Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/memblock.h>		/* max_low_pfn			*/
  12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
  13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  15#include <linux/perf_event.h>		/* perf_sw_event		*/
  16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  17#include <linux/prefetch.h>		/* prefetchw			*/
  18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  21#include <linux/mm_types.h>
  22#include <linux/mm.h>			/* find_and_lock_vma() */
  23
  24#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  25#include <asm/traps.h>			/* dotraplinkage, ...		*/
  26#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  27#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  28#include <asm/vm86.h>			/* struct vm86			*/
  29#include <asm/mmu_context.h>		/* vma_pkey()			*/
  30#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  31#include <asm/desc.h>			/* store_idt(), ...		*/
  32#include <asm/cpu_entry_area.h>		/* exception stack		*/
  33#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
  34#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
  35#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
  36#include <asm/irq_stack.h>
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <asm/trace/exceptions.h>
  40
  41/*
  42 * Returns 0 if mmiotrace is disabled, or if the fault is not
  43 * handled by mmiotrace:
  44 */
  45static nokprobe_inline int
  46kmmio_fault(struct pt_regs *regs, unsigned long addr)
  47{
  48	if (unlikely(is_kmmio_active()))
  49		if (kmmio_handler(regs, addr) == 1)
  50			return -1;
  51	return 0;
  52}
  53
  54/*
  55 * Prefetch quirks:
  56 *
  57 * 32-bit mode:
  58 *
  59 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  60 *   Check that here and ignore it.  This is AMD erratum #91.
  61 *
  62 * 64-bit mode:
  63 *
  64 *   Sometimes the CPU reports invalid exceptions on prefetch.
  65 *   Check that here and ignore it.
  66 *
  67 * Opcode checker based on code by Richard Brunner.
  68 */
  69static inline int
  70check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  71		      unsigned char opcode, int *prefetch)
  72{
  73	unsigned char instr_hi = opcode & 0xf0;
  74	unsigned char instr_lo = opcode & 0x0f;
  75
  76	switch (instr_hi) {
  77	case 0x20:
  78	case 0x30:
  79		/*
  80		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  81		 * In X86_64 long mode, the CPU will signal invalid
  82		 * opcode if some of these prefixes are present so
  83		 * X86_64 will never get here anyway
  84		 */
  85		return ((instr_lo & 7) == 0x6);
  86#ifdef CONFIG_X86_64
  87	case 0x40:
  88		/*
  89		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
  90		 */
  91		return (!user_mode(regs) || user_64bit_mode(regs));
  92#endif
  93	case 0x60:
  94		/* 0x64 thru 0x67 are valid prefixes in all modes. */
  95		return (instr_lo & 0xC) == 0x4;
  96	case 0xF0:
  97		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  98		return !instr_lo || (instr_lo>>1) == 1;
  99	case 0x00:
 100		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 101		if (get_kernel_nofault(opcode, instr))
 102			return 0;
 103
 104		*prefetch = (instr_lo == 0xF) &&
 105			(opcode == 0x0D || opcode == 0x18);
 106		return 0;
 107	default:
 108		return 0;
 109	}
 110}
 111
 112static bool is_amd_k8_pre_npt(void)
 113{
 114	struct cpuinfo_x86 *c = &boot_cpu_data;
 115
 116	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
 117			c->x86_vendor == X86_VENDOR_AMD &&
 118			c->x86 == 0xf && c->x86_model < 0x40);
 119}
 120
 121static int
 122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 123{
 124	unsigned char *max_instr;
 125	unsigned char *instr;
 126	int prefetch = 0;
 127
 128	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
 129	if (!is_amd_k8_pre_npt())
 130		return 0;
 131
 132	/*
 133	 * If it was a exec (instruction fetch) fault on NX page, then
 134	 * do not ignore the fault:
 135	 */
 136	if (error_code & X86_PF_INSTR)
 137		return 0;
 138
 139	instr = (void *)convert_ip_to_linear(current, regs);
 140	max_instr = instr + 15;
 141
 142	/*
 143	 * This code has historically always bailed out if IP points to a
 144	 * not-present page (e.g. due to a race).  No one has ever
 145	 * complained about this.
 146	 */
 147	pagefault_disable();
 148
 149	while (instr < max_instr) {
 150		unsigned char opcode;
 151
 152		if (user_mode(regs)) {
 153			if (get_user(opcode, (unsigned char __user *) instr))
 154				break;
 155		} else {
 156			if (get_kernel_nofault(opcode, instr))
 157				break;
 158		}
 159
 160		instr++;
 161
 162		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 163			break;
 164	}
 165
 166	pagefault_enable();
 167	return prefetch;
 168}
 169
 170DEFINE_SPINLOCK(pgd_lock);
 171LIST_HEAD(pgd_list);
 172
 173#ifdef CONFIG_X86_32
 174static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 175{
 176	unsigned index = pgd_index(address);
 177	pgd_t *pgd_k;
 178	p4d_t *p4d, *p4d_k;
 179	pud_t *pud, *pud_k;
 180	pmd_t *pmd, *pmd_k;
 181
 182	pgd += index;
 183	pgd_k = init_mm.pgd + index;
 184
 185	if (!pgd_present(*pgd_k))
 186		return NULL;
 187
 188	/*
 189	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 190	 * and redundant with the set_pmd() on non-PAE. As would
 191	 * set_p4d/set_pud.
 192	 */
 193	p4d = p4d_offset(pgd, address);
 194	p4d_k = p4d_offset(pgd_k, address);
 195	if (!p4d_present(*p4d_k))
 196		return NULL;
 197
 198	pud = pud_offset(p4d, address);
 199	pud_k = pud_offset(p4d_k, address);
 200	if (!pud_present(*pud_k))
 201		return NULL;
 202
 203	pmd = pmd_offset(pud, address);
 204	pmd_k = pmd_offset(pud_k, address);
 205
 206	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 207		set_pmd(pmd, *pmd_k);
 208
 209	if (!pmd_present(*pmd_k))
 210		return NULL;
 211	else
 212		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 213
 214	return pmd_k;
 215}
 216
 217/*
 218 *   Handle a fault on the vmalloc or module mapping area
 219 *
 220 *   This is needed because there is a race condition between the time
 221 *   when the vmalloc mapping code updates the PMD to the point in time
 222 *   where it synchronizes this update with the other page-tables in the
 223 *   system.
 224 *
 225 *   In this race window another thread/CPU can map an area on the same
 226 *   PMD, finds it already present and does not synchronize it with the
 227 *   rest of the system yet. As a result v[mz]alloc might return areas
 228 *   which are not mapped in every page-table in the system, causing an
 229 *   unhandled page-fault when they are accessed.
 230 */
 231static noinline int vmalloc_fault(unsigned long address)
 232{
 233	unsigned long pgd_paddr;
 234	pmd_t *pmd_k;
 235	pte_t *pte_k;
 236
 237	/* Make sure we are in vmalloc area: */
 238	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 239		return -1;
 240
 241	/*
 242	 * Synchronize this task's top level page-table
 243	 * with the 'reference' page table.
 244	 *
 245	 * Do _not_ use "current" here. We might be inside
 246	 * an interrupt in the middle of a task switch..
 247	 */
 248	pgd_paddr = read_cr3_pa();
 249	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 250	if (!pmd_k)
 251		return -1;
 252
 253	if (pmd_large(*pmd_k))
 254		return 0;
 255
 256	pte_k = pte_offset_kernel(pmd_k, address);
 257	if (!pte_present(*pte_k))
 258		return -1;
 259
 260	return 0;
 261}
 262NOKPROBE_SYMBOL(vmalloc_fault);
 263
 264void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 265{
 266	unsigned long addr;
 267
 268	for (addr = start & PMD_MASK;
 269	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 270	     addr += PMD_SIZE) {
 271		struct page *page;
 272
 273		spin_lock(&pgd_lock);
 274		list_for_each_entry(page, &pgd_list, lru) {
 275			spinlock_t *pgt_lock;
 276
 277			/* the pgt_lock only for Xen */
 278			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 279
 280			spin_lock(pgt_lock);
 281			vmalloc_sync_one(page_address(page), addr);
 282			spin_unlock(pgt_lock);
 283		}
 284		spin_unlock(&pgd_lock);
 285	}
 286}
 287
 288static bool low_pfn(unsigned long pfn)
 289{
 290	return pfn < max_low_pfn;
 291}
 292
 293static void dump_pagetable(unsigned long address)
 294{
 295	pgd_t *base = __va(read_cr3_pa());
 296	pgd_t *pgd = &base[pgd_index(address)];
 297	p4d_t *p4d;
 298	pud_t *pud;
 299	pmd_t *pmd;
 300	pte_t *pte;
 301
 302#ifdef CONFIG_X86_PAE
 303	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 304	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 305		goto out;
 306#define pr_pde pr_cont
 307#else
 308#define pr_pde pr_info
 309#endif
 310	p4d = p4d_offset(pgd, address);
 311	pud = pud_offset(p4d, address);
 312	pmd = pmd_offset(pud, address);
 313	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 314#undef pr_pde
 315
 316	/*
 317	 * We must not directly access the pte in the highpte
 318	 * case if the page table is located in highmem.
 319	 * And let's rather not kmap-atomic the pte, just in case
 320	 * it's allocated already:
 321	 */
 322	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 323		goto out;
 324
 325	pte = pte_offset_kernel(pmd, address);
 326	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 327out:
 328	pr_cont("\n");
 329}
 330
 331#else /* CONFIG_X86_64: */
 332
 333#ifdef CONFIG_CPU_SUP_AMD
 334static const char errata93_warning[] =
 335KERN_ERR 
 336"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 337"******* Working around it, but it may cause SEGVs or burn power.\n"
 338"******* Please consider a BIOS update.\n"
 339"******* Disabling USB legacy in the BIOS may also help.\n";
 340#endif
 341
 342static int bad_address(void *p)
 343{
 344	unsigned long dummy;
 345
 346	return get_kernel_nofault(dummy, (unsigned long *)p);
 347}
 348
 349static void dump_pagetable(unsigned long address)
 350{
 351	pgd_t *base = __va(read_cr3_pa());
 352	pgd_t *pgd = base + pgd_index(address);
 353	p4d_t *p4d;
 354	pud_t *pud;
 355	pmd_t *pmd;
 356	pte_t *pte;
 357
 358	if (bad_address(pgd))
 359		goto bad;
 360
 361	pr_info("PGD %lx ", pgd_val(*pgd));
 362
 363	if (!pgd_present(*pgd))
 364		goto out;
 365
 366	p4d = p4d_offset(pgd, address);
 367	if (bad_address(p4d))
 368		goto bad;
 369
 370	pr_cont("P4D %lx ", p4d_val(*p4d));
 371	if (!p4d_present(*p4d) || p4d_large(*p4d))
 372		goto out;
 373
 374	pud = pud_offset(p4d, address);
 375	if (bad_address(pud))
 376		goto bad;
 377
 378	pr_cont("PUD %lx ", pud_val(*pud));
 379	if (!pud_present(*pud) || pud_large(*pud))
 380		goto out;
 381
 382	pmd = pmd_offset(pud, address);
 383	if (bad_address(pmd))
 384		goto bad;
 385
 386	pr_cont("PMD %lx ", pmd_val(*pmd));
 387	if (!pmd_present(*pmd) || pmd_large(*pmd))
 388		goto out;
 389
 390	pte = pte_offset_kernel(pmd, address);
 391	if (bad_address(pte))
 392		goto bad;
 393
 394	pr_cont("PTE %lx", pte_val(*pte));
 395out:
 396	pr_cont("\n");
 397	return;
 398bad:
 399	pr_info("BAD\n");
 400}
 401
 402#endif /* CONFIG_X86_64 */
 403
 404/*
 405 * Workaround for K8 erratum #93 & buggy BIOS.
 406 *
 407 * BIOS SMM functions are required to use a specific workaround
 408 * to avoid corruption of the 64bit RIP register on C stepping K8.
 409 *
 410 * A lot of BIOS that didn't get tested properly miss this.
 411 *
 412 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 413 * Try to work around it here.
 414 *
 415 * Note we only handle faults in kernel here.
 416 * Does nothing on 32-bit.
 417 */
 418static int is_errata93(struct pt_regs *regs, unsigned long address)
 419{
 420#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 421	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 422	    || boot_cpu_data.x86 != 0xf)
 423		return 0;
 424
 425	if (user_mode(regs))
 426		return 0;
 427
 428	if (address != regs->ip)
 429		return 0;
 430
 431	if ((address >> 32) != 0)
 432		return 0;
 433
 434	address |= 0xffffffffUL << 32;
 435	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 436	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 437		printk_once(errata93_warning);
 438		regs->ip = address;
 439		return 1;
 440	}
 441#endif
 442	return 0;
 443}
 444
 445/*
 446 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 447 * to illegal addresses >4GB.
 448 *
 449 * We catch this in the page fault handler because these addresses
 450 * are not reachable. Just detect this case and return.  Any code
 451 * segment in LDT is compatibility mode.
 452 */
 453static int is_errata100(struct pt_regs *regs, unsigned long address)
 454{
 455#ifdef CONFIG_X86_64
 456	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 457		return 1;
 458#endif
 459	return 0;
 460}
 461
 462/* Pentium F0 0F C7 C8 bug workaround: */
 463static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
 464		       unsigned long address)
 465{
 466#ifdef CONFIG_X86_F00F_BUG
 467	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
 468	    idt_is_f00f_address(address)) {
 469		handle_invalid_op(regs);
 470		return 1;
 471	}
 472#endif
 473	return 0;
 474}
 475
 476static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 477{
 478	u32 offset = (index >> 3) * sizeof(struct desc_struct);
 479	unsigned long addr;
 480	struct ldttss_desc desc;
 481
 482	if (index == 0) {
 483		pr_alert("%s: NULL\n", name);
 484		return;
 485	}
 486
 487	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 488		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 489		return;
 490	}
 491
 492	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 493			      sizeof(struct ldttss_desc))) {
 494		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 495			 name, index);
 496		return;
 497	}
 498
 499	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 500#ifdef CONFIG_X86_64
 501	addr |= ((u64)desc.base3 << 32);
 502#endif
 503	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 504		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 505}
 506
 507static void
 508show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 509{
 510	if (!oops_may_print())
 511		return;
 512
 513	if (error_code & X86_PF_INSTR) {
 514		unsigned int level;
 515		pgd_t *pgd;
 516		pte_t *pte;
 517
 518		pgd = __va(read_cr3_pa());
 519		pgd += pgd_index(address);
 520
 521		pte = lookup_address_in_pgd(pgd, address, &level);
 522
 523		if (pte && pte_present(*pte) && !pte_exec(*pte))
 524			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 525				from_kuid(&init_user_ns, current_uid()));
 526		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 527				(pgd_flags(*pgd) & _PAGE_USER) &&
 528				(__read_cr4() & X86_CR4_SMEP))
 529			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 530				from_kuid(&init_user_ns, current_uid()));
 531	}
 532
 533	if (address < PAGE_SIZE && !user_mode(regs))
 534		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 535			(void *)address);
 536	else
 537		pr_alert("BUG: unable to handle page fault for address: %px\n",
 538			(void *)address);
 539
 540	pr_alert("#PF: %s %s in %s mode\n",
 541		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 542		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 543		 (error_code & X86_PF_WRITE) ? "write access" :
 544					       "read access",
 545			     user_mode(regs) ? "user" : "kernel");
 546	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 547		 !(error_code & X86_PF_PROT) ? "not-present page" :
 548		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 549		 (error_code & X86_PF_PK)    ? "protection keys violation" :
 
 550					       "permissions violation");
 551
 552	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 553		struct desc_ptr idt, gdt;
 554		u16 ldtr, tr;
 555
 556		/*
 557		 * This can happen for quite a few reasons.  The more obvious
 558		 * ones are faults accessing the GDT, or LDT.  Perhaps
 559		 * surprisingly, if the CPU tries to deliver a benign or
 560		 * contributory exception from user code and gets a page fault
 561		 * during delivery, the page fault can be delivered as though
 562		 * it originated directly from user code.  This could happen
 563		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 564		 * kernel or IST stack.
 565		 */
 566		store_idt(&idt);
 567
 568		/* Usable even on Xen PV -- it's just slow. */
 569		native_store_gdt(&gdt);
 570
 571		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 572			 idt.address, idt.size, gdt.address, gdt.size);
 573
 574		store_ldt(ldtr);
 575		show_ldttss(&gdt, "LDTR", ldtr);
 576
 577		store_tr(tr);
 578		show_ldttss(&gdt, "TR", tr);
 579	}
 580
 581	dump_pagetable(address);
 
 
 
 582}
 583
 584static noinline void
 585pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 586	    unsigned long address)
 587{
 588	struct task_struct *tsk;
 589	unsigned long flags;
 590	int sig;
 591
 592	flags = oops_begin();
 593	tsk = current;
 594	sig = SIGKILL;
 595
 596	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 597	       tsk->comm, address);
 598	dump_pagetable(address);
 599
 600	if (__die("Bad pagetable", regs, error_code))
 601		sig = 0;
 602
 603	oops_end(flags, regs, sig);
 604}
 605
 606static void sanitize_error_code(unsigned long address,
 607				unsigned long *error_code)
 608{
 609	/*
 610	 * To avoid leaking information about the kernel page
 611	 * table layout, pretend that user-mode accesses to
 612	 * kernel addresses are always protection faults.
 613	 *
 614	 * NB: This means that failed vsyscalls with vsyscall=none
 615	 * will have the PROT bit.  This doesn't leak any
 616	 * information and does not appear to cause any problems.
 617	 */
 618	if (address >= TASK_SIZE_MAX)
 619		*error_code |= X86_PF_PROT;
 620}
 621
 622static void set_signal_archinfo(unsigned long address,
 623				unsigned long error_code)
 624{
 625	struct task_struct *tsk = current;
 626
 627	tsk->thread.trap_nr = X86_TRAP_PF;
 628	tsk->thread.error_code = error_code | X86_PF_USER;
 629	tsk->thread.cr2 = address;
 630}
 631
 632static noinline void
 633page_fault_oops(struct pt_regs *regs, unsigned long error_code,
 634		unsigned long address)
 635{
 636#ifdef CONFIG_VMAP_STACK
 637	struct stack_info info;
 638#endif
 639	unsigned long flags;
 640	int sig;
 641
 642	if (user_mode(regs)) {
 643		/*
 644		 * Implicit kernel access from user mode?  Skip the stack
 645		 * overflow and EFI special cases.
 646		 */
 647		goto oops;
 648	}
 649
 650#ifdef CONFIG_VMAP_STACK
 651	/*
 652	 * Stack overflow?  During boot, we can fault near the initial
 653	 * stack in the direct map, but that's not an overflow -- check
 654	 * that we're in vmalloc space to avoid this.
 655	 */
 656	if (is_vmalloc_addr((void *)address) &&
 657	    get_stack_guard_info((void *)address, &info)) {
 658		/*
 659		 * We're likely to be running with very little stack space
 660		 * left.  It's plausible that we'd hit this condition but
 661		 * double-fault even before we get this far, in which case
 662		 * we're fine: the double-fault handler will deal with it.
 663		 *
 664		 * We don't want to make it all the way into the oops code
 665		 * and then double-fault, though, because we're likely to
 666		 * break the console driver and lose most of the stack dump.
 667		 */
 668		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
 669			      handle_stack_overflow,
 670			      ASM_CALL_ARG3,
 671			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
 672
 673		unreachable();
 674	}
 675#endif
 676
 677	/*
 678	 * Buggy firmware could access regions which might page fault.  If
 679	 * this happens, EFI has a special OOPS path that will try to
 680	 * avoid hanging the system.
 681	 */
 682	if (IS_ENABLED(CONFIG_EFI))
 683		efi_crash_gracefully_on_page_fault(address);
 684
 685	/* Only not-present faults should be handled by KFENCE. */
 686	if (!(error_code & X86_PF_PROT) &&
 687	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
 688		return;
 689
 690oops:
 691	/*
 692	 * Oops. The kernel tried to access some bad page. We'll have to
 693	 * terminate things with extreme prejudice:
 694	 */
 695	flags = oops_begin();
 696
 697	show_fault_oops(regs, error_code, address);
 698
 699	if (task_stack_end_corrupted(current))
 700		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 701
 702	sig = SIGKILL;
 703	if (__die("Oops", regs, error_code))
 704		sig = 0;
 705
 706	/* Executive summary in case the body of the oops scrolled away */
 707	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 708
 709	oops_end(flags, regs, sig);
 710}
 711
 712static noinline void
 713kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
 714			 unsigned long address, int signal, int si_code,
 715			 u32 pkey)
 716{
 717	WARN_ON_ONCE(user_mode(regs));
 718
 719	/* Are we prepared to handle this kernel fault? */
 720	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 721		/*
 722		 * Any interrupt that takes a fault gets the fixup. This makes
 723		 * the below recursive fault logic only apply to a faults from
 724		 * task context.
 725		 */
 726		if (in_interrupt())
 727			return;
 728
 729		/*
 730		 * Per the above we're !in_interrupt(), aka. task context.
 731		 *
 732		 * In this case we need to make sure we're not recursively
 733		 * faulting through the emulate_vsyscall() logic.
 734		 */
 735		if (current->thread.sig_on_uaccess_err && signal) {
 736			sanitize_error_code(address, &error_code);
 737
 738			set_signal_archinfo(address, error_code);
 739
 740			if (si_code == SEGV_PKUERR) {
 741				force_sig_pkuerr((void __user *)address, pkey);
 742			} else {
 743				/* XXX: hwpoison faults will set the wrong code. */
 744				force_sig_fault(signal, si_code, (void __user *)address);
 745			}
 746		}
 747
 748		/*
 749		 * Barring that, we can do the fixup and be happy.
 750		 */
 751		return;
 752	}
 753
 754	/*
 755	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
 756	 * instruction.
 757	 */
 758	if (is_prefetch(regs, error_code, address))
 759		return;
 760
 761	page_fault_oops(regs, error_code, address);
 762}
 763
 764/*
 765 * Print out info about fatal segfaults, if the show_unhandled_signals
 766 * sysctl is set:
 767 */
 768static inline void
 769show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 770		unsigned long address, struct task_struct *tsk)
 771{
 772	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 773	/* This is a racy snapshot, but it's better than nothing. */
 774	int cpu = raw_smp_processor_id();
 775
 776	if (!unhandled_signal(tsk, SIGSEGV))
 777		return;
 778
 779	if (!printk_ratelimit())
 780		return;
 781
 782	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 783		loglvl, tsk->comm, task_pid_nr(tsk), address,
 784		(void *)regs->ip, (void *)regs->sp, error_code);
 785
 786	print_vma_addr(KERN_CONT " in ", regs->ip);
 787
 788	/*
 789	 * Dump the likely CPU where the fatal segfault happened.
 790	 * This can help identify faulty hardware.
 791	 */
 792	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
 793	       topology_core_id(cpu), topology_physical_package_id(cpu));
 794
 795
 796	printk(KERN_CONT "\n");
 797
 798	show_opcodes(regs, loglvl);
 799}
 800
 801static void
 802__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 803		       unsigned long address, u32 pkey, int si_code)
 804{
 805	struct task_struct *tsk = current;
 806
 807	if (!user_mode(regs)) {
 808		kernelmode_fixup_or_oops(regs, error_code, address,
 809					 SIGSEGV, si_code, pkey);
 810		return;
 811	}
 812
 813	if (!(error_code & X86_PF_USER)) {
 814		/* Implicit user access to kernel memory -- just oops */
 815		page_fault_oops(regs, error_code, address);
 816		return;
 817	}
 818
 819	/*
 820	 * User mode accesses just cause a SIGSEGV.
 821	 * It's possible to have interrupts off here:
 822	 */
 823	local_irq_enable();
 824
 825	/*
 826	 * Valid to do another page fault here because this one came
 827	 * from user space:
 828	 */
 829	if (is_prefetch(regs, error_code, address))
 830		return;
 831
 832	if (is_errata100(regs, address))
 833		return;
 834
 835	sanitize_error_code(address, &error_code);
 836
 837	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 838		return;
 839
 840	if (likely(show_unhandled_signals))
 841		show_signal_msg(regs, error_code, address, tsk);
 842
 843	set_signal_archinfo(address, error_code);
 844
 845	if (si_code == SEGV_PKUERR)
 846		force_sig_pkuerr((void __user *)address, pkey);
 847	else
 848		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 849
 850	local_irq_disable();
 851}
 852
 853static noinline void
 854bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 855		     unsigned long address)
 856{
 857	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 858}
 859
 860static void
 861__bad_area(struct pt_regs *regs, unsigned long error_code,
 862	   unsigned long address, u32 pkey, int si_code)
 863{
 864	struct mm_struct *mm = current->mm;
 865	/*
 866	 * Something tried to access memory that isn't in our memory map..
 867	 * Fix it, but check if it's kernel or user first..
 868	 */
 869	mmap_read_unlock(mm);
 870
 871	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 872}
 873
 874static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 875		struct vm_area_struct *vma)
 876{
 877	/* This code is always called on the current mm */
 878	bool foreign = false;
 879
 880	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 881		return false;
 882	if (error_code & X86_PF_PK)
 883		return true;
 884	/* this checks permission keys on the VMA: */
 885	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 886				       (error_code & X86_PF_INSTR), foreign))
 887		return true;
 888	return false;
 889}
 890
 891static noinline void
 892bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 893		      unsigned long address, struct vm_area_struct *vma)
 894{
 895	/*
 896	 * This OSPKE check is not strictly necessary at runtime.
 897	 * But, doing it this way allows compiler optimizations
 898	 * if pkeys are compiled out.
 899	 */
 900	if (bad_area_access_from_pkeys(error_code, vma)) {
 901		/*
 902		 * A protection key fault means that the PKRU value did not allow
 903		 * access to some PTE.  Userspace can figure out what PKRU was
 904		 * from the XSAVE state.  This function captures the pkey from
 905		 * the vma and passes it to userspace so userspace can discover
 906		 * which protection key was set on the PTE.
 907		 *
 908		 * If we get here, we know that the hardware signaled a X86_PF_PK
 909		 * fault and that there was a VMA once we got in the fault
 910		 * handler.  It does *not* guarantee that the VMA we find here
 911		 * was the one that we faulted on.
 912		 *
 913		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 914		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 915		 * 3. T1   : faults...
 916		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 917		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 918		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 919		 *	     faulted on a pte with its pkey=4.
 920		 */
 921		u32 pkey = vma_pkey(vma);
 922
 923		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 924	} else {
 925		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 926	}
 927}
 928
 929static void
 930do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 931	  vm_fault_t fault)
 932{
 933	/* Kernel mode? Handle exceptions or die: */
 934	if (!user_mode(regs)) {
 935		kernelmode_fixup_or_oops(regs, error_code, address,
 936					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
 937		return;
 938	}
 939
 940	/* User-space => ok to do another page fault: */
 941	if (is_prefetch(regs, error_code, address))
 942		return;
 943
 944	sanitize_error_code(address, &error_code);
 945
 946	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 947		return;
 948
 949	set_signal_archinfo(address, error_code);
 950
 951#ifdef CONFIG_MEMORY_FAILURE
 952	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 953		struct task_struct *tsk = current;
 954		unsigned lsb = 0;
 955
 956		pr_err(
 957	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 958			tsk->comm, tsk->pid, address);
 959		if (fault & VM_FAULT_HWPOISON_LARGE)
 960			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 961		if (fault & VM_FAULT_HWPOISON)
 962			lsb = PAGE_SHIFT;
 963		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 964		return;
 965	}
 966#endif
 967	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 968}
 969
 970static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 971{
 972	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 973		return 0;
 974
 975	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 976		return 0;
 977
 978	return 1;
 979}
 980
 981/*
 982 * Handle a spurious fault caused by a stale TLB entry.
 983 *
 984 * This allows us to lazily refresh the TLB when increasing the
 985 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 986 * eagerly is very expensive since that implies doing a full
 987 * cross-processor TLB flush, even if no stale TLB entries exist
 988 * on other processors.
 989 *
 990 * Spurious faults may only occur if the TLB contains an entry with
 991 * fewer permission than the page table entry.  Non-present (P = 0)
 992 * and reserved bit (R = 1) faults are never spurious.
 993 *
 994 * There are no security implications to leaving a stale TLB when
 995 * increasing the permissions on a page.
 996 *
 997 * Returns non-zero if a spurious fault was handled, zero otherwise.
 998 *
 999 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1000 * (Optional Invalidation).
1001 */
1002static noinline int
1003spurious_kernel_fault(unsigned long error_code, unsigned long address)
1004{
1005	pgd_t *pgd;
1006	p4d_t *p4d;
1007	pud_t *pud;
1008	pmd_t *pmd;
1009	pte_t *pte;
1010	int ret;
1011
1012	/*
1013	 * Only writes to RO or instruction fetches from NX may cause
1014	 * spurious faults.
1015	 *
1016	 * These could be from user or supervisor accesses but the TLB
1017	 * is only lazily flushed after a kernel mapping protection
1018	 * change, so user accesses are not expected to cause spurious
1019	 * faults.
1020	 */
1021	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1022	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1023		return 0;
1024
1025	pgd = init_mm.pgd + pgd_index(address);
1026	if (!pgd_present(*pgd))
1027		return 0;
1028
1029	p4d = p4d_offset(pgd, address);
1030	if (!p4d_present(*p4d))
1031		return 0;
1032
1033	if (p4d_large(*p4d))
1034		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1035
1036	pud = pud_offset(p4d, address);
1037	if (!pud_present(*pud))
1038		return 0;
1039
1040	if (pud_large(*pud))
1041		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1042
1043	pmd = pmd_offset(pud, address);
1044	if (!pmd_present(*pmd))
1045		return 0;
1046
1047	if (pmd_large(*pmd))
1048		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1049
1050	pte = pte_offset_kernel(pmd, address);
1051	if (!pte_present(*pte))
1052		return 0;
1053
1054	ret = spurious_kernel_fault_check(error_code, pte);
1055	if (!ret)
1056		return 0;
1057
1058	/*
1059	 * Make sure we have permissions in PMD.
1060	 * If not, then there's a bug in the page tables:
1061	 */
1062	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1063	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1064
1065	return ret;
1066}
1067NOKPROBE_SYMBOL(spurious_kernel_fault);
1068
1069int show_unhandled_signals = 1;
1070
1071static inline int
1072access_error(unsigned long error_code, struct vm_area_struct *vma)
1073{
1074	/* This is only called for the current mm, so: */
1075	bool foreign = false;
1076
1077	/*
1078	 * Read or write was blocked by protection keys.  This is
1079	 * always an unconditional error and can never result in
1080	 * a follow-up action to resolve the fault, like a COW.
1081	 */
1082	if (error_code & X86_PF_PK)
1083		return 1;
1084
1085	/*
1086	 * SGX hardware blocked the access.  This usually happens
1087	 * when the enclave memory contents have been destroyed, like
1088	 * after a suspend/resume cycle. In any case, the kernel can't
1089	 * fix the cause of the fault.  Handle the fault as an access
1090	 * error even in cases where no actual access violation
1091	 * occurred.  This allows userspace to rebuild the enclave in
1092	 * response to the signal.
1093	 */
1094	if (unlikely(error_code & X86_PF_SGX))
1095		return 1;
1096
1097	/*
1098	 * Make sure to check the VMA so that we do not perform
1099	 * faults just to hit a X86_PF_PK as soon as we fill in a
1100	 * page.
1101	 */
1102	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1103				       (error_code & X86_PF_INSTR), foreign))
1104		return 1;
1105
1106	/*
1107	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1108	 * shadow stack VMAs. All other accesses result in an error.
1109	 */
1110	if (error_code & X86_PF_SHSTK) {
1111		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1112			return 1;
1113		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1114			return 1;
1115		return 0;
1116	}
1117
1118	if (error_code & X86_PF_WRITE) {
1119		/* write, present and write, not present: */
1120		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1121			return 1;
1122		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123			return 1;
1124		return 0;
1125	}
1126
1127	/* read, present: */
1128	if (unlikely(error_code & X86_PF_PROT))
1129		return 1;
1130
1131	/* read, not present: */
1132	if (unlikely(!vma_is_accessible(vma)))
1133		return 1;
1134
1135	return 0;
1136}
1137
1138bool fault_in_kernel_space(unsigned long address)
1139{
1140	/*
1141	 * On 64-bit systems, the vsyscall page is at an address above
1142	 * TASK_SIZE_MAX, but is not considered part of the kernel
1143	 * address space.
1144	 */
1145	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146		return false;
1147
1148	return address >= TASK_SIZE_MAX;
1149}
1150
1151/*
1152 * Called for all faults where 'address' is part of the kernel address
1153 * space.  Might get called for faults that originate from *code* that
1154 * ran in userspace or the kernel.
1155 */
1156static void
1157do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158		   unsigned long address)
1159{
1160	/*
1161	 * Protection keys exceptions only happen on user pages.  We
1162	 * have no user pages in the kernel portion of the address
1163	 * space, so do not expect them here.
1164	 */
1165	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1166
1167#ifdef CONFIG_X86_32
1168	/*
1169	 * We can fault-in kernel-space virtual memory on-demand. The
1170	 * 'reference' page table is init_mm.pgd.
1171	 *
1172	 * NOTE! We MUST NOT take any locks for this case. We may
1173	 * be in an interrupt or a critical region, and should
1174	 * only copy the information from the master page table,
1175	 * nothing more.
1176	 *
1177	 * Before doing this on-demand faulting, ensure that the
1178	 * fault is not any of the following:
1179	 * 1. A fault on a PTE with a reserved bit set.
1180	 * 2. A fault caused by a user-mode access.  (Do not demand-
1181	 *    fault kernel memory due to user-mode accesses).
1182	 * 3. A fault caused by a page-level protection violation.
1183	 *    (A demand fault would be on a non-present page which
1184	 *     would have X86_PF_PROT==0).
1185	 *
1186	 * This is only needed to close a race condition on x86-32 in
1187	 * the vmalloc mapping/unmapping code. See the comment above
1188	 * vmalloc_fault() for details. On x86-64 the race does not
1189	 * exist as the vmalloc mappings don't need to be synchronized
1190	 * there.
1191	 */
1192	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193		if (vmalloc_fault(address) >= 0)
1194			return;
1195	}
1196#endif
1197
1198	if (is_f00f_bug(regs, hw_error_code, address))
1199		return;
1200
1201	/* Was the fault spurious, caused by lazy TLB invalidation? */
1202	if (spurious_kernel_fault(hw_error_code, address))
1203		return;
1204
1205	/* kprobes don't want to hook the spurious faults: */
1206	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1207		return;
1208
1209	/*
1210	 * Note, despite being a "bad area", there are quite a few
1211	 * acceptable reasons to get here, such as erratum fixups
1212	 * and handling kernel code that can fault, like get_user().
1213	 *
1214	 * Don't take the mm semaphore here. If we fixup a prefetch
1215	 * fault we could otherwise deadlock:
1216	 */
1217	bad_area_nosemaphore(regs, hw_error_code, address);
1218}
1219NOKPROBE_SYMBOL(do_kern_addr_fault);
1220
1221/*
1222 * Handle faults in the user portion of the address space.  Nothing in here
1223 * should check X86_PF_USER without a specific justification: for almost
1224 * all purposes, we should treat a normal kernel access to user memory
1225 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1226 * The one exception is AC flag handling, which is, per the x86
1227 * architecture, special for WRUSS.
1228 */
1229static inline
1230void do_user_addr_fault(struct pt_regs *regs,
1231			unsigned long error_code,
1232			unsigned long address)
1233{
1234	struct vm_area_struct *vma;
1235	struct task_struct *tsk;
1236	struct mm_struct *mm;
1237	vm_fault_t fault;
1238	unsigned int flags = FAULT_FLAG_DEFAULT;
1239
1240	tsk = current;
1241	mm = tsk->mm;
1242
1243	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1244		/*
1245		 * Whoops, this is kernel mode code trying to execute from
1246		 * user memory.  Unless this is AMD erratum #93, which
1247		 * corrupts RIP such that it looks like a user address,
1248		 * this is unrecoverable.  Don't even try to look up the
1249		 * VMA or look for extable entries.
1250		 */
1251		if (is_errata93(regs, address))
1252			return;
1253
1254		page_fault_oops(regs, error_code, address);
1255		return;
1256	}
1257
1258	/* kprobes don't want to hook the spurious faults: */
1259	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1260		return;
1261
1262	/*
1263	 * Reserved bits are never expected to be set on
1264	 * entries in the user portion of the page tables.
1265	 */
1266	if (unlikely(error_code & X86_PF_RSVD))
1267		pgtable_bad(regs, error_code, address);
1268
1269	/*
1270	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1271	 * pages in the user address space.  The odd case here is WRUSS,
1272	 * which, according to the preliminary documentation, does not respect
1273	 * SMAP and will have the USER bit set so, in all cases, SMAP
1274	 * enforcement appears to be consistent with the USER bit.
1275	 */
1276	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1277		     !(error_code & X86_PF_USER) &&
1278		     !(regs->flags & X86_EFLAGS_AC))) {
1279		/*
1280		 * No extable entry here.  This was a kernel access to an
1281		 * invalid pointer.  get_kernel_nofault() will not get here.
1282		 */
1283		page_fault_oops(regs, error_code, address);
1284		return;
1285	}
1286
1287	/*
1288	 * If we're in an interrupt, have no user context or are running
1289	 * in a region with pagefaults disabled then we must not take the fault
1290	 */
1291	if (unlikely(faulthandler_disabled() || !mm)) {
1292		bad_area_nosemaphore(regs, error_code, address);
1293		return;
1294	}
1295
1296	/*
1297	 * It's safe to allow irq's after cr2 has been saved and the
1298	 * vmalloc fault has been handled.
1299	 *
1300	 * User-mode registers count as a user access even for any
1301	 * potential system fault or CPU buglet:
1302	 */
1303	if (user_mode(regs)) {
1304		local_irq_enable();
1305		flags |= FAULT_FLAG_USER;
1306	} else {
1307		if (regs->flags & X86_EFLAGS_IF)
1308			local_irq_enable();
1309	}
1310
 
 
1311	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1312
1313	/*
1314	 * Read-only permissions can not be expressed in shadow stack PTEs.
1315	 * Treat all shadow stack accesses as WRITE faults. This ensures
1316	 * that the MM will prepare everything (e.g., break COW) such that
1317	 * maybe_mkwrite() can create a proper shadow stack PTE.
1318	 */
1319	if (error_code & X86_PF_SHSTK)
1320		flags |= FAULT_FLAG_WRITE;
1321	if (error_code & X86_PF_WRITE)
1322		flags |= FAULT_FLAG_WRITE;
1323	if (error_code & X86_PF_INSTR)
1324		flags |= FAULT_FLAG_INSTRUCTION;
1325
 
 
 
 
 
 
 
 
1326#ifdef CONFIG_X86_64
1327	/*
1328	 * Faults in the vsyscall page might need emulation.  The
1329	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1330	 * considered to be part of the user address space.
1331	 *
1332	 * The vsyscall page does not have a "real" VMA, so do this
1333	 * emulation before we go searching for VMAs.
1334	 *
1335	 * PKRU never rejects instruction fetches, so we don't need
1336	 * to consider the PF_PK bit.
1337	 */
1338	if (is_vsyscall_vaddr(address)) {
1339		if (emulate_vsyscall(error_code, regs, address))
1340			return;
1341	}
1342#endif
1343
1344	if (!(flags & FAULT_FLAG_USER))
1345		goto lock_mmap;
1346
1347	vma = lock_vma_under_rcu(mm, address);
1348	if (!vma)
1349		goto lock_mmap;
1350
1351	if (unlikely(access_error(error_code, vma))) {
1352		vma_end_read(vma);
1353		goto lock_mmap;
1354	}
1355	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1356	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1357		vma_end_read(vma);
1358
1359	if (!(fault & VM_FAULT_RETRY)) {
1360		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1361		goto done;
1362	}
1363	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1364	if (fault & VM_FAULT_MAJOR)
1365		flags |= FAULT_FLAG_TRIED;
1366
1367	/* Quick path to respond to signals */
1368	if (fault_signal_pending(fault, regs)) {
1369		if (!user_mode(regs))
1370			kernelmode_fixup_or_oops(regs, error_code, address,
1371						 SIGBUS, BUS_ADRERR,
1372						 ARCH_DEFAULT_PKEY);
1373		return;
1374	}
1375lock_mmap:
1376
1377retry:
1378	vma = lock_mm_and_find_vma(mm, address, regs);
1379	if (unlikely(!vma)) {
1380		bad_area_nosemaphore(regs, error_code, address);
1381		return;
1382	}
1383
1384	/*
1385	 * Ok, we have a good vm_area for this memory access, so
1386	 * we can handle it..
1387	 */
1388	if (unlikely(access_error(error_code, vma))) {
1389		bad_area_access_error(regs, error_code, address, vma);
1390		return;
1391	}
1392
1393	/*
1394	 * If for any reason at all we couldn't handle the fault,
1395	 * make sure we exit gracefully rather than endlessly redo
1396	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1397	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1398	 *
1399	 * Note that handle_userfault() may also release and reacquire mmap_lock
1400	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1401	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1402	 * (potentially after handling any pending signal during the return to
1403	 * userland). The return to userland is identified whenever
1404	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1405	 */
1406	fault = handle_mm_fault(vma, address, flags, regs);
1407
1408	if (fault_signal_pending(fault, regs)) {
1409		/*
1410		 * Quick path to respond to signals.  The core mm code
1411		 * has unlocked the mm for us if we get here.
1412		 */
1413		if (!user_mode(regs))
1414			kernelmode_fixup_or_oops(regs, error_code, address,
1415						 SIGBUS, BUS_ADRERR,
1416						 ARCH_DEFAULT_PKEY);
1417		return;
1418	}
1419
1420	/* The fault is fully completed (including releasing mmap lock) */
1421	if (fault & VM_FAULT_COMPLETED)
1422		return;
1423
1424	/*
1425	 * If we need to retry the mmap_lock has already been released,
1426	 * and if there is a fatal signal pending there is no guarantee
1427	 * that we made any progress. Handle this case first.
1428	 */
1429	if (unlikely(fault & VM_FAULT_RETRY)) {
1430		flags |= FAULT_FLAG_TRIED;
1431		goto retry;
1432	}
1433
1434	mmap_read_unlock(mm);
1435done:
1436	if (likely(!(fault & VM_FAULT_ERROR)))
1437		return;
1438
1439	if (fatal_signal_pending(current) && !user_mode(regs)) {
1440		kernelmode_fixup_or_oops(regs, error_code, address,
1441					 0, 0, ARCH_DEFAULT_PKEY);
1442		return;
1443	}
1444
1445	if (fault & VM_FAULT_OOM) {
1446		/* Kernel mode? Handle exceptions or die: */
1447		if (!user_mode(regs)) {
1448			kernelmode_fixup_or_oops(regs, error_code, address,
1449						 SIGSEGV, SEGV_MAPERR,
1450						 ARCH_DEFAULT_PKEY);
1451			return;
1452		}
1453
1454		/*
1455		 * We ran out of memory, call the OOM killer, and return the
1456		 * userspace (which will retry the fault, or kill us if we got
1457		 * oom-killed):
1458		 */
1459		pagefault_out_of_memory();
1460	} else {
1461		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1462			     VM_FAULT_HWPOISON_LARGE))
1463			do_sigbus(regs, error_code, address, fault);
1464		else if (fault & VM_FAULT_SIGSEGV)
1465			bad_area_nosemaphore(regs, error_code, address);
1466		else
1467			BUG();
1468	}
1469}
1470NOKPROBE_SYMBOL(do_user_addr_fault);
1471
1472static __always_inline void
1473trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1474			 unsigned long address)
1475{
1476	if (!trace_pagefault_enabled())
1477		return;
1478
1479	if (user_mode(regs))
1480		trace_page_fault_user(address, regs, error_code);
1481	else
1482		trace_page_fault_kernel(address, regs, error_code);
1483}
1484
1485static __always_inline void
1486handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1487			      unsigned long address)
1488{
1489	trace_page_fault_entries(regs, error_code, address);
1490
1491	if (unlikely(kmmio_fault(regs, address)))
1492		return;
1493
1494	/* Was the fault on kernel-controlled part of the address space? */
1495	if (unlikely(fault_in_kernel_space(address))) {
1496		do_kern_addr_fault(regs, error_code, address);
1497	} else {
1498		do_user_addr_fault(regs, error_code, address);
1499		/*
1500		 * User address page fault handling might have reenabled
1501		 * interrupts. Fixing up all potential exit points of
1502		 * do_user_addr_fault() and its leaf functions is just not
1503		 * doable w/o creating an unholy mess or turning the code
1504		 * upside down.
1505		 */
1506		local_irq_disable();
1507	}
1508}
1509
1510DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1511{
1512	unsigned long address = read_cr2();
1513	irqentry_state_t state;
 
 
 
1514
1515	prefetchw(&current->mm->mmap_lock);
1516
1517	/*
1518	 * KVM uses #PF vector to deliver 'page not present' events to guests
1519	 * (asynchronous page fault mechanism). The event happens when a
1520	 * userspace task is trying to access some valid (from guest's point of
1521	 * view) memory which is not currently mapped by the host (e.g. the
1522	 * memory is swapped out). Note, the corresponding "page ready" event
1523	 * which is injected when the memory becomes available, is delivered via
1524	 * an interrupt mechanism and not a #PF exception
1525	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1526	 *
1527	 * We are relying on the interrupted context being sane (valid RSP,
1528	 * relevant locks not held, etc.), which is fine as long as the
1529	 * interrupted context had IF=1.  We are also relying on the KVM
1530	 * async pf type field and CR2 being read consistently instead of
1531	 * getting values from real and async page faults mixed up.
1532	 *
1533	 * Fingers crossed.
1534	 *
1535	 * The async #PF handling code takes care of idtentry handling
1536	 * itself.
1537	 */
1538	if (kvm_handle_async_pf(regs, (u32)address))
1539		return;
1540
1541	/*
1542	 * Entry handling for valid #PF from kernel mode is slightly
1543	 * different: RCU is already watching and ct_irq_enter() must not
1544	 * be invoked because a kernel fault on a user space address might
1545	 * sleep.
1546	 *
1547	 * In case the fault hit a RCU idle region the conditional entry
1548	 * code reenabled RCU to avoid subsequent wreckage which helps
1549	 * debuggability.
1550	 */
1551	state = irqentry_enter(regs);
1552
1553	instrumentation_begin();
1554	handle_page_fault(regs, error_code, address);
1555	instrumentation_end();
1556
1557	irqentry_exit(regs, state);
1558}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/memblock.h>		/* max_low_pfn			*/
  12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
  13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  15#include <linux/perf_event.h>		/* perf_sw_event		*/
  16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  17#include <linux/prefetch.h>		/* prefetchw			*/
  18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  21#include <linux/mm_types.h>
  22#include <linux/mm.h>			/* find_and_lock_vma() */
  23
  24#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  25#include <asm/traps.h>			/* dotraplinkage, ...		*/
  26#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  27#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  28#include <asm/vm86.h>			/* struct vm86			*/
  29#include <asm/mmu_context.h>		/* vma_pkey()			*/
  30#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  31#include <asm/desc.h>			/* store_idt(), ...		*/
  32#include <asm/cpu_entry_area.h>		/* exception stack		*/
  33#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
  34#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
  35#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
  36#include <asm/irq_stack.h>
  37#include <asm/fred.h>
  38#include <asm/sev.h>			/* snp_dump_hva_rmpentry()	*/
  39
  40#define CREATE_TRACE_POINTS
  41#include <asm/trace/exceptions.h>
  42
  43/*
  44 * Returns 0 if mmiotrace is disabled, or if the fault is not
  45 * handled by mmiotrace:
  46 */
  47static nokprobe_inline int
  48kmmio_fault(struct pt_regs *regs, unsigned long addr)
  49{
  50	if (unlikely(is_kmmio_active()))
  51		if (kmmio_handler(regs, addr) == 1)
  52			return -1;
  53	return 0;
  54}
  55
  56/*
  57 * Prefetch quirks:
  58 *
  59 * 32-bit mode:
  60 *
  61 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  62 *   Check that here and ignore it.  This is AMD erratum #91.
  63 *
  64 * 64-bit mode:
  65 *
  66 *   Sometimes the CPU reports invalid exceptions on prefetch.
  67 *   Check that here and ignore it.
  68 *
  69 * Opcode checker based on code by Richard Brunner.
  70 */
  71static inline int
  72check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  73		      unsigned char opcode, int *prefetch)
  74{
  75	unsigned char instr_hi = opcode & 0xf0;
  76	unsigned char instr_lo = opcode & 0x0f;
  77
  78	switch (instr_hi) {
  79	case 0x20:
  80	case 0x30:
  81		/*
  82		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  83		 * In X86_64 long mode, the CPU will signal invalid
  84		 * opcode if some of these prefixes are present so
  85		 * X86_64 will never get here anyway
  86		 */
  87		return ((instr_lo & 7) == 0x6);
  88#ifdef CONFIG_X86_64
  89	case 0x40:
  90		/*
  91		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
  92		 */
  93		return (!user_mode(regs) || user_64bit_mode(regs));
  94#endif
  95	case 0x60:
  96		/* 0x64 thru 0x67 are valid prefixes in all modes. */
  97		return (instr_lo & 0xC) == 0x4;
  98	case 0xF0:
  99		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 100		return !instr_lo || (instr_lo>>1) == 1;
 101	case 0x00:
 102		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 103		if (get_kernel_nofault(opcode, instr))
 104			return 0;
 105
 106		*prefetch = (instr_lo == 0xF) &&
 107			(opcode == 0x0D || opcode == 0x18);
 108		return 0;
 109	default:
 110		return 0;
 111	}
 112}
 113
 114static bool is_amd_k8_pre_npt(void)
 115{
 116	struct cpuinfo_x86 *c = &boot_cpu_data;
 117
 118	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
 119			c->x86_vendor == X86_VENDOR_AMD &&
 120			c->x86 == 0xf && c->x86_model < 0x40);
 121}
 122
 123static int
 124is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 125{
 126	unsigned char *max_instr;
 127	unsigned char *instr;
 128	int prefetch = 0;
 129
 130	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
 131	if (!is_amd_k8_pre_npt())
 132		return 0;
 133
 134	/*
 135	 * If it was a exec (instruction fetch) fault on NX page, then
 136	 * do not ignore the fault:
 137	 */
 138	if (error_code & X86_PF_INSTR)
 139		return 0;
 140
 141	instr = (void *)convert_ip_to_linear(current, regs);
 142	max_instr = instr + 15;
 143
 144	/*
 145	 * This code has historically always bailed out if IP points to a
 146	 * not-present page (e.g. due to a race).  No one has ever
 147	 * complained about this.
 148	 */
 149	pagefault_disable();
 150
 151	while (instr < max_instr) {
 152		unsigned char opcode;
 153
 154		if (user_mode(regs)) {
 155			if (get_user(opcode, (unsigned char __user *) instr))
 156				break;
 157		} else {
 158			if (get_kernel_nofault(opcode, instr))
 159				break;
 160		}
 161
 162		instr++;
 163
 164		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 165			break;
 166	}
 167
 168	pagefault_enable();
 169	return prefetch;
 170}
 171
 172DEFINE_SPINLOCK(pgd_lock);
 173LIST_HEAD(pgd_list);
 174
 175#ifdef CONFIG_X86_32
 176static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 177{
 178	unsigned index = pgd_index(address);
 179	pgd_t *pgd_k;
 180	p4d_t *p4d, *p4d_k;
 181	pud_t *pud, *pud_k;
 182	pmd_t *pmd, *pmd_k;
 183
 184	pgd += index;
 185	pgd_k = init_mm.pgd + index;
 186
 187	if (!pgd_present(*pgd_k))
 188		return NULL;
 189
 190	/*
 191	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 192	 * and redundant with the set_pmd() on non-PAE. As would
 193	 * set_p4d/set_pud.
 194	 */
 195	p4d = p4d_offset(pgd, address);
 196	p4d_k = p4d_offset(pgd_k, address);
 197	if (!p4d_present(*p4d_k))
 198		return NULL;
 199
 200	pud = pud_offset(p4d, address);
 201	pud_k = pud_offset(p4d_k, address);
 202	if (!pud_present(*pud_k))
 203		return NULL;
 204
 205	pmd = pmd_offset(pud, address);
 206	pmd_k = pmd_offset(pud_k, address);
 207
 208	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 209		set_pmd(pmd, *pmd_k);
 210
 211	if (!pmd_present(*pmd_k))
 212		return NULL;
 213	else
 214		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 215
 216	return pmd_k;
 217}
 218
 219/*
 220 *   Handle a fault on the vmalloc or module mapping area
 221 *
 222 *   This is needed because there is a race condition between the time
 223 *   when the vmalloc mapping code updates the PMD to the point in time
 224 *   where it synchronizes this update with the other page-tables in the
 225 *   system.
 226 *
 227 *   In this race window another thread/CPU can map an area on the same
 228 *   PMD, finds it already present and does not synchronize it with the
 229 *   rest of the system yet. As a result v[mz]alloc might return areas
 230 *   which are not mapped in every page-table in the system, causing an
 231 *   unhandled page-fault when they are accessed.
 232 */
 233static noinline int vmalloc_fault(unsigned long address)
 234{
 235	unsigned long pgd_paddr;
 236	pmd_t *pmd_k;
 237	pte_t *pte_k;
 238
 239	/* Make sure we are in vmalloc area: */
 240	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 241		return -1;
 242
 243	/*
 244	 * Synchronize this task's top level page-table
 245	 * with the 'reference' page table.
 246	 *
 247	 * Do _not_ use "current" here. We might be inside
 248	 * an interrupt in the middle of a task switch..
 249	 */
 250	pgd_paddr = read_cr3_pa();
 251	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 252	if (!pmd_k)
 253		return -1;
 254
 255	if (pmd_leaf(*pmd_k))
 256		return 0;
 257
 258	pte_k = pte_offset_kernel(pmd_k, address);
 259	if (!pte_present(*pte_k))
 260		return -1;
 261
 262	return 0;
 263}
 264NOKPROBE_SYMBOL(vmalloc_fault);
 265
 266void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 267{
 268	unsigned long addr;
 269
 270	for (addr = start & PMD_MASK;
 271	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 272	     addr += PMD_SIZE) {
 273		struct page *page;
 274
 275		spin_lock(&pgd_lock);
 276		list_for_each_entry(page, &pgd_list, lru) {
 277			spinlock_t *pgt_lock;
 278
 279			/* the pgt_lock only for Xen */
 280			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 281
 282			spin_lock(pgt_lock);
 283			vmalloc_sync_one(page_address(page), addr);
 284			spin_unlock(pgt_lock);
 285		}
 286		spin_unlock(&pgd_lock);
 287	}
 288}
 289
 290static bool low_pfn(unsigned long pfn)
 291{
 292	return pfn < max_low_pfn;
 293}
 294
 295static void dump_pagetable(unsigned long address)
 296{
 297	pgd_t *base = __va(read_cr3_pa());
 298	pgd_t *pgd = &base[pgd_index(address)];
 299	p4d_t *p4d;
 300	pud_t *pud;
 301	pmd_t *pmd;
 302	pte_t *pte;
 303
 304#ifdef CONFIG_X86_PAE
 305	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 306	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 307		goto out;
 308#define pr_pde pr_cont
 309#else
 310#define pr_pde pr_info
 311#endif
 312	p4d = p4d_offset(pgd, address);
 313	pud = pud_offset(p4d, address);
 314	pmd = pmd_offset(pud, address);
 315	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 316#undef pr_pde
 317
 318	/*
 319	 * We must not directly access the pte in the highpte
 320	 * case if the page table is located in highmem.
 321	 * And let's rather not kmap-atomic the pte, just in case
 322	 * it's allocated already:
 323	 */
 324	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
 325		goto out;
 326
 327	pte = pte_offset_kernel(pmd, address);
 328	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 329out:
 330	pr_cont("\n");
 331}
 332
 333#else /* CONFIG_X86_64: */
 334
 335#ifdef CONFIG_CPU_SUP_AMD
 336static const char errata93_warning[] =
 337KERN_ERR 
 338"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 339"******* Working around it, but it may cause SEGVs or burn power.\n"
 340"******* Please consider a BIOS update.\n"
 341"******* Disabling USB legacy in the BIOS may also help.\n";
 342#endif
 343
 344static int bad_address(void *p)
 345{
 346	unsigned long dummy;
 347
 348	return get_kernel_nofault(dummy, (unsigned long *)p);
 349}
 350
 351static void dump_pagetable(unsigned long address)
 352{
 353	pgd_t *base = __va(read_cr3_pa());
 354	pgd_t *pgd = base + pgd_index(address);
 355	p4d_t *p4d;
 356	pud_t *pud;
 357	pmd_t *pmd;
 358	pte_t *pte;
 359
 360	if (bad_address(pgd))
 361		goto bad;
 362
 363	pr_info("PGD %lx ", pgd_val(*pgd));
 364
 365	if (!pgd_present(*pgd))
 366		goto out;
 367
 368	p4d = p4d_offset(pgd, address);
 369	if (bad_address(p4d))
 370		goto bad;
 371
 372	pr_cont("P4D %lx ", p4d_val(*p4d));
 373	if (!p4d_present(*p4d) || p4d_leaf(*p4d))
 374		goto out;
 375
 376	pud = pud_offset(p4d, address);
 377	if (bad_address(pud))
 378		goto bad;
 379
 380	pr_cont("PUD %lx ", pud_val(*pud));
 381	if (!pud_present(*pud) || pud_leaf(*pud))
 382		goto out;
 383
 384	pmd = pmd_offset(pud, address);
 385	if (bad_address(pmd))
 386		goto bad;
 387
 388	pr_cont("PMD %lx ", pmd_val(*pmd));
 389	if (!pmd_present(*pmd) || pmd_leaf(*pmd))
 390		goto out;
 391
 392	pte = pte_offset_kernel(pmd, address);
 393	if (bad_address(pte))
 394		goto bad;
 395
 396	pr_cont("PTE %lx", pte_val(*pte));
 397out:
 398	pr_cont("\n");
 399	return;
 400bad:
 401	pr_info("BAD\n");
 402}
 403
 404#endif /* CONFIG_X86_64 */
 405
 406/*
 407 * Workaround for K8 erratum #93 & buggy BIOS.
 408 *
 409 * BIOS SMM functions are required to use a specific workaround
 410 * to avoid corruption of the 64bit RIP register on C stepping K8.
 411 *
 412 * A lot of BIOS that didn't get tested properly miss this.
 413 *
 414 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 415 * Try to work around it here.
 416 *
 417 * Note we only handle faults in kernel here.
 418 * Does nothing on 32-bit.
 419 */
 420static int is_errata93(struct pt_regs *regs, unsigned long address)
 421{
 422#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 423	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 424	    || boot_cpu_data.x86 != 0xf)
 425		return 0;
 426
 427	if (user_mode(regs))
 428		return 0;
 429
 430	if (address != regs->ip)
 431		return 0;
 432
 433	if ((address >> 32) != 0)
 434		return 0;
 435
 436	address |= 0xffffffffUL << 32;
 437	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 438	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 439		printk_once(errata93_warning);
 440		regs->ip = address;
 441		return 1;
 442	}
 443#endif
 444	return 0;
 445}
 446
 447/*
 448 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 449 * to illegal addresses >4GB.
 450 *
 451 * We catch this in the page fault handler because these addresses
 452 * are not reachable. Just detect this case and return.  Any code
 453 * segment in LDT is compatibility mode.
 454 */
 455static int is_errata100(struct pt_regs *regs, unsigned long address)
 456{
 457#ifdef CONFIG_X86_64
 458	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 459		return 1;
 460#endif
 461	return 0;
 462}
 463
 464/* Pentium F0 0F C7 C8 bug workaround: */
 465static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
 466		       unsigned long address)
 467{
 468#ifdef CONFIG_X86_F00F_BUG
 469	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
 470	    idt_is_f00f_address(address)) {
 471		handle_invalid_op(regs);
 472		return 1;
 473	}
 474#endif
 475	return 0;
 476}
 477
 478static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 479{
 480	u32 offset = (index >> 3) * sizeof(struct desc_struct);
 481	unsigned long addr;
 482	struct ldttss_desc desc;
 483
 484	if (index == 0) {
 485		pr_alert("%s: NULL\n", name);
 486		return;
 487	}
 488
 489	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 490		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 491		return;
 492	}
 493
 494	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 495			      sizeof(struct ldttss_desc))) {
 496		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 497			 name, index);
 498		return;
 499	}
 500
 501	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 502#ifdef CONFIG_X86_64
 503	addr |= ((u64)desc.base3 << 32);
 504#endif
 505	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 506		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 507}
 508
 509static void
 510show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 511{
 512	if (!oops_may_print())
 513		return;
 514
 515	if (error_code & X86_PF_INSTR) {
 516		unsigned int level;
 517		pgd_t *pgd;
 518		pte_t *pte;
 519
 520		pgd = __va(read_cr3_pa());
 521		pgd += pgd_index(address);
 522
 523		pte = lookup_address_in_pgd(pgd, address, &level);
 524
 525		if (pte && pte_present(*pte) && !pte_exec(*pte))
 526			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 527				from_kuid(&init_user_ns, current_uid()));
 528		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 529				(pgd_flags(*pgd) & _PAGE_USER) &&
 530				(__read_cr4() & X86_CR4_SMEP))
 531			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 532				from_kuid(&init_user_ns, current_uid()));
 533	}
 534
 535	if (address < PAGE_SIZE && !user_mode(regs))
 536		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 537			(void *)address);
 538	else
 539		pr_alert("BUG: unable to handle page fault for address: %px\n",
 540			(void *)address);
 541
 542	pr_alert("#PF: %s %s in %s mode\n",
 543		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 544		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 545		 (error_code & X86_PF_WRITE) ? "write access" :
 546					       "read access",
 547			     user_mode(regs) ? "user" : "kernel");
 548	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 549		 !(error_code & X86_PF_PROT) ? "not-present page" :
 550		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 551		 (error_code & X86_PF_PK)    ? "protection keys violation" :
 552		 (error_code & X86_PF_RMP)   ? "RMP violation" :
 553					       "permissions violation");
 554
 555	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 556		struct desc_ptr idt, gdt;
 557		u16 ldtr, tr;
 558
 559		/*
 560		 * This can happen for quite a few reasons.  The more obvious
 561		 * ones are faults accessing the GDT, or LDT.  Perhaps
 562		 * surprisingly, if the CPU tries to deliver a benign or
 563		 * contributory exception from user code and gets a page fault
 564		 * during delivery, the page fault can be delivered as though
 565		 * it originated directly from user code.  This could happen
 566		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 567		 * kernel or IST stack.
 568		 */
 569		store_idt(&idt);
 570
 571		/* Usable even on Xen PV -- it's just slow. */
 572		native_store_gdt(&gdt);
 573
 574		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 575			 idt.address, idt.size, gdt.address, gdt.size);
 576
 577		store_ldt(ldtr);
 578		show_ldttss(&gdt, "LDTR", ldtr);
 579
 580		store_tr(tr);
 581		show_ldttss(&gdt, "TR", tr);
 582	}
 583
 584	dump_pagetable(address);
 585
 586	if (error_code & X86_PF_RMP)
 587		snp_dump_hva_rmpentry(address);
 588}
 589
 590static noinline void
 591pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 592	    unsigned long address)
 593{
 594	struct task_struct *tsk;
 595	unsigned long flags;
 596	int sig;
 597
 598	flags = oops_begin();
 599	tsk = current;
 600	sig = SIGKILL;
 601
 602	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 603	       tsk->comm, address);
 604	dump_pagetable(address);
 605
 606	if (__die("Bad pagetable", regs, error_code))
 607		sig = 0;
 608
 609	oops_end(flags, regs, sig);
 610}
 611
 612static void sanitize_error_code(unsigned long address,
 613				unsigned long *error_code)
 614{
 615	/*
 616	 * To avoid leaking information about the kernel page
 617	 * table layout, pretend that user-mode accesses to
 618	 * kernel addresses are always protection faults.
 619	 *
 620	 * NB: This means that failed vsyscalls with vsyscall=none
 621	 * will have the PROT bit.  This doesn't leak any
 622	 * information and does not appear to cause any problems.
 623	 */
 624	if (address >= TASK_SIZE_MAX)
 625		*error_code |= X86_PF_PROT;
 626}
 627
 628static void set_signal_archinfo(unsigned long address,
 629				unsigned long error_code)
 630{
 631	struct task_struct *tsk = current;
 632
 633	tsk->thread.trap_nr = X86_TRAP_PF;
 634	tsk->thread.error_code = error_code | X86_PF_USER;
 635	tsk->thread.cr2 = address;
 636}
 637
 638static noinline void
 639page_fault_oops(struct pt_regs *regs, unsigned long error_code,
 640		unsigned long address)
 641{
 642#ifdef CONFIG_VMAP_STACK
 643	struct stack_info info;
 644#endif
 645	unsigned long flags;
 646	int sig;
 647
 648	if (user_mode(regs)) {
 649		/*
 650		 * Implicit kernel access from user mode?  Skip the stack
 651		 * overflow and EFI special cases.
 652		 */
 653		goto oops;
 654	}
 655
 656#ifdef CONFIG_VMAP_STACK
 657	/*
 658	 * Stack overflow?  During boot, we can fault near the initial
 659	 * stack in the direct map, but that's not an overflow -- check
 660	 * that we're in vmalloc space to avoid this.
 661	 */
 662	if (is_vmalloc_addr((void *)address) &&
 663	    get_stack_guard_info((void *)address, &info)) {
 664		/*
 665		 * We're likely to be running with very little stack space
 666		 * left.  It's plausible that we'd hit this condition but
 667		 * double-fault even before we get this far, in which case
 668		 * we're fine: the double-fault handler will deal with it.
 669		 *
 670		 * We don't want to make it all the way into the oops code
 671		 * and then double-fault, though, because we're likely to
 672		 * break the console driver and lose most of the stack dump.
 673		 */
 674		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
 675			      handle_stack_overflow,
 676			      ASM_CALL_ARG3,
 677			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
 678
 679		unreachable();
 680	}
 681#endif
 682
 683	/*
 684	 * Buggy firmware could access regions which might page fault.  If
 685	 * this happens, EFI has a special OOPS path that will try to
 686	 * avoid hanging the system.
 687	 */
 688	if (IS_ENABLED(CONFIG_EFI))
 689		efi_crash_gracefully_on_page_fault(address);
 690
 691	/* Only not-present faults should be handled by KFENCE. */
 692	if (!(error_code & X86_PF_PROT) &&
 693	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
 694		return;
 695
 696oops:
 697	/*
 698	 * Oops. The kernel tried to access some bad page. We'll have to
 699	 * terminate things with extreme prejudice:
 700	 */
 701	flags = oops_begin();
 702
 703	show_fault_oops(regs, error_code, address);
 704
 705	if (task_stack_end_corrupted(current))
 706		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 707
 708	sig = SIGKILL;
 709	if (__die("Oops", regs, error_code))
 710		sig = 0;
 711
 712	/* Executive summary in case the body of the oops scrolled away */
 713	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 714
 715	oops_end(flags, regs, sig);
 716}
 717
 718static noinline void
 719kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
 720			 unsigned long address, int signal, int si_code,
 721			 u32 pkey)
 722{
 723	WARN_ON_ONCE(user_mode(regs));
 724
 725	/* Are we prepared to handle this kernel fault? */
 726	if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727		return;
 
 728
 729	/*
 730	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
 731	 * instruction.
 732	 */
 733	if (is_prefetch(regs, error_code, address))
 734		return;
 735
 736	page_fault_oops(regs, error_code, address);
 737}
 738
 739/*
 740 * Print out info about fatal segfaults, if the show_unhandled_signals
 741 * sysctl is set:
 742 */
 743static inline void
 744show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 745		unsigned long address, struct task_struct *tsk)
 746{
 747	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 748	/* This is a racy snapshot, but it's better than nothing. */
 749	int cpu = raw_smp_processor_id();
 750
 751	if (!unhandled_signal(tsk, SIGSEGV))
 752		return;
 753
 754	if (!printk_ratelimit())
 755		return;
 756
 757	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 758		loglvl, tsk->comm, task_pid_nr(tsk), address,
 759		(void *)regs->ip, (void *)regs->sp, error_code);
 760
 761	print_vma_addr(KERN_CONT " in ", regs->ip);
 762
 763	/*
 764	 * Dump the likely CPU where the fatal segfault happened.
 765	 * This can help identify faulty hardware.
 766	 */
 767	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
 768	       topology_core_id(cpu), topology_physical_package_id(cpu));
 769
 770
 771	printk(KERN_CONT "\n");
 772
 773	show_opcodes(regs, loglvl);
 774}
 775
 776static void
 777__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 778		       unsigned long address, u32 pkey, int si_code)
 779{
 780	struct task_struct *tsk = current;
 781
 782	if (!user_mode(regs)) {
 783		kernelmode_fixup_or_oops(regs, error_code, address,
 784					 SIGSEGV, si_code, pkey);
 785		return;
 786	}
 787
 788	if (!(error_code & X86_PF_USER)) {
 789		/* Implicit user access to kernel memory -- just oops */
 790		page_fault_oops(regs, error_code, address);
 791		return;
 792	}
 793
 794	/*
 795	 * User mode accesses just cause a SIGSEGV.
 796	 * It's possible to have interrupts off here:
 797	 */
 798	local_irq_enable();
 799
 800	/*
 801	 * Valid to do another page fault here because this one came
 802	 * from user space:
 803	 */
 804	if (is_prefetch(regs, error_code, address))
 805		return;
 806
 807	if (is_errata100(regs, address))
 808		return;
 809
 810	sanitize_error_code(address, &error_code);
 811
 812	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 813		return;
 814
 815	if (likely(show_unhandled_signals))
 816		show_signal_msg(regs, error_code, address, tsk);
 817
 818	set_signal_archinfo(address, error_code);
 819
 820	if (si_code == SEGV_PKUERR)
 821		force_sig_pkuerr((void __user *)address, pkey);
 822	else
 823		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 824
 825	local_irq_disable();
 826}
 827
 828static noinline void
 829bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 830		     unsigned long address)
 831{
 832	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 833}
 834
 835static void
 836__bad_area(struct pt_regs *regs, unsigned long error_code,
 837	   unsigned long address, u32 pkey, int si_code)
 838{
 839	struct mm_struct *mm = current->mm;
 840	/*
 841	 * Something tried to access memory that isn't in our memory map..
 842	 * Fix it, but check if it's kernel or user first..
 843	 */
 844	mmap_read_unlock(mm);
 845
 846	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 847}
 848
 849static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 850		struct vm_area_struct *vma)
 851{
 852	/* This code is always called on the current mm */
 853	bool foreign = false;
 854
 855	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 856		return false;
 857	if (error_code & X86_PF_PK)
 858		return true;
 859	/* this checks permission keys on the VMA: */
 860	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 861				       (error_code & X86_PF_INSTR), foreign))
 862		return true;
 863	return false;
 864}
 865
 866static noinline void
 867bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 868		      unsigned long address, struct vm_area_struct *vma)
 869{
 870	/*
 871	 * This OSPKE check is not strictly necessary at runtime.
 872	 * But, doing it this way allows compiler optimizations
 873	 * if pkeys are compiled out.
 874	 */
 875	if (bad_area_access_from_pkeys(error_code, vma)) {
 876		/*
 877		 * A protection key fault means that the PKRU value did not allow
 878		 * access to some PTE.  Userspace can figure out what PKRU was
 879		 * from the XSAVE state.  This function captures the pkey from
 880		 * the vma and passes it to userspace so userspace can discover
 881		 * which protection key was set on the PTE.
 882		 *
 883		 * If we get here, we know that the hardware signaled a X86_PF_PK
 884		 * fault and that there was a VMA once we got in the fault
 885		 * handler.  It does *not* guarantee that the VMA we find here
 886		 * was the one that we faulted on.
 887		 *
 888		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 889		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 890		 * 3. T1   : faults...
 891		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 892		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 893		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 894		 *	     faulted on a pte with its pkey=4.
 895		 */
 896		u32 pkey = vma_pkey(vma);
 897
 898		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 899	} else {
 900		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 901	}
 902}
 903
 904static void
 905do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 906	  vm_fault_t fault)
 907{
 908	/* Kernel mode? Handle exceptions or die: */
 909	if (!user_mode(regs)) {
 910		kernelmode_fixup_or_oops(regs, error_code, address,
 911					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
 912		return;
 913	}
 914
 915	/* User-space => ok to do another page fault: */
 916	if (is_prefetch(regs, error_code, address))
 917		return;
 918
 919	sanitize_error_code(address, &error_code);
 920
 921	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 922		return;
 923
 924	set_signal_archinfo(address, error_code);
 925
 926#ifdef CONFIG_MEMORY_FAILURE
 927	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 928		struct task_struct *tsk = current;
 929		unsigned lsb = 0;
 930
 931		pr_err(
 932	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 933			tsk->comm, tsk->pid, address);
 934		if (fault & VM_FAULT_HWPOISON_LARGE)
 935			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 936		if (fault & VM_FAULT_HWPOISON)
 937			lsb = PAGE_SHIFT;
 938		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 939		return;
 940	}
 941#endif
 942	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 943}
 944
 945static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 946{
 947	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 948		return 0;
 949
 950	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 951		return 0;
 952
 953	return 1;
 954}
 955
 956/*
 957 * Handle a spurious fault caused by a stale TLB entry.
 958 *
 959 * This allows us to lazily refresh the TLB when increasing the
 960 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 961 * eagerly is very expensive since that implies doing a full
 962 * cross-processor TLB flush, even if no stale TLB entries exist
 963 * on other processors.
 964 *
 965 * Spurious faults may only occur if the TLB contains an entry with
 966 * fewer permission than the page table entry.  Non-present (P = 0)
 967 * and reserved bit (R = 1) faults are never spurious.
 968 *
 969 * There are no security implications to leaving a stale TLB when
 970 * increasing the permissions on a page.
 971 *
 972 * Returns non-zero if a spurious fault was handled, zero otherwise.
 973 *
 974 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 975 * (Optional Invalidation).
 976 */
 977static noinline int
 978spurious_kernel_fault(unsigned long error_code, unsigned long address)
 979{
 980	pgd_t *pgd;
 981	p4d_t *p4d;
 982	pud_t *pud;
 983	pmd_t *pmd;
 984	pte_t *pte;
 985	int ret;
 986
 987	/*
 988	 * Only writes to RO or instruction fetches from NX may cause
 989	 * spurious faults.
 990	 *
 991	 * These could be from user or supervisor accesses but the TLB
 992	 * is only lazily flushed after a kernel mapping protection
 993	 * change, so user accesses are not expected to cause spurious
 994	 * faults.
 995	 */
 996	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
 997	    error_code != (X86_PF_INSTR | X86_PF_PROT))
 998		return 0;
 999
1000	pgd = init_mm.pgd + pgd_index(address);
1001	if (!pgd_present(*pgd))
1002		return 0;
1003
1004	p4d = p4d_offset(pgd, address);
1005	if (!p4d_present(*p4d))
1006		return 0;
1007
1008	if (p4d_leaf(*p4d))
1009		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1010
1011	pud = pud_offset(p4d, address);
1012	if (!pud_present(*pud))
1013		return 0;
1014
1015	if (pud_leaf(*pud))
1016		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1017
1018	pmd = pmd_offset(pud, address);
1019	if (!pmd_present(*pmd))
1020		return 0;
1021
1022	if (pmd_leaf(*pmd))
1023		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1024
1025	pte = pte_offset_kernel(pmd, address);
1026	if (!pte_present(*pte))
1027		return 0;
1028
1029	ret = spurious_kernel_fault_check(error_code, pte);
1030	if (!ret)
1031		return 0;
1032
1033	/*
1034	 * Make sure we have permissions in PMD.
1035	 * If not, then there's a bug in the page tables:
1036	 */
1037	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1038	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1039
1040	return ret;
1041}
1042NOKPROBE_SYMBOL(spurious_kernel_fault);
1043
1044int show_unhandled_signals = 1;
1045
1046static inline int
1047access_error(unsigned long error_code, struct vm_area_struct *vma)
1048{
1049	/* This is only called for the current mm, so: */
1050	bool foreign = false;
1051
1052	/*
1053	 * Read or write was blocked by protection keys.  This is
1054	 * always an unconditional error and can never result in
1055	 * a follow-up action to resolve the fault, like a COW.
1056	 */
1057	if (error_code & X86_PF_PK)
1058		return 1;
1059
1060	/*
1061	 * SGX hardware blocked the access.  This usually happens
1062	 * when the enclave memory contents have been destroyed, like
1063	 * after a suspend/resume cycle. In any case, the kernel can't
1064	 * fix the cause of the fault.  Handle the fault as an access
1065	 * error even in cases where no actual access violation
1066	 * occurred.  This allows userspace to rebuild the enclave in
1067	 * response to the signal.
1068	 */
1069	if (unlikely(error_code & X86_PF_SGX))
1070		return 1;
1071
1072	/*
1073	 * Make sure to check the VMA so that we do not perform
1074	 * faults just to hit a X86_PF_PK as soon as we fill in a
1075	 * page.
1076	 */
1077	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1078				       (error_code & X86_PF_INSTR), foreign))
1079		return 1;
1080
1081	/*
1082	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1083	 * shadow stack VMAs. All other accesses result in an error.
1084	 */
1085	if (error_code & X86_PF_SHSTK) {
1086		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1087			return 1;
1088		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1089			return 1;
1090		return 0;
1091	}
1092
1093	if (error_code & X86_PF_WRITE) {
1094		/* write, present and write, not present: */
1095		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1096			return 1;
1097		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1098			return 1;
1099		return 0;
1100	}
1101
1102	/* read, present: */
1103	if (unlikely(error_code & X86_PF_PROT))
1104		return 1;
1105
1106	/* read, not present: */
1107	if (unlikely(!vma_is_accessible(vma)))
1108		return 1;
1109
1110	return 0;
1111}
1112
1113bool fault_in_kernel_space(unsigned long address)
1114{
1115	/*
1116	 * On 64-bit systems, the vsyscall page is at an address above
1117	 * TASK_SIZE_MAX, but is not considered part of the kernel
1118	 * address space.
1119	 */
1120	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1121		return false;
1122
1123	return address >= TASK_SIZE_MAX;
1124}
1125
1126/*
1127 * Called for all faults where 'address' is part of the kernel address
1128 * space.  Might get called for faults that originate from *code* that
1129 * ran in userspace or the kernel.
1130 */
1131static void
1132do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1133		   unsigned long address)
1134{
1135	/*
1136	 * Protection keys exceptions only happen on user pages.  We
1137	 * have no user pages in the kernel portion of the address
1138	 * space, so do not expect them here.
1139	 */
1140	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1141
1142#ifdef CONFIG_X86_32
1143	/*
1144	 * We can fault-in kernel-space virtual memory on-demand. The
1145	 * 'reference' page table is init_mm.pgd.
1146	 *
1147	 * NOTE! We MUST NOT take any locks for this case. We may
1148	 * be in an interrupt or a critical region, and should
1149	 * only copy the information from the master page table,
1150	 * nothing more.
1151	 *
1152	 * Before doing this on-demand faulting, ensure that the
1153	 * fault is not any of the following:
1154	 * 1. A fault on a PTE with a reserved bit set.
1155	 * 2. A fault caused by a user-mode access.  (Do not demand-
1156	 *    fault kernel memory due to user-mode accesses).
1157	 * 3. A fault caused by a page-level protection violation.
1158	 *    (A demand fault would be on a non-present page which
1159	 *     would have X86_PF_PROT==0).
1160	 *
1161	 * This is only needed to close a race condition on x86-32 in
1162	 * the vmalloc mapping/unmapping code. See the comment above
1163	 * vmalloc_fault() for details. On x86-64 the race does not
1164	 * exist as the vmalloc mappings don't need to be synchronized
1165	 * there.
1166	 */
1167	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1168		if (vmalloc_fault(address) >= 0)
1169			return;
1170	}
1171#endif
1172
1173	if (is_f00f_bug(regs, hw_error_code, address))
1174		return;
1175
1176	/* Was the fault spurious, caused by lazy TLB invalidation? */
1177	if (spurious_kernel_fault(hw_error_code, address))
1178		return;
1179
1180	/* kprobes don't want to hook the spurious faults: */
1181	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1182		return;
1183
1184	/*
1185	 * Note, despite being a "bad area", there are quite a few
1186	 * acceptable reasons to get here, such as erratum fixups
1187	 * and handling kernel code that can fault, like get_user().
1188	 *
1189	 * Don't take the mm semaphore here. If we fixup a prefetch
1190	 * fault we could otherwise deadlock:
1191	 */
1192	bad_area_nosemaphore(regs, hw_error_code, address);
1193}
1194NOKPROBE_SYMBOL(do_kern_addr_fault);
1195
1196/*
1197 * Handle faults in the user portion of the address space.  Nothing in here
1198 * should check X86_PF_USER without a specific justification: for almost
1199 * all purposes, we should treat a normal kernel access to user memory
1200 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1201 * The one exception is AC flag handling, which is, per the x86
1202 * architecture, special for WRUSS.
1203 */
1204static inline
1205void do_user_addr_fault(struct pt_regs *regs,
1206			unsigned long error_code,
1207			unsigned long address)
1208{
1209	struct vm_area_struct *vma;
1210	struct task_struct *tsk;
1211	struct mm_struct *mm;
1212	vm_fault_t fault;
1213	unsigned int flags = FAULT_FLAG_DEFAULT;
1214
1215	tsk = current;
1216	mm = tsk->mm;
1217
1218	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1219		/*
1220		 * Whoops, this is kernel mode code trying to execute from
1221		 * user memory.  Unless this is AMD erratum #93, which
1222		 * corrupts RIP such that it looks like a user address,
1223		 * this is unrecoverable.  Don't even try to look up the
1224		 * VMA or look for extable entries.
1225		 */
1226		if (is_errata93(regs, address))
1227			return;
1228
1229		page_fault_oops(regs, error_code, address);
1230		return;
1231	}
1232
1233	/* kprobes don't want to hook the spurious faults: */
1234	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1235		return;
1236
1237	/*
1238	 * Reserved bits are never expected to be set on
1239	 * entries in the user portion of the page tables.
1240	 */
1241	if (unlikely(error_code & X86_PF_RSVD))
1242		pgtable_bad(regs, error_code, address);
1243
1244	/*
1245	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1246	 * pages in the user address space.  The odd case here is WRUSS,
1247	 * which, according to the preliminary documentation, does not respect
1248	 * SMAP and will have the USER bit set so, in all cases, SMAP
1249	 * enforcement appears to be consistent with the USER bit.
1250	 */
1251	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1252		     !(error_code & X86_PF_USER) &&
1253		     !(regs->flags & X86_EFLAGS_AC))) {
1254		/*
1255		 * No extable entry here.  This was a kernel access to an
1256		 * invalid pointer.  get_kernel_nofault() will not get here.
1257		 */
1258		page_fault_oops(regs, error_code, address);
1259		return;
1260	}
1261
1262	/*
1263	 * If we're in an interrupt, have no user context or are running
1264	 * in a region with pagefaults disabled then we must not take the fault
1265	 */
1266	if (unlikely(faulthandler_disabled() || !mm)) {
1267		bad_area_nosemaphore(regs, error_code, address);
1268		return;
1269	}
1270
1271	/* Legacy check - remove this after verifying that it doesn't trigger */
1272	if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1273		bad_area_nosemaphore(regs, error_code, address);
1274		return;
 
 
 
 
 
 
 
 
 
1275	}
1276
1277	local_irq_enable();
1278
1279	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1280
1281	/*
1282	 * Read-only permissions can not be expressed in shadow stack PTEs.
1283	 * Treat all shadow stack accesses as WRITE faults. This ensures
1284	 * that the MM will prepare everything (e.g., break COW) such that
1285	 * maybe_mkwrite() can create a proper shadow stack PTE.
1286	 */
1287	if (error_code & X86_PF_SHSTK)
1288		flags |= FAULT_FLAG_WRITE;
1289	if (error_code & X86_PF_WRITE)
1290		flags |= FAULT_FLAG_WRITE;
1291	if (error_code & X86_PF_INSTR)
1292		flags |= FAULT_FLAG_INSTRUCTION;
1293
1294	/*
1295	 * We set FAULT_FLAG_USER based on the register state, not
1296	 * based on X86_PF_USER. User space accesses that cause
1297	 * system page faults are still user accesses.
1298	 */
1299	if (user_mode(regs))
1300		flags |= FAULT_FLAG_USER;
1301
1302#ifdef CONFIG_X86_64
1303	/*
1304	 * Faults in the vsyscall page might need emulation.  The
1305	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1306	 * considered to be part of the user address space.
1307	 *
1308	 * The vsyscall page does not have a "real" VMA, so do this
1309	 * emulation before we go searching for VMAs.
1310	 *
1311	 * PKRU never rejects instruction fetches, so we don't need
1312	 * to consider the PF_PK bit.
1313	 */
1314	if (is_vsyscall_vaddr(address)) {
1315		if (emulate_vsyscall(error_code, regs, address))
1316			return;
1317	}
1318#endif
1319
1320	if (!(flags & FAULT_FLAG_USER))
1321		goto lock_mmap;
1322
1323	vma = lock_vma_under_rcu(mm, address);
1324	if (!vma)
1325		goto lock_mmap;
1326
1327	if (unlikely(access_error(error_code, vma))) {
1328		vma_end_read(vma);
1329		goto lock_mmap;
1330	}
1331	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1332	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1333		vma_end_read(vma);
1334
1335	if (!(fault & VM_FAULT_RETRY)) {
1336		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1337		goto done;
1338	}
1339	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1340	if (fault & VM_FAULT_MAJOR)
1341		flags |= FAULT_FLAG_TRIED;
1342
1343	/* Quick path to respond to signals */
1344	if (fault_signal_pending(fault, regs)) {
1345		if (!user_mode(regs))
1346			kernelmode_fixup_or_oops(regs, error_code, address,
1347						 SIGBUS, BUS_ADRERR,
1348						 ARCH_DEFAULT_PKEY);
1349		return;
1350	}
1351lock_mmap:
1352
1353retry:
1354	vma = lock_mm_and_find_vma(mm, address, regs);
1355	if (unlikely(!vma)) {
1356		bad_area_nosemaphore(regs, error_code, address);
1357		return;
1358	}
1359
1360	/*
1361	 * Ok, we have a good vm_area for this memory access, so
1362	 * we can handle it..
1363	 */
1364	if (unlikely(access_error(error_code, vma))) {
1365		bad_area_access_error(regs, error_code, address, vma);
1366		return;
1367	}
1368
1369	/*
1370	 * If for any reason at all we couldn't handle the fault,
1371	 * make sure we exit gracefully rather than endlessly redo
1372	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1373	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1374	 *
1375	 * Note that handle_userfault() may also release and reacquire mmap_lock
1376	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1377	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1378	 * (potentially after handling any pending signal during the return to
1379	 * userland). The return to userland is identified whenever
1380	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1381	 */
1382	fault = handle_mm_fault(vma, address, flags, regs);
1383
1384	if (fault_signal_pending(fault, regs)) {
1385		/*
1386		 * Quick path to respond to signals.  The core mm code
1387		 * has unlocked the mm for us if we get here.
1388		 */
1389		if (!user_mode(regs))
1390			kernelmode_fixup_or_oops(regs, error_code, address,
1391						 SIGBUS, BUS_ADRERR,
1392						 ARCH_DEFAULT_PKEY);
1393		return;
1394	}
1395
1396	/* The fault is fully completed (including releasing mmap lock) */
1397	if (fault & VM_FAULT_COMPLETED)
1398		return;
1399
1400	/*
1401	 * If we need to retry the mmap_lock has already been released,
1402	 * and if there is a fatal signal pending there is no guarantee
1403	 * that we made any progress. Handle this case first.
1404	 */
1405	if (unlikely(fault & VM_FAULT_RETRY)) {
1406		flags |= FAULT_FLAG_TRIED;
1407		goto retry;
1408	}
1409
1410	mmap_read_unlock(mm);
1411done:
1412	if (likely(!(fault & VM_FAULT_ERROR)))
1413		return;
1414
1415	if (fatal_signal_pending(current) && !user_mode(regs)) {
1416		kernelmode_fixup_or_oops(regs, error_code, address,
1417					 0, 0, ARCH_DEFAULT_PKEY);
1418		return;
1419	}
1420
1421	if (fault & VM_FAULT_OOM) {
1422		/* Kernel mode? Handle exceptions or die: */
1423		if (!user_mode(regs)) {
1424			kernelmode_fixup_or_oops(regs, error_code, address,
1425						 SIGSEGV, SEGV_MAPERR,
1426						 ARCH_DEFAULT_PKEY);
1427			return;
1428		}
1429
1430		/*
1431		 * We ran out of memory, call the OOM killer, and return the
1432		 * userspace (which will retry the fault, or kill us if we got
1433		 * oom-killed):
1434		 */
1435		pagefault_out_of_memory();
1436	} else {
1437		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1438			     VM_FAULT_HWPOISON_LARGE))
1439			do_sigbus(regs, error_code, address, fault);
1440		else if (fault & VM_FAULT_SIGSEGV)
1441			bad_area_nosemaphore(regs, error_code, address);
1442		else
1443			BUG();
1444	}
1445}
1446NOKPROBE_SYMBOL(do_user_addr_fault);
1447
1448static __always_inline void
1449trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1450			 unsigned long address)
1451{
1452	if (!trace_pagefault_enabled())
1453		return;
1454
1455	if (user_mode(regs))
1456		trace_page_fault_user(address, regs, error_code);
1457	else
1458		trace_page_fault_kernel(address, regs, error_code);
1459}
1460
1461static __always_inline void
1462handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1463			      unsigned long address)
1464{
1465	trace_page_fault_entries(regs, error_code, address);
1466
1467	if (unlikely(kmmio_fault(regs, address)))
1468		return;
1469
1470	/* Was the fault on kernel-controlled part of the address space? */
1471	if (unlikely(fault_in_kernel_space(address))) {
1472		do_kern_addr_fault(regs, error_code, address);
1473	} else {
1474		do_user_addr_fault(regs, error_code, address);
1475		/*
1476		 * User address page fault handling might have reenabled
1477		 * interrupts. Fixing up all potential exit points of
1478		 * do_user_addr_fault() and its leaf functions is just not
1479		 * doable w/o creating an unholy mess or turning the code
1480		 * upside down.
1481		 */
1482		local_irq_disable();
1483	}
1484}
1485
1486DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1487{
 
1488	irqentry_state_t state;
1489	unsigned long address;
1490
1491	address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1492
1493	prefetchw(&current->mm->mmap_lock);
1494
1495	/*
1496	 * KVM uses #PF vector to deliver 'page not present' events to guests
1497	 * (asynchronous page fault mechanism). The event happens when a
1498	 * userspace task is trying to access some valid (from guest's point of
1499	 * view) memory which is not currently mapped by the host (e.g. the
1500	 * memory is swapped out). Note, the corresponding "page ready" event
1501	 * which is injected when the memory becomes available, is delivered via
1502	 * an interrupt mechanism and not a #PF exception
1503	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1504	 *
1505	 * We are relying on the interrupted context being sane (valid RSP,
1506	 * relevant locks not held, etc.), which is fine as long as the
1507	 * interrupted context had IF=1.  We are also relying on the KVM
1508	 * async pf type field and CR2 being read consistently instead of
1509	 * getting values from real and async page faults mixed up.
1510	 *
1511	 * Fingers crossed.
1512	 *
1513	 * The async #PF handling code takes care of idtentry handling
1514	 * itself.
1515	 */
1516	if (kvm_handle_async_pf(regs, (u32)address))
1517		return;
1518
1519	/*
1520	 * Entry handling for valid #PF from kernel mode is slightly
1521	 * different: RCU is already watching and ct_irq_enter() must not
1522	 * be invoked because a kernel fault on a user space address might
1523	 * sleep.
1524	 *
1525	 * In case the fault hit a RCU idle region the conditional entry
1526	 * code reenabled RCU to avoid subsequent wreckage which helps
1527	 * debuggability.
1528	 */
1529	state = irqentry_enter(regs);
1530
1531	instrumentation_begin();
1532	handle_page_fault(regs, error_code, address);
1533	instrumentation_end();
1534
1535	irqentry_exit(regs, state);
1536}