709	}
2710
2711	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2712		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2713						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2714						  1, devname);
2715	else
2716		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2717						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2718						  num_online_cpus(), devname);
2719	if (!cc->crypt_queue) {
2720		ti->error = "Couldn't create kcryptd queue";
2721		goto bad;
2722	}
2723
2724	spin_lock_init(&cc->write_thread_lock);
2725	cc->write_tree = RB_ROOT;
2726
2727	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
2728	if (IS_ERR(cc->write_thread)) {
2729		ret = PTR_ERR(cc->write_thread);
2730		cc->write_thread = NULL;
2731		ti->error = "Couldn't spawn write thread";
2732		goto bad;
2733	}
2734	wake_up_process(cc->write_thread);
2735
2736	ti->num_flush_bios = 1;
 
 
2737
 
2738	return 0;
2739
2740bad:
 
2741	crypt_dtr(ti);
2742	return ret;
2743}
2744
2745static int crypt_map(struct dm_target *ti, struct bio *bio)
2746{
2747	struct dm_crypt_io *io;
2748	struct crypt_config *cc = ti->private;
2749
2750	/*
2751	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2752	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2753	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2754	 */
2755	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2756	    bio_op(bio) == REQ_OP_DISCARD)) {
2757		bio_set_dev(bio, cc->dev->bdev);
2758		if (bio_sectors(bio))
2759			bio->bi_iter.bi_sector = cc->start +
2760				dm_target_offset(ti, bio->bi_iter.bi_sector);
2761		return DM_MAPIO_REMAPPED;
2762	}
2763
2764	/*
2765	 * Check if bio is too large, split as needed.
2766	 */
2767	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2768	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2769		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2770
2771	/*
2772	 * Ensure that bio is a multiple of internal sector encryption size
2773	 * and is aligned to this size as defined in IO hints.
2774	 */
2775	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2776		return DM_MAPIO_KILL;
2777
2778	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2779		return DM_MAPIO_KILL;
2780
2781	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2782	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2783
2784	if (cc->on_disk_tag_size) {
2785		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2786
2787		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2788		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2789				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
 
 
 
2790			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2791				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2792			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
2793			io->integrity_metadata_from_pool = true;
2794		}
2795	}
2796
2797	if (crypt_integrity_aead(cc))
2798		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2799	else
2800		io->ctx.r.req = (struct skcipher_request *)(io + 1);
2801
2802	if (bio_data_dir(io->base_bio) == READ) {
2803		if (kcryptd_io_read(io, GFP_NOWAIT))
2804			kcryptd_queue_read(io);
2805	} else
2806		kcryptd_queue_crypt(io);
2807
2808	return DM_MAPIO_SUBMITTED;
2809}
2810
 
 
 
 
 
2811static void crypt_status(struct dm_target *ti, status_type_t type,
2812			 unsigned status_flags, char *result, unsigned maxlen)
2813{
2814	struct crypt_config *cc = ti->private;
2815	unsigned i, sz = 0;
2816	int num_feature_args = 0;
2817
2818	switch (type) {
2819	case STATUSTYPE_INFO:
2820		result[0] = '\0';
2821		break;
2822
2823	case STATUSTYPE_TABLE:
2824		DMEMIT("%s ", cc->cipher_string);
2825
2826		if (cc->key_size > 0) {
2827			if (cc->key_string)
2828				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2829			else
2830				for (i = 0; i < cc->key_size; i++)
2831					DMEMIT("%02x", cc->key[i]);
 
 
 
2832		} else
2833			DMEMIT("-");
2834
2835		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2836				cc->dev->name, (unsigned long long)cc->start);
2837
2838		num_feature_args += !!ti->num_discard_bios;
2839		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2840		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
 
 
2841		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2842		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2843		if (cc->on_disk_tag_size)
2844			num_feature_args++;
2845		if (num_feature_args) {
2846			DMEMIT(" %d", num_feature_args);
2847			if (ti->num_discard_bios)
2848				DMEMIT(" allow_discards");
2849			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2850				DMEMIT(" same_cpu_crypt");
2851			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2852				DMEMIT(" submit_from_crypt_cpus");
 
 
 
 
2853			if (cc->on_disk_tag_size)
2854				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2855			if (cc->sector_size != (1 << SECTOR_SHIFT))
2856				DMEMIT(" sector_size:%d", cc->sector_size);
2857			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2858				DMEMIT(" iv_large_sectors");
2859		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2860
 
 
 
 
 
 
 
 
 
 
 
 
 
2861		break;
2862	}
2863}
2864
2865static void crypt_postsuspend(struct dm_target *ti)
2866{
2867	struct crypt_config *cc = ti->private;
2868
2869	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2870}
2871
2872static int crypt_preresume(struct dm_target *ti)
2873{
2874	struct crypt_config *cc = ti->private;
2875
2876	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2877		DMERR("aborting resume - crypt key is not set.");
2878		return -EAGAIN;
2879	}
2880
2881	return 0;
2882}
2883
2884static void crypt_resume(struct dm_target *ti)
2885{
2886	struct crypt_config *cc = ti->private;
2887
2888	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2889}
2890
2891/* Message interface
2892 *	key set <key>
2893 *	key wipe
2894 */
2895static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
2896			 char *result, unsigned maxlen)
2897{
2898	struct crypt_config *cc = ti->private;
2899	int key_size, ret = -EINVAL;
2900
2901	if (argc < 2)
2902		goto error;
2903
2904	if (!strcasecmp(argv[0], "key")) {
2905		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2906			DMWARN("not suspended during key manipulation.");
2907			return -EINVAL;
2908		}
2909		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2910			/* The key size may not be changed. */
2911			key_size = get_key_size(&argv[2]);
2912			if (key_size < 0 || cc->key_size != key_size) {
2913				memset(argv[2], '0', strlen(argv[2]));
2914				return -EINVAL;
2915			}
2916
2917			ret = crypt_set_key(cc, argv[2]);
2918			if (ret)
2919				return ret;
2920			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2921				ret = cc->iv_gen_ops->init(cc);
2922			/* wipe the kernel key payload copy */
2923			if (cc->key_string)
2924				memset(cc->key, 0, cc->key_size * sizeof(u8));
2925			return ret;
2926		}
2927		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
2928			return crypt_wipe_key(cc);
2929	}
2930
2931error:
2932	DMWARN("unrecognised message received.");
2933	return -EINVAL;
2934}
2935
2936static int crypt_iterate_devices(struct dm_target *ti,
2937				 iterate_devices_callout_fn fn, void *data)
2938{
2939	struct crypt_config *cc = ti->private;
2940
2941	return fn(ti, cc->dev, cc->start, ti->len, data);
2942}
2943
2944static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2945{
2946	struct crypt_config *cc = ti->private;
2947
2948	/*
2949	 * Unfortunate constraint that is required to avoid the potential
2950	 * for exceeding underlying device's max_segments limits -- due to
2951	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2952	 * bio that are not as physically contiguous as the original bio.
2953	 */
2954	limits->max_segment_size = PAGE_SIZE;
2955
2956	limits->logical_block_size =
2957		max_t(unsigned short, limits->logical_block_size, cc->sector_size);
2958	limits->physical_block_size =
2959		max_t(unsigned, limits->physical_block_size, cc->sector_size);
2960	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
 
2961}
2962
2963static struct target_type crypt_target = {
2964	.name   = "crypt",
2965	.version = {1, 19, 0},
2966	.module = THIS_MODULE,
2967	.ctr    = crypt_ctr,
2968	.dtr    = crypt_dtr,
 
 
2969	.map    = crypt_map,
2970	.status = crypt_status,
2971	.postsuspend = crypt_postsuspend,
2972	.preresume = crypt_preresume,
2973	.resume = crypt_resume,
2974	.message = crypt_message,
2975	.iterate_devices = crypt_iterate_devices,
2976	.io_hints = crypt_io_hints,
2977};
2978
2979static int __init dm_crypt_init(void)
2980{
2981	int r;
2982
2983	r = dm_register_target(&crypt_target);
2984	if (r < 0)
2985		DMERR("register failed %d", r);
2986
2987	return r;
2988}
2989
2990static void __exit dm_crypt_exit(void)
2991{
2992	dm_unregister_target(&crypt_target);
2993}
2994
2995module_init(dm_crypt_init);
2996module_exit(dm_crypt_exit);
2997
2998MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2999MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3000MODULE_LICENSE("GPL");