Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
 
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/memblock.h>		/* max_low_pfn			*/
  12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
  13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  15#include <linux/perf_event.h>		/* perf_sw_event		*/
  16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  17#include <linux/prefetch.h>		/* prefetchw			*/
  18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  21#include <linux/mm_types.h>
  22#include <linux/mm.h>			/* find_and_lock_vma() */
  23
  24#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  25#include <asm/traps.h>			/* dotraplinkage, ...		*/
  26#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  27#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  28#include <asm/vm86.h>			/* struct vm86			*/
  29#include <asm/mmu_context.h>		/* vma_pkey()			*/
  30#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  31#include <asm/desc.h>			/* store_idt(), ...		*/
  32#include <asm/cpu_entry_area.h>		/* exception stack		*/
  33#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
  34#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
  35#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
  36#include <asm/irq_stack.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <asm/trace/exceptions.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40
  41/*
  42 * Returns 0 if mmiotrace is disabled, or if the fault is not
  43 * handled by mmiotrace:
  44 */
  45static nokprobe_inline int
  46kmmio_fault(struct pt_regs *regs, unsigned long addr)
  47{
  48	if (unlikely(is_kmmio_active()))
  49		if (kmmio_handler(regs, addr) == 1)
  50			return -1;
  51	return 0;
  52}
  53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54/*
  55 * Prefetch quirks:
  56 *
  57 * 32-bit mode:
  58 *
  59 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  60 *   Check that here and ignore it.  This is AMD erratum #91.
  61 *
  62 * 64-bit mode:
  63 *
  64 *   Sometimes the CPU reports invalid exceptions on prefetch.
  65 *   Check that here and ignore it.
  66 *
  67 * Opcode checker based on code by Richard Brunner.
  68 */
  69static inline int
  70check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  71		      unsigned char opcode, int *prefetch)
  72{
  73	unsigned char instr_hi = opcode & 0xf0;
  74	unsigned char instr_lo = opcode & 0x0f;
  75
  76	switch (instr_hi) {
  77	case 0x20:
  78	case 0x30:
  79		/*
  80		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  81		 * In X86_64 long mode, the CPU will signal invalid
  82		 * opcode if some of these prefixes are present so
  83		 * X86_64 will never get here anyway
  84		 */
  85		return ((instr_lo & 7) == 0x6);
  86#ifdef CONFIG_X86_64
  87	case 0x40:
  88		/*
  89		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
 
 
 
 
  90		 */
  91		return (!user_mode(regs) || user_64bit_mode(regs));
  92#endif
  93	case 0x60:
  94		/* 0x64 thru 0x67 are valid prefixes in all modes. */
  95		return (instr_lo & 0xC) == 0x4;
  96	case 0xF0:
  97		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  98		return !instr_lo || (instr_lo>>1) == 1;
  99	case 0x00:
 100		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 101		if (get_kernel_nofault(opcode, instr))
 102			return 0;
 103
 104		*prefetch = (instr_lo == 0xF) &&
 105			(opcode == 0x0D || opcode == 0x18);
 106		return 0;
 107	default:
 108		return 0;
 109	}
 110}
 111
 112static bool is_amd_k8_pre_npt(void)
 113{
 114	struct cpuinfo_x86 *c = &boot_cpu_data;
 115
 116	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
 117			c->x86_vendor == X86_VENDOR_AMD &&
 118			c->x86 == 0xf && c->x86_model < 0x40);
 119}
 120
 121static int
 122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 123{
 124	unsigned char *max_instr;
 125	unsigned char *instr;
 126	int prefetch = 0;
 127
 128	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
 129	if (!is_amd_k8_pre_npt())
 130		return 0;
 131
 132	/*
 133	 * If it was a exec (instruction fetch) fault on NX page, then
 134	 * do not ignore the fault:
 135	 */
 136	if (error_code & X86_PF_INSTR)
 137		return 0;
 138
 139	instr = (void *)convert_ip_to_linear(current, regs);
 140	max_instr = instr + 15;
 141
 142	/*
 143	 * This code has historically always bailed out if IP points to a
 144	 * not-present page (e.g. due to a race).  No one has ever
 145	 * complained about this.
 146	 */
 147	pagefault_disable();
 148
 149	while (instr < max_instr) {
 150		unsigned char opcode;
 151
 152		if (user_mode(regs)) {
 153			if (get_user(opcode, (unsigned char __user *) instr))
 154				break;
 155		} else {
 156			if (get_kernel_nofault(opcode, instr))
 157				break;
 158		}
 159
 160		instr++;
 161
 162		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 163			break;
 164	}
 165
 166	pagefault_enable();
 167	return prefetch;
 168}
 169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170DEFINE_SPINLOCK(pgd_lock);
 171LIST_HEAD(pgd_list);
 172
 173#ifdef CONFIG_X86_32
 174static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 175{
 176	unsigned index = pgd_index(address);
 177	pgd_t *pgd_k;
 178	p4d_t *p4d, *p4d_k;
 179	pud_t *pud, *pud_k;
 180	pmd_t *pmd, *pmd_k;
 181
 182	pgd += index;
 183	pgd_k = init_mm.pgd + index;
 184
 185	if (!pgd_present(*pgd_k))
 186		return NULL;
 187
 188	/*
 189	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 190	 * and redundant with the set_pmd() on non-PAE. As would
 191	 * set_p4d/set_pud.
 192	 */
 193	p4d = p4d_offset(pgd, address);
 194	p4d_k = p4d_offset(pgd_k, address);
 195	if (!p4d_present(*p4d_k))
 196		return NULL;
 197
 198	pud = pud_offset(p4d, address);
 199	pud_k = pud_offset(p4d_k, address);
 200	if (!pud_present(*pud_k))
 201		return NULL;
 202
 203	pmd = pmd_offset(pud, address);
 204	pmd_k = pmd_offset(pud_k, address);
 205
 206	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 207		set_pmd(pmd, *pmd_k);
 208
 209	if (!pmd_present(*pmd_k))
 210		return NULL;
 
 
 
 211	else
 212		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 213
 214	return pmd_k;
 215}
 216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217/*
 218 *   Handle a fault on the vmalloc or module mapping area
 219 *
 220 *   This is needed because there is a race condition between the time
 221 *   when the vmalloc mapping code updates the PMD to the point in time
 222 *   where it synchronizes this update with the other page-tables in the
 223 *   system.
 224 *
 225 *   In this race window another thread/CPU can map an area on the same
 226 *   PMD, finds it already present and does not synchronize it with the
 227 *   rest of the system yet. As a result v[mz]alloc might return areas
 228 *   which are not mapped in every page-table in the system, causing an
 229 *   unhandled page-fault when they are accessed.
 230 */
 231static noinline int vmalloc_fault(unsigned long address)
 232{
 233	unsigned long pgd_paddr;
 234	pmd_t *pmd_k;
 235	pte_t *pte_k;
 236
 237	/* Make sure we are in vmalloc area: */
 238	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 239		return -1;
 240
 
 
 241	/*
 242	 * Synchronize this task's top level page-table
 243	 * with the 'reference' page table.
 244	 *
 245	 * Do _not_ use "current" here. We might be inside
 246	 * an interrupt in the middle of a task switch..
 247	 */
 248	pgd_paddr = read_cr3_pa();
 249	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 250	if (!pmd_k)
 251		return -1;
 252
 253	if (pmd_large(*pmd_k))
 254		return 0;
 255
 256	pte_k = pte_offset_kernel(pmd_k, address);
 257	if (!pte_present(*pte_k))
 258		return -1;
 259
 260	return 0;
 261}
 262NOKPROBE_SYMBOL(vmalloc_fault);
 263
 264void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 
 
 
 
 
 265{
 266	unsigned long addr;
 267
 268	for (addr = start & PMD_MASK;
 269	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 270	     addr += PMD_SIZE) {
 271		struct page *page;
 272
 273		spin_lock(&pgd_lock);
 274		list_for_each_entry(page, &pgd_list, lru) {
 275			spinlock_t *pgt_lock;
 276
 277			/* the pgt_lock only for Xen */
 278			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 279
 280			spin_lock(pgt_lock);
 281			vmalloc_sync_one(page_address(page), addr);
 282			spin_unlock(pgt_lock);
 283		}
 284		spin_unlock(&pgd_lock);
 285	}
 286}
 287
 288static bool low_pfn(unsigned long pfn)
 289{
 290	return pfn < max_low_pfn;
 291}
 292
 293static void dump_pagetable(unsigned long address)
 294{
 295	pgd_t *base = __va(read_cr3_pa());
 296	pgd_t *pgd = &base[pgd_index(address)];
 297	p4d_t *p4d;
 298	pud_t *pud;
 299	pmd_t *pmd;
 300	pte_t *pte;
 301
 302#ifdef CONFIG_X86_PAE
 303	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 304	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 305		goto out;
 306#define pr_pde pr_cont
 307#else
 308#define pr_pde pr_info
 309#endif
 310	p4d = p4d_offset(pgd, address);
 311	pud = pud_offset(p4d, address);
 312	pmd = pmd_offset(pud, address);
 313	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 314#undef pr_pde
 315
 316	/*
 317	 * We must not directly access the pte in the highpte
 318	 * case if the page table is located in highmem.
 319	 * And let's rather not kmap-atomic the pte, just in case
 320	 * it's allocated already:
 321	 */
 322	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 323		goto out;
 324
 325	pte = pte_offset_kernel(pmd, address);
 326	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 327out:
 328	pr_cont("\n");
 329}
 330
 331#else /* CONFIG_X86_64: */
 332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333#ifdef CONFIG_CPU_SUP_AMD
 334static const char errata93_warning[] =
 335KERN_ERR 
 336"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 337"******* Working around it, but it may cause SEGVs or burn power.\n"
 338"******* Please consider a BIOS update.\n"
 339"******* Disabling USB legacy in the BIOS may also help.\n";
 340#endif
 341
 
 
 
 
 
 
 
 
 
 342static int bad_address(void *p)
 343{
 344	unsigned long dummy;
 345
 346	return get_kernel_nofault(dummy, (unsigned long *)p);
 347}
 348
 349static void dump_pagetable(unsigned long address)
 350{
 351	pgd_t *base = __va(read_cr3_pa());
 352	pgd_t *pgd = base + pgd_index(address);
 353	p4d_t *p4d;
 354	pud_t *pud;
 355	pmd_t *pmd;
 356	pte_t *pte;
 357
 358	if (bad_address(pgd))
 359		goto bad;
 360
 361	pr_info("PGD %lx ", pgd_val(*pgd));
 362
 363	if (!pgd_present(*pgd))
 364		goto out;
 365
 366	p4d = p4d_offset(pgd, address);
 367	if (bad_address(p4d))
 368		goto bad;
 369
 370	pr_cont("P4D %lx ", p4d_val(*p4d));
 371	if (!p4d_present(*p4d) || p4d_large(*p4d))
 372		goto out;
 373
 374	pud = pud_offset(p4d, address);
 375	if (bad_address(pud))
 376		goto bad;
 377
 378	pr_cont("PUD %lx ", pud_val(*pud));
 379	if (!pud_present(*pud) || pud_large(*pud))
 380		goto out;
 381
 382	pmd = pmd_offset(pud, address);
 383	if (bad_address(pmd))
 384		goto bad;
 385
 386	pr_cont("PMD %lx ", pmd_val(*pmd));
 387	if (!pmd_present(*pmd) || pmd_large(*pmd))
 388		goto out;
 389
 390	pte = pte_offset_kernel(pmd, address);
 391	if (bad_address(pte))
 392		goto bad;
 393
 394	pr_cont("PTE %lx", pte_val(*pte));
 395out:
 396	pr_cont("\n");
 397	return;
 398bad:
 399	pr_info("BAD\n");
 400}
 401
 402#endif /* CONFIG_X86_64 */
 403
 404/*
 405 * Workaround for K8 erratum #93 & buggy BIOS.
 406 *
 407 * BIOS SMM functions are required to use a specific workaround
 408 * to avoid corruption of the 64bit RIP register on C stepping K8.
 409 *
 410 * A lot of BIOS that didn't get tested properly miss this.
 411 *
 412 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 413 * Try to work around it here.
 414 *
 415 * Note we only handle faults in kernel here.
 416 * Does nothing on 32-bit.
 417 */
 418static int is_errata93(struct pt_regs *regs, unsigned long address)
 419{
 420#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 421	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 422	    || boot_cpu_data.x86 != 0xf)
 423		return 0;
 424
 425	if (user_mode(regs))
 426		return 0;
 427
 428	if (address != regs->ip)
 429		return 0;
 430
 431	if ((address >> 32) != 0)
 432		return 0;
 433
 434	address |= 0xffffffffUL << 32;
 435	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 436	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 437		printk_once(errata93_warning);
 438		regs->ip = address;
 439		return 1;
 440	}
 441#endif
 442	return 0;
 443}
 444
 445/*
 446 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 447 * to illegal addresses >4GB.
 448 *
 449 * We catch this in the page fault handler because these addresses
 450 * are not reachable. Just detect this case and return.  Any code
 451 * segment in LDT is compatibility mode.
 452 */
 453static int is_errata100(struct pt_regs *regs, unsigned long address)
 454{
 455#ifdef CONFIG_X86_64
 456	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 457		return 1;
 458#endif
 459	return 0;
 460}
 461
 462/* Pentium F0 0F C7 C8 bug workaround: */
 463static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
 464		       unsigned long address)
 465{
 466#ifdef CONFIG_X86_F00F_BUG
 467	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
 468	    idt_is_f00f_address(address)) {
 469		handle_invalid_op(regs);
 470		return 1;
 471	}
 472#endif
 473	return 0;
 474}
 475
 476static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 477{
 478	u32 offset = (index >> 3) * sizeof(struct desc_struct);
 479	unsigned long addr;
 480	struct ldttss_desc desc;
 481
 482	if (index == 0) {
 483		pr_alert("%s: NULL\n", name);
 484		return;
 485	}
 486
 487	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 488		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 489		return;
 490	}
 491
 492	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 493			      sizeof(struct ldttss_desc))) {
 494		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 495			 name, index);
 496		return;
 497	}
 498
 499	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 500#ifdef CONFIG_X86_64
 501	addr |= ((u64)desc.base3 << 32);
 502#endif
 503	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 504		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 505}
 506
 
 
 
 507static void
 508show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 
 509{
 510	if (!oops_may_print())
 511		return;
 512
 513	if (error_code & X86_PF_INSTR) {
 514		unsigned int level;
 515		pgd_t *pgd;
 516		pte_t *pte;
 517
 518		pgd = __va(read_cr3_pa());
 519		pgd += pgd_index(address);
 520
 521		pte = lookup_address_in_pgd(pgd, address, &level);
 522
 523		if (pte && pte_present(*pte) && !pte_exec(*pte))
 524			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 525				from_kuid(&init_user_ns, current_uid()));
 526		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 527				(pgd_flags(*pgd) & _PAGE_USER) &&
 528				(__read_cr4() & X86_CR4_SMEP))
 529			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 530				from_kuid(&init_user_ns, current_uid()));
 531	}
 532
 533	if (address < PAGE_SIZE && !user_mode(regs))
 534		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 535			(void *)address);
 536	else
 537		pr_alert("BUG: unable to handle page fault for address: %px\n",
 538			(void *)address);
 539
 540	pr_alert("#PF: %s %s in %s mode\n",
 541		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 542		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 543		 (error_code & X86_PF_WRITE) ? "write access" :
 544					       "read access",
 545			     user_mode(regs) ? "user" : "kernel");
 546	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 547		 !(error_code & X86_PF_PROT) ? "not-present page" :
 548		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 549		 (error_code & X86_PF_PK)    ? "protection keys violation" :
 550					       "permissions violation");
 551
 552	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 553		struct desc_ptr idt, gdt;
 554		u16 ldtr, tr;
 555
 556		/*
 557		 * This can happen for quite a few reasons.  The more obvious
 558		 * ones are faults accessing the GDT, or LDT.  Perhaps
 559		 * surprisingly, if the CPU tries to deliver a benign or
 560		 * contributory exception from user code and gets a page fault
 561		 * during delivery, the page fault can be delivered as though
 562		 * it originated directly from user code.  This could happen
 563		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 564		 * kernel or IST stack.
 565		 */
 566		store_idt(&idt);
 567
 568		/* Usable even on Xen PV -- it's just slow. */
 569		native_store_gdt(&gdt);
 570
 571		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 572			 idt.address, idt.size, gdt.address, gdt.size);
 573
 574		store_ldt(ldtr);
 575		show_ldttss(&gdt, "LDTR", ldtr);
 576
 577		store_tr(tr);
 578		show_ldttss(&gdt, "TR", tr);
 579	}
 580
 581	dump_pagetable(address);
 582}
 583
 584static noinline void
 585pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 586	    unsigned long address)
 587{
 588	struct task_struct *tsk;
 589	unsigned long flags;
 590	int sig;
 591
 592	flags = oops_begin();
 593	tsk = current;
 594	sig = SIGKILL;
 595
 596	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 597	       tsk->comm, address);
 598	dump_pagetable(address);
 599
 
 
 
 
 600	if (__die("Bad pagetable", regs, error_code))
 601		sig = 0;
 602
 603	oops_end(flags, regs, sig);
 604}
 605
 606static void sanitize_error_code(unsigned long address,
 607				unsigned long *error_code)
 608{
 609	/*
 610	 * To avoid leaking information about the kernel page
 611	 * table layout, pretend that user-mode accesses to
 612	 * kernel addresses are always protection faults.
 613	 *
 614	 * NB: This means that failed vsyscalls with vsyscall=none
 615	 * will have the PROT bit.  This doesn't leak any
 616	 * information and does not appear to cause any problems.
 617	 */
 618	if (address >= TASK_SIZE_MAX)
 619		*error_code |= X86_PF_PROT;
 620}
 621
 622static void set_signal_archinfo(unsigned long address,
 623				unsigned long error_code)
 624{
 625	struct task_struct *tsk = current;
 626
 627	tsk->thread.trap_nr = X86_TRAP_PF;
 628	tsk->thread.error_code = error_code | X86_PF_USER;
 629	tsk->thread.cr2 = address;
 630}
 631
 632static noinline void
 633page_fault_oops(struct pt_regs *regs, unsigned long error_code,
 634		unsigned long address)
 635{
 636#ifdef CONFIG_VMAP_STACK
 637	struct stack_info info;
 638#endif
 639	unsigned long flags;
 640	int sig;
 641
 642	if (user_mode(regs)) {
 643		/*
 644		 * Implicit kernel access from user mode?  Skip the stack
 645		 * overflow and EFI special cases.
 646		 */
 647		goto oops;
 
 
 
 
 
 648	}
 649
 650#ifdef CONFIG_VMAP_STACK
 651	/*
 652	 * Stack overflow?  During boot, we can fault near the initial
 653	 * stack in the direct map, but that's not an overflow -- check
 654	 * that we're in vmalloc space to avoid this.
 
 
 
 
 
 
 655	 */
 656	if (is_vmalloc_addr((void *)address) &&
 657	    get_stack_guard_info((void *)address, &info)) {
 658		/*
 659		 * We're likely to be running with very little stack space
 660		 * left.  It's plausible that we'd hit this condition but
 661		 * double-fault even before we get this far, in which case
 662		 * we're fine: the double-fault handler will deal with it.
 663		 *
 664		 * We don't want to make it all the way into the oops code
 665		 * and then double-fault, though, because we're likely to
 666		 * break the console driver and lose most of the stack dump.
 667		 */
 668		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
 669			      handle_stack_overflow,
 670			      ASM_CALL_ARG3,
 671			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
 672
 673		unreachable();
 674	}
 675#endif
 676
 677	/*
 678	 * Buggy firmware could access regions which might page fault.  If
 679	 * this happens, EFI has a special OOPS path that will try to
 680	 * avoid hanging the system.
 681	 */
 682	if (IS_ENABLED(CONFIG_EFI))
 683		efi_crash_gracefully_on_page_fault(address);
 684
 685	/* Only not-present faults should be handled by KFENCE. */
 686	if (!(error_code & X86_PF_PROT) &&
 687	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
 688		return;
 689
 690oops:
 691	/*
 692	 * Oops. The kernel tried to access some bad page. We'll have to
 693	 * terminate things with extreme prejudice:
 694	 */
 695	flags = oops_begin();
 696
 697	show_fault_oops(regs, error_code, address);
 698
 699	if (task_stack_end_corrupted(current))
 
 700		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 701
 
 
 
 
 702	sig = SIGKILL;
 703	if (__die("Oops", regs, error_code))
 704		sig = 0;
 705
 706	/* Executive summary in case the body of the oops scrolled away */
 707	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 708
 709	oops_end(flags, regs, sig);
 710}
 711
 712static noinline void
 713kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
 714			 unsigned long address, int signal, int si_code,
 715			 u32 pkey)
 716{
 717	WARN_ON_ONCE(user_mode(regs));
 718
 719	/* Are we prepared to handle this kernel fault? */
 720	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 721		/*
 722		 * Any interrupt that takes a fault gets the fixup. This makes
 723		 * the below recursive fault logic only apply to a faults from
 724		 * task context.
 725		 */
 726		if (in_interrupt())
 727			return;
 728
 729		/*
 730		 * Per the above we're !in_interrupt(), aka. task context.
 731		 *
 732		 * In this case we need to make sure we're not recursively
 733		 * faulting through the emulate_vsyscall() logic.
 734		 */
 735		if (current->thread.sig_on_uaccess_err && signal) {
 736			sanitize_error_code(address, &error_code);
 737
 738			set_signal_archinfo(address, error_code);
 739
 740			if (si_code == SEGV_PKUERR) {
 741				force_sig_pkuerr((void __user *)address, pkey);
 742			} else {
 743				/* XXX: hwpoison faults will set the wrong code. */
 744				force_sig_fault(signal, si_code, (void __user *)address);
 745			}
 746		}
 747
 748		/*
 749		 * Barring that, we can do the fixup and be happy.
 750		 */
 751		return;
 752	}
 753
 754	/*
 755	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
 756	 * instruction.
 757	 */
 758	if (is_prefetch(regs, error_code, address))
 759		return;
 760
 761	page_fault_oops(regs, error_code, address);
 762}
 763
 764/*
 765 * Print out info about fatal segfaults, if the show_unhandled_signals
 766 * sysctl is set:
 767 */
 768static inline void
 769show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 770		unsigned long address, struct task_struct *tsk)
 771{
 772	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 773	/* This is a racy snapshot, but it's better than nothing. */
 774	int cpu = raw_smp_processor_id();
 775
 776	if (!unhandled_signal(tsk, SIGSEGV))
 777		return;
 778
 779	if (!printk_ratelimit())
 780		return;
 781
 782	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 783		loglvl, tsk->comm, task_pid_nr(tsk), address,
 
 784		(void *)regs->ip, (void *)regs->sp, error_code);
 785
 786	print_vma_addr(KERN_CONT " in ", regs->ip);
 787
 788	/*
 789	 * Dump the likely CPU where the fatal segfault happened.
 790	 * This can help identify faulty hardware.
 791	 */
 792	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
 793	       topology_core_id(cpu), topology_physical_package_id(cpu));
 794
 795
 796	printk(KERN_CONT "\n");
 797
 798	show_opcodes(regs, loglvl);
 799}
 800
 801static void
 802__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 803		       unsigned long address, u32 pkey, int si_code)
 804{
 805	struct task_struct *tsk = current;
 806
 807	if (!user_mode(regs)) {
 808		kernelmode_fixup_or_oops(regs, error_code, address,
 809					 SIGSEGV, si_code, pkey);
 810		return;
 811	}
 812
 813	if (!(error_code & X86_PF_USER)) {
 814		/* Implicit user access to kernel memory -- just oops */
 815		page_fault_oops(regs, error_code, address);
 816		return;
 817	}
 818
 819	/*
 820	 * User mode accesses just cause a SIGSEGV.
 821	 * It's possible to have interrupts off here:
 822	 */
 823	local_irq_enable();
 
 824
 825	/*
 826	 * Valid to do another page fault here because this one came
 827	 * from user space:
 828	 */
 829	if (is_prefetch(regs, error_code, address))
 830		return;
 831
 832	if (is_errata100(regs, address))
 833		return;
 
 
 
 
 
 
 
 
 
 834
 835	sanitize_error_code(address, &error_code);
 
 836
 837	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 838		return;
 
 
 839
 840	if (likely(show_unhandled_signals))
 841		show_signal_msg(regs, error_code, address, tsk);
 842
 843	set_signal_archinfo(address, error_code);
 
 844
 845	if (si_code == SEGV_PKUERR)
 846		force_sig_pkuerr((void __user *)address, pkey);
 847	else
 848		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 849
 850	local_irq_disable();
 851}
 852
 853static noinline void
 854bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 855		     unsigned long address)
 856{
 857	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 858}
 859
 860static void
 861__bad_area(struct pt_regs *regs, unsigned long error_code,
 862	   unsigned long address, u32 pkey, int si_code)
 863{
 864	struct mm_struct *mm = current->mm;
 
 865	/*
 866	 * Something tried to access memory that isn't in our memory map..
 867	 * Fix it, but check if it's kernel or user first..
 868	 */
 869	mmap_read_unlock(mm);
 870
 871	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 872}
 873
 874static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 875		struct vm_area_struct *vma)
 876{
 877	/* This code is always called on the current mm */
 878	bool foreign = false;
 879
 880	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 881		return false;
 882	if (error_code & X86_PF_PK)
 883		return true;
 884	/* this checks permission keys on the VMA: */
 885	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 886				       (error_code & X86_PF_INSTR), foreign))
 887		return true;
 888	return false;
 889}
 890
 891static noinline void
 892bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 893		      unsigned long address, struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 894{
 895	/*
 896	 * This OSPKE check is not strictly necessary at runtime.
 897	 * But, doing it this way allows compiler optimizations
 898	 * if pkeys are compiled out.
 899	 */
 900	if (bad_area_access_from_pkeys(error_code, vma)) {
 901		/*
 902		 * A protection key fault means that the PKRU value did not allow
 903		 * access to some PTE.  Userspace can figure out what PKRU was
 904		 * from the XSAVE state.  This function captures the pkey from
 905		 * the vma and passes it to userspace so userspace can discover
 906		 * which protection key was set on the PTE.
 907		 *
 908		 * If we get here, we know that the hardware signaled a X86_PF_PK
 909		 * fault and that there was a VMA once we got in the fault
 910		 * handler.  It does *not* guarantee that the VMA we find here
 911		 * was the one that we faulted on.
 912		 *
 913		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 914		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 915		 * 3. T1   : faults...
 916		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 917		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 918		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 919		 *	     faulted on a pte with its pkey=4.
 920		 */
 921		u32 pkey = vma_pkey(vma);
 922
 923		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 924	} else {
 925		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 926	}
 927}
 928
 929static void
 930do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 931	  vm_fault_t fault)
 932{
 
 
 
 
 
 
 933	/* Kernel mode? Handle exceptions or die: */
 934	if (!user_mode(regs)) {
 935		kernelmode_fixup_or_oops(regs, error_code, address,
 936					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
 937		return;
 938	}
 939
 940	/* User-space => ok to do another page fault: */
 941	if (is_prefetch(regs, error_code, address))
 942		return;
 943
 944	sanitize_error_code(address, &error_code);
 945
 946	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 947		return;
 948
 949	set_signal_archinfo(address, error_code);
 950
 951#ifdef CONFIG_MEMORY_FAILURE
 952	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 953		struct task_struct *tsk = current;
 954		unsigned lsb = 0;
 955
 956		pr_err(
 957	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 958			tsk->comm, tsk->pid, address);
 959		if (fault & VM_FAULT_HWPOISON_LARGE)
 960			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 961		if (fault & VM_FAULT_HWPOISON)
 962			lsb = PAGE_SHIFT;
 963		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 964		return;
 965	}
 966#endif
 967	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 968}
 969
 970static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 
 
 971{
 972	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 
 
 
 
 
 
 
 
 
 
 
 973		return 0;
 974
 975	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976		return 0;
 977
 978	return 1;
 979}
 980
 981/*
 982 * Handle a spurious fault caused by a stale TLB entry.
 983 *
 984 * This allows us to lazily refresh the TLB when increasing the
 985 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 986 * eagerly is very expensive since that implies doing a full
 987 * cross-processor TLB flush, even if no stale TLB entries exist
 988 * on other processors.
 989 *
 990 * Spurious faults may only occur if the TLB contains an entry with
 991 * fewer permission than the page table entry.  Non-present (P = 0)
 992 * and reserved bit (R = 1) faults are never spurious.
 993 *
 994 * There are no security implications to leaving a stale TLB when
 995 * increasing the permissions on a page.
 996 *
 997 * Returns non-zero if a spurious fault was handled, zero otherwise.
 998 *
 999 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1000 * (Optional Invalidation).
1001 */
1002static noinline int
1003spurious_kernel_fault(unsigned long error_code, unsigned long address)
1004{
1005	pgd_t *pgd;
1006	p4d_t *p4d;
1007	pud_t *pud;
1008	pmd_t *pmd;
1009	pte_t *pte;
1010	int ret;
1011
1012	/*
1013	 * Only writes to RO or instruction fetches from NX may cause
1014	 * spurious faults.
1015	 *
1016	 * These could be from user or supervisor accesses but the TLB
1017	 * is only lazily flushed after a kernel mapping protection
1018	 * change, so user accesses are not expected to cause spurious
1019	 * faults.
1020	 */
1021	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1022	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1023		return 0;
1024
1025	pgd = init_mm.pgd + pgd_index(address);
1026	if (!pgd_present(*pgd))
1027		return 0;
1028
1029	p4d = p4d_offset(pgd, address);
1030	if (!p4d_present(*p4d))
1031		return 0;
1032
1033	if (p4d_large(*p4d))
1034		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1035
1036	pud = pud_offset(p4d, address);
1037	if (!pud_present(*pud))
1038		return 0;
1039
1040	if (pud_large(*pud))
1041		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1042
1043	pmd = pmd_offset(pud, address);
1044	if (!pmd_present(*pmd))
1045		return 0;
1046
1047	if (pmd_large(*pmd))
1048		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1049
 
 
 
 
 
 
1050	pte = pte_offset_kernel(pmd, address);
1051	if (!pte_present(*pte))
1052		return 0;
1053
1054	ret = spurious_kernel_fault_check(error_code, pte);
1055	if (!ret)
1056		return 0;
1057
1058	/*
1059	 * Make sure we have permissions in PMD.
1060	 * If not, then there's a bug in the page tables:
1061	 */
1062	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1063	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1064
1065	return ret;
1066}
1067NOKPROBE_SYMBOL(spurious_kernel_fault);
1068
1069int show_unhandled_signals = 1;
1070
1071static inline int
1072access_error(unsigned long error_code, struct vm_area_struct *vma)
1073{
1074	/* This is only called for the current mm, so: */
1075	bool foreign = false;
1076
1077	/*
1078	 * Read or write was blocked by protection keys.  This is
1079	 * always an unconditional error and can never result in
1080	 * a follow-up action to resolve the fault, like a COW.
1081	 */
1082	if (error_code & X86_PF_PK)
1083		return 1;
1084
1085	/*
1086	 * SGX hardware blocked the access.  This usually happens
1087	 * when the enclave memory contents have been destroyed, like
1088	 * after a suspend/resume cycle. In any case, the kernel can't
1089	 * fix the cause of the fault.  Handle the fault as an access
1090	 * error even in cases where no actual access violation
1091	 * occurred.  This allows userspace to rebuild the enclave in
1092	 * response to the signal.
1093	 */
1094	if (unlikely(error_code & X86_PF_SGX))
1095		return 1;
1096
1097	/*
1098	 * Make sure to check the VMA so that we do not perform
1099	 * faults just to hit a X86_PF_PK as soon as we fill in a
1100	 * page.
1101	 */
1102	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1103				       (error_code & X86_PF_INSTR), foreign))
1104		return 1;
1105
1106	/*
1107	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1108	 * shadow stack VMAs. All other accesses result in an error.
1109	 */
1110	if (error_code & X86_PF_SHSTK) {
1111		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1112			return 1;
1113		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1114			return 1;
1115		return 0;
1116	}
1117
1118	if (error_code & X86_PF_WRITE) {
1119		/* write, present and write, not present: */
1120		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1121			return 1;
1122		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123			return 1;
1124		return 0;
1125	}
1126
1127	/* read, present: */
1128	if (unlikely(error_code & X86_PF_PROT))
1129		return 1;
1130
1131	/* read, not present: */
1132	if (unlikely(!vma_is_accessible(vma)))
1133		return 1;
1134
1135	return 0;
1136}
1137
1138bool fault_in_kernel_space(unsigned long address)
1139{
1140	/*
1141	 * On 64-bit systems, the vsyscall page is at an address above
1142	 * TASK_SIZE_MAX, but is not considered part of the kernel
1143	 * address space.
1144	 */
1145	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146		return false;
1147
1148	return address >= TASK_SIZE_MAX;
1149}
1150
1151/*
1152 * Called for all faults where 'address' is part of the kernel address
1153 * space.  Might get called for faults that originate from *code* that
1154 * ran in userspace or the kernel.
1155 */
1156static void
1157do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158		   unsigned long address)
1159{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160	/*
1161	 * Protection keys exceptions only happen on user pages.  We
1162	 * have no user pages in the kernel portion of the address
1163	 * space, so do not expect them here.
1164	 */
1165	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
 
 
 
 
 
1166
1167#ifdef CONFIG_X86_32
1168	/*
1169	 * We can fault-in kernel-space virtual memory on-demand. The
1170	 * 'reference' page table is init_mm.pgd.
1171	 *
1172	 * NOTE! We MUST NOT take any locks for this case. We may
1173	 * be in an interrupt or a critical region, and should
1174	 * only copy the information from the master page table,
1175	 * nothing more.
1176	 *
1177	 * Before doing this on-demand faulting, ensure that the
1178	 * fault is not any of the following:
1179	 * 1. A fault on a PTE with a reserved bit set.
1180	 * 2. A fault caused by a user-mode access.  (Do not demand-
1181	 *    fault kernel memory due to user-mode accesses).
1182	 * 3. A fault caused by a page-level protection violation.
1183	 *    (A demand fault would be on a non-present page which
1184	 *     would have X86_PF_PROT==0).
1185	 *
1186	 * This is only needed to close a race condition on x86-32 in
1187	 * the vmalloc mapping/unmapping code. See the comment above
1188	 * vmalloc_fault() for details. On x86-64 the race does not
1189	 * exist as the vmalloc mappings don't need to be synchronized
1190	 * there.
1191	 */
1192	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193		if (vmalloc_fault(address) >= 0)
1194			return;
1195	}
1196#endif
1197
1198	if (is_f00f_bug(regs, hw_error_code, address))
1199		return;
1200
1201	/* Was the fault spurious, caused by lazy TLB invalidation? */
1202	if (spurious_kernel_fault(hw_error_code, address))
1203		return;
1204
1205	/* kprobes don't want to hook the spurious faults: */
1206	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1207		return;
1208
1209	/*
1210	 * Note, despite being a "bad area", there are quite a few
1211	 * acceptable reasons to get here, such as erratum fixups
1212	 * and handling kernel code that can fault, like get_user().
1213	 *
1214	 * Don't take the mm semaphore here. If we fixup a prefetch
1215	 * fault we could otherwise deadlock:
1216	 */
1217	bad_area_nosemaphore(regs, hw_error_code, address);
1218}
1219NOKPROBE_SYMBOL(do_kern_addr_fault);
1220
1221/*
1222 * Handle faults in the user portion of the address space.  Nothing in here
1223 * should check X86_PF_USER without a specific justification: for almost
1224 * all purposes, we should treat a normal kernel access to user memory
1225 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1226 * The one exception is AC flag handling, which is, per the x86
1227 * architecture, special for WRUSS.
1228 */
1229static inline
1230void do_user_addr_fault(struct pt_regs *regs,
1231			unsigned long error_code,
1232			unsigned long address)
1233{
1234	struct vm_area_struct *vma;
1235	struct task_struct *tsk;
1236	struct mm_struct *mm;
1237	vm_fault_t fault;
1238	unsigned int flags = FAULT_FLAG_DEFAULT;
1239
1240	tsk = current;
1241	mm = tsk->mm;
 
1242
1243	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
 
 
1244		/*
1245		 * Whoops, this is kernel mode code trying to execute from
1246		 * user memory.  Unless this is AMD erratum #93, which
1247		 * corrupts RIP such that it looks like a user address,
1248		 * this is unrecoverable.  Don't even try to look up the
1249		 * VMA or look for extable entries.
1250		 */
1251		if (is_errata93(regs, address))
1252			return;
1253
1254		page_fault_oops(regs, error_code, address);
1255		return;
1256	}
1257
1258	/* kprobes don't want to hook the spurious faults: */
1259	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1260		return;
1261
1262	/*
1263	 * Reserved bits are never expected to be set on
1264	 * entries in the user portion of the page tables.
1265	 */
1266	if (unlikely(error_code & X86_PF_RSVD))
1267		pgtable_bad(regs, error_code, address);
1268
1269	/*
1270	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1271	 * pages in the user address space.  The odd case here is WRUSS,
1272	 * which, according to the preliminary documentation, does not respect
1273	 * SMAP and will have the USER bit set so, in all cases, SMAP
1274	 * enforcement appears to be consistent with the USER bit.
1275	 */
1276	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1277		     !(error_code & X86_PF_USER) &&
1278		     !(regs->flags & X86_EFLAGS_AC))) {
1279		/*
1280		 * No extable entry here.  This was a kernel access to an
1281		 * invalid pointer.  get_kernel_nofault() will not get here.
1282		 */
1283		page_fault_oops(regs, error_code, address);
1284		return;
1285	}
1286
1287	/*
1288	 * If we're in an interrupt, have no user context or are running
1289	 * in a region with pagefaults disabled then we must not take the fault
1290	 */
1291	if (unlikely(faulthandler_disabled() || !mm)) {
1292		bad_area_nosemaphore(regs, error_code, address);
1293		return;
1294	}
1295
1296	/*
1297	 * It's safe to allow irq's after cr2 has been saved and the
1298	 * vmalloc fault has been handled.
1299	 *
1300	 * User-mode registers count as a user access even for any
1301	 * potential system fault or CPU buglet:
1302	 */
1303	if (user_mode(regs)) {
1304		local_irq_enable();
1305		flags |= FAULT_FLAG_USER;
1306	} else {
1307		if (regs->flags & X86_EFLAGS_IF)
1308			local_irq_enable();
1309	}
1310
 
 
 
1311	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1312
1313	/*
1314	 * Read-only permissions can not be expressed in shadow stack PTEs.
1315	 * Treat all shadow stack accesses as WRITE faults. This ensures
1316	 * that the MM will prepare everything (e.g., break COW) such that
1317	 * maybe_mkwrite() can create a proper shadow stack PTE.
1318	 */
1319	if (error_code & X86_PF_SHSTK)
1320		flags |= FAULT_FLAG_WRITE;
1321	if (error_code & X86_PF_WRITE)
1322		flags |= FAULT_FLAG_WRITE;
1323	if (error_code & X86_PF_INSTR)
1324		flags |= FAULT_FLAG_INSTRUCTION;
1325
1326#ifdef CONFIG_X86_64
1327	/*
1328	 * Faults in the vsyscall page might need emulation.  The
1329	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1330	 * considered to be part of the user address space.
 
 
 
 
 
1331	 *
1332	 * The vsyscall page does not have a "real" VMA, so do this
1333	 * emulation before we go searching for VMAs.
1334	 *
1335	 * PKRU never rejects instruction fetches, so we don't need
1336	 * to consider the PF_PK bit.
1337	 */
1338	if (is_vsyscall_vaddr(address)) {
1339		if (emulate_vsyscall(error_code, regs, address))
 
 
1340			return;
 
 
 
 
 
 
 
 
 
 
1341	}
1342#endif
1343
1344	if (!(flags & FAULT_FLAG_USER))
1345		goto lock_mmap;
1346
1347	vma = lock_vma_under_rcu(mm, address);
1348	if (!vma)
1349		goto lock_mmap;
1350
1351	if (unlikely(access_error(error_code, vma))) {
1352		vma_end_read(vma);
1353		goto lock_mmap;
1354	}
1355	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1356	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1357		vma_end_read(vma);
1358
1359	if (!(fault & VM_FAULT_RETRY)) {
1360		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1361		goto done;
1362	}
1363	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1364	if (fault & VM_FAULT_MAJOR)
1365		flags |= FAULT_FLAG_TRIED;
1366
1367	/* Quick path to respond to signals */
1368	if (fault_signal_pending(fault, regs)) {
1369		if (!user_mode(regs))
1370			kernelmode_fixup_or_oops(regs, error_code, address,
1371						 SIGBUS, BUS_ADRERR,
1372						 ARCH_DEFAULT_PKEY);
1373		return;
1374	}
1375lock_mmap:
1376
1377retry:
1378	vma = lock_mm_and_find_vma(mm, address, regs);
1379	if (unlikely(!vma)) {
1380		bad_area_nosemaphore(regs, error_code, address);
 
 
 
 
 
 
 
 
1381		return;
1382	}
1383
1384	/*
1385	 * Ok, we have a good vm_area for this memory access, so
1386	 * we can handle it..
1387	 */
 
1388	if (unlikely(access_error(error_code, vma))) {
1389		bad_area_access_error(regs, error_code, address, vma);
1390		return;
1391	}
1392
1393	/*
1394	 * If for any reason at all we couldn't handle the fault,
1395	 * make sure we exit gracefully rather than endlessly redo
1396	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1397	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1398	 *
1399	 * Note that handle_userfault() may also release and reacquire mmap_lock
1400	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1401	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1402	 * (potentially after handling any pending signal during the return to
1403	 * userland). The return to userland is identified whenever
1404	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1405	 */
1406	fault = handle_mm_fault(vma, address, flags, regs);
1407
1408	if (fault_signal_pending(fault, regs)) {
1409		/*
1410		 * Quick path to respond to signals.  The core mm code
1411		 * has unlocked the mm for us if we get here.
1412		 */
1413		if (!user_mode(regs))
1414			kernelmode_fixup_or_oops(regs, error_code, address,
1415						 SIGBUS, BUS_ADRERR,
1416						 ARCH_DEFAULT_PKEY);
1417		return;
1418	}
1419
1420	/* The fault is fully completed (including releasing mmap lock) */
1421	if (fault & VM_FAULT_COMPLETED)
1422		return;
1423
1424	/*
1425	 * If we need to retry the mmap_lock has already been released,
1426	 * and if there is a fatal signal pending there is no guarantee
1427	 * that we made any progress. Handle this case first.
1428	 */
1429	if (unlikely(fault & VM_FAULT_RETRY)) {
1430		flags |= FAULT_FLAG_TRIED;
1431		goto retry;
1432	}
1433
1434	mmap_read_unlock(mm);
1435done:
1436	if (likely(!(fault & VM_FAULT_ERROR)))
1437		return;
1438
1439	if (fatal_signal_pending(current) && !user_mode(regs)) {
1440		kernelmode_fixup_or_oops(regs, error_code, address,
1441					 0, 0, ARCH_DEFAULT_PKEY);
1442		return;
1443	}
1444
1445	if (fault & VM_FAULT_OOM) {
1446		/* Kernel mode? Handle exceptions or die: */
1447		if (!user_mode(regs)) {
1448			kernelmode_fixup_or_oops(regs, error_code, address,
1449						 SIGSEGV, SEGV_MAPERR,
1450						 ARCH_DEFAULT_PKEY);
1451			return;
1452		}
1453
1454		/*
1455		 * We ran out of memory, call the OOM killer, and return the
1456		 * userspace (which will retry the fault, or kill us if we got
1457		 * oom-killed):
1458		 */
1459		pagefault_out_of_memory();
1460	} else {
1461		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1462			     VM_FAULT_HWPOISON_LARGE))
1463			do_sigbus(regs, error_code, address, fault);
1464		else if (fault & VM_FAULT_SIGSEGV)
1465			bad_area_nosemaphore(regs, error_code, address);
1466		else
1467			BUG();
1468	}
1469}
1470NOKPROBE_SYMBOL(do_user_addr_fault);
1471
1472static __always_inline void
1473trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1474			 unsigned long address)
1475{
1476	if (!trace_pagefault_enabled())
1477		return;
1478
1479	if (user_mode(regs))
1480		trace_page_fault_user(address, regs, error_code);
1481	else
1482		trace_page_fault_kernel(address, regs, error_code);
1483}
1484
1485static __always_inline void
1486handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1487			      unsigned long address)
1488{
1489	trace_page_fault_entries(regs, error_code, address);
1490
1491	if (unlikely(kmmio_fault(regs, address)))
1492		return;
1493
1494	/* Was the fault on kernel-controlled part of the address space? */
1495	if (unlikely(fault_in_kernel_space(address))) {
1496		do_kern_addr_fault(regs, error_code, address);
1497	} else {
1498		do_user_addr_fault(regs, error_code, address);
1499		/*
1500		 * User address page fault handling might have reenabled
1501		 * interrupts. Fixing up all potential exit points of
1502		 * do_user_addr_fault() and its leaf functions is just not
1503		 * doable w/o creating an unholy mess or turning the code
1504		 * upside down.
1505		 */
1506		local_irq_disable();
1507	}
1508}
1509
1510DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1511{
1512	unsigned long address = read_cr2();
1513	irqentry_state_t state;
1514
1515	prefetchw(&current->mm->mmap_lock);
1516
1517	/*
1518	 * KVM uses #PF vector to deliver 'page not present' events to guests
1519	 * (asynchronous page fault mechanism). The event happens when a
1520	 * userspace task is trying to access some valid (from guest's point of
1521	 * view) memory which is not currently mapped by the host (e.g. the
1522	 * memory is swapped out). Note, the corresponding "page ready" event
1523	 * which is injected when the memory becomes available, is delivered via
1524	 * an interrupt mechanism and not a #PF exception
1525	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1526	 *
1527	 * We are relying on the interrupted context being sane (valid RSP,
1528	 * relevant locks not held, etc.), which is fine as long as the
1529	 * interrupted context had IF=1.  We are also relying on the KVM
1530	 * async pf type field and CR2 being read consistently instead of
1531	 * getting values from real and async page faults mixed up.
1532	 *
1533	 * Fingers crossed.
1534	 *
1535	 * The async #PF handling code takes care of idtentry handling
1536	 * itself.
1537	 */
1538	if (kvm_handle_async_pf(regs, (u32)address))
1539		return;
1540
1541	/*
1542	 * Entry handling for valid #PF from kernel mode is slightly
1543	 * different: RCU is already watching and ct_irq_enter() must not
1544	 * be invoked because a kernel fault on a user space address might
1545	 * sleep.
1546	 *
1547	 * In case the fault hit a RCU idle region the conditional entry
1548	 * code reenabled RCU to avoid subsequent wreckage which helps
1549	 * debuggability.
1550	 */
1551	state = irqentry_enter(regs);
1552
1553	instrumentation_begin();
1554	handle_page_fault(regs, error_code, address);
1555	instrumentation_end();
1556
1557	irqentry_exit(regs, state);
1558}
v3.5.6
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/magic.h>		/* STACK_END_MAGIC		*/
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
 
   8#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
   9#include <linux/module.h>		/* search_exception_table	*/
  10#include <linux/bootmem.h>		/* max_low_pfn			*/
  11#include <linux/kprobes.h>		/* __kprobes, ...		*/
 
  12#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  13#include <linux/perf_event.h>		/* perf_sw_event		*/
  14#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  15#include <linux/prefetch.h>		/* prefetchw			*/
 
 
 
 
 
  16
 
  17#include <asm/traps.h>			/* dotraplinkage, ...		*/
  18#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
  19#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
  20#include <asm/fixmap.h>			/* VSYSCALL_START		*/
 
 
 
 
 
 
 
 
  21
  22/*
  23 * Page fault error code bits:
  24 *
  25 *   bit 0 ==	 0: no page found	1: protection fault
  26 *   bit 1 ==	 0: read access		1: write access
  27 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
  28 *   bit 3 ==				1: use of reserved bit detected
  29 *   bit 4 ==				1: fault was an instruction fetch
  30 */
  31enum x86_pf_error_code {
  32
  33	PF_PROT		=		1 << 0,
  34	PF_WRITE	=		1 << 1,
  35	PF_USER		=		1 << 2,
  36	PF_RSVD		=		1 << 3,
  37	PF_INSTR	=		1 << 4,
  38};
  39
  40/*
  41 * Returns 0 if mmiotrace is disabled, or if the fault is not
  42 * handled by mmiotrace:
  43 */
  44static inline int __kprobes
  45kmmio_fault(struct pt_regs *regs, unsigned long addr)
  46{
  47	if (unlikely(is_kmmio_active()))
  48		if (kmmio_handler(regs, addr) == 1)
  49			return -1;
  50	return 0;
  51}
  52
  53static inline int __kprobes notify_page_fault(struct pt_regs *regs)
  54{
  55	int ret = 0;
  56
  57	/* kprobe_running() needs smp_processor_id() */
  58	if (kprobes_built_in() && !user_mode_vm(regs)) {
  59		preempt_disable();
  60		if (kprobe_running() && kprobe_fault_handler(regs, 14))
  61			ret = 1;
  62		preempt_enable();
  63	}
  64
  65	return ret;
  66}
  67
  68/*
  69 * Prefetch quirks:
  70 *
  71 * 32-bit mode:
  72 *
  73 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  74 *   Check that here and ignore it.
  75 *
  76 * 64-bit mode:
  77 *
  78 *   Sometimes the CPU reports invalid exceptions on prefetch.
  79 *   Check that here and ignore it.
  80 *
  81 * Opcode checker based on code by Richard Brunner.
  82 */
  83static inline int
  84check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  85		      unsigned char opcode, int *prefetch)
  86{
  87	unsigned char instr_hi = opcode & 0xf0;
  88	unsigned char instr_lo = opcode & 0x0f;
  89
  90	switch (instr_hi) {
  91	case 0x20:
  92	case 0x30:
  93		/*
  94		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  95		 * In X86_64 long mode, the CPU will signal invalid
  96		 * opcode if some of these prefixes are present so
  97		 * X86_64 will never get here anyway
  98		 */
  99		return ((instr_lo & 7) == 0x6);
 100#ifdef CONFIG_X86_64
 101	case 0x40:
 102		/*
 103		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 104		 * Need to figure out under what instruction mode the
 105		 * instruction was issued. Could check the LDT for lm,
 106		 * but for now it's good enough to assume that long
 107		 * mode only uses well known segments or kernel.
 108		 */
 109		return (!user_mode(regs) || user_64bit_mode(regs));
 110#endif
 111	case 0x60:
 112		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 113		return (instr_lo & 0xC) == 0x4;
 114	case 0xF0:
 115		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 116		return !instr_lo || (instr_lo>>1) == 1;
 117	case 0x00:
 118		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 119		if (probe_kernel_address(instr, opcode))
 120			return 0;
 121
 122		*prefetch = (instr_lo == 0xF) &&
 123			(opcode == 0x0D || opcode == 0x18);
 124		return 0;
 125	default:
 126		return 0;
 127	}
 128}
 129
 
 
 
 
 
 
 
 
 
 130static int
 131is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 132{
 133	unsigned char *max_instr;
 134	unsigned char *instr;
 135	int prefetch = 0;
 136
 
 
 
 
 137	/*
 138	 * If it was a exec (instruction fetch) fault on NX page, then
 139	 * do not ignore the fault:
 140	 */
 141	if (error_code & PF_INSTR)
 142		return 0;
 143
 144	instr = (void *)convert_ip_to_linear(current, regs);
 145	max_instr = instr + 15;
 146
 147	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
 148		return 0;
 
 
 
 
 149
 150	while (instr < max_instr) {
 151		unsigned char opcode;
 152
 153		if (probe_kernel_address(instr, opcode))
 154			break;
 
 
 
 
 
 155
 156		instr++;
 157
 158		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 159			break;
 160	}
 
 
 161	return prefetch;
 162}
 163
 164static void
 165force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 166		     struct task_struct *tsk, int fault)
 167{
 168	unsigned lsb = 0;
 169	siginfo_t info;
 170
 171	info.si_signo	= si_signo;
 172	info.si_errno	= 0;
 173	info.si_code	= si_code;
 174	info.si_addr	= (void __user *)address;
 175	if (fault & VM_FAULT_HWPOISON_LARGE)
 176		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 177	if (fault & VM_FAULT_HWPOISON)
 178		lsb = PAGE_SHIFT;
 179	info.si_addr_lsb = lsb;
 180
 181	force_sig_info(si_signo, &info, tsk);
 182}
 183
 184DEFINE_SPINLOCK(pgd_lock);
 185LIST_HEAD(pgd_list);
 186
 187#ifdef CONFIG_X86_32
 188static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 189{
 190	unsigned index = pgd_index(address);
 191	pgd_t *pgd_k;
 
 192	pud_t *pud, *pud_k;
 193	pmd_t *pmd, *pmd_k;
 194
 195	pgd += index;
 196	pgd_k = init_mm.pgd + index;
 197
 198	if (!pgd_present(*pgd_k))
 199		return NULL;
 200
 201	/*
 202	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 203	 * and redundant with the set_pmd() on non-PAE. As would
 204	 * set_pud.
 205	 */
 206	pud = pud_offset(pgd, address);
 207	pud_k = pud_offset(pgd_k, address);
 
 
 
 
 
 208	if (!pud_present(*pud_k))
 209		return NULL;
 210
 211	pmd = pmd_offset(pud, address);
 212	pmd_k = pmd_offset(pud_k, address);
 
 
 
 
 213	if (!pmd_present(*pmd_k))
 214		return NULL;
 215
 216	if (!pmd_present(*pmd))
 217		set_pmd(pmd, *pmd_k);
 218	else
 219		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 220
 221	return pmd_k;
 222}
 223
 224void vmalloc_sync_all(void)
 225{
 226	unsigned long address;
 227
 228	if (SHARED_KERNEL_PMD)
 229		return;
 230
 231	for (address = VMALLOC_START & PMD_MASK;
 232	     address >= TASK_SIZE && address < FIXADDR_TOP;
 233	     address += PMD_SIZE) {
 234		struct page *page;
 235
 236		spin_lock(&pgd_lock);
 237		list_for_each_entry(page, &pgd_list, lru) {
 238			spinlock_t *pgt_lock;
 239			pmd_t *ret;
 240
 241			/* the pgt_lock only for Xen */
 242			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 243
 244			spin_lock(pgt_lock);
 245			ret = vmalloc_sync_one(page_address(page), address);
 246			spin_unlock(pgt_lock);
 247
 248			if (!ret)
 249				break;
 250		}
 251		spin_unlock(&pgd_lock);
 252	}
 253}
 254
 255/*
 256 * 32-bit:
 
 
 
 
 
 257 *
 258 *   Handle a fault on the vmalloc or module mapping area
 
 
 
 
 259 */
 260static noinline __kprobes int vmalloc_fault(unsigned long address)
 261{
 262	unsigned long pgd_paddr;
 263	pmd_t *pmd_k;
 264	pte_t *pte_k;
 265
 266	/* Make sure we are in vmalloc area: */
 267	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 268		return -1;
 269
 270	WARN_ON_ONCE(in_nmi());
 271
 272	/*
 273	 * Synchronize this task's top level page-table
 274	 * with the 'reference' page table.
 275	 *
 276	 * Do _not_ use "current" here. We might be inside
 277	 * an interrupt in the middle of a task switch..
 278	 */
 279	pgd_paddr = read_cr3();
 280	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 281	if (!pmd_k)
 282		return -1;
 283
 
 
 
 284	pte_k = pte_offset_kernel(pmd_k, address);
 285	if (!pte_present(*pte_k))
 286		return -1;
 287
 288	return 0;
 289}
 
 290
 291/*
 292 * Did it hit the DOS screen memory VA from vm86 mode?
 293 */
 294static inline void
 295check_v8086_mode(struct pt_regs *regs, unsigned long address,
 296		 struct task_struct *tsk)
 297{
 298	unsigned long bit;
 
 
 
 
 
 
 
 
 
 299
 300	if (!v8086_mode(regs))
 301		return;
 302
 303	bit = (address - 0xA0000) >> PAGE_SHIFT;
 304	if (bit < 32)
 305		tsk->thread.screen_bitmap |= 1 << bit;
 
 
 
 306}
 307
 308static bool low_pfn(unsigned long pfn)
 309{
 310	return pfn < max_low_pfn;
 311}
 312
 313static void dump_pagetable(unsigned long address)
 314{
 315	pgd_t *base = __va(read_cr3());
 316	pgd_t *pgd = &base[pgd_index(address)];
 
 
 317	pmd_t *pmd;
 318	pte_t *pte;
 319
 320#ifdef CONFIG_X86_PAE
 321	printk("*pdpt = %016Lx ", pgd_val(*pgd));
 322	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 323		goto out;
 
 
 
 324#endif
 325	pmd = pmd_offset(pud_offset(pgd, address), address);
 326	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 
 
 
 327
 328	/*
 329	 * We must not directly access the pte in the highpte
 330	 * case if the page table is located in highmem.
 331	 * And let's rather not kmap-atomic the pte, just in case
 332	 * it's allocated already:
 333	 */
 334	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 335		goto out;
 336
 337	pte = pte_offset_kernel(pmd, address);
 338	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 339out:
 340	printk("\n");
 341}
 342
 343#else /* CONFIG_X86_64: */
 344
 345void vmalloc_sync_all(void)
 346{
 347	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 348}
 349
 350/*
 351 * 64-bit:
 352 *
 353 *   Handle a fault on the vmalloc area
 354 *
 355 * This assumes no large pages in there.
 356 */
 357static noinline __kprobes int vmalloc_fault(unsigned long address)
 358{
 359	pgd_t *pgd, *pgd_ref;
 360	pud_t *pud, *pud_ref;
 361	pmd_t *pmd, *pmd_ref;
 362	pte_t *pte, *pte_ref;
 363
 364	/* Make sure we are in vmalloc area: */
 365	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 366		return -1;
 367
 368	WARN_ON_ONCE(in_nmi());
 369
 370	/*
 371	 * Copy kernel mappings over when needed. This can also
 372	 * happen within a race in page table update. In the later
 373	 * case just flush:
 374	 */
 375	pgd = pgd_offset(current->active_mm, address);
 376	pgd_ref = pgd_offset_k(address);
 377	if (pgd_none(*pgd_ref))
 378		return -1;
 379
 380	if (pgd_none(*pgd))
 381		set_pgd(pgd, *pgd_ref);
 382	else
 383		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 384
 385	/*
 386	 * Below here mismatches are bugs because these lower tables
 387	 * are shared:
 388	 */
 389
 390	pud = pud_offset(pgd, address);
 391	pud_ref = pud_offset(pgd_ref, address);
 392	if (pud_none(*pud_ref))
 393		return -1;
 394
 395	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
 396		BUG();
 397
 398	pmd = pmd_offset(pud, address);
 399	pmd_ref = pmd_offset(pud_ref, address);
 400	if (pmd_none(*pmd_ref))
 401		return -1;
 402
 403	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
 404		BUG();
 405
 406	pte_ref = pte_offset_kernel(pmd_ref, address);
 407	if (!pte_present(*pte_ref))
 408		return -1;
 409
 410	pte = pte_offset_kernel(pmd, address);
 411
 412	/*
 413	 * Don't use pte_page here, because the mappings can point
 414	 * outside mem_map, and the NUMA hash lookup cannot handle
 415	 * that:
 416	 */
 417	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 418		BUG();
 419
 420	return 0;
 421}
 422
 423#ifdef CONFIG_CPU_SUP_AMD
 424static const char errata93_warning[] =
 425KERN_ERR 
 426"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 427"******* Working around it, but it may cause SEGVs or burn power.\n"
 428"******* Please consider a BIOS update.\n"
 429"******* Disabling USB legacy in the BIOS may also help.\n";
 430#endif
 431
 432/*
 433 * No vm86 mode in 64-bit mode:
 434 */
 435static inline void
 436check_v8086_mode(struct pt_regs *regs, unsigned long address,
 437		 struct task_struct *tsk)
 438{
 439}
 440
 441static int bad_address(void *p)
 442{
 443	unsigned long dummy;
 444
 445	return probe_kernel_address((unsigned long *)p, dummy);
 446}
 447
 448static void dump_pagetable(unsigned long address)
 449{
 450	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 451	pgd_t *pgd = base + pgd_index(address);
 
 452	pud_t *pud;
 453	pmd_t *pmd;
 454	pte_t *pte;
 455
 456	if (bad_address(pgd))
 457		goto bad;
 458
 459	printk("PGD %lx ", pgd_val(*pgd));
 460
 461	if (!pgd_present(*pgd))
 462		goto out;
 463
 464	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
 
 465	if (bad_address(pud))
 466		goto bad;
 467
 468	printk("PUD %lx ", pud_val(*pud));
 469	if (!pud_present(*pud) || pud_large(*pud))
 470		goto out;
 471
 472	pmd = pmd_offset(pud, address);
 473	if (bad_address(pmd))
 474		goto bad;
 475
 476	printk("PMD %lx ", pmd_val(*pmd));
 477	if (!pmd_present(*pmd) || pmd_large(*pmd))
 478		goto out;
 479
 480	pte = pte_offset_kernel(pmd, address);
 481	if (bad_address(pte))
 482		goto bad;
 483
 484	printk("PTE %lx", pte_val(*pte));
 485out:
 486	printk("\n");
 487	return;
 488bad:
 489	printk("BAD\n");
 490}
 491
 492#endif /* CONFIG_X86_64 */
 493
 494/*
 495 * Workaround for K8 erratum #93 & buggy BIOS.
 496 *
 497 * BIOS SMM functions are required to use a specific workaround
 498 * to avoid corruption of the 64bit RIP register on C stepping K8.
 499 *
 500 * A lot of BIOS that didn't get tested properly miss this.
 501 *
 502 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 503 * Try to work around it here.
 504 *
 505 * Note we only handle faults in kernel here.
 506 * Does nothing on 32-bit.
 507 */
 508static int is_errata93(struct pt_regs *regs, unsigned long address)
 509{
 510#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 511	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 512	    || boot_cpu_data.x86 != 0xf)
 513		return 0;
 514
 
 
 
 515	if (address != regs->ip)
 516		return 0;
 517
 518	if ((address >> 32) != 0)
 519		return 0;
 520
 521	address |= 0xffffffffUL << 32;
 522	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 523	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 524		printk_once(errata93_warning);
 525		regs->ip = address;
 526		return 1;
 527	}
 528#endif
 529	return 0;
 530}
 531
 532/*
 533 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 534 * to illegal addresses >4GB.
 535 *
 536 * We catch this in the page fault handler because these addresses
 537 * are not reachable. Just detect this case and return.  Any code
 538 * segment in LDT is compatibility mode.
 539 */
 540static int is_errata100(struct pt_regs *regs, unsigned long address)
 541{
 542#ifdef CONFIG_X86_64
 543	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 544		return 1;
 545#endif
 546	return 0;
 547}
 548
 549static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 
 
 550{
 551#ifdef CONFIG_X86_F00F_BUG
 552	unsigned long nr;
 
 
 
 
 
 
 
 553
 554	/*
 555	 * Pentium F0 0F C7 C8 bug workaround:
 556	 */
 557	if (boot_cpu_data.f00f_bug) {
 558		nr = (address - idt_descr.address) >> 3;
 
 
 
 
 
 
 
 
 
 
 559
 560		if (nr == 6) {
 561			do_invalid_op(regs, 0);
 562			return 1;
 563		}
 
 564	}
 
 
 
 
 565#endif
 566	return 0;
 
 567}
 568
 569static const char nx_warning[] = KERN_CRIT
 570"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 571
 572static void
 573show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 574		unsigned long address)
 575{
 576	if (!oops_may_print())
 577		return;
 578
 579	if (error_code & PF_INSTR) {
 580		unsigned int level;
 
 
 581
 582		pte_t *pte = lookup_address(address, &level);
 
 
 
 583
 584		if (pte && pte_present(*pte) && !pte_exec(*pte))
 585			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
 
 
 
 
 
 
 586	}
 587
 588	printk(KERN_ALERT "BUG: unable to handle kernel ");
 589	if (address < PAGE_SIZE)
 590		printk(KERN_CONT "NULL pointer dereference");
 591	else
 592		printk(KERN_CONT "paging request");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593
 594	printk(KERN_CONT " at %p\n", (void *) address);
 595	printk(KERN_ALERT "IP:");
 596	printk_address(regs->ip, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597
 598	dump_pagetable(address);
 599}
 600
 601static noinline void
 602pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 603	    unsigned long address)
 604{
 605	struct task_struct *tsk;
 606	unsigned long flags;
 607	int sig;
 608
 609	flags = oops_begin();
 610	tsk = current;
 611	sig = SIGKILL;
 612
 613	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 614	       tsk->comm, address);
 615	dump_pagetable(address);
 616
 617	tsk->thread.cr2		= address;
 618	tsk->thread.trap_nr	= X86_TRAP_PF;
 619	tsk->thread.error_code	= error_code;
 620
 621	if (__die("Bad pagetable", regs, error_code))
 622		sig = 0;
 623
 624	oops_end(flags, regs, sig);
 625}
 626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627static noinline void
 628no_context(struct pt_regs *regs, unsigned long error_code,
 629	   unsigned long address, int signal, int si_code)
 630{
 631	struct task_struct *tsk = current;
 632	unsigned long *stackend;
 
 633	unsigned long flags;
 634	int sig;
 635
 636	/* Are we prepared to handle this kernel fault? */
 637	if (fixup_exception(regs)) {
 638		if (current_thread_info()->sig_on_uaccess_error && signal) {
 639			tsk->thread.trap_nr = X86_TRAP_PF;
 640			tsk->thread.error_code = error_code | PF_USER;
 641			tsk->thread.cr2 = address;
 642
 643			/* XXX: hwpoison faults will set the wrong code. */
 644			force_sig_info_fault(signal, si_code, address, tsk, 0);
 645		}
 646		return;
 647	}
 648
 
 649	/*
 650	 * 32-bit:
 651	 *
 652	 *   Valid to do another page fault here, because if this fault
 653	 *   had been triggered by is_prefetch fixup_exception would have
 654	 *   handled it.
 655	 *
 656	 * 64-bit:
 657	 *
 658	 *   Hall of shame of CPU/BIOS bugs.
 659	 */
 660	if (is_prefetch(regs, error_code, address))
 661		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662
 663	if (is_errata93(regs, address))
 
 
 
 
 
 
 
 
 
 
 664		return;
 665
 
 666	/*
 667	 * Oops. The kernel tried to access some bad page. We'll have to
 668	 * terminate things with extreme prejudice:
 669	 */
 670	flags = oops_begin();
 671
 672	show_fault_oops(regs, error_code, address);
 673
 674	stackend = end_of_stack(tsk);
 675	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
 676		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 677
 678	tsk->thread.cr2		= address;
 679	tsk->thread.trap_nr	= X86_TRAP_PF;
 680	tsk->thread.error_code	= error_code;
 681
 682	sig = SIGKILL;
 683	if (__die("Oops", regs, error_code))
 684		sig = 0;
 685
 686	/* Executive summary in case the body of the oops scrolled away */
 687	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 688
 689	oops_end(flags, regs, sig);
 690}
 691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692/*
 693 * Print out info about fatal segfaults, if the show_unhandled_signals
 694 * sysctl is set:
 695 */
 696static inline void
 697show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 698		unsigned long address, struct task_struct *tsk)
 699{
 
 
 
 
 700	if (!unhandled_signal(tsk, SIGSEGV))
 701		return;
 702
 703	if (!printk_ratelimit())
 704		return;
 705
 706	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 707		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 708		tsk->comm, task_pid_nr(tsk), address,
 709		(void *)regs->ip, (void *)regs->sp, error_code);
 710
 711	print_vma_addr(KERN_CONT " in ", regs->ip);
 712
 
 
 
 
 
 
 
 
 713	printk(KERN_CONT "\n");
 
 
 714}
 715
 716static void
 717__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 718		       unsigned long address, int si_code)
 719{
 720	struct task_struct *tsk = current;
 721
 722	/* User mode accesses just cause a SIGSEGV */
 723	if (error_code & PF_USER) {
 724		/*
 725		 * It's possible to have interrupts off here:
 726		 */
 727		local_irq_enable();
 
 
 
 
 
 728
 729		/*
 730		 * Valid to do another page fault here because this one came
 731		 * from user space:
 732		 */
 733		if (is_prefetch(regs, error_code, address))
 734			return;
 735
 736		if (is_errata100(regs, address))
 737			return;
 
 
 
 
 738
 739#ifdef CONFIG_X86_64
 740		/*
 741		 * Instruction fetch faults in the vsyscall page might need
 742		 * emulation.
 743		 */
 744		if (unlikely((error_code & PF_INSTR) &&
 745			     ((address & ~0xfff) == VSYSCALL_START))) {
 746			if (emulate_vsyscall(regs, address))
 747				return;
 748		}
 749#endif
 750
 751		if (unlikely(show_unhandled_signals))
 752			show_signal_msg(regs, error_code, address, tsk);
 753
 754		/* Kernel addresses are always protection faults: */
 755		tsk->thread.cr2		= address;
 756		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
 757		tsk->thread.trap_nr	= X86_TRAP_PF;
 758
 759		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
 
 760
 761		return;
 762	}
 763
 764	if (is_f00f_bug(regs, address))
 765		return;
 
 
 766
 767	no_context(regs, error_code, address, SIGSEGV, si_code);
 768}
 769
 770static noinline void
 771bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 772		     unsigned long address)
 773{
 774	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
 775}
 776
 777static void
 778__bad_area(struct pt_regs *regs, unsigned long error_code,
 779	   unsigned long address, int si_code)
 780{
 781	struct mm_struct *mm = current->mm;
 782
 783	/*
 784	 * Something tried to access memory that isn't in our memory map..
 785	 * Fix it, but check if it's kernel or user first..
 786	 */
 787	up_read(&mm->mmap_sem);
 788
 789	__bad_area_nosemaphore(regs, error_code, address, si_code);
 790}
 791
 792static noinline void
 793bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 794{
 795	__bad_area(regs, error_code, address, SEGV_MAPERR);
 
 
 
 
 
 
 
 
 
 
 
 796}
 797
 798static noinline void
 799bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 800		      unsigned long address)
 801{
 802	__bad_area(regs, error_code, address, SEGV_ACCERR);
 803}
 804
 805/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
 806static void
 807out_of_memory(struct pt_regs *regs, unsigned long error_code,
 808	      unsigned long address)
 809{
 810	/*
 811	 * We ran out of memory, call the OOM killer, and return the userspace
 812	 * (which will retry the fault, or kill us if we got oom-killed):
 
 813	 */
 814	up_read(&current->mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815
 816	pagefault_out_of_memory();
 
 
 
 817}
 818
 819static void
 820do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 821	  unsigned int fault)
 822{
 823	struct task_struct *tsk = current;
 824	struct mm_struct *mm = tsk->mm;
 825	int code = BUS_ADRERR;
 826
 827	up_read(&mm->mmap_sem);
 828
 829	/* Kernel mode? Handle exceptions or die: */
 830	if (!(error_code & PF_USER)) {
 831		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 
 832		return;
 833	}
 834
 835	/* User-space => ok to do another page fault: */
 836	if (is_prefetch(regs, error_code, address))
 837		return;
 838
 839	tsk->thread.cr2		= address;
 840	tsk->thread.error_code	= error_code;
 841	tsk->thread.trap_nr	= X86_TRAP_PF;
 
 
 
 842
 843#ifdef CONFIG_MEMORY_FAILURE
 844	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 845		printk(KERN_ERR
 
 
 
 846	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 847			tsk->comm, tsk->pid, address);
 848		code = BUS_MCEERR_AR;
 
 
 
 
 
 849	}
 850#endif
 851	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
 852}
 853
 854static noinline int
 855mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 856	       unsigned long address, unsigned int fault)
 857{
 858	/*
 859	 * Pagefault was interrupted by SIGKILL. We have no reason to
 860	 * continue pagefault.
 861	 */
 862	if (fatal_signal_pending(current)) {
 863		if (!(fault & VM_FAULT_RETRY))
 864			up_read(&current->mm->mmap_sem);
 865		if (!(error_code & PF_USER))
 866			no_context(regs, error_code, address, 0, 0);
 867		return 1;
 868	}
 869	if (!(fault & VM_FAULT_ERROR))
 870		return 0;
 871
 872	if (fault & VM_FAULT_OOM) {
 873		/* Kernel mode? Handle exceptions or die: */
 874		if (!(error_code & PF_USER)) {
 875			up_read(&current->mm->mmap_sem);
 876			no_context(regs, error_code, address,
 877				   SIGSEGV, SEGV_MAPERR);
 878			return 1;
 879		}
 880
 881		out_of_memory(regs, error_code, address);
 882	} else {
 883		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 884			     VM_FAULT_HWPOISON_LARGE))
 885			do_sigbus(regs, error_code, address, fault);
 886		else
 887			BUG();
 888	}
 889	return 1;
 890}
 891
 892static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 893{
 894	if ((error_code & PF_WRITE) && !pte_write(*pte))
 895		return 0;
 896
 897	if ((error_code & PF_INSTR) && !pte_exec(*pte))
 898		return 0;
 899
 900	return 1;
 901}
 902
 903/*
 904 * Handle a spurious fault caused by a stale TLB entry.
 905 *
 906 * This allows us to lazily refresh the TLB when increasing the
 907 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 908 * eagerly is very expensive since that implies doing a full
 909 * cross-processor TLB flush, even if no stale TLB entries exist
 910 * on other processors.
 911 *
 
 
 
 
 912 * There are no security implications to leaving a stale TLB when
 913 * increasing the permissions on a page.
 
 
 
 
 
 914 */
 915static noinline __kprobes int
 916spurious_fault(unsigned long error_code, unsigned long address)
 917{
 918	pgd_t *pgd;
 
 919	pud_t *pud;
 920	pmd_t *pmd;
 921	pte_t *pte;
 922	int ret;
 923
 924	/* Reserved-bit violation or user access to kernel space? */
 925	if (error_code & (PF_USER | PF_RSVD))
 
 
 
 
 
 
 
 
 
 926		return 0;
 927
 928	pgd = init_mm.pgd + pgd_index(address);
 929	if (!pgd_present(*pgd))
 930		return 0;
 931
 932	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
 933	if (!pud_present(*pud))
 934		return 0;
 935
 936	if (pud_large(*pud))
 937		return spurious_fault_check(error_code, (pte_t *) pud);
 938
 939	pmd = pmd_offset(pud, address);
 940	if (!pmd_present(*pmd))
 941		return 0;
 942
 943	if (pmd_large(*pmd))
 944		return spurious_fault_check(error_code, (pte_t *) pmd);
 945
 946	/*
 947	 * Note: don't use pte_present() here, since it returns true
 948	 * if the _PAGE_PROTNONE bit is set.  However, this aliases the
 949	 * _PAGE_GLOBAL bit, which for kernel pages give false positives
 950	 * when CONFIG_DEBUG_PAGEALLOC is used.
 951	 */
 952	pte = pte_offset_kernel(pmd, address);
 953	if (!(pte_flags(*pte) & _PAGE_PRESENT))
 954		return 0;
 955
 956	ret = spurious_fault_check(error_code, pte);
 957	if (!ret)
 958		return 0;
 959
 960	/*
 961	 * Make sure we have permissions in PMD.
 962	 * If not, then there's a bug in the page tables:
 963	 */
 964	ret = spurious_fault_check(error_code, (pte_t *) pmd);
 965	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 966
 967	return ret;
 968}
 
 969
 970int show_unhandled_signals = 1;
 971
 972static inline int
 973access_error(unsigned long error_code, struct vm_area_struct *vma)
 974{
 975	if (error_code & PF_WRITE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976		/* write, present and write, not present: */
 
 
 977		if (unlikely(!(vma->vm_flags & VM_WRITE)))
 978			return 1;
 979		return 0;
 980	}
 981
 982	/* read, present: */
 983	if (unlikely(error_code & PF_PROT))
 984		return 1;
 985
 986	/* read, not present: */
 987	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 988		return 1;
 989
 990	return 0;
 991}
 992
 993static int fault_in_kernel_space(unsigned long address)
 994{
 
 
 
 
 
 
 
 
 995	return address >= TASK_SIZE_MAX;
 996}
 997
 998/*
 999 * This routine handles page faults.  It determines the address,
1000 * and the problem, and then passes it off to one of the appropriate
1001 * routines.
1002 */
1003dotraplinkage void __kprobes
1004do_page_fault(struct pt_regs *regs, unsigned long error_code)
 
1005{
1006	struct vm_area_struct *vma;
1007	struct task_struct *tsk;
1008	unsigned long address;
1009	struct mm_struct *mm;
1010	int fault;
1011	int write = error_code & PF_WRITE;
1012	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
1013					(write ? FAULT_FLAG_WRITE : 0);
1014
1015	tsk = current;
1016	mm = tsk->mm;
1017
1018	/* Get the faulting address: */
1019	address = read_cr2();
1020
1021	/*
1022	 * Detect and handle instructions that would cause a page fault for
1023	 * both a tracked kernel page and a userspace page.
 
1024	 */
1025	if (kmemcheck_active(regs))
1026		kmemcheck_hide(regs);
1027	prefetchw(&mm->mmap_sem);
1028
1029	if (unlikely(kmmio_fault(regs, address)))
1030		return;
1031
 
1032	/*
1033	 * We fault-in kernel-space virtual memory on-demand. The
1034	 * 'reference' page table is init_mm.pgd.
1035	 *
1036	 * NOTE! We MUST NOT take any locks for this case. We may
1037	 * be in an interrupt or a critical region, and should
1038	 * only copy the information from the master page table,
1039	 * nothing more.
1040	 *
1041	 * This verifies that the fault happens in kernel space
1042	 * (error_code & 4) == 0, and that the fault was not a
1043	 * protection error (error_code & 9) == 0.
 
 
 
 
 
 
 
 
 
 
 
1044	 */
1045	if (unlikely(fault_in_kernel_space(address))) {
1046		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1047			if (vmalloc_fault(address) >= 0)
1048				return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050			if (kmemcheck_fault(regs, address, error_code))
1051				return;
1052		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053
1054		/* Can handle a stale RO->RW TLB: */
1055		if (spurious_fault(error_code, address))
1056			return;
1057
1058		/* kprobes don't want to hook the spurious faults: */
1059		if (notify_page_fault(regs))
1060			return;
1061		/*
1062		 * Don't take the mm semaphore here. If we fixup a prefetch
1063		 * fault we could otherwise deadlock:
 
 
 
1064		 */
1065		bad_area_nosemaphore(regs, error_code, address);
 
1066
 
1067		return;
1068	}
1069
1070	/* kprobes don't want to hook the spurious faults: */
1071	if (unlikely(notify_page_fault(regs)))
1072		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073	/*
1074	 * It's safe to allow irq's after cr2 has been saved and the
1075	 * vmalloc fault has been handled.
1076	 *
1077	 * User-mode registers count as a user access even for any
1078	 * potential system fault or CPU buglet:
1079	 */
1080	if (user_mode_vm(regs)) {
1081		local_irq_enable();
1082		error_code |= PF_USER;
1083	} else {
1084		if (regs->flags & X86_EFLAGS_IF)
1085			local_irq_enable();
1086	}
1087
1088	if (unlikely(error_code & PF_RSVD))
1089		pgtable_bad(regs, error_code, address);
1090
1091	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1092
1093	/*
1094	 * If we're in an interrupt, have no user context or are running
1095	 * in an atomic region then we must not take the fault:
1096	 */
1097	if (unlikely(in_atomic() || !mm)) {
1098		bad_area_nosemaphore(regs, error_code, address);
1099		return;
1100	}
 
 
 
 
1101
 
1102	/*
1103	 * When running in the kernel we expect faults to occur only to
1104	 * addresses in user space.  All other faults represent errors in
1105	 * the kernel and should generate an OOPS.  Unfortunately, in the
1106	 * case of an erroneous fault occurring in a code path which already
1107	 * holds mmap_sem we will deadlock attempting to validate the fault
1108	 * against the address space.  Luckily the kernel only validly
1109	 * references user space from well defined areas of code, which are
1110	 * listed in the exceptions table.
1111	 *
1112	 * As the vast majority of faults will be valid we will only perform
1113	 * the source reference check when there is a possibility of a
1114	 * deadlock. Attempt to lock the address space, if we cannot we then
1115	 * validate the source. If this is invalid we can skip the address
1116	 * space check, thus avoiding the deadlock:
1117	 */
1118	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1119		if ((error_code & PF_USER) == 0 &&
1120		    !search_exception_tables(regs->ip)) {
1121			bad_area_nosemaphore(regs, error_code, address);
1122			return;
1123		}
1124retry:
1125		down_read(&mm->mmap_sem);
1126	} else {
1127		/*
1128		 * The above down_read_trylock() might have succeeded in
1129		 * which case we'll have missed the might_sleep() from
1130		 * down_read():
1131		 */
1132		might_sleep();
1133	}
 
 
 
 
1134
1135	vma = find_vma(mm, address);
1136	if (unlikely(!vma)) {
1137		bad_area(regs, error_code, address);
1138		return;
 
 
 
1139	}
1140	if (likely(vma->vm_start <= address))
1141		goto good_area;
1142	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1143		bad_area(regs, error_code, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144		return;
1145	}
1146	if (error_code & PF_USER) {
1147		/*
1148		 * Accessing the stack below %sp is always a bug.
1149		 * The large cushion allows instructions like enter
1150		 * and pusha to work. ("enter $65535, $31" pushes
1151		 * 32 pointers and then decrements %sp by 65535.)
1152		 */
1153		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1154			bad_area(regs, error_code, address);
1155			return;
1156		}
1157	}
1158	if (unlikely(expand_stack(vma, address))) {
1159		bad_area(regs, error_code, address);
1160		return;
1161	}
1162
1163	/*
1164	 * Ok, we have a good vm_area for this memory access, so
1165	 * we can handle it..
1166	 */
1167good_area:
1168	if (unlikely(access_error(error_code, vma))) {
1169		bad_area_access_error(regs, error_code, address);
1170		return;
1171	}
1172
1173	/*
1174	 * If for any reason at all we couldn't handle the fault,
1175	 * make sure we exit gracefully rather than endlessly redo
1176	 * the fault:
 
 
 
 
 
 
 
 
1177	 */
1178	fault = handle_mm_fault(mm, vma, address, flags);
1179
1180	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1181		if (mm_fault_error(regs, error_code, address, fault))
1182			return;
 
 
 
 
 
 
 
1183	}
1184
 
 
 
 
1185	/*
1186	 * Major/minor page fault accounting is only done on the
1187	 * initial attempt. If we go through a retry, it is extremely
1188	 * likely that the page will be found in page cache at that point.
1189	 */
1190	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1191		if (fault & VM_FAULT_MAJOR) {
1192			tsk->maj_flt++;
1193			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1194				      regs, address);
1195		} else {
1196			tsk->min_flt++;
1197			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1198				      regs, address);
1199		}
1200		if (fault & VM_FAULT_RETRY) {
1201			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1202			 * of starvation. */
1203			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1204			goto retry;
 
 
 
 
 
 
 
 
1205		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207
1208	check_v8086_mode(regs, address, tsk);
 
 
1209
1210	up_read(&mm->mmap_sem);
1211}