Linux Audio

Check our new training course

Loading...
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/magic.h>		/* STACK_END_MAGIC		*/
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
   9#include <linux/module.h>		/* search_exception_table	*/
  10#include <linux/bootmem.h>		/* max_low_pfn			*/
  11#include <linux/kprobes.h>		/* __kprobes, ...		*/
  12#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  13#include <linux/perf_event.h>		/* perf_sw_event		*/
  14#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  15#include <linux/prefetch.h>		/* prefetchw			*/
  16
  17#include <asm/traps.h>			/* dotraplinkage, ...		*/
  18#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
  19#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
  20#include <asm/fixmap.h>			/* VSYSCALL_START		*/
  21
  22/*
  23 * Page fault error code bits:
  24 *
  25 *   bit 0 ==	 0: no page found	1: protection fault
  26 *   bit 1 ==	 0: read access		1: write access
  27 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
  28 *   bit 3 ==				1: use of reserved bit detected
  29 *   bit 4 ==				1: fault was an instruction fetch
  30 */
  31enum x86_pf_error_code {
  32
  33	PF_PROT		=		1 << 0,
  34	PF_WRITE	=		1 << 1,
  35	PF_USER		=		1 << 2,
  36	PF_RSVD		=		1 << 3,
  37	PF_INSTR	=		1 << 4,
  38};
  39
  40/*
  41 * Returns 0 if mmiotrace is disabled, or if the fault is not
  42 * handled by mmiotrace:
  43 */
  44static inline int __kprobes
  45kmmio_fault(struct pt_regs *regs, unsigned long addr)
  46{
  47	if (unlikely(is_kmmio_active()))
  48		if (kmmio_handler(regs, addr) == 1)
  49			return -1;
  50	return 0;
  51}
  52
  53static inline int __kprobes notify_page_fault(struct pt_regs *regs)
  54{
  55	int ret = 0;
  56
  57	/* kprobe_running() needs smp_processor_id() */
  58	if (kprobes_built_in() && !user_mode_vm(regs)) {
  59		preempt_disable();
  60		if (kprobe_running() && kprobe_fault_handler(regs, 14))
  61			ret = 1;
  62		preempt_enable();
  63	}
  64
  65	return ret;
  66}
  67
  68/*
  69 * Prefetch quirks:
  70 *
  71 * 32-bit mode:
  72 *
  73 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  74 *   Check that here and ignore it.
  75 *
  76 * 64-bit mode:
  77 *
  78 *   Sometimes the CPU reports invalid exceptions on prefetch.
  79 *   Check that here and ignore it.
  80 *
  81 * Opcode checker based on code by Richard Brunner.
  82 */
  83static inline int
  84check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  85		      unsigned char opcode, int *prefetch)
  86{
  87	unsigned char instr_hi = opcode & 0xf0;
  88	unsigned char instr_lo = opcode & 0x0f;
  89
  90	switch (instr_hi) {
  91	case 0x20:
  92	case 0x30:
  93		/*
  94		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  95		 * In X86_64 long mode, the CPU will signal invalid
  96		 * opcode if some of these prefixes are present so
  97		 * X86_64 will never get here anyway
  98		 */
  99		return ((instr_lo & 7) == 0x6);
 100#ifdef CONFIG_X86_64
 101	case 0x40:
 102		/*
 103		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 104		 * Need to figure out under what instruction mode the
 105		 * instruction was issued. Could check the LDT for lm,
 106		 * but for now it's good enough to assume that long
 107		 * mode only uses well known segments or kernel.
 108		 */
 109		return (!user_mode(regs) || user_64bit_mode(regs));
 110#endif
 111	case 0x60:
 112		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 113		return (instr_lo & 0xC) == 0x4;
 114	case 0xF0:
 115		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 116		return !instr_lo || (instr_lo>>1) == 1;
 117	case 0x00:
 118		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 119		if (probe_kernel_address(instr, opcode))
 120			return 0;
 121
 122		*prefetch = (instr_lo == 0xF) &&
 123			(opcode == 0x0D || opcode == 0x18);
 124		return 0;
 125	default:
 126		return 0;
 127	}
 128}
 129
 130static int
 131is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 132{
 133	unsigned char *max_instr;
 134	unsigned char *instr;
 135	int prefetch = 0;
 136
 137	/*
 138	 * If it was a exec (instruction fetch) fault on NX page, then
 139	 * do not ignore the fault:
 140	 */
 141	if (error_code & PF_INSTR)
 142		return 0;
 143
 144	instr = (void *)convert_ip_to_linear(current, regs);
 145	max_instr = instr + 15;
 146
 147	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
 148		return 0;
 149
 150	while (instr < max_instr) {
 151		unsigned char opcode;
 152
 153		if (probe_kernel_address(instr, opcode))
 154			break;
 155
 156		instr++;
 157
 158		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 159			break;
 160	}
 161	return prefetch;
 162}
 163
 164static void
 165force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 166		     struct task_struct *tsk, int fault)
 167{
 168	unsigned lsb = 0;
 169	siginfo_t info;
 170
 171	info.si_signo	= si_signo;
 172	info.si_errno	= 0;
 173	info.si_code	= si_code;
 174	info.si_addr	= (void __user *)address;
 175	if (fault & VM_FAULT_HWPOISON_LARGE)
 176		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 177	if (fault & VM_FAULT_HWPOISON)
 178		lsb = PAGE_SHIFT;
 179	info.si_addr_lsb = lsb;
 180
 181	force_sig_info(si_signo, &info, tsk);
 182}
 183
 184DEFINE_SPINLOCK(pgd_lock);
 185LIST_HEAD(pgd_list);
 186
 187#ifdef CONFIG_X86_32
 188static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 189{
 190	unsigned index = pgd_index(address);
 191	pgd_t *pgd_k;
 192	pud_t *pud, *pud_k;
 193	pmd_t *pmd, *pmd_k;
 194
 195	pgd += index;
 196	pgd_k = init_mm.pgd + index;
 197
 198	if (!pgd_present(*pgd_k))
 199		return NULL;
 200
 201	/*
 202	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 203	 * and redundant with the set_pmd() on non-PAE. As would
 204	 * set_pud.
 205	 */
 206	pud = pud_offset(pgd, address);
 207	pud_k = pud_offset(pgd_k, address);
 208	if (!pud_present(*pud_k))
 209		return NULL;
 210
 211	pmd = pmd_offset(pud, address);
 212	pmd_k = pmd_offset(pud_k, address);
 213	if (!pmd_present(*pmd_k))
 214		return NULL;
 215
 216	if (!pmd_present(*pmd))
 217		set_pmd(pmd, *pmd_k);
 218	else
 219		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 220
 221	return pmd_k;
 222}
 223
 224void vmalloc_sync_all(void)
 225{
 226	unsigned long address;
 227
 228	if (SHARED_KERNEL_PMD)
 229		return;
 230
 231	for (address = VMALLOC_START & PMD_MASK;
 232	     address >= TASK_SIZE && address < FIXADDR_TOP;
 233	     address += PMD_SIZE) {
 234		struct page *page;
 235
 236		spin_lock(&pgd_lock);
 237		list_for_each_entry(page, &pgd_list, lru) {
 238			spinlock_t *pgt_lock;
 239			pmd_t *ret;
 240
 241			/* the pgt_lock only for Xen */
 242			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 243
 244			spin_lock(pgt_lock);
 245			ret = vmalloc_sync_one(page_address(page), address);
 246			spin_unlock(pgt_lock);
 247
 248			if (!ret)
 249				break;
 250		}
 251		spin_unlock(&pgd_lock);
 252	}
 253}
 254
 255/*
 256 * 32-bit:
 257 *
 258 *   Handle a fault on the vmalloc or module mapping area
 259 */
 260static noinline __kprobes int vmalloc_fault(unsigned long address)
 261{
 262	unsigned long pgd_paddr;
 263	pmd_t *pmd_k;
 264	pte_t *pte_k;
 265
 266	/* Make sure we are in vmalloc area: */
 267	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 268		return -1;
 269
 270	WARN_ON_ONCE(in_nmi());
 271
 272	/*
 273	 * Synchronize this task's top level page-table
 274	 * with the 'reference' page table.
 275	 *
 276	 * Do _not_ use "current" here. We might be inside
 277	 * an interrupt in the middle of a task switch..
 278	 */
 279	pgd_paddr = read_cr3();
 280	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 281	if (!pmd_k)
 282		return -1;
 283
 284	pte_k = pte_offset_kernel(pmd_k, address);
 285	if (!pte_present(*pte_k))
 286		return -1;
 287
 288	return 0;
 289}
 290
 291/*
 292 * Did it hit the DOS screen memory VA from vm86 mode?
 293 */
 294static inline void
 295check_v8086_mode(struct pt_regs *regs, unsigned long address,
 296		 struct task_struct *tsk)
 297{
 298	unsigned long bit;
 299
 300	if (!v8086_mode(regs))
 301		return;
 302
 303	bit = (address - 0xA0000) >> PAGE_SHIFT;
 304	if (bit < 32)
 305		tsk->thread.screen_bitmap |= 1 << bit;
 306}
 307
 308static bool low_pfn(unsigned long pfn)
 309{
 310	return pfn < max_low_pfn;
 311}
 312
 313static void dump_pagetable(unsigned long address)
 314{
 315	pgd_t *base = __va(read_cr3());
 316	pgd_t *pgd = &base[pgd_index(address)];
 317	pmd_t *pmd;
 318	pte_t *pte;
 319
 320#ifdef CONFIG_X86_PAE
 321	printk("*pdpt = %016Lx ", pgd_val(*pgd));
 322	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 323		goto out;
 324#endif
 325	pmd = pmd_offset(pud_offset(pgd, address), address);
 326	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 327
 328	/*
 329	 * We must not directly access the pte in the highpte
 330	 * case if the page table is located in highmem.
 331	 * And let's rather not kmap-atomic the pte, just in case
 332	 * it's allocated already:
 333	 */
 334	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 335		goto out;
 336
 337	pte = pte_offset_kernel(pmd, address);
 338	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 339out:
 340	printk("\n");
 341}
 342
 343#else /* CONFIG_X86_64: */
 344
 345void vmalloc_sync_all(void)
 346{
 347	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 348}
 349
 350/*
 351 * 64-bit:
 352 *
 353 *   Handle a fault on the vmalloc area
 354 *
 355 * This assumes no large pages in there.
 356 */
 357static noinline __kprobes int vmalloc_fault(unsigned long address)
 358{
 359	pgd_t *pgd, *pgd_ref;
 360	pud_t *pud, *pud_ref;
 361	pmd_t *pmd, *pmd_ref;
 362	pte_t *pte, *pte_ref;
 363
 364	/* Make sure we are in vmalloc area: */
 365	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 366		return -1;
 367
 368	WARN_ON_ONCE(in_nmi());
 369
 370	/*
 371	 * Copy kernel mappings over when needed. This can also
 372	 * happen within a race in page table update. In the later
 373	 * case just flush:
 374	 */
 375	pgd = pgd_offset(current->active_mm, address);
 376	pgd_ref = pgd_offset_k(address);
 377	if (pgd_none(*pgd_ref))
 378		return -1;
 379
 380	if (pgd_none(*pgd))
 381		set_pgd(pgd, *pgd_ref);
 382	else
 383		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 384
 385	/*
 386	 * Below here mismatches are bugs because these lower tables
 387	 * are shared:
 388	 */
 389
 390	pud = pud_offset(pgd, address);
 391	pud_ref = pud_offset(pgd_ref, address);
 392	if (pud_none(*pud_ref))
 393		return -1;
 394
 395	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
 396		BUG();
 397
 398	pmd = pmd_offset(pud, address);
 399	pmd_ref = pmd_offset(pud_ref, address);
 400	if (pmd_none(*pmd_ref))
 401		return -1;
 402
 403	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
 404		BUG();
 405
 406	pte_ref = pte_offset_kernel(pmd_ref, address);
 407	if (!pte_present(*pte_ref))
 408		return -1;
 409
 410	pte = pte_offset_kernel(pmd, address);
 411
 412	/*
 413	 * Don't use pte_page here, because the mappings can point
 414	 * outside mem_map, and the NUMA hash lookup cannot handle
 415	 * that:
 416	 */
 417	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 418		BUG();
 419
 420	return 0;
 421}
 422
 423#ifdef CONFIG_CPU_SUP_AMD
 424static const char errata93_warning[] =
 425KERN_ERR 
 426"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 427"******* Working around it, but it may cause SEGVs or burn power.\n"
 428"******* Please consider a BIOS update.\n"
 429"******* Disabling USB legacy in the BIOS may also help.\n";
 430#endif
 431
 432/*
 433 * No vm86 mode in 64-bit mode:
 434 */
 435static inline void
 436check_v8086_mode(struct pt_regs *regs, unsigned long address,
 437		 struct task_struct *tsk)
 438{
 439}
 440
 441static int bad_address(void *p)
 442{
 443	unsigned long dummy;
 444
 445	return probe_kernel_address((unsigned long *)p, dummy);
 446}
 447
 448static void dump_pagetable(unsigned long address)
 449{
 450	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 451	pgd_t *pgd = base + pgd_index(address);
 452	pud_t *pud;
 453	pmd_t *pmd;
 454	pte_t *pte;
 455
 456	if (bad_address(pgd))
 457		goto bad;
 458
 459	printk("PGD %lx ", pgd_val(*pgd));
 460
 461	if (!pgd_present(*pgd))
 462		goto out;
 463
 464	pud = pud_offset(pgd, address);
 465	if (bad_address(pud))
 466		goto bad;
 467
 468	printk("PUD %lx ", pud_val(*pud));
 469	if (!pud_present(*pud) || pud_large(*pud))
 470		goto out;
 471
 472	pmd = pmd_offset(pud, address);
 473	if (bad_address(pmd))
 474		goto bad;
 475
 476	printk("PMD %lx ", pmd_val(*pmd));
 477	if (!pmd_present(*pmd) || pmd_large(*pmd))
 478		goto out;
 479
 480	pte = pte_offset_kernel(pmd, address);
 481	if (bad_address(pte))
 482		goto bad;
 483
 484	printk("PTE %lx", pte_val(*pte));
 485out:
 486	printk("\n");
 487	return;
 488bad:
 489	printk("BAD\n");
 490}
 491
 492#endif /* CONFIG_X86_64 */
 493
 494/*
 495 * Workaround for K8 erratum #93 & buggy BIOS.
 496 *
 497 * BIOS SMM functions are required to use a specific workaround
 498 * to avoid corruption of the 64bit RIP register on C stepping K8.
 499 *
 500 * A lot of BIOS that didn't get tested properly miss this.
 501 *
 502 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 503 * Try to work around it here.
 504 *
 505 * Note we only handle faults in kernel here.
 506 * Does nothing on 32-bit.
 507 */
 508static int is_errata93(struct pt_regs *regs, unsigned long address)
 509{
 510#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 511	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 512	    || boot_cpu_data.x86 != 0xf)
 513		return 0;
 514
 515	if (address != regs->ip)
 516		return 0;
 517
 518	if ((address >> 32) != 0)
 519		return 0;
 520
 521	address |= 0xffffffffUL << 32;
 522	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 523	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 524		printk_once(errata93_warning);
 525		regs->ip = address;
 526		return 1;
 527	}
 528#endif
 529	return 0;
 530}
 531
 532/*
 533 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 534 * to illegal addresses >4GB.
 535 *
 536 * We catch this in the page fault handler because these addresses
 537 * are not reachable. Just detect this case and return.  Any code
 538 * segment in LDT is compatibility mode.
 539 */
 540static int is_errata100(struct pt_regs *regs, unsigned long address)
 541{
 542#ifdef CONFIG_X86_64
 543	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 544		return 1;
 545#endif
 546	return 0;
 547}
 548
 549static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 550{
 551#ifdef CONFIG_X86_F00F_BUG
 552	unsigned long nr;
 553
 554	/*
 555	 * Pentium F0 0F C7 C8 bug workaround:
 556	 */
 557	if (boot_cpu_data.f00f_bug) {
 558		nr = (address - idt_descr.address) >> 3;
 559
 560		if (nr == 6) {
 561			do_invalid_op(regs, 0);
 562			return 1;
 563		}
 564	}
 565#endif
 566	return 0;
 567}
 568
 569static const char nx_warning[] = KERN_CRIT
 570"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 571
 572static void
 573show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 574		unsigned long address)
 575{
 576	if (!oops_may_print())
 577		return;
 578
 579	if (error_code & PF_INSTR) {
 580		unsigned int level;
 581
 582		pte_t *pte = lookup_address(address, &level);
 583
 584		if (pte && pte_present(*pte) && !pte_exec(*pte))
 585			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
 586	}
 587
 588	printk(KERN_ALERT "BUG: unable to handle kernel ");
 589	if (address < PAGE_SIZE)
 590		printk(KERN_CONT "NULL pointer dereference");
 591	else
 592		printk(KERN_CONT "paging request");
 593
 594	printk(KERN_CONT " at %p\n", (void *) address);
 595	printk(KERN_ALERT "IP:");
 596	printk_address(regs->ip, 1);
 597
 598	dump_pagetable(address);
 599}
 600
 601static noinline void
 602pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 603	    unsigned long address)
 604{
 605	struct task_struct *tsk;
 606	unsigned long flags;
 607	int sig;
 608
 609	flags = oops_begin();
 610	tsk = current;
 611	sig = SIGKILL;
 612
 613	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 614	       tsk->comm, address);
 615	dump_pagetable(address);
 616
 617	tsk->thread.cr2		= address;
 618	tsk->thread.trap_nr	= X86_TRAP_PF;
 619	tsk->thread.error_code	= error_code;
 620
 621	if (__die("Bad pagetable", regs, error_code))
 622		sig = 0;
 623
 624	oops_end(flags, regs, sig);
 625}
 626
 627static noinline void
 628no_context(struct pt_regs *regs, unsigned long error_code,
 629	   unsigned long address, int signal, int si_code)
 630{
 631	struct task_struct *tsk = current;
 632	unsigned long *stackend;
 633	unsigned long flags;
 634	int sig;
 635
 636	/* Are we prepared to handle this kernel fault? */
 637	if (fixup_exception(regs)) {
 638		if (current_thread_info()->sig_on_uaccess_error && signal) {
 639			tsk->thread.trap_nr = X86_TRAP_PF;
 640			tsk->thread.error_code = error_code | PF_USER;
 641			tsk->thread.cr2 = address;
 642
 643			/* XXX: hwpoison faults will set the wrong code. */
 644			force_sig_info_fault(signal, si_code, address, tsk, 0);
 645		}
 646		return;
 647	}
 648
 649	/*
 650	 * 32-bit:
 651	 *
 652	 *   Valid to do another page fault here, because if this fault
 653	 *   had been triggered by is_prefetch fixup_exception would have
 654	 *   handled it.
 655	 *
 656	 * 64-bit:
 657	 *
 658	 *   Hall of shame of CPU/BIOS bugs.
 659	 */
 660	if (is_prefetch(regs, error_code, address))
 661		return;
 662
 663	if (is_errata93(regs, address))
 664		return;
 665
 666	/*
 667	 * Oops. The kernel tried to access some bad page. We'll have to
 668	 * terminate things with extreme prejudice:
 669	 */
 670	flags = oops_begin();
 671
 672	show_fault_oops(regs, error_code, address);
 673
 674	stackend = end_of_stack(tsk);
 675	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
 676		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 677
 678	tsk->thread.cr2		= address;
 679	tsk->thread.trap_nr	= X86_TRAP_PF;
 680	tsk->thread.error_code	= error_code;
 681
 682	sig = SIGKILL;
 683	if (__die("Oops", regs, error_code))
 684		sig = 0;
 685
 686	/* Executive summary in case the body of the oops scrolled away */
 687	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 688
 689	oops_end(flags, regs, sig);
 690}
 691
 692/*
 693 * Print out info about fatal segfaults, if the show_unhandled_signals
 694 * sysctl is set:
 695 */
 696static inline void
 697show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 698		unsigned long address, struct task_struct *tsk)
 699{
 700	if (!unhandled_signal(tsk, SIGSEGV))
 701		return;
 702
 703	if (!printk_ratelimit())
 704		return;
 705
 706	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 707		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 708		tsk->comm, task_pid_nr(tsk), address,
 709		(void *)regs->ip, (void *)regs->sp, error_code);
 710
 711	print_vma_addr(KERN_CONT " in ", regs->ip);
 712
 713	printk(KERN_CONT "\n");
 714}
 715
 716static void
 717__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 718		       unsigned long address, int si_code)
 719{
 720	struct task_struct *tsk = current;
 721
 722	/* User mode accesses just cause a SIGSEGV */
 723	if (error_code & PF_USER) {
 724		/*
 725		 * It's possible to have interrupts off here:
 726		 */
 727		local_irq_enable();
 728
 729		/*
 730		 * Valid to do another page fault here because this one came
 731		 * from user space:
 732		 */
 733		if (is_prefetch(regs, error_code, address))
 734			return;
 735
 736		if (is_errata100(regs, address))
 737			return;
 738
 739#ifdef CONFIG_X86_64
 740		/*
 741		 * Instruction fetch faults in the vsyscall page might need
 742		 * emulation.
 743		 */
 744		if (unlikely((error_code & PF_INSTR) &&
 745			     ((address & ~0xfff) == VSYSCALL_START))) {
 746			if (emulate_vsyscall(regs, address))
 747				return;
 748		}
 749#endif
 750
 751		if (unlikely(show_unhandled_signals))
 752			show_signal_msg(regs, error_code, address, tsk);
 753
 754		/* Kernel addresses are always protection faults: */
 755		tsk->thread.cr2		= address;
 756		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
 757		tsk->thread.trap_nr	= X86_TRAP_PF;
 758
 759		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
 760
 761		return;
 762	}
 763
 764	if (is_f00f_bug(regs, address))
 765		return;
 766
 767	no_context(regs, error_code, address, SIGSEGV, si_code);
 768}
 769
 770static noinline void
 771bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 772		     unsigned long address)
 773{
 774	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
 775}
 776
 777static void
 778__bad_area(struct pt_regs *regs, unsigned long error_code,
 779	   unsigned long address, int si_code)
 780{
 781	struct mm_struct *mm = current->mm;
 782
 783	/*
 784	 * Something tried to access memory that isn't in our memory map..
 785	 * Fix it, but check if it's kernel or user first..
 786	 */
 787	up_read(&mm->mmap_sem);
 788
 789	__bad_area_nosemaphore(regs, error_code, address, si_code);
 790}
 791
 792static noinline void
 793bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 794{
 795	__bad_area(regs, error_code, address, SEGV_MAPERR);
 796}
 797
 798static noinline void
 799bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 800		      unsigned long address)
 801{
 802	__bad_area(regs, error_code, address, SEGV_ACCERR);
 803}
 804
 805/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
 806static void
 807out_of_memory(struct pt_regs *regs, unsigned long error_code,
 808	      unsigned long address)
 809{
 810	/*
 811	 * We ran out of memory, call the OOM killer, and return the userspace
 812	 * (which will retry the fault, or kill us if we got oom-killed):
 813	 */
 814	up_read(&current->mm->mmap_sem);
 815
 816	pagefault_out_of_memory();
 817}
 818
 819static void
 820do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 821	  unsigned int fault)
 822{
 823	struct task_struct *tsk = current;
 824	struct mm_struct *mm = tsk->mm;
 825	int code = BUS_ADRERR;
 826
 827	up_read(&mm->mmap_sem);
 828
 829	/* Kernel mode? Handle exceptions or die: */
 830	if (!(error_code & PF_USER)) {
 831		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 832		return;
 833	}
 834
 835	/* User-space => ok to do another page fault: */
 836	if (is_prefetch(regs, error_code, address))
 837		return;
 838
 839	tsk->thread.cr2		= address;
 840	tsk->thread.error_code	= error_code;
 841	tsk->thread.trap_nr	= X86_TRAP_PF;
 842
 843#ifdef CONFIG_MEMORY_FAILURE
 844	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 845		printk(KERN_ERR
 846	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 847			tsk->comm, tsk->pid, address);
 848		code = BUS_MCEERR_AR;
 849	}
 850#endif
 851	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
 852}
 853
 854static noinline int
 855mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 856	       unsigned long address, unsigned int fault)
 857{
 858	/*
 859	 * Pagefault was interrupted by SIGKILL. We have no reason to
 860	 * continue pagefault.
 861	 */
 862	if (fatal_signal_pending(current)) {
 863		if (!(fault & VM_FAULT_RETRY))
 864			up_read(&current->mm->mmap_sem);
 865		if (!(error_code & PF_USER))
 866			no_context(regs, error_code, address, 0, 0);
 867		return 1;
 868	}
 869	if (!(fault & VM_FAULT_ERROR))
 870		return 0;
 871
 872	if (fault & VM_FAULT_OOM) {
 873		/* Kernel mode? Handle exceptions or die: */
 874		if (!(error_code & PF_USER)) {
 875			up_read(&current->mm->mmap_sem);
 876			no_context(regs, error_code, address,
 877				   SIGSEGV, SEGV_MAPERR);
 878			return 1;
 879		}
 880
 881		out_of_memory(regs, error_code, address);
 882	} else {
 883		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 884			     VM_FAULT_HWPOISON_LARGE))
 885			do_sigbus(regs, error_code, address, fault);
 886		else
 887			BUG();
 888	}
 889	return 1;
 890}
 891
 892static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 893{
 894	if ((error_code & PF_WRITE) && !pte_write(*pte))
 895		return 0;
 896
 897	if ((error_code & PF_INSTR) && !pte_exec(*pte))
 898		return 0;
 899
 900	return 1;
 901}
 902
 903/*
 904 * Handle a spurious fault caused by a stale TLB entry.
 905 *
 906 * This allows us to lazily refresh the TLB when increasing the
 907 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 908 * eagerly is very expensive since that implies doing a full
 909 * cross-processor TLB flush, even if no stale TLB entries exist
 910 * on other processors.
 911 *
 912 * There are no security implications to leaving a stale TLB when
 913 * increasing the permissions on a page.
 914 */
 915static noinline __kprobes int
 916spurious_fault(unsigned long error_code, unsigned long address)
 917{
 918	pgd_t *pgd;
 919	pud_t *pud;
 920	pmd_t *pmd;
 921	pte_t *pte;
 922	int ret;
 923
 924	/* Reserved-bit violation or user access to kernel space? */
 925	if (error_code & (PF_USER | PF_RSVD))
 926		return 0;
 927
 928	pgd = init_mm.pgd + pgd_index(address);
 929	if (!pgd_present(*pgd))
 930		return 0;
 931
 932	pud = pud_offset(pgd, address);
 933	if (!pud_present(*pud))
 934		return 0;
 935
 936	if (pud_large(*pud))
 937		return spurious_fault_check(error_code, (pte_t *) pud);
 938
 939	pmd = pmd_offset(pud, address);
 940	if (!pmd_present(*pmd))
 941		return 0;
 942
 943	if (pmd_large(*pmd))
 944		return spurious_fault_check(error_code, (pte_t *) pmd);
 945
 946	/*
 947	 * Note: don't use pte_present() here, since it returns true
 948	 * if the _PAGE_PROTNONE bit is set.  However, this aliases the
 949	 * _PAGE_GLOBAL bit, which for kernel pages give false positives
 950	 * when CONFIG_DEBUG_PAGEALLOC is used.
 951	 */
 952	pte = pte_offset_kernel(pmd, address);
 953	if (!(pte_flags(*pte) & _PAGE_PRESENT))
 954		return 0;
 955
 956	ret = spurious_fault_check(error_code, pte);
 957	if (!ret)
 958		return 0;
 959
 960	/*
 961	 * Make sure we have permissions in PMD.
 962	 * If not, then there's a bug in the page tables:
 963	 */
 964	ret = spurious_fault_check(error_code, (pte_t *) pmd);
 965	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 966
 967	return ret;
 968}
 969
 970int show_unhandled_signals = 1;
 971
 972static inline int
 973access_error(unsigned long error_code, struct vm_area_struct *vma)
 974{
 975	if (error_code & PF_WRITE) {
 976		/* write, present and write, not present: */
 977		if (unlikely(!(vma->vm_flags & VM_WRITE)))
 978			return 1;
 979		return 0;
 980	}
 981
 982	/* read, present: */
 983	if (unlikely(error_code & PF_PROT))
 984		return 1;
 985
 986	/* read, not present: */
 987	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 988		return 1;
 989
 990	return 0;
 991}
 992
 993static int fault_in_kernel_space(unsigned long address)
 994{
 995	return address >= TASK_SIZE_MAX;
 996}
 997
 998/*
 999 * This routine handles page faults.  It determines the address,
1000 * and the problem, and then passes it off to one of the appropriate
1001 * routines.
1002 */
1003dotraplinkage void __kprobes
1004do_page_fault(struct pt_regs *regs, unsigned long error_code)
1005{
1006	struct vm_area_struct *vma;
1007	struct task_struct *tsk;
1008	unsigned long address;
1009	struct mm_struct *mm;
1010	int fault;
1011	int write = error_code & PF_WRITE;
1012	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
1013					(write ? FAULT_FLAG_WRITE : 0);
1014
1015	tsk = current;
1016	mm = tsk->mm;
1017
1018	/* Get the faulting address: */
1019	address = read_cr2();
1020
1021	/*
1022	 * Detect and handle instructions that would cause a page fault for
1023	 * both a tracked kernel page and a userspace page.
1024	 */
1025	if (kmemcheck_active(regs))
1026		kmemcheck_hide(regs);
1027	prefetchw(&mm->mmap_sem);
1028
1029	if (unlikely(kmmio_fault(regs, address)))
1030		return;
1031
1032	/*
1033	 * We fault-in kernel-space virtual memory on-demand. The
1034	 * 'reference' page table is init_mm.pgd.
1035	 *
1036	 * NOTE! We MUST NOT take any locks for this case. We may
1037	 * be in an interrupt or a critical region, and should
1038	 * only copy the information from the master page table,
1039	 * nothing more.
1040	 *
1041	 * This verifies that the fault happens in kernel space
1042	 * (error_code & 4) == 0, and that the fault was not a
1043	 * protection error (error_code & 9) == 0.
1044	 */
1045	if (unlikely(fault_in_kernel_space(address))) {
1046		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1047			if (vmalloc_fault(address) >= 0)
1048				return;
1049
1050			if (kmemcheck_fault(regs, address, error_code))
1051				return;
1052		}
1053
1054		/* Can handle a stale RO->RW TLB: */
1055		if (spurious_fault(error_code, address))
1056			return;
1057
1058		/* kprobes don't want to hook the spurious faults: */
1059		if (notify_page_fault(regs))
1060			return;
1061		/*
1062		 * Don't take the mm semaphore here. If we fixup a prefetch
1063		 * fault we could otherwise deadlock:
1064		 */
1065		bad_area_nosemaphore(regs, error_code, address);
1066
1067		return;
1068	}
1069
1070	/* kprobes don't want to hook the spurious faults: */
1071	if (unlikely(notify_page_fault(regs)))
1072		return;
1073	/*
1074	 * It's safe to allow irq's after cr2 has been saved and the
1075	 * vmalloc fault has been handled.
1076	 *
1077	 * User-mode registers count as a user access even for any
1078	 * potential system fault or CPU buglet:
1079	 */
1080	if (user_mode_vm(regs)) {
1081		local_irq_enable();
1082		error_code |= PF_USER;
1083	} else {
1084		if (regs->flags & X86_EFLAGS_IF)
1085			local_irq_enable();
1086	}
1087
1088	if (unlikely(error_code & PF_RSVD))
1089		pgtable_bad(regs, error_code, address);
1090
1091	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1092
1093	/*
1094	 * If we're in an interrupt, have no user context or are running
1095	 * in an atomic region then we must not take the fault:
1096	 */
1097	if (unlikely(in_atomic() || !mm)) {
1098		bad_area_nosemaphore(regs, error_code, address);
1099		return;
1100	}
1101
1102	/*
1103	 * When running in the kernel we expect faults to occur only to
1104	 * addresses in user space.  All other faults represent errors in
1105	 * the kernel and should generate an OOPS.  Unfortunately, in the
1106	 * case of an erroneous fault occurring in a code path which already
1107	 * holds mmap_sem we will deadlock attempting to validate the fault
1108	 * against the address space.  Luckily the kernel only validly
1109	 * references user space from well defined areas of code, which are
1110	 * listed in the exceptions table.
1111	 *
1112	 * As the vast majority of faults will be valid we will only perform
1113	 * the source reference check when there is a possibility of a
1114	 * deadlock. Attempt to lock the address space, if we cannot we then
1115	 * validate the source. If this is invalid we can skip the address
1116	 * space check, thus avoiding the deadlock:
1117	 */
1118	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1119		if ((error_code & PF_USER) == 0 &&
1120		    !search_exception_tables(regs->ip)) {
1121			bad_area_nosemaphore(regs, error_code, address);
1122			return;
1123		}
1124retry:
1125		down_read(&mm->mmap_sem);
1126	} else {
1127		/*
1128		 * The above down_read_trylock() might have succeeded in
1129		 * which case we'll have missed the might_sleep() from
1130		 * down_read():
1131		 */
1132		might_sleep();
1133	}
1134
1135	vma = find_vma(mm, address);
1136	if (unlikely(!vma)) {
1137		bad_area(regs, error_code, address);
1138		return;
1139	}
1140	if (likely(vma->vm_start <= address))
1141		goto good_area;
1142	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1143		bad_area(regs, error_code, address);
1144		return;
1145	}
1146	if (error_code & PF_USER) {
1147		/*
1148		 * Accessing the stack below %sp is always a bug.
1149		 * The large cushion allows instructions like enter
1150		 * and pusha to work. ("enter $65535, $31" pushes
1151		 * 32 pointers and then decrements %sp by 65535.)
1152		 */
1153		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1154			bad_area(regs, error_code, address);
1155			return;
1156		}
1157	}
1158	if (unlikely(expand_stack(vma, address))) {
1159		bad_area(regs, error_code, address);
1160		return;
1161	}
1162
1163	/*
1164	 * Ok, we have a good vm_area for this memory access, so
1165	 * we can handle it..
1166	 */
1167good_area:
1168	if (unlikely(access_error(error_code, vma))) {
1169		bad_area_access_error(regs, error_code, address);
1170		return;
1171	}
1172
1173	/*
1174	 * If for any reason at all we couldn't handle the fault,
1175	 * make sure we exit gracefully rather than endlessly redo
1176	 * the fault:
1177	 */
1178	fault = handle_mm_fault(mm, vma, address, flags);
1179
1180	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1181		if (mm_fault_error(regs, error_code, address, fault))
1182			return;
1183	}
1184
1185	/*
1186	 * Major/minor page fault accounting is only done on the
1187	 * initial attempt. If we go through a retry, it is extremely
1188	 * likely that the page will be found in page cache at that point.
1189	 */
1190	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1191		if (fault & VM_FAULT_MAJOR) {
1192			tsk->maj_flt++;
1193			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1194				      regs, address);
1195		} else {
1196			tsk->min_flt++;
1197			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1198				      regs, address);
1199		}
1200		if (fault & VM_FAULT_RETRY) {
1201			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1202			 * of starvation. */
1203			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1204			goto retry;
1205		}
1206	}
1207
1208	check_v8086_mode(regs, address, tsk);
1209
1210	up_read(&mm->mmap_sem);
1211}