Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/memblock.h>		/* max_low_pfn			*/
  12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
  13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  15#include <linux/perf_event.h>		/* perf_sw_event		*/
  16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  17#include <linux/prefetch.h>		/* prefetchw			*/
  18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  21#include <linux/mm_types.h>
  22#include <linux/mm.h>			/* find_and_lock_vma() */
  23
  24#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  25#include <asm/traps.h>			/* dotraplinkage, ...		*/
 
  26#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  27#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  28#include <asm/vm86.h>			/* struct vm86			*/
  29#include <asm/mmu_context.h>		/* vma_pkey()			*/
  30#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  31#include <asm/desc.h>			/* store_idt(), ...		*/
  32#include <asm/cpu_entry_area.h>		/* exception stack		*/
  33#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
  34#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
  35#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
  36#include <asm/irq_stack.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <asm/trace/exceptions.h>
  40
  41/*
  42 * Returns 0 if mmiotrace is disabled, or if the fault is not
  43 * handled by mmiotrace:
  44 */
  45static nokprobe_inline int
  46kmmio_fault(struct pt_regs *regs, unsigned long addr)
  47{
  48	if (unlikely(is_kmmio_active()))
  49		if (kmmio_handler(regs, addr) == 1)
  50			return -1;
  51	return 0;
  52}
  53
  54/*
  55 * Prefetch quirks:
  56 *
  57 * 32-bit mode:
  58 *
  59 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  60 *   Check that here and ignore it.  This is AMD erratum #91.
  61 *
  62 * 64-bit mode:
  63 *
  64 *   Sometimes the CPU reports invalid exceptions on prefetch.
  65 *   Check that here and ignore it.
  66 *
  67 * Opcode checker based on code by Richard Brunner.
  68 */
  69static inline int
  70check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  71		      unsigned char opcode, int *prefetch)
  72{
  73	unsigned char instr_hi = opcode & 0xf0;
  74	unsigned char instr_lo = opcode & 0x0f;
  75
  76	switch (instr_hi) {
  77	case 0x20:
  78	case 0x30:
  79		/*
  80		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  81		 * In X86_64 long mode, the CPU will signal invalid
  82		 * opcode if some of these prefixes are present so
  83		 * X86_64 will never get here anyway
  84		 */
  85		return ((instr_lo & 7) == 0x6);
  86#ifdef CONFIG_X86_64
  87	case 0x40:
  88		/*
  89		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
 
 
 
 
  90		 */
  91		return (!user_mode(regs) || user_64bit_mode(regs));
  92#endif
  93	case 0x60:
  94		/* 0x64 thru 0x67 are valid prefixes in all modes. */
  95		return (instr_lo & 0xC) == 0x4;
  96	case 0xF0:
  97		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  98		return !instr_lo || (instr_lo>>1) == 1;
  99	case 0x00:
 100		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 101		if (get_kernel_nofault(opcode, instr))
 102			return 0;
 103
 104		*prefetch = (instr_lo == 0xF) &&
 105			(opcode == 0x0D || opcode == 0x18);
 106		return 0;
 107	default:
 108		return 0;
 109	}
 110}
 111
 112static bool is_amd_k8_pre_npt(void)
 113{
 114	struct cpuinfo_x86 *c = &boot_cpu_data;
 115
 116	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
 117			c->x86_vendor == X86_VENDOR_AMD &&
 118			c->x86 == 0xf && c->x86_model < 0x40);
 119}
 120
 121static int
 122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 123{
 124	unsigned char *max_instr;
 125	unsigned char *instr;
 126	int prefetch = 0;
 127
 128	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
 129	if (!is_amd_k8_pre_npt())
 130		return 0;
 131
 132	/*
 133	 * If it was a exec (instruction fetch) fault on NX page, then
 134	 * do not ignore the fault:
 135	 */
 136	if (error_code & X86_PF_INSTR)
 137		return 0;
 138
 139	instr = (void *)convert_ip_to_linear(current, regs);
 140	max_instr = instr + 15;
 141
 142	/*
 143	 * This code has historically always bailed out if IP points to a
 144	 * not-present page (e.g. due to a race).  No one has ever
 145	 * complained about this.
 146	 */
 147	pagefault_disable();
 148
 149	while (instr < max_instr) {
 150		unsigned char opcode;
 151
 152		if (user_mode(regs)) {
 153			if (get_user(opcode, (unsigned char __user *) instr))
 154				break;
 155		} else {
 156			if (get_kernel_nofault(opcode, instr))
 157				break;
 158		}
 159
 160		instr++;
 161
 162		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 163			break;
 164	}
 165
 166	pagefault_enable();
 167	return prefetch;
 168}
 169
 170DEFINE_SPINLOCK(pgd_lock);
 171LIST_HEAD(pgd_list);
 172
 173#ifdef CONFIG_X86_32
 174static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 175{
 176	unsigned index = pgd_index(address);
 177	pgd_t *pgd_k;
 178	p4d_t *p4d, *p4d_k;
 179	pud_t *pud, *pud_k;
 180	pmd_t *pmd, *pmd_k;
 181
 182	pgd += index;
 183	pgd_k = init_mm.pgd + index;
 184
 185	if (!pgd_present(*pgd_k))
 186		return NULL;
 187
 188	/*
 189	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 190	 * and redundant with the set_pmd() on non-PAE. As would
 191	 * set_p4d/set_pud.
 192	 */
 193	p4d = p4d_offset(pgd, address);
 194	p4d_k = p4d_offset(pgd_k, address);
 195	if (!p4d_present(*p4d_k))
 196		return NULL;
 197
 198	pud = pud_offset(p4d, address);
 199	pud_k = pud_offset(p4d_k, address);
 200	if (!pud_present(*pud_k))
 201		return NULL;
 202
 203	pmd = pmd_offset(pud, address);
 204	pmd_k = pmd_offset(pud_k, address);
 205
 206	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 207		set_pmd(pmd, *pmd_k);
 208
 209	if (!pmd_present(*pmd_k))
 210		return NULL;
 211	else
 212		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 213
 214	return pmd_k;
 215}
 216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217/*
 218 *   Handle a fault on the vmalloc or module mapping area
 219 *
 220 *   This is needed because there is a race condition between the time
 221 *   when the vmalloc mapping code updates the PMD to the point in time
 222 *   where it synchronizes this update with the other page-tables in the
 223 *   system.
 224 *
 225 *   In this race window another thread/CPU can map an area on the same
 226 *   PMD, finds it already present and does not synchronize it with the
 227 *   rest of the system yet. As a result v[mz]alloc might return areas
 228 *   which are not mapped in every page-table in the system, causing an
 229 *   unhandled page-fault when they are accessed.
 230 */
 231static noinline int vmalloc_fault(unsigned long address)
 232{
 233	unsigned long pgd_paddr;
 234	pmd_t *pmd_k;
 235	pte_t *pte_k;
 236
 237	/* Make sure we are in vmalloc area: */
 238	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 239		return -1;
 240
 241	/*
 242	 * Synchronize this task's top level page-table
 243	 * with the 'reference' page table.
 244	 *
 245	 * Do _not_ use "current" here. We might be inside
 246	 * an interrupt in the middle of a task switch..
 247	 */
 248	pgd_paddr = read_cr3_pa();
 249	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 250	if (!pmd_k)
 251		return -1;
 252
 253	if (pmd_large(*pmd_k))
 254		return 0;
 255
 256	pte_k = pte_offset_kernel(pmd_k, address);
 257	if (!pte_present(*pte_k))
 258		return -1;
 259
 260	return 0;
 261}
 262NOKPROBE_SYMBOL(vmalloc_fault);
 263
 264void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 
 
 
 
 
 265{
 266	unsigned long addr;
 267
 268	for (addr = start & PMD_MASK;
 269	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 270	     addr += PMD_SIZE) {
 271		struct page *page;
 272
 273		spin_lock(&pgd_lock);
 274		list_for_each_entry(page, &pgd_list, lru) {
 275			spinlock_t *pgt_lock;
 276
 277			/* the pgt_lock only for Xen */
 278			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 279
 280			spin_lock(pgt_lock);
 281			vmalloc_sync_one(page_address(page), addr);
 282			spin_unlock(pgt_lock);
 283		}
 284		spin_unlock(&pgd_lock);
 285	}
 286}
 287
 288static bool low_pfn(unsigned long pfn)
 289{
 290	return pfn < max_low_pfn;
 291}
 292
 293static void dump_pagetable(unsigned long address)
 294{
 295	pgd_t *base = __va(read_cr3_pa());
 296	pgd_t *pgd = &base[pgd_index(address)];
 297	p4d_t *p4d;
 298	pud_t *pud;
 299	pmd_t *pmd;
 300	pte_t *pte;
 301
 302#ifdef CONFIG_X86_PAE
 303	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 304	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 305		goto out;
 306#define pr_pde pr_cont
 307#else
 308#define pr_pde pr_info
 309#endif
 310	p4d = p4d_offset(pgd, address);
 311	pud = pud_offset(p4d, address);
 312	pmd = pmd_offset(pud, address);
 313	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 314#undef pr_pde
 315
 316	/*
 317	 * We must not directly access the pte in the highpte
 318	 * case if the page table is located in highmem.
 319	 * And let's rather not kmap-atomic the pte, just in case
 320	 * it's allocated already:
 321	 */
 322	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 323		goto out;
 324
 325	pte = pte_offset_kernel(pmd, address);
 326	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 327out:
 328	pr_cont("\n");
 329}
 330
 331#else /* CONFIG_X86_64: */
 332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333#ifdef CONFIG_CPU_SUP_AMD
 334static const char errata93_warning[] =
 335KERN_ERR 
 336"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 337"******* Working around it, but it may cause SEGVs or burn power.\n"
 338"******* Please consider a BIOS update.\n"
 339"******* Disabling USB legacy in the BIOS may also help.\n";
 340#endif
 341
 
 
 
 
 
 
 
 
 
 342static int bad_address(void *p)
 343{
 344	unsigned long dummy;
 345
 346	return get_kernel_nofault(dummy, (unsigned long *)p);
 347}
 348
 349static void dump_pagetable(unsigned long address)
 350{
 351	pgd_t *base = __va(read_cr3_pa());
 352	pgd_t *pgd = base + pgd_index(address);
 353	p4d_t *p4d;
 354	pud_t *pud;
 355	pmd_t *pmd;
 356	pte_t *pte;
 357
 358	if (bad_address(pgd))
 359		goto bad;
 360
 361	pr_info("PGD %lx ", pgd_val(*pgd));
 362
 363	if (!pgd_present(*pgd))
 364		goto out;
 365
 366	p4d = p4d_offset(pgd, address);
 367	if (bad_address(p4d))
 368		goto bad;
 369
 370	pr_cont("P4D %lx ", p4d_val(*p4d));
 371	if (!p4d_present(*p4d) || p4d_large(*p4d))
 372		goto out;
 373
 374	pud = pud_offset(p4d, address);
 375	if (bad_address(pud))
 376		goto bad;
 377
 378	pr_cont("PUD %lx ", pud_val(*pud));
 379	if (!pud_present(*pud) || pud_large(*pud))
 380		goto out;
 381
 382	pmd = pmd_offset(pud, address);
 383	if (bad_address(pmd))
 384		goto bad;
 385
 386	pr_cont("PMD %lx ", pmd_val(*pmd));
 387	if (!pmd_present(*pmd) || pmd_large(*pmd))
 388		goto out;
 389
 390	pte = pte_offset_kernel(pmd, address);
 391	if (bad_address(pte))
 392		goto bad;
 393
 394	pr_cont("PTE %lx", pte_val(*pte));
 395out:
 396	pr_cont("\n");
 397	return;
 398bad:
 399	pr_info("BAD\n");
 400}
 401
 402#endif /* CONFIG_X86_64 */
 403
 404/*
 405 * Workaround for K8 erratum #93 & buggy BIOS.
 406 *
 407 * BIOS SMM functions are required to use a specific workaround
 408 * to avoid corruption of the 64bit RIP register on C stepping K8.
 409 *
 410 * A lot of BIOS that didn't get tested properly miss this.
 411 *
 412 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 413 * Try to work around it here.
 414 *
 415 * Note we only handle faults in kernel here.
 416 * Does nothing on 32-bit.
 417 */
 418static int is_errata93(struct pt_regs *regs, unsigned long address)
 419{
 420#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 421	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 422	    || boot_cpu_data.x86 != 0xf)
 423		return 0;
 424
 425	if (user_mode(regs))
 426		return 0;
 427
 428	if (address != regs->ip)
 429		return 0;
 430
 431	if ((address >> 32) != 0)
 432		return 0;
 433
 434	address |= 0xffffffffUL << 32;
 435	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 436	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 437		printk_once(errata93_warning);
 438		regs->ip = address;
 439		return 1;
 440	}
 441#endif
 442	return 0;
 443}
 444
 445/*
 446 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 447 * to illegal addresses >4GB.
 448 *
 449 * We catch this in the page fault handler because these addresses
 450 * are not reachable. Just detect this case and return.  Any code
 451 * segment in LDT is compatibility mode.
 452 */
 453static int is_errata100(struct pt_regs *regs, unsigned long address)
 454{
 455#ifdef CONFIG_X86_64
 456	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 457		return 1;
 458#endif
 459	return 0;
 460}
 461
 462/* Pentium F0 0F C7 C8 bug workaround: */
 463static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
 464		       unsigned long address)
 465{
 466#ifdef CONFIG_X86_F00F_BUG
 467	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
 468	    idt_is_f00f_address(address)) {
 469		handle_invalid_op(regs);
 470		return 1;
 
 
 
 
 
 
 
 
 471	}
 472#endif
 473	return 0;
 474}
 475
 476static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 477{
 478	u32 offset = (index >> 3) * sizeof(struct desc_struct);
 479	unsigned long addr;
 480	struct ldttss_desc desc;
 481
 482	if (index == 0) {
 483		pr_alert("%s: NULL\n", name);
 484		return;
 485	}
 486
 487	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 488		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 489		return;
 490	}
 491
 492	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 493			      sizeof(struct ldttss_desc))) {
 494		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 495			 name, index);
 496		return;
 497	}
 498
 499	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 500#ifdef CONFIG_X86_64
 501	addr |= ((u64)desc.base3 << 32);
 502#endif
 503	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 504		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 505}
 506
 507static void
 508show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 509{
 510	if (!oops_may_print())
 511		return;
 512
 513	if (error_code & X86_PF_INSTR) {
 514		unsigned int level;
 515		pgd_t *pgd;
 516		pte_t *pte;
 517
 518		pgd = __va(read_cr3_pa());
 519		pgd += pgd_index(address);
 520
 521		pte = lookup_address_in_pgd(pgd, address, &level);
 522
 523		if (pte && pte_present(*pte) && !pte_exec(*pte))
 524			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 525				from_kuid(&init_user_ns, current_uid()));
 526		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 527				(pgd_flags(*pgd) & _PAGE_USER) &&
 528				(__read_cr4() & X86_CR4_SMEP))
 529			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 530				from_kuid(&init_user_ns, current_uid()));
 531	}
 532
 533	if (address < PAGE_SIZE && !user_mode(regs))
 534		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 535			(void *)address);
 536	else
 537		pr_alert("BUG: unable to handle page fault for address: %px\n",
 538			(void *)address);
 539
 540	pr_alert("#PF: %s %s in %s mode\n",
 541		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 542		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 543		 (error_code & X86_PF_WRITE) ? "write access" :
 544					       "read access",
 545			     user_mode(regs) ? "user" : "kernel");
 546	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 547		 !(error_code & X86_PF_PROT) ? "not-present page" :
 548		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 549		 (error_code & X86_PF_PK)    ? "protection keys violation" :
 550					       "permissions violation");
 551
 552	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 553		struct desc_ptr idt, gdt;
 554		u16 ldtr, tr;
 555
 556		/*
 557		 * This can happen for quite a few reasons.  The more obvious
 558		 * ones are faults accessing the GDT, or LDT.  Perhaps
 559		 * surprisingly, if the CPU tries to deliver a benign or
 560		 * contributory exception from user code and gets a page fault
 561		 * during delivery, the page fault can be delivered as though
 562		 * it originated directly from user code.  This could happen
 563		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 564		 * kernel or IST stack.
 565		 */
 566		store_idt(&idt);
 567
 568		/* Usable even on Xen PV -- it's just slow. */
 569		native_store_gdt(&gdt);
 570
 571		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 572			 idt.address, idt.size, gdt.address, gdt.size);
 573
 574		store_ldt(ldtr);
 575		show_ldttss(&gdt, "LDTR", ldtr);
 576
 577		store_tr(tr);
 578		show_ldttss(&gdt, "TR", tr);
 579	}
 580
 581	dump_pagetable(address);
 582}
 583
 584static noinline void
 585pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 586	    unsigned long address)
 587{
 588	struct task_struct *tsk;
 589	unsigned long flags;
 590	int sig;
 591
 592	flags = oops_begin();
 593	tsk = current;
 594	sig = SIGKILL;
 595
 596	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 597	       tsk->comm, address);
 598	dump_pagetable(address);
 599
 600	if (__die("Bad pagetable", regs, error_code))
 601		sig = 0;
 602
 603	oops_end(flags, regs, sig);
 604}
 605
 606static void sanitize_error_code(unsigned long address,
 607				unsigned long *error_code)
 608{
 
 
 609	/*
 610	 * To avoid leaking information about the kernel page
 611	 * table layout, pretend that user-mode accesses to
 612	 * kernel addresses are always protection faults.
 613	 *
 614	 * NB: This means that failed vsyscalls with vsyscall=none
 615	 * will have the PROT bit.  This doesn't leak any
 616	 * information and does not appear to cause any problems.
 617	 */
 618	if (address >= TASK_SIZE_MAX)
 619		*error_code |= X86_PF_PROT;
 620}
 621
 622static void set_signal_archinfo(unsigned long address,
 623				unsigned long error_code)
 624{
 625	struct task_struct *tsk = current;
 626
 627	tsk->thread.trap_nr = X86_TRAP_PF;
 628	tsk->thread.error_code = error_code | X86_PF_USER;
 629	tsk->thread.cr2 = address;
 630}
 631
 632static noinline void
 633page_fault_oops(struct pt_regs *regs, unsigned long error_code,
 634		unsigned long address)
 635{
 636#ifdef CONFIG_VMAP_STACK
 637	struct stack_info info;
 638#endif
 639	unsigned long flags;
 640	int sig;
 641
 642	if (user_mode(regs)) {
 643		/*
 644		 * Implicit kernel access from user mode?  Skip the stack
 645		 * overflow and EFI special cases.
 
 646		 */
 647		goto oops;
 648	}
 649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650#ifdef CONFIG_VMAP_STACK
 651	/*
 652	 * Stack overflow?  During boot, we can fault near the initial
 653	 * stack in the direct map, but that's not an overflow -- check
 654	 * that we're in vmalloc space to avoid this.
 655	 */
 656	if (is_vmalloc_addr((void *)address) &&
 657	    get_stack_guard_info((void *)address, &info)) {
 
 
 658		/*
 659		 * We're likely to be running with very little stack space
 660		 * left.  It's plausible that we'd hit this condition but
 661		 * double-fault even before we get this far, in which case
 662		 * we're fine: the double-fault handler will deal with it.
 663		 *
 664		 * We don't want to make it all the way into the oops code
 665		 * and then double-fault, though, because we're likely to
 666		 * break the console driver and lose most of the stack dump.
 667		 */
 668		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
 669			      handle_stack_overflow,
 670			      ASM_CALL_ARG3,
 671			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
 672
 
 
 673		unreachable();
 674	}
 675#endif
 676
 677	/*
 678	 * Buggy firmware could access regions which might page fault.  If
 679	 * this happens, EFI has a special OOPS path that will try to
 680	 * avoid hanging the system.
 
 
 
 
 
 
 681	 */
 682	if (IS_ENABLED(CONFIG_EFI))
 683		efi_crash_gracefully_on_page_fault(address);
 684
 685	/* Only not-present faults should be handled by KFENCE. */
 686	if (!(error_code & X86_PF_PROT) &&
 687	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
 688		return;
 689
 
 
 
 
 
 
 
 690oops:
 691	/*
 692	 * Oops. The kernel tried to access some bad page. We'll have to
 693	 * terminate things with extreme prejudice:
 694	 */
 695	flags = oops_begin();
 696
 697	show_fault_oops(regs, error_code, address);
 698
 699	if (task_stack_end_corrupted(current))
 700		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 701
 702	sig = SIGKILL;
 703	if (__die("Oops", regs, error_code))
 704		sig = 0;
 705
 706	/* Executive summary in case the body of the oops scrolled away */
 707	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 708
 709	oops_end(flags, regs, sig);
 710}
 711
 712static noinline void
 713kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
 714			 unsigned long address, int signal, int si_code,
 715			 u32 pkey)
 716{
 717	WARN_ON_ONCE(user_mode(regs));
 718
 719	/* Are we prepared to handle this kernel fault? */
 720	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 721		/*
 722		 * Any interrupt that takes a fault gets the fixup. This makes
 723		 * the below recursive fault logic only apply to a faults from
 724		 * task context.
 725		 */
 726		if (in_interrupt())
 727			return;
 728
 729		/*
 730		 * Per the above we're !in_interrupt(), aka. task context.
 731		 *
 732		 * In this case we need to make sure we're not recursively
 733		 * faulting through the emulate_vsyscall() logic.
 734		 */
 735		if (current->thread.sig_on_uaccess_err && signal) {
 736			sanitize_error_code(address, &error_code);
 737
 738			set_signal_archinfo(address, error_code);
 739
 740			if (si_code == SEGV_PKUERR) {
 741				force_sig_pkuerr((void __user *)address, pkey);
 742			} else {
 743				/* XXX: hwpoison faults will set the wrong code. */
 744				force_sig_fault(signal, si_code, (void __user *)address);
 745			}
 746		}
 747
 748		/*
 749		 * Barring that, we can do the fixup and be happy.
 750		 */
 751		return;
 752	}
 753
 754	/*
 755	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
 756	 * instruction.
 757	 */
 758	if (is_prefetch(regs, error_code, address))
 759		return;
 760
 761	page_fault_oops(regs, error_code, address);
 762}
 763
 764/*
 765 * Print out info about fatal segfaults, if the show_unhandled_signals
 766 * sysctl is set:
 767 */
 768static inline void
 769show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 770		unsigned long address, struct task_struct *tsk)
 771{
 772	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 773	/* This is a racy snapshot, but it's better than nothing. */
 774	int cpu = raw_smp_processor_id();
 775
 776	if (!unhandled_signal(tsk, SIGSEGV))
 777		return;
 778
 779	if (!printk_ratelimit())
 780		return;
 781
 782	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 783		loglvl, tsk->comm, task_pid_nr(tsk), address,
 784		(void *)regs->ip, (void *)regs->sp, error_code);
 785
 786	print_vma_addr(KERN_CONT " in ", regs->ip);
 787
 788	/*
 789	 * Dump the likely CPU where the fatal segfault happened.
 790	 * This can help identify faulty hardware.
 791	 */
 792	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
 793	       topology_core_id(cpu), topology_physical_package_id(cpu));
 794
 795
 796	printk(KERN_CONT "\n");
 797
 798	show_opcodes(regs, loglvl);
 799}
 800
 
 
 
 
 
 
 
 
 
 801static void
 802__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 803		       unsigned long address, u32 pkey, int si_code)
 804{
 805	struct task_struct *tsk = current;
 806
 807	if (!user_mode(regs)) {
 808		kernelmode_fixup_or_oops(regs, error_code, address,
 809					 SIGSEGV, si_code, pkey);
 810		return;
 811	}
 
 812
 813	if (!(error_code & X86_PF_USER)) {
 814		/* Implicit user access to kernel memory -- just oops */
 815		page_fault_oops(regs, error_code, address);
 816		return;
 817	}
 
 818
 819	/*
 820	 * User mode accesses just cause a SIGSEGV.
 821	 * It's possible to have interrupts off here:
 822	 */
 823	local_irq_enable();
 824
 825	/*
 826	 * Valid to do another page fault here because this one came
 827	 * from user space:
 828	 */
 829	if (is_prefetch(regs, error_code, address))
 830		return;
 
 831
 832	if (is_errata100(regs, address))
 833		return;
 834
 835	sanitize_error_code(address, &error_code);
 836
 837	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 838		return;
 839
 840	if (likely(show_unhandled_signals))
 841		show_signal_msg(regs, error_code, address, tsk);
 842
 843	set_signal_archinfo(address, error_code);
 
 844
 845	if (si_code == SEGV_PKUERR)
 846		force_sig_pkuerr((void __user *)address, pkey);
 847	else
 848		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 849
 850	local_irq_disable();
 851}
 852
 853static noinline void
 854bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 855		     unsigned long address)
 856{
 857	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 858}
 859
 860static void
 861__bad_area(struct pt_regs *regs, unsigned long error_code,
 862	   unsigned long address, u32 pkey, int si_code)
 863{
 864	struct mm_struct *mm = current->mm;
 865	/*
 866	 * Something tried to access memory that isn't in our memory map..
 867	 * Fix it, but check if it's kernel or user first..
 868	 */
 869	mmap_read_unlock(mm);
 870
 871	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 872}
 873
 
 
 
 
 
 
 874static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 875		struct vm_area_struct *vma)
 876{
 877	/* This code is always called on the current mm */
 878	bool foreign = false;
 879
 880	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 881		return false;
 882	if (error_code & X86_PF_PK)
 883		return true;
 884	/* this checks permission keys on the VMA: */
 885	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 886				       (error_code & X86_PF_INSTR), foreign))
 887		return true;
 888	return false;
 889}
 890
 891static noinline void
 892bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 893		      unsigned long address, struct vm_area_struct *vma)
 894{
 895	/*
 896	 * This OSPKE check is not strictly necessary at runtime.
 897	 * But, doing it this way allows compiler optimizations
 898	 * if pkeys are compiled out.
 899	 */
 900	if (bad_area_access_from_pkeys(error_code, vma)) {
 901		/*
 902		 * A protection key fault means that the PKRU value did not allow
 903		 * access to some PTE.  Userspace can figure out what PKRU was
 904		 * from the XSAVE state.  This function captures the pkey from
 905		 * the vma and passes it to userspace so userspace can discover
 906		 * which protection key was set on the PTE.
 907		 *
 908		 * If we get here, we know that the hardware signaled a X86_PF_PK
 909		 * fault and that there was a VMA once we got in the fault
 910		 * handler.  It does *not* guarantee that the VMA we find here
 911		 * was the one that we faulted on.
 912		 *
 913		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 914		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 915		 * 3. T1   : faults...
 916		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 917		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 918		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 919		 *	     faulted on a pte with its pkey=4.
 920		 */
 921		u32 pkey = vma_pkey(vma);
 922
 923		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 924	} else {
 925		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 926	}
 927}
 928
 929static void
 930do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 931	  vm_fault_t fault)
 932{
 933	/* Kernel mode? Handle exceptions or die: */
 934	if (!user_mode(regs)) {
 935		kernelmode_fixup_or_oops(regs, error_code, address,
 936					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
 937		return;
 938	}
 939
 940	/* User-space => ok to do another page fault: */
 941	if (is_prefetch(regs, error_code, address))
 942		return;
 943
 944	sanitize_error_code(address, &error_code);
 945
 946	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 947		return;
 948
 949	set_signal_archinfo(address, error_code);
 950
 951#ifdef CONFIG_MEMORY_FAILURE
 952	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 953		struct task_struct *tsk = current;
 954		unsigned lsb = 0;
 955
 956		pr_err(
 957	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 958			tsk->comm, tsk->pid, address);
 959		if (fault & VM_FAULT_HWPOISON_LARGE)
 960			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 961		if (fault & VM_FAULT_HWPOISON)
 962			lsb = PAGE_SHIFT;
 963		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 964		return;
 965	}
 966#endif
 967	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 968}
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 971{
 972	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 973		return 0;
 974
 975	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 976		return 0;
 977
 978	return 1;
 979}
 980
 981/*
 982 * Handle a spurious fault caused by a stale TLB entry.
 983 *
 984 * This allows us to lazily refresh the TLB when increasing the
 985 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 986 * eagerly is very expensive since that implies doing a full
 987 * cross-processor TLB flush, even if no stale TLB entries exist
 988 * on other processors.
 989 *
 990 * Spurious faults may only occur if the TLB contains an entry with
 991 * fewer permission than the page table entry.  Non-present (P = 0)
 992 * and reserved bit (R = 1) faults are never spurious.
 993 *
 994 * There are no security implications to leaving a stale TLB when
 995 * increasing the permissions on a page.
 996 *
 997 * Returns non-zero if a spurious fault was handled, zero otherwise.
 998 *
 999 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1000 * (Optional Invalidation).
1001 */
1002static noinline int
1003spurious_kernel_fault(unsigned long error_code, unsigned long address)
1004{
1005	pgd_t *pgd;
1006	p4d_t *p4d;
1007	pud_t *pud;
1008	pmd_t *pmd;
1009	pte_t *pte;
1010	int ret;
1011
1012	/*
1013	 * Only writes to RO or instruction fetches from NX may cause
1014	 * spurious faults.
1015	 *
1016	 * These could be from user or supervisor accesses but the TLB
1017	 * is only lazily flushed after a kernel mapping protection
1018	 * change, so user accesses are not expected to cause spurious
1019	 * faults.
1020	 */
1021	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1022	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1023		return 0;
1024
1025	pgd = init_mm.pgd + pgd_index(address);
1026	if (!pgd_present(*pgd))
1027		return 0;
1028
1029	p4d = p4d_offset(pgd, address);
1030	if (!p4d_present(*p4d))
1031		return 0;
1032
1033	if (p4d_large(*p4d))
1034		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1035
1036	pud = pud_offset(p4d, address);
1037	if (!pud_present(*pud))
1038		return 0;
1039
1040	if (pud_large(*pud))
1041		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1042
1043	pmd = pmd_offset(pud, address);
1044	if (!pmd_present(*pmd))
1045		return 0;
1046
1047	if (pmd_large(*pmd))
1048		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1049
1050	pte = pte_offset_kernel(pmd, address);
1051	if (!pte_present(*pte))
1052		return 0;
1053
1054	ret = spurious_kernel_fault_check(error_code, pte);
1055	if (!ret)
1056		return 0;
1057
1058	/*
1059	 * Make sure we have permissions in PMD.
1060	 * If not, then there's a bug in the page tables:
1061	 */
1062	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1063	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1064
1065	return ret;
1066}
1067NOKPROBE_SYMBOL(spurious_kernel_fault);
1068
1069int show_unhandled_signals = 1;
1070
1071static inline int
1072access_error(unsigned long error_code, struct vm_area_struct *vma)
1073{
1074	/* This is only called for the current mm, so: */
1075	bool foreign = false;
1076
1077	/*
1078	 * Read or write was blocked by protection keys.  This is
1079	 * always an unconditional error and can never result in
1080	 * a follow-up action to resolve the fault, like a COW.
1081	 */
1082	if (error_code & X86_PF_PK)
1083		return 1;
1084
1085	/*
1086	 * SGX hardware blocked the access.  This usually happens
1087	 * when the enclave memory contents have been destroyed, like
1088	 * after a suspend/resume cycle. In any case, the kernel can't
1089	 * fix the cause of the fault.  Handle the fault as an access
1090	 * error even in cases where no actual access violation
1091	 * occurred.  This allows userspace to rebuild the enclave in
1092	 * response to the signal.
1093	 */
1094	if (unlikely(error_code & X86_PF_SGX))
1095		return 1;
1096
1097	/*
1098	 * Make sure to check the VMA so that we do not perform
1099	 * faults just to hit a X86_PF_PK as soon as we fill in a
1100	 * page.
1101	 */
1102	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1103				       (error_code & X86_PF_INSTR), foreign))
1104		return 1;
1105
1106	/*
1107	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1108	 * shadow stack VMAs. All other accesses result in an error.
1109	 */
1110	if (error_code & X86_PF_SHSTK) {
1111		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1112			return 1;
1113		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1114			return 1;
1115		return 0;
1116	}
1117
1118	if (error_code & X86_PF_WRITE) {
1119		/* write, present and write, not present: */
1120		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1121			return 1;
1122		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123			return 1;
1124		return 0;
1125	}
1126
1127	/* read, present: */
1128	if (unlikely(error_code & X86_PF_PROT))
1129		return 1;
1130
1131	/* read, not present: */
1132	if (unlikely(!vma_is_accessible(vma)))
1133		return 1;
1134
1135	return 0;
1136}
1137
1138bool fault_in_kernel_space(unsigned long address)
1139{
1140	/*
1141	 * On 64-bit systems, the vsyscall page is at an address above
1142	 * TASK_SIZE_MAX, but is not considered part of the kernel
1143	 * address space.
1144	 */
1145	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146		return false;
1147
1148	return address >= TASK_SIZE_MAX;
1149}
1150
1151/*
1152 * Called for all faults where 'address' is part of the kernel address
1153 * space.  Might get called for faults that originate from *code* that
1154 * ran in userspace or the kernel.
1155 */
1156static void
1157do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158		   unsigned long address)
1159{
1160	/*
1161	 * Protection keys exceptions only happen on user pages.  We
1162	 * have no user pages in the kernel portion of the address
1163	 * space, so do not expect them here.
1164	 */
1165	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1166
1167#ifdef CONFIG_X86_32
1168	/*
1169	 * We can fault-in kernel-space virtual memory on-demand. The
1170	 * 'reference' page table is init_mm.pgd.
1171	 *
1172	 * NOTE! We MUST NOT take any locks for this case. We may
1173	 * be in an interrupt or a critical region, and should
1174	 * only copy the information from the master page table,
1175	 * nothing more.
1176	 *
1177	 * Before doing this on-demand faulting, ensure that the
1178	 * fault is not any of the following:
1179	 * 1. A fault on a PTE with a reserved bit set.
1180	 * 2. A fault caused by a user-mode access.  (Do not demand-
1181	 *    fault kernel memory due to user-mode accesses).
1182	 * 3. A fault caused by a page-level protection violation.
1183	 *    (A demand fault would be on a non-present page which
1184	 *     would have X86_PF_PROT==0).
1185	 *
1186	 * This is only needed to close a race condition on x86-32 in
1187	 * the vmalloc mapping/unmapping code. See the comment above
1188	 * vmalloc_fault() for details. On x86-64 the race does not
1189	 * exist as the vmalloc mappings don't need to be synchronized
1190	 * there.
1191	 */
1192	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193		if (vmalloc_fault(address) >= 0)
1194			return;
1195	}
1196#endif
1197
1198	if (is_f00f_bug(regs, hw_error_code, address))
1199		return;
1200
1201	/* Was the fault spurious, caused by lazy TLB invalidation? */
1202	if (spurious_kernel_fault(hw_error_code, address))
1203		return;
1204
1205	/* kprobes don't want to hook the spurious faults: */
1206	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1207		return;
1208
1209	/*
1210	 * Note, despite being a "bad area", there are quite a few
1211	 * acceptable reasons to get here, such as erratum fixups
1212	 * and handling kernel code that can fault, like get_user().
1213	 *
1214	 * Don't take the mm semaphore here. If we fixup a prefetch
1215	 * fault we could otherwise deadlock:
1216	 */
1217	bad_area_nosemaphore(regs, hw_error_code, address);
1218}
1219NOKPROBE_SYMBOL(do_kern_addr_fault);
1220
1221/*
1222 * Handle faults in the user portion of the address space.  Nothing in here
1223 * should check X86_PF_USER without a specific justification: for almost
1224 * all purposes, we should treat a normal kernel access to user memory
1225 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1226 * The one exception is AC flag handling, which is, per the x86
1227 * architecture, special for WRUSS.
1228 */
1229static inline
1230void do_user_addr_fault(struct pt_regs *regs,
1231			unsigned long error_code,
1232			unsigned long address)
1233{
1234	struct vm_area_struct *vma;
1235	struct task_struct *tsk;
1236	struct mm_struct *mm;
1237	vm_fault_t fault;
1238	unsigned int flags = FAULT_FLAG_DEFAULT;
1239
1240	tsk = current;
1241	mm = tsk->mm;
1242
1243	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1244		/*
1245		 * Whoops, this is kernel mode code trying to execute from
1246		 * user memory.  Unless this is AMD erratum #93, which
1247		 * corrupts RIP such that it looks like a user address,
1248		 * this is unrecoverable.  Don't even try to look up the
1249		 * VMA or look for extable entries.
1250		 */
1251		if (is_errata93(regs, address))
1252			return;
1253
1254		page_fault_oops(regs, error_code, address);
1255		return;
1256	}
1257
1258	/* kprobes don't want to hook the spurious faults: */
1259	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1260		return;
1261
1262	/*
1263	 * Reserved bits are never expected to be set on
1264	 * entries in the user portion of the page tables.
1265	 */
1266	if (unlikely(error_code & X86_PF_RSVD))
1267		pgtable_bad(regs, error_code, address);
1268
1269	/*
1270	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1271	 * pages in the user address space.  The odd case here is WRUSS,
1272	 * which, according to the preliminary documentation, does not respect
1273	 * SMAP and will have the USER bit set so, in all cases, SMAP
1274	 * enforcement appears to be consistent with the USER bit.
1275	 */
1276	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1277		     !(error_code & X86_PF_USER) &&
1278		     !(regs->flags & X86_EFLAGS_AC))) {
1279		/*
1280		 * No extable entry here.  This was a kernel access to an
1281		 * invalid pointer.  get_kernel_nofault() will not get here.
1282		 */
1283		page_fault_oops(regs, error_code, address);
1284		return;
1285	}
1286
1287	/*
1288	 * If we're in an interrupt, have no user context or are running
1289	 * in a region with pagefaults disabled then we must not take the fault
1290	 */
1291	if (unlikely(faulthandler_disabled() || !mm)) {
1292		bad_area_nosemaphore(regs, error_code, address);
1293		return;
1294	}
1295
1296	/*
1297	 * It's safe to allow irq's after cr2 has been saved and the
1298	 * vmalloc fault has been handled.
1299	 *
1300	 * User-mode registers count as a user access even for any
1301	 * potential system fault or CPU buglet:
1302	 */
1303	if (user_mode(regs)) {
1304		local_irq_enable();
1305		flags |= FAULT_FLAG_USER;
1306	} else {
1307		if (regs->flags & X86_EFLAGS_IF)
1308			local_irq_enable();
1309	}
1310
1311	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1312
1313	/*
1314	 * Read-only permissions can not be expressed in shadow stack PTEs.
1315	 * Treat all shadow stack accesses as WRITE faults. This ensures
1316	 * that the MM will prepare everything (e.g., break COW) such that
1317	 * maybe_mkwrite() can create a proper shadow stack PTE.
1318	 */
1319	if (error_code & X86_PF_SHSTK)
1320		flags |= FAULT_FLAG_WRITE;
1321	if (error_code & X86_PF_WRITE)
1322		flags |= FAULT_FLAG_WRITE;
1323	if (error_code & X86_PF_INSTR)
1324		flags |= FAULT_FLAG_INSTRUCTION;
1325
1326#ifdef CONFIG_X86_64
1327	/*
1328	 * Faults in the vsyscall page might need emulation.  The
1329	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1330	 * considered to be part of the user address space.
1331	 *
1332	 * The vsyscall page does not have a "real" VMA, so do this
1333	 * emulation before we go searching for VMAs.
1334	 *
1335	 * PKRU never rejects instruction fetches, so we don't need
1336	 * to consider the PF_PK bit.
1337	 */
1338	if (is_vsyscall_vaddr(address)) {
1339		if (emulate_vsyscall(error_code, regs, address))
1340			return;
1341	}
1342#endif
1343
1344	if (!(flags & FAULT_FLAG_USER))
1345		goto lock_mmap;
1346
1347	vma = lock_vma_under_rcu(mm, address);
1348	if (!vma)
1349		goto lock_mmap;
1350
1351	if (unlikely(access_error(error_code, vma))) {
1352		vma_end_read(vma);
1353		goto lock_mmap;
1354	}
1355	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1356	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1357		vma_end_read(vma);
1358
1359	if (!(fault & VM_FAULT_RETRY)) {
1360		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1361		goto done;
1362	}
1363	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1364	if (fault & VM_FAULT_MAJOR)
1365		flags |= FAULT_FLAG_TRIED;
1366
1367	/* Quick path to respond to signals */
1368	if (fault_signal_pending(fault, regs)) {
1369		if (!user_mode(regs))
1370			kernelmode_fixup_or_oops(regs, error_code, address,
1371						 SIGBUS, BUS_ADRERR,
1372						 ARCH_DEFAULT_PKEY);
1373		return;
1374	}
1375lock_mmap:
1376
1377retry:
1378	vma = lock_mm_and_find_vma(mm, address, regs);
1379	if (unlikely(!vma)) {
1380		bad_area_nosemaphore(regs, error_code, address);
 
 
 
 
 
 
 
 
 
 
1381		return;
1382	}
1383
1384	/*
1385	 * Ok, we have a good vm_area for this memory access, so
1386	 * we can handle it..
1387	 */
1388	if (unlikely(access_error(error_code, vma))) {
1389		bad_area_access_error(regs, error_code, address, vma);
 
1390		return;
1391	}
1392
1393	/*
1394	 * If for any reason at all we couldn't handle the fault,
1395	 * make sure we exit gracefully rather than endlessly redo
1396	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1397	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1398	 *
1399	 * Note that handle_userfault() may also release and reacquire mmap_lock
1400	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1401	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1402	 * (potentially after handling any pending signal during the return to
1403	 * userland). The return to userland is identified whenever
1404	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1405	 */
1406	fault = handle_mm_fault(vma, address, flags, regs);
1407
1408	if (fault_signal_pending(fault, regs)) {
1409		/*
1410		 * Quick path to respond to signals.  The core mm code
1411		 * has unlocked the mm for us if we get here.
1412		 */
1413		if (!user_mode(regs))
1414			kernelmode_fixup_or_oops(regs, error_code, address,
1415						 SIGBUS, BUS_ADRERR,
1416						 ARCH_DEFAULT_PKEY);
1417		return;
1418	}
1419
1420	/* The fault is fully completed (including releasing mmap lock) */
1421	if (fault & VM_FAULT_COMPLETED)
1422		return;
1423
1424	/*
1425	 * If we need to retry the mmap_lock has already been released,
1426	 * and if there is a fatal signal pending there is no guarantee
1427	 * that we made any progress. Handle this case first.
1428	 */
1429	if (unlikely(fault & VM_FAULT_RETRY)) {
1430		flags |= FAULT_FLAG_TRIED;
1431		goto retry;
1432	}
 
 
 
 
1433
1434	mmap_read_unlock(mm);
1435done:
1436	if (likely(!(fault & VM_FAULT_ERROR)))
1437		return;
1438
1439	if (fatal_signal_pending(current) && !user_mode(regs)) {
1440		kernelmode_fixup_or_oops(regs, error_code, address,
1441					 0, 0, ARCH_DEFAULT_PKEY);
1442		return;
1443	}
1444
1445	if (fault & VM_FAULT_OOM) {
1446		/* Kernel mode? Handle exceptions or die: */
1447		if (!user_mode(regs)) {
1448			kernelmode_fixup_or_oops(regs, error_code, address,
1449						 SIGSEGV, SEGV_MAPERR,
1450						 ARCH_DEFAULT_PKEY);
1451			return;
1452		}
1453
1454		/*
1455		 * We ran out of memory, call the OOM killer, and return the
1456		 * userspace (which will retry the fault, or kill us if we got
1457		 * oom-killed):
1458		 */
1459		pagefault_out_of_memory();
 
1460	} else {
1461		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1462			     VM_FAULT_HWPOISON_LARGE))
1463			do_sigbus(regs, error_code, address, fault);
1464		else if (fault & VM_FAULT_SIGSEGV)
1465			bad_area_nosemaphore(regs, error_code, address);
1466		else
1467			BUG();
1468	}
 
 
1469}
1470NOKPROBE_SYMBOL(do_user_addr_fault);
1471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1472static __always_inline void
1473trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1474			 unsigned long address)
1475{
1476	if (!trace_pagefault_enabled())
1477		return;
1478
1479	if (user_mode(regs))
1480		trace_page_fault_user(address, regs, error_code);
1481	else
1482		trace_page_fault_kernel(address, regs, error_code);
1483}
1484
1485static __always_inline void
1486handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1487			      unsigned long address)
1488{
1489	trace_page_fault_entries(regs, error_code, address);
1490
1491	if (unlikely(kmmio_fault(regs, address)))
1492		return;
1493
1494	/* Was the fault on kernel-controlled part of the address space? */
1495	if (unlikely(fault_in_kernel_space(address))) {
1496		do_kern_addr_fault(regs, error_code, address);
1497	} else {
1498		do_user_addr_fault(regs, error_code, address);
1499		/*
1500		 * User address page fault handling might have reenabled
1501		 * interrupts. Fixing up all potential exit points of
1502		 * do_user_addr_fault() and its leaf functions is just not
1503		 * doable w/o creating an unholy mess or turning the code
1504		 * upside down.
1505		 */
1506		local_irq_disable();
1507	}
1508}
1509
1510DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1511{
1512	unsigned long address = read_cr2();
1513	irqentry_state_t state;
1514
1515	prefetchw(&current->mm->mmap_lock);
1516
1517	/*
1518	 * KVM uses #PF vector to deliver 'page not present' events to guests
1519	 * (asynchronous page fault mechanism). The event happens when a
1520	 * userspace task is trying to access some valid (from guest's point of
1521	 * view) memory which is not currently mapped by the host (e.g. the
1522	 * memory is swapped out). Note, the corresponding "page ready" event
1523	 * which is injected when the memory becomes available, is delivered via
1524	 * an interrupt mechanism and not a #PF exception
1525	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1526	 *
1527	 * We are relying on the interrupted context being sane (valid RSP,
1528	 * relevant locks not held, etc.), which is fine as long as the
1529	 * interrupted context had IF=1.  We are also relying on the KVM
1530	 * async pf type field and CR2 being read consistently instead of
1531	 * getting values from real and async page faults mixed up.
1532	 *
1533	 * Fingers crossed.
1534	 *
1535	 * The async #PF handling code takes care of idtentry handling
1536	 * itself.
1537	 */
1538	if (kvm_handle_async_pf(regs, (u32)address))
1539		return;
1540
1541	/*
1542	 * Entry handling for valid #PF from kernel mode is slightly
1543	 * different: RCU is already watching and ct_irq_enter() must not
1544	 * be invoked because a kernel fault on a user space address might
1545	 * sleep.
1546	 *
1547	 * In case the fault hit a RCU idle region the conditional entry
1548	 * code reenabled RCU to avoid subsequent wreckage which helps
1549	 * debuggability.
1550	 */
1551	state = irqentry_enter(regs);
1552
1553	instrumentation_begin();
1554	handle_page_fault(regs, error_code, address);
1555	instrumentation_end();
1556
1557	irqentry_exit(regs, state);
1558}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/memblock.h>		/* max_low_pfn			*/
 
  12#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  13#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  14#include <linux/perf_event.h>		/* perf_sw_event		*/
  15#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  16#include <linux/prefetch.h>		/* prefetchw			*/
  17#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  18#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  19#include <linux/efi.h>			/* efi_recover_from_page_fault()*/
  20#include <linux/mm_types.h>
 
  21
  22#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  23#include <asm/traps.h>			/* dotraplinkage, ...		*/
  24#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
  25#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  26#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  27#include <asm/vm86.h>			/* struct vm86			*/
  28#include <asm/mmu_context.h>		/* vma_pkey()			*/
  29#include <asm/efi.h>			/* efi_recover_from_page_fault()*/
  30#include <asm/desc.h>			/* store_idt(), ...		*/
  31#include <asm/cpu_entry_area.h>		/* exception stack		*/
 
 
 
 
  32
  33#define CREATE_TRACE_POINTS
  34#include <asm/trace/exceptions.h>
  35
  36/*
  37 * Returns 0 if mmiotrace is disabled, or if the fault is not
  38 * handled by mmiotrace:
  39 */
  40static nokprobe_inline int
  41kmmio_fault(struct pt_regs *regs, unsigned long addr)
  42{
  43	if (unlikely(is_kmmio_active()))
  44		if (kmmio_handler(regs, addr) == 1)
  45			return -1;
  46	return 0;
  47}
  48
  49/*
  50 * Prefetch quirks:
  51 *
  52 * 32-bit mode:
  53 *
  54 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  55 *   Check that here and ignore it.
  56 *
  57 * 64-bit mode:
  58 *
  59 *   Sometimes the CPU reports invalid exceptions on prefetch.
  60 *   Check that here and ignore it.
  61 *
  62 * Opcode checker based on code by Richard Brunner.
  63 */
  64static inline int
  65check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  66		      unsigned char opcode, int *prefetch)
  67{
  68	unsigned char instr_hi = opcode & 0xf0;
  69	unsigned char instr_lo = opcode & 0x0f;
  70
  71	switch (instr_hi) {
  72	case 0x20:
  73	case 0x30:
  74		/*
  75		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  76		 * In X86_64 long mode, the CPU will signal invalid
  77		 * opcode if some of these prefixes are present so
  78		 * X86_64 will never get here anyway
  79		 */
  80		return ((instr_lo & 7) == 0x6);
  81#ifdef CONFIG_X86_64
  82	case 0x40:
  83		/*
  84		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
  85		 * Need to figure out under what instruction mode the
  86		 * instruction was issued. Could check the LDT for lm,
  87		 * but for now it's good enough to assume that long
  88		 * mode only uses well known segments or kernel.
  89		 */
  90		return (!user_mode(regs) || user_64bit_mode(regs));
  91#endif
  92	case 0x60:
  93		/* 0x64 thru 0x67 are valid prefixes in all modes. */
  94		return (instr_lo & 0xC) == 0x4;
  95	case 0xF0:
  96		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  97		return !instr_lo || (instr_lo>>1) == 1;
  98	case 0x00:
  99		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 100		if (probe_kernel_address(instr, opcode))
 101			return 0;
 102
 103		*prefetch = (instr_lo == 0xF) &&
 104			(opcode == 0x0D || opcode == 0x18);
 105		return 0;
 106	default:
 107		return 0;
 108	}
 109}
 110
 
 
 
 
 
 
 
 
 
 111static int
 112is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 113{
 114	unsigned char *max_instr;
 115	unsigned char *instr;
 116	int prefetch = 0;
 117
 
 
 
 
 118	/*
 119	 * If it was a exec (instruction fetch) fault on NX page, then
 120	 * do not ignore the fault:
 121	 */
 122	if (error_code & X86_PF_INSTR)
 123		return 0;
 124
 125	instr = (void *)convert_ip_to_linear(current, regs);
 126	max_instr = instr + 15;
 127
 128	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 129		return 0;
 
 
 
 
 130
 131	while (instr < max_instr) {
 132		unsigned char opcode;
 133
 134		if (probe_kernel_address(instr, opcode))
 135			break;
 
 
 
 
 
 136
 137		instr++;
 138
 139		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 140			break;
 141	}
 
 
 142	return prefetch;
 143}
 144
 145DEFINE_SPINLOCK(pgd_lock);
 146LIST_HEAD(pgd_list);
 147
 148#ifdef CONFIG_X86_32
 149static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 150{
 151	unsigned index = pgd_index(address);
 152	pgd_t *pgd_k;
 153	p4d_t *p4d, *p4d_k;
 154	pud_t *pud, *pud_k;
 155	pmd_t *pmd, *pmd_k;
 156
 157	pgd += index;
 158	pgd_k = init_mm.pgd + index;
 159
 160	if (!pgd_present(*pgd_k))
 161		return NULL;
 162
 163	/*
 164	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 165	 * and redundant with the set_pmd() on non-PAE. As would
 166	 * set_p4d/set_pud.
 167	 */
 168	p4d = p4d_offset(pgd, address);
 169	p4d_k = p4d_offset(pgd_k, address);
 170	if (!p4d_present(*p4d_k))
 171		return NULL;
 172
 173	pud = pud_offset(p4d, address);
 174	pud_k = pud_offset(p4d_k, address);
 175	if (!pud_present(*pud_k))
 176		return NULL;
 177
 178	pmd = pmd_offset(pud, address);
 179	pmd_k = pmd_offset(pud_k, address);
 180
 181	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 182		set_pmd(pmd, *pmd_k);
 183
 184	if (!pmd_present(*pmd_k))
 185		return NULL;
 186	else
 187		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 188
 189	return pmd_k;
 190}
 191
 192void vmalloc_sync_all(void)
 193{
 194	unsigned long address;
 195
 196	if (SHARED_KERNEL_PMD)
 197		return;
 198
 199	for (address = VMALLOC_START & PMD_MASK;
 200	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
 201	     address += PMD_SIZE) {
 202		struct page *page;
 203
 204		spin_lock(&pgd_lock);
 205		list_for_each_entry(page, &pgd_list, lru) {
 206			spinlock_t *pgt_lock;
 207
 208			/* the pgt_lock only for Xen */
 209			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 210
 211			spin_lock(pgt_lock);
 212			vmalloc_sync_one(page_address(page), address);
 213			spin_unlock(pgt_lock);
 214		}
 215		spin_unlock(&pgd_lock);
 216	}
 217}
 218
 219/*
 220 * 32-bit:
 
 
 
 
 
 221 *
 222 *   Handle a fault on the vmalloc or module mapping area
 
 
 
 
 223 */
 224static noinline int vmalloc_fault(unsigned long address)
 225{
 226	unsigned long pgd_paddr;
 227	pmd_t *pmd_k;
 228	pte_t *pte_k;
 229
 230	/* Make sure we are in vmalloc area: */
 231	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 232		return -1;
 233
 234	/*
 235	 * Synchronize this task's top level page-table
 236	 * with the 'reference' page table.
 237	 *
 238	 * Do _not_ use "current" here. We might be inside
 239	 * an interrupt in the middle of a task switch..
 240	 */
 241	pgd_paddr = read_cr3_pa();
 242	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 243	if (!pmd_k)
 244		return -1;
 245
 246	if (pmd_large(*pmd_k))
 247		return 0;
 248
 249	pte_k = pte_offset_kernel(pmd_k, address);
 250	if (!pte_present(*pte_k))
 251		return -1;
 252
 253	return 0;
 254}
 255NOKPROBE_SYMBOL(vmalloc_fault);
 256
 257/*
 258 * Did it hit the DOS screen memory VA from vm86 mode?
 259 */
 260static inline void
 261check_v8086_mode(struct pt_regs *regs, unsigned long address,
 262		 struct task_struct *tsk)
 263{
 264#ifdef CONFIG_VM86
 265	unsigned long bit;
 
 
 
 
 266
 267	if (!v8086_mode(regs) || !tsk->thread.vm86)
 268		return;
 
 
 
 
 269
 270	bit = (address - 0xA0000) >> PAGE_SHIFT;
 271	if (bit < 32)
 272		tsk->thread.vm86->screen_bitmap |= 1 << bit;
 273#endif
 
 
 274}
 275
 276static bool low_pfn(unsigned long pfn)
 277{
 278	return pfn < max_low_pfn;
 279}
 280
 281static void dump_pagetable(unsigned long address)
 282{
 283	pgd_t *base = __va(read_cr3_pa());
 284	pgd_t *pgd = &base[pgd_index(address)];
 285	p4d_t *p4d;
 286	pud_t *pud;
 287	pmd_t *pmd;
 288	pte_t *pte;
 289
 290#ifdef CONFIG_X86_PAE
 291	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 292	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 293		goto out;
 294#define pr_pde pr_cont
 295#else
 296#define pr_pde pr_info
 297#endif
 298	p4d = p4d_offset(pgd, address);
 299	pud = pud_offset(p4d, address);
 300	pmd = pmd_offset(pud, address);
 301	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 302#undef pr_pde
 303
 304	/*
 305	 * We must not directly access the pte in the highpte
 306	 * case if the page table is located in highmem.
 307	 * And let's rather not kmap-atomic the pte, just in case
 308	 * it's allocated already:
 309	 */
 310	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 311		goto out;
 312
 313	pte = pte_offset_kernel(pmd, address);
 314	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 315out:
 316	pr_cont("\n");
 317}
 318
 319#else /* CONFIG_X86_64: */
 320
 321void vmalloc_sync_all(void)
 322{
 323	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 324}
 325
 326/*
 327 * 64-bit:
 328 *
 329 *   Handle a fault on the vmalloc area
 330 */
 331static noinline int vmalloc_fault(unsigned long address)
 332{
 333	pgd_t *pgd, *pgd_k;
 334	p4d_t *p4d, *p4d_k;
 335	pud_t *pud;
 336	pmd_t *pmd;
 337	pte_t *pte;
 338
 339	/* Make sure we are in vmalloc area: */
 340	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 341		return -1;
 342
 343	/*
 344	 * Copy kernel mappings over when needed. This can also
 345	 * happen within a race in page table update. In the later
 346	 * case just flush:
 347	 */
 348	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
 349	pgd_k = pgd_offset_k(address);
 350	if (pgd_none(*pgd_k))
 351		return -1;
 352
 353	if (pgtable_l5_enabled()) {
 354		if (pgd_none(*pgd)) {
 355			set_pgd(pgd, *pgd_k);
 356			arch_flush_lazy_mmu_mode();
 357		} else {
 358			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
 359		}
 360	}
 361
 362	/* With 4-level paging, copying happens on the p4d level. */
 363	p4d = p4d_offset(pgd, address);
 364	p4d_k = p4d_offset(pgd_k, address);
 365	if (p4d_none(*p4d_k))
 366		return -1;
 367
 368	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
 369		set_p4d(p4d, *p4d_k);
 370		arch_flush_lazy_mmu_mode();
 371	} else {
 372		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
 373	}
 374
 375	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
 376
 377	pud = pud_offset(p4d, address);
 378	if (pud_none(*pud))
 379		return -1;
 380
 381	if (pud_large(*pud))
 382		return 0;
 383
 384	pmd = pmd_offset(pud, address);
 385	if (pmd_none(*pmd))
 386		return -1;
 387
 388	if (pmd_large(*pmd))
 389		return 0;
 390
 391	pte = pte_offset_kernel(pmd, address);
 392	if (!pte_present(*pte))
 393		return -1;
 394
 395	return 0;
 396}
 397NOKPROBE_SYMBOL(vmalloc_fault);
 398
 399#ifdef CONFIG_CPU_SUP_AMD
 400static const char errata93_warning[] =
 401KERN_ERR 
 402"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 403"******* Working around it, but it may cause SEGVs or burn power.\n"
 404"******* Please consider a BIOS update.\n"
 405"******* Disabling USB legacy in the BIOS may also help.\n";
 406#endif
 407
 408/*
 409 * No vm86 mode in 64-bit mode:
 410 */
 411static inline void
 412check_v8086_mode(struct pt_regs *regs, unsigned long address,
 413		 struct task_struct *tsk)
 414{
 415}
 416
 417static int bad_address(void *p)
 418{
 419	unsigned long dummy;
 420
 421	return probe_kernel_address((unsigned long *)p, dummy);
 422}
 423
 424static void dump_pagetable(unsigned long address)
 425{
 426	pgd_t *base = __va(read_cr3_pa());
 427	pgd_t *pgd = base + pgd_index(address);
 428	p4d_t *p4d;
 429	pud_t *pud;
 430	pmd_t *pmd;
 431	pte_t *pte;
 432
 433	if (bad_address(pgd))
 434		goto bad;
 435
 436	pr_info("PGD %lx ", pgd_val(*pgd));
 437
 438	if (!pgd_present(*pgd))
 439		goto out;
 440
 441	p4d = p4d_offset(pgd, address);
 442	if (bad_address(p4d))
 443		goto bad;
 444
 445	pr_cont("P4D %lx ", p4d_val(*p4d));
 446	if (!p4d_present(*p4d) || p4d_large(*p4d))
 447		goto out;
 448
 449	pud = pud_offset(p4d, address);
 450	if (bad_address(pud))
 451		goto bad;
 452
 453	pr_cont("PUD %lx ", pud_val(*pud));
 454	if (!pud_present(*pud) || pud_large(*pud))
 455		goto out;
 456
 457	pmd = pmd_offset(pud, address);
 458	if (bad_address(pmd))
 459		goto bad;
 460
 461	pr_cont("PMD %lx ", pmd_val(*pmd));
 462	if (!pmd_present(*pmd) || pmd_large(*pmd))
 463		goto out;
 464
 465	pte = pte_offset_kernel(pmd, address);
 466	if (bad_address(pte))
 467		goto bad;
 468
 469	pr_cont("PTE %lx", pte_val(*pte));
 470out:
 471	pr_cont("\n");
 472	return;
 473bad:
 474	pr_info("BAD\n");
 475}
 476
 477#endif /* CONFIG_X86_64 */
 478
 479/*
 480 * Workaround for K8 erratum #93 & buggy BIOS.
 481 *
 482 * BIOS SMM functions are required to use a specific workaround
 483 * to avoid corruption of the 64bit RIP register on C stepping K8.
 484 *
 485 * A lot of BIOS that didn't get tested properly miss this.
 486 *
 487 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 488 * Try to work around it here.
 489 *
 490 * Note we only handle faults in kernel here.
 491 * Does nothing on 32-bit.
 492 */
 493static int is_errata93(struct pt_regs *regs, unsigned long address)
 494{
 495#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 496	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 497	    || boot_cpu_data.x86 != 0xf)
 498		return 0;
 499
 
 
 
 500	if (address != regs->ip)
 501		return 0;
 502
 503	if ((address >> 32) != 0)
 504		return 0;
 505
 506	address |= 0xffffffffUL << 32;
 507	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 508	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 509		printk_once(errata93_warning);
 510		regs->ip = address;
 511		return 1;
 512	}
 513#endif
 514	return 0;
 515}
 516
 517/*
 518 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 519 * to illegal addresses >4GB.
 520 *
 521 * We catch this in the page fault handler because these addresses
 522 * are not reachable. Just detect this case and return.  Any code
 523 * segment in LDT is compatibility mode.
 524 */
 525static int is_errata100(struct pt_regs *regs, unsigned long address)
 526{
 527#ifdef CONFIG_X86_64
 528	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 529		return 1;
 530#endif
 531	return 0;
 532}
 533
 534static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 
 
 535{
 536#ifdef CONFIG_X86_F00F_BUG
 537	unsigned long nr;
 538
 539	/*
 540	 * Pentium F0 0F C7 C8 bug workaround:
 541	 */
 542	if (boot_cpu_has_bug(X86_BUG_F00F)) {
 543		nr = (address - idt_descr.address) >> 3;
 544
 545		if (nr == 6) {
 546			do_invalid_op(regs, 0);
 547			return 1;
 548		}
 549	}
 550#endif
 551	return 0;
 552}
 553
 554static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 555{
 556	u32 offset = (index >> 3) * sizeof(struct desc_struct);
 557	unsigned long addr;
 558	struct ldttss_desc desc;
 559
 560	if (index == 0) {
 561		pr_alert("%s: NULL\n", name);
 562		return;
 563	}
 564
 565	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 566		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 567		return;
 568	}
 569
 570	if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
 571			      sizeof(struct ldttss_desc))) {
 572		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 573			 name, index);
 574		return;
 575	}
 576
 577	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 578#ifdef CONFIG_X86_64
 579	addr |= ((u64)desc.base3 << 32);
 580#endif
 581	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 582		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 583}
 584
 585static void
 586show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 587{
 588	if (!oops_may_print())
 589		return;
 590
 591	if (error_code & X86_PF_INSTR) {
 592		unsigned int level;
 593		pgd_t *pgd;
 594		pte_t *pte;
 595
 596		pgd = __va(read_cr3_pa());
 597		pgd += pgd_index(address);
 598
 599		pte = lookup_address_in_pgd(pgd, address, &level);
 600
 601		if (pte && pte_present(*pte) && !pte_exec(*pte))
 602			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 603				from_kuid(&init_user_ns, current_uid()));
 604		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 605				(pgd_flags(*pgd) & _PAGE_USER) &&
 606				(__read_cr4() & X86_CR4_SMEP))
 607			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 608				from_kuid(&init_user_ns, current_uid()));
 609	}
 610
 611	if (address < PAGE_SIZE && !user_mode(regs))
 612		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 613			(void *)address);
 614	else
 615		pr_alert("BUG: unable to handle page fault for address: %px\n",
 616			(void *)address);
 617
 618	pr_alert("#PF: %s %s in %s mode\n",
 619		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 620		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 621		 (error_code & X86_PF_WRITE) ? "write access" :
 622					       "read access",
 623			     user_mode(regs) ? "user" : "kernel");
 624	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 625		 !(error_code & X86_PF_PROT) ? "not-present page" :
 626		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 627		 (error_code & X86_PF_PK)    ? "protection keys violation" :
 628					       "permissions violation");
 629
 630	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 631		struct desc_ptr idt, gdt;
 632		u16 ldtr, tr;
 633
 634		/*
 635		 * This can happen for quite a few reasons.  The more obvious
 636		 * ones are faults accessing the GDT, or LDT.  Perhaps
 637		 * surprisingly, if the CPU tries to deliver a benign or
 638		 * contributory exception from user code and gets a page fault
 639		 * during delivery, the page fault can be delivered as though
 640		 * it originated directly from user code.  This could happen
 641		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 642		 * kernel or IST stack.
 643		 */
 644		store_idt(&idt);
 645
 646		/* Usable even on Xen PV -- it's just slow. */
 647		native_store_gdt(&gdt);
 648
 649		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 650			 idt.address, idt.size, gdt.address, gdt.size);
 651
 652		store_ldt(ldtr);
 653		show_ldttss(&gdt, "LDTR", ldtr);
 654
 655		store_tr(tr);
 656		show_ldttss(&gdt, "TR", tr);
 657	}
 658
 659	dump_pagetable(address);
 660}
 661
 662static noinline void
 663pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 664	    unsigned long address)
 665{
 666	struct task_struct *tsk;
 667	unsigned long flags;
 668	int sig;
 669
 670	flags = oops_begin();
 671	tsk = current;
 672	sig = SIGKILL;
 673
 674	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 675	       tsk->comm, address);
 676	dump_pagetable(address);
 677
 678	if (__die("Bad pagetable", regs, error_code))
 679		sig = 0;
 680
 681	oops_end(flags, regs, sig);
 682}
 683
 684static void set_signal_archinfo(unsigned long address,
 685				unsigned long error_code)
 686{
 687	struct task_struct *tsk = current;
 688
 689	/*
 690	 * To avoid leaking information about the kernel page
 691	 * table layout, pretend that user-mode accesses to
 692	 * kernel addresses are always protection faults.
 693	 *
 694	 * NB: This means that failed vsyscalls with vsyscall=none
 695	 * will have the PROT bit.  This doesn't leak any
 696	 * information and does not appear to cause any problems.
 697	 */
 698	if (address >= TASK_SIZE_MAX)
 699		error_code |= X86_PF_PROT;
 
 
 
 
 
 
 700
 701	tsk->thread.trap_nr = X86_TRAP_PF;
 702	tsk->thread.error_code = error_code | X86_PF_USER;
 703	tsk->thread.cr2 = address;
 704}
 705
 706static noinline void
 707no_context(struct pt_regs *regs, unsigned long error_code,
 708	   unsigned long address, int signal, int si_code)
 709{
 710	struct task_struct *tsk = current;
 
 
 711	unsigned long flags;
 712	int sig;
 713
 714	if (user_mode(regs)) {
 715		/*
 716		 * This is an implicit supervisor-mode access from user
 717		 * mode.  Bypass all the kernel-mode recovery code and just
 718		 * OOPS.
 719		 */
 720		goto oops;
 721	}
 722
 723	/* Are we prepared to handle this kernel fault? */
 724	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 725		/*
 726		 * Any interrupt that takes a fault gets the fixup. This makes
 727		 * the below recursive fault logic only apply to a faults from
 728		 * task context.
 729		 */
 730		if (in_interrupt())
 731			return;
 732
 733		/*
 734		 * Per the above we're !in_interrupt(), aka. task context.
 735		 *
 736		 * In this case we need to make sure we're not recursively
 737		 * faulting through the emulate_vsyscall() logic.
 738		 */
 739		if (current->thread.sig_on_uaccess_err && signal) {
 740			set_signal_archinfo(address, error_code);
 741
 742			/* XXX: hwpoison faults will set the wrong code. */
 743			force_sig_fault(signal, si_code, (void __user *)address);
 744		}
 745
 746		/*
 747		 * Barring that, we can do the fixup and be happy.
 748		 */
 749		return;
 750	}
 751
 752#ifdef CONFIG_VMAP_STACK
 753	/*
 754	 * Stack overflow?  During boot, we can fault near the initial
 755	 * stack in the direct map, but that's not an overflow -- check
 756	 * that we're in vmalloc space to avoid this.
 757	 */
 758	if (is_vmalloc_addr((void *)address) &&
 759	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
 760	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
 761		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
 762		/*
 763		 * We're likely to be running with very little stack space
 764		 * left.  It's plausible that we'd hit this condition but
 765		 * double-fault even before we get this far, in which case
 766		 * we're fine: the double-fault handler will deal with it.
 767		 *
 768		 * We don't want to make it all the way into the oops code
 769		 * and then double-fault, though, because we're likely to
 770		 * break the console driver and lose most of the stack dump.
 771		 */
 772		asm volatile ("movq %[stack], %%rsp\n\t"
 773			      "call handle_stack_overflow\n\t"
 774			      "1: jmp 1b"
 775			      : ASM_CALL_CONSTRAINT
 776			      : "D" ("kernel stack overflow (page fault)"),
 777				"S" (regs), "d" (address),
 778				[stack] "rm" (stack));
 779		unreachable();
 780	}
 781#endif
 782
 783	/*
 784	 * 32-bit:
 785	 *
 786	 *   Valid to do another page fault here, because if this fault
 787	 *   had been triggered by is_prefetch fixup_exception would have
 788	 *   handled it.
 789	 *
 790	 * 64-bit:
 791	 *
 792	 *   Hall of shame of CPU/BIOS bugs.
 793	 */
 794	if (is_prefetch(regs, error_code, address))
 795		return;
 796
 797	if (is_errata93(regs, address))
 
 
 798		return;
 799
 800	/*
 801	 * Buggy firmware could access regions which might page fault, try to
 802	 * recover from such faults.
 803	 */
 804	if (IS_ENABLED(CONFIG_EFI))
 805		efi_recover_from_page_fault(address);
 806
 807oops:
 808	/*
 809	 * Oops. The kernel tried to access some bad page. We'll have to
 810	 * terminate things with extreme prejudice:
 811	 */
 812	flags = oops_begin();
 813
 814	show_fault_oops(regs, error_code, address);
 815
 816	if (task_stack_end_corrupted(tsk))
 817		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 818
 819	sig = SIGKILL;
 820	if (__die("Oops", regs, error_code))
 821		sig = 0;
 822
 823	/* Executive summary in case the body of the oops scrolled away */
 824	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 825
 826	oops_end(flags, regs, sig);
 827}
 828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829/*
 830 * Print out info about fatal segfaults, if the show_unhandled_signals
 831 * sysctl is set:
 832 */
 833static inline void
 834show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 835		unsigned long address, struct task_struct *tsk)
 836{
 837	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 
 
 838
 839	if (!unhandled_signal(tsk, SIGSEGV))
 840		return;
 841
 842	if (!printk_ratelimit())
 843		return;
 844
 845	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 846		loglvl, tsk->comm, task_pid_nr(tsk), address,
 847		(void *)regs->ip, (void *)regs->sp, error_code);
 848
 849	print_vma_addr(KERN_CONT " in ", regs->ip);
 850
 
 
 
 
 
 
 
 
 851	printk(KERN_CONT "\n");
 852
 853	show_opcodes(regs, loglvl);
 854}
 855
 856/*
 857 * The (legacy) vsyscall page is the long page in the kernel portion
 858 * of the address space that has user-accessible permissions.
 859 */
 860static bool is_vsyscall_vaddr(unsigned long vaddr)
 861{
 862	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
 863}
 864
 865static void
 866__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 867		       unsigned long address, u32 pkey, int si_code)
 868{
 869	struct task_struct *tsk = current;
 870
 871	/* User mode accesses just cause a SIGSEGV */
 872	if (user_mode(regs) && (error_code & X86_PF_USER)) {
 873		/*
 874		 * It's possible to have interrupts off here:
 875		 */
 876		local_irq_enable();
 877
 878		/*
 879		 * Valid to do another page fault here because this one came
 880		 * from user space:
 881		 */
 882		if (is_prefetch(regs, error_code, address))
 883			return;
 884
 885		if (is_errata100(regs, address))
 886			return;
 
 
 
 887
 888		/*
 889		 * To avoid leaking information about the kernel page table
 890		 * layout, pretend that user-mode accesses to kernel addresses
 891		 * are always protection faults.
 892		 */
 893		if (address >= TASK_SIZE_MAX)
 894			error_code |= X86_PF_PROT;
 895
 896		if (likely(show_unhandled_signals))
 897			show_signal_msg(regs, error_code, address, tsk);
 898
 899		set_signal_archinfo(address, error_code);
 900
 901		if (si_code == SEGV_PKUERR)
 902			force_sig_pkuerr((void __user *)address, pkey);
 903
 904		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 
 905
 906		return;
 907	}
 908
 909	if (is_f00f_bug(regs, address))
 910		return;
 
 
 911
 912	no_context(regs, error_code, address, SIGSEGV, si_code);
 913}
 914
 915static noinline void
 916bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 917		     unsigned long address)
 918{
 919	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 920}
 921
 922static void
 923__bad_area(struct pt_regs *regs, unsigned long error_code,
 924	   unsigned long address, u32 pkey, int si_code)
 925{
 926	struct mm_struct *mm = current->mm;
 927	/*
 928	 * Something tried to access memory that isn't in our memory map..
 929	 * Fix it, but check if it's kernel or user first..
 930	 */
 931	up_read(&mm->mmap_sem);
 932
 933	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 934}
 935
 936static noinline void
 937bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 938{
 939	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
 940}
 941
 942static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 943		struct vm_area_struct *vma)
 944{
 945	/* This code is always called on the current mm */
 946	bool foreign = false;
 947
 948	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 949		return false;
 950	if (error_code & X86_PF_PK)
 951		return true;
 952	/* this checks permission keys on the VMA: */
 953	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 954				       (error_code & X86_PF_INSTR), foreign))
 955		return true;
 956	return false;
 957}
 958
 959static noinline void
 960bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 961		      unsigned long address, struct vm_area_struct *vma)
 962{
 963	/*
 964	 * This OSPKE check is not strictly necessary at runtime.
 965	 * But, doing it this way allows compiler optimizations
 966	 * if pkeys are compiled out.
 967	 */
 968	if (bad_area_access_from_pkeys(error_code, vma)) {
 969		/*
 970		 * A protection key fault means that the PKRU value did not allow
 971		 * access to some PTE.  Userspace can figure out what PKRU was
 972		 * from the XSAVE state.  This function captures the pkey from
 973		 * the vma and passes it to userspace so userspace can discover
 974		 * which protection key was set on the PTE.
 975		 *
 976		 * If we get here, we know that the hardware signaled a X86_PF_PK
 977		 * fault and that there was a VMA once we got in the fault
 978		 * handler.  It does *not* guarantee that the VMA we find here
 979		 * was the one that we faulted on.
 980		 *
 981		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 982		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 983		 * 3. T1   : faults...
 984		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 985		 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 986		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 987		 *	     faulted on a pte with its pkey=4.
 988		 */
 989		u32 pkey = vma_pkey(vma);
 990
 991		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 992	} else {
 993		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 994	}
 995}
 996
 997static void
 998do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 999	  vm_fault_t fault)
1000{
1001	/* Kernel mode? Handle exceptions or die: */
1002	if (!(error_code & X86_PF_USER)) {
1003		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 
1004		return;
1005	}
1006
1007	/* User-space => ok to do another page fault: */
1008	if (is_prefetch(regs, error_code, address))
1009		return;
1010
 
 
 
 
 
1011	set_signal_archinfo(address, error_code);
1012
1013#ifdef CONFIG_MEMORY_FAILURE
1014	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1015		struct task_struct *tsk = current;
1016		unsigned lsb = 0;
1017
1018		pr_err(
1019	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1020			tsk->comm, tsk->pid, address);
1021		if (fault & VM_FAULT_HWPOISON_LARGE)
1022			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1023		if (fault & VM_FAULT_HWPOISON)
1024			lsb = PAGE_SHIFT;
1025		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
1026		return;
1027	}
1028#endif
1029	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1030}
1031
1032static noinline void
1033mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1034	       unsigned long address, vm_fault_t fault)
1035{
1036	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1037		no_context(regs, error_code, address, 0, 0);
1038		return;
1039	}
1040
1041	if (fault & VM_FAULT_OOM) {
1042		/* Kernel mode? Handle exceptions or die: */
1043		if (!(error_code & X86_PF_USER)) {
1044			no_context(regs, error_code, address,
1045				   SIGSEGV, SEGV_MAPERR);
1046			return;
1047		}
1048
1049		/*
1050		 * We ran out of memory, call the OOM killer, and return the
1051		 * userspace (which will retry the fault, or kill us if we got
1052		 * oom-killed):
1053		 */
1054		pagefault_out_of_memory();
1055	} else {
1056		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1057			     VM_FAULT_HWPOISON_LARGE))
1058			do_sigbus(regs, error_code, address, fault);
1059		else if (fault & VM_FAULT_SIGSEGV)
1060			bad_area_nosemaphore(regs, error_code, address);
1061		else
1062			BUG();
1063	}
1064}
1065
1066static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1067{
1068	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1069		return 0;
1070
1071	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1072		return 0;
1073
1074	return 1;
1075}
1076
1077/*
1078 * Handle a spurious fault caused by a stale TLB entry.
1079 *
1080 * This allows us to lazily refresh the TLB when increasing the
1081 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1082 * eagerly is very expensive since that implies doing a full
1083 * cross-processor TLB flush, even if no stale TLB entries exist
1084 * on other processors.
1085 *
1086 * Spurious faults may only occur if the TLB contains an entry with
1087 * fewer permission than the page table entry.  Non-present (P = 0)
1088 * and reserved bit (R = 1) faults are never spurious.
1089 *
1090 * There are no security implications to leaving a stale TLB when
1091 * increasing the permissions on a page.
1092 *
1093 * Returns non-zero if a spurious fault was handled, zero otherwise.
1094 *
1095 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1096 * (Optional Invalidation).
1097 */
1098static noinline int
1099spurious_kernel_fault(unsigned long error_code, unsigned long address)
1100{
1101	pgd_t *pgd;
1102	p4d_t *p4d;
1103	pud_t *pud;
1104	pmd_t *pmd;
1105	pte_t *pte;
1106	int ret;
1107
1108	/*
1109	 * Only writes to RO or instruction fetches from NX may cause
1110	 * spurious faults.
1111	 *
1112	 * These could be from user or supervisor accesses but the TLB
1113	 * is only lazily flushed after a kernel mapping protection
1114	 * change, so user accesses are not expected to cause spurious
1115	 * faults.
1116	 */
1117	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1118	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1119		return 0;
1120
1121	pgd = init_mm.pgd + pgd_index(address);
1122	if (!pgd_present(*pgd))
1123		return 0;
1124
1125	p4d = p4d_offset(pgd, address);
1126	if (!p4d_present(*p4d))
1127		return 0;
1128
1129	if (p4d_large(*p4d))
1130		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1131
1132	pud = pud_offset(p4d, address);
1133	if (!pud_present(*pud))
1134		return 0;
1135
1136	if (pud_large(*pud))
1137		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1138
1139	pmd = pmd_offset(pud, address);
1140	if (!pmd_present(*pmd))
1141		return 0;
1142
1143	if (pmd_large(*pmd))
1144		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1145
1146	pte = pte_offset_kernel(pmd, address);
1147	if (!pte_present(*pte))
1148		return 0;
1149
1150	ret = spurious_kernel_fault_check(error_code, pte);
1151	if (!ret)
1152		return 0;
1153
1154	/*
1155	 * Make sure we have permissions in PMD.
1156	 * If not, then there's a bug in the page tables:
1157	 */
1158	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1159	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1160
1161	return ret;
1162}
1163NOKPROBE_SYMBOL(spurious_kernel_fault);
1164
1165int show_unhandled_signals = 1;
1166
1167static inline int
1168access_error(unsigned long error_code, struct vm_area_struct *vma)
1169{
1170	/* This is only called for the current mm, so: */
1171	bool foreign = false;
1172
1173	/*
1174	 * Read or write was blocked by protection keys.  This is
1175	 * always an unconditional error and can never result in
1176	 * a follow-up action to resolve the fault, like a COW.
1177	 */
1178	if (error_code & X86_PF_PK)
1179		return 1;
1180
1181	/*
 
 
 
 
 
 
 
 
 
 
 
 
1182	 * Make sure to check the VMA so that we do not perform
1183	 * faults just to hit a X86_PF_PK as soon as we fill in a
1184	 * page.
1185	 */
1186	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1187				       (error_code & X86_PF_INSTR), foreign))
1188		return 1;
1189
 
 
 
 
 
 
 
 
 
 
 
 
1190	if (error_code & X86_PF_WRITE) {
1191		/* write, present and write, not present: */
 
 
1192		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1193			return 1;
1194		return 0;
1195	}
1196
1197	/* read, present: */
1198	if (unlikely(error_code & X86_PF_PROT))
1199		return 1;
1200
1201	/* read, not present: */
1202	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1203		return 1;
1204
1205	return 0;
1206}
1207
1208static int fault_in_kernel_space(unsigned long address)
1209{
1210	/*
1211	 * On 64-bit systems, the vsyscall page is at an address above
1212	 * TASK_SIZE_MAX, but is not considered part of the kernel
1213	 * address space.
1214	 */
1215	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1216		return false;
1217
1218	return address >= TASK_SIZE_MAX;
1219}
1220
1221/*
1222 * Called for all faults where 'address' is part of the kernel address
1223 * space.  Might get called for faults that originate from *code* that
1224 * ran in userspace or the kernel.
1225 */
1226static void
1227do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1228		   unsigned long address)
1229{
1230	/*
1231	 * Protection keys exceptions only happen on user pages.  We
1232	 * have no user pages in the kernel portion of the address
1233	 * space, so do not expect them here.
1234	 */
1235	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1236
 
1237	/*
1238	 * We can fault-in kernel-space virtual memory on-demand. The
1239	 * 'reference' page table is init_mm.pgd.
1240	 *
1241	 * NOTE! We MUST NOT take any locks for this case. We may
1242	 * be in an interrupt or a critical region, and should
1243	 * only copy the information from the master page table,
1244	 * nothing more.
1245	 *
1246	 * Before doing this on-demand faulting, ensure that the
1247	 * fault is not any of the following:
1248	 * 1. A fault on a PTE with a reserved bit set.
1249	 * 2. A fault caused by a user-mode access.  (Do not demand-
1250	 *    fault kernel memory due to user-mode accesses).
1251	 * 3. A fault caused by a page-level protection violation.
1252	 *    (A demand fault would be on a non-present page which
1253	 *     would have X86_PF_PROT==0).
 
 
 
 
 
 
1254	 */
1255	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1256		if (vmalloc_fault(address) >= 0)
1257			return;
1258	}
 
 
 
 
1259
1260	/* Was the fault spurious, caused by lazy TLB invalidation? */
1261	if (spurious_kernel_fault(hw_error_code, address))
1262		return;
1263
1264	/* kprobes don't want to hook the spurious faults: */
1265	if (kprobe_page_fault(regs, X86_TRAP_PF))
1266		return;
1267
1268	/*
1269	 * Note, despite being a "bad area", there are quite a few
1270	 * acceptable reasons to get here, such as erratum fixups
1271	 * and handling kernel code that can fault, like get_user().
1272	 *
1273	 * Don't take the mm semaphore here. If we fixup a prefetch
1274	 * fault we could otherwise deadlock:
1275	 */
1276	bad_area_nosemaphore(regs, hw_error_code, address);
1277}
1278NOKPROBE_SYMBOL(do_kern_addr_fault);
1279
1280/* Handle faults in the user portion of the address space */
 
 
 
 
 
 
 
1281static inline
1282void do_user_addr_fault(struct pt_regs *regs,
1283			unsigned long hw_error_code,
1284			unsigned long address)
1285{
1286	struct vm_area_struct *vma;
1287	struct task_struct *tsk;
1288	struct mm_struct *mm;
1289	vm_fault_t fault, major = 0;
1290	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1291
1292	tsk = current;
1293	mm = tsk->mm;
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295	/* kprobes don't want to hook the spurious faults: */
1296	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1297		return;
1298
1299	/*
1300	 * Reserved bits are never expected to be set on
1301	 * entries in the user portion of the page tables.
1302	 */
1303	if (unlikely(hw_error_code & X86_PF_RSVD))
1304		pgtable_bad(regs, hw_error_code, address);
1305
1306	/*
1307	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1308	 * pages in the user address space.  The odd case here is WRUSS,
1309	 * which, according to the preliminary documentation, does not respect
1310	 * SMAP and will have the USER bit set so, in all cases, SMAP
1311	 * enforcement appears to be consistent with the USER bit.
1312	 */
1313	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1314		     !(hw_error_code & X86_PF_USER) &&
1315		     !(regs->flags & X86_EFLAGS_AC)))
1316	{
1317		bad_area_nosemaphore(regs, hw_error_code, address);
 
 
 
1318		return;
1319	}
1320
1321	/*
1322	 * If we're in an interrupt, have no user context or are running
1323	 * in a region with pagefaults disabled then we must not take the fault
1324	 */
1325	if (unlikely(faulthandler_disabled() || !mm)) {
1326		bad_area_nosemaphore(regs, hw_error_code, address);
1327		return;
1328	}
1329
1330	/*
1331	 * It's safe to allow irq's after cr2 has been saved and the
1332	 * vmalloc fault has been handled.
1333	 *
1334	 * User-mode registers count as a user access even for any
1335	 * potential system fault or CPU buglet:
1336	 */
1337	if (user_mode(regs)) {
1338		local_irq_enable();
1339		flags |= FAULT_FLAG_USER;
1340	} else {
1341		if (regs->flags & X86_EFLAGS_IF)
1342			local_irq_enable();
1343	}
1344
1345	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1346
1347	if (hw_error_code & X86_PF_WRITE)
 
 
 
 
 
 
 
 
1348		flags |= FAULT_FLAG_WRITE;
1349	if (hw_error_code & X86_PF_INSTR)
1350		flags |= FAULT_FLAG_INSTRUCTION;
1351
1352#ifdef CONFIG_X86_64
1353	/*
1354	 * Faults in the vsyscall page might need emulation.  The
1355	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1356	 * considered to be part of the user address space.
1357	 *
1358	 * The vsyscall page does not have a "real" VMA, so do this
1359	 * emulation before we go searching for VMAs.
1360	 *
1361	 * PKRU never rejects instruction fetches, so we don't need
1362	 * to consider the PF_PK bit.
1363	 */
1364	if (is_vsyscall_vaddr(address)) {
1365		if (emulate_vsyscall(hw_error_code, regs, address))
1366			return;
1367	}
1368#endif
1369
1370	/*
1371	 * Kernel-mode access to the user address space should only occur
1372	 * on well-defined single instructions listed in the exception
1373	 * tables.  But, an erroneous kernel fault occurring outside one of
1374	 * those areas which also holds mmap_sem might deadlock attempting
1375	 * to validate the fault against the address space.
1376	 *
1377	 * Only do the expensive exception table search when we might be at
1378	 * risk of a deadlock.  This happens if we
1379	 * 1. Failed to acquire mmap_sem, and
1380	 * 2. The access did not originate in userspace.
1381	 */
1382	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1383		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1384			/*
1385			 * Fault from code in kernel from
1386			 * which we do not expect faults.
1387			 */
1388			bad_area_nosemaphore(regs, hw_error_code, address);
1389			return;
1390		}
1391retry:
1392		down_read(&mm->mmap_sem);
1393	} else {
1394		/*
1395		 * The above down_read_trylock() might have succeeded in
1396		 * which case we'll have missed the might_sleep() from
1397		 * down_read():
1398		 */
1399		might_sleep();
1400	}
 
1401
1402	vma = find_vma(mm, address);
 
1403	if (unlikely(!vma)) {
1404		bad_area(regs, hw_error_code, address);
1405		return;
1406	}
1407	if (likely(vma->vm_start <= address))
1408		goto good_area;
1409	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1410		bad_area(regs, hw_error_code, address);
1411		return;
1412	}
1413	if (unlikely(expand_stack(vma, address))) {
1414		bad_area(regs, hw_error_code, address);
1415		return;
1416	}
1417
1418	/*
1419	 * Ok, we have a good vm_area for this memory access, so
1420	 * we can handle it..
1421	 */
1422good_area:
1423	if (unlikely(access_error(hw_error_code, vma))) {
1424		bad_area_access_error(regs, hw_error_code, address, vma);
1425		return;
1426	}
1427
1428	/*
1429	 * If for any reason at all we couldn't handle the fault,
1430	 * make sure we exit gracefully rather than endlessly redo
1431	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1432	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1433	 *
1434	 * Note that handle_userfault() may also release and reacquire mmap_sem
1435	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1436	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1437	 * (potentially after handling any pending signal during the return to
1438	 * userland). The return to userland is identified whenever
1439	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1440	 */
1441	fault = handle_mm_fault(vma, address, flags);
1442	major |= fault & VM_FAULT_MAJOR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1443
1444	/*
1445	 * If we need to retry the mmap_sem has already been released,
1446	 * and if there is a fatal signal pending there is no guarantee
1447	 * that we made any progress. Handle this case first.
1448	 */
1449	if (unlikely(fault & VM_FAULT_RETRY)) {
1450		/* Retry at most once */
1451		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1452			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1453			flags |= FAULT_FLAG_TRIED;
1454			if (!fatal_signal_pending(tsk))
1455				goto retry;
1456		}
1457
1458		/* User mode? Just return to handle the fatal exception */
1459		if (flags & FAULT_FLAG_USER)
1460			return;
 
1461
1462		/* Not returning to user mode? Handle exceptions or die: */
1463		no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
 
1464		return;
1465	}
1466
1467	up_read(&mm->mmap_sem);
1468	if (unlikely(fault & VM_FAULT_ERROR)) {
1469		mm_fault_error(regs, hw_error_code, address, fault);
1470		return;
1471	}
 
 
 
1472
1473	/*
1474	 * Major/minor page fault accounting. If any of the events
1475	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1476	 */
1477	if (major) {
1478		tsk->maj_flt++;
1479		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1480	} else {
1481		tsk->min_flt++;
1482		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
 
 
 
 
 
1483	}
1484
1485	check_v8086_mode(regs, address, tsk);
1486}
1487NOKPROBE_SYMBOL(do_user_addr_fault);
1488
1489/*
1490 * Explicitly marked noinline such that the function tracer sees this as the
1491 * page_fault entry point.
1492 */
1493static noinline void
1494__do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1495		unsigned long address)
1496{
1497	prefetchw(&current->mm->mmap_sem);
1498
1499	if (unlikely(kmmio_fault(regs, address)))
1500		return;
1501
1502	/* Was the fault on kernel-controlled part of the address space? */
1503	if (unlikely(fault_in_kernel_space(address)))
1504		do_kern_addr_fault(regs, hw_error_code, address);
1505	else
1506		do_user_addr_fault(regs, hw_error_code, address);
1507}
1508NOKPROBE_SYMBOL(__do_page_fault);
1509
1510static __always_inline void
1511trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1512			 unsigned long address)
1513{
1514	if (!trace_pagefault_enabled())
1515		return;
1516
1517	if (user_mode(regs))
1518		trace_page_fault_user(address, regs, error_code);
1519	else
1520		trace_page_fault_kernel(address, regs, error_code);
1521}
1522
1523dotraplinkage void
1524do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 
1525{
1526	enum ctx_state prev_state;
1527
1528	prev_state = exception_enter();
1529	trace_page_fault_entries(regs, error_code, address);
1530	__do_page_fault(regs, error_code, address);
1531	exception_exit(prev_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532}
1533NOKPROBE_SYMBOL(do_page_fault);