Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
 
 
  19#include "raid56.h"
  20#include "block-group.h"
  21#include "zoned.h"
  22#include "fs.h"
  23#include "accessors.h"
  24#include "file-item.h"
  25#include "scrub.h"
  26#include "raid-stripe-tree.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
  39 */
  40
 
  41struct scrub_ctx;
  42
  43/*
  44 * The following value only influences the performance.
  45 *
  46 * This determines how many stripes would be submitted in one go,
  47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
  48 */
  49#define SCRUB_STRIPES_PER_GROUP		8
  50
  51/*
  52 * How many groups we have for each sctx.
  53 *
  54 * This would be 8M per device, the same value as the old scrub in-flight bios
  55 * size limit.
  56 */
  57#define SCRUB_GROUPS_PER_SCTX		16
  58
  59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
  60
  61/*
  62 * The following value times PAGE_SIZE needs to be large enough to match the
  63 * largest node/leaf/sector size that shall be supported.
 
  64 */
  65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  66
  67/* Represent one sector and its needed info to verify the content. */
  68struct scrub_sector_verification {
  69	bool is_metadata;
  70
  71	union {
  72		/*
  73		 * Csum pointer for data csum verification.  Should point to a
  74		 * sector csum inside scrub_stripe::csums.
  75		 *
  76		 * NULL if this data sector has no csum.
  77		 */
  78		u8 *csum;
  79
  80		/*
  81		 * Extra info for metadata verification.  All sectors inside a
  82		 * tree block share the same generation.
  83		 */
  84		u64 generation;
  85	};
  86};
  87
  88enum scrub_stripe_flags {
  89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
  90	SCRUB_STRIPE_FLAG_INITIALIZED,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92	/* Set when the read-repair is finished. */
  93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
  94
  95	/*
  96	 * Set for data stripes if it's triggered from P/Q stripe.
  97	 * During such scrub, we should not report errors in data stripes, nor
  98	 * update the accounting.
  99	 */
 100	SCRUB_STRIPE_FLAG_NO_REPORT,
 
 
 
 
 
 
 
 
 
 
 101};
 102
 103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105/*
 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 107 */
 108struct scrub_stripe {
 109	struct scrub_ctx *sctx;
 110	struct btrfs_block_group *bg;
 111
 112	struct page *pages[SCRUB_STRIPE_PAGES];
 113	struct scrub_sector_verification *sectors;
 114
 115	struct btrfs_device *dev;
 116	u64 logical;
 117	u64 physical;
 118
 119	u16 mirror_num;
 120
 121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
 122	u16 nr_sectors;
 123
 124	/*
 125	 * How many data/meta extents are in this stripe.  Only for scrub status
 126	 * reporting purposes.
 127	 */
 128	u16 nr_data_extents;
 129	u16 nr_meta_extents;
 130
 131	atomic_t pending_io;
 132	wait_queue_head_t io_wait;
 133	wait_queue_head_t repair_wait;
 134
 135	/*
 136	 * Indicate the states of the stripe.  Bits are defined in
 137	 * scrub_stripe_flags enum.
 138	 */
 139	unsigned long state;
 140
 141	/* Indicate which sectors are covered by extent items. */
 142	unsigned long extent_sector_bitmap;
 143
 144	/*
 145	 * The errors hit during the initial read of the stripe.
 146	 *
 147	 * Would be utilized for error reporting and repair.
 148	 *
 149	 * The remaining init_nr_* records the number of errors hit, only used
 150	 * by error reporting.
 151	 */
 152	unsigned long init_error_bitmap;
 153	unsigned int init_nr_io_errors;
 154	unsigned int init_nr_csum_errors;
 155	unsigned int init_nr_meta_errors;
 156
 157	/*
 158	 * The following error bitmaps are all for the current status.
 159	 * Every time we submit a new read, these bitmaps may be updated.
 160	 *
 161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
 162	 *
 163	 * IO and csum errors can happen for both metadata and data.
 164	 */
 165	unsigned long error_bitmap;
 166	unsigned long io_error_bitmap;
 167	unsigned long csum_error_bitmap;
 168	unsigned long meta_error_bitmap;
 169
 170	/* For writeback (repair or replace) error reporting. */
 171	unsigned long write_error_bitmap;
 172
 173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
 174	spinlock_t write_error_lock;
 175
 176	/*
 177	 * Checksum for the whole stripe if this stripe is inside a data block
 178	 * group.
 179	 */
 180	u8 *csums;
 181
 182	struct work_struct work;
 183};
 184
 185struct scrub_ctx {
 186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
 187	struct scrub_stripe	*raid56_data_stripes;
 188	struct btrfs_fs_info	*fs_info;
 189	struct btrfs_path	extent_path;
 190	struct btrfs_path	csum_path;
 191	int			first_free;
 192	int			cur_stripe;
 
 
 
 
 
 
 193	atomic_t		cancel_req;
 194	int			readonly;
 195
 196	/* State of IO submission throttling affecting the associated device */
 197	ktime_t			throttle_deadline;
 198	u64			throttle_sent;
 199
 200	int			is_dev_replace;
 201	u64			write_pointer;
 202
 
 203	struct mutex            wr_lock;
 
 204	struct btrfs_device     *wr_tgtdev;
 
 205
 206	/*
 207	 * statistics
 208	 */
 209	struct btrfs_scrub_progress stat;
 210	spinlock_t		stat_lock;
 211
 212	/*
 213	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 214	 * decrement bios_in_flight and workers_pending and then do a wakeup
 215	 * on the list_wait wait queue. We must ensure the main scrub task
 216	 * doesn't free the scrub context before or while the workers are
 217	 * doing the wakeup() call.
 218	 */
 219	refcount_t              refs;
 220};
 221
 222struct scrub_warning {
 223	struct btrfs_path	*path;
 224	u64			extent_item_size;
 225	const char		*errstr;
 226	u64			physical;
 227	u64			logical;
 228	struct btrfs_device	*dev;
 229};
 230
 231static void release_scrub_stripe(struct scrub_stripe *stripe)
 232{
 233	if (!stripe)
 234		return;
 
 
 235
 236	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
 237		if (stripe->pages[i])
 238			__free_page(stripe->pages[i]);
 239		stripe->pages[i] = NULL;
 240	}
 241	kfree(stripe->sectors);
 242	kfree(stripe->csums);
 243	stripe->sectors = NULL;
 244	stripe->csums = NULL;
 245	stripe->sctx = NULL;
 246	stripe->state = 0;
 247}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
 250			     struct scrub_stripe *stripe)
 251{
 252	int ret;
 253
 254	memset(stripe, 0, sizeof(*stripe));
 255
 256	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 257	stripe->state = 0;
 258
 259	init_waitqueue_head(&stripe->io_wait);
 260	init_waitqueue_head(&stripe->repair_wait);
 261	atomic_set(&stripe->pending_io, 0);
 262	spin_lock_init(&stripe->write_error_lock);
 263
 264	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
 265	if (ret < 0)
 266		goto error;
 267
 268	stripe->sectors = kcalloc(stripe->nr_sectors,
 269				  sizeof(struct scrub_sector_verification),
 270				  GFP_KERNEL);
 271	if (!stripe->sectors)
 272		goto error;
 273
 274	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
 275				fs_info->csum_size, GFP_KERNEL);
 276	if (!stripe->csums)
 277		goto error;
 278	return 0;
 279error:
 280	release_scrub_stripe(stripe);
 281	return -ENOMEM;
 282}
 283
 284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
 285{
 286	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
 
 287}
 288
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 
 
 
 
 
 290
 291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 292{
 293	while (atomic_read(&fs_info->scrub_pause_req)) {
 294		mutex_unlock(&fs_info->scrub_lock);
 295		wait_event(fs_info->scrub_pause_wait,
 296		   atomic_read(&fs_info->scrub_pause_req) == 0);
 297		mutex_lock(&fs_info->scrub_lock);
 298	}
 299}
 300
 301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 302{
 303	atomic_inc(&fs_info->scrubs_paused);
 304	wake_up(&fs_info->scrub_pause_wait);
 305}
 306
 307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 308{
 309	mutex_lock(&fs_info->scrub_lock);
 310	__scrub_blocked_if_needed(fs_info);
 311	atomic_dec(&fs_info->scrubs_paused);
 312	mutex_unlock(&fs_info->scrub_lock);
 313
 314	wake_up(&fs_info->scrub_pause_wait);
 315}
 316
 317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 318{
 319	scrub_pause_on(fs_info);
 320	scrub_pause_off(fs_info);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 324{
 325	int i;
 326
 327	if (!sctx)
 328		return;
 329
 330	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
 331		release_scrub_stripe(&sctx->stripes[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332
 333	kvfree(sctx);
 
 
 334}
 335
 336static void scrub_put_ctx(struct scrub_ctx *sctx)
 337{
 338	if (refcount_dec_and_test(&sctx->refs))
 339		scrub_free_ctx(sctx);
 340}
 341
 342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 343		struct btrfs_fs_info *fs_info, int is_dev_replace)
 344{
 345	struct scrub_ctx *sctx;
 346	int		i;
 347
 348	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
 349	 * kvzalloc().
 350	 */
 351	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
 352	if (!sctx)
 353		goto nomem;
 354	refcount_set(&sctx->refs, 1);
 355	sctx->is_dev_replace = is_dev_replace;
 
 
 356	sctx->fs_info = fs_info;
 357	sctx->extent_path.search_commit_root = 1;
 358	sctx->extent_path.skip_locking = 1;
 359	sctx->csum_path.search_commit_root = 1;
 360	sctx->csum_path.skip_locking = 1;
 361	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
 362		int ret;
 363
 364		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
 365		if (ret < 0)
 366			goto nomem;
 367		sctx->stripes[i].sctx = sctx;
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369	sctx->first_free = 0;
 
 
 370	atomic_set(&sctx->cancel_req, 0);
 
 371
 
 372	spin_lock_init(&sctx->stat_lock);
 373	sctx->throttle_deadline = 0;
 374
 
 375	mutex_init(&sctx->wr_lock);
 
 376	if (is_dev_replace) {
 377		WARN_ON(!fs_info->dev_replace.tgtdev);
 
 378		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 
 379	}
 380
 381	return sctx;
 382
 383nomem:
 384	scrub_free_ctx(sctx);
 385	return ERR_PTR(-ENOMEM);
 386}
 387
 388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 389				     u64 root, void *warn_ctx)
 390{
 
 391	u32 nlink;
 392	int ret;
 393	int i;
 394	unsigned nofs_flag;
 395	struct extent_buffer *eb;
 396	struct btrfs_inode_item *inode_item;
 397	struct scrub_warning *swarn = warn_ctx;
 398	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 399	struct inode_fs_paths *ipath = NULL;
 400	struct btrfs_root *local_root;
 
 401	struct btrfs_key key;
 402
 403	local_root = btrfs_get_fs_root(fs_info, root, true);
 
 
 
 404	if (IS_ERR(local_root)) {
 405		ret = PTR_ERR(local_root);
 406		goto err;
 407	}
 408
 409	/*
 410	 * this makes the path point to (inum INODE_ITEM ioff)
 411	 */
 412	key.objectid = inum;
 413	key.type = BTRFS_INODE_ITEM_KEY;
 414	key.offset = 0;
 415
 416	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 417	if (ret) {
 418		btrfs_put_root(local_root);
 419		btrfs_release_path(swarn->path);
 420		goto err;
 421	}
 422
 423	eb = swarn->path->nodes[0];
 424	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 425					struct btrfs_inode_item);
 
 426	nlink = btrfs_inode_nlink(eb, inode_item);
 427	btrfs_release_path(swarn->path);
 428
 429	/*
 430	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 431	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 432	 * not seem to be strictly necessary.
 433	 */
 434	nofs_flag = memalloc_nofs_save();
 435	ipath = init_ipath(4096, local_root, swarn->path);
 436	memalloc_nofs_restore(nofs_flag);
 437	if (IS_ERR(ipath)) {
 438		btrfs_put_root(local_root);
 439		ret = PTR_ERR(ipath);
 440		ipath = NULL;
 441		goto err;
 442	}
 443	ret = paths_from_inode(inum, ipath);
 444
 445	if (ret < 0)
 446		goto err;
 447
 448	/*
 449	 * we deliberately ignore the bit ipath might have been too small to
 450	 * hold all of the paths here
 451	 */
 452	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 453		btrfs_warn_in_rcu(fs_info,
 454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 455				  swarn->errstr, swarn->logical,
 456				  btrfs_dev_name(swarn->dev),
 457				  swarn->physical,
 458				  root, inum, offset,
 459				  fs_info->sectorsize, nlink,
 460				  (char *)(unsigned long)ipath->fspath->val[i]);
 461
 462	btrfs_put_root(local_root);
 463	free_ipath(ipath);
 464	return 0;
 465
 466err:
 467	btrfs_warn_in_rcu(fs_info,
 468			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 469			  swarn->errstr, swarn->logical,
 470			  btrfs_dev_name(swarn->dev),
 471			  swarn->physical,
 472			  root, inum, offset, ret);
 473
 474	free_ipath(ipath);
 475	return 0;
 476}
 477
 478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
 479				       bool is_super, u64 logical, u64 physical)
 480{
 481	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 482	struct btrfs_path *path;
 483	struct btrfs_key found_key;
 484	struct extent_buffer *eb;
 485	struct btrfs_extent_item *ei;
 486	struct scrub_warning swarn;
 
 
 487	u64 flags = 0;
 
 488	u32 item_size;
 
 489	int ret;
 490
 491	/* Super block error, no need to search extent tree. */
 492	if (is_super) {
 493		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 494				  errstr, btrfs_dev_name(dev), physical);
 495		return;
 496	}
 497	path = btrfs_alloc_path();
 498	if (!path)
 499		return;
 500
 501	swarn.physical = physical;
 502	swarn.logical = logical;
 503	swarn.errstr = errstr;
 504	swarn.dev = NULL;
 505
 506	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 507				  &flags);
 508	if (ret < 0)
 509		goto out;
 510
 
 511	swarn.extent_item_size = found_key.offset;
 512
 513	eb = path->nodes[0];
 514	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 515	item_size = btrfs_item_size(eb, path->slots[0]);
 516
 517	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 518		unsigned long ptr = 0;
 519		u8 ref_level;
 520		u64 ref_root;
 521
 522		while (true) {
 523			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 524						      item_size, &ref_root,
 525						      &ref_level);
 526			if (ret < 0) {
 527				btrfs_warn(fs_info,
 528				"failed to resolve tree backref for logical %llu: %d",
 529						  swarn.logical, ret);
 530				break;
 531			}
 532			if (ret > 0)
 533				break;
 534			btrfs_warn_in_rcu(fs_info,
 535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 536				errstr, swarn.logical, btrfs_dev_name(dev),
 537				swarn.physical, (ref_level ? "node" : "leaf"),
 538				ref_level, ref_root);
 539		}
 
 
 
 540		btrfs_release_path(path);
 541	} else {
 542		struct btrfs_backref_walk_ctx ctx = { 0 };
 543
 544		btrfs_release_path(path);
 545
 546		ctx.bytenr = found_key.objectid;
 547		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 548		ctx.fs_info = fs_info;
 549
 550		swarn.path = path;
 551		swarn.dev = dev;
 552
 553		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 
 554	}
 555
 556out:
 557	btrfs_free_path(path);
 558}
 559
 560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 561{
 562	int ret = 0;
 563	u64 length;
 564
 565	if (!btrfs_is_zoned(sctx->fs_info))
 566		return 0;
 567
 568	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 569		return 0;
 570
 571	if (sctx->write_pointer < physical) {
 572		length = physical - sctx->write_pointer;
 573
 574		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 575						sctx->write_pointer, length);
 576		if (!ret)
 577			sctx->write_pointer = physical;
 578	}
 579	return ret;
 580}
 581
 582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
 583{
 584	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 585	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
 586
 587	return stripe->pages[page_index];
 588}
 589
 590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
 591						 int sector_nr)
 592{
 593	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 594
 595	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
 
 
 596}
 597
 598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
 
 
 
 
 
 
 
 
 599{
 600	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 601	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 602	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
 603	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
 604	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
 605	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 606	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 607	u8 calculated_csum[BTRFS_CSUM_SIZE];
 608	struct btrfs_header *header;
 
 
 
 
 
 
 
 
 609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610	/*
 611	 * Here we don't have a good way to attach the pages (and subpages)
 612	 * to a dummy extent buffer, thus we have to directly grab the members
 613	 * from pages.
 614	 */
 615	header = (struct btrfs_header *)(page_address(first_page) + first_off);
 616	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
 617
 618	if (logical != btrfs_stack_header_bytenr(header)) {
 619		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 620		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 621		btrfs_warn_rl(fs_info,
 622		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
 623			      logical, stripe->mirror_num,
 624			      btrfs_stack_header_bytenr(header), logical);
 625		return;
 
 626	}
 627	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
 628		   BTRFS_FSID_SIZE) != 0) {
 629		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 630		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 631		btrfs_warn_rl(fs_info,
 632		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
 633			      logical, stripe->mirror_num,
 634			      header->fsid, fs_info->fs_devices->fsid);
 635		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 638		   BTRFS_UUID_SIZE) != 0) {
 639		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 640		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 641		btrfs_warn_rl(fs_info,
 642		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
 643			      logical, stripe->mirror_num,
 644			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
 645		return;
 
 646	}
 
 
 647
 648	/* Now check tree block csum. */
 649	shash->tfm = fs_info->csum_shash;
 650	crypto_shash_init(shash);
 651	crypto_shash_update(shash, page_address(first_page) + first_off +
 652			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
 653
 654	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
 655		struct page *page = scrub_stripe_get_page(stripe, i);
 656		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
 
 
 
 
 
 
 
 
 
 
 
 657
 658		crypto_shash_update(shash, page_address(page) + page_off,
 659				    fs_info->sectorsize);
 
 660	}
 661
 662	crypto_shash_final(shash, calculated_csum);
 663	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
 664		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 665		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 666		btrfs_warn_rl(fs_info,
 667		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
 668			      logical, stripe->mirror_num,
 669			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
 670			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
 671		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672	}
 673	if (stripe->sectors[sector_nr].generation !=
 674	    btrfs_stack_header_generation(header)) {
 675		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 676		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 677		btrfs_warn_rl(fs_info,
 678		"tree block %llu mirror %u has bad generation, has %llu want %llu",
 679			      logical, stripe->mirror_num,
 680			      btrfs_stack_header_generation(header),
 681			      stripe->sectors[sector_nr].generation);
 682		return;
 683	}
 684	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 685	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 686	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 687}
 688
 689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
 690{
 691	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 692	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
 693	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 694	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 695	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 696	u8 csum_buf[BTRFS_CSUM_SIZE];
 697	int ret;
 
 
 
 
 
 
 
 
 698
 699	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
 
 700
 701	/* Sector not utilized, skip it. */
 702	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
 703		return;
 
 
 
 704
 705	/* IO error, no need to check. */
 706	if (test_bit(sector_nr, &stripe->io_error_bitmap))
 707		return;
 
 
 708
 709	/* Metadata, verify the full tree block. */
 710	if (sector->is_metadata) {
 711		/*
 712		 * Check if the tree block crosses the stripe boundary.  If
 713		 * crossed the boundary, we cannot verify it but only give a
 714		 * warning.
 715		 *
 716		 * This can only happen on a very old filesystem where chunks
 717		 * are not ensured to be stripe aligned.
 718		 */
 719		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
 720			btrfs_warn_rl(fs_info,
 721			"tree block at %llu crosses stripe boundary %llu",
 722				      stripe->logical +
 723				      (sector_nr << fs_info->sectorsize_bits),
 724				      stripe->logical);
 725			return;
 
 
 
 
 
 
 
 
 726		}
 727		scrub_verify_one_metadata(stripe, sector_nr);
 728		return;
 729	}
 730
 
 
 
 731	/*
 732	 * Data is easier, we just verify the data csum (if we have it).  For
 733	 * cases without csum, we have no other choice but to trust it.
 734	 */
 735	if (!sector->csum) {
 736		clear_bit(sector_nr, &stripe->error_bitmap);
 737		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738	}
 739
 740	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
 741	if (ret < 0) {
 742		set_bit(sector_nr, &stripe->csum_error_bitmap);
 743		set_bit(sector_nr, &stripe->error_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744	} else {
 745		clear_bit(sector_nr, &stripe->csum_error_bitmap);
 746		clear_bit(sector_nr, &stripe->error_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	}
 
 
 
 
 
 
 748}
 749
 750/* Verify specified sectors of a stripe. */
 751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
 752{
 753	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 754	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 755	int sector_nr;
 756
 757	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
 758		scrub_verify_one_sector(stripe, sector_nr);
 759		if (stripe->sectors[sector_nr].is_metadata)
 760			sector_nr += sectors_per_tree - 1;
 761	}
 762}
 763
 764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
 
 
 
 
 
 765{
 766	int i;
 767
 768	for (i = 0; i < stripe->nr_sectors; i++) {
 769		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
 770		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
 771			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772	}
 773	ASSERT(i < stripe->nr_sectors);
 774	return i;
 775}
 776
 777/*
 778 * Repair read is different to the regular read:
 779 *
 780 * - Only reads the failed sectors
 781 * - May have extra blocksize limits
 782 */
 783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
 784{
 785	struct scrub_stripe *stripe = bbio->private;
 786	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 787	struct bio_vec *bvec;
 788	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 789	u32 bio_size = 0;
 790	int i;
 
 
 
 
 
 
 
 
 
 
 
 791
 792	ASSERT(sector_nr < stripe->nr_sectors);
 
 
 
 
 793
 794	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 795		bio_size += bvec->bv_len;
 
 
 796
 797	if (bbio->bio.bi_status) {
 798		bitmap_set(&stripe->io_error_bitmap, sector_nr,
 799			   bio_size >> fs_info->sectorsize_bits);
 800		bitmap_set(&stripe->error_bitmap, sector_nr,
 801			   bio_size >> fs_info->sectorsize_bits);
 802	} else {
 803		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
 804			     bio_size >> fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	}
 806	bio_put(&bbio->bio);
 807	if (atomic_dec_and_test(&stripe->pending_io))
 808		wake_up(&stripe->io_wait);
 809}
 810
 811static int calc_next_mirror(int mirror, int num_copies)
 812{
 813	ASSERT(mirror <= num_copies);
 814	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
 815}
 816
 817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
 818					    int mirror, int blocksize, bool wait)
 
 819{
 820	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 821	struct btrfs_bio *bbio = NULL;
 822	const unsigned long old_error_bitmap = stripe->error_bitmap;
 823	int i;
 824
 825	ASSERT(stripe->mirror_num >= 1);
 826	ASSERT(atomic_read(&stripe->pending_io) == 0);
 
 
 
 
 
 
 
 
 827
 828	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
 829		struct page *page;
 830		int pgoff;
 831		int ret;
 
 
 
 
 
 
 832
 833		page = scrub_stripe_get_page(stripe, i);
 834		pgoff = scrub_stripe_get_page_offset(stripe, i);
 
 
 835
 836		/* The current sector cannot be merged, submit the bio. */
 837		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
 838			     bbio->bio.bi_iter.bi_size >= blocksize)) {
 839			ASSERT(bbio->bio.bi_iter.bi_size);
 840			atomic_inc(&stripe->pending_io);
 841			btrfs_submit_bio(bbio, mirror);
 842			if (wait)
 843				wait_scrub_stripe_io(stripe);
 844			bbio = NULL;
 845		}
 846
 847		if (!bbio) {
 848			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 849				fs_info, scrub_repair_read_endio, stripe);
 850			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 851				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
 852		}
 853
 854		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 855		ASSERT(ret == fs_info->sectorsize);
 856	}
 857	if (bbio) {
 858		ASSERT(bbio->bio.bi_iter.bi_size);
 859		atomic_inc(&stripe->pending_io);
 860		btrfs_submit_bio(bbio, mirror);
 861		if (wait)
 862			wait_scrub_stripe_io(stripe);
 863	}
 864}
 865
 866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
 867				       struct scrub_stripe *stripe)
 868{
 869	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 870				      DEFAULT_RATELIMIT_BURST);
 871	struct btrfs_fs_info *fs_info = sctx->fs_info;
 872	struct btrfs_device *dev = NULL;
 873	u64 physical = 0;
 874	int nr_data_sectors = 0;
 875	int nr_meta_sectors = 0;
 876	int nr_nodatacsum_sectors = 0;
 877	int nr_repaired_sectors = 0;
 878	int sector_nr;
 879
 880	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
 881		return;
 882
 883	/*
 884	 * Init needed infos for error reporting.
 885	 *
 886	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
 887	 * thus no need for dev/physical, error reporting still needs dev and physical.
 888	 */
 889	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
 890		u64 mapped_len = fs_info->sectorsize;
 891		struct btrfs_io_context *bioc = NULL;
 892		int stripe_index = stripe->mirror_num - 1;
 893		int ret;
 894
 895		/* For scrub, our mirror_num should always start at 1. */
 896		ASSERT(stripe->mirror_num >= 1);
 897		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 898				      stripe->logical, &mapped_len, &bioc,
 899				      NULL, NULL);
 900		/*
 901		 * If we failed, dev will be NULL, and later detailed reports
 902		 * will just be skipped.
 903		 */
 904		if (ret < 0)
 905			goto skip;
 906		physical = bioc->stripes[stripe_index].physical;
 907		dev = bioc->stripes[stripe_index].dev;
 908		btrfs_put_bioc(bioc);
 909	}
 910
 911skip:
 912	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 913		bool repaired = false;
 
 
 
 
 
 
 
 
 
 914
 915		if (stripe->sectors[sector_nr].is_metadata) {
 916			nr_meta_sectors++;
 917		} else {
 918			nr_data_sectors++;
 919			if (!stripe->sectors[sector_nr].csum)
 920				nr_nodatacsum_sectors++;
 921		}
 922
 923		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
 924		    !test_bit(sector_nr, &stripe->error_bitmap)) {
 925			nr_repaired_sectors++;
 926			repaired = true;
 927		}
 928
 929		/* Good sector from the beginning, nothing need to be done. */
 930		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
 931			continue;
 932
 933		/*
 934		 * Report error for the corrupted sectors.  If repaired, just
 935		 * output the message of repaired message.
 936		 */
 937		if (repaired) {
 938			if (dev) {
 939				btrfs_err_rl_in_rcu(fs_info,
 940			"fixed up error at logical %llu on dev %s physical %llu",
 941					    stripe->logical, btrfs_dev_name(dev),
 942					    physical);
 943			} else {
 944				btrfs_err_rl_in_rcu(fs_info,
 945			"fixed up error at logical %llu on mirror %u",
 946					    stripe->logical, stripe->mirror_num);
 947			}
 948			continue;
 949		}
 950
 951		/* The remaining are all for unrepaired. */
 952		if (dev) {
 953			btrfs_err_rl_in_rcu(fs_info,
 954	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
 955					    stripe->logical, btrfs_dev_name(dev),
 956					    physical);
 957		} else {
 958			btrfs_err_rl_in_rcu(fs_info,
 959	"unable to fixup (regular) error at logical %llu on mirror %u",
 960					    stripe->logical, stripe->mirror_num);
 
 961		}
 962
 963		if (test_bit(sector_nr, &stripe->io_error_bitmap))
 964			if (__ratelimit(&rs) && dev)
 965				scrub_print_common_warning("i/o error", dev, false,
 966						     stripe->logical, physical);
 967		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
 968			if (__ratelimit(&rs) && dev)
 969				scrub_print_common_warning("checksum error", dev, false,
 970						     stripe->logical, physical);
 971		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
 972			if (__ratelimit(&rs) && dev)
 973				scrub_print_common_warning("header error", dev, false,
 974						     stripe->logical, physical);
 975	}
 976
 977	spin_lock(&sctx->stat_lock);
 978	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
 979	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
 980	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
 981	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
 982	sctx->stat.no_csum += nr_nodatacsum_sectors;
 983	sctx->stat.read_errors += stripe->init_nr_io_errors;
 984	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
 985	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
 986	sctx->stat.uncorrectable_errors +=
 987		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
 988	sctx->stat.corrected_errors += nr_repaired_sectors;
 989	spin_unlock(&sctx->stat_lock);
 990}
 991
 992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 993				unsigned long write_bitmap, bool dev_replace);
 
 
 
 994
 995/*
 996 * The main entrance for all read related scrub work, including:
 997 *
 998 * - Wait for the initial read to finish
 999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 *   possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009{
1010	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011	struct scrub_ctx *sctx = stripe->sctx;
1012	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014					  stripe->bg->length);
1015	int mirror;
1016	int i;
1017
1018	ASSERT(stripe->mirror_num > 0);
 
 
 
 
1019
1020	wait_scrub_stripe_io(stripe);
1021	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022	/* Save the initial failed bitmap for later repair and report usage. */
1023	stripe->init_error_bitmap = stripe->error_bitmap;
1024	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025						  stripe->nr_sectors);
1026	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027						    stripe->nr_sectors);
1028	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029						    stripe->nr_sectors);
1030
1031	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032		goto out;
1033
1034	/*
1035	 * Try all remaining mirrors.
1036	 *
1037	 * Here we still try to read as large block as possible, as this is
1038	 * faster and we have extra safety nets to rely on.
1039	 */
1040	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041	     mirror != stripe->mirror_num;
1042	     mirror = calc_next_mirror(mirror, num_copies)) {
1043		const unsigned long old_error_bitmap = stripe->error_bitmap;
1044
1045		scrub_stripe_submit_repair_read(stripe, mirror,
1046						BTRFS_STRIPE_LEN, false);
1047		wait_scrub_stripe_io(stripe);
1048		scrub_verify_one_stripe(stripe, old_error_bitmap);
1049		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050			goto out;
1051	}
1052
1053	/*
1054	 * Last safety net, try re-checking all mirrors, including the failed
1055	 * one, sector-by-sector.
1056	 *
1057	 * As if one sector failed the drive's internal csum, the whole read
1058	 * containing the offending sector would be marked as error.
1059	 * Thus here we do sector-by-sector read.
1060	 *
1061	 * This can be slow, thus we only try it as the last resort.
1062	 */
1063
1064	for (i = 0, mirror = stripe->mirror_num;
1065	     i < num_copies;
1066	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067		const unsigned long old_error_bitmap = stripe->error_bitmap;
1068
1069		scrub_stripe_submit_repair_read(stripe, mirror,
1070						fs_info->sectorsize, true);
1071		wait_scrub_stripe_io(stripe);
1072		scrub_verify_one_stripe(stripe, old_error_bitmap);
1073		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075	}
1076out:
 
 
 
 
 
 
 
 
1077	/*
1078	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1079	 * in-place, but queue the bg to be relocated.
1080	 */
1081	if (btrfs_is_zoned(fs_info)) {
1082		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084	} else if (!sctx->readonly) {
1085		unsigned long repaired;
1086
1087		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088			      &stripe->error_bitmap, stripe->nr_sectors);
1089		scrub_write_sectors(sctx, stripe, repaired, false);
1090		wait_scrub_stripe_io(stripe);
1091	}
1092
1093	scrub_stripe_report_errors(sctx, stripe);
1094	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095	wake_up(&stripe->repair_wait);
 
1096}
1097
1098static void scrub_read_endio(struct btrfs_bio *bbio)
 
1099{
1100	struct scrub_stripe *stripe = bbio->private;
1101	struct bio_vec *bvec;
1102	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103	int num_sectors;
1104	u32 bio_size = 0;
1105	int i;
1106
1107	ASSERT(sector_nr < stripe->nr_sectors);
1108	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109		bio_size += bvec->bv_len;
1110	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112	if (bbio->bio.bi_status) {
1113		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115	} else {
1116		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117	}
1118	bio_put(&bbio->bio);
1119	if (atomic_dec_and_test(&stripe->pending_io)) {
1120		wake_up(&stripe->io_wait);
1121		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123	}
 
1124}
1125
1126static void scrub_write_endio(struct btrfs_bio *bbio)
 
1127{
1128	struct scrub_stripe *stripe = bbio->private;
1129	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130	struct bio_vec *bvec;
1131	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132	u32 bio_size = 0;
1133	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134
1135	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136		bio_size += bvec->bv_len;
1137
1138	if (bbio->bio.bi_status) {
1139		unsigned long flags;
 
1140
1141		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143			   bio_size >> fs_info->sectorsize_bits);
1144		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145	}
1146	bio_put(&bbio->bio);
1147
1148	if (atomic_dec_and_test(&stripe->pending_io))
1149		wake_up(&stripe->io_wait);
 
 
 
 
 
 
 
1150}
1151
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153				   struct scrub_stripe *stripe,
1154				   struct btrfs_bio *bbio, bool dev_replace)
1155{
1156	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159		      stripe->logical;
1160
1161	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162	atomic_inc(&stripe->pending_io);
1163	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164	if (!btrfs_is_zoned(fs_info))
1165		return;
1166	/*
1167	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168	 * the write to finish before the next write.
1169	 */
1170	wait_scrub_stripe_io(stripe);
1171
1172	/*
1173	 * And also need to update the write pointer if write finished
1174	 * successfully.
1175	 */
1176	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177		      &stripe->write_error_bitmap))
1178		sctx->write_pointer += bio_len;
1179}
1180
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 *   Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 *   Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195				unsigned long write_bitmap, bool dev_replace)
1196{
1197	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198	struct btrfs_bio *bbio = NULL;
1199	int sector_nr;
1200
1201	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204		int ret;
1205
1206		/* We should only writeback sectors covered by an extent. */
1207		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208
1209		/* Cannot merge with previous sector, submit the current one. */
1210		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212			bbio = NULL;
1213		}
1214		if (!bbio) {
1215			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216					       fs_info, scrub_write_endio, stripe);
1217			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218				(sector_nr << fs_info->sectorsize_bits)) >>
1219				SECTOR_SHIFT;
1220		}
1221		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222		ASSERT(ret == fs_info->sectorsize);
1223	}
1224	if (bbio)
1225		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
 
 
 
 
 
1226}
1227
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233				  unsigned int bio_size)
1234{
1235	const int time_slice = 1000;
1236	s64 delta;
1237	ktime_t now;
1238	u32 div;
1239	u64 bwlimit;
1240
1241	bwlimit = READ_ONCE(device->scrub_speed_max);
1242	if (bwlimit == 0)
1243		return;
1244
1245	/*
1246	 * Slice is divided into intervals when the IO is submitted, adjust by
1247	 * bwlimit and maximum of 64 intervals.
 
 
 
 
1248	 */
1249	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250	div = min_t(u32, 64, div);
1251
1252	/* Start new epoch, set deadline */
1253	now = ktime_get();
1254	if (sctx->throttle_deadline == 0) {
1255		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256		sctx->throttle_sent = 0;
1257	}
1258
1259	/* Still in the time to send? */
1260	if (ktime_before(now, sctx->throttle_deadline)) {
1261		/* If current bio is within the limit, send it */
1262		sctx->throttle_sent += bio_size;
1263		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264			return;
1265
1266		/* We're over the limit, sleep until the rest of the slice */
1267		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268	} else {
1269		/* New request after deadline, start new epoch */
1270		delta = 0;
1271	}
1272
1273	if (delta) {
1274		long timeout;
1275
1276		timeout = div_u64(delta * HZ, 1000);
1277		schedule_timeout_interruptible(timeout);
1278	}
 
 
 
 
 
 
 
1279
1280	/* Next call will start the deadline period */
1281	sctx->throttle_deadline = 0;
1282}
1283
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
1292				   struct btrfs_chunk_map *map, u64 *offset,
1293				   u64 *stripe_start)
1294{
1295	int i;
1296	int j = 0;
1297	u64 last_offset;
1298	const int data_stripes = nr_data_stripes(map);
 
 
 
 
 
1299
1300	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301	if (stripe_start)
1302		*stripe_start = last_offset;
1303
1304	*offset = last_offset;
1305	for (i = 0; i < data_stripes; i++) {
1306		u32 stripe_nr;
1307		u32 stripe_index;
1308		u32 rot;
1309
1310		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
 
 
1311
1312		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
 
 
 
1313
1314		/* Work out the disk rotation on this stripe-set */
1315		rot = stripe_nr % map->num_stripes;
1316		/* calculate which stripe this data locates */
1317		rot += i;
1318		stripe_index = rot % map->num_stripes;
1319		if (stripe_index == num)
1320			return 0;
1321		if (stripe_index < num)
1322			j++;
 
1323	}
1324	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325	return 1;
 
 
 
 
1326}
1327
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334				     u64 search_start, u64 search_len)
1335{
1336	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
 
 
 
 
 
 
 
 
 
1337	u64 len;
1338	struct btrfs_key key;
1339
1340	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342	       key.type == BTRFS_METADATA_ITEM_KEY);
1343	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344		len = fs_info->nodesize;
1345	else
1346		len = key.offset;
1347
1348	if (key.objectid + len <= search_start)
1349		return -1;
1350	if (key.objectid >= search_start + search_len)
1351		return 1;
1352	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372				  struct btrfs_path *path,
1373				  u64 search_start, u64 search_len)
1374{
1375	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376	struct btrfs_key key;
1377	int ret;
1378
1379	/* Continue using the existing path */
1380	if (path->nodes[0])
1381		goto search_forward;
 
 
 
 
 
 
 
1382
1383	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384		key.type = BTRFS_METADATA_ITEM_KEY;
1385	else
1386		key.type = BTRFS_EXTENT_ITEM_KEY;
1387	key.objectid = search_start;
1388	key.offset = (u64)-1;
1389
1390	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391	if (ret < 0)
1392		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393
1394	ASSERT(ret > 0);
1395	/*
1396	 * Here we intentionally pass 0 as @min_objectid, as there could be
1397	 * an extent item starting before @search_start.
1398	 */
1399	ret = btrfs_previous_extent_item(extent_root, path, 0);
1400	if (ret < 0)
1401		return ret;
1402	/*
1403	 * No matter whether we have found an extent item, the next loop will
1404	 * properly do every check on the key.
1405	 */
1406search_forward:
1407	while (true) {
1408		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1409		if (key.objectid >= search_start + search_len)
1410			break;
1411		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1412		    key.type != BTRFS_EXTENT_ITEM_KEY)
1413			goto next;
1414
1415		ret = compare_extent_item_range(path, search_start, search_len);
1416		if (ret == 0)
1417			return ret;
1418		if (ret > 0)
1419			break;
1420next:
1421		ret = btrfs_next_item(extent_root, path);
1422		if (ret) {
1423			/* Either no more items or a fatal error. */
1424			btrfs_release_path(path);
1425			return ret;
1426		}
 
 
 
1427	}
1428	btrfs_release_path(path);
1429	return 1;
1430}
1431
1432static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1433			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1434{
1435	struct btrfs_key key;
1436	struct btrfs_extent_item *ei;
1437
1438	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1439	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1440	       key.type == BTRFS_EXTENT_ITEM_KEY);
1441	*extent_start_ret = key.objectid;
1442	if (key.type == BTRFS_METADATA_ITEM_KEY)
1443		*size_ret = path->nodes[0]->fs_info->nodesize;
1444	else
1445		*size_ret = key.offset;
1446	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1447	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1448	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1449}
1450
1451static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1452					u64 physical, u64 physical_end)
1453{
1454	struct btrfs_fs_info *fs_info = sctx->fs_info;
1455	int ret = 0;
1456
1457	if (!btrfs_is_zoned(fs_info))
1458		return 0;
1459
1460	mutex_lock(&sctx->wr_lock);
1461	if (sctx->write_pointer < physical_end) {
1462		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1463						    physical,
1464						    sctx->write_pointer);
1465		if (ret)
1466			btrfs_err(fs_info,
1467				  "zoned: failed to recover write pointer");
1468	}
1469	mutex_unlock(&sctx->wr_lock);
1470	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1471
1472	return ret;
 
 
1473}
1474
1475static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1476				 struct scrub_stripe *stripe,
1477				 u64 extent_start, u64 extent_len,
1478				 u64 extent_flags, u64 extent_gen)
1479{
1480	for (u64 cur_logical = max(stripe->logical, extent_start);
1481	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1482			       extent_start + extent_len);
1483	     cur_logical += fs_info->sectorsize) {
1484		const int nr_sector = (cur_logical - stripe->logical) >>
1485				      fs_info->sectorsize_bits;
1486		struct scrub_sector_verification *sector =
1487						&stripe->sectors[nr_sector];
1488
1489		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1490		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1491			sector->is_metadata = true;
1492			sector->generation = extent_gen;
1493		}
1494	}
1495}
1496
1497static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1498{
1499	stripe->extent_sector_bitmap = 0;
1500	stripe->init_error_bitmap = 0;
1501	stripe->init_nr_io_errors = 0;
1502	stripe->init_nr_csum_errors = 0;
1503	stripe->init_nr_meta_errors = 0;
1504	stripe->error_bitmap = 0;
1505	stripe->io_error_bitmap = 0;
1506	stripe->csum_error_bitmap = 0;
1507	stripe->meta_error_bitmap = 0;
1508}
1509
1510/*
1511 * Locate one stripe which has at least one extent in its range.
1512 *
1513 * Return 0 if found such stripe, and store its info into @stripe.
1514 * Return >0 if there is no such stripe in the specified range.
1515 * Return <0 for error.
1516 */
1517static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1518					struct btrfs_path *extent_path,
1519					struct btrfs_path *csum_path,
1520					struct btrfs_device *dev, u64 physical,
1521					int mirror_num, u64 logical_start,
1522					u32 logical_len,
1523					struct scrub_stripe *stripe)
1524{
1525	struct btrfs_fs_info *fs_info = bg->fs_info;
1526	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1527	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1528	const u64 logical_end = logical_start + logical_len;
1529	u64 cur_logical = logical_start;
1530	u64 stripe_end;
1531	u64 extent_start;
1532	u64 extent_len;
1533	u64 extent_flags;
1534	u64 extent_gen;
1535	int ret;
1536
1537	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1538				   stripe->nr_sectors);
1539	scrub_stripe_reset_bitmaps(stripe);
1540
1541	/* The range must be inside the bg. */
1542	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1543
1544	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1545				     logical_len);
1546	/* Either error or not found. */
1547	if (ret)
1548		goto out;
1549	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1550			&extent_gen);
1551	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1552		stripe->nr_meta_extents++;
1553	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1554		stripe->nr_data_extents++;
1555	cur_logical = max(extent_start, cur_logical);
1556
1557	/*
1558	 * Round down to stripe boundary.
1559	 *
1560	 * The extra calculation against bg->start is to handle block groups
1561	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1562	 */
1563	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1564			  bg->start;
1565	stripe->physical = physical + stripe->logical - logical_start;
1566	stripe->dev = dev;
1567	stripe->bg = bg;
1568	stripe->mirror_num = mirror_num;
1569	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1570
1571	/* Fill the first extent info into stripe->sectors[] array. */
1572	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1573			     extent_flags, extent_gen);
1574	cur_logical = extent_start + extent_len;
1575
1576	/* Fill the extent info for the remaining sectors. */
1577	while (cur_logical <= stripe_end) {
1578		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1579					     stripe_end - cur_logical + 1);
1580		if (ret < 0)
1581			goto out;
1582		if (ret > 0) {
1583			ret = 0;
1584			break;
1585		}
1586		get_extent_info(extent_path, &extent_start, &extent_len,
1587				&extent_flags, &extent_gen);
1588		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1589			stripe->nr_meta_extents++;
1590		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1591			stripe->nr_data_extents++;
1592		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1593				     extent_flags, extent_gen);
1594		cur_logical = extent_start + extent_len;
1595	}
1596
1597	/* Now fill the data csum. */
1598	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1599		int sector_nr;
1600		unsigned long csum_bitmap = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601
1602		/* Csum space should have already been allocated. */
1603		ASSERT(stripe->csums);
1604
1605		/*
1606		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1607		 * should contain at most 16 sectors.
1608		 */
1609		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1610
1611		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1612						stripe->logical, stripe_end,
1613						stripe->csums, &csum_bitmap);
1614		if (ret < 0)
1615			goto out;
1616		if (ret > 0)
1617			ret = 0;
1618
1619		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1620			stripe->sectors[sector_nr].csum = stripe->csums +
1621				sector_nr * fs_info->csum_size;
1622		}
1623	}
1624	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1625out:
1626	return ret;
1627}
1628
1629static void scrub_reset_stripe(struct scrub_stripe *stripe)
1630{
1631	scrub_stripe_reset_bitmaps(stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632
1633	stripe->nr_meta_extents = 0;
1634	stripe->nr_data_extents = 0;
1635	stripe->state = 0;
1636
1637	for (int i = 0; i < stripe->nr_sectors; i++) {
1638		stripe->sectors[i].is_metadata = false;
1639		stripe->sectors[i].csum = NULL;
1640		stripe->sectors[i].generation = 0;
1641	}
 
 
1642}
1643
1644static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1645					    struct scrub_stripe *stripe)
1646{
1647	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 
 
 
1648	struct btrfs_bio *bbio = NULL;
1649	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1650				      stripe->bg->length - stripe->logical) >>
1651				  fs_info->sectorsize_bits;
1652	u64 stripe_len = BTRFS_STRIPE_LEN;
1653	int mirror = stripe->mirror_num;
1654	int i;
1655
1656	atomic_inc(&stripe->pending_io);
1657
1658	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1659		struct page *page = scrub_stripe_get_page(stripe, i);
1660		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1661
1662		/* We're beyond the chunk boundary, no need to read anymore. */
1663		if (i >= nr_sectors)
1664			break;
1665
1666		/* The current sector cannot be merged, submit the bio. */
1667		if (bbio &&
1668		    ((i > 0 &&
1669		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1670		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1671			ASSERT(bbio->bio.bi_iter.bi_size);
1672			atomic_inc(&stripe->pending_io);
1673			btrfs_submit_bio(bbio, mirror);
1674			bbio = NULL;
1675		}
1676
1677		if (!bbio) {
1678			struct btrfs_io_stripe io_stripe = {};
1679			struct btrfs_io_context *bioc = NULL;
1680			const u64 logical = stripe->logical +
1681					    (i << fs_info->sectorsize_bits);
1682			int err;
1683
1684			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1685					       fs_info, scrub_read_endio, stripe);
1686			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1687
1688			io_stripe.is_scrub = true;
1689			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1690					      &stripe_len, &bioc, &io_stripe,
1691					      &mirror);
1692			btrfs_put_bioc(bioc);
1693			if (err) {
1694				btrfs_bio_end_io(bbio,
1695						 errno_to_blk_status(err));
1696				return;
1697			}
1698		}
1699
1700		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1701	}
1702
1703	if (bbio) {
1704		ASSERT(bbio->bio.bi_iter.bi_size);
1705		atomic_inc(&stripe->pending_io);
1706		btrfs_submit_bio(bbio, mirror);
1707	}
 
1708
1709	if (atomic_dec_and_test(&stripe->pending_io)) {
1710		wake_up(&stripe->io_wait);
1711		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1712		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1713	}
 
 
 
1714}
1715
1716static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1717				      struct scrub_stripe *stripe)
 
 
1718{
1719	struct btrfs_fs_info *fs_info = sctx->fs_info;
1720	struct btrfs_bio *bbio;
1721	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1722				      stripe->bg->length - stripe->logical) >>
1723				  fs_info->sectorsize_bits;
1724	int mirror = stripe->mirror_num;
1725
1726	ASSERT(stripe->bg);
1727	ASSERT(stripe->mirror_num > 0);
1728	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1729
1730	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1731		scrub_submit_extent_sector_read(sctx, stripe);
1732		return;
 
 
 
1733	}
1734
1735	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1736			       scrub_read_endio, stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1737
1738	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1739	/* Read the whole range inside the chunk boundary. */
1740	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1741		struct page *page = scrub_stripe_get_page(stripe, cur);
1742		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1743		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
1744
1745		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1746		/* We should have allocated enough bio vectors. */
1747		ASSERT(ret == fs_info->sectorsize);
1748	}
1749	atomic_inc(&stripe->pending_io);
1750
1751	/*
1752	 * For dev-replace, either user asks to avoid the source dev, or
1753	 * the device is missing, we try the next mirror instead.
1754	 */
1755	if (sctx->is_dev_replace &&
1756	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1757	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1758	     !stripe->dev->bdev)) {
1759		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1760						  stripe->bg->length);
1761
1762		mirror = calc_next_mirror(mirror, num_copies);
1763	}
1764	btrfs_submit_bio(bbio, mirror);
 
 
 
 
 
 
1765}
1766
1767static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1768{
 
 
1769	int i;
1770
1771	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1772		if (stripe->sectors[i].is_metadata) {
1773			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 
1774
1775			btrfs_err(fs_info,
1776			"stripe %llu has unrepaired metadata sector at %llu",
1777				  stripe->logical,
1778				  stripe->logical + (i << fs_info->sectorsize_bits));
1779			return true;
1780		}
1781	}
1782	return false;
1783}
1784
1785static void submit_initial_group_read(struct scrub_ctx *sctx,
1786				      unsigned int first_slot,
1787				      unsigned int nr_stripes)
1788{
1789	struct blk_plug plug;
1790
1791	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1792	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
 
 
1793
1794	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1795			      btrfs_stripe_nr_to_offset(nr_stripes));
1796	blk_start_plug(&plug);
1797	for (int i = 0; i < nr_stripes; i++) {
1798		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
 
1799
1800		/* Those stripes should be initialized. */
1801		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1802		scrub_submit_initial_read(sctx, stripe);
 
1803	}
1804	blk_finish_plug(&plug);
 
1805}
1806
1807static int flush_scrub_stripes(struct scrub_ctx *sctx)
 
 
1808{
1809	struct btrfs_fs_info *fs_info = sctx->fs_info;
1810	struct scrub_stripe *stripe;
1811	const int nr_stripes = sctx->cur_stripe;
1812	int ret = 0;
1813
1814	if (!nr_stripes)
1815		return 0;
 
 
1816
1817	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
 
 
 
1818
1819	/* Submit the stripes which are populated but not submitted. */
1820	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1821		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1822
1823		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
 
 
1824	}
1825
1826	for (int i = 0; i < nr_stripes; i++) {
1827		stripe = &sctx->stripes[i];
1828
1829		wait_event(stripe->repair_wait,
1830			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1831	}
1832
1833	/* Submit for dev-replace. */
1834	if (sctx->is_dev_replace) {
1835		/*
1836		 * For dev-replace, if we know there is something wrong with
1837		 * metadata, we should immediately abort.
1838		 */
1839		for (int i = 0; i < nr_stripes; i++) {
1840			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1841				ret = -EIO;
1842				goto out;
1843			}
1844		}
1845		for (int i = 0; i < nr_stripes; i++) {
1846			unsigned long good;
1847
1848			stripe = &sctx->stripes[i];
 
 
 
 
1849
1850			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
 
 
1851
1852			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1853				      &stripe->error_bitmap, stripe->nr_sectors);
1854			scrub_write_sectors(sctx, stripe, good, true);
1855		}
 
 
 
 
 
 
 
 
1856	}
1857
1858	/* Wait for the above writebacks to finish. */
1859	for (int i = 0; i < nr_stripes; i++) {
1860		stripe = &sctx->stripes[i];
 
1861
1862		wait_scrub_stripe_io(stripe);
1863		scrub_reset_stripe(stripe);
1864	}
1865out:
1866	sctx->cur_stripe = 0;
1867	return ret;
1868}
1869
1870static void raid56_scrub_wait_endio(struct bio *bio)
1871{
1872	complete(bio->bi_private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873}
1874
1875static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1876			      struct btrfs_device *dev, int mirror_num,
1877			      u64 logical, u32 length, u64 physical,
1878			      u64 *found_logical_ret)
 
1879{
1880	struct scrub_stripe *stripe;
1881	int ret;
 
 
1882
1883	/*
1884	 * There should always be one slot left, as caller filling the last
1885	 * slot should flush them all.
1886	 */
1887	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888
1889	/* @found_logical_ret must be specified. */
1890	ASSERT(found_logical_ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891
1892	stripe = &sctx->stripes[sctx->cur_stripe];
1893	scrub_reset_stripe(stripe);
1894	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1895					   &sctx->csum_path, dev, physical,
1896					   mirror_num, logical, length, stripe);
1897	/* Either >0 as no more extents or <0 for error. */
1898	if (ret)
1899		return ret;
1900	*found_logical_ret = stripe->logical;
1901	sctx->cur_stripe++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902
1903	/* We filled one group, submit it. */
1904	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1905		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
 
1906
1907		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
 
 
 
 
1908	}
1909
1910	/* Last slot used, flush them all. */
1911	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1912		return flush_scrub_stripes(sctx);
1913	return 0;
1914}
1915
1916static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1917				      struct btrfs_device *scrub_dev,
1918				      struct btrfs_block_group *bg,
1919				      struct btrfs_chunk_map *map,
1920				      u64 full_stripe_start)
1921{
1922	DECLARE_COMPLETION_ONSTACK(io_done);
1923	struct btrfs_fs_info *fs_info = sctx->fs_info;
1924	struct btrfs_raid_bio *rbio;
1925	struct btrfs_io_context *bioc = NULL;
1926	struct btrfs_path extent_path = { 0 };
1927	struct btrfs_path csum_path = { 0 };
1928	struct bio *bio;
1929	struct scrub_stripe *stripe;
1930	bool all_empty = true;
1931	const int data_stripes = nr_data_stripes(map);
1932	unsigned long extent_bitmap = 0;
1933	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1934	int ret;
 
 
1935
1936	ASSERT(sctx->raid56_data_stripes);
 
 
 
1937
1938	/*
1939	 * For data stripe search, we cannot re-use the same extent/csum paths,
1940	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1941	 * we have to use our own extent/csum paths.
1942	 */
1943	extent_path.search_commit_root = 1;
1944	extent_path.skip_locking = 1;
1945	csum_path.search_commit_root = 1;
1946	csum_path.skip_locking = 1;
1947
1948	for (int i = 0; i < data_stripes; i++) {
1949		int stripe_index;
1950		int rot;
1951		u64 physical;
1952
1953		stripe = &sctx->raid56_data_stripes[i];
1954		rot = div_u64(full_stripe_start - bg->start,
1955			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1956		stripe_index = (i + rot) % map->num_stripes;
1957		physical = map->stripes[stripe_index].physical +
1958			   btrfs_stripe_nr_to_offset(rot);
1959
1960		scrub_reset_stripe(stripe);
1961		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1962		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1963				map->stripes[stripe_index].dev, physical, 1,
1964				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1965				BTRFS_STRIPE_LEN, stripe);
1966		if (ret < 0)
1967			goto out;
1968		/*
1969		 * No extent in this data stripe, need to manually mark them
1970		 * initialized to make later read submission happy.
1971		 */
1972		if (ret > 0) {
1973			stripe->logical = full_stripe_start +
1974					  btrfs_stripe_nr_to_offset(i);
1975			stripe->dev = map->stripes[stripe_index].dev;
1976			stripe->mirror_num = 1;
1977			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1978		}
1979	}
1980
1981	/* Check if all data stripes are empty. */
1982	for (int i = 0; i < data_stripes; i++) {
1983		stripe = &sctx->raid56_data_stripes[i];
1984		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1985			all_empty = false;
1986			break;
 
 
 
1987		}
 
 
 
 
 
 
 
 
 
1988	}
1989	if (all_empty) {
1990		ret = 0;
1991		goto out;
1992	}
1993
1994	for (int i = 0; i < data_stripes; i++) {
1995		stripe = &sctx->raid56_data_stripes[i];
1996		scrub_submit_initial_read(sctx, stripe);
1997	}
1998	for (int i = 0; i < data_stripes; i++) {
1999		stripe = &sctx->raid56_data_stripes[i];
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001		wait_event(stripe->repair_wait,
2002			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2003	}
2004	/* For now, no zoned support for RAID56. */
2005	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2006
2007	/*
2008	 * Now all data stripes are properly verified. Check if we have any
2009	 * unrepaired, if so abort immediately or we could further corrupt the
2010	 * P/Q stripes.
2011	 *
2012	 * During the loop, also populate extent_bitmap.
2013	 */
2014	for (int i = 0; i < data_stripes; i++) {
2015		unsigned long error;
2016
2017		stripe = &sctx->raid56_data_stripes[i];
 
2018
2019		/*
2020		 * We should only check the errors where there is an extent.
2021		 * As we may hit an empty data stripe while it's missing.
2022		 */
2023		bitmap_and(&error, &stripe->error_bitmap,
2024			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2025		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2026			btrfs_err(fs_info,
2027"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2028				  full_stripe_start, i, stripe->nr_sectors,
2029				  &error);
2030			ret = -EIO;
2031			goto out;
2032		}
2033		bitmap_or(&extent_bitmap, &extent_bitmap,
2034			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2035	}
 
 
 
2036
2037	/* Now we can check and regenerate the P/Q stripe. */
2038	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2039	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2040	bio->bi_private = &io_done;
2041	bio->bi_end_io = raid56_scrub_wait_endio;
2042
2043	btrfs_bio_counter_inc_blocked(fs_info);
2044	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2045			      &length, &bioc, NULL, NULL);
2046	if (ret < 0) {
2047		btrfs_put_bioc(bioc);
2048		btrfs_bio_counter_dec(fs_info);
2049		goto out;
2050	}
2051	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2052				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2053	btrfs_put_bioc(bioc);
2054	if (!rbio) {
2055		ret = -ENOMEM;
2056		btrfs_bio_counter_dec(fs_info);
2057		goto out;
2058	}
2059	/* Use the recovered stripes as cache to avoid read them from disk again. */
2060	for (int i = 0; i < data_stripes; i++) {
2061		stripe = &sctx->raid56_data_stripes[i];
2062
2063		raid56_parity_cache_data_pages(rbio, stripe->pages,
2064				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
 
2065	}
2066	raid56_parity_submit_scrub_rbio(rbio);
2067	wait_for_completion_io(&io_done);
2068	ret = blk_status_to_errno(bio->bi_status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069	bio_put(bio);
2070	btrfs_bio_counter_dec(fs_info);
2071
2072	btrfs_release_path(&extent_path);
2073	btrfs_release_path(&csum_path);
2074out:
2075	return ret;
2076}
2077
2078/*
2079 * Scrub one range which can only has simple mirror based profile.
2080 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2081 *  RAID0/RAID10).
2082 *
2083 * Since we may need to handle a subset of block group, we need @logical_start
2084 * and @logical_length parameter.
2085 */
2086static int scrub_simple_mirror(struct scrub_ctx *sctx,
2087			       struct btrfs_block_group *bg,
2088			       struct btrfs_chunk_map *map,
2089			       u64 logical_start, u64 logical_length,
2090			       struct btrfs_device *device,
2091			       u64 physical, int mirror_num)
2092{
 
2093	struct btrfs_fs_info *fs_info = sctx->fs_info;
2094	const u64 logical_end = logical_start + logical_length;
2095	u64 cur_logical = logical_start;
 
 
2096	int ret;
2097
2098	/* The range must be inside the bg */
2099	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
 
2100
2101	/* Go through each extent items inside the logical range */
2102	while (cur_logical < logical_end) {
2103		u64 found_logical = U64_MAX;
2104		u64 cur_physical = physical + cur_logical - logical_start;
2105
2106		/* Canceled? */
2107		if (atomic_read(&fs_info->scrub_cancel_req) ||
2108		    atomic_read(&sctx->cancel_req)) {
2109			ret = -ECANCELED;
2110			break;
2111		}
2112		/* Paused? */
2113		if (atomic_read(&fs_info->scrub_pause_req)) {
2114			/* Push queued extents */
2115			scrub_blocked_if_needed(fs_info);
2116		}
2117		/* Block group removed? */
2118		spin_lock(&bg->lock);
2119		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2120			spin_unlock(&bg->lock);
2121			ret = 0;
2122			break;
2123		}
2124		spin_unlock(&bg->lock);
2125
2126		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2127					 cur_logical, logical_end - cur_logical,
2128					 cur_physical, &found_logical);
2129		if (ret > 0) {
2130			/* No more extent, just update the accounting */
2131			sctx->stat.last_physical = physical + logical_length;
2132			ret = 0;
2133			break;
2134		}
2135		if (ret < 0)
2136			break;
2137
2138		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2139		ASSERT(found_logical != U64_MAX);
2140		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2141
2142		/* Don't hold CPU for too long time */
2143		cond_resched();
2144	}
2145	return ret;
 
 
 
 
 
 
 
 
2146}
2147
2148/* Calculate the full stripe length for simple stripe based profiles */
2149static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2150{
2151	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2152			    BTRFS_BLOCK_GROUP_RAID10));
2153
2154	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2155}
2156
2157/* Get the logical bytenr for the stripe */
2158static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2159				     struct btrfs_block_group *bg,
2160				     int stripe_index)
2161{
2162	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2163			    BTRFS_BLOCK_GROUP_RAID10));
2164	ASSERT(stripe_index < map->num_stripes);
2165
2166	/*
2167	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2168	 * skip.
2169	 */
2170	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2171	       bg->start;
2172}
2173
2174/* Get the mirror number for the stripe */
2175static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2176{
2177	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2178			    BTRFS_BLOCK_GROUP_RAID10));
2179	ASSERT(stripe_index < map->num_stripes);
2180
2181	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2182	return stripe_index % map->sub_stripes + 1;
2183}
2184
2185static int scrub_simple_stripe(struct scrub_ctx *sctx,
2186			       struct btrfs_block_group *bg,
2187			       struct btrfs_chunk_map *map,
2188			       struct btrfs_device *device,
2189			       int stripe_index)
 
2190{
2191	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2192	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2193	const u64 orig_physical = map->stripes[stripe_index].physical;
2194	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2195	u64 cur_logical = orig_logical;
2196	u64 cur_physical = orig_physical;
2197	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2198
2199	while (cur_logical < bg->start + bg->length) {
2200		/*
2201		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2202		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2203		 * this stripe.
2204		 */
2205		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2206					  BTRFS_STRIPE_LEN, device, cur_physical,
2207					  mirror_num);
2208		if (ret)
2209			return ret;
2210		/* Skip to next stripe which belongs to the target device */
2211		cur_logical += logical_increment;
2212		/* For physical offset, we just go to next stripe */
2213		cur_physical += BTRFS_STRIPE_LEN;
2214	}
2215	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216}
2217
2218static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2219					   struct btrfs_block_group *bg,
2220					   struct btrfs_chunk_map *map,
2221					   struct btrfs_device *scrub_dev,
2222					   int stripe_index)
2223{
 
2224	struct btrfs_fs_info *fs_info = sctx->fs_info;
2225	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2226	const u64 chunk_logical = bg->start;
 
 
 
2227	int ret;
2228	int ret2;
2229	u64 physical = map->stripes[stripe_index].physical;
2230	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2231	const u64 physical_end = physical + dev_stripe_len;
2232	u64 logical;
2233	u64 logic_end;
2234	/* The logical increment after finishing one stripe */
2235	u64 increment;
2236	/* Offset inside the chunk */
 
 
 
 
 
2237	u64 offset;
 
 
 
2238	u64 stripe_logical;
 
 
 
2239	int stop_loop = 0;
2240
2241	/* Extent_path should be released by now. */
2242	ASSERT(sctx->extent_path.nodes[0] == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243
2244	scrub_blocked_if_needed(fs_info);
 
 
2245
2246	if (sctx->is_dev_replace &&
2247	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2248		mutex_lock(&sctx->wr_lock);
2249		sctx->write_pointer = physical;
2250		mutex_unlock(&sctx->wr_lock);
2251	}
2252
2253	/* Prepare the extra data stripes used by RAID56. */
2254	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2255		ASSERT(sctx->raid56_data_stripes == NULL);
2256
2257		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2258						    sizeof(struct scrub_stripe),
2259						    GFP_KERNEL);
2260		if (!sctx->raid56_data_stripes) {
2261			ret = -ENOMEM;
2262			goto out;
2263		}
2264		for (int i = 0; i < nr_data_stripes(map); i++) {
2265			ret = init_scrub_stripe(fs_info,
2266						&sctx->raid56_data_stripes[i]);
2267			if (ret < 0)
2268				goto out;
2269			sctx->raid56_data_stripes[i].bg = bg;
2270			sctx->raid56_data_stripes[i].sctx = sctx;
2271		}
2272	}
2273	/*
2274	 * There used to be a big double loop to handle all profiles using the
2275	 * same routine, which grows larger and more gross over time.
2276	 *
2277	 * So here we handle each profile differently, so simpler profiles
2278	 * have simpler scrubbing function.
2279	 */
2280	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2281			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2282		/*
2283		 * Above check rules out all complex profile, the remaining
2284		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2285		 * mirrored duplication without stripe.
2286		 *
2287		 * Only @physical and @mirror_num needs to calculated using
2288		 * @stripe_index.
2289		 */
2290		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2291				scrub_dev, map->stripes[stripe_index].physical,
2292				stripe_index + 1);
2293		offset = 0;
2294		goto out;
2295	}
2296	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2297		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2298		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2299		goto out;
2300	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301
2302	/* Only RAID56 goes through the old code */
2303	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2304	ret = 0;
2305
2306	/* Calculate the logical end of the stripe */
2307	get_raid56_logic_offset(physical_end, stripe_index,
2308				map, &logic_end, NULL);
2309	logic_end += chunk_logical;
2310
2311	/* Initialize @offset in case we need to go to out: label */
2312	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2313	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2314
2315	/*
2316	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2317	 * using their physical offset.
2318	 */
 
2319	while (physical < physical_end) {
2320		ret = get_raid56_logic_offset(physical, stripe_index, map,
2321					      &logical, &stripe_logical);
2322		logical += chunk_logical;
2323		if (ret) {
2324			/* it is parity strip */
2325			stripe_logical += chunk_logical;
2326			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2327							 map, stripe_logical);
2328			if (ret)
2329				goto out;
2330			goto next;
2331		}
2332
2333		/*
2334		 * Now we're at a data stripe, scrub each extents in the range.
2335		 *
2336		 * At this stage, if we ignore the repair part, inside each data
2337		 * stripe it is no different than SINGLE profile.
2338		 * We can reuse scrub_simple_mirror() here, as the repair part
2339		 * is still based on @mirror_num.
2340		 */
2341		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2342					  scrub_dev, physical, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343		if (ret < 0)
2344			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345next:
 
 
 
 
2346		logical += increment;
2347		physical += BTRFS_STRIPE_LEN;
2348		spin_lock(&sctx->stat_lock);
2349		if (stop_loop)
2350			sctx->stat.last_physical =
2351				map->stripes[stripe_index].physical + dev_stripe_len;
2352		else
2353			sctx->stat.last_physical = physical;
2354		spin_unlock(&sctx->stat_lock);
2355		if (stop_loop)
2356			break;
2357	}
2358out:
2359	ret2 = flush_scrub_stripes(sctx);
2360	if (!ret)
2361		ret = ret2;
2362	btrfs_release_path(&sctx->extent_path);
2363	btrfs_release_path(&sctx->csum_path);
2364
2365	if (sctx->raid56_data_stripes) {
2366		for (int i = 0; i < nr_data_stripes(map); i++)
2367			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2368		kfree(sctx->raid56_data_stripes);
2369		sctx->raid56_data_stripes = NULL;
2370	}
2371
2372	if (sctx->is_dev_replace && ret >= 0) {
2373		int ret2;
2374
2375		ret2 = sync_write_pointer_for_zoned(sctx,
2376				chunk_logical + offset,
2377				map->stripes[stripe_index].physical,
2378				physical_end);
2379		if (ret2)
2380			ret = ret2;
2381	}
2382
 
 
 
2383	return ret < 0 ? ret : 0;
2384}
2385
2386static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2387					  struct btrfs_block_group *bg,
2388					  struct btrfs_device *scrub_dev,
 
2389					  u64 dev_offset,
2390					  u64 dev_extent_len)
2391{
2392	struct btrfs_fs_info *fs_info = sctx->fs_info;
2393	struct btrfs_chunk_map *map;
 
 
2394	int i;
2395	int ret = 0;
2396
2397	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2398	if (!map) {
 
 
 
2399		/*
2400		 * Might have been an unused block group deleted by the cleaner
2401		 * kthread or relocation.
2402		 */
2403		spin_lock(&bg->lock);
2404		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2405			ret = -EINVAL;
2406		spin_unlock(&bg->lock);
2407
2408		return ret;
2409	}
2410	if (map->start != bg->start)
 
 
2411		goto out;
2412	if (map->chunk_len < dev_extent_len)
 
2413		goto out;
2414
2415	for (i = 0; i < map->num_stripes; ++i) {
2416		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2417		    map->stripes[i].physical == dev_offset) {
2418			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
 
2419			if (ret)
2420				goto out;
2421		}
2422	}
2423out:
2424	btrfs_free_chunk_map(map);
2425
2426	return ret;
2427}
2428
2429static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2430					  struct btrfs_block_group *cache)
2431{
2432	struct btrfs_fs_info *fs_info = cache->fs_info;
2433	struct btrfs_trans_handle *trans;
2434
2435	if (!btrfs_is_zoned(fs_info))
2436		return 0;
2437
2438	btrfs_wait_block_group_reservations(cache);
2439	btrfs_wait_nocow_writers(cache);
2440	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2441
2442	trans = btrfs_join_transaction(root);
2443	if (IS_ERR(trans))
2444		return PTR_ERR(trans);
2445	return btrfs_commit_transaction(trans);
2446}
2447
2448static noinline_for_stack
2449int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2450			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2451{
2452	struct btrfs_dev_extent *dev_extent = NULL;
2453	struct btrfs_path *path;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	struct btrfs_root *root = fs_info->dev_root;
 
2456	u64 chunk_offset;
2457	int ret = 0;
2458	int ro_set;
2459	int slot;
2460	struct extent_buffer *l;
2461	struct btrfs_key key;
2462	struct btrfs_key found_key;
2463	struct btrfs_block_group *cache;
2464	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2465
2466	path = btrfs_alloc_path();
2467	if (!path)
2468		return -ENOMEM;
2469
2470	path->reada = READA_FORWARD;
2471	path->search_commit_root = 1;
2472	path->skip_locking = 1;
2473
2474	key.objectid = scrub_dev->devid;
2475	key.offset = 0ull;
2476	key.type = BTRFS_DEV_EXTENT_KEY;
2477
2478	while (1) {
2479		u64 dev_extent_len;
2480
2481		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482		if (ret < 0)
2483			break;
2484		if (ret > 0) {
2485			if (path->slots[0] >=
2486			    btrfs_header_nritems(path->nodes[0])) {
2487				ret = btrfs_next_leaf(root, path);
2488				if (ret < 0)
2489					break;
2490				if (ret > 0) {
2491					ret = 0;
2492					break;
2493				}
2494			} else {
2495				ret = 0;
2496			}
2497		}
2498
2499		l = path->nodes[0];
2500		slot = path->slots[0];
2501
2502		btrfs_item_key_to_cpu(l, &found_key, slot);
2503
2504		if (found_key.objectid != scrub_dev->devid)
2505			break;
2506
2507		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2508			break;
2509
2510		if (found_key.offset >= end)
2511			break;
2512
2513		if (found_key.offset < key.offset)
2514			break;
2515
2516		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2517		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2518
2519		if (found_key.offset + dev_extent_len <= start)
2520			goto skip;
2521
2522		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2523
2524		/*
2525		 * get a reference on the corresponding block group to prevent
2526		 * the chunk from going away while we scrub it
2527		 */
2528		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2529
2530		/* some chunks are removed but not committed to disk yet,
2531		 * continue scrubbing */
2532		if (!cache)
2533			goto skip;
2534
2535		ASSERT(cache->start <= chunk_offset);
2536		/*
2537		 * We are using the commit root to search for device extents, so
2538		 * that means we could have found a device extent item from a
2539		 * block group that was deleted in the current transaction. The
2540		 * logical start offset of the deleted block group, stored at
2541		 * @chunk_offset, might be part of the logical address range of
2542		 * a new block group (which uses different physical extents).
2543		 * In this case btrfs_lookup_block_group() has returned the new
2544		 * block group, and its start address is less than @chunk_offset.
2545		 *
2546		 * We skip such new block groups, because it's pointless to
2547		 * process them, as we won't find their extents because we search
2548		 * for them using the commit root of the extent tree. For a device
2549		 * replace it's also fine to skip it, we won't miss copying them
2550		 * to the target device because we have the write duplication
2551		 * setup through the regular write path (by btrfs_map_block()),
2552		 * and we have committed a transaction when we started the device
2553		 * replace, right after setting up the device replace state.
2554		 */
2555		if (cache->start < chunk_offset) {
2556			btrfs_put_block_group(cache);
2557			goto skip;
2558		}
2559
2560		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2561			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2562				btrfs_put_block_group(cache);
2563				goto skip;
2564			}
2565		}
2566
2567		/*
2568		 * Make sure that while we are scrubbing the corresponding block
2569		 * group doesn't get its logical address and its device extents
2570		 * reused for another block group, which can possibly be of a
2571		 * different type and different profile. We do this to prevent
2572		 * false error detections and crashes due to bogus attempts to
2573		 * repair extents.
2574		 */
2575		spin_lock(&cache->lock);
2576		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2577			spin_unlock(&cache->lock);
2578			btrfs_put_block_group(cache);
2579			goto skip;
2580		}
2581		btrfs_freeze_block_group(cache);
2582		spin_unlock(&cache->lock);
2583
2584		/*
2585		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2586		 * to avoid deadlock caused by:
2587		 * btrfs_inc_block_group_ro()
2588		 * -> btrfs_wait_for_commit()
2589		 * -> btrfs_commit_transaction()
2590		 * -> btrfs_scrub_pause()
2591		 */
2592		scrub_pause_on(fs_info);
2593
2594		/*
2595		 * Don't do chunk preallocation for scrub.
2596		 *
2597		 * This is especially important for SYSTEM bgs, or we can hit
2598		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2599		 * 1. The only SYSTEM bg is marked RO.
2600		 *    Since SYSTEM bg is small, that's pretty common.
2601		 * 2. New SYSTEM bg will be allocated
2602		 *    Due to regular version will allocate new chunk.
2603		 * 3. New SYSTEM bg is empty and will get cleaned up
2604		 *    Before cleanup really happens, it's marked RO again.
2605		 * 4. Empty SYSTEM bg get scrubbed
2606		 *    We go back to 2.
2607		 *
2608		 * This can easily boost the amount of SYSTEM chunks if cleaner
2609		 * thread can't be triggered fast enough, and use up all space
2610		 * of btrfs_super_block::sys_chunk_array
2611		 *
2612		 * While for dev replace, we need to try our best to mark block
2613		 * group RO, to prevent race between:
2614		 * - Write duplication
2615		 *   Contains latest data
2616		 * - Scrub copy
2617		 *   Contains data from commit tree
2618		 *
2619		 * If target block group is not marked RO, nocow writes can
2620		 * be overwritten by scrub copy, causing data corruption.
2621		 * So for dev-replace, it's not allowed to continue if a block
2622		 * group is not RO.
2623		 */
2624		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2625		if (!ret && sctx->is_dev_replace) {
2626			ret = finish_extent_writes_for_zoned(root, cache);
2627			if (ret) {
2628				btrfs_dec_block_group_ro(cache);
2629				scrub_pause_off(fs_info);
2630				btrfs_put_block_group(cache);
2631				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2632			}
2633		}
 
2634
2635		if (ret == 0) {
2636			ro_set = 1;
2637		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2638			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2639			/*
2640			 * btrfs_inc_block_group_ro return -ENOSPC when it
2641			 * failed in creating new chunk for metadata.
2642			 * It is not a problem for scrub, because
2643			 * metadata are always cowed, and our scrub paused
2644			 * commit_transactions.
2645			 *
2646			 * For RAID56 chunks, we have to mark them read-only
2647			 * for scrub, as later we would use our own cache
2648			 * out of RAID56 realm.
2649			 * Thus we want the RAID56 bg to be marked RO to
2650			 * prevent RMW from screwing up out cache.
2651			 */
2652			ro_set = 0;
2653		} else if (ret == -ETXTBSY) {
2654			btrfs_warn(fs_info,
2655		   "skipping scrub of block group %llu due to active swapfile",
2656				   cache->start);
2657			scrub_pause_off(fs_info);
2658			ret = 0;
2659			goto skip_unfreeze;
2660		} else {
2661			btrfs_warn(fs_info,
2662				   "failed setting block group ro: %d", ret);
2663			btrfs_unfreeze_block_group(cache);
2664			btrfs_put_block_group(cache);
2665			scrub_pause_off(fs_info);
2666			break;
2667		}
2668
2669		/*
2670		 * Now the target block is marked RO, wait for nocow writes to
2671		 * finish before dev-replace.
2672		 * COW is fine, as COW never overwrites extents in commit tree.
2673		 */
2674		if (sctx->is_dev_replace) {
2675			btrfs_wait_nocow_writers(cache);
2676			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2677					cache->length);
2678		}
2679
2680		scrub_pause_off(fs_info);
2681		down_write(&dev_replace->rwsem);
2682		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2683		dev_replace->cursor_left = found_key.offset;
2684		dev_replace->item_needs_writeback = 1;
2685		up_write(&dev_replace->rwsem);
2686
2687		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2688				  dev_extent_len);
2689		if (sctx->is_dev_replace &&
2690		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2691						      cache, found_key.offset))
2692			ro_set = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2693
2694		down_write(&dev_replace->rwsem);
2695		dev_replace->cursor_left = dev_replace->cursor_right;
2696		dev_replace->item_needs_writeback = 1;
2697		up_write(&dev_replace->rwsem);
2698
2699		if (ro_set)
2700			btrfs_dec_block_group_ro(cache);
2701
2702		/*
2703		 * We might have prevented the cleaner kthread from deleting
2704		 * this block group if it was already unused because we raced
2705		 * and set it to RO mode first. So add it back to the unused
2706		 * list, otherwise it might not ever be deleted unless a manual
2707		 * balance is triggered or it becomes used and unused again.
2708		 */
2709		spin_lock(&cache->lock);
2710		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2711		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2712			spin_unlock(&cache->lock);
2713			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2714				btrfs_discard_queue_work(&fs_info->discard_ctl,
2715							 cache);
2716			else
2717				btrfs_mark_bg_unused(cache);
2718		} else {
2719			spin_unlock(&cache->lock);
2720		}
2721skip_unfreeze:
2722		btrfs_unfreeze_block_group(cache);
2723		btrfs_put_block_group(cache);
2724		if (ret)
2725			break;
2726		if (sctx->is_dev_replace &&
2727		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2728			ret = -EIO;
2729			break;
2730		}
2731		if (sctx->stat.malloc_errors > 0) {
2732			ret = -ENOMEM;
2733			break;
2734		}
2735skip:
2736		key.offset = found_key.offset + dev_extent_len;
2737		btrfs_release_path(path);
2738	}
2739
2740	btrfs_free_path(path);
2741
2742	return ret;
2743}
2744
2745static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2746			   struct page *page, u64 physical, u64 generation)
2747{
2748	struct btrfs_fs_info *fs_info = sctx->fs_info;
2749	struct bio_vec bvec;
2750	struct bio bio;
2751	struct btrfs_super_block *sb = page_address(page);
2752	int ret;
2753
2754	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2755	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2756	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2757	ret = submit_bio_wait(&bio);
2758	bio_uninit(&bio);
2759
2760	if (ret < 0)
2761		return ret;
2762	ret = btrfs_check_super_csum(fs_info, sb);
2763	if (ret != 0) {
2764		btrfs_err_rl(fs_info,
2765			"super block at physical %llu devid %llu has bad csum",
2766			physical, dev->devid);
2767		return -EIO;
2768	}
2769	if (btrfs_super_generation(sb) != generation) {
2770		btrfs_err_rl(fs_info,
2771"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2772			     physical, dev->devid,
2773			     btrfs_super_generation(sb), generation);
2774		return -EUCLEAN;
2775	}
2776
2777	return btrfs_validate_super(fs_info, sb, -1);
2778}
2779
2780static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2781					   struct btrfs_device *scrub_dev)
2782{
2783	int	i;
2784	u64	bytenr;
2785	u64	gen;
2786	int ret = 0;
2787	struct page *page;
2788	struct btrfs_fs_info *fs_info = sctx->fs_info;
2789
2790	if (BTRFS_FS_ERROR(fs_info))
2791		return -EROFS;
2792
2793	page = alloc_page(GFP_KERNEL);
2794	if (!page) {
2795		spin_lock(&sctx->stat_lock);
2796		sctx->stat.malloc_errors++;
2797		spin_unlock(&sctx->stat_lock);
2798		return -ENOMEM;
2799	}
2800
2801	/* Seed devices of a new filesystem has their own generation. */
2802	if (scrub_dev->fs_devices != fs_info->fs_devices)
2803		gen = scrub_dev->generation;
2804	else
2805		gen = btrfs_get_last_trans_committed(fs_info);
2806
2807	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2808		bytenr = btrfs_sb_offset(i);
2809		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2810		    scrub_dev->commit_total_bytes)
2811			break;
2812		if (!btrfs_check_super_location(scrub_dev, bytenr))
2813			continue;
2814
2815		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2816		if (ret) {
2817			spin_lock(&sctx->stat_lock);
2818			sctx->stat.super_errors++;
2819			spin_unlock(&sctx->stat_lock);
2820		}
2821	}
2822	__free_page(page);
2823	return 0;
2824}
2825
2826static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2827{
2828	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2829					&fs_info->scrub_lock)) {
2830		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2831
2832		fs_info->scrub_workers = NULL;
2833		mutex_unlock(&fs_info->scrub_lock);
2834
2835		if (scrub_workers)
2836			destroy_workqueue(scrub_workers);
2837	}
2838}
2839
2840/*
2841 * get a reference count on fs_info->scrub_workers. start worker if necessary
2842 */
2843static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
 
2844{
2845	struct workqueue_struct *scrub_workers = NULL;
2846	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2847	int max_active = fs_info->thread_pool_size;
2848	int ret = -ENOMEM;
2849
2850	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2851		return 0;
2852
2853	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2854	if (!scrub_workers)
2855		return -ENOMEM;
2856
2857	mutex_lock(&fs_info->scrub_lock);
2858	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2859		ASSERT(fs_info->scrub_workers == NULL);
2860		fs_info->scrub_workers = scrub_workers;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2862		mutex_unlock(&fs_info->scrub_lock);
2863		return 0;
2864	}
2865	/* Other thread raced in and created the workers for us */
2866	refcount_inc(&fs_info->scrub_workers_refcnt);
2867	mutex_unlock(&fs_info->scrub_lock);
2868
2869	ret = 0;
2870
2871	destroy_workqueue(scrub_workers);
2872	return ret;
 
 
 
 
2873}
2874
2875int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2876		    u64 end, struct btrfs_scrub_progress *progress,
2877		    int readonly, int is_dev_replace)
2878{
2879	struct btrfs_dev_lookup_args args = { .devid = devid };
2880	struct scrub_ctx *sctx;
2881	int ret;
2882	struct btrfs_device *dev;
2883	unsigned int nofs_flag;
2884	bool need_commit = false;
 
 
2885
2886	if (btrfs_fs_closing(fs_info))
2887		return -EAGAIN;
2888
2889	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2890	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
 
 
 
 
 
 
 
 
 
 
2891
2892	/*
2893	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2894	 * value (max nodesize / min sectorsize), thus nodesize should always
2895	 * be fine.
2896	 */
2897	ASSERT(fs_info->nodesize <=
2898	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2899
2900	/* Allocate outside of device_list_mutex */
2901	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2902	if (IS_ERR(sctx))
2903		return PTR_ERR(sctx);
2904
2905	ret = scrub_workers_get(fs_info);
2906	if (ret)
2907		goto out_free_ctx;
2908
2909	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2910	dev = btrfs_find_device(fs_info->fs_devices, &args);
2911	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2912		     !is_dev_replace)) {
2913		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2914		ret = -ENODEV;
2915		goto out;
2916	}
2917
2918	if (!is_dev_replace && !readonly &&
2919	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2920		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2921		btrfs_err_in_rcu(fs_info,
2922			"scrub on devid %llu: filesystem on %s is not writable",
2923				 devid, btrfs_dev_name(dev));
2924		ret = -EROFS;
2925		goto out;
2926	}
2927
2928	mutex_lock(&fs_info->scrub_lock);
2929	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2930	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2931		mutex_unlock(&fs_info->scrub_lock);
2932		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933		ret = -EIO;
2934		goto out;
2935	}
2936
2937	down_read(&fs_info->dev_replace.rwsem);
2938	if (dev->scrub_ctx ||
2939	    (!is_dev_replace &&
2940	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2941		up_read(&fs_info->dev_replace.rwsem);
2942		mutex_unlock(&fs_info->scrub_lock);
2943		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2944		ret = -EINPROGRESS;
2945		goto out;
2946	}
2947	up_read(&fs_info->dev_replace.rwsem);
2948
 
 
 
 
 
 
 
2949	sctx->readonly = readonly;
2950	dev->scrub_ctx = sctx;
2951	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2952
2953	/*
2954	 * checking @scrub_pause_req here, we can avoid
2955	 * race between committing transaction and scrubbing.
2956	 */
2957	__scrub_blocked_if_needed(fs_info);
2958	atomic_inc(&fs_info->scrubs_running);
2959	mutex_unlock(&fs_info->scrub_lock);
2960
2961	/*
2962	 * In order to avoid deadlock with reclaim when there is a transaction
2963	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2964	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2965	 * invoked by our callees. The pausing request is done when the
2966	 * transaction commit starts, and it blocks the transaction until scrub
2967	 * is paused (done at specific points at scrub_stripe() or right above
2968	 * before incrementing fs_info->scrubs_running).
2969	 */
2970	nofs_flag = memalloc_nofs_save();
2971	if (!is_dev_replace) {
2972		u64 old_super_errors;
2973
2974		spin_lock(&sctx->stat_lock);
2975		old_super_errors = sctx->stat.super_errors;
2976		spin_unlock(&sctx->stat_lock);
2977
2978		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2979		/*
2980		 * by holding device list mutex, we can
2981		 * kick off writing super in log tree sync.
2982		 */
2983		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2984		ret = scrub_supers(sctx, dev);
2985		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986
2987		spin_lock(&sctx->stat_lock);
2988		/*
2989		 * Super block errors found, but we can not commit transaction
2990		 * at current context, since btrfs_commit_transaction() needs
2991		 * to pause the current running scrub (hold by ourselves).
2992		 */
2993		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2994			need_commit = true;
2995		spin_unlock(&sctx->stat_lock);
2996	}
2997
2998	if (!ret)
2999		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3000	memalloc_nofs_restore(nofs_flag);
3001
 
3002	atomic_dec(&fs_info->scrubs_running);
3003	wake_up(&fs_info->scrub_pause_wait);
3004
 
 
3005	if (progress)
3006		memcpy(progress, &sctx->stat, sizeof(*progress));
3007
3008	if (!is_dev_replace)
3009		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3010			ret ? "not finished" : "finished", devid, ret);
3011
3012	mutex_lock(&fs_info->scrub_lock);
3013	dev->scrub_ctx = NULL;
 
 
 
 
 
 
 
 
 
3014	mutex_unlock(&fs_info->scrub_lock);
3015
3016	scrub_workers_put(fs_info);
 
 
3017	scrub_put_ctx(sctx);
3018
3019	/*
3020	 * We found some super block errors before, now try to force a
3021	 * transaction commit, as scrub has finished.
3022	 */
3023	if (need_commit) {
3024		struct btrfs_trans_handle *trans;
3025
3026		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3027		if (IS_ERR(trans)) {
3028			ret = PTR_ERR(trans);
3029			btrfs_err(fs_info,
3030	"scrub: failed to start transaction to fix super block errors: %d", ret);
3031			return ret;
3032		}
3033		ret = btrfs_commit_transaction(trans);
3034		if (ret < 0)
3035			btrfs_err(fs_info,
3036	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3037	}
3038	return ret;
3039out:
3040	scrub_workers_put(fs_info);
3041out_free_ctx:
3042	scrub_free_ctx(sctx);
3043
3044	return ret;
3045}
3046
3047void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3048{
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3063{
3064	atomic_dec(&fs_info->scrub_pause_req);
3065	wake_up(&fs_info->scrub_pause_wait);
3066}
3067
3068int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3069{
3070	mutex_lock(&fs_info->scrub_lock);
3071	if (!atomic_read(&fs_info->scrubs_running)) {
3072		mutex_unlock(&fs_info->scrub_lock);
3073		return -ENOTCONN;
3074	}
3075
3076	atomic_inc(&fs_info->scrub_cancel_req);
3077	while (atomic_read(&fs_info->scrubs_running)) {
3078		mutex_unlock(&fs_info->scrub_lock);
3079		wait_event(fs_info->scrub_pause_wait,
3080			   atomic_read(&fs_info->scrubs_running) == 0);
3081		mutex_lock(&fs_info->scrub_lock);
3082	}
3083	atomic_dec(&fs_info->scrub_cancel_req);
3084	mutex_unlock(&fs_info->scrub_lock);
3085
3086	return 0;
3087}
3088
3089int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3090{
3091	struct btrfs_fs_info *fs_info = dev->fs_info;
3092	struct scrub_ctx *sctx;
3093
3094	mutex_lock(&fs_info->scrub_lock);
3095	sctx = dev->scrub_ctx;
3096	if (!sctx) {
3097		mutex_unlock(&fs_info->scrub_lock);
3098		return -ENOTCONN;
3099	}
3100	atomic_inc(&sctx->cancel_req);
3101	while (dev->scrub_ctx) {
3102		mutex_unlock(&fs_info->scrub_lock);
3103		wait_event(fs_info->scrub_pause_wait,
3104			   dev->scrub_ctx == NULL);
3105		mutex_lock(&fs_info->scrub_lock);
3106	}
3107	mutex_unlock(&fs_info->scrub_lock);
3108
3109	return 0;
3110}
3111
3112int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3113			 struct btrfs_scrub_progress *progress)
3114{
3115	struct btrfs_dev_lookup_args args = { .devid = devid };
3116	struct btrfs_device *dev;
3117	struct scrub_ctx *sctx = NULL;
3118
3119	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3120	dev = btrfs_find_device(fs_info->fs_devices, &args);
3121	if (dev)
3122		sctx = dev->scrub_ctx;
3123	if (sctx)
3124		memcpy(progress, &sctx->stat, sizeof(*progress));
3125	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3126
3127	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3128}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
 
  11#include "volumes.h"
  12#include "disk-io.h"
  13#include "ordered-data.h"
  14#include "transaction.h"
  15#include "backref.h"
  16#include "extent_io.h"
  17#include "dev-replace.h"
  18#include "check-integrity.h"
  19#include "rcu-string.h"
  20#include "raid56.h"
  21#include "block-group.h"
 
 
 
 
 
 
  22
  23/*
  24 * This is only the first step towards a full-features scrub. It reads all
  25 * extent and super block and verifies the checksums. In case a bad checksum
  26 * is found or the extent cannot be read, good data will be written back if
  27 * any can be found.
  28 *
  29 * Future enhancements:
  30 *  - In case an unrepairable extent is encountered, track which files are
  31 *    affected and report them
  32 *  - track and record media errors, throw out bad devices
  33 *  - add a mode to also read unallocated space
  34 */
  35
  36struct scrub_block;
  37struct scrub_ctx;
  38
  39/*
  40 * the following three values only influence the performance.
  41 * The last one configures the number of parallel and outstanding I/O
  42 * operations. The first two values configure an upper limit for the number
  43 * of (dynamically allocated) pages that are added to a bio.
 
 
 
 
 
 
 
 
  44 */
  45#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  46#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  47#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  48
  49/*
  50 * the following value times PAGE_SIZE needs to be large enough to match the
  51 * largest node/leaf/sector size that shall be supported.
  52 * Values larger than BTRFS_STRIPE_LEN are not supported.
  53 */
  54#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  55
  56struct scrub_recover {
  57	refcount_t		refs;
  58	struct btrfs_bio	*bbio;
  59	u64			map_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60};
  61
  62struct scrub_page {
  63	struct scrub_block	*sblock;
  64	struct page		*page;
  65	struct btrfs_device	*dev;
  66	struct list_head	list;
  67	u64			flags;  /* extent flags */
  68	u64			generation;
  69	u64			logical;
  70	u64			physical;
  71	u64			physical_for_dev_replace;
  72	atomic_t		refs;
  73	struct {
  74		unsigned int	mirror_num:8;
  75		unsigned int	have_csum:1;
  76		unsigned int	io_error:1;
  77	};
  78	u8			csum[BTRFS_CSUM_SIZE];
  79
  80	struct scrub_recover	*recover;
  81};
  82
  83struct scrub_bio {
  84	int			index;
  85	struct scrub_ctx	*sctx;
  86	struct btrfs_device	*dev;
  87	struct bio		*bio;
  88	blk_status_t		status;
  89	u64			logical;
  90	u64			physical;
  91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  93#else
  94	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  95#endif
  96	int			page_count;
  97	int			next_free;
  98	struct btrfs_work	work;
  99};
 100
 101struct scrub_block {
 102	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 103	int			page_count;
 104	atomic_t		outstanding_pages;
 105	refcount_t		refs; /* free mem on transition to zero */
 106	struct scrub_ctx	*sctx;
 107	struct scrub_parity	*sparity;
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 113
 114		/* The following is for the data used to check parity */
 115		/* It is for the data with checksum */
 116		unsigned int	data_corrected:1;
 117	};
 118	struct btrfs_work	work;
 119};
 120
 121/* Used for the chunks with parity stripe such RAID5/6 */
 122struct scrub_parity {
 123	struct scrub_ctx	*sctx;
 
 
 
 124
 125	struct btrfs_device	*scrub_dev;
 
 126
 127	u64			logic_start;
 
 
 128
 129	u64			logic_end;
 130
 131	int			nsectors;
 
 132
 133	u64			stripe_len;
 
 
 
 
 
 134
 135	refcount_t		refs;
 
 
 136
 137	struct list_head	spages;
 
 
 
 
 138
 139	/* Work of parity check and repair */
 140	struct btrfs_work	work;
 141
 142	/* Mark the parity blocks which have data */
 143	unsigned long		*dbitmap;
 
 
 
 
 
 
 
 
 
 
 144
 145	/*
 146	 * Mark the parity blocks which have data, but errors happen when
 147	 * read data or check data
 
 
 
 
 148	 */
 149	unsigned long		*ebitmap;
 
 
 
 150
 151	unsigned long		bitmap[0];
 
 
 
 
 
 
 
 
 
 
 
 
 152};
 153
 154struct scrub_ctx {
 155	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 
 156	struct btrfs_fs_info	*fs_info;
 
 
 157	int			first_free;
 158	int			curr;
 159	atomic_t		bios_in_flight;
 160	atomic_t		workers_pending;
 161	spinlock_t		list_lock;
 162	wait_queue_head_t	list_wait;
 163	u16			csum_size;
 164	struct list_head	csum_list;
 165	atomic_t		cancel_req;
 166	int			readonly;
 167	int			pages_per_rd_bio;
 
 
 
 168
 169	int			is_dev_replace;
 
 170
 171	struct scrub_bio        *wr_curr_bio;
 172	struct mutex            wr_lock;
 173	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 174	struct btrfs_device     *wr_tgtdev;
 175	bool                    flush_all_writes;
 176
 177	/*
 178	 * statistics
 179	 */
 180	struct btrfs_scrub_progress stat;
 181	spinlock_t		stat_lock;
 182
 183	/*
 184	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 185	 * decrement bios_in_flight and workers_pending and then do a wakeup
 186	 * on the list_wait wait queue. We must ensure the main scrub task
 187	 * doesn't free the scrub context before or while the workers are
 188	 * doing the wakeup() call.
 189	 */
 190	refcount_t              refs;
 191};
 192
 193struct scrub_warning {
 194	struct btrfs_path	*path;
 195	u64			extent_item_size;
 196	const char		*errstr;
 197	u64			physical;
 198	u64			logical;
 199	struct btrfs_device	*dev;
 200};
 201
 202struct full_stripe_lock {
 203	struct rb_node node;
 204	u64 logical;
 205	u64 refs;
 206	struct mutex mutex;
 207};
 208
 209static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 210static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 211static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 212static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 213				     struct scrub_block *sblocks_for_recheck);
 214static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 215				struct scrub_block *sblock,
 216				int retry_failed_mirror);
 217static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 218static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 219					     struct scrub_block *sblock_good);
 220static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 221					    struct scrub_block *sblock_good,
 222					    int page_num, int force_write);
 223static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 224static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 225					   int page_num);
 226static int scrub_checksum_data(struct scrub_block *sblock);
 227static int scrub_checksum_tree_block(struct scrub_block *sblock);
 228static int scrub_checksum_super(struct scrub_block *sblock);
 229static void scrub_block_get(struct scrub_block *sblock);
 230static void scrub_block_put(struct scrub_block *sblock);
 231static void scrub_page_get(struct scrub_page *spage);
 232static void scrub_page_put(struct scrub_page *spage);
 233static void scrub_parity_get(struct scrub_parity *sparity);
 234static void scrub_parity_put(struct scrub_parity *sparity);
 235static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 236				    struct scrub_page *spage);
 237static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 238		       u64 physical, struct btrfs_device *dev, u64 flags,
 239		       u64 gen, int mirror_num, u8 *csum, int force,
 240		       u64 physical_for_dev_replace);
 241static void scrub_bio_end_io(struct bio *bio);
 242static void scrub_bio_end_io_worker(struct btrfs_work *work);
 243static void scrub_block_complete(struct scrub_block *sblock);
 244static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 245			       u64 extent_logical, u64 extent_len,
 246			       u64 *extent_physical,
 247			       struct btrfs_device **extent_dev,
 248			       int *extent_mirror_num);
 249static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 250				    struct scrub_page *spage);
 251static void scrub_wr_submit(struct scrub_ctx *sctx);
 252static void scrub_wr_bio_end_io(struct bio *bio);
 253static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 254static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 255static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 256static void scrub_put_ctx(struct scrub_ctx *sctx);
 257
 258static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 
 259{
 260	return page->recover &&
 261	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262}
 263
 264static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 265{
 266	refcount_inc(&sctx->refs);
 267	atomic_inc(&sctx->bios_in_flight);
 268}
 269
 270static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 271{
 272	atomic_dec(&sctx->bios_in_flight);
 273	wake_up(&sctx->list_wait);
 274	scrub_put_ctx(sctx);
 275}
 276
 277static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 278{
 279	while (atomic_read(&fs_info->scrub_pause_req)) {
 280		mutex_unlock(&fs_info->scrub_lock);
 281		wait_event(fs_info->scrub_pause_wait,
 282		   atomic_read(&fs_info->scrub_pause_req) == 0);
 283		mutex_lock(&fs_info->scrub_lock);
 284	}
 285}
 286
 287static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 288{
 289	atomic_inc(&fs_info->scrubs_paused);
 290	wake_up(&fs_info->scrub_pause_wait);
 291}
 292
 293static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 294{
 295	mutex_lock(&fs_info->scrub_lock);
 296	__scrub_blocked_if_needed(fs_info);
 297	atomic_dec(&fs_info->scrubs_paused);
 298	mutex_unlock(&fs_info->scrub_lock);
 299
 300	wake_up(&fs_info->scrub_pause_wait);
 301}
 302
 303static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 304{
 305	scrub_pause_on(fs_info);
 306	scrub_pause_off(fs_info);
 307}
 308
 309/*
 310 * Insert new full stripe lock into full stripe locks tree
 311 *
 312 * Return pointer to existing or newly inserted full_stripe_lock structure if
 313 * everything works well.
 314 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 315 *
 316 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 317 * function
 318 */
 319static struct full_stripe_lock *insert_full_stripe_lock(
 320		struct btrfs_full_stripe_locks_tree *locks_root,
 321		u64 fstripe_logical)
 322{
 323	struct rb_node **p;
 324	struct rb_node *parent = NULL;
 325	struct full_stripe_lock *entry;
 326	struct full_stripe_lock *ret;
 327
 328	lockdep_assert_held(&locks_root->lock);
 329
 330	p = &locks_root->root.rb_node;
 331	while (*p) {
 332		parent = *p;
 333		entry = rb_entry(parent, struct full_stripe_lock, node);
 334		if (fstripe_logical < entry->logical) {
 335			p = &(*p)->rb_left;
 336		} else if (fstripe_logical > entry->logical) {
 337			p = &(*p)->rb_right;
 338		} else {
 339			entry->refs++;
 340			return entry;
 341		}
 342	}
 343
 344	/*
 345	 * Insert new lock.
 346	 */
 347	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 348	if (!ret)
 349		return ERR_PTR(-ENOMEM);
 350	ret->logical = fstripe_logical;
 351	ret->refs = 1;
 352	mutex_init(&ret->mutex);
 353
 354	rb_link_node(&ret->node, parent, p);
 355	rb_insert_color(&ret->node, &locks_root->root);
 356	return ret;
 357}
 358
 359/*
 360 * Search for a full stripe lock of a block group
 361 *
 362 * Return pointer to existing full stripe lock if found
 363 * Return NULL if not found
 364 */
 365static struct full_stripe_lock *search_full_stripe_lock(
 366		struct btrfs_full_stripe_locks_tree *locks_root,
 367		u64 fstripe_logical)
 368{
 369	struct rb_node *node;
 370	struct full_stripe_lock *entry;
 371
 372	lockdep_assert_held(&locks_root->lock);
 373
 374	node = locks_root->root.rb_node;
 375	while (node) {
 376		entry = rb_entry(node, struct full_stripe_lock, node);
 377		if (fstripe_logical < entry->logical)
 378			node = node->rb_left;
 379		else if (fstripe_logical > entry->logical)
 380			node = node->rb_right;
 381		else
 382			return entry;
 383	}
 384	return NULL;
 385}
 386
 387/*
 388 * Helper to get full stripe logical from a normal bytenr.
 389 *
 390 * Caller must ensure @cache is a RAID56 block group.
 391 */
 392static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 393				   u64 bytenr)
 394{
 395	u64 ret;
 396
 397	/*
 398	 * Due to chunk item size limit, full stripe length should not be
 399	 * larger than U32_MAX. Just a sanity check here.
 400	 */
 401	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 402
 403	/*
 404	 * round_down() can only handle power of 2, while RAID56 full
 405	 * stripe length can be 64KiB * n, so we need to manually round down.
 406	 */
 407	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 408		cache->full_stripe_len + cache->key.objectid;
 409	return ret;
 410}
 411
 412/*
 413 * Lock a full stripe to avoid concurrency of recovery and read
 414 *
 415 * It's only used for profiles with parities (RAID5/6), for other profiles it
 416 * does nothing.
 417 *
 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 419 * So caller must call unlock_full_stripe() at the same context.
 420 *
 421 * Return <0 if encounters error.
 422 */
 423static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 424			    bool *locked_ret)
 425{
 426	struct btrfs_block_group_cache *bg_cache;
 427	struct btrfs_full_stripe_locks_tree *locks_root;
 428	struct full_stripe_lock *existing;
 429	u64 fstripe_start;
 430	int ret = 0;
 431
 432	*locked_ret = false;
 433	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 434	if (!bg_cache) {
 435		ASSERT(0);
 436		return -ENOENT;
 437	}
 438
 439	/* Profiles not based on parity don't need full stripe lock */
 440	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 441		goto out;
 442	locks_root = &bg_cache->full_stripe_locks_root;
 443
 444	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 445
 446	/* Now insert the full stripe lock */
 447	mutex_lock(&locks_root->lock);
 448	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 449	mutex_unlock(&locks_root->lock);
 450	if (IS_ERR(existing)) {
 451		ret = PTR_ERR(existing);
 452		goto out;
 453	}
 454	mutex_lock(&existing->mutex);
 455	*locked_ret = true;
 456out:
 457	btrfs_put_block_group(bg_cache);
 458	return ret;
 459}
 460
 461/*
 462 * Unlock a full stripe.
 463 *
 464 * NOTE: Caller must ensure it's the same context calling corresponding
 465 * lock_full_stripe().
 466 *
 467 * Return 0 if we unlock full stripe without problem.
 468 * Return <0 for error
 469 */
 470static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 471			      bool locked)
 472{
 473	struct btrfs_block_group_cache *bg_cache;
 474	struct btrfs_full_stripe_locks_tree *locks_root;
 475	struct full_stripe_lock *fstripe_lock;
 476	u64 fstripe_start;
 477	bool freeit = false;
 478	int ret = 0;
 479
 480	/* If we didn't acquire full stripe lock, no need to continue */
 481	if (!locked)
 482		return 0;
 483
 484	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 485	if (!bg_cache) {
 486		ASSERT(0);
 487		return -ENOENT;
 488	}
 489	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 490		goto out;
 491
 492	locks_root = &bg_cache->full_stripe_locks_root;
 493	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 494
 495	mutex_lock(&locks_root->lock);
 496	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 497	/* Unpaired unlock_full_stripe() detected */
 498	if (!fstripe_lock) {
 499		WARN_ON(1);
 500		ret = -ENOENT;
 501		mutex_unlock(&locks_root->lock);
 502		goto out;
 503	}
 504
 505	if (fstripe_lock->refs == 0) {
 506		WARN_ON(1);
 507		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 508			fstripe_lock->logical);
 509	} else {
 510		fstripe_lock->refs--;
 511	}
 512
 513	if (fstripe_lock->refs == 0) {
 514		rb_erase(&fstripe_lock->node, &locks_root->root);
 515		freeit = true;
 516	}
 517	mutex_unlock(&locks_root->lock);
 518
 519	mutex_unlock(&fstripe_lock->mutex);
 520	if (freeit)
 521		kfree(fstripe_lock);
 522out:
 523	btrfs_put_block_group(bg_cache);
 524	return ret;
 525}
 526
 527static void scrub_free_csums(struct scrub_ctx *sctx)
 528{
 529	while (!list_empty(&sctx->csum_list)) {
 530		struct btrfs_ordered_sum *sum;
 531		sum = list_first_entry(&sctx->csum_list,
 532				       struct btrfs_ordered_sum, list);
 533		list_del(&sum->list);
 534		kfree(sum);
 535	}
 536}
 537
 538static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 539{
 540	int i;
 541
 542	if (!sctx)
 543		return;
 544
 545	/* this can happen when scrub is cancelled */
 546	if (sctx->curr != -1) {
 547		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 548
 549		for (i = 0; i < sbio->page_count; i++) {
 550			WARN_ON(!sbio->pagev[i]->page);
 551			scrub_block_put(sbio->pagev[i]->sblock);
 552		}
 553		bio_put(sbio->bio);
 554	}
 555
 556	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 557		struct scrub_bio *sbio = sctx->bios[i];
 558
 559		if (!sbio)
 560			break;
 561		kfree(sbio);
 562	}
 563
 564	kfree(sctx->wr_curr_bio);
 565	scrub_free_csums(sctx);
 566	kfree(sctx);
 567}
 568
 569static void scrub_put_ctx(struct scrub_ctx *sctx)
 570{
 571	if (refcount_dec_and_test(&sctx->refs))
 572		scrub_free_ctx(sctx);
 573}
 574
 575static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 576		struct btrfs_fs_info *fs_info, int is_dev_replace)
 577{
 578	struct scrub_ctx *sctx;
 579	int		i;
 580
 581	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 582	if (!sctx)
 583		goto nomem;
 584	refcount_set(&sctx->refs, 1);
 585	sctx->is_dev_replace = is_dev_replace;
 586	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 587	sctx->curr = -1;
 588	sctx->fs_info = fs_info;
 589	INIT_LIST_HEAD(&sctx->csum_list);
 590	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 591		struct scrub_bio *sbio;
 
 
 
 592
 593		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 594		if (!sbio)
 595			goto nomem;
 596		sctx->bios[i] = sbio;
 597
 598		sbio->index = i;
 599		sbio->sctx = sctx;
 600		sbio->page_count = 0;
 601		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 602				scrub_bio_end_io_worker, NULL, NULL);
 603
 604		if (i != SCRUB_BIOS_PER_SCTX - 1)
 605			sctx->bios[i]->next_free = i + 1;
 606		else
 607			sctx->bios[i]->next_free = -1;
 608	}
 609	sctx->first_free = 0;
 610	atomic_set(&sctx->bios_in_flight, 0);
 611	atomic_set(&sctx->workers_pending, 0);
 612	atomic_set(&sctx->cancel_req, 0);
 613	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 614
 615	spin_lock_init(&sctx->list_lock);
 616	spin_lock_init(&sctx->stat_lock);
 617	init_waitqueue_head(&sctx->list_wait);
 618
 619	WARN_ON(sctx->wr_curr_bio != NULL);
 620	mutex_init(&sctx->wr_lock);
 621	sctx->wr_curr_bio = NULL;
 622	if (is_dev_replace) {
 623		WARN_ON(!fs_info->dev_replace.tgtdev);
 624		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 625		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 626		sctx->flush_all_writes = false;
 627	}
 628
 629	return sctx;
 630
 631nomem:
 632	scrub_free_ctx(sctx);
 633	return ERR_PTR(-ENOMEM);
 634}
 635
 636static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 637				     void *warn_ctx)
 638{
 639	u64 isize;
 640	u32 nlink;
 641	int ret;
 642	int i;
 643	unsigned nofs_flag;
 644	struct extent_buffer *eb;
 645	struct btrfs_inode_item *inode_item;
 646	struct scrub_warning *swarn = warn_ctx;
 647	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 648	struct inode_fs_paths *ipath = NULL;
 649	struct btrfs_root *local_root;
 650	struct btrfs_key root_key;
 651	struct btrfs_key key;
 652
 653	root_key.objectid = root;
 654	root_key.type = BTRFS_ROOT_ITEM_KEY;
 655	root_key.offset = (u64)-1;
 656	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 657	if (IS_ERR(local_root)) {
 658		ret = PTR_ERR(local_root);
 659		goto err;
 660	}
 661
 662	/*
 663	 * this makes the path point to (inum INODE_ITEM ioff)
 664	 */
 665	key.objectid = inum;
 666	key.type = BTRFS_INODE_ITEM_KEY;
 667	key.offset = 0;
 668
 669	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 670	if (ret) {
 
 671		btrfs_release_path(swarn->path);
 672		goto err;
 673	}
 674
 675	eb = swarn->path->nodes[0];
 676	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 677					struct btrfs_inode_item);
 678	isize = btrfs_inode_size(eb, inode_item);
 679	nlink = btrfs_inode_nlink(eb, inode_item);
 680	btrfs_release_path(swarn->path);
 681
 682	/*
 683	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 684	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 685	 * not seem to be strictly necessary.
 686	 */
 687	nofs_flag = memalloc_nofs_save();
 688	ipath = init_ipath(4096, local_root, swarn->path);
 689	memalloc_nofs_restore(nofs_flag);
 690	if (IS_ERR(ipath)) {
 
 691		ret = PTR_ERR(ipath);
 692		ipath = NULL;
 693		goto err;
 694	}
 695	ret = paths_from_inode(inum, ipath);
 696
 697	if (ret < 0)
 698		goto err;
 699
 700	/*
 701	 * we deliberately ignore the bit ipath might have been too small to
 702	 * hold all of the paths here
 703	 */
 704	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 705		btrfs_warn_in_rcu(fs_info,
 706"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 707				  swarn->errstr, swarn->logical,
 708				  rcu_str_deref(swarn->dev->name),
 709				  swarn->physical,
 710				  root, inum, offset,
 711				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 712				  (char *)(unsigned long)ipath->fspath->val[i]);
 713
 
 714	free_ipath(ipath);
 715	return 0;
 716
 717err:
 718	btrfs_warn_in_rcu(fs_info,
 719			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 720			  swarn->errstr, swarn->logical,
 721			  rcu_str_deref(swarn->dev->name),
 722			  swarn->physical,
 723			  root, inum, offset, ret);
 724
 725	free_ipath(ipath);
 726	return 0;
 727}
 728
 729static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 
 730{
 731	struct btrfs_device *dev;
 732	struct btrfs_fs_info *fs_info;
 733	struct btrfs_path *path;
 734	struct btrfs_key found_key;
 735	struct extent_buffer *eb;
 736	struct btrfs_extent_item *ei;
 737	struct scrub_warning swarn;
 738	unsigned long ptr = 0;
 739	u64 extent_item_pos;
 740	u64 flags = 0;
 741	u64 ref_root;
 742	u32 item_size;
 743	u8 ref_level = 0;
 744	int ret;
 745
 746	WARN_ON(sblock->page_count < 1);
 747	dev = sblock->pagev[0]->dev;
 748	fs_info = sblock->sctx->fs_info;
 749
 
 
 750	path = btrfs_alloc_path();
 751	if (!path)
 752		return;
 753
 754	swarn.physical = sblock->pagev[0]->physical;
 755	swarn.logical = sblock->pagev[0]->logical;
 756	swarn.errstr = errstr;
 757	swarn.dev = NULL;
 758
 759	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 760				  &flags);
 761	if (ret < 0)
 762		goto out;
 763
 764	extent_item_pos = swarn.logical - found_key.objectid;
 765	swarn.extent_item_size = found_key.offset;
 766
 767	eb = path->nodes[0];
 768	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 769	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 770
 771	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 772		do {
 
 
 
 
 773			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 774						      item_size, &ref_root,
 775						      &ref_level);
 
 
 
 
 
 
 
 
 776			btrfs_warn_in_rcu(fs_info,
 777"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 778				errstr, swarn.logical,
 779				rcu_str_deref(dev->name),
 780				swarn.physical,
 781				ref_level ? "node" : "leaf",
 782				ret < 0 ? -1 : ref_level,
 783				ret < 0 ? -1 : ref_root);
 784		} while (ret != 1);
 785		btrfs_release_path(path);
 786	} else {
 
 
 787		btrfs_release_path(path);
 
 
 
 
 
 788		swarn.path = path;
 789		swarn.dev = dev;
 790		iterate_extent_inodes(fs_info, found_key.objectid,
 791					extent_item_pos, 1,
 792					scrub_print_warning_inode, &swarn, false);
 793	}
 794
 795out:
 796	btrfs_free_path(path);
 797}
 798
 799static inline void scrub_get_recover(struct scrub_recover *recover)
 800{
 801	refcount_inc(&recover->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802}
 803
 804static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 805				     struct scrub_recover *recover)
 806{
 807	if (refcount_dec_and_test(&recover->refs)) {
 808		btrfs_bio_counter_dec(fs_info);
 809		btrfs_put_bbio(recover->bbio);
 810		kfree(recover);
 811	}
 812}
 813
 814/*
 815 * scrub_handle_errored_block gets called when either verification of the
 816 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 817 * case, this function handles all pages in the bio, even though only one
 818 * may be bad.
 819 * The goal of this function is to repair the errored block by using the
 820 * contents of one of the mirrors.
 821 */
 822static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 823{
 824	struct scrub_ctx *sctx = sblock_to_check->sctx;
 825	struct btrfs_device *dev;
 826	struct btrfs_fs_info *fs_info;
 827	u64 logical;
 828	unsigned int failed_mirror_index;
 829	unsigned int is_metadata;
 830	unsigned int have_csum;
 831	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 832	struct scrub_block *sblock_bad;
 833	int ret;
 834	int mirror_index;
 835	int page_num;
 836	int success;
 837	bool full_stripe_locked;
 838	unsigned int nofs_flag;
 839	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 840				      DEFAULT_RATELIMIT_BURST);
 841
 842	BUG_ON(sblock_to_check->page_count < 1);
 843	fs_info = sctx->fs_info;
 844	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 845		/*
 846		 * if we find an error in a super block, we just report it.
 847		 * They will get written with the next transaction commit
 848		 * anyway
 849		 */
 850		spin_lock(&sctx->stat_lock);
 851		++sctx->stat.super_errors;
 852		spin_unlock(&sctx->stat_lock);
 853		return 0;
 854	}
 855	logical = sblock_to_check->pagev[0]->logical;
 856	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 857	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 858	is_metadata = !(sblock_to_check->pagev[0]->flags &
 859			BTRFS_EXTENT_FLAG_DATA);
 860	have_csum = sblock_to_check->pagev[0]->have_csum;
 861	dev = sblock_to_check->pagev[0]->dev;
 862
 863	/*
 864	 * We must use GFP_NOFS because the scrub task might be waiting for a
 865	 * worker task executing this function and in turn a transaction commit
 866	 * might be waiting the scrub task to pause (which needs to wait for all
 867	 * the worker tasks to complete before pausing).
 868	 * We do allocations in the workers through insert_full_stripe_lock()
 869	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 870	 * this function.
 871	 */
 872	nofs_flag = memalloc_nofs_save();
 873	/*
 874	 * For RAID5/6, race can happen for a different device scrub thread.
 875	 * For data corruption, Parity and Data threads will both try
 876	 * to recovery the data.
 877	 * Race can lead to doubly added csum error, or even unrecoverable
 878	 * error.
 879	 */
 880	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 881	if (ret < 0) {
 882		memalloc_nofs_restore(nofs_flag);
 883		spin_lock(&sctx->stat_lock);
 884		if (ret == -ENOMEM)
 885			sctx->stat.malloc_errors++;
 886		sctx->stat.read_errors++;
 887		sctx->stat.uncorrectable_errors++;
 888		spin_unlock(&sctx->stat_lock);
 889		return ret;
 890	}
 891
 892	/*
 893	 * read all mirrors one after the other. This includes to
 894	 * re-read the extent or metadata block that failed (that was
 895	 * the cause that this fixup code is called) another time,
 896	 * page by page this time in order to know which pages
 897	 * caused I/O errors and which ones are good (for all mirrors).
 898	 * It is the goal to handle the situation when more than one
 899	 * mirror contains I/O errors, but the errors do not
 900	 * overlap, i.e. the data can be repaired by selecting the
 901	 * pages from those mirrors without I/O error on the
 902	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 903	 * would be that mirror #1 has an I/O error on the first page,
 904	 * the second page is good, and mirror #2 has an I/O error on
 905	 * the second page, but the first page is good.
 906	 * Then the first page of the first mirror can be repaired by
 907	 * taking the first page of the second mirror, and the
 908	 * second page of the second mirror can be repaired by
 909	 * copying the contents of the 2nd page of the 1st mirror.
 910	 * One more note: if the pages of one mirror contain I/O
 911	 * errors, the checksum cannot be verified. In order to get
 912	 * the best data for repairing, the first attempt is to find
 913	 * a mirror without I/O errors and with a validated checksum.
 914	 * Only if this is not possible, the pages are picked from
 915	 * mirrors with I/O errors without considering the checksum.
 916	 * If the latter is the case, at the end, the checksum of the
 917	 * repaired area is verified in order to correctly maintain
 918	 * the statistics.
 919	 */
 920
 921	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 922				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 923	if (!sblocks_for_recheck) {
 924		spin_lock(&sctx->stat_lock);
 925		sctx->stat.malloc_errors++;
 926		sctx->stat.read_errors++;
 927		sctx->stat.uncorrectable_errors++;
 928		spin_unlock(&sctx->stat_lock);
 929		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 930		goto out;
 931	}
 932
 933	/* setup the context, map the logical blocks and alloc the pages */
 934	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 935	if (ret) {
 936		spin_lock(&sctx->stat_lock);
 937		sctx->stat.read_errors++;
 938		sctx->stat.uncorrectable_errors++;
 939		spin_unlock(&sctx->stat_lock);
 940		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 941		goto out;
 942	}
 943	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 944	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 945
 946	/* build and submit the bios for the failed mirror, check checksums */
 947	scrub_recheck_block(fs_info, sblock_bad, 1);
 
 
 
 948
 949	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 950	    sblock_bad->no_io_error_seen) {
 951		/*
 952		 * the error disappeared after reading page by page, or
 953		 * the area was part of a huge bio and other parts of the
 954		 * bio caused I/O errors, or the block layer merged several
 955		 * read requests into one and the error is caused by a
 956		 * different bio (usually one of the two latter cases is
 957		 * the cause)
 958		 */
 959		spin_lock(&sctx->stat_lock);
 960		sctx->stat.unverified_errors++;
 961		sblock_to_check->data_corrected = 1;
 962		spin_unlock(&sctx->stat_lock);
 963
 964		if (sctx->is_dev_replace)
 965			scrub_write_block_to_dev_replace(sblock_bad);
 966		goto out;
 967	}
 968
 969	if (!sblock_bad->no_io_error_seen) {
 970		spin_lock(&sctx->stat_lock);
 971		sctx->stat.read_errors++;
 972		spin_unlock(&sctx->stat_lock);
 973		if (__ratelimit(&_rs))
 974			scrub_print_warning("i/o error", sblock_to_check);
 975		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 976	} else if (sblock_bad->checksum_error) {
 977		spin_lock(&sctx->stat_lock);
 978		sctx->stat.csum_errors++;
 979		spin_unlock(&sctx->stat_lock);
 980		if (__ratelimit(&_rs))
 981			scrub_print_warning("checksum error", sblock_to_check);
 982		btrfs_dev_stat_inc_and_print(dev,
 983					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 984	} else if (sblock_bad->header_error) {
 985		spin_lock(&sctx->stat_lock);
 986		sctx->stat.verify_errors++;
 987		spin_unlock(&sctx->stat_lock);
 988		if (__ratelimit(&_rs))
 989			scrub_print_warning("checksum/header error",
 990					    sblock_to_check);
 991		if (sblock_bad->generation_error)
 992			btrfs_dev_stat_inc_and_print(dev,
 993				BTRFS_DEV_STAT_GENERATION_ERRS);
 994		else
 995			btrfs_dev_stat_inc_and_print(dev,
 996				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 997	}
 998
 999	if (sctx->readonly) {
1000		ASSERT(!sctx->is_dev_replace);
1001		goto out;
 
 
 
 
 
 
1002	}
 
 
 
 
1003
1004	/*
1005	 * now build and submit the bios for the other mirrors, check
1006	 * checksums.
1007	 * First try to pick the mirror which is completely without I/O
1008	 * errors and also does not have a checksum error.
1009	 * If one is found, and if a checksum is present, the full block
1010	 * that is known to contain an error is rewritten. Afterwards
1011	 * the block is known to be corrected.
1012	 * If a mirror is found which is completely correct, and no
1013	 * checksum is present, only those pages are rewritten that had
1014	 * an I/O error in the block to be repaired, since it cannot be
1015	 * determined, which copy of the other pages is better (and it
1016	 * could happen otherwise that a correct page would be
1017	 * overwritten by a bad one).
1018	 */
1019	for (mirror_index = 0; ;mirror_index++) {
1020		struct scrub_block *sblock_other;
1021
1022		if (mirror_index == failed_mirror_index)
1023			continue;
1024
1025		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027			if (mirror_index >= BTRFS_MAX_MIRRORS)
1028				break;
1029			if (!sblocks_for_recheck[mirror_index].page_count)
1030				break;
1031
1032			sblock_other = sblocks_for_recheck + mirror_index;
1033		} else {
1034			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035			int max_allowed = r->bbio->num_stripes -
1036						r->bbio->num_tgtdevs;
1037
1038			if (mirror_index >= max_allowed)
1039				break;
1040			if (!sblocks_for_recheck[1].page_count)
1041				break;
1042
1043			ASSERT(failed_mirror_index == 0);
1044			sblock_other = sblocks_for_recheck + 1;
1045			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046		}
1047
1048		/* build and submit the bios, check checksums */
1049		scrub_recheck_block(fs_info, sblock_other, 0);
1050
1051		if (!sblock_other->header_error &&
1052		    !sblock_other->checksum_error &&
1053		    sblock_other->no_io_error_seen) {
1054			if (sctx->is_dev_replace) {
1055				scrub_write_block_to_dev_replace(sblock_other);
1056				goto corrected_error;
1057			} else {
1058				ret = scrub_repair_block_from_good_copy(
1059						sblock_bad, sblock_other);
1060				if (!ret)
1061					goto corrected_error;
1062			}
1063		}
 
 
1064	}
1065
1066	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067		goto did_not_correct_error;
1068
1069	/*
1070	 * In case of I/O errors in the area that is supposed to be
1071	 * repaired, continue by picking good copies of those pages.
1072	 * Select the good pages from mirrors to rewrite bad pages from
1073	 * the area to fix. Afterwards verify the checksum of the block
1074	 * that is supposed to be repaired. This verification step is
1075	 * only done for the purpose of statistic counting and for the
1076	 * final scrub report, whether errors remain.
1077	 * A perfect algorithm could make use of the checksum and try
1078	 * all possible combinations of pages from the different mirrors
1079	 * until the checksum verification succeeds. For example, when
1080	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081	 * of mirror #2 is readable but the final checksum test fails,
1082	 * then the 2nd page of mirror #3 could be tried, whether now
1083	 * the final checksum succeeds. But this would be a rare
1084	 * exception and is therefore not implemented. At least it is
1085	 * avoided that the good copy is overwritten.
1086	 * A more useful improvement would be to pick the sectors
1087	 * without I/O error based on sector sizes (512 bytes on legacy
1088	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089	 * mirror could be repaired by taking 512 byte of a different
1090	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091	 * area are unreadable.
1092	 */
1093	success = 1;
1094	for (page_num = 0; page_num < sblock_bad->page_count;
1095	     page_num++) {
1096		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1097		struct scrub_block *sblock_other = NULL;
1098
1099		/* skip no-io-error page in scrub */
1100		if (!page_bad->io_error && !sctx->is_dev_replace)
1101			continue;
1102
1103		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104			/*
1105			 * In case of dev replace, if raid56 rebuild process
1106			 * didn't work out correct data, then copy the content
1107			 * in sblock_bad to make sure target device is identical
1108			 * to source device, instead of writing garbage data in
1109			 * sblock_for_recheck array to target device.
1110			 */
1111			sblock_other = NULL;
1112		} else if (page_bad->io_error) {
1113			/* try to find no-io-error page in mirrors */
1114			for (mirror_index = 0;
1115			     mirror_index < BTRFS_MAX_MIRRORS &&
1116			     sblocks_for_recheck[mirror_index].page_count > 0;
1117			     mirror_index++) {
1118				if (!sblocks_for_recheck[mirror_index].
1119				    pagev[page_num]->io_error) {
1120					sblock_other = sblocks_for_recheck +
1121						       mirror_index;
1122					break;
1123				}
1124			}
1125			if (!sblock_other)
1126				success = 0;
1127		}
1128
1129		if (sctx->is_dev_replace) {
1130			/*
1131			 * did not find a mirror to fetch the page
1132			 * from. scrub_write_page_to_dev_replace()
1133			 * handles this case (page->io_error), by
1134			 * filling the block with zeros before
1135			 * submitting the write request
1136			 */
1137			if (!sblock_other)
1138				sblock_other = sblock_bad;
1139
1140			if (scrub_write_page_to_dev_replace(sblock_other,
1141							    page_num) != 0) {
1142				atomic64_inc(
1143					&fs_info->dev_replace.num_write_errors);
1144				success = 0;
1145			}
1146		} else if (sblock_other) {
1147			ret = scrub_repair_page_from_good_copy(sblock_bad,
1148							       sblock_other,
1149							       page_num, 0);
1150			if (0 == ret)
1151				page_bad->io_error = 0;
1152			else
1153				success = 0;
1154		}
1155	}
1156
1157	if (success && !sctx->is_dev_replace) {
1158		if (is_metadata || have_csum) {
1159			/*
1160			 * need to verify the checksum now that all
1161			 * sectors on disk are repaired (the write
1162			 * request for data to be repaired is on its way).
1163			 * Just be lazy and use scrub_recheck_block()
1164			 * which re-reads the data before the checksum
1165			 * is verified, but most likely the data comes out
1166			 * of the page cache.
1167			 */
1168			scrub_recheck_block(fs_info, sblock_bad, 1);
1169			if (!sblock_bad->header_error &&
1170			    !sblock_bad->checksum_error &&
1171			    sblock_bad->no_io_error_seen)
1172				goto corrected_error;
1173			else
1174				goto did_not_correct_error;
1175		} else {
1176corrected_error:
1177			spin_lock(&sctx->stat_lock);
1178			sctx->stat.corrected_errors++;
1179			sblock_to_check->data_corrected = 1;
1180			spin_unlock(&sctx->stat_lock);
1181			btrfs_err_rl_in_rcu(fs_info,
1182				"fixed up error at logical %llu on dev %s",
1183				logical, rcu_str_deref(dev->name));
1184		}
1185	} else {
1186did_not_correct_error:
1187		spin_lock(&sctx->stat_lock);
1188		sctx->stat.uncorrectable_errors++;
1189		spin_unlock(&sctx->stat_lock);
1190		btrfs_err_rl_in_rcu(fs_info,
1191			"unable to fixup (regular) error at logical %llu on dev %s",
1192			logical, rcu_str_deref(dev->name));
1193	}
1194
1195out:
1196	if (sblocks_for_recheck) {
1197		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198		     mirror_index++) {
1199			struct scrub_block *sblock = sblocks_for_recheck +
1200						     mirror_index;
1201			struct scrub_recover *recover;
1202			int page_index;
1203
1204			for (page_index = 0; page_index < sblock->page_count;
1205			     page_index++) {
1206				sblock->pagev[page_index]->sblock = NULL;
1207				recover = sblock->pagev[page_index]->recover;
1208				if (recover) {
1209					scrub_put_recover(fs_info, recover);
1210					sblock->pagev[page_index]->recover =
1211									NULL;
1212				}
1213				scrub_page_put(sblock->pagev[page_index]);
1214			}
1215		}
1216		kfree(sblocks_for_recheck);
1217	}
1218
1219	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220	memalloc_nofs_restore(nofs_flag);
1221	if (ret < 0)
1222		return ret;
1223	return 0;
1224}
1225
1226static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
 
1227{
1228	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229		return 2;
1230	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231		return 3;
1232	else
1233		return (int)bbio->num_stripes;
 
 
 
1234}
1235
1236static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237						 u64 *raid_map,
1238						 u64 mapped_length,
1239						 int nstripes, int mirror,
1240						 int *stripe_index,
1241						 u64 *stripe_offset)
1242{
1243	int i;
1244
1245	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246		/* RAID5/6 */
1247		for (i = 0; i < nstripes; i++) {
1248			if (raid_map[i] == RAID6_Q_STRIPE ||
1249			    raid_map[i] == RAID5_P_STRIPE)
1250				continue;
1251
1252			if (logical >= raid_map[i] &&
1253			    logical < raid_map[i] + mapped_length)
1254				break;
1255		}
1256
1257		*stripe_index = i;
1258		*stripe_offset = logical - raid_map[i];
1259	} else {
1260		/* The other RAID type */
1261		*stripe_index = mirror;
1262		*stripe_offset = 0;
1263	}
 
 
1264}
1265
1266static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267				     struct scrub_block *sblocks_for_recheck)
 
 
 
 
 
1268{
1269	struct scrub_ctx *sctx = original_sblock->sctx;
1270	struct btrfs_fs_info *fs_info = sctx->fs_info;
1271	u64 length = original_sblock->page_count * PAGE_SIZE;
1272	u64 logical = original_sblock->pagev[0]->logical;
1273	u64 generation = original_sblock->pagev[0]->generation;
1274	u64 flags = original_sblock->pagev[0]->flags;
1275	u64 have_csum = original_sblock->pagev[0]->have_csum;
1276	struct scrub_recover *recover;
1277	struct btrfs_bio *bbio;
1278	u64 sublen;
1279	u64 mapped_length;
1280	u64 stripe_offset;
1281	int stripe_index;
1282	int page_index = 0;
1283	int mirror_index;
1284	int nmirrors;
1285	int ret;
1286
1287	/*
1288	 * note: the two members refs and outstanding_pages
1289	 * are not used (and not set) in the blocks that are used for
1290	 * the recheck procedure
1291	 */
1292
1293	while (length > 0) {
1294		sublen = min_t(u64, length, PAGE_SIZE);
1295		mapped_length = sublen;
1296		bbio = NULL;
1297
1298		/*
1299		 * with a length of PAGE_SIZE, each returned stripe
1300		 * represents one mirror
1301		 */
1302		btrfs_bio_counter_inc_blocked(fs_info);
1303		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304				logical, &mapped_length, &bbio);
1305		if (ret || !bbio || mapped_length < sublen) {
1306			btrfs_put_bbio(bbio);
1307			btrfs_bio_counter_dec(fs_info);
1308			return -EIO;
1309		}
1310
1311		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312		if (!recover) {
1313			btrfs_put_bbio(bbio);
1314			btrfs_bio_counter_dec(fs_info);
1315			return -ENOMEM;
1316		}
1317
1318		refcount_set(&recover->refs, 1);
1319		recover->bbio = bbio;
1320		recover->map_length = mapped_length;
1321
1322		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323
1324		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1325
1326		for (mirror_index = 0; mirror_index < nmirrors;
1327		     mirror_index++) {
1328			struct scrub_block *sblock;
1329			struct scrub_page *page;
1330
1331			sblock = sblocks_for_recheck + mirror_index;
1332			sblock->sctx = sctx;
1333
1334			page = kzalloc(sizeof(*page), GFP_NOFS);
1335			if (!page) {
1336leave_nomem:
1337				spin_lock(&sctx->stat_lock);
1338				sctx->stat.malloc_errors++;
1339				spin_unlock(&sctx->stat_lock);
1340				scrub_put_recover(fs_info, recover);
1341				return -ENOMEM;
1342			}
1343			scrub_page_get(page);
1344			sblock->pagev[page_index] = page;
1345			page->sblock = sblock;
1346			page->flags = flags;
1347			page->generation = generation;
1348			page->logical = logical;
1349			page->have_csum = have_csum;
1350			if (have_csum)
1351				memcpy(page->csum,
1352				       original_sblock->pagev[0]->csum,
1353				       sctx->csum_size);
1354
1355			scrub_stripe_index_and_offset(logical,
1356						      bbio->map_type,
1357						      bbio->raid_map,
1358						      mapped_length,
1359						      bbio->num_stripes -
1360						      bbio->num_tgtdevs,
1361						      mirror_index,
1362						      &stripe_index,
1363						      &stripe_offset);
1364			page->physical = bbio->stripes[stripe_index].physical +
1365					 stripe_offset;
1366			page->dev = bbio->stripes[stripe_index].dev;
1367
1368			BUG_ON(page_index >= original_sblock->page_count);
1369			page->physical_for_dev_replace =
1370				original_sblock->pagev[page_index]->
1371				physical_for_dev_replace;
1372			/* for missing devices, dev->bdev is NULL */
1373			page->mirror_num = mirror_index + 1;
1374			sblock->page_count++;
1375			page->page = alloc_page(GFP_NOFS);
1376			if (!page->page)
1377				goto leave_nomem;
1378
1379			scrub_get_recover(recover);
1380			page->recover = recover;
1381		}
1382		scrub_put_recover(fs_info, recover);
1383		length -= sublen;
1384		logical += sublen;
1385		page_index++;
1386	}
1387
1388	return 0;
 
1389}
1390
1391static void scrub_bio_wait_endio(struct bio *bio)
1392{
1393	complete(bio->bi_private);
 
1394}
1395
1396static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397					struct bio *bio,
1398					struct scrub_page *page)
1399{
1400	DECLARE_COMPLETION_ONSTACK(done);
1401	int ret;
1402	int mirror_num;
 
1403
1404	bio->bi_iter.bi_sector = page->logical >> 9;
1405	bio->bi_private = &done;
1406	bio->bi_end_io = scrub_bio_wait_endio;
1407
1408	mirror_num = page->sblock->pagev[0]->mirror_num;
1409	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1410				    page->recover->map_length,
1411				    mirror_num, 0);
1412	if (ret)
1413		return ret;
1414
1415	wait_for_completion_io(&done);
1416	return blk_status_to_errno(bio->bi_status);
1417}
1418
1419static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420					  struct scrub_block *sblock)
1421{
1422	struct scrub_page *first_page = sblock->pagev[0];
1423	struct bio *bio;
1424	int page_num;
1425
1426	/* All pages in sblock belong to the same stripe on the same device. */
1427	ASSERT(first_page->dev);
1428	if (!first_page->dev->bdev)
1429		goto out;
1430
1431	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432	bio_set_dev(bio, first_page->dev->bdev);
 
 
 
 
 
 
 
 
1433
1434	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435		struct scrub_page *page = sblock->pagev[page_num];
 
 
 
 
1436
1437		WARN_ON(!page->page);
1438		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439	}
1440
1441	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442		bio_put(bio);
1443		goto out;
 
 
1444	}
 
1445
1446	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
1447
1448	scrub_recheck_block_checksum(sblock);
 
1449
1450	return;
1451out:
1452	for (page_num = 0; page_num < sblock->page_count; page_num++)
1453		sblock->pagev[page_num]->io_error = 1;
 
 
 
 
 
 
 
1454
1455	sblock->no_io_error_seen = 0;
1456}
 
 
 
 
 
 
 
 
 
 
 
 
 
1457
1458/*
1459 * this function will check the on disk data for checksum errors, header
1460 * errors and read I/O errors. If any I/O errors happen, the exact pages
1461 * which are errored are marked as being bad. The goal is to enable scrub
1462 * to take those pages that are not errored from all the mirrors so that
1463 * the pages that are errored in the just handled mirror can be repaired.
1464 */
1465static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466				struct scrub_block *sblock,
1467				int retry_failed_mirror)
1468{
1469	int page_num;
1470
1471	sblock->no_io_error_seen = 1;
 
 
 
 
 
 
1472
1473	/* short cut for raid56 */
1474	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475		return scrub_recheck_block_on_raid56(fs_info, sblock);
 
 
1476
1477	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478		struct bio *bio;
1479		struct scrub_page *page = sblock->pagev[page_num];
1480
1481		if (page->dev->bdev == NULL) {
1482			page->io_error = 1;
1483			sblock->no_io_error_seen = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1484			continue;
1485		}
1486
1487		WARN_ON(!page->page);
1488		bio = btrfs_io_bio_alloc(1);
1489		bio_set_dev(bio, page->dev->bdev);
1490
1491		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1492		bio->bi_iter.bi_sector = page->physical >> 9;
1493		bio->bi_opf = REQ_OP_READ;
1494
1495		if (btrfsic_submit_bio_wait(bio)) {
1496			page->io_error = 1;
1497			sblock->no_io_error_seen = 0;
1498		}
1499
1500		bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
1501	}
1502
1503	if (sblock->no_io_error_seen)
1504		scrub_recheck_block_checksum(sblock);
 
 
 
 
 
 
 
 
 
 
 
1505}
1506
1507static inline int scrub_check_fsid(u8 fsid[],
1508				   struct scrub_page *spage)
1509{
1510	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511	int ret;
1512
1513	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1514	return !ret;
1515}
1516
1517static void scrub_recheck_block_checksum(struct scrub_block *sblock)
 
 
 
 
 
 
 
 
 
1518{
1519	sblock->header_error = 0;
1520	sblock->checksum_error = 0;
1521	sblock->generation_error = 0;
 
 
 
 
1522
1523	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524		scrub_checksum_data(sblock);
1525	else
1526		scrub_checksum_tree_block(sblock);
1527}
1528
1529static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530					     struct scrub_block *sblock_good)
1531{
1532	int page_num;
1533	int ret = 0;
 
 
 
 
 
1534
1535	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536		int ret_sub;
1537
1538		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539							   sblock_good,
1540							   page_num, 1);
1541		if (ret_sub)
1542			ret = ret_sub;
 
 
 
 
 
 
 
 
 
 
 
 
1543	}
1544
1545	return ret;
1546}
 
 
 
 
 
 
 
 
1547
1548static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549					    struct scrub_block *sblock_good,
1550					    int page_num, int force_write)
1551{
1552	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1553	struct scrub_page *page_good = sblock_good->pagev[page_num];
1554	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555
1556	BUG_ON(page_bad->page == NULL);
1557	BUG_ON(page_good->page == NULL);
1558	if (force_write || sblock_bad->header_error ||
1559	    sblock_bad->checksum_error || page_bad->io_error) {
1560		struct bio *bio;
1561		int ret;
1562
1563		if (!page_bad->dev->bdev) {
1564			btrfs_warn_rl(fs_info,
1565				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566			return -EIO;
1567		}
1568
1569		bio = btrfs_io_bio_alloc(1);
1570		bio_set_dev(bio, page_bad->dev->bdev);
1571		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1572		bio->bi_opf = REQ_OP_WRITE;
1573
1574		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1575		if (PAGE_SIZE != ret) {
1576			bio_put(bio);
1577			return -EIO;
1578		}
1579
1580		if (btrfsic_submit_bio_wait(bio)) {
1581			btrfs_dev_stat_inc_and_print(page_bad->dev,
1582				BTRFS_DEV_STAT_WRITE_ERRS);
1583			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584			bio_put(bio);
1585			return -EIO;
1586		}
1587		bio_put(bio);
1588	}
1589
1590	return 0;
1591}
1592
1593static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594{
1595	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596	int page_num;
1597
1598	/*
1599	 * This block is used for the check of the parity on the source device,
1600	 * so the data needn't be written into the destination device.
1601	 */
1602	if (sblock->sparity)
1603		return;
 
 
 
1604
1605	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606		int ret;
 
 
 
1607
1608		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609		if (ret)
1610			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611	}
1612}
1613
1614static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615					   int page_num)
1616{
1617	struct scrub_page *spage = sblock->pagev[page_num];
 
 
 
 
 
1618
1619	BUG_ON(spage->page == NULL);
1620	if (spage->io_error) {
1621		void *mapped_buffer = kmap_atomic(spage->page);
1622
1623		clear_page(mapped_buffer);
1624		flush_dcache_page(spage->page);
1625		kunmap_atomic(mapped_buffer);
 
 
 
 
 
 
 
 
 
1626	}
1627	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1628}
1629
1630static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1631				    struct scrub_page *spage)
1632{
1633	struct scrub_bio *sbio;
1634	int ret;
1635
1636	mutex_lock(&sctx->wr_lock);
1637again:
1638	if (!sctx->wr_curr_bio) {
1639		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1640					      GFP_KERNEL);
1641		if (!sctx->wr_curr_bio) {
1642			mutex_unlock(&sctx->wr_lock);
1643			return -ENOMEM;
1644		}
1645		sctx->wr_curr_bio->sctx = sctx;
1646		sctx->wr_curr_bio->page_count = 0;
1647	}
1648	sbio = sctx->wr_curr_bio;
1649	if (sbio->page_count == 0) {
1650		struct bio *bio;
1651
1652		sbio->physical = spage->physical_for_dev_replace;
1653		sbio->logical = spage->logical;
1654		sbio->dev = sctx->wr_tgtdev;
1655		bio = sbio->bio;
1656		if (!bio) {
1657			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1658			sbio->bio = bio;
1659		}
1660
1661		bio->bi_private = sbio;
1662		bio->bi_end_io = scrub_wr_bio_end_io;
1663		bio_set_dev(bio, sbio->dev->bdev);
1664		bio->bi_iter.bi_sector = sbio->physical >> 9;
1665		bio->bi_opf = REQ_OP_WRITE;
1666		sbio->status = 0;
1667	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1668		   spage->physical_for_dev_replace ||
1669		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1670		   spage->logical) {
1671		scrub_wr_submit(sctx);
1672		goto again;
1673	}
1674
1675	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1676	if (ret != PAGE_SIZE) {
1677		if (sbio->page_count < 1) {
1678			bio_put(sbio->bio);
1679			sbio->bio = NULL;
1680			mutex_unlock(&sctx->wr_lock);
1681			return -EIO;
1682		}
1683		scrub_wr_submit(sctx);
1684		goto again;
1685	}
1686
1687	sbio->pagev[sbio->page_count] = spage;
1688	scrub_page_get(spage);
1689	sbio->page_count++;
1690	if (sbio->page_count == sctx->pages_per_wr_bio)
1691		scrub_wr_submit(sctx);
1692	mutex_unlock(&sctx->wr_lock);
1693
1694	return 0;
1695}
1696
1697static void scrub_wr_submit(struct scrub_ctx *sctx)
1698{
1699	struct scrub_bio *sbio;
1700
1701	if (!sctx->wr_curr_bio)
1702		return;
 
 
 
 
1703
1704	sbio = sctx->wr_curr_bio;
1705	sctx->wr_curr_bio = NULL;
1706	WARN_ON(!sbio->bio->bi_disk);
1707	scrub_pending_bio_inc(sctx);
1708	/* process all writes in a single worker thread. Then the block layer
1709	 * orders the requests before sending them to the driver which
1710	 * doubled the write performance on spinning disks when measured
1711	 * with Linux 3.5 */
1712	btrfsic_submit_bio(sbio->bio);
1713}
1714
1715static void scrub_wr_bio_end_io(struct bio *bio)
 
 
1716{
1717	struct scrub_bio *sbio = bio->bi_private;
1718	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
1719
1720	sbio->status = bio->bi_status;
1721	sbio->bio = bio;
1722
1723	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1724			 scrub_wr_bio_end_io_worker, NULL, NULL);
1725	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
 
1726}
1727
1728static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729{
1730	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1731	struct scrub_ctx *sctx = sbio->sctx;
1732	int i;
1733
1734	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1735	if (sbio->status) {
1736		struct btrfs_dev_replace *dev_replace =
1737			&sbio->sctx->fs_info->dev_replace;
1738
1739		for (i = 0; i < sbio->page_count; i++) {
1740			struct scrub_page *spage = sbio->pagev[i];
1741
1742			spage->io_error = 1;
1743			atomic64_inc(&dev_replace->num_write_errors);
 
 
 
 
 
 
 
 
 
1744		}
 
 
1745	}
1746
1747	for (i = 0; i < sbio->page_count; i++)
1748		scrub_page_put(sbio->pagev[i]);
1749
1750	bio_put(sbio->bio);
1751	kfree(sbio);
1752	scrub_pending_bio_dec(sctx);
1753}
1754
1755static int scrub_checksum(struct scrub_block *sblock)
 
 
 
 
 
1756{
1757	u64 flags;
1758	int ret;
 
 
 
 
 
 
 
1759
1760	/*
1761	 * No need to initialize these stats currently,
1762	 * because this function only use return value
1763	 * instead of these stats value.
1764	 *
1765	 * Todo:
1766	 * always use stats
1767	 */
1768	sblock->header_error = 0;
1769	sblock->generation_error = 0;
1770	sblock->checksum_error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771
1772	WARN_ON(sblock->page_count < 1);
1773	flags = sblock->pagev[0]->flags;
1774	ret = 0;
1775	if (flags & BTRFS_EXTENT_FLAG_DATA)
1776		ret = scrub_checksum_data(sblock);
1777	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1778		ret = scrub_checksum_tree_block(sblock);
1779	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1780		(void)scrub_checksum_super(sblock);
1781	else
1782		WARN_ON(1);
1783	if (ret)
1784		scrub_handle_errored_block(sblock);
1785
1786	return ret;
 
1787}
1788
1789static int scrub_checksum_data(struct scrub_block *sblock)
 
 
 
 
 
 
 
 
 
1790{
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_fs_info *fs_info = sctx->fs_info;
1793	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1794	u8 csum[BTRFS_CSUM_SIZE];
1795	u8 *on_disk_csum;
1796	struct page *page;
1797	void *buffer;
1798	u64 len;
1799	int index;
1800
1801	BUG_ON(sblock->page_count < 1);
1802	if (!sblock->pagev[0]->have_csum)
1803		return 0;
1804
1805	shash->tfm = fs_info->csum_shash;
1806	crypto_shash_init(shash);
 
 
 
1807
1808	on_disk_csum = sblock->pagev[0]->csum;
1809	page = sblock->pagev[0]->page;
1810	buffer = kmap_atomic(page);
1811
1812	len = sctx->fs_info->sectorsize;
1813	index = 0;
1814	for (;;) {
1815		u64 l = min_t(u64, len, PAGE_SIZE);
1816
1817		crypto_shash_update(shash, buffer, l);
1818		kunmap_atomic(buffer);
1819		len -= l;
1820		if (len == 0)
1821			break;
1822		index++;
1823		BUG_ON(index >= sblock->page_count);
1824		BUG_ON(!sblock->pagev[index]->page);
1825		page = sblock->pagev[index]->page;
1826		buffer = kmap_atomic(page);
1827	}
1828
1829	crypto_shash_final(shash, csum);
1830	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1831		sblock->checksum_error = 1;
1832
1833	return sblock->checksum_error;
1834}
1835
1836static int scrub_checksum_tree_block(struct scrub_block *sblock)
 
 
 
 
 
 
1837{
1838	struct scrub_ctx *sctx = sblock->sctx;
1839	struct btrfs_header *h;
1840	struct btrfs_fs_info *fs_info = sctx->fs_info;
1841	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842	u8 calculated_csum[BTRFS_CSUM_SIZE];
1843	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1844	struct page *page;
1845	void *mapped_buffer;
1846	u64 mapped_size;
1847	void *p;
1848	u64 len;
1849	int index;
1850
1851	shash->tfm = fs_info->csum_shash;
1852	crypto_shash_init(shash);
 
 
 
 
 
1853
1854	BUG_ON(sblock->page_count < 1);
1855	page = sblock->pagev[0]->page;
1856	mapped_buffer = kmap_atomic(page);
1857	h = (struct btrfs_header *)mapped_buffer;
1858	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1859
1860	/*
1861	 * we don't use the getter functions here, as we
1862	 * a) don't have an extent buffer and
1863	 * b) the page is already kmapped
1864	 */
1865	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1866		sblock->header_error = 1;
1867
1868	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1869		sblock->header_error = 1;
1870		sblock->generation_error = 1;
1871	}
1872
1873	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1874		sblock->header_error = 1;
1875
1876	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1877		   BTRFS_UUID_SIZE))
1878		sblock->header_error = 1;
1879
1880	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1881	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1882	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1883	index = 0;
1884	for (;;) {
1885		u64 l = min_t(u64, len, mapped_size);
1886
1887		crypto_shash_update(shash, p, l);
1888		kunmap_atomic(mapped_buffer);
1889		len -= l;
1890		if (len == 0)
1891			break;
1892		index++;
1893		BUG_ON(index >= sblock->page_count);
1894		BUG_ON(!sblock->pagev[index]->page);
1895		page = sblock->pagev[index]->page;
1896		mapped_buffer = kmap_atomic(page);
1897		mapped_size = PAGE_SIZE;
1898		p = mapped_buffer;
1899	}
1900
1901	crypto_shash_final(shash, calculated_csum);
1902	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1903		sblock->checksum_error = 1;
1904
1905	return sblock->header_error || sblock->checksum_error;
1906}
1907
1908static int scrub_checksum_super(struct scrub_block *sblock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909{
1910	struct btrfs_super_block *s;
1911	struct scrub_ctx *sctx = sblock->sctx;
1912	struct btrfs_fs_info *fs_info = sctx->fs_info;
1913	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1914	u8 calculated_csum[BTRFS_CSUM_SIZE];
1915	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1916	struct page *page;
1917	void *mapped_buffer;
1918	u64 mapped_size;
1919	void *p;
1920	int fail_gen = 0;
1921	int fail_cor = 0;
1922	u64 len;
1923	int index;
1924
1925	shash->tfm = fs_info->csum_shash;
1926	crypto_shash_init(shash);
 
 
 
 
1927
1928	BUG_ON(sblock->page_count < 1);
1929	page = sblock->pagev[0]->page;
1930	mapped_buffer = kmap_atomic(page);
1931	s = (struct btrfs_super_block *)mapped_buffer;
1932	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1933
1934	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1935		++fail_cor;
1936
1937	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1938		++fail_gen;
1939
1940	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1941		++fail_cor;
1942
1943	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1944	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1945	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1946	index = 0;
1947	for (;;) {
1948		u64 l = min_t(u64, len, mapped_size);
1949
1950		crypto_shash_update(shash, p, l);
1951		kunmap_atomic(mapped_buffer);
1952		len -= l;
1953		if (len == 0)
1954			break;
1955		index++;
1956		BUG_ON(index >= sblock->page_count);
1957		BUG_ON(!sblock->pagev[index]->page);
1958		page = sblock->pagev[index]->page;
1959		mapped_buffer = kmap_atomic(page);
1960		mapped_size = PAGE_SIZE;
1961		p = mapped_buffer;
1962	}
1963
1964	crypto_shash_final(shash, calculated_csum);
1965	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1966		++fail_cor;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967
1968	if (fail_cor + fail_gen) {
1969		/*
1970		 * if we find an error in a super block, we just report it.
1971		 * They will get written with the next transaction commit
1972		 * anyway
1973		 */
1974		spin_lock(&sctx->stat_lock);
1975		++sctx->stat.super_errors;
1976		spin_unlock(&sctx->stat_lock);
1977		if (fail_cor)
1978			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1979				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1980		else
1981			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1982				BTRFS_DEV_STAT_GENERATION_ERRS);
1983	}
1984
1985	return fail_cor + fail_gen;
1986}
1987
1988static void scrub_block_get(struct scrub_block *sblock)
 
1989{
1990	refcount_inc(&sblock->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
1991}
1992
1993static void scrub_block_put(struct scrub_block *sblock)
 
1994{
1995	if (refcount_dec_and_test(&sblock->refs)) {
1996		int i;
1997
1998		if (sblock->sparity)
1999			scrub_parity_put(sblock->sparity);
2000
2001		for (i = 0; i < sblock->page_count; i++)
2002			scrub_page_put(sblock->pagev[i]);
2003		kfree(sblock);
 
 
 
 
 
2004	}
2005}
 
2006
2007static void scrub_page_get(struct scrub_page *spage)
2008{
2009	atomic_inc(&spage->refs);
2010}
2011
2012static void scrub_page_put(struct scrub_page *spage)
2013{
2014	if (atomic_dec_and_test(&spage->refs)) {
2015		if (spage->page)
2016			__free_page(spage->page);
2017		kfree(spage);
 
 
 
 
 
 
 
 
 
 
 
 
 
2018	}
2019}
2020
2021static void scrub_submit(struct scrub_ctx *sctx)
2022{
2023	struct scrub_bio *sbio;
2024
2025	if (sctx->curr == -1)
2026		return;
2027
2028	sbio = sctx->bios[sctx->curr];
2029	sctx->curr = -1;
2030	scrub_pending_bio_inc(sctx);
2031	btrfsic_submit_bio(sbio->bio);
2032}
2033
2034static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2035				    struct scrub_page *spage)
2036{
2037	struct scrub_block *sblock = spage->sblock;
2038	struct scrub_bio *sbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039	int ret;
2040
2041again:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042	/*
2043	 * grab a fresh bio or wait for one to become available
 
 
 
2044	 */
2045	while (sctx->curr == -1) {
2046		spin_lock(&sctx->list_lock);
2047		sctx->curr = sctx->first_free;
2048		if (sctx->curr != -1) {
2049			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2050			sctx->bios[sctx->curr]->next_free = -1;
2051			sctx->bios[sctx->curr]->page_count = 0;
2052			spin_unlock(&sctx->list_lock);
2053		} else {
2054			spin_unlock(&sctx->list_lock);
2055			wait_event(sctx->list_wait, sctx->first_free != -1);
 
 
 
 
 
 
 
 
 
 
 
2056		}
2057	}
2058	sbio = sctx->bios[sctx->curr];
2059	if (sbio->page_count == 0) {
2060		struct bio *bio;
2061
2062		sbio->physical = spage->physical;
2063		sbio->logical = spage->logical;
2064		sbio->dev = spage->dev;
2065		bio = sbio->bio;
2066		if (!bio) {
2067			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2068			sbio->bio = bio;
2069		}
2070
2071		bio->bi_private = sbio;
2072		bio->bi_end_io = scrub_bio_end_io;
2073		bio_set_dev(bio, sbio->dev->bdev);
2074		bio->bi_iter.bi_sector = sbio->physical >> 9;
2075		bio->bi_opf = REQ_OP_READ;
2076		sbio->status = 0;
2077	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2078		   spage->physical ||
2079		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2080		   spage->logical ||
2081		   sbio->dev != spage->dev) {
2082		scrub_submit(sctx);
2083		goto again;
2084	}
2085
2086	sbio->pagev[sbio->page_count] = spage;
2087	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2088	if (ret != PAGE_SIZE) {
2089		if (sbio->page_count < 1) {
2090			bio_put(sbio->bio);
2091			sbio->bio = NULL;
2092			return -EIO;
2093		}
2094		scrub_submit(sctx);
2095		goto again;
2096	}
2097
2098	scrub_block_get(sblock); /* one for the page added to the bio */
2099	atomic_inc(&sblock->outstanding_pages);
2100	sbio->page_count++;
2101	if (sbio->page_count == sctx->pages_per_rd_bio)
2102		scrub_submit(sctx);
2103
2104	return 0;
2105}
2106
2107static void scrub_missing_raid56_end_io(struct bio *bio)
2108{
2109	struct scrub_block *sblock = bio->bi_private;
2110	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
 
2111
2112	if (bio->bi_status)
2113		sblock->no_io_error_seen = 0;
 
 
 
 
 
2114
2115	bio_put(bio);
2116
2117	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
 
 
 
 
 
2118}
2119
2120static void scrub_missing_raid56_worker(struct btrfs_work *work)
2121{
2122	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2123	struct scrub_ctx *sctx = sblock->sctx;
2124	struct btrfs_fs_info *fs_info = sctx->fs_info;
2125	u64 logical;
2126	struct btrfs_device *dev;
2127
2128	logical = sblock->pagev[0]->logical;
2129	dev = sblock->pagev[0]->dev;
2130
2131	if (sblock->no_io_error_seen)
2132		scrub_recheck_block_checksum(sblock);
2133
2134	if (!sblock->no_io_error_seen) {
2135		spin_lock(&sctx->stat_lock);
2136		sctx->stat.read_errors++;
2137		spin_unlock(&sctx->stat_lock);
2138		btrfs_err_rl_in_rcu(fs_info,
2139			"IO error rebuilding logical %llu for dev %s",
2140			logical, rcu_str_deref(dev->name));
2141	} else if (sblock->header_error || sblock->checksum_error) {
2142		spin_lock(&sctx->stat_lock);
2143		sctx->stat.uncorrectable_errors++;
2144		spin_unlock(&sctx->stat_lock);
2145		btrfs_err_rl_in_rcu(fs_info,
2146			"failed to rebuild valid logical %llu for dev %s",
2147			logical, rcu_str_deref(dev->name));
2148	} else {
2149		scrub_write_block_to_dev_replace(sblock);
2150	}
2151
2152	scrub_block_put(sblock);
 
 
2153
2154	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2155		mutex_lock(&sctx->wr_lock);
2156		scrub_wr_submit(sctx);
2157		mutex_unlock(&sctx->wr_lock);
2158	}
2159
2160	scrub_pending_bio_dec(sctx);
2161}
2162
2163static void scrub_missing_raid56_pages(struct scrub_block *sblock)
 
2164{
2165	struct scrub_ctx *sctx = sblock->sctx;
2166	struct btrfs_fs_info *fs_info = sctx->fs_info;
2167	u64 length = sblock->page_count * PAGE_SIZE;
2168	u64 logical = sblock->pagev[0]->logical;
2169	struct btrfs_bio *bbio = NULL;
2170	struct bio *bio;
2171	struct btrfs_raid_bio *rbio;
2172	int ret;
 
 
2173	int i;
2174
2175	btrfs_bio_counter_inc_blocked(fs_info);
2176	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2177			&length, &bbio);
2178	if (ret || !bbio || !bbio->raid_map)
2179		goto bbio_out;
 
 
 
 
2180
2181	if (WARN_ON(!sctx->is_dev_replace ||
2182		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2183		/*
2184		 * We shouldn't be scrubbing a missing device. Even for dev
2185		 * replace, we should only get here for RAID 5/6. We either
2186		 * managed to mount something with no mirrors remaining or
2187		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2188		 */
2189		goto bbio_out;
2190	}
2191
2192	bio = btrfs_io_bio_alloc(0);
2193	bio->bi_iter.bi_sector = logical >> 9;
2194	bio->bi_private = sblock;
2195	bio->bi_end_io = scrub_missing_raid56_end_io;
 
 
2196
2197	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2198	if (!rbio)
2199		goto rbio_out;
2200
2201	for (i = 0; i < sblock->page_count; i++) {
2202		struct scrub_page *spage = sblock->pagev[i];
 
 
 
 
 
 
 
 
 
2203
2204		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2205	}
2206
2207	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2208			scrub_missing_raid56_worker, NULL, NULL);
2209	scrub_block_get(sblock);
2210	scrub_pending_bio_inc(sctx);
2211	raid56_submit_missing_rbio(rbio);
2212	return;
2213
2214rbio_out:
2215	bio_put(bio);
2216bbio_out:
2217	btrfs_bio_counter_dec(fs_info);
2218	btrfs_put_bbio(bbio);
2219	spin_lock(&sctx->stat_lock);
2220	sctx->stat.malloc_errors++;
2221	spin_unlock(&sctx->stat_lock);
2222}
2223
2224static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2225		       u64 physical, struct btrfs_device *dev, u64 flags,
2226		       u64 gen, int mirror_num, u8 *csum, int force,
2227		       u64 physical_for_dev_replace)
2228{
2229	struct scrub_block *sblock;
2230	int index;
 
 
 
 
 
 
 
 
2231
2232	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2233	if (!sblock) {
2234		spin_lock(&sctx->stat_lock);
2235		sctx->stat.malloc_errors++;
2236		spin_unlock(&sctx->stat_lock);
2237		return -ENOMEM;
2238	}
2239
2240	/* one ref inside this function, plus one for each page added to
2241	 * a bio later on */
2242	refcount_set(&sblock->refs, 1);
2243	sblock->sctx = sctx;
2244	sblock->no_io_error_seen = 1;
2245
2246	for (index = 0; len > 0; index++) {
2247		struct scrub_page *spage;
2248		u64 l = min_t(u64, len, PAGE_SIZE);
2249
2250		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2251		if (!spage) {
2252leave_nomem:
2253			spin_lock(&sctx->stat_lock);
2254			sctx->stat.malloc_errors++;
2255			spin_unlock(&sctx->stat_lock);
2256			scrub_block_put(sblock);
2257			return -ENOMEM;
2258		}
2259		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2260		scrub_page_get(spage);
2261		sblock->pagev[index] = spage;
2262		spage->sblock = sblock;
2263		spage->dev = dev;
2264		spage->flags = flags;
2265		spage->generation = gen;
2266		spage->logical = logical;
2267		spage->physical = physical;
2268		spage->physical_for_dev_replace = physical_for_dev_replace;
2269		spage->mirror_num = mirror_num;
2270		if (csum) {
2271			spage->have_csum = 1;
2272			memcpy(spage->csum, csum, sctx->csum_size);
2273		} else {
2274			spage->have_csum = 0;
2275		}
2276		sblock->page_count++;
2277		spage->page = alloc_page(GFP_KERNEL);
2278		if (!spage->page)
2279			goto leave_nomem;
2280		len -= l;
2281		logical += l;
2282		physical += l;
2283		physical_for_dev_replace += l;
2284	}
2285
2286	WARN_ON(sblock->page_count == 0);
2287	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2288		/*
2289		 * This case should only be hit for RAID 5/6 device replace. See
2290		 * the comment in scrub_missing_raid56_pages() for details.
2291		 */
2292		scrub_missing_raid56_pages(sblock);
2293	} else {
2294		for (index = 0; index < sblock->page_count; index++) {
2295			struct scrub_page *spage = sblock->pagev[index];
2296			int ret;
2297
2298			ret = scrub_add_page_to_rd_bio(sctx, spage);
2299			if (ret) {
2300				scrub_block_put(sblock);
2301				return ret;
2302			}
2303		}
2304
2305		if (force)
2306			scrub_submit(sctx);
 
2307	}
 
2308
2309	/* last one frees, either here or in bio completion for last page */
2310	scrub_block_put(sblock);
2311	return 0;
2312}
 
 
 
 
 
 
2313
2314static void scrub_bio_end_io(struct bio *bio)
2315{
2316	struct scrub_bio *sbio = bio->bi_private;
2317	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2318
2319	sbio->status = bio->bi_status;
2320	sbio->bio = bio;
2321
2322	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2323}
2324
2325static void scrub_bio_end_io_worker(struct btrfs_work *work)
2326{
2327	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2328	struct scrub_ctx *sctx = sbio->sctx;
2329	int i;
2330
2331	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2332	if (sbio->status) {
2333		for (i = 0; i < sbio->page_count; i++) {
2334			struct scrub_page *spage = sbio->pagev[i];
2335
2336			spage->io_error = 1;
2337			spage->sblock->no_io_error_seen = 0;
 
 
 
2338		}
2339	}
 
 
2340
2341	/* now complete the scrub_block items that have all pages completed */
2342	for (i = 0; i < sbio->page_count; i++) {
2343		struct scrub_page *spage = sbio->pagev[i];
2344		struct scrub_block *sblock = spage->sblock;
 
2345
2346		if (atomic_dec_and_test(&sblock->outstanding_pages))
2347			scrub_block_complete(sblock);
2348		scrub_block_put(sblock);
2349	}
2350
2351	bio_put(sbio->bio);
2352	sbio->bio = NULL;
2353	spin_lock(&sctx->list_lock);
2354	sbio->next_free = sctx->first_free;
2355	sctx->first_free = sbio->index;
2356	spin_unlock(&sctx->list_lock);
2357
2358	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2359		mutex_lock(&sctx->wr_lock);
2360		scrub_wr_submit(sctx);
2361		mutex_unlock(&sctx->wr_lock);
2362	}
2363
2364	scrub_pending_bio_dec(sctx);
2365}
2366
2367static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2368				       unsigned long *bitmap,
2369				       u64 start, u64 len)
2370{
2371	u64 offset;
2372	u64 nsectors64;
2373	u32 nsectors;
2374	int sectorsize = sparity->sctx->fs_info->sectorsize;
2375
2376	if (len >= sparity->stripe_len) {
2377		bitmap_set(bitmap, 0, sparity->nsectors);
2378		return;
2379	}
2380
2381	start -= sparity->logic_start;
2382	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2383	offset = div_u64(offset, sectorsize);
2384	nsectors64 = div_u64(len, sectorsize);
2385
2386	ASSERT(nsectors64 < UINT_MAX);
2387	nsectors = (u32)nsectors64;
 
2388
2389	if (offset + nsectors <= sparity->nsectors) {
2390		bitmap_set(bitmap, offset, nsectors);
2391		return;
2392	}
2393
2394	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2395	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2396}
 
 
 
2397
2398static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2399						   u64 start, u64 len)
2400{
2401	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2402}
 
 
 
 
 
 
 
 
 
2403
2404static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2405						  u64 start, u64 len)
2406{
2407	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2408}
2409
2410static void scrub_block_complete(struct scrub_block *sblock)
2411{
2412	int corrupted = 0;
2413
2414	if (!sblock->no_io_error_seen) {
2415		corrupted = 1;
2416		scrub_handle_errored_block(sblock);
2417	} else {
2418		/*
2419		 * if has checksum error, write via repair mechanism in
2420		 * dev replace case, otherwise write here in dev replace
2421		 * case.
2422		 */
2423		corrupted = scrub_checksum(sblock);
2424		if (!corrupted && sblock->sctx->is_dev_replace)
2425			scrub_write_block_to_dev_replace(sblock);
2426	}
2427
2428	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2429		u64 start = sblock->pagev[0]->logical;
2430		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2431			  PAGE_SIZE;
2432
2433		scrub_parity_mark_sectors_error(sblock->sparity,
2434						start, end - start);
2435	}
 
 
 
2436}
2437
2438static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2439{
2440	struct btrfs_ordered_sum *sum = NULL;
2441	unsigned long index;
2442	unsigned long num_sectors;
2443
2444	while (!list_empty(&sctx->csum_list)) {
2445		sum = list_first_entry(&sctx->csum_list,
2446				       struct btrfs_ordered_sum, list);
2447		if (sum->bytenr > logical)
2448			return 0;
2449		if (sum->bytenr + sum->len > logical)
2450			break;
2451
2452		++sctx->stat.csum_discards;
2453		list_del(&sum->list);
2454		kfree(sum);
2455		sum = NULL;
2456	}
2457	if (!sum)
2458		return 0;
2459
2460	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2461	ASSERT(index < UINT_MAX);
2462
2463	num_sectors = sum->len / sctx->fs_info->sectorsize;
2464	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2465	if (index == num_sectors - 1) {
2466		list_del(&sum->list);
2467		kfree(sum);
2468	}
2469	return 1;
2470}
2471
2472/* scrub extent tries to collect up to 64 kB for each bio */
2473static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2474			u64 logical, u64 len,
2475			u64 physical, struct btrfs_device *dev, u64 flags,
2476			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2477{
 
2478	int ret;
2479	u8 csum[BTRFS_CSUM_SIZE];
2480	u32 blocksize;
2481
2482	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2483		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2484			blocksize = map->stripe_len;
2485		else
2486			blocksize = sctx->fs_info->sectorsize;
2487		spin_lock(&sctx->stat_lock);
2488		sctx->stat.data_extents_scrubbed++;
2489		sctx->stat.data_bytes_scrubbed += len;
2490		spin_unlock(&sctx->stat_lock);
2491	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2492		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2493			blocksize = map->stripe_len;
2494		else
2495			blocksize = sctx->fs_info->nodesize;
2496		spin_lock(&sctx->stat_lock);
2497		sctx->stat.tree_extents_scrubbed++;
2498		sctx->stat.tree_bytes_scrubbed += len;
2499		spin_unlock(&sctx->stat_lock);
2500	} else {
2501		blocksize = sctx->fs_info->sectorsize;
2502		WARN_ON(1);
2503	}
2504
2505	while (len) {
2506		u64 l = min_t(u64, len, blocksize);
2507		int have_csum = 0;
2508
2509		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2510			/* push csums to sbio */
2511			have_csum = scrub_find_csum(sctx, logical, csum);
2512			if (have_csum == 0)
2513				++sctx->stat.no_csum;
2514		}
2515		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2516				  mirror_num, have_csum ? csum : NULL, 0,
2517				  physical_for_dev_replace);
2518		if (ret)
2519			return ret;
2520		len -= l;
2521		logical += l;
2522		physical += l;
2523		physical_for_dev_replace += l;
2524	}
2525	return 0;
2526}
2527
2528static int scrub_pages_for_parity(struct scrub_parity *sparity,
2529				  u64 logical, u64 len,
2530				  u64 physical, struct btrfs_device *dev,
2531				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2532{
2533	struct scrub_ctx *sctx = sparity->sctx;
2534	struct scrub_block *sblock;
2535	int index;
2536
2537	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2538	if (!sblock) {
2539		spin_lock(&sctx->stat_lock);
2540		sctx->stat.malloc_errors++;
2541		spin_unlock(&sctx->stat_lock);
2542		return -ENOMEM;
2543	}
2544
2545	/* one ref inside this function, plus one for each page added to
2546	 * a bio later on */
2547	refcount_set(&sblock->refs, 1);
2548	sblock->sctx = sctx;
2549	sblock->no_io_error_seen = 1;
2550	sblock->sparity = sparity;
2551	scrub_parity_get(sparity);
2552
2553	for (index = 0; len > 0; index++) {
2554		struct scrub_page *spage;
2555		u64 l = min_t(u64, len, PAGE_SIZE);
2556
2557		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2558		if (!spage) {
2559leave_nomem:
2560			spin_lock(&sctx->stat_lock);
2561			sctx->stat.malloc_errors++;
2562			spin_unlock(&sctx->stat_lock);
2563			scrub_block_put(sblock);
2564			return -ENOMEM;
2565		}
2566		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2567		/* For scrub block */
2568		scrub_page_get(spage);
2569		sblock->pagev[index] = spage;
2570		/* For scrub parity */
2571		scrub_page_get(spage);
2572		list_add_tail(&spage->list, &sparity->spages);
2573		spage->sblock = sblock;
2574		spage->dev = dev;
2575		spage->flags = flags;
2576		spage->generation = gen;
2577		spage->logical = logical;
2578		spage->physical = physical;
2579		spage->mirror_num = mirror_num;
2580		if (csum) {
2581			spage->have_csum = 1;
2582			memcpy(spage->csum, csum, sctx->csum_size);
2583		} else {
2584			spage->have_csum = 0;
2585		}
2586		sblock->page_count++;
2587		spage->page = alloc_page(GFP_KERNEL);
2588		if (!spage->page)
2589			goto leave_nomem;
2590		len -= l;
2591		logical += l;
2592		physical += l;
2593	}
2594
2595	WARN_ON(sblock->page_count == 0);
2596	for (index = 0; index < sblock->page_count; index++) {
2597		struct scrub_page *spage = sblock->pagev[index];
2598		int ret;
2599
2600		ret = scrub_add_page_to_rd_bio(sctx, spage);
2601		if (ret) {
2602			scrub_block_put(sblock);
2603			return ret;
2604		}
2605	}
2606
2607	/* last one frees, either here or in bio completion for last page */
2608	scrub_block_put(sblock);
 
2609	return 0;
2610}
2611
2612static int scrub_extent_for_parity(struct scrub_parity *sparity,
2613				   u64 logical, u64 len,
2614				   u64 physical, struct btrfs_device *dev,
2615				   u64 flags, u64 gen, int mirror_num)
 
2616{
2617	struct scrub_ctx *sctx = sparity->sctx;
 
 
 
 
 
 
 
 
 
 
 
2618	int ret;
2619	u8 csum[BTRFS_CSUM_SIZE];
2620	u32 blocksize;
2621
2622	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2623		scrub_parity_mark_sectors_error(sparity, logical, len);
2624		return 0;
2625	}
2626
2627	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628		blocksize = sparity->stripe_len;
2629	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2630		blocksize = sparity->stripe_len;
2631	} else {
2632		blocksize = sctx->fs_info->sectorsize;
2633		WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634	}
2635
2636	while (len) {
2637		u64 l = min_t(u64, len, blocksize);
2638		int have_csum = 0;
2639
2640		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641			/* push csums to sbio */
2642			have_csum = scrub_find_csum(sctx, logical, csum);
2643			if (have_csum == 0)
2644				goto skip;
2645		}
2646		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2647					     flags, gen, mirror_num,
2648					     have_csum ? csum : NULL);
2649		if (ret)
2650			return ret;
2651skip:
2652		len -= l;
2653		logical += l;
2654		physical += l;
2655	}
2656	return 0;
2657}
 
 
2658
2659/*
2660 * Given a physical address, this will calculate it's
2661 * logical offset. if this is a parity stripe, it will return
2662 * the most left data stripe's logical offset.
2663 *
2664 * return 0 if it is a data stripe, 1 means parity stripe.
2665 */
2666static int get_raid56_logic_offset(u64 physical, int num,
2667				   struct map_lookup *map, u64 *offset,
2668				   u64 *stripe_start)
2669{
2670	int i;
2671	int j = 0;
2672	u64 stripe_nr;
2673	u64 last_offset;
2674	u32 stripe_index;
2675	u32 rot;
2676	const int data_stripes = nr_data_stripes(map);
2677
2678	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2679	if (stripe_start)
2680		*stripe_start = last_offset;
 
 
2681
2682	*offset = last_offset;
2683	for (i = 0; i < data_stripes; i++) {
2684		*offset = last_offset + i * map->stripe_len;
 
 
 
 
 
 
2685
2686		stripe_nr = div64_u64(*offset, map->stripe_len);
2687		stripe_nr = div_u64(stripe_nr, data_stripes);
2688
2689		/* Work out the disk rotation on this stripe-set */
2690		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2691		/* calculate which stripe this data locates */
2692		rot += i;
2693		stripe_index = rot % map->num_stripes;
2694		if (stripe_index == num)
2695			return 0;
2696		if (stripe_index < num)
2697			j++;
 
 
 
 
 
 
 
2698	}
2699	*offset = last_offset + j * map->stripe_len;
2700	return 1;
2701}
2702
2703static void scrub_free_parity(struct scrub_parity *sparity)
2704{
2705	struct scrub_ctx *sctx = sparity->sctx;
2706	struct scrub_page *curr, *next;
2707	int nbits;
2708
2709	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2710	if (nbits) {
2711		spin_lock(&sctx->stat_lock);
2712		sctx->stat.read_errors += nbits;
2713		sctx->stat.uncorrectable_errors += nbits;
2714		spin_unlock(&sctx->stat_lock);
 
 
 
 
 
 
 
 
 
2715	}
 
 
 
2716
2717	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2718		list_del_init(&curr->list);
2719		scrub_page_put(curr);
2720	}
2721
2722	kfree(sparity);
2723}
2724
2725static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2726{
2727	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2728						    work);
2729	struct scrub_ctx *sctx = sparity->sctx;
2730
2731	scrub_free_parity(sparity);
2732	scrub_pending_bio_dec(sctx);
2733}
2734
2735static void scrub_parity_bio_endio(struct bio *bio)
2736{
2737	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2738	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2739
2740	if (bio->bi_status)
2741		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2742			  sparity->nsectors);
2743
2744	bio_put(bio);
 
2745
2746	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2747			scrub_parity_bio_endio_worker, NULL, NULL);
2748	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
 
2749}
2750
2751static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
 
 
 
 
 
 
 
 
 
 
 
 
 
2752{
2753	struct scrub_ctx *sctx = sparity->sctx;
2754	struct btrfs_fs_info *fs_info = sctx->fs_info;
2755	struct bio *bio;
2756	struct btrfs_raid_bio *rbio;
2757	struct btrfs_bio *bbio = NULL;
2758	u64 length;
2759	int ret;
2760
2761	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2762			   sparity->nsectors))
2763		goto out;
2764
2765	length = sparity->logic_end - sparity->logic_start;
 
 
 
2766
2767	btrfs_bio_counter_inc_blocked(fs_info);
2768	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2769			       &length, &bbio);
2770	if (ret || !bbio || !bbio->raid_map)
2771		goto bbio_out;
2772
2773	bio = btrfs_io_bio_alloc(0);
2774	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2775	bio->bi_private = sparity;
2776	bio->bi_end_io = scrub_parity_bio_endio;
2777
2778	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2779					      length, sparity->scrub_dev,
2780					      sparity->dbitmap,
2781					      sparity->nsectors);
2782	if (!rbio)
2783		goto rbio_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784
2785	scrub_pending_bio_inc(sctx);
2786	raid56_parity_submit_scrub_rbio(rbio);
2787	return;
2788
2789rbio_out:
2790	bio_put(bio);
2791bbio_out:
2792	btrfs_bio_counter_dec(fs_info);
2793	btrfs_put_bbio(bbio);
2794	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2795		  sparity->nsectors);
2796	spin_lock(&sctx->stat_lock);
2797	sctx->stat.malloc_errors++;
2798	spin_unlock(&sctx->stat_lock);
2799out:
2800	scrub_free_parity(sparity);
2801}
2802
2803static inline int scrub_calc_parity_bitmap_len(int nsectors)
 
2804{
2805	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
 
 
 
2806}
2807
2808static void scrub_parity_get(struct scrub_parity *sparity)
 
 
 
2809{
2810	refcount_inc(&sparity->refs);
 
 
 
 
 
 
 
 
 
2811}
2812
2813static void scrub_parity_put(struct scrub_parity *sparity)
 
2814{
2815	if (!refcount_dec_and_test(&sparity->refs))
2816		return;
 
2817
2818	scrub_parity_check_and_repair(sparity);
 
2819}
2820
2821static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2822						  struct map_lookup *map,
2823						  struct btrfs_device *sdev,
2824						  struct btrfs_path *path,
2825						  u64 logic_start,
2826						  u64 logic_end)
2827{
2828	struct btrfs_fs_info *fs_info = sctx->fs_info;
2829	struct btrfs_root *root = fs_info->extent_root;
2830	struct btrfs_root *csum_root = fs_info->csum_root;
2831	struct btrfs_extent_item *extent;
2832	struct btrfs_bio *bbio = NULL;
2833	u64 flags;
2834	int ret;
2835	int slot;
2836	struct extent_buffer *l;
2837	struct btrfs_key key;
2838	u64 generation;
2839	u64 extent_logical;
2840	u64 extent_physical;
2841	u64 extent_len;
2842	u64 mapped_length;
2843	struct btrfs_device *extent_dev;
2844	struct scrub_parity *sparity;
2845	int nsectors;
2846	int bitmap_len;
2847	int extent_mirror_num;
2848	int stop_loop = 0;
2849
2850	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2851	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2852	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2853			  GFP_NOFS);
2854	if (!sparity) {
2855		spin_lock(&sctx->stat_lock);
2856		sctx->stat.malloc_errors++;
2857		spin_unlock(&sctx->stat_lock);
2858		return -ENOMEM;
 
 
 
 
 
 
2859	}
2860
2861	sparity->stripe_len = map->stripe_len;
2862	sparity->nsectors = nsectors;
2863	sparity->sctx = sctx;
2864	sparity->scrub_dev = sdev;
2865	sparity->logic_start = logic_start;
2866	sparity->logic_end = logic_end;
2867	refcount_set(&sparity->refs, 1);
2868	INIT_LIST_HEAD(&sparity->spages);
2869	sparity->dbitmap = sparity->bitmap;
2870	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2871
2872	ret = 0;
2873	while (logic_start < logic_end) {
2874		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2875			key.type = BTRFS_METADATA_ITEM_KEY;
2876		else
2877			key.type = BTRFS_EXTENT_ITEM_KEY;
2878		key.objectid = logic_start;
2879		key.offset = (u64)-1;
2880
2881		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2882		if (ret < 0)
2883			goto out;
2884
2885		if (ret > 0) {
2886			ret = btrfs_previous_extent_item(root, path, 0);
2887			if (ret < 0)
2888				goto out;
2889			if (ret > 0) {
2890				btrfs_release_path(path);
2891				ret = btrfs_search_slot(NULL, root, &key,
2892							path, 0, 0);
2893				if (ret < 0)
2894					goto out;
2895			}
2896		}
2897
2898		stop_loop = 0;
2899		while (1) {
2900			u64 bytes;
2901
2902			l = path->nodes[0];
2903			slot = path->slots[0];
2904			if (slot >= btrfs_header_nritems(l)) {
2905				ret = btrfs_next_leaf(root, path);
2906				if (ret == 0)
2907					continue;
2908				if (ret < 0)
2909					goto out;
2910
2911				stop_loop = 1;
2912				break;
2913			}
2914			btrfs_item_key_to_cpu(l, &key, slot);
2915
2916			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2917			    key.type != BTRFS_METADATA_ITEM_KEY)
2918				goto next;
2919
2920			if (key.type == BTRFS_METADATA_ITEM_KEY)
2921				bytes = fs_info->nodesize;
2922			else
2923				bytes = key.offset;
2924
2925			if (key.objectid + bytes <= logic_start)
2926				goto next;
2927
2928			if (key.objectid >= logic_end) {
2929				stop_loop = 1;
2930				break;
2931			}
2932
2933			while (key.objectid >= logic_start + map->stripe_len)
2934				logic_start += map->stripe_len;
2935
2936			extent = btrfs_item_ptr(l, slot,
2937						struct btrfs_extent_item);
2938			flags = btrfs_extent_flags(l, extent);
2939			generation = btrfs_extent_generation(l, extent);
2940
2941			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2942			    (key.objectid < logic_start ||
2943			     key.objectid + bytes >
2944			     logic_start + map->stripe_len)) {
2945				btrfs_err(fs_info,
2946					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947					  key.objectid, logic_start);
2948				spin_lock(&sctx->stat_lock);
2949				sctx->stat.uncorrectable_errors++;
2950				spin_unlock(&sctx->stat_lock);
2951				goto next;
2952			}
2953again:
2954			extent_logical = key.objectid;
2955			extent_len = bytes;
2956
2957			if (extent_logical < logic_start) {
2958				extent_len -= logic_start - extent_logical;
2959				extent_logical = logic_start;
2960			}
2961
2962			if (extent_logical + extent_len >
2963			    logic_start + map->stripe_len)
2964				extent_len = logic_start + map->stripe_len -
2965					     extent_logical;
2966
2967			scrub_parity_mark_sectors_data(sparity, extent_logical,
2968						       extent_len);
2969
2970			mapped_length = extent_len;
2971			bbio = NULL;
2972			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2973					extent_logical, &mapped_length, &bbio,
2974					0);
2975			if (!ret) {
2976				if (!bbio || mapped_length < extent_len)
2977					ret = -EIO;
2978			}
2979			if (ret) {
2980				btrfs_put_bbio(bbio);
2981				goto out;
2982			}
2983			extent_physical = bbio->stripes[0].physical;
2984			extent_mirror_num = bbio->mirror_num;
2985			extent_dev = bbio->stripes[0].dev;
2986			btrfs_put_bbio(bbio);
2987
2988			ret = btrfs_lookup_csums_range(csum_root,
2989						extent_logical,
2990						extent_logical + extent_len - 1,
2991						&sctx->csum_list, 1);
2992			if (ret)
2993				goto out;
2994
2995			ret = scrub_extent_for_parity(sparity, extent_logical,
2996						      extent_len,
2997						      extent_physical,
2998						      extent_dev, flags,
2999						      generation,
3000						      extent_mirror_num);
3001
3002			scrub_free_csums(sctx);
3003
3004			if (ret)
3005				goto out;
3006
3007			if (extent_logical + extent_len <
3008			    key.objectid + bytes) {
3009				logic_start += map->stripe_len;
3010
3011				if (logic_start >= logic_end) {
3012					stop_loop = 1;
3013					break;
3014				}
3015
3016				if (logic_start < key.objectid + bytes) {
3017					cond_resched();
3018					goto again;
3019				}
3020			}
3021next:
3022			path->slots[0]++;
3023		}
3024
3025		btrfs_release_path(path);
3026
3027		if (stop_loop)
3028			break;
3029
3030		logic_start += map->stripe_len;
3031	}
3032out:
3033	if (ret < 0)
3034		scrub_parity_mark_sectors_error(sparity, logic_start,
3035						logic_end - logic_start);
3036	scrub_parity_put(sparity);
3037	scrub_submit(sctx);
3038	mutex_lock(&sctx->wr_lock);
3039	scrub_wr_submit(sctx);
3040	mutex_unlock(&sctx->wr_lock);
3041
3042	btrfs_release_path(path);
3043	return ret < 0 ? ret : 0;
3044}
3045
3046static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3047					   struct map_lookup *map,
 
3048					   struct btrfs_device *scrub_dev,
3049					   int num, u64 base, u64 length)
3050{
3051	struct btrfs_path *path, *ppath;
3052	struct btrfs_fs_info *fs_info = sctx->fs_info;
3053	struct btrfs_root *root = fs_info->extent_root;
3054	struct btrfs_root *csum_root = fs_info->csum_root;
3055	struct btrfs_extent_item *extent;
3056	struct blk_plug plug;
3057	u64 flags;
3058	int ret;
3059	int slot;
3060	u64 nstripes;
3061	struct extent_buffer *l;
3062	u64 physical;
3063	u64 logical;
3064	u64 logic_end;
3065	u64 physical_end;
3066	u64 generation;
3067	int mirror_num;
3068	struct reada_control *reada1;
3069	struct reada_control *reada2;
3070	struct btrfs_key key;
3071	struct btrfs_key key_end;
3072	u64 increment = map->stripe_len;
3073	u64 offset;
3074	u64 extent_logical;
3075	u64 extent_physical;
3076	u64 extent_len;
3077	u64 stripe_logical;
3078	u64 stripe_end;
3079	struct btrfs_device *extent_dev;
3080	int extent_mirror_num;
3081	int stop_loop = 0;
3082
3083	physical = map->stripes[num].physical;
3084	offset = 0;
3085	nstripes = div64_u64(length, map->stripe_len);
3086	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3087		offset = map->stripe_len * num;
3088		increment = map->stripe_len * map->num_stripes;
3089		mirror_num = 1;
3090	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3091		int factor = map->num_stripes / map->sub_stripes;
3092		offset = map->stripe_len * (num / map->sub_stripes);
3093		increment = map->stripe_len * factor;
3094		mirror_num = num % map->sub_stripes + 1;
3095	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3096		increment = map->stripe_len;
3097		mirror_num = num % map->num_stripes + 1;
3098	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3099		increment = map->stripe_len;
3100		mirror_num = num % map->num_stripes + 1;
3101	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3102		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3103		increment = map->stripe_len * nr_data_stripes(map);
3104		mirror_num = 1;
3105	} else {
3106		increment = map->stripe_len;
3107		mirror_num = 1;
3108	}
3109
3110	path = btrfs_alloc_path();
3111	if (!path)
3112		return -ENOMEM;
3113
3114	ppath = btrfs_alloc_path();
3115	if (!ppath) {
3116		btrfs_free_path(path);
3117		return -ENOMEM;
 
3118	}
3119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120	/*
3121	 * work on commit root. The related disk blocks are static as
3122	 * long as COW is applied. This means, it is save to rewrite
3123	 * them to repair disk errors without any race conditions
 
 
3124	 */
3125	path->search_commit_root = 1;
3126	path->skip_locking = 1;
3127
3128	ppath->search_commit_root = 1;
3129	ppath->skip_locking = 1;
3130	/*
3131	 * trigger the readahead for extent tree csum tree and wait for
3132	 * completion. During readahead, the scrub is officially paused
3133	 * to not hold off transaction commits
3134	 */
3135	logical = base + offset;
3136	physical_end = physical + nstripes * map->stripe_len;
3137	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3138		get_raid56_logic_offset(physical_end, num,
3139					map, &logic_end, NULL);
3140		logic_end += base;
3141	} else {
3142		logic_end = logical + increment * nstripes;
 
 
3143	}
3144	wait_event(sctx->list_wait,
3145		   atomic_read(&sctx->bios_in_flight) == 0);
3146	scrub_blocked_if_needed(fs_info);
3147
3148	/* FIXME it might be better to start readahead at commit root */
3149	key.objectid = logical;
3150	key.type = BTRFS_EXTENT_ITEM_KEY;
3151	key.offset = (u64)0;
3152	key_end.objectid = logic_end;
3153	key_end.type = BTRFS_METADATA_ITEM_KEY;
3154	key_end.offset = (u64)-1;
3155	reada1 = btrfs_reada_add(root, &key, &key_end);
3156
3157	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158	key.type = BTRFS_EXTENT_CSUM_KEY;
3159	key.offset = logical;
3160	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3161	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3162	key_end.offset = logic_end;
3163	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3164
3165	if (!IS_ERR(reada1))
3166		btrfs_reada_wait(reada1);
3167	if (!IS_ERR(reada2))
3168		btrfs_reada_wait(reada2);
3169
 
 
 
3170
3171	/*
3172	 * collect all data csums for the stripe to avoid seeking during
3173	 * the scrub. This might currently (crc32) end up to be about 1MB
3174	 */
3175	blk_start_plug(&plug);
 
 
 
3176
3177	/*
3178	 * now find all extents for each stripe and scrub them
 
3179	 */
3180	ret = 0;
3181	while (physical < physical_end) {
3182		/*
3183		 * canceled?
3184		 */
3185		if (atomic_read(&fs_info->scrub_cancel_req) ||
3186		    atomic_read(&sctx->cancel_req)) {
3187			ret = -ECANCELED;
3188			goto out;
 
 
 
 
3189		}
 
3190		/*
3191		 * check to see if we have to pause
 
 
 
 
 
3192		 */
3193		if (atomic_read(&fs_info->scrub_pause_req)) {
3194			/* push queued extents */
3195			sctx->flush_all_writes = true;
3196			scrub_submit(sctx);
3197			mutex_lock(&sctx->wr_lock);
3198			scrub_wr_submit(sctx);
3199			mutex_unlock(&sctx->wr_lock);
3200			wait_event(sctx->list_wait,
3201				   atomic_read(&sctx->bios_in_flight) == 0);
3202			sctx->flush_all_writes = false;
3203			scrub_blocked_if_needed(fs_info);
3204		}
3205
3206		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3207			ret = get_raid56_logic_offset(physical, num, map,
3208						      &logical,
3209						      &stripe_logical);
3210			logical += base;
3211			if (ret) {
3212				/* it is parity strip */
3213				stripe_logical += base;
3214				stripe_end = stripe_logical + increment;
3215				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3216							  ppath, stripe_logical,
3217							  stripe_end);
3218				if (ret)
3219					goto out;
3220				goto skip;
3221			}
3222		}
3223
3224		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3225			key.type = BTRFS_METADATA_ITEM_KEY;
3226		else
3227			key.type = BTRFS_EXTENT_ITEM_KEY;
3228		key.objectid = logical;
3229		key.offset = (u64)-1;
3230
3231		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3232		if (ret < 0)
3233			goto out;
3234
3235		if (ret > 0) {
3236			ret = btrfs_previous_extent_item(root, path, 0);
3237			if (ret < 0)
3238				goto out;
3239			if (ret > 0) {
3240				/* there's no smaller item, so stick with the
3241				 * larger one */
3242				btrfs_release_path(path);
3243				ret = btrfs_search_slot(NULL, root, &key,
3244							path, 0, 0);
3245				if (ret < 0)
3246					goto out;
3247			}
3248		}
3249
3250		stop_loop = 0;
3251		while (1) {
3252			u64 bytes;
3253
3254			l = path->nodes[0];
3255			slot = path->slots[0];
3256			if (slot >= btrfs_header_nritems(l)) {
3257				ret = btrfs_next_leaf(root, path);
3258				if (ret == 0)
3259					continue;
3260				if (ret < 0)
3261					goto out;
3262
3263				stop_loop = 1;
3264				break;
3265			}
3266			btrfs_item_key_to_cpu(l, &key, slot);
3267
3268			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3269			    key.type != BTRFS_METADATA_ITEM_KEY)
3270				goto next;
3271
3272			if (key.type == BTRFS_METADATA_ITEM_KEY)
3273				bytes = fs_info->nodesize;
3274			else
3275				bytes = key.offset;
3276
3277			if (key.objectid + bytes <= logical)
3278				goto next;
3279
3280			if (key.objectid >= logical + map->stripe_len) {
3281				/* out of this device extent */
3282				if (key.objectid >= logic_end)
3283					stop_loop = 1;
3284				break;
3285			}
3286
3287			extent = btrfs_item_ptr(l, slot,
3288						struct btrfs_extent_item);
3289			flags = btrfs_extent_flags(l, extent);
3290			generation = btrfs_extent_generation(l, extent);
3291
3292			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3293			    (key.objectid < logical ||
3294			     key.objectid + bytes >
3295			     logical + map->stripe_len)) {
3296				btrfs_err(fs_info,
3297					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3298				       key.objectid, logical);
3299				spin_lock(&sctx->stat_lock);
3300				sctx->stat.uncorrectable_errors++;
3301				spin_unlock(&sctx->stat_lock);
3302				goto next;
3303			}
3304
3305again:
3306			extent_logical = key.objectid;
3307			extent_len = bytes;
3308
3309			/*
3310			 * trim extent to this stripe
3311			 */
3312			if (extent_logical < logical) {
3313				extent_len -= logical - extent_logical;
3314				extent_logical = logical;
3315			}
3316			if (extent_logical + extent_len >
3317			    logical + map->stripe_len) {
3318				extent_len = logical + map->stripe_len -
3319					     extent_logical;
3320			}
3321
3322			extent_physical = extent_logical - logical + physical;
3323			extent_dev = scrub_dev;
3324			extent_mirror_num = mirror_num;
3325			if (sctx->is_dev_replace)
3326				scrub_remap_extent(fs_info, extent_logical,
3327						   extent_len, &extent_physical,
3328						   &extent_dev,
3329						   &extent_mirror_num);
3330
3331			ret = btrfs_lookup_csums_range(csum_root,
3332						       extent_logical,
3333						       extent_logical +
3334						       extent_len - 1,
3335						       &sctx->csum_list, 1);
3336			if (ret)
3337				goto out;
3338
3339			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3340					   extent_physical, extent_dev, flags,
3341					   generation, extent_mirror_num,
3342					   extent_logical - logical + physical);
3343
3344			scrub_free_csums(sctx);
3345
3346			if (ret)
3347				goto out;
3348
3349			if (extent_logical + extent_len <
3350			    key.objectid + bytes) {
3351				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3352					/*
3353					 * loop until we find next data stripe
3354					 * or we have finished all stripes.
3355					 */
3356loop:
3357					physical += map->stripe_len;
3358					ret = get_raid56_logic_offset(physical,
3359							num, map, &logical,
3360							&stripe_logical);
3361					logical += base;
3362
3363					if (ret && physical < physical_end) {
3364						stripe_logical += base;
3365						stripe_end = stripe_logical +
3366								increment;
3367						ret = scrub_raid56_parity(sctx,
3368							map, scrub_dev, ppath,
3369							stripe_logical,
3370							stripe_end);
3371						if (ret)
3372							goto out;
3373						goto loop;
3374					}
3375				} else {
3376					physical += map->stripe_len;
3377					logical += increment;
3378				}
3379				if (logical < key.objectid + bytes) {
3380					cond_resched();
3381					goto again;
3382				}
3383
3384				if (physical >= physical_end) {
3385					stop_loop = 1;
3386					break;
3387				}
3388			}
3389next:
3390			path->slots[0]++;
3391		}
3392		btrfs_release_path(path);
3393skip:
3394		logical += increment;
3395		physical += map->stripe_len;
3396		spin_lock(&sctx->stat_lock);
3397		if (stop_loop)
3398			sctx->stat.last_physical = map->stripes[num].physical +
3399						   length;
3400		else
3401			sctx->stat.last_physical = physical;
3402		spin_unlock(&sctx->stat_lock);
3403		if (stop_loop)
3404			break;
3405	}
3406out:
3407	/* push queued extents */
3408	scrub_submit(sctx);
3409	mutex_lock(&sctx->wr_lock);
3410	scrub_wr_submit(sctx);
3411	mutex_unlock(&sctx->wr_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3412
3413	blk_finish_plug(&plug);
3414	btrfs_free_path(path);
3415	btrfs_free_path(ppath);
3416	return ret < 0 ? ret : 0;
3417}
3418
3419static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 
3420					  struct btrfs_device *scrub_dev,
3421					  u64 chunk_offset, u64 length,
3422					  u64 dev_offset,
3423					  struct btrfs_block_group_cache *cache)
3424{
3425	struct btrfs_fs_info *fs_info = sctx->fs_info;
3426	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3427	struct map_lookup *map;
3428	struct extent_map *em;
3429	int i;
3430	int ret = 0;
3431
3432	read_lock(&map_tree->lock);
3433	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3434	read_unlock(&map_tree->lock);
3435
3436	if (!em) {
3437		/*
3438		 * Might have been an unused block group deleted by the cleaner
3439		 * kthread or relocation.
3440		 */
3441		spin_lock(&cache->lock);
3442		if (!cache->removed)
3443			ret = -EINVAL;
3444		spin_unlock(&cache->lock);
3445
3446		return ret;
3447	}
3448
3449	map = em->map_lookup;
3450	if (em->start != chunk_offset)
3451		goto out;
3452
3453	if (em->len < length)
3454		goto out;
3455
3456	for (i = 0; i < map->num_stripes; ++i) {
3457		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3458		    map->stripes[i].physical == dev_offset) {
3459			ret = scrub_stripe(sctx, map, scrub_dev, i,
3460					   chunk_offset, length);
3461			if (ret)
3462				goto out;
3463		}
3464	}
3465out:
3466	free_extent_map(em);
3467
3468	return ret;
3469}
3470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3471static noinline_for_stack
3472int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3473			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3474{
3475	struct btrfs_dev_extent *dev_extent = NULL;
3476	struct btrfs_path *path;
3477	struct btrfs_fs_info *fs_info = sctx->fs_info;
3478	struct btrfs_root *root = fs_info->dev_root;
3479	u64 length;
3480	u64 chunk_offset;
3481	int ret = 0;
3482	int ro_set;
3483	int slot;
3484	struct extent_buffer *l;
3485	struct btrfs_key key;
3486	struct btrfs_key found_key;
3487	struct btrfs_block_group_cache *cache;
3488	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3489
3490	path = btrfs_alloc_path();
3491	if (!path)
3492		return -ENOMEM;
3493
3494	path->reada = READA_FORWARD;
3495	path->search_commit_root = 1;
3496	path->skip_locking = 1;
3497
3498	key.objectid = scrub_dev->devid;
3499	key.offset = 0ull;
3500	key.type = BTRFS_DEV_EXTENT_KEY;
3501
3502	while (1) {
 
 
3503		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3504		if (ret < 0)
3505			break;
3506		if (ret > 0) {
3507			if (path->slots[0] >=
3508			    btrfs_header_nritems(path->nodes[0])) {
3509				ret = btrfs_next_leaf(root, path);
3510				if (ret < 0)
3511					break;
3512				if (ret > 0) {
3513					ret = 0;
3514					break;
3515				}
3516			} else {
3517				ret = 0;
3518			}
3519		}
3520
3521		l = path->nodes[0];
3522		slot = path->slots[0];
3523
3524		btrfs_item_key_to_cpu(l, &found_key, slot);
3525
3526		if (found_key.objectid != scrub_dev->devid)
3527			break;
3528
3529		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3530			break;
3531
3532		if (found_key.offset >= end)
3533			break;
3534
3535		if (found_key.offset < key.offset)
3536			break;
3537
3538		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3539		length = btrfs_dev_extent_length(l, dev_extent);
3540
3541		if (found_key.offset + length <= start)
3542			goto skip;
3543
3544		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3545
3546		/*
3547		 * get a reference on the corresponding block group to prevent
3548		 * the chunk from going away while we scrub it
3549		 */
3550		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3551
3552		/* some chunks are removed but not committed to disk yet,
3553		 * continue scrubbing */
3554		if (!cache)
3555			goto skip;
3556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3557		/*
3558		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3559		 * to avoid deadlock caused by:
3560		 * btrfs_inc_block_group_ro()
3561		 * -> btrfs_wait_for_commit()
3562		 * -> btrfs_commit_transaction()
3563		 * -> btrfs_scrub_pause()
3564		 */
3565		scrub_pause_on(fs_info);
3566		ret = btrfs_inc_block_group_ro(cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3567		if (!ret && sctx->is_dev_replace) {
3568			/*
3569			 * If we are doing a device replace wait for any tasks
3570			 * that started delalloc right before we set the block
3571			 * group to RO mode, as they might have just allocated
3572			 * an extent from it or decided they could do a nocow
3573			 * write. And if any such tasks did that, wait for their
3574			 * ordered extents to complete and then commit the
3575			 * current transaction, so that we can later see the new
3576			 * extent items in the extent tree - the ordered extents
3577			 * create delayed data references (for cow writes) when
3578			 * they complete, which will be run and insert the
3579			 * corresponding extent items into the extent tree when
3580			 * we commit the transaction they used when running
3581			 * inode.c:btrfs_finish_ordered_io(). We later use
3582			 * the commit root of the extent tree to find extents
3583			 * to copy from the srcdev into the tgtdev, and we don't
3584			 * want to miss any new extents.
3585			 */
3586			btrfs_wait_block_group_reservations(cache);
3587			btrfs_wait_nocow_writers(cache);
3588			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3589						       cache->key.objectid,
3590						       cache->key.offset);
3591			if (ret > 0) {
3592				struct btrfs_trans_handle *trans;
3593
3594				trans = btrfs_join_transaction(root);
3595				if (IS_ERR(trans))
3596					ret = PTR_ERR(trans);
3597				else
3598					ret = btrfs_commit_transaction(trans);
3599				if (ret) {
3600					scrub_pause_off(fs_info);
3601					btrfs_put_block_group(cache);
3602					break;
3603				}
3604			}
3605		}
3606		scrub_pause_off(fs_info);
3607
3608		if (ret == 0) {
3609			ro_set = 1;
3610		} else if (ret == -ENOSPC) {
 
3611			/*
3612			 * btrfs_inc_block_group_ro return -ENOSPC when it
3613			 * failed in creating new chunk for metadata.
3614			 * It is not a problem for scrub/replace, because
3615			 * metadata are always cowed, and our scrub paused
3616			 * commit_transactions.
 
 
 
 
 
 
3617			 */
3618			ro_set = 0;
 
 
 
 
 
 
 
3619		} else {
3620			btrfs_warn(fs_info,
3621				   "failed setting block group ro: %d", ret);
 
3622			btrfs_put_block_group(cache);
 
3623			break;
3624		}
3625
3626		down_write(&fs_info->dev_replace.rwsem);
3627		dev_replace->cursor_right = found_key.offset + length;
 
 
 
 
 
 
 
 
 
 
 
 
3628		dev_replace->cursor_left = found_key.offset;
3629		dev_replace->item_needs_writeback = 1;
3630		up_write(&dev_replace->rwsem);
3631
3632		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3633				  found_key.offset, cache);
3634
3635		/*
3636		 * flush, submit all pending read and write bios, afterwards
3637		 * wait for them.
3638		 * Note that in the dev replace case, a read request causes
3639		 * write requests that are submitted in the read completion
3640		 * worker. Therefore in the current situation, it is required
3641		 * that all write requests are flushed, so that all read and
3642		 * write requests are really completed when bios_in_flight
3643		 * changes to 0.
3644		 */
3645		sctx->flush_all_writes = true;
3646		scrub_submit(sctx);
3647		mutex_lock(&sctx->wr_lock);
3648		scrub_wr_submit(sctx);
3649		mutex_unlock(&sctx->wr_lock);
3650
3651		wait_event(sctx->list_wait,
3652			   atomic_read(&sctx->bios_in_flight) == 0);
3653
3654		scrub_pause_on(fs_info);
3655
3656		/*
3657		 * must be called before we decrease @scrub_paused.
3658		 * make sure we don't block transaction commit while
3659		 * we are waiting pending workers finished.
3660		 */
3661		wait_event(sctx->list_wait,
3662			   atomic_read(&sctx->workers_pending) == 0);
3663		sctx->flush_all_writes = false;
3664
3665		scrub_pause_off(fs_info);
3666
3667		down_write(&fs_info->dev_replace.rwsem);
3668		dev_replace->cursor_left = dev_replace->cursor_right;
3669		dev_replace->item_needs_writeback = 1;
3670		up_write(&fs_info->dev_replace.rwsem);
3671
3672		if (ro_set)
3673			btrfs_dec_block_group_ro(cache);
3674
3675		/*
3676		 * We might have prevented the cleaner kthread from deleting
3677		 * this block group if it was already unused because we raced
3678		 * and set it to RO mode first. So add it back to the unused
3679		 * list, otherwise it might not ever be deleted unless a manual
3680		 * balance is triggered or it becomes used and unused again.
3681		 */
3682		spin_lock(&cache->lock);
3683		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3684		    btrfs_block_group_used(&cache->item) == 0) {
3685			spin_unlock(&cache->lock);
3686			btrfs_mark_bg_unused(cache);
 
 
 
 
3687		} else {
3688			spin_unlock(&cache->lock);
3689		}
3690
 
3691		btrfs_put_block_group(cache);
3692		if (ret)
3693			break;
3694		if (sctx->is_dev_replace &&
3695		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3696			ret = -EIO;
3697			break;
3698		}
3699		if (sctx->stat.malloc_errors > 0) {
3700			ret = -ENOMEM;
3701			break;
3702		}
3703skip:
3704		key.offset = found_key.offset + length;
3705		btrfs_release_path(path);
3706	}
3707
3708	btrfs_free_path(path);
3709
3710	return ret;
3711}
3712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3713static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3714					   struct btrfs_device *scrub_dev)
3715{
3716	int	i;
3717	u64	bytenr;
3718	u64	gen;
3719	int	ret;
 
3720	struct btrfs_fs_info *fs_info = sctx->fs_info;
3721
3722	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3723		return -EIO;
 
 
 
 
 
 
 
 
3724
3725	/* Seed devices of a new filesystem has their own generation. */
3726	if (scrub_dev->fs_devices != fs_info->fs_devices)
3727		gen = scrub_dev->generation;
3728	else
3729		gen = fs_info->last_trans_committed;
3730
3731	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3732		bytenr = btrfs_sb_offset(i);
3733		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3734		    scrub_dev->commit_total_bytes)
3735			break;
 
 
3736
3737		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3738				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3739				  NULL, 1, bytenr);
3740		if (ret)
3741			return ret;
 
3742	}
3743	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 
 
 
 
 
 
 
 
3744
3745	return 0;
 
 
 
 
 
3746}
3747
3748/*
3749 * get a reference count on fs_info->scrub_workers. start worker if necessary
3750 */
3751static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3752						int is_dev_replace)
3753{
 
3754	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3755	int max_active = fs_info->thread_pool_size;
 
3756
3757	lockdep_assert_held(&fs_info->scrub_lock);
 
3758
 
 
 
 
 
3759	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3760		ASSERT(fs_info->scrub_workers == NULL);
3761		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3762				flags, is_dev_replace ? 1 : max_active, 4);
3763		if (!fs_info->scrub_workers)
3764			goto fail_scrub_workers;
3765
3766		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3767		fs_info->scrub_wr_completion_workers =
3768			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3769					      max_active, 2);
3770		if (!fs_info->scrub_wr_completion_workers)
3771			goto fail_scrub_wr_completion_workers;
3772
3773		ASSERT(fs_info->scrub_parity_workers == NULL);
3774		fs_info->scrub_parity_workers =
3775			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3776					      max_active, 2);
3777		if (!fs_info->scrub_parity_workers)
3778			goto fail_scrub_parity_workers;
3779
3780		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3781	} else {
3782		refcount_inc(&fs_info->scrub_workers_refcnt);
3783	}
3784	return 0;
 
 
 
 
3785
3786fail_scrub_parity_workers:
3787	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3788fail_scrub_wr_completion_workers:
3789	btrfs_destroy_workqueue(fs_info->scrub_workers);
3790fail_scrub_workers:
3791	return -ENOMEM;
3792}
3793
3794int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3795		    u64 end, struct btrfs_scrub_progress *progress,
3796		    int readonly, int is_dev_replace)
3797{
 
3798	struct scrub_ctx *sctx;
3799	int ret;
3800	struct btrfs_device *dev;
3801	unsigned int nofs_flag;
3802	struct btrfs_workqueue *scrub_workers = NULL;
3803	struct btrfs_workqueue *scrub_wr_comp = NULL;
3804	struct btrfs_workqueue *scrub_parity = NULL;
3805
3806	if (btrfs_fs_closing(fs_info))
3807		return -EAGAIN;
3808
3809	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3810		/*
3811		 * in this case scrub is unable to calculate the checksum
3812		 * the way scrub is implemented. Do not handle this
3813		 * situation at all because it won't ever happen.
3814		 */
3815		btrfs_err(fs_info,
3816			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3817		       fs_info->nodesize,
3818		       BTRFS_STRIPE_LEN);
3819		return -EINVAL;
3820	}
3821
3822	if (fs_info->sectorsize != PAGE_SIZE) {
3823		/* not supported for data w/o checksums */
3824		btrfs_err_rl(fs_info,
3825			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3826		       fs_info->sectorsize, PAGE_SIZE);
3827		return -EINVAL;
3828	}
3829
3830	if (fs_info->nodesize >
3831	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3832	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3833		/*
3834		 * would exhaust the array bounds of pagev member in
3835		 * struct scrub_block
3836		 */
3837		btrfs_err(fs_info,
3838			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3839		       fs_info->nodesize,
3840		       SCRUB_MAX_PAGES_PER_BLOCK,
3841		       fs_info->sectorsize,
3842		       SCRUB_MAX_PAGES_PER_BLOCK);
3843		return -EINVAL;
3844	}
3845
3846	/* Allocate outside of device_list_mutex */
3847	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3848	if (IS_ERR(sctx))
3849		return PTR_ERR(sctx);
3850
 
 
 
 
3851	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3852	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3853	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3854		     !is_dev_replace)) {
3855		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856		ret = -ENODEV;
3857		goto out_free_ctx;
3858	}
3859
3860	if (!is_dev_replace && !readonly &&
3861	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3862		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3864				rcu_str_deref(dev->name));
 
3865		ret = -EROFS;
3866		goto out_free_ctx;
3867	}
3868
3869	mutex_lock(&fs_info->scrub_lock);
3870	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3871	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3872		mutex_unlock(&fs_info->scrub_lock);
3873		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874		ret = -EIO;
3875		goto out_free_ctx;
3876	}
3877
3878	down_read(&fs_info->dev_replace.rwsem);
3879	if (dev->scrub_ctx ||
3880	    (!is_dev_replace &&
3881	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3882		up_read(&fs_info->dev_replace.rwsem);
3883		mutex_unlock(&fs_info->scrub_lock);
3884		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3885		ret = -EINPROGRESS;
3886		goto out_free_ctx;
3887	}
3888	up_read(&fs_info->dev_replace.rwsem);
3889
3890	ret = scrub_workers_get(fs_info, is_dev_replace);
3891	if (ret) {
3892		mutex_unlock(&fs_info->scrub_lock);
3893		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3894		goto out_free_ctx;
3895	}
3896
3897	sctx->readonly = readonly;
3898	dev->scrub_ctx = sctx;
3899	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3900
3901	/*
3902	 * checking @scrub_pause_req here, we can avoid
3903	 * race between committing transaction and scrubbing.
3904	 */
3905	__scrub_blocked_if_needed(fs_info);
3906	atomic_inc(&fs_info->scrubs_running);
3907	mutex_unlock(&fs_info->scrub_lock);
3908
3909	/*
3910	 * In order to avoid deadlock with reclaim when there is a transaction
3911	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3912	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3913	 * invoked by our callees. The pausing request is done when the
3914	 * transaction commit starts, and it blocks the transaction until scrub
3915	 * is paused (done at specific points at scrub_stripe() or right above
3916	 * before incrementing fs_info->scrubs_running).
3917	 */
3918	nofs_flag = memalloc_nofs_save();
3919	if (!is_dev_replace) {
 
 
 
 
 
 
3920		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3921		/*
3922		 * by holding device list mutex, we can
3923		 * kick off writing super in log tree sync.
3924		 */
3925		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3926		ret = scrub_supers(sctx, dev);
3927		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
3928	}
3929
3930	if (!ret)
3931		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3932	memalloc_nofs_restore(nofs_flag);
3933
3934	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3935	atomic_dec(&fs_info->scrubs_running);
3936	wake_up(&fs_info->scrub_pause_wait);
3937
3938	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3939
3940	if (progress)
3941		memcpy(progress, &sctx->stat, sizeof(*progress));
3942
3943	if (!is_dev_replace)
3944		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3945			ret ? "not finished" : "finished", devid, ret);
3946
3947	mutex_lock(&fs_info->scrub_lock);
3948	dev->scrub_ctx = NULL;
3949	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3950		scrub_workers = fs_info->scrub_workers;
3951		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3952		scrub_parity = fs_info->scrub_parity_workers;
3953
3954		fs_info->scrub_workers = NULL;
3955		fs_info->scrub_wr_completion_workers = NULL;
3956		fs_info->scrub_parity_workers = NULL;
3957	}
3958	mutex_unlock(&fs_info->scrub_lock);
3959
3960	btrfs_destroy_workqueue(scrub_workers);
3961	btrfs_destroy_workqueue(scrub_wr_comp);
3962	btrfs_destroy_workqueue(scrub_parity);
3963	scrub_put_ctx(sctx);
3964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3965	return ret;
3966
 
3967out_free_ctx:
3968	scrub_free_ctx(sctx);
3969
3970	return ret;
3971}
3972
3973void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3974{
3975	mutex_lock(&fs_info->scrub_lock);
3976	atomic_inc(&fs_info->scrub_pause_req);
3977	while (atomic_read(&fs_info->scrubs_paused) !=
3978	       atomic_read(&fs_info->scrubs_running)) {
3979		mutex_unlock(&fs_info->scrub_lock);
3980		wait_event(fs_info->scrub_pause_wait,
3981			   atomic_read(&fs_info->scrubs_paused) ==
3982			   atomic_read(&fs_info->scrubs_running));
3983		mutex_lock(&fs_info->scrub_lock);
3984	}
3985	mutex_unlock(&fs_info->scrub_lock);
3986}
3987
3988void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3989{
3990	atomic_dec(&fs_info->scrub_pause_req);
3991	wake_up(&fs_info->scrub_pause_wait);
3992}
3993
3994int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3995{
3996	mutex_lock(&fs_info->scrub_lock);
3997	if (!atomic_read(&fs_info->scrubs_running)) {
3998		mutex_unlock(&fs_info->scrub_lock);
3999		return -ENOTCONN;
4000	}
4001
4002	atomic_inc(&fs_info->scrub_cancel_req);
4003	while (atomic_read(&fs_info->scrubs_running)) {
4004		mutex_unlock(&fs_info->scrub_lock);
4005		wait_event(fs_info->scrub_pause_wait,
4006			   atomic_read(&fs_info->scrubs_running) == 0);
4007		mutex_lock(&fs_info->scrub_lock);
4008	}
4009	atomic_dec(&fs_info->scrub_cancel_req);
4010	mutex_unlock(&fs_info->scrub_lock);
4011
4012	return 0;
4013}
4014
4015int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4016{
4017	struct btrfs_fs_info *fs_info = dev->fs_info;
4018	struct scrub_ctx *sctx;
4019
4020	mutex_lock(&fs_info->scrub_lock);
4021	sctx = dev->scrub_ctx;
4022	if (!sctx) {
4023		mutex_unlock(&fs_info->scrub_lock);
4024		return -ENOTCONN;
4025	}
4026	atomic_inc(&sctx->cancel_req);
4027	while (dev->scrub_ctx) {
4028		mutex_unlock(&fs_info->scrub_lock);
4029		wait_event(fs_info->scrub_pause_wait,
4030			   dev->scrub_ctx == NULL);
4031		mutex_lock(&fs_info->scrub_lock);
4032	}
4033	mutex_unlock(&fs_info->scrub_lock);
4034
4035	return 0;
4036}
4037
4038int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4039			 struct btrfs_scrub_progress *progress)
4040{
 
4041	struct btrfs_device *dev;
4042	struct scrub_ctx *sctx = NULL;
4043
4044	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4046	if (dev)
4047		sctx = dev->scrub_ctx;
4048	if (sctx)
4049		memcpy(progress, &sctx->stat, sizeof(*progress));
4050	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4051
4052	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4053}
4054
4055static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4056			       u64 extent_logical, u64 extent_len,
4057			       u64 *extent_physical,
4058			       struct btrfs_device **extent_dev,
4059			       int *extent_mirror_num)
4060{
4061	u64 mapped_length;
4062	struct btrfs_bio *bbio = NULL;
4063	int ret;
4064
4065	mapped_length = extent_len;
4066	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4067			      &mapped_length, &bbio, 0);
4068	if (ret || !bbio || mapped_length < extent_len ||
4069	    !bbio->stripes[0].dev->bdev) {
4070		btrfs_put_bbio(bbio);
4071		return;
4072	}
4073
4074	*extent_physical = bbio->stripes[0].physical;
4075	*extent_mirror_num = bbio->mirror_num;
4076	*extent_dev = bbio->stripes[0].dev;
4077	btrfs_put_bbio(bbio);
4078}