Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/memblock.h>		/* max_low_pfn			*/
  12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
  13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  15#include <linux/perf_event.h>		/* perf_sw_event		*/
  16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  17#include <linux/prefetch.h>		/* prefetchw			*/
  18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  21#include <linux/mm_types.h>
  22#include <linux/mm.h>			/* find_and_lock_vma() */
  23
  24#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  25#include <asm/traps.h>			/* dotraplinkage, ...		*/
 
 
  26#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  27#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  28#include <asm/vm86.h>			/* struct vm86			*/
  29#include <asm/mmu_context.h>		/* vma_pkey()			*/
  30#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  31#include <asm/desc.h>			/* store_idt(), ...		*/
  32#include <asm/cpu_entry_area.h>		/* exception stack		*/
  33#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
  34#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
  35#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
  36#include <asm/irq_stack.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <asm/trace/exceptions.h>
  40
  41/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42 * Returns 0 if mmiotrace is disabled, or if the fault is not
  43 * handled by mmiotrace:
  44 */
  45static nokprobe_inline int
  46kmmio_fault(struct pt_regs *regs, unsigned long addr)
  47{
  48	if (unlikely(is_kmmio_active()))
  49		if (kmmio_handler(regs, addr) == 1)
  50			return -1;
  51	return 0;
  52}
  53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54/*
  55 * Prefetch quirks:
  56 *
  57 * 32-bit mode:
  58 *
  59 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  60 *   Check that here and ignore it.  This is AMD erratum #91.
  61 *
  62 * 64-bit mode:
  63 *
  64 *   Sometimes the CPU reports invalid exceptions on prefetch.
  65 *   Check that here and ignore it.
  66 *
  67 * Opcode checker based on code by Richard Brunner.
  68 */
  69static inline int
  70check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  71		      unsigned char opcode, int *prefetch)
  72{
  73	unsigned char instr_hi = opcode & 0xf0;
  74	unsigned char instr_lo = opcode & 0x0f;
  75
  76	switch (instr_hi) {
  77	case 0x20:
  78	case 0x30:
  79		/*
  80		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  81		 * In X86_64 long mode, the CPU will signal invalid
  82		 * opcode if some of these prefixes are present so
  83		 * X86_64 will never get here anyway
  84		 */
  85		return ((instr_lo & 7) == 0x6);
  86#ifdef CONFIG_X86_64
  87	case 0x40:
  88		/*
  89		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
 
 
 
 
  90		 */
  91		return (!user_mode(regs) || user_64bit_mode(regs));
  92#endif
  93	case 0x60:
  94		/* 0x64 thru 0x67 are valid prefixes in all modes. */
  95		return (instr_lo & 0xC) == 0x4;
  96	case 0xF0:
  97		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  98		return !instr_lo || (instr_lo>>1) == 1;
  99	case 0x00:
 100		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 101		if (get_kernel_nofault(opcode, instr))
 102			return 0;
 103
 104		*prefetch = (instr_lo == 0xF) &&
 105			(opcode == 0x0D || opcode == 0x18);
 106		return 0;
 107	default:
 108		return 0;
 109	}
 110}
 111
 112static bool is_amd_k8_pre_npt(void)
 113{
 114	struct cpuinfo_x86 *c = &boot_cpu_data;
 115
 116	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
 117			c->x86_vendor == X86_VENDOR_AMD &&
 118			c->x86 == 0xf && c->x86_model < 0x40);
 119}
 120
 121static int
 122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 123{
 124	unsigned char *max_instr;
 125	unsigned char *instr;
 126	int prefetch = 0;
 127
 128	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
 129	if (!is_amd_k8_pre_npt())
 130		return 0;
 131
 132	/*
 133	 * If it was a exec (instruction fetch) fault on NX page, then
 134	 * do not ignore the fault:
 135	 */
 136	if (error_code & X86_PF_INSTR)
 137		return 0;
 138
 139	instr = (void *)convert_ip_to_linear(current, regs);
 140	max_instr = instr + 15;
 141
 142	/*
 143	 * This code has historically always bailed out if IP points to a
 144	 * not-present page (e.g. due to a race).  No one has ever
 145	 * complained about this.
 146	 */
 147	pagefault_disable();
 148
 149	while (instr < max_instr) {
 150		unsigned char opcode;
 151
 152		if (user_mode(regs)) {
 153			if (get_user(opcode, (unsigned char __user *) instr))
 154				break;
 155		} else {
 156			if (get_kernel_nofault(opcode, instr))
 157				break;
 158		}
 159
 160		instr++;
 161
 162		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 163			break;
 164	}
 165
 166	pagefault_enable();
 167	return prefetch;
 168}
 169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170DEFINE_SPINLOCK(pgd_lock);
 171LIST_HEAD(pgd_list);
 172
 173#ifdef CONFIG_X86_32
 174static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 175{
 176	unsigned index = pgd_index(address);
 177	pgd_t *pgd_k;
 178	p4d_t *p4d, *p4d_k;
 179	pud_t *pud, *pud_k;
 180	pmd_t *pmd, *pmd_k;
 181
 182	pgd += index;
 183	pgd_k = init_mm.pgd + index;
 184
 185	if (!pgd_present(*pgd_k))
 186		return NULL;
 187
 188	/*
 189	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 190	 * and redundant with the set_pmd() on non-PAE. As would
 191	 * set_p4d/set_pud.
 192	 */
 193	p4d = p4d_offset(pgd, address);
 194	p4d_k = p4d_offset(pgd_k, address);
 195	if (!p4d_present(*p4d_k))
 196		return NULL;
 197
 198	pud = pud_offset(p4d, address);
 199	pud_k = pud_offset(p4d_k, address);
 200	if (!pud_present(*pud_k))
 201		return NULL;
 202
 203	pmd = pmd_offset(pud, address);
 204	pmd_k = pmd_offset(pud_k, address);
 205
 206	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 207		set_pmd(pmd, *pmd_k);
 208
 209	if (!pmd_present(*pmd_k))
 210		return NULL;
 
 
 
 211	else
 212		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 213
 214	return pmd_k;
 215}
 216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217/*
 218 *   Handle a fault on the vmalloc or module mapping area
 219 *
 220 *   This is needed because there is a race condition between the time
 221 *   when the vmalloc mapping code updates the PMD to the point in time
 222 *   where it synchronizes this update with the other page-tables in the
 223 *   system.
 224 *
 225 *   In this race window another thread/CPU can map an area on the same
 226 *   PMD, finds it already present and does not synchronize it with the
 227 *   rest of the system yet. As a result v[mz]alloc might return areas
 228 *   which are not mapped in every page-table in the system, causing an
 229 *   unhandled page-fault when they are accessed.
 230 */
 231static noinline int vmalloc_fault(unsigned long address)
 232{
 233	unsigned long pgd_paddr;
 234	pmd_t *pmd_k;
 235	pte_t *pte_k;
 236
 237	/* Make sure we are in vmalloc area: */
 238	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 239		return -1;
 240
 
 
 241	/*
 242	 * Synchronize this task's top level page-table
 243	 * with the 'reference' page table.
 244	 *
 245	 * Do _not_ use "current" here. We might be inside
 246	 * an interrupt in the middle of a task switch..
 247	 */
 248	pgd_paddr = read_cr3_pa();
 249	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 250	if (!pmd_k)
 251		return -1;
 252
 253	if (pmd_large(*pmd_k))
 254		return 0;
 255
 256	pte_k = pte_offset_kernel(pmd_k, address);
 257	if (!pte_present(*pte_k))
 258		return -1;
 259
 260	return 0;
 261}
 262NOKPROBE_SYMBOL(vmalloc_fault);
 263
 264void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 
 
 
 
 
 265{
 266	unsigned long addr;
 267
 268	for (addr = start & PMD_MASK;
 269	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 270	     addr += PMD_SIZE) {
 271		struct page *page;
 272
 273		spin_lock(&pgd_lock);
 274		list_for_each_entry(page, &pgd_list, lru) {
 275			spinlock_t *pgt_lock;
 276
 277			/* the pgt_lock only for Xen */
 278			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 279
 280			spin_lock(pgt_lock);
 281			vmalloc_sync_one(page_address(page), addr);
 282			spin_unlock(pgt_lock);
 283		}
 284		spin_unlock(&pgd_lock);
 285	}
 286}
 287
 288static bool low_pfn(unsigned long pfn)
 289{
 290	return pfn < max_low_pfn;
 291}
 292
 293static void dump_pagetable(unsigned long address)
 294{
 295	pgd_t *base = __va(read_cr3_pa());
 296	pgd_t *pgd = &base[pgd_index(address)];
 297	p4d_t *p4d;
 298	pud_t *pud;
 299	pmd_t *pmd;
 300	pte_t *pte;
 301
 302#ifdef CONFIG_X86_PAE
 303	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 304	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 305		goto out;
 306#define pr_pde pr_cont
 307#else
 308#define pr_pde pr_info
 309#endif
 310	p4d = p4d_offset(pgd, address);
 311	pud = pud_offset(p4d, address);
 312	pmd = pmd_offset(pud, address);
 313	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 314#undef pr_pde
 315
 316	/*
 317	 * We must not directly access the pte in the highpte
 318	 * case if the page table is located in highmem.
 319	 * And let's rather not kmap-atomic the pte, just in case
 320	 * it's allocated already:
 321	 */
 322	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 323		goto out;
 324
 325	pte = pte_offset_kernel(pmd, address);
 326	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 327out:
 328	pr_cont("\n");
 329}
 330
 331#else /* CONFIG_X86_64: */
 332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333#ifdef CONFIG_CPU_SUP_AMD
 334static const char errata93_warning[] =
 335KERN_ERR 
 336"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 337"******* Working around it, but it may cause SEGVs or burn power.\n"
 338"******* Please consider a BIOS update.\n"
 339"******* Disabling USB legacy in the BIOS may also help.\n";
 340#endif
 341
 
 
 
 
 
 
 
 
 
 342static int bad_address(void *p)
 343{
 344	unsigned long dummy;
 345
 346	return get_kernel_nofault(dummy, (unsigned long *)p);
 347}
 348
 349static void dump_pagetable(unsigned long address)
 350{
 351	pgd_t *base = __va(read_cr3_pa());
 352	pgd_t *pgd = base + pgd_index(address);
 353	p4d_t *p4d;
 354	pud_t *pud;
 355	pmd_t *pmd;
 356	pte_t *pte;
 357
 358	if (bad_address(pgd))
 359		goto bad;
 360
 361	pr_info("PGD %lx ", pgd_val(*pgd));
 362
 363	if (!pgd_present(*pgd))
 364		goto out;
 365
 366	p4d = p4d_offset(pgd, address);
 367	if (bad_address(p4d))
 368		goto bad;
 369
 370	pr_cont("P4D %lx ", p4d_val(*p4d));
 371	if (!p4d_present(*p4d) || p4d_large(*p4d))
 372		goto out;
 373
 374	pud = pud_offset(p4d, address);
 375	if (bad_address(pud))
 376		goto bad;
 377
 378	pr_cont("PUD %lx ", pud_val(*pud));
 379	if (!pud_present(*pud) || pud_large(*pud))
 380		goto out;
 381
 382	pmd = pmd_offset(pud, address);
 383	if (bad_address(pmd))
 384		goto bad;
 385
 386	pr_cont("PMD %lx ", pmd_val(*pmd));
 387	if (!pmd_present(*pmd) || pmd_large(*pmd))
 388		goto out;
 389
 390	pte = pte_offset_kernel(pmd, address);
 391	if (bad_address(pte))
 392		goto bad;
 393
 394	pr_cont("PTE %lx", pte_val(*pte));
 395out:
 396	pr_cont("\n");
 397	return;
 398bad:
 399	pr_info("BAD\n");
 400}
 401
 402#endif /* CONFIG_X86_64 */
 403
 404/*
 405 * Workaround for K8 erratum #93 & buggy BIOS.
 406 *
 407 * BIOS SMM functions are required to use a specific workaround
 408 * to avoid corruption of the 64bit RIP register on C stepping K8.
 409 *
 410 * A lot of BIOS that didn't get tested properly miss this.
 411 *
 412 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 413 * Try to work around it here.
 414 *
 415 * Note we only handle faults in kernel here.
 416 * Does nothing on 32-bit.
 417 */
 418static int is_errata93(struct pt_regs *regs, unsigned long address)
 419{
 420#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 421	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 422	    || boot_cpu_data.x86 != 0xf)
 423		return 0;
 424
 425	if (user_mode(regs))
 426		return 0;
 427
 428	if (address != regs->ip)
 429		return 0;
 430
 431	if ((address >> 32) != 0)
 432		return 0;
 433
 434	address |= 0xffffffffUL << 32;
 435	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 436	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 437		printk_once(errata93_warning);
 438		regs->ip = address;
 439		return 1;
 440	}
 441#endif
 442	return 0;
 443}
 444
 445/*
 446 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 447 * to illegal addresses >4GB.
 448 *
 449 * We catch this in the page fault handler because these addresses
 450 * are not reachable. Just detect this case and return.  Any code
 451 * segment in LDT is compatibility mode.
 452 */
 453static int is_errata100(struct pt_regs *regs, unsigned long address)
 454{
 455#ifdef CONFIG_X86_64
 456	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 457		return 1;
 458#endif
 459	return 0;
 460}
 461
 462/* Pentium F0 0F C7 C8 bug workaround: */
 463static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
 464		       unsigned long address)
 465{
 466#ifdef CONFIG_X86_F00F_BUG
 467	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
 468	    idt_is_f00f_address(address)) {
 469		handle_invalid_op(regs);
 470		return 1;
 471	}
 472#endif
 473	return 0;
 474}
 475
 476static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 477{
 478	u32 offset = (index >> 3) * sizeof(struct desc_struct);
 479	unsigned long addr;
 480	struct ldttss_desc desc;
 481
 482	if (index == 0) {
 483		pr_alert("%s: NULL\n", name);
 484		return;
 485	}
 486
 487	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 488		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 489		return;
 490	}
 491
 492	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 493			      sizeof(struct ldttss_desc))) {
 494		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 495			 name, index);
 496		return;
 497	}
 498
 499	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 500#ifdef CONFIG_X86_64
 501	addr |= ((u64)desc.base3 << 32);
 502#endif
 503	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 504		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 505}
 506
 
 
 
 
 
 507static void
 508show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 
 509{
 510	if (!oops_may_print())
 511		return;
 512
 513	if (error_code & X86_PF_INSTR) {
 514		unsigned int level;
 515		pgd_t *pgd;
 516		pte_t *pte;
 517
 518		pgd = __va(read_cr3_pa());
 519		pgd += pgd_index(address);
 520
 521		pte = lookup_address_in_pgd(pgd, address, &level);
 522
 523		if (pte && pte_present(*pte) && !pte_exec(*pte))
 524			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 525				from_kuid(&init_user_ns, current_uid()));
 526		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 527				(pgd_flags(*pgd) & _PAGE_USER) &&
 528				(__read_cr4() & X86_CR4_SMEP))
 529			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 530				from_kuid(&init_user_ns, current_uid()));
 531	}
 532
 533	if (address < PAGE_SIZE && !user_mode(regs))
 534		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 535			(void *)address);
 536	else
 537		pr_alert("BUG: unable to handle page fault for address: %px\n",
 538			(void *)address);
 539
 540	pr_alert("#PF: %s %s in %s mode\n",
 541		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 542		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 543		 (error_code & X86_PF_WRITE) ? "write access" :
 544					       "read access",
 545			     user_mode(regs) ? "user" : "kernel");
 546	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 547		 !(error_code & X86_PF_PROT) ? "not-present page" :
 548		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 549		 (error_code & X86_PF_PK)    ? "protection keys violation" :
 550					       "permissions violation");
 551
 552	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 553		struct desc_ptr idt, gdt;
 554		u16 ldtr, tr;
 555
 556		/*
 557		 * This can happen for quite a few reasons.  The more obvious
 558		 * ones are faults accessing the GDT, or LDT.  Perhaps
 559		 * surprisingly, if the CPU tries to deliver a benign or
 560		 * contributory exception from user code and gets a page fault
 561		 * during delivery, the page fault can be delivered as though
 562		 * it originated directly from user code.  This could happen
 563		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 564		 * kernel or IST stack.
 565		 */
 566		store_idt(&idt);
 567
 568		/* Usable even on Xen PV -- it's just slow. */
 569		native_store_gdt(&gdt);
 570
 571		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 572			 idt.address, idt.size, gdt.address, gdt.size);
 573
 574		store_ldt(ldtr);
 575		show_ldttss(&gdt, "LDTR", ldtr);
 576
 577		store_tr(tr);
 578		show_ldttss(&gdt, "TR", tr);
 579	}
 580
 581	dump_pagetable(address);
 582}
 583
 584static noinline void
 585pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 586	    unsigned long address)
 587{
 588	struct task_struct *tsk;
 589	unsigned long flags;
 590	int sig;
 591
 592	flags = oops_begin();
 593	tsk = current;
 594	sig = SIGKILL;
 595
 596	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 597	       tsk->comm, address);
 598	dump_pagetable(address);
 599
 
 
 
 
 600	if (__die("Bad pagetable", regs, error_code))
 601		sig = 0;
 602
 603	oops_end(flags, regs, sig);
 604}
 605
 606static void sanitize_error_code(unsigned long address,
 607				unsigned long *error_code)
 608{
 609	/*
 610	 * To avoid leaking information about the kernel page
 611	 * table layout, pretend that user-mode accesses to
 612	 * kernel addresses are always protection faults.
 613	 *
 614	 * NB: This means that failed vsyscalls with vsyscall=none
 615	 * will have the PROT bit.  This doesn't leak any
 616	 * information and does not appear to cause any problems.
 617	 */
 618	if (address >= TASK_SIZE_MAX)
 619		*error_code |= X86_PF_PROT;
 620}
 621
 622static void set_signal_archinfo(unsigned long address,
 623				unsigned long error_code)
 624{
 625	struct task_struct *tsk = current;
 626
 627	tsk->thread.trap_nr = X86_TRAP_PF;
 628	tsk->thread.error_code = error_code | X86_PF_USER;
 629	tsk->thread.cr2 = address;
 630}
 631
 632static noinline void
 633page_fault_oops(struct pt_regs *regs, unsigned long error_code,
 634		unsigned long address)
 635{
 636#ifdef CONFIG_VMAP_STACK
 637	struct stack_info info;
 638#endif
 639	unsigned long flags;
 640	int sig;
 
 
 641
 642	if (user_mode(regs)) {
 
 643		/*
 644		 * Implicit kernel access from user mode?  Skip the stack
 645		 * overflow and EFI special cases.
 
 646		 */
 647		goto oops;
 648	}
 649
 650#ifdef CONFIG_VMAP_STACK
 651	/*
 652	 * Stack overflow?  During boot, we can fault near the initial
 653	 * stack in the direct map, but that's not an overflow -- check
 654	 * that we're in vmalloc space to avoid this.
 655	 */
 656	if (is_vmalloc_addr((void *)address) &&
 657	    get_stack_guard_info((void *)address, &info)) {
 658		/*
 659		 * We're likely to be running with very little stack space
 660		 * left.  It's plausible that we'd hit this condition but
 661		 * double-fault even before we get this far, in which case
 662		 * we're fine: the double-fault handler will deal with it.
 663		 *
 664		 * We don't want to make it all the way into the oops code
 665		 * and then double-fault, though, because we're likely to
 666		 * break the console driver and lose most of the stack dump.
 667		 */
 668		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
 669			      handle_stack_overflow,
 670			      ASM_CALL_ARG3,
 671			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
 
 
 
 
 
 672
 673		unreachable();
 
 
 
 674	}
 675#endif
 676
 677	/*
 678	 * Buggy firmware could access regions which might page fault.  If
 679	 * this happens, EFI has a special OOPS path that will try to
 680	 * avoid hanging the system.
 
 
 
 
 
 
 681	 */
 682	if (IS_ENABLED(CONFIG_EFI))
 683		efi_crash_gracefully_on_page_fault(address);
 684
 685	/* Only not-present faults should be handled by KFENCE. */
 686	if (!(error_code & X86_PF_PROT) &&
 687	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
 688		return;
 689
 690oops:
 691	/*
 692	 * Oops. The kernel tried to access some bad page. We'll have to
 693	 * terminate things with extreme prejudice:
 694	 */
 695	flags = oops_begin();
 696
 697	show_fault_oops(regs, error_code, address);
 698
 699	if (task_stack_end_corrupted(current))
 700		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 701
 
 
 
 
 702	sig = SIGKILL;
 703	if (__die("Oops", regs, error_code))
 704		sig = 0;
 705
 706	/* Executive summary in case the body of the oops scrolled away */
 707	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 708
 709	oops_end(flags, regs, sig);
 710}
 711
 712static noinline void
 713kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
 714			 unsigned long address, int signal, int si_code,
 715			 u32 pkey)
 716{
 717	WARN_ON_ONCE(user_mode(regs));
 718
 719	/* Are we prepared to handle this kernel fault? */
 720	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 721		/*
 722		 * Any interrupt that takes a fault gets the fixup. This makes
 723		 * the below recursive fault logic only apply to a faults from
 724		 * task context.
 725		 */
 726		if (in_interrupt())
 727			return;
 728
 729		/*
 730		 * Per the above we're !in_interrupt(), aka. task context.
 731		 *
 732		 * In this case we need to make sure we're not recursively
 733		 * faulting through the emulate_vsyscall() logic.
 734		 */
 735		if (current->thread.sig_on_uaccess_err && signal) {
 736			sanitize_error_code(address, &error_code);
 737
 738			set_signal_archinfo(address, error_code);
 739
 740			if (si_code == SEGV_PKUERR) {
 741				force_sig_pkuerr((void __user *)address, pkey);
 742			} else {
 743				/* XXX: hwpoison faults will set the wrong code. */
 744				force_sig_fault(signal, si_code, (void __user *)address);
 745			}
 746		}
 747
 748		/*
 749		 * Barring that, we can do the fixup and be happy.
 750		 */
 751		return;
 752	}
 753
 754	/*
 755	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
 756	 * instruction.
 757	 */
 758	if (is_prefetch(regs, error_code, address))
 759		return;
 760
 761	page_fault_oops(regs, error_code, address);
 762}
 763
 764/*
 765 * Print out info about fatal segfaults, if the show_unhandled_signals
 766 * sysctl is set:
 767 */
 768static inline void
 769show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 770		unsigned long address, struct task_struct *tsk)
 771{
 772	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 773	/* This is a racy snapshot, but it's better than nothing. */
 774	int cpu = raw_smp_processor_id();
 775
 776	if (!unhandled_signal(tsk, SIGSEGV))
 777		return;
 778
 779	if (!printk_ratelimit())
 780		return;
 781
 782	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 783		loglvl, tsk->comm, task_pid_nr(tsk), address,
 
 784		(void *)regs->ip, (void *)regs->sp, error_code);
 785
 786	print_vma_addr(KERN_CONT " in ", regs->ip);
 787
 788	/*
 789	 * Dump the likely CPU where the fatal segfault happened.
 790	 * This can help identify faulty hardware.
 791	 */
 792	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
 793	       topology_core_id(cpu), topology_physical_package_id(cpu));
 794
 795
 796	printk(KERN_CONT "\n");
 797
 798	show_opcodes(regs, loglvl);
 799}
 800
 801static void
 802__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 803		       unsigned long address, u32 pkey, int si_code)
 
 804{
 805	struct task_struct *tsk = current;
 806
 807	if (!user_mode(regs)) {
 808		kernelmode_fixup_or_oops(regs, error_code, address,
 809					 SIGSEGV, si_code, pkey);
 810		return;
 811	}
 812
 813	if (!(error_code & X86_PF_USER)) {
 814		/* Implicit user access to kernel memory -- just oops */
 815		page_fault_oops(regs, error_code, address);
 816		return;
 817	}
 818
 819	/*
 820	 * User mode accesses just cause a SIGSEGV.
 821	 * It's possible to have interrupts off here:
 822	 */
 823	local_irq_enable();
 
 824
 825	/*
 826	 * Valid to do another page fault here because this one came
 827	 * from user space:
 828	 */
 829	if (is_prefetch(regs, error_code, address))
 830		return;
 831
 832	if (is_errata100(regs, address))
 833		return;
 
 
 
 
 
 
 
 
 
 
 
 
 834
 835	sanitize_error_code(address, &error_code);
 
 836
 837	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 838		return;
 
 839
 840	if (likely(show_unhandled_signals))
 841		show_signal_msg(regs, error_code, address, tsk);
 842
 843	set_signal_archinfo(address, error_code);
 
 844
 845	if (si_code == SEGV_PKUERR)
 846		force_sig_pkuerr((void __user *)address, pkey);
 847	else
 848		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 849
 850	local_irq_disable();
 851}
 852
 853static noinline void
 854bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 855		     unsigned long address)
 856{
 857	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 858}
 859
 860static void
 861__bad_area(struct pt_regs *regs, unsigned long error_code,
 862	   unsigned long address, u32 pkey, int si_code)
 863{
 864	struct mm_struct *mm = current->mm;
 
 865	/*
 866	 * Something tried to access memory that isn't in our memory map..
 867	 * Fix it, but check if it's kernel or user first..
 868	 */
 869	mmap_read_unlock(mm);
 870
 871	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 
 
 
 
 
 
 872}
 873
 874static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 875		struct vm_area_struct *vma)
 876{
 877	/* This code is always called on the current mm */
 878	bool foreign = false;
 879
 880	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 881		return false;
 882	if (error_code & X86_PF_PK)
 883		return true;
 884	/* this checks permission keys on the VMA: */
 885	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 886				       (error_code & X86_PF_INSTR), foreign))
 887		return true;
 888	return false;
 889}
 890
 891static noinline void
 892bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 893		      unsigned long address, struct vm_area_struct *vma)
 894{
 895	/*
 896	 * This OSPKE check is not strictly necessary at runtime.
 897	 * But, doing it this way allows compiler optimizations
 898	 * if pkeys are compiled out.
 899	 */
 900	if (bad_area_access_from_pkeys(error_code, vma)) {
 901		/*
 902		 * A protection key fault means that the PKRU value did not allow
 903		 * access to some PTE.  Userspace can figure out what PKRU was
 904		 * from the XSAVE state.  This function captures the pkey from
 905		 * the vma and passes it to userspace so userspace can discover
 906		 * which protection key was set on the PTE.
 907		 *
 908		 * If we get here, we know that the hardware signaled a X86_PF_PK
 909		 * fault and that there was a VMA once we got in the fault
 910		 * handler.  It does *not* guarantee that the VMA we find here
 911		 * was the one that we faulted on.
 912		 *
 913		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 914		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 915		 * 3. T1   : faults...
 916		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 917		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 918		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 919		 *	     faulted on a pte with its pkey=4.
 920		 */
 921		u32 pkey = vma_pkey(vma);
 922
 923		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 924	} else {
 925		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 926	}
 927}
 928
 929static void
 930do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 931	  vm_fault_t fault)
 932{
 
 
 
 933	/* Kernel mode? Handle exceptions or die: */
 934	if (!user_mode(regs)) {
 935		kernelmode_fixup_or_oops(regs, error_code, address,
 936					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
 937		return;
 938	}
 939
 940	/* User-space => ok to do another page fault: */
 941	if (is_prefetch(regs, error_code, address))
 942		return;
 943
 944	sanitize_error_code(address, &error_code);
 945
 946	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 947		return;
 948
 949	set_signal_archinfo(address, error_code);
 950
 951#ifdef CONFIG_MEMORY_FAILURE
 952	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 953		struct task_struct *tsk = current;
 954		unsigned lsb = 0;
 955
 956		pr_err(
 957	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 958			tsk->comm, tsk->pid, address);
 959		if (fault & VM_FAULT_HWPOISON_LARGE)
 960			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 961		if (fault & VM_FAULT_HWPOISON)
 962			lsb = PAGE_SHIFT;
 963		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 964		return;
 965	}
 966#endif
 967	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 968}
 969
 970static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 
 
 
 971{
 972	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973		return 0;
 974
 975	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 976		return 0;
 
 
 
 
 
 
 977
 978	return 1;
 979}
 980
 981/*
 982 * Handle a spurious fault caused by a stale TLB entry.
 983 *
 984 * This allows us to lazily refresh the TLB when increasing the
 985 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 986 * eagerly is very expensive since that implies doing a full
 987 * cross-processor TLB flush, even if no stale TLB entries exist
 988 * on other processors.
 989 *
 990 * Spurious faults may only occur if the TLB contains an entry with
 991 * fewer permission than the page table entry.  Non-present (P = 0)
 992 * and reserved bit (R = 1) faults are never spurious.
 993 *
 994 * There are no security implications to leaving a stale TLB when
 995 * increasing the permissions on a page.
 996 *
 997 * Returns non-zero if a spurious fault was handled, zero otherwise.
 998 *
 999 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1000 * (Optional Invalidation).
1001 */
1002static noinline int
1003spurious_kernel_fault(unsigned long error_code, unsigned long address)
1004{
1005	pgd_t *pgd;
1006	p4d_t *p4d;
1007	pud_t *pud;
1008	pmd_t *pmd;
1009	pte_t *pte;
1010	int ret;
1011
1012	/*
1013	 * Only writes to RO or instruction fetches from NX may cause
1014	 * spurious faults.
1015	 *
1016	 * These could be from user or supervisor accesses but the TLB
1017	 * is only lazily flushed after a kernel mapping protection
1018	 * change, so user accesses are not expected to cause spurious
1019	 * faults.
1020	 */
1021	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1022	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1023		return 0;
1024
1025	pgd = init_mm.pgd + pgd_index(address);
1026	if (!pgd_present(*pgd))
1027		return 0;
1028
1029	p4d = p4d_offset(pgd, address);
1030	if (!p4d_present(*p4d))
1031		return 0;
1032
1033	if (p4d_large(*p4d))
1034		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1035
1036	pud = pud_offset(p4d, address);
1037	if (!pud_present(*pud))
1038		return 0;
1039
1040	if (pud_large(*pud))
1041		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1042
1043	pmd = pmd_offset(pud, address);
1044	if (!pmd_present(*pmd))
1045		return 0;
1046
1047	if (pmd_large(*pmd))
1048		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1049
1050	pte = pte_offset_kernel(pmd, address);
1051	if (!pte_present(*pte))
1052		return 0;
1053
1054	ret = spurious_kernel_fault_check(error_code, pte);
1055	if (!ret)
1056		return 0;
1057
1058	/*
1059	 * Make sure we have permissions in PMD.
1060	 * If not, then there's a bug in the page tables:
1061	 */
1062	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1063	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1064
1065	return ret;
1066}
1067NOKPROBE_SYMBOL(spurious_kernel_fault);
1068
1069int show_unhandled_signals = 1;
1070
1071static inline int
1072access_error(unsigned long error_code, struct vm_area_struct *vma)
1073{
1074	/* This is only called for the current mm, so: */
1075	bool foreign = false;
1076
1077	/*
1078	 * Read or write was blocked by protection keys.  This is
1079	 * always an unconditional error and can never result in
1080	 * a follow-up action to resolve the fault, like a COW.
1081	 */
1082	if (error_code & X86_PF_PK)
1083		return 1;
1084
1085	/*
1086	 * SGX hardware blocked the access.  This usually happens
1087	 * when the enclave memory contents have been destroyed, like
1088	 * after a suspend/resume cycle. In any case, the kernel can't
1089	 * fix the cause of the fault.  Handle the fault as an access
1090	 * error even in cases where no actual access violation
1091	 * occurred.  This allows userspace to rebuild the enclave in
1092	 * response to the signal.
1093	 */
1094	if (unlikely(error_code & X86_PF_SGX))
1095		return 1;
1096
1097	/*
1098	 * Make sure to check the VMA so that we do not perform
1099	 * faults just to hit a X86_PF_PK as soon as we fill in a
1100	 * page.
1101	 */
1102	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1103				       (error_code & X86_PF_INSTR), foreign))
1104		return 1;
1105
1106	/*
1107	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1108	 * shadow stack VMAs. All other accesses result in an error.
1109	 */
1110	if (error_code & X86_PF_SHSTK) {
1111		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1112			return 1;
1113		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1114			return 1;
1115		return 0;
1116	}
1117
1118	if (error_code & X86_PF_WRITE) {
1119		/* write, present and write, not present: */
1120		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1121			return 1;
1122		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123			return 1;
1124		return 0;
1125	}
1126
1127	/* read, present: */
1128	if (unlikely(error_code & X86_PF_PROT))
1129		return 1;
1130
1131	/* read, not present: */
1132	if (unlikely(!vma_is_accessible(vma)))
1133		return 1;
1134
1135	return 0;
1136}
1137
1138bool fault_in_kernel_space(unsigned long address)
1139{
1140	/*
1141	 * On 64-bit systems, the vsyscall page is at an address above
1142	 * TASK_SIZE_MAX, but is not considered part of the kernel
1143	 * address space.
1144	 */
1145	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146		return false;
1147
1148	return address >= TASK_SIZE_MAX;
 
 
 
 
 
 
 
 
 
1149}
1150
1151/*
1152 * Called for all faults where 'address' is part of the kernel address
1153 * space.  Might get called for faults that originate from *code* that
1154 * ran in userspace or the kernel.
 
 
 
 
1155 */
1156static void
1157do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158		   unsigned long address)
1159{
 
 
 
 
 
 
 
 
 
1160	/*
1161	 * Protection keys exceptions only happen on user pages.  We
1162	 * have no user pages in the kernel portion of the address
1163	 * space, so do not expect them here.
1164	 */
1165	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
 
 
 
 
 
1166
1167#ifdef CONFIG_X86_32
1168	/*
1169	 * We can fault-in kernel-space virtual memory on-demand. The
1170	 * 'reference' page table is init_mm.pgd.
1171	 *
1172	 * NOTE! We MUST NOT take any locks for this case. We may
1173	 * be in an interrupt or a critical region, and should
1174	 * only copy the information from the master page table,
1175	 * nothing more.
1176	 *
1177	 * Before doing this on-demand faulting, ensure that the
1178	 * fault is not any of the following:
1179	 * 1. A fault on a PTE with a reserved bit set.
1180	 * 2. A fault caused by a user-mode access.  (Do not demand-
1181	 *    fault kernel memory due to user-mode accesses).
1182	 * 3. A fault caused by a page-level protection violation.
1183	 *    (A demand fault would be on a non-present page which
1184	 *     would have X86_PF_PROT==0).
1185	 *
1186	 * This is only needed to close a race condition on x86-32 in
1187	 * the vmalloc mapping/unmapping code. See the comment above
1188	 * vmalloc_fault() for details. On x86-64 the race does not
1189	 * exist as the vmalloc mappings don't need to be synchronized
1190	 * there.
1191	 */
1192	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193		if (vmalloc_fault(address) >= 0)
1194			return;
1195	}
1196#endif
1197
1198	if (is_f00f_bug(regs, hw_error_code, address))
1199		return;
1200
1201	/* Was the fault spurious, caused by lazy TLB invalidation? */
1202	if (spurious_kernel_fault(hw_error_code, address))
1203		return;
1204
1205	/* kprobes don't want to hook the spurious faults: */
1206	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1207		return;
1208
1209	/*
1210	 * Note, despite being a "bad area", there are quite a few
1211	 * acceptable reasons to get here, such as erratum fixups
1212	 * and handling kernel code that can fault, like get_user().
1213	 *
1214	 * Don't take the mm semaphore here. If we fixup a prefetch
1215	 * fault we could otherwise deadlock:
1216	 */
1217	bad_area_nosemaphore(regs, hw_error_code, address);
1218}
1219NOKPROBE_SYMBOL(do_kern_addr_fault);
1220
1221/*
1222 * Handle faults in the user portion of the address space.  Nothing in here
1223 * should check X86_PF_USER without a specific justification: for almost
1224 * all purposes, we should treat a normal kernel access to user memory
1225 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1226 * The one exception is AC flag handling, which is, per the x86
1227 * architecture, special for WRUSS.
1228 */
1229static inline
1230void do_user_addr_fault(struct pt_regs *regs,
1231			unsigned long error_code,
1232			unsigned long address)
1233{
1234	struct vm_area_struct *vma;
1235	struct task_struct *tsk;
1236	struct mm_struct *mm;
1237	vm_fault_t fault;
1238	unsigned int flags = FAULT_FLAG_DEFAULT;
1239
1240	tsk = current;
1241	mm = tsk->mm;
 
1242
1243	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
 
 
1244		/*
1245		 * Whoops, this is kernel mode code trying to execute from
1246		 * user memory.  Unless this is AMD erratum #93, which
1247		 * corrupts RIP such that it looks like a user address,
1248		 * this is unrecoverable.  Don't even try to look up the
1249		 * VMA or look for extable entries.
1250		 */
1251		if (is_errata93(regs, address))
1252			return;
1253
1254		page_fault_oops(regs, error_code, address);
1255		return;
1256	}
1257
1258	/* kprobes don't want to hook the spurious faults: */
1259	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1260		return;
1261
1262	/*
1263	 * Reserved bits are never expected to be set on
1264	 * entries in the user portion of the page tables.
1265	 */
1266	if (unlikely(error_code & X86_PF_RSVD))
1267		pgtable_bad(regs, error_code, address);
1268
1269	/*
1270	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1271	 * pages in the user address space.  The odd case here is WRUSS,
1272	 * which, according to the preliminary documentation, does not respect
1273	 * SMAP and will have the USER bit set so, in all cases, SMAP
1274	 * enforcement appears to be consistent with the USER bit.
1275	 */
1276	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1277		     !(error_code & X86_PF_USER) &&
1278		     !(regs->flags & X86_EFLAGS_AC))) {
1279		/*
1280		 * No extable entry here.  This was a kernel access to an
1281		 * invalid pointer.  get_kernel_nofault() will not get here.
1282		 */
1283		page_fault_oops(regs, error_code, address);
1284		return;
1285	}
1286
1287	/*
1288	 * If we're in an interrupt, have no user context or are running
1289	 * in a region with pagefaults disabled then we must not take the fault
1290	 */
1291	if (unlikely(faulthandler_disabled() || !mm)) {
1292		bad_area_nosemaphore(regs, error_code, address);
1293		return;
1294	}
1295
1296	/*
1297	 * It's safe to allow irq's after cr2 has been saved and the
1298	 * vmalloc fault has been handled.
1299	 *
1300	 * User-mode registers count as a user access even for any
1301	 * potential system fault or CPU buglet:
1302	 */
1303	if (user_mode(regs)) {
1304		local_irq_enable();
 
1305		flags |= FAULT_FLAG_USER;
1306	} else {
1307		if (regs->flags & X86_EFLAGS_IF)
1308			local_irq_enable();
1309	}
1310
1311	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1312
1313	/*
1314	 * Read-only permissions can not be expressed in shadow stack PTEs.
1315	 * Treat all shadow stack accesses as WRITE faults. This ensures
1316	 * that the MM will prepare everything (e.g., break COW) such that
1317	 * maybe_mkwrite() can create a proper shadow stack PTE.
1318	 */
1319	if (error_code & X86_PF_SHSTK)
1320		flags |= FAULT_FLAG_WRITE;
1321	if (error_code & X86_PF_WRITE)
1322		flags |= FAULT_FLAG_WRITE;
1323	if (error_code & X86_PF_INSTR)
1324		flags |= FAULT_FLAG_INSTRUCTION;
1325
1326#ifdef CONFIG_X86_64
1327	/*
1328	 * Faults in the vsyscall page might need emulation.  The
1329	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1330	 * considered to be part of the user address space.
1331	 *
1332	 * The vsyscall page does not have a "real" VMA, so do this
1333	 * emulation before we go searching for VMAs.
 
 
1334	 *
1335	 * PKRU never rejects instruction fetches, so we don't need
1336	 * to consider the PF_PK bit.
1337	 */
1338	if (is_vsyscall_vaddr(address)) {
1339		if (emulate_vsyscall(error_code, regs, address))
 
 
 
 
 
1340			return;
 
 
 
 
 
 
 
 
 
 
1341	}
1342#endif
1343
1344	if (!(flags & FAULT_FLAG_USER))
1345		goto lock_mmap;
1346
1347	vma = lock_vma_under_rcu(mm, address);
1348	if (!vma)
1349		goto lock_mmap;
1350
1351	if (unlikely(access_error(error_code, vma))) {
1352		vma_end_read(vma);
1353		goto lock_mmap;
1354	}
1355	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1356	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1357		vma_end_read(vma);
1358
1359	if (!(fault & VM_FAULT_RETRY)) {
1360		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1361		goto done;
1362	}
1363	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1364	if (fault & VM_FAULT_MAJOR)
1365		flags |= FAULT_FLAG_TRIED;
1366
1367	/* Quick path to respond to signals */
1368	if (fault_signal_pending(fault, regs)) {
1369		if (!user_mode(regs))
1370			kernelmode_fixup_or_oops(regs, error_code, address,
1371						 SIGBUS, BUS_ADRERR,
1372						 ARCH_DEFAULT_PKEY);
1373		return;
1374	}
1375lock_mmap:
1376
1377retry:
1378	vma = lock_mm_and_find_vma(mm, address, regs);
1379	if (unlikely(!vma)) {
1380		bad_area_nosemaphore(regs, error_code, address);
 
 
 
 
 
 
 
 
1381		return;
1382	}
1383
1384	/*
1385	 * Ok, we have a good vm_area for this memory access, so
1386	 * we can handle it..
1387	 */
 
1388	if (unlikely(access_error(error_code, vma))) {
1389		bad_area_access_error(regs, error_code, address, vma);
1390		return;
1391	}
1392
1393	/*
1394	 * If for any reason at all we couldn't handle the fault,
1395	 * make sure we exit gracefully rather than endlessly redo
1396	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1397	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1398	 *
1399	 * Note that handle_userfault() may also release and reacquire mmap_lock
1400	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1401	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1402	 * (potentially after handling any pending signal during the return to
1403	 * userland). The return to userland is identified whenever
1404	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1405	 */
1406	fault = handle_mm_fault(vma, address, flags, regs);
1407
1408	if (fault_signal_pending(fault, regs)) {
1409		/*
1410		 * Quick path to respond to signals.  The core mm code
1411		 * has unlocked the mm for us if we get here.
1412		 */
1413		if (!user_mode(regs))
1414			kernelmode_fixup_or_oops(regs, error_code, address,
1415						 SIGBUS, BUS_ADRERR,
1416						 ARCH_DEFAULT_PKEY);
1417		return;
1418	}
1419
1420	/* The fault is fully completed (including releasing mmap lock) */
1421	if (fault & VM_FAULT_COMPLETED)
1422		return;
1423
1424	/*
1425	 * If we need to retry the mmap_lock has already been released,
1426	 * and if there is a fatal signal pending there is no guarantee
1427	 * that we made any progress. Handle this case first.
1428	 */
1429	if (unlikely(fault & VM_FAULT_RETRY)) {
1430		flags |= FAULT_FLAG_TRIED;
1431		goto retry;
1432	}
 
 
 
 
1433
1434	mmap_read_unlock(mm);
1435done:
1436	if (likely(!(fault & VM_FAULT_ERROR)))
1437		return;
1438
1439	if (fatal_signal_pending(current) && !user_mode(regs)) {
1440		kernelmode_fixup_or_oops(regs, error_code, address,
1441					 0, 0, ARCH_DEFAULT_PKEY);
1442		return;
1443	}
1444
1445	if (fault & VM_FAULT_OOM) {
1446		/* Kernel mode? Handle exceptions or die: */
1447		if (!user_mode(regs)) {
1448			kernelmode_fixup_or_oops(regs, error_code, address,
1449						 SIGSEGV, SEGV_MAPERR,
1450						 ARCH_DEFAULT_PKEY);
1451			return;
1452		}
1453
1454		/*
1455		 * We ran out of memory, call the OOM killer, and return the
1456		 * userspace (which will retry the fault, or kill us if we got
1457		 * oom-killed):
1458		 */
1459		pagefault_out_of_memory();
 
1460	} else {
1461		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1462			     VM_FAULT_HWPOISON_LARGE))
1463			do_sigbus(regs, error_code, address, fault);
1464		else if (fault & VM_FAULT_SIGSEGV)
1465			bad_area_nosemaphore(regs, error_code, address);
1466		else
1467			BUG();
1468	}
 
 
1469}
1470NOKPROBE_SYMBOL(do_user_addr_fault);
1471
1472static __always_inline void
1473trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1474			 unsigned long address)
1475{
1476	if (!trace_pagefault_enabled())
1477		return;
1478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479	if (user_mode(regs))
1480		trace_page_fault_user(address, regs, error_code);
1481	else
1482		trace_page_fault_kernel(address, regs, error_code);
1483}
1484
1485static __always_inline void
1486handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1487			      unsigned long address)
1488{
1489	trace_page_fault_entries(regs, error_code, address);
1490
1491	if (unlikely(kmmio_fault(regs, address)))
1492		return;
1493
1494	/* Was the fault on kernel-controlled part of the address space? */
1495	if (unlikely(fault_in_kernel_space(address))) {
1496		do_kern_addr_fault(regs, error_code, address);
1497	} else {
1498		do_user_addr_fault(regs, error_code, address);
1499		/*
1500		 * User address page fault handling might have reenabled
1501		 * interrupts. Fixing up all potential exit points of
1502		 * do_user_addr_fault() and its leaf functions is just not
1503		 * doable w/o creating an unholy mess or turning the code
1504		 * upside down.
1505		 */
1506		local_irq_disable();
1507	}
1508}
1509
1510DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1511{
1512	unsigned long address = read_cr2();
1513	irqentry_state_t state;
1514
1515	prefetchw(&current->mm->mmap_lock);
1516
1517	/*
1518	 * KVM uses #PF vector to deliver 'page not present' events to guests
1519	 * (asynchronous page fault mechanism). The event happens when a
1520	 * userspace task is trying to access some valid (from guest's point of
1521	 * view) memory which is not currently mapped by the host (e.g. the
1522	 * memory is swapped out). Note, the corresponding "page ready" event
1523	 * which is injected when the memory becomes available, is delivered via
1524	 * an interrupt mechanism and not a #PF exception
1525	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1526	 *
1527	 * We are relying on the interrupted context being sane (valid RSP,
1528	 * relevant locks not held, etc.), which is fine as long as the
1529	 * interrupted context had IF=1.  We are also relying on the KVM
1530	 * async pf type field and CR2 being read consistently instead of
1531	 * getting values from real and async page faults mixed up.
1532	 *
1533	 * Fingers crossed.
1534	 *
1535	 * The async #PF handling code takes care of idtentry handling
1536	 * itself.
1537	 */
1538	if (kvm_handle_async_pf(regs, (u32)address))
1539		return;
1540
1541	/*
1542	 * Entry handling for valid #PF from kernel mode is slightly
1543	 * different: RCU is already watching and ct_irq_enter() must not
1544	 * be invoked because a kernel fault on a user space address might
1545	 * sleep.
1546	 *
1547	 * In case the fault hit a RCU idle region the conditional entry
1548	 * code reenabled RCU to avoid subsequent wreckage which helps
1549	 * debuggability.
1550	 */
1551	state = irqentry_enter(regs);
1552
1553	instrumentation_begin();
1554	handle_page_fault(regs, error_code, address);
1555	instrumentation_end();
1556
1557	irqentry_exit(regs, state);
 
 
 
1558}
v4.6
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/sched.h>		/* test_thread_flag(), ...	*/
 
   7#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
   8#include <linux/module.h>		/* search_exception_table	*/
   9#include <linux/bootmem.h>		/* max_low_pfn			*/
 
  10#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  11#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  12#include <linux/perf_event.h>		/* perf_sw_event		*/
  13#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  14#include <linux/prefetch.h>		/* prefetchw			*/
  15#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  16#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
 
 
 
  17
  18#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  19#include <asm/traps.h>			/* dotraplinkage, ...		*/
  20#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
  21#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
  22#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  23#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  24#include <asm/vm86.h>			/* struct vm86			*/
  25#include <asm/mmu_context.h>		/* vma_pkey()			*/
 
 
 
 
 
 
 
  26
  27#define CREATE_TRACE_POINTS
  28#include <asm/trace/exceptions.h>
  29
  30/*
  31 * Page fault error code bits:
  32 *
  33 *   bit 0 ==	 0: no page found	1: protection fault
  34 *   bit 1 ==	 0: read access		1: write access
  35 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
  36 *   bit 3 ==				1: use of reserved bit detected
  37 *   bit 4 ==				1: fault was an instruction fetch
  38 *   bit 5 ==				1: protection keys block access
  39 */
  40enum x86_pf_error_code {
  41
  42	PF_PROT		=		1 << 0,
  43	PF_WRITE	=		1 << 1,
  44	PF_USER		=		1 << 2,
  45	PF_RSVD		=		1 << 3,
  46	PF_INSTR	=		1 << 4,
  47	PF_PK		=		1 << 5,
  48};
  49
  50/*
  51 * Returns 0 if mmiotrace is disabled, or if the fault is not
  52 * handled by mmiotrace:
  53 */
  54static nokprobe_inline int
  55kmmio_fault(struct pt_regs *regs, unsigned long addr)
  56{
  57	if (unlikely(is_kmmio_active()))
  58		if (kmmio_handler(regs, addr) == 1)
  59			return -1;
  60	return 0;
  61}
  62
  63static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
  64{
  65	int ret = 0;
  66
  67	/* kprobe_running() needs smp_processor_id() */
  68	if (kprobes_built_in() && !user_mode(regs)) {
  69		preempt_disable();
  70		if (kprobe_running() && kprobe_fault_handler(regs, 14))
  71			ret = 1;
  72		preempt_enable();
  73	}
  74
  75	return ret;
  76}
  77
  78/*
  79 * Prefetch quirks:
  80 *
  81 * 32-bit mode:
  82 *
  83 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  84 *   Check that here and ignore it.
  85 *
  86 * 64-bit mode:
  87 *
  88 *   Sometimes the CPU reports invalid exceptions on prefetch.
  89 *   Check that here and ignore it.
  90 *
  91 * Opcode checker based on code by Richard Brunner.
  92 */
  93static inline int
  94check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  95		      unsigned char opcode, int *prefetch)
  96{
  97	unsigned char instr_hi = opcode & 0xf0;
  98	unsigned char instr_lo = opcode & 0x0f;
  99
 100	switch (instr_hi) {
 101	case 0x20:
 102	case 0x30:
 103		/*
 104		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
 105		 * In X86_64 long mode, the CPU will signal invalid
 106		 * opcode if some of these prefixes are present so
 107		 * X86_64 will never get here anyway
 108		 */
 109		return ((instr_lo & 7) == 0x6);
 110#ifdef CONFIG_X86_64
 111	case 0x40:
 112		/*
 113		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 114		 * Need to figure out under what instruction mode the
 115		 * instruction was issued. Could check the LDT for lm,
 116		 * but for now it's good enough to assume that long
 117		 * mode only uses well known segments or kernel.
 118		 */
 119		return (!user_mode(regs) || user_64bit_mode(regs));
 120#endif
 121	case 0x60:
 122		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 123		return (instr_lo & 0xC) == 0x4;
 124	case 0xF0:
 125		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 126		return !instr_lo || (instr_lo>>1) == 1;
 127	case 0x00:
 128		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 129		if (probe_kernel_address(instr, opcode))
 130			return 0;
 131
 132		*prefetch = (instr_lo == 0xF) &&
 133			(opcode == 0x0D || opcode == 0x18);
 134		return 0;
 135	default:
 136		return 0;
 137	}
 138}
 139
 
 
 
 
 
 
 
 
 
 140static int
 141is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 142{
 143	unsigned char *max_instr;
 144	unsigned char *instr;
 145	int prefetch = 0;
 146
 
 
 
 
 147	/*
 148	 * If it was a exec (instruction fetch) fault on NX page, then
 149	 * do not ignore the fault:
 150	 */
 151	if (error_code & PF_INSTR)
 152		return 0;
 153
 154	instr = (void *)convert_ip_to_linear(current, regs);
 155	max_instr = instr + 15;
 156
 157	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 158		return 0;
 
 
 
 
 159
 160	while (instr < max_instr) {
 161		unsigned char opcode;
 162
 163		if (probe_kernel_address(instr, opcode))
 164			break;
 
 
 
 
 
 165
 166		instr++;
 167
 168		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 169			break;
 170	}
 
 
 171	return prefetch;
 172}
 173
 174/*
 175 * A protection key fault means that the PKRU value did not allow
 176 * access to some PTE.  Userspace can figure out what PKRU was
 177 * from the XSAVE state, and this function fills out a field in
 178 * siginfo so userspace can discover which protection key was set
 179 * on the PTE.
 180 *
 181 * If we get here, we know that the hardware signaled a PF_PK
 182 * fault and that there was a VMA once we got in the fault
 183 * handler.  It does *not* guarantee that the VMA we find here
 184 * was the one that we faulted on.
 185 *
 186 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 187 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 188 * 3. T1   : faults...
 189 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 190 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 191 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 192 *	     faulted on a pte with its pkey=4.
 193 */
 194static void fill_sig_info_pkey(int si_code, siginfo_t *info,
 195		struct vm_area_struct *vma)
 196{
 197	/* This is effectively an #ifdef */
 198	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 199		return;
 200
 201	/* Fault not from Protection Keys: nothing to do */
 202	if (si_code != SEGV_PKUERR)
 203		return;
 204	/*
 205	 * force_sig_info_fault() is called from a number of
 206	 * contexts, some of which have a VMA and some of which
 207	 * do not.  The PF_PK handing happens after we have a
 208	 * valid VMA, so we should never reach this without a
 209	 * valid VMA.
 210	 */
 211	if (!vma) {
 212		WARN_ONCE(1, "PKU fault with no VMA passed in");
 213		info->si_pkey = 0;
 214		return;
 215	}
 216	/*
 217	 * si_pkey should be thought of as a strong hint, but not
 218	 * absolutely guranteed to be 100% accurate because of
 219	 * the race explained above.
 220	 */
 221	info->si_pkey = vma_pkey(vma);
 222}
 223
 224static void
 225force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 226		     struct task_struct *tsk, struct vm_area_struct *vma,
 227		     int fault)
 228{
 229	unsigned lsb = 0;
 230	siginfo_t info;
 231
 232	info.si_signo	= si_signo;
 233	info.si_errno	= 0;
 234	info.si_code	= si_code;
 235	info.si_addr	= (void __user *)address;
 236	if (fault & VM_FAULT_HWPOISON_LARGE)
 237		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 238	if (fault & VM_FAULT_HWPOISON)
 239		lsb = PAGE_SHIFT;
 240	info.si_addr_lsb = lsb;
 241
 242	fill_sig_info_pkey(si_code, &info, vma);
 243
 244	force_sig_info(si_signo, &info, tsk);
 245}
 246
 247DEFINE_SPINLOCK(pgd_lock);
 248LIST_HEAD(pgd_list);
 249
 250#ifdef CONFIG_X86_32
 251static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 252{
 253	unsigned index = pgd_index(address);
 254	pgd_t *pgd_k;
 
 255	pud_t *pud, *pud_k;
 256	pmd_t *pmd, *pmd_k;
 257
 258	pgd += index;
 259	pgd_k = init_mm.pgd + index;
 260
 261	if (!pgd_present(*pgd_k))
 262		return NULL;
 263
 264	/*
 265	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 266	 * and redundant with the set_pmd() on non-PAE. As would
 267	 * set_pud.
 268	 */
 269	pud = pud_offset(pgd, address);
 270	pud_k = pud_offset(pgd_k, address);
 
 
 
 
 
 271	if (!pud_present(*pud_k))
 272		return NULL;
 273
 274	pmd = pmd_offset(pud, address);
 275	pmd_k = pmd_offset(pud_k, address);
 
 
 
 
 276	if (!pmd_present(*pmd_k))
 277		return NULL;
 278
 279	if (!pmd_present(*pmd))
 280		set_pmd(pmd, *pmd_k);
 281	else
 282		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 283
 284	return pmd_k;
 285}
 286
 287void vmalloc_sync_all(void)
 288{
 289	unsigned long address;
 290
 291	if (SHARED_KERNEL_PMD)
 292		return;
 293
 294	for (address = VMALLOC_START & PMD_MASK;
 295	     address >= TASK_SIZE && address < FIXADDR_TOP;
 296	     address += PMD_SIZE) {
 297		struct page *page;
 298
 299		spin_lock(&pgd_lock);
 300		list_for_each_entry(page, &pgd_list, lru) {
 301			spinlock_t *pgt_lock;
 302			pmd_t *ret;
 303
 304			/* the pgt_lock only for Xen */
 305			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 306
 307			spin_lock(pgt_lock);
 308			ret = vmalloc_sync_one(page_address(page), address);
 309			spin_unlock(pgt_lock);
 310
 311			if (!ret)
 312				break;
 313		}
 314		spin_unlock(&pgd_lock);
 315	}
 316}
 317
 318/*
 319 * 32-bit:
 320 *
 321 *   Handle a fault on the vmalloc or module mapping area
 
 
 
 
 
 
 
 
 
 322 */
 323static noinline int vmalloc_fault(unsigned long address)
 324{
 325	unsigned long pgd_paddr;
 326	pmd_t *pmd_k;
 327	pte_t *pte_k;
 328
 329	/* Make sure we are in vmalloc area: */
 330	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 331		return -1;
 332
 333	WARN_ON_ONCE(in_nmi());
 334
 335	/*
 336	 * Synchronize this task's top level page-table
 337	 * with the 'reference' page table.
 338	 *
 339	 * Do _not_ use "current" here. We might be inside
 340	 * an interrupt in the middle of a task switch..
 341	 */
 342	pgd_paddr = read_cr3();
 343	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 344	if (!pmd_k)
 345		return -1;
 346
 347	if (pmd_huge(*pmd_k))
 348		return 0;
 349
 350	pte_k = pte_offset_kernel(pmd_k, address);
 351	if (!pte_present(*pte_k))
 352		return -1;
 353
 354	return 0;
 355}
 356NOKPROBE_SYMBOL(vmalloc_fault);
 357
 358/*
 359 * Did it hit the DOS screen memory VA from vm86 mode?
 360 */
 361static inline void
 362check_v8086_mode(struct pt_regs *regs, unsigned long address,
 363		 struct task_struct *tsk)
 364{
 365#ifdef CONFIG_VM86
 366	unsigned long bit;
 
 
 
 
 
 
 
 
 367
 368	if (!v8086_mode(regs) || !tsk->thread.vm86)
 369		return;
 370
 371	bit = (address - 0xA0000) >> PAGE_SHIFT;
 372	if (bit < 32)
 373		tsk->thread.vm86->screen_bitmap |= 1 << bit;
 374#endif
 
 
 375}
 376
 377static bool low_pfn(unsigned long pfn)
 378{
 379	return pfn < max_low_pfn;
 380}
 381
 382static void dump_pagetable(unsigned long address)
 383{
 384	pgd_t *base = __va(read_cr3());
 385	pgd_t *pgd = &base[pgd_index(address)];
 
 
 386	pmd_t *pmd;
 387	pte_t *pte;
 388
 389#ifdef CONFIG_X86_PAE
 390	printk("*pdpt = %016Lx ", pgd_val(*pgd));
 391	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 392		goto out;
 
 
 
 393#endif
 394	pmd = pmd_offset(pud_offset(pgd, address), address);
 395	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 
 
 
 396
 397	/*
 398	 * We must not directly access the pte in the highpte
 399	 * case if the page table is located in highmem.
 400	 * And let's rather not kmap-atomic the pte, just in case
 401	 * it's allocated already:
 402	 */
 403	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 404		goto out;
 405
 406	pte = pte_offset_kernel(pmd, address);
 407	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 408out:
 409	printk("\n");
 410}
 411
 412#else /* CONFIG_X86_64: */
 413
 414void vmalloc_sync_all(void)
 415{
 416	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
 417}
 418
 419/*
 420 * 64-bit:
 421 *
 422 *   Handle a fault on the vmalloc area
 423 */
 424static noinline int vmalloc_fault(unsigned long address)
 425{
 426	pgd_t *pgd, *pgd_ref;
 427	pud_t *pud, *pud_ref;
 428	pmd_t *pmd, *pmd_ref;
 429	pte_t *pte, *pte_ref;
 430
 431	/* Make sure we are in vmalloc area: */
 432	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 433		return -1;
 434
 435	WARN_ON_ONCE(in_nmi());
 436
 437	/*
 438	 * Copy kernel mappings over when needed. This can also
 439	 * happen within a race in page table update. In the later
 440	 * case just flush:
 441	 */
 442	pgd = pgd_offset(current->active_mm, address);
 443	pgd_ref = pgd_offset_k(address);
 444	if (pgd_none(*pgd_ref))
 445		return -1;
 446
 447	if (pgd_none(*pgd)) {
 448		set_pgd(pgd, *pgd_ref);
 449		arch_flush_lazy_mmu_mode();
 450	} else {
 451		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 452	}
 453
 454	/*
 455	 * Below here mismatches are bugs because these lower tables
 456	 * are shared:
 457	 */
 458
 459	pud = pud_offset(pgd, address);
 460	pud_ref = pud_offset(pgd_ref, address);
 461	if (pud_none(*pud_ref))
 462		return -1;
 463
 464	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
 465		BUG();
 466
 467	if (pud_huge(*pud))
 468		return 0;
 469
 470	pmd = pmd_offset(pud, address);
 471	pmd_ref = pmd_offset(pud_ref, address);
 472	if (pmd_none(*pmd_ref))
 473		return -1;
 474
 475	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
 476		BUG();
 477
 478	if (pmd_huge(*pmd))
 479		return 0;
 480
 481	pte_ref = pte_offset_kernel(pmd_ref, address);
 482	if (!pte_present(*pte_ref))
 483		return -1;
 484
 485	pte = pte_offset_kernel(pmd, address);
 486
 487	/*
 488	 * Don't use pte_page here, because the mappings can point
 489	 * outside mem_map, and the NUMA hash lookup cannot handle
 490	 * that:
 491	 */
 492	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 493		BUG();
 494
 495	return 0;
 496}
 497NOKPROBE_SYMBOL(vmalloc_fault);
 498
 499#ifdef CONFIG_CPU_SUP_AMD
 500static const char errata93_warning[] =
 501KERN_ERR 
 502"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 503"******* Working around it, but it may cause SEGVs or burn power.\n"
 504"******* Please consider a BIOS update.\n"
 505"******* Disabling USB legacy in the BIOS may also help.\n";
 506#endif
 507
 508/*
 509 * No vm86 mode in 64-bit mode:
 510 */
 511static inline void
 512check_v8086_mode(struct pt_regs *regs, unsigned long address,
 513		 struct task_struct *tsk)
 514{
 515}
 516
 517static int bad_address(void *p)
 518{
 519	unsigned long dummy;
 520
 521	return probe_kernel_address((unsigned long *)p, dummy);
 522}
 523
 524static void dump_pagetable(unsigned long address)
 525{
 526	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 527	pgd_t *pgd = base + pgd_index(address);
 
 528	pud_t *pud;
 529	pmd_t *pmd;
 530	pte_t *pte;
 531
 532	if (bad_address(pgd))
 533		goto bad;
 534
 535	printk("PGD %lx ", pgd_val(*pgd));
 536
 537	if (!pgd_present(*pgd))
 538		goto out;
 539
 540	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
 
 541	if (bad_address(pud))
 542		goto bad;
 543
 544	printk("PUD %lx ", pud_val(*pud));
 545	if (!pud_present(*pud) || pud_large(*pud))
 546		goto out;
 547
 548	pmd = pmd_offset(pud, address);
 549	if (bad_address(pmd))
 550		goto bad;
 551
 552	printk("PMD %lx ", pmd_val(*pmd));
 553	if (!pmd_present(*pmd) || pmd_large(*pmd))
 554		goto out;
 555
 556	pte = pte_offset_kernel(pmd, address);
 557	if (bad_address(pte))
 558		goto bad;
 559
 560	printk("PTE %lx", pte_val(*pte));
 561out:
 562	printk("\n");
 563	return;
 564bad:
 565	printk("BAD\n");
 566}
 567
 568#endif /* CONFIG_X86_64 */
 569
 570/*
 571 * Workaround for K8 erratum #93 & buggy BIOS.
 572 *
 573 * BIOS SMM functions are required to use a specific workaround
 574 * to avoid corruption of the 64bit RIP register on C stepping K8.
 575 *
 576 * A lot of BIOS that didn't get tested properly miss this.
 577 *
 578 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 579 * Try to work around it here.
 580 *
 581 * Note we only handle faults in kernel here.
 582 * Does nothing on 32-bit.
 583 */
 584static int is_errata93(struct pt_regs *regs, unsigned long address)
 585{
 586#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 587	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 588	    || boot_cpu_data.x86 != 0xf)
 589		return 0;
 590
 
 
 
 591	if (address != regs->ip)
 592		return 0;
 593
 594	if ((address >> 32) != 0)
 595		return 0;
 596
 597	address |= 0xffffffffUL << 32;
 598	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 599	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 600		printk_once(errata93_warning);
 601		regs->ip = address;
 602		return 1;
 603	}
 604#endif
 605	return 0;
 606}
 607
 608/*
 609 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 610 * to illegal addresses >4GB.
 611 *
 612 * We catch this in the page fault handler because these addresses
 613 * are not reachable. Just detect this case and return.  Any code
 614 * segment in LDT is compatibility mode.
 615 */
 616static int is_errata100(struct pt_regs *regs, unsigned long address)
 617{
 618#ifdef CONFIG_X86_64
 619	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 620		return 1;
 621#endif
 622	return 0;
 623}
 624
 625static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 
 
 626{
 627#ifdef CONFIG_X86_F00F_BUG
 628	unsigned long nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630	/*
 631	 * Pentium F0 0F C7 C8 bug workaround:
 632	 */
 633	if (boot_cpu_has_bug(X86_BUG_F00F)) {
 634		nr = (address - idt_descr.address) >> 3;
 
 
 
 
 635
 636		if (nr == 6) {
 637			do_invalid_op(regs, 0);
 638			return 1;
 639		}
 
 640	}
 
 
 
 
 641#endif
 642	return 0;
 
 643}
 644
 645static const char nx_warning[] = KERN_CRIT
 646"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 647static const char smep_warning[] = KERN_CRIT
 648"unable to execute userspace code (SMEP?) (uid: %d)\n";
 649
 650static void
 651show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 652		unsigned long address)
 653{
 654	if (!oops_may_print())
 655		return;
 656
 657	if (error_code & PF_INSTR) {
 658		unsigned int level;
 659		pgd_t *pgd;
 660		pte_t *pte;
 661
 662		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 663		pgd += pgd_index(address);
 664
 665		pte = lookup_address_in_pgd(pgd, address, &level);
 666
 667		if (pte && pte_present(*pte) && !pte_exec(*pte))
 668			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
 
 669		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 670				(pgd_flags(*pgd) & _PAGE_USER) &&
 671				(__read_cr4() & X86_CR4_SMEP))
 672			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
 
 673	}
 674
 675	printk(KERN_ALERT "BUG: unable to handle kernel ");
 676	if (address < PAGE_SIZE)
 677		printk(KERN_CONT "NULL pointer dereference");
 678	else
 679		printk(KERN_CONT "paging request");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680
 681	printk(KERN_CONT " at %p\n", (void *) address);
 682	printk(KERN_ALERT "IP:");
 683	printk_address(regs->ip);
 
 
 
 
 
 
 684
 685	dump_pagetable(address);
 686}
 687
 688static noinline void
 689pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 690	    unsigned long address)
 691{
 692	struct task_struct *tsk;
 693	unsigned long flags;
 694	int sig;
 695
 696	flags = oops_begin();
 697	tsk = current;
 698	sig = SIGKILL;
 699
 700	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 701	       tsk->comm, address);
 702	dump_pagetable(address);
 703
 704	tsk->thread.cr2		= address;
 705	tsk->thread.trap_nr	= X86_TRAP_PF;
 706	tsk->thread.error_code	= error_code;
 707
 708	if (__die("Bad pagetable", regs, error_code))
 709		sig = 0;
 710
 711	oops_end(flags, regs, sig);
 712}
 713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714static noinline void
 715no_context(struct pt_regs *regs, unsigned long error_code,
 716	   unsigned long address, int signal, int si_code)
 717{
 718	struct task_struct *tsk = current;
 
 
 719	unsigned long flags;
 720	int sig;
 721	/* No context means no VMA to pass down */
 722	struct vm_area_struct *vma = NULL;
 723
 724	/* Are we prepared to handle this kernel fault? */
 725	if (fixup_exception(regs, X86_TRAP_PF)) {
 726		/*
 727		 * Any interrupt that takes a fault gets the fixup. This makes
 728		 * the below recursive fault logic only apply to a faults from
 729		 * task context.
 730		 */
 731		if (in_interrupt())
 732			return;
 733
 
 
 
 
 
 
 
 
 734		/*
 735		 * Per the above we're !in_interrupt(), aka. task context.
 
 
 
 736		 *
 737		 * In this case we need to make sure we're not recursively
 738		 * faulting through the emulate_vsyscall() logic.
 
 739		 */
 740		if (current_thread_info()->sig_on_uaccess_error && signal) {
 741			tsk->thread.trap_nr = X86_TRAP_PF;
 742			tsk->thread.error_code = error_code | PF_USER;
 743			tsk->thread.cr2 = address;
 744
 745			/* XXX: hwpoison faults will set the wrong code. */
 746			force_sig_info_fault(signal, si_code, address,
 747					     tsk, vma, 0);
 748		}
 749
 750		/*
 751		 * Barring that, we can do the fixup and be happy.
 752		 */
 753		return;
 754	}
 
 755
 756	/*
 757	 * 32-bit:
 758	 *
 759	 *   Valid to do another page fault here, because if this fault
 760	 *   had been triggered by is_prefetch fixup_exception would have
 761	 *   handled it.
 762	 *
 763	 * 64-bit:
 764	 *
 765	 *   Hall of shame of CPU/BIOS bugs.
 766	 */
 767	if (is_prefetch(regs, error_code, address))
 768		return;
 769
 770	if (is_errata93(regs, address))
 
 
 771		return;
 772
 
 773	/*
 774	 * Oops. The kernel tried to access some bad page. We'll have to
 775	 * terminate things with extreme prejudice:
 776	 */
 777	flags = oops_begin();
 778
 779	show_fault_oops(regs, error_code, address);
 780
 781	if (task_stack_end_corrupted(tsk))
 782		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 783
 784	tsk->thread.cr2		= address;
 785	tsk->thread.trap_nr	= X86_TRAP_PF;
 786	tsk->thread.error_code	= error_code;
 787
 788	sig = SIGKILL;
 789	if (__die("Oops", regs, error_code))
 790		sig = 0;
 791
 792	/* Executive summary in case the body of the oops scrolled away */
 793	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 794
 795	oops_end(flags, regs, sig);
 796}
 797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798/*
 799 * Print out info about fatal segfaults, if the show_unhandled_signals
 800 * sysctl is set:
 801 */
 802static inline void
 803show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 804		unsigned long address, struct task_struct *tsk)
 805{
 
 
 
 
 806	if (!unhandled_signal(tsk, SIGSEGV))
 807		return;
 808
 809	if (!printk_ratelimit())
 810		return;
 811
 812	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 813		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 814		tsk->comm, task_pid_nr(tsk), address,
 815		(void *)regs->ip, (void *)regs->sp, error_code);
 816
 817	print_vma_addr(KERN_CONT " in ", regs->ip);
 818
 
 
 
 
 
 
 
 
 819	printk(KERN_CONT "\n");
 
 
 820}
 821
 822static void
 823__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 824		       unsigned long address, struct vm_area_struct *vma,
 825		       int si_code)
 826{
 827	struct task_struct *tsk = current;
 828
 829	/* User mode accesses just cause a SIGSEGV */
 830	if (error_code & PF_USER) {
 831		/*
 832		 * It's possible to have interrupts off here:
 833		 */
 834		local_irq_enable();
 
 
 
 
 
 835
 836		/*
 837		 * Valid to do another page fault here because this one came
 838		 * from user space:
 839		 */
 840		if (is_prefetch(regs, error_code, address))
 841			return;
 842
 843		if (is_errata100(regs, address))
 844			return;
 
 
 
 
 845
 846#ifdef CONFIG_X86_64
 847		/*
 848		 * Instruction fetch faults in the vsyscall page might need
 849		 * emulation.
 850		 */
 851		if (unlikely((error_code & PF_INSTR) &&
 852			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
 853			if (emulate_vsyscall(regs, address))
 854				return;
 855		}
 856#endif
 857		/* Kernel addresses are always protection faults: */
 858		if (address >= TASK_SIZE)
 859			error_code |= PF_PROT;
 860
 861		if (likely(show_unhandled_signals))
 862			show_signal_msg(regs, error_code, address, tsk);
 863
 864		tsk->thread.cr2		= address;
 865		tsk->thread.error_code	= error_code;
 866		tsk->thread.trap_nr	= X86_TRAP_PF;
 867
 868		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
 
 869
 870		return;
 871	}
 872
 873	if (is_f00f_bug(regs, address))
 874		return;
 
 
 875
 876	no_context(regs, error_code, address, SIGSEGV, si_code);
 877}
 878
 879static noinline void
 880bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 881		     unsigned long address, struct vm_area_struct *vma)
 882{
 883	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
 884}
 885
 886static void
 887__bad_area(struct pt_regs *regs, unsigned long error_code,
 888	   unsigned long address,  struct vm_area_struct *vma, int si_code)
 889{
 890	struct mm_struct *mm = current->mm;
 891
 892	/*
 893	 * Something tried to access memory that isn't in our memory map..
 894	 * Fix it, but check if it's kernel or user first..
 895	 */
 896	up_read(&mm->mmap_sem);
 897
 898	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
 899}
 900
 901static noinline void
 902bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 903{
 904	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
 905}
 906
 907static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 908		struct vm_area_struct *vma)
 909{
 910	/* This code is always called on the current mm */
 911	bool foreign = false;
 912
 913	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 914		return false;
 915	if (error_code & PF_PK)
 916		return true;
 917	/* this checks permission keys on the VMA: */
 918	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
 919				(error_code & PF_INSTR), foreign))
 920		return true;
 921	return false;
 922}
 923
 924static noinline void
 925bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 926		      unsigned long address, struct vm_area_struct *vma)
 927{
 928	/*
 929	 * This OSPKE check is not strictly necessary at runtime.
 930	 * But, doing it this way allows compiler optimizations
 931	 * if pkeys are compiled out.
 932	 */
 933	if (bad_area_access_from_pkeys(error_code, vma))
 934		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
 935	else
 936		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937}
 938
 939static void
 940do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 941	  struct vm_area_struct *vma, unsigned int fault)
 942{
 943	struct task_struct *tsk = current;
 944	int code = BUS_ADRERR;
 945
 946	/* Kernel mode? Handle exceptions or die: */
 947	if (!(error_code & PF_USER)) {
 948		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 
 949		return;
 950	}
 951
 952	/* User-space => ok to do another page fault: */
 953	if (is_prefetch(regs, error_code, address))
 954		return;
 955
 956	tsk->thread.cr2		= address;
 957	tsk->thread.error_code	= error_code;
 958	tsk->thread.trap_nr	= X86_TRAP_PF;
 
 
 
 959
 960#ifdef CONFIG_MEMORY_FAILURE
 961	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 962		printk(KERN_ERR
 
 
 
 963	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 964			tsk->comm, tsk->pid, address);
 965		code = BUS_MCEERR_AR;
 
 
 
 
 
 966	}
 967#endif
 968	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
 969}
 970
 971static noinline void
 972mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 973	       unsigned long address, struct vm_area_struct *vma,
 974	       unsigned int fault)
 975{
 976	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
 977		no_context(regs, error_code, address, 0, 0);
 978		return;
 979	}
 980
 981	if (fault & VM_FAULT_OOM) {
 982		/* Kernel mode? Handle exceptions or die: */
 983		if (!(error_code & PF_USER)) {
 984			no_context(regs, error_code, address,
 985				   SIGSEGV, SEGV_MAPERR);
 986			return;
 987		}
 988
 989		/*
 990		 * We ran out of memory, call the OOM killer, and return the
 991		 * userspace (which will retry the fault, or kill us if we got
 992		 * oom-killed):
 993		 */
 994		pagefault_out_of_memory();
 995	} else {
 996		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 997			     VM_FAULT_HWPOISON_LARGE))
 998			do_sigbus(regs, error_code, address, vma, fault);
 999		else if (fault & VM_FAULT_SIGSEGV)
1000			bad_area_nosemaphore(regs, error_code, address, vma);
1001		else
1002			BUG();
1003	}
1004}
1005
1006static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1007{
1008	if ((error_code & PF_WRITE) && !pte_write(*pte))
1009		return 0;
1010
1011	if ((error_code & PF_INSTR) && !pte_exec(*pte))
1012		return 0;
1013	/*
1014	 * Note: We do not do lazy flushing on protection key
1015	 * changes, so no spurious fault will ever set PF_PK.
1016	 */
1017	if ((error_code & PF_PK))
1018		return 1;
1019
1020	return 1;
1021}
1022
1023/*
1024 * Handle a spurious fault caused by a stale TLB entry.
1025 *
1026 * This allows us to lazily refresh the TLB when increasing the
1027 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1028 * eagerly is very expensive since that implies doing a full
1029 * cross-processor TLB flush, even if no stale TLB entries exist
1030 * on other processors.
1031 *
1032 * Spurious faults may only occur if the TLB contains an entry with
1033 * fewer permission than the page table entry.  Non-present (P = 0)
1034 * and reserved bit (R = 1) faults are never spurious.
1035 *
1036 * There are no security implications to leaving a stale TLB when
1037 * increasing the permissions on a page.
1038 *
1039 * Returns non-zero if a spurious fault was handled, zero otherwise.
1040 *
1041 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1042 * (Optional Invalidation).
1043 */
1044static noinline int
1045spurious_fault(unsigned long error_code, unsigned long address)
1046{
1047	pgd_t *pgd;
 
1048	pud_t *pud;
1049	pmd_t *pmd;
1050	pte_t *pte;
1051	int ret;
1052
1053	/*
1054	 * Only writes to RO or instruction fetches from NX may cause
1055	 * spurious faults.
1056	 *
1057	 * These could be from user or supervisor accesses but the TLB
1058	 * is only lazily flushed after a kernel mapping protection
1059	 * change, so user accesses are not expected to cause spurious
1060	 * faults.
1061	 */
1062	if (error_code != (PF_WRITE | PF_PROT)
1063	    && error_code != (PF_INSTR | PF_PROT))
1064		return 0;
1065
1066	pgd = init_mm.pgd + pgd_index(address);
1067	if (!pgd_present(*pgd))
1068		return 0;
1069
1070	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
1071	if (!pud_present(*pud))
1072		return 0;
1073
1074	if (pud_large(*pud))
1075		return spurious_fault_check(error_code, (pte_t *) pud);
1076
1077	pmd = pmd_offset(pud, address);
1078	if (!pmd_present(*pmd))
1079		return 0;
1080
1081	if (pmd_large(*pmd))
1082		return spurious_fault_check(error_code, (pte_t *) pmd);
1083
1084	pte = pte_offset_kernel(pmd, address);
1085	if (!pte_present(*pte))
1086		return 0;
1087
1088	ret = spurious_fault_check(error_code, pte);
1089	if (!ret)
1090		return 0;
1091
1092	/*
1093	 * Make sure we have permissions in PMD.
1094	 * If not, then there's a bug in the page tables:
1095	 */
1096	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1097	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1098
1099	return ret;
1100}
1101NOKPROBE_SYMBOL(spurious_fault);
1102
1103int show_unhandled_signals = 1;
1104
1105static inline int
1106access_error(unsigned long error_code, struct vm_area_struct *vma)
1107{
1108	/* This is only called for the current mm, so: */
1109	bool foreign = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110	/*
1111	 * Make sure to check the VMA so that we do not perform
1112	 * faults just to hit a PF_PK as soon as we fill in a
1113	 * page.
1114	 */
1115	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1116				(error_code & PF_INSTR), foreign))
1117		return 1;
1118
1119	if (error_code & PF_WRITE) {
 
 
 
 
 
 
 
 
 
 
 
 
1120		/* write, present and write, not present: */
 
 
1121		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1122			return 1;
1123		return 0;
1124	}
1125
1126	/* read, present: */
1127	if (unlikely(error_code & PF_PROT))
1128		return 1;
1129
1130	/* read, not present: */
1131	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1132		return 1;
1133
1134	return 0;
1135}
1136
1137static int fault_in_kernel_space(unsigned long address)
1138{
1139	return address >= TASK_SIZE_MAX;
1140}
1141
1142static inline bool smap_violation(int error_code, struct pt_regs *regs)
1143{
1144	if (!IS_ENABLED(CONFIG_X86_SMAP))
1145		return false;
1146
1147	if (!static_cpu_has(X86_FEATURE_SMAP))
1148		return false;
1149
1150	if (error_code & PF_USER)
1151		return false;
1152
1153	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1154		return false;
1155
1156	return true;
1157}
1158
1159/*
1160 * This routine handles page faults.  It determines the address,
1161 * and the problem, and then passes it off to one of the appropriate
1162 * routines.
1163 *
1164 * This function must have noinline because both callers
1165 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1166 * guarantees there's a function trace entry.
1167 */
1168static noinline void
1169__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1170		unsigned long address)
1171{
1172	struct vm_area_struct *vma;
1173	struct task_struct *tsk;
1174	struct mm_struct *mm;
1175	int fault, major = 0;
1176	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1177
1178	tsk = current;
1179	mm = tsk->mm;
1180
1181	/*
1182	 * Detect and handle instructions that would cause a page fault for
1183	 * both a tracked kernel page and a userspace page.
 
1184	 */
1185	if (kmemcheck_active(regs))
1186		kmemcheck_hide(regs);
1187	prefetchw(&mm->mmap_sem);
1188
1189	if (unlikely(kmmio_fault(regs, address)))
1190		return;
1191
 
1192	/*
1193	 * We fault-in kernel-space virtual memory on-demand. The
1194	 * 'reference' page table is init_mm.pgd.
1195	 *
1196	 * NOTE! We MUST NOT take any locks for this case. We may
1197	 * be in an interrupt or a critical region, and should
1198	 * only copy the information from the master page table,
1199	 * nothing more.
1200	 *
1201	 * This verifies that the fault happens in kernel space
1202	 * (error_code & 4) == 0, and that the fault was not a
1203	 * protection error (error_code & 9) == 0.
 
 
 
 
 
 
 
 
 
 
 
1204	 */
1205	if (unlikely(fault_in_kernel_space(address))) {
1206		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1207			if (vmalloc_fault(address) >= 0)
1208				return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209
1210			if (kmemcheck_fault(regs, address, error_code))
1211				return;
1212		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213
1214		/* Can handle a stale RO->RW TLB: */
1215		if (spurious_fault(error_code, address))
1216			return;
1217
1218		/* kprobes don't want to hook the spurious faults: */
1219		if (kprobes_fault(regs))
1220			return;
1221		/*
1222		 * Don't take the mm semaphore here. If we fixup a prefetch
1223		 * fault we could otherwise deadlock:
 
 
 
1224		 */
1225		bad_area_nosemaphore(regs, error_code, address, NULL);
 
1226
 
1227		return;
1228	}
1229
1230	/* kprobes don't want to hook the spurious faults: */
1231	if (unlikely(kprobes_fault(regs)))
1232		return;
1233
1234	if (unlikely(error_code & PF_RSVD))
 
 
 
 
1235		pgtable_bad(regs, error_code, address);
1236
1237	if (unlikely(smap_violation(error_code, regs))) {
1238		bad_area_nosemaphore(regs, error_code, address, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1239		return;
1240	}
1241
1242	/*
1243	 * If we're in an interrupt, have no user context or are running
1244	 * in a region with pagefaults disabled then we must not take the fault
1245	 */
1246	if (unlikely(faulthandler_disabled() || !mm)) {
1247		bad_area_nosemaphore(regs, error_code, address, NULL);
1248		return;
1249	}
1250
1251	/*
1252	 * It's safe to allow irq's after cr2 has been saved and the
1253	 * vmalloc fault has been handled.
1254	 *
1255	 * User-mode registers count as a user access even for any
1256	 * potential system fault or CPU buglet:
1257	 */
1258	if (user_mode(regs)) {
1259		local_irq_enable();
1260		error_code |= PF_USER;
1261		flags |= FAULT_FLAG_USER;
1262	} else {
1263		if (regs->flags & X86_EFLAGS_IF)
1264			local_irq_enable();
1265	}
1266
1267	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1268
1269	if (error_code & PF_WRITE)
 
 
 
 
 
 
 
 
1270		flags |= FAULT_FLAG_WRITE;
1271	if (error_code & PF_INSTR)
1272		flags |= FAULT_FLAG_INSTRUCTION;
1273
 
1274	/*
1275	 * When running in the kernel we expect faults to occur only to
1276	 * addresses in user space.  All other faults represent errors in
1277	 * the kernel and should generate an OOPS.  Unfortunately, in the
1278	 * case of an erroneous fault occurring in a code path which already
1279	 * holds mmap_sem we will deadlock attempting to validate the fault
1280	 * against the address space.  Luckily the kernel only validly
1281	 * references user space from well defined areas of code, which are
1282	 * listed in the exceptions table.
1283	 *
1284	 * As the vast majority of faults will be valid we will only perform
1285	 * the source reference check when there is a possibility of a
1286	 * deadlock. Attempt to lock the address space, if we cannot we then
1287	 * validate the source. If this is invalid we can skip the address
1288	 * space check, thus avoiding the deadlock:
1289	 */
1290	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1291		if ((error_code & PF_USER) == 0 &&
1292		    !search_exception_tables(regs->ip)) {
1293			bad_area_nosemaphore(regs, error_code, address, NULL);
1294			return;
1295		}
1296retry:
1297		down_read(&mm->mmap_sem);
1298	} else {
1299		/*
1300		 * The above down_read_trylock() might have succeeded in
1301		 * which case we'll have missed the might_sleep() from
1302		 * down_read():
1303		 */
1304		might_sleep();
1305	}
 
 
 
 
1306
1307	vma = find_vma(mm, address);
1308	if (unlikely(!vma)) {
1309		bad_area(regs, error_code, address);
1310		return;
 
 
 
1311	}
1312	if (likely(vma->vm_start <= address))
1313		goto good_area;
1314	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1315		bad_area(regs, error_code, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316		return;
1317	}
1318	if (error_code & PF_USER) {
1319		/*
1320		 * Accessing the stack below %sp is always a bug.
1321		 * The large cushion allows instructions like enter
1322		 * and pusha to work. ("enter $65535, $31" pushes
1323		 * 32 pointers and then decrements %sp by 65535.)
1324		 */
1325		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1326			bad_area(regs, error_code, address);
1327			return;
1328		}
1329	}
1330	if (unlikely(expand_stack(vma, address))) {
1331		bad_area(regs, error_code, address);
1332		return;
1333	}
1334
1335	/*
1336	 * Ok, we have a good vm_area for this memory access, so
1337	 * we can handle it..
1338	 */
1339good_area:
1340	if (unlikely(access_error(error_code, vma))) {
1341		bad_area_access_error(regs, error_code, address, vma);
1342		return;
1343	}
1344
1345	/*
1346	 * If for any reason at all we couldn't handle the fault,
1347	 * make sure we exit gracefully rather than endlessly redo
1348	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1349	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
 
 
 
 
 
 
 
1350	 */
1351	fault = handle_mm_fault(mm, vma, address, flags);
1352	major |= fault & VM_FAULT_MAJOR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354	/*
1355	 * If we need to retry the mmap_sem has already been released,
1356	 * and if there is a fatal signal pending there is no guarantee
1357	 * that we made any progress. Handle this case first.
1358	 */
1359	if (unlikely(fault & VM_FAULT_RETRY)) {
1360		/* Retry at most once */
1361		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1362			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1363			flags |= FAULT_FLAG_TRIED;
1364			if (!fatal_signal_pending(tsk))
1365				goto retry;
1366		}
1367
1368		/* User mode? Just return to handle the fatal exception */
1369		if (flags & FAULT_FLAG_USER)
1370			return;
 
1371
1372		/* Not returning to user mode? Handle exceptions or die: */
1373		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 
1374		return;
1375	}
1376
1377	up_read(&mm->mmap_sem);
1378	if (unlikely(fault & VM_FAULT_ERROR)) {
1379		mm_fault_error(regs, error_code, address, vma, fault);
1380		return;
1381	}
 
 
 
1382
1383	/*
1384	 * Major/minor page fault accounting. If any of the events
1385	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1386	 */
1387	if (major) {
1388		tsk->maj_flt++;
1389		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1390	} else {
1391		tsk->min_flt++;
1392		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
 
 
 
 
 
1393	}
1394
1395	check_v8086_mode(regs, address, tsk);
1396}
1397NOKPROBE_SYMBOL(__do_page_fault);
1398
1399dotraplinkage void notrace
1400do_page_fault(struct pt_regs *regs, unsigned long error_code)
 
1401{
1402	unsigned long address = read_cr2(); /* Get the faulting address */
1403	enum ctx_state prev_state;
1404
1405	/*
1406	 * We must have this function tagged with __kprobes, notrace and call
1407	 * read_cr2() before calling anything else. To avoid calling any kind
1408	 * of tracing machinery before we've observed the CR2 value.
1409	 *
1410	 * exception_{enter,exit}() contain all sorts of tracepoints.
1411	 */
1412
1413	prev_state = exception_enter();
1414	__do_page_fault(regs, error_code, address);
1415	exception_exit(prev_state);
1416}
1417NOKPROBE_SYMBOL(do_page_fault);
1418
1419#ifdef CONFIG_TRACING
1420static nokprobe_inline void
1421trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1422			 unsigned long error_code)
1423{
1424	if (user_mode(regs))
1425		trace_page_fault_user(address, regs, error_code);
1426	else
1427		trace_page_fault_kernel(address, regs, error_code);
1428}
1429
1430dotraplinkage void notrace
1431trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433	/*
1434	 * The exception_enter and tracepoint processing could
1435	 * trigger another page faults (user space callchain
1436	 * reading) and destroy the original cr2 value, so read
1437	 * the faulting address now.
 
 
 
 
1438	 */
1439	unsigned long address = read_cr2();
1440	enum ctx_state prev_state;
 
 
 
1441
1442	prev_state = exception_enter();
1443	trace_page_fault_entries(address, regs, error_code);
1444	__do_page_fault(regs, error_code, address);
1445	exception_exit(prev_state);
1446}
1447NOKPROBE_SYMBOL(trace_do_page_fault);
1448#endif /* CONFIG_TRACING */