Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
 
 
  19#include "raid56.h"
  20#include "block-group.h"
  21#include "zoned.h"
  22#include "fs.h"
  23#include "accessors.h"
  24#include "file-item.h"
  25#include "scrub.h"
  26#include "raid-stripe-tree.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
  39 */
  40
 
  41struct scrub_ctx;
  42
  43/*
  44 * The following value only influences the performance.
  45 *
  46 * This determines how many stripes would be submitted in one go,
  47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
  48 */
  49#define SCRUB_STRIPES_PER_GROUP		8
  50
  51/*
  52 * How many groups we have for each sctx.
  53 *
  54 * This would be 8M per device, the same value as the old scrub in-flight bios
  55 * size limit.
  56 */
  57#define SCRUB_GROUPS_PER_SCTX		16
  58
  59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
  60
  61/*
  62 * The following value times PAGE_SIZE needs to be large enough to match the
  63 * largest node/leaf/sector size that shall be supported.
 
  64 */
  65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  66
  67/* Represent one sector and its needed info to verify the content. */
  68struct scrub_sector_verification {
  69	bool is_metadata;
  70
  71	union {
  72		/*
  73		 * Csum pointer for data csum verification.  Should point to a
  74		 * sector csum inside scrub_stripe::csums.
  75		 *
  76		 * NULL if this data sector has no csum.
  77		 */
  78		u8 *csum;
  79
  80		/*
  81		 * Extra info for metadata verification.  All sectors inside a
  82		 * tree block share the same generation.
  83		 */
  84		u64 generation;
  85	};
  86};
  87
  88enum scrub_stripe_flags {
  89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
  90	SCRUB_STRIPE_FLAG_INITIALIZED,
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92	/* Set when the read-repair is finished. */
  93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
  94
  95	/*
  96	 * Set for data stripes if it's triggered from P/Q stripe.
  97	 * During such scrub, we should not report errors in data stripes, nor
  98	 * update the accounting.
  99	 */
 100	SCRUB_STRIPE_FLAG_NO_REPORT,
 
 
 
 
 
 
 
 
 
 
 101};
 102
 103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105/*
 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 107 */
 108struct scrub_stripe {
 109	struct scrub_ctx *sctx;
 110	struct btrfs_block_group *bg;
 111
 112	struct page *pages[SCRUB_STRIPE_PAGES];
 113	struct scrub_sector_verification *sectors;
 114
 115	struct btrfs_device *dev;
 116	u64 logical;
 117	u64 physical;
 118
 119	u16 mirror_num;
 120
 121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
 122	u16 nr_sectors;
 123
 124	/*
 125	 * How many data/meta extents are in this stripe.  Only for scrub status
 126	 * reporting purposes.
 127	 */
 128	u16 nr_data_extents;
 129	u16 nr_meta_extents;
 130
 131	atomic_t pending_io;
 132	wait_queue_head_t io_wait;
 133	wait_queue_head_t repair_wait;
 134
 135	/*
 136	 * Indicate the states of the stripe.  Bits are defined in
 137	 * scrub_stripe_flags enum.
 138	 */
 139	unsigned long state;
 140
 141	/* Indicate which sectors are covered by extent items. */
 142	unsigned long extent_sector_bitmap;
 143
 144	/*
 145	 * The errors hit during the initial read of the stripe.
 146	 *
 147	 * Would be utilized for error reporting and repair.
 148	 *
 149	 * The remaining init_nr_* records the number of errors hit, only used
 150	 * by error reporting.
 151	 */
 152	unsigned long init_error_bitmap;
 153	unsigned int init_nr_io_errors;
 154	unsigned int init_nr_csum_errors;
 155	unsigned int init_nr_meta_errors;
 156
 157	/*
 158	 * The following error bitmaps are all for the current status.
 159	 * Every time we submit a new read, these bitmaps may be updated.
 160	 *
 161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
 162	 *
 163	 * IO and csum errors can happen for both metadata and data.
 164	 */
 165	unsigned long error_bitmap;
 166	unsigned long io_error_bitmap;
 167	unsigned long csum_error_bitmap;
 168	unsigned long meta_error_bitmap;
 169
 170	/* For writeback (repair or replace) error reporting. */
 171	unsigned long write_error_bitmap;
 172
 173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
 174	spinlock_t write_error_lock;
 175
 176	/*
 177	 * Checksum for the whole stripe if this stripe is inside a data block
 178	 * group.
 179	 */
 180	u8 *csums;
 181
 182	struct work_struct work;
 183};
 184
 185struct scrub_ctx {
 186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
 187	struct scrub_stripe	*raid56_data_stripes;
 188	struct btrfs_fs_info	*fs_info;
 189	struct btrfs_path	extent_path;
 190	struct btrfs_path	csum_path;
 191	int			first_free;
 192	int			cur_stripe;
 
 
 
 
 
 193	atomic_t		cancel_req;
 194	int			readonly;
 
 195
 196	/* State of IO submission throttling affecting the associated device */
 197	ktime_t			throttle_deadline;
 198	u64			throttle_sent;
 199
 200	int			is_dev_replace;
 201	u64			write_pointer;
 202
 
 203	struct mutex            wr_lock;
 
 204	struct btrfs_device     *wr_tgtdev;
 
 205
 206	/*
 207	 * statistics
 208	 */
 209	struct btrfs_scrub_progress stat;
 210	spinlock_t		stat_lock;
 211
 212	/*
 213	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 214	 * decrement bios_in_flight and workers_pending and then do a wakeup
 215	 * on the list_wait wait queue. We must ensure the main scrub task
 216	 * doesn't free the scrub context before or while the workers are
 217	 * doing the wakeup() call.
 218	 */
 219	refcount_t              refs;
 220};
 221
 222struct scrub_warning {
 223	struct btrfs_path	*path;
 224	u64			extent_item_size;
 225	const char		*errstr;
 226	u64			physical;
 227	u64			logical;
 228	struct btrfs_device	*dev;
 229};
 230
 231static void release_scrub_stripe(struct scrub_stripe *stripe)
 232{
 233	if (!stripe)
 234		return;
 
 
 235
 236	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
 237		if (stripe->pages[i])
 238			__free_page(stripe->pages[i]);
 239		stripe->pages[i] = NULL;
 240	}
 241	kfree(stripe->sectors);
 242	kfree(stripe->csums);
 243	stripe->sectors = NULL;
 244	stripe->csums = NULL;
 245	stripe->sctx = NULL;
 246	stripe->state = 0;
 247}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
 250			     struct scrub_stripe *stripe)
 251{
 252	int ret;
 253
 254	memset(stripe, 0, sizeof(*stripe));
 255
 256	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 257	stripe->state = 0;
 258
 259	init_waitqueue_head(&stripe->io_wait);
 260	init_waitqueue_head(&stripe->repair_wait);
 261	atomic_set(&stripe->pending_io, 0);
 262	spin_lock_init(&stripe->write_error_lock);
 263
 264	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
 265	if (ret < 0)
 266		goto error;
 267
 268	stripe->sectors = kcalloc(stripe->nr_sectors,
 269				  sizeof(struct scrub_sector_verification),
 270				  GFP_KERNEL);
 271	if (!stripe->sectors)
 272		goto error;
 273
 274	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
 275				fs_info->csum_size, GFP_KERNEL);
 276	if (!stripe->csums)
 277		goto error;
 278	return 0;
 279error:
 280	release_scrub_stripe(stripe);
 281	return -ENOMEM;
 282}
 283
 284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
 285{
 286	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
 
 287}
 288
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 
 
 
 
 
 290
 291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 292{
 293	while (atomic_read(&fs_info->scrub_pause_req)) {
 294		mutex_unlock(&fs_info->scrub_lock);
 295		wait_event(fs_info->scrub_pause_wait,
 296		   atomic_read(&fs_info->scrub_pause_req) == 0);
 297		mutex_lock(&fs_info->scrub_lock);
 298	}
 299}
 300
 301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 302{
 303	atomic_inc(&fs_info->scrubs_paused);
 304	wake_up(&fs_info->scrub_pause_wait);
 305}
 306
 307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 308{
 309	mutex_lock(&fs_info->scrub_lock);
 310	__scrub_blocked_if_needed(fs_info);
 311	atomic_dec(&fs_info->scrubs_paused);
 312	mutex_unlock(&fs_info->scrub_lock);
 313
 314	wake_up(&fs_info->scrub_pause_wait);
 315}
 316
 317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 318{
 319	scrub_pause_on(fs_info);
 320	scrub_pause_off(fs_info);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 324{
 325	int i;
 326
 327	if (!sctx)
 328		return;
 329
 330	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
 331		release_scrub_stripe(&sctx->stripes[i]);
 
 
 
 
 
 
 
 
 
 
 
 332
 333	kvfree(sctx);
 
 
 
 
 
 
 
 334}
 335
 336static void scrub_put_ctx(struct scrub_ctx *sctx)
 337{
 338	if (refcount_dec_and_test(&sctx->refs))
 339		scrub_free_ctx(sctx);
 340}
 341
 342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 343		struct btrfs_fs_info *fs_info, int is_dev_replace)
 344{
 345	struct scrub_ctx *sctx;
 346	int		i;
 347
 348	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
 349	 * kvzalloc().
 350	 */
 351	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
 352	if (!sctx)
 353		goto nomem;
 354	refcount_set(&sctx->refs, 1);
 355	sctx->is_dev_replace = is_dev_replace;
 
 
 356	sctx->fs_info = fs_info;
 357	sctx->extent_path.search_commit_root = 1;
 358	sctx->extent_path.skip_locking = 1;
 359	sctx->csum_path.search_commit_root = 1;
 360	sctx->csum_path.skip_locking = 1;
 361	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
 362		int ret;
 363
 364		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
 365		if (ret < 0)
 366			goto nomem;
 367		sctx->stripes[i].sctx = sctx;
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369	sctx->first_free = 0;
 
 
 370	atomic_set(&sctx->cancel_req, 0);
 371
 
 372	spin_lock_init(&sctx->stat_lock);
 
 373	sctx->throttle_deadline = 0;
 374
 
 375	mutex_init(&sctx->wr_lock);
 
 376	if (is_dev_replace) {
 377		WARN_ON(!fs_info->dev_replace.tgtdev);
 
 378		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 
 379	}
 380
 381	return sctx;
 382
 383nomem:
 384	scrub_free_ctx(sctx);
 385	return ERR_PTR(-ENOMEM);
 386}
 387
 388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 389				     u64 root, void *warn_ctx)
 390{
 391	u32 nlink;
 392	int ret;
 393	int i;
 394	unsigned nofs_flag;
 395	struct extent_buffer *eb;
 396	struct btrfs_inode_item *inode_item;
 397	struct scrub_warning *swarn = warn_ctx;
 398	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 399	struct inode_fs_paths *ipath = NULL;
 400	struct btrfs_root *local_root;
 401	struct btrfs_key key;
 402
 403	local_root = btrfs_get_fs_root(fs_info, root, true);
 404	if (IS_ERR(local_root)) {
 405		ret = PTR_ERR(local_root);
 406		goto err;
 407	}
 408
 409	/*
 410	 * this makes the path point to (inum INODE_ITEM ioff)
 411	 */
 412	key.objectid = inum;
 413	key.type = BTRFS_INODE_ITEM_KEY;
 414	key.offset = 0;
 415
 416	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 417	if (ret) {
 418		btrfs_put_root(local_root);
 419		btrfs_release_path(swarn->path);
 420		goto err;
 421	}
 422
 423	eb = swarn->path->nodes[0];
 424	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 425					struct btrfs_inode_item);
 426	nlink = btrfs_inode_nlink(eb, inode_item);
 427	btrfs_release_path(swarn->path);
 428
 429	/*
 430	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 431	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 432	 * not seem to be strictly necessary.
 433	 */
 434	nofs_flag = memalloc_nofs_save();
 435	ipath = init_ipath(4096, local_root, swarn->path);
 436	memalloc_nofs_restore(nofs_flag);
 437	if (IS_ERR(ipath)) {
 438		btrfs_put_root(local_root);
 439		ret = PTR_ERR(ipath);
 440		ipath = NULL;
 441		goto err;
 442	}
 443	ret = paths_from_inode(inum, ipath);
 444
 445	if (ret < 0)
 446		goto err;
 447
 448	/*
 449	 * we deliberately ignore the bit ipath might have been too small to
 450	 * hold all of the paths here
 451	 */
 452	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 453		btrfs_warn_in_rcu(fs_info,
 454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 455				  swarn->errstr, swarn->logical,
 456				  btrfs_dev_name(swarn->dev),
 457				  swarn->physical,
 458				  root, inum, offset,
 459				  fs_info->sectorsize, nlink,
 460				  (char *)(unsigned long)ipath->fspath->val[i]);
 461
 462	btrfs_put_root(local_root);
 463	free_ipath(ipath);
 464	return 0;
 465
 466err:
 467	btrfs_warn_in_rcu(fs_info,
 468			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 469			  swarn->errstr, swarn->logical,
 470			  btrfs_dev_name(swarn->dev),
 471			  swarn->physical,
 472			  root, inum, offset, ret);
 473
 474	free_ipath(ipath);
 475	return 0;
 476}
 477
 478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
 479				       bool is_super, u64 logical, u64 physical)
 480{
 481	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 482	struct btrfs_path *path;
 483	struct btrfs_key found_key;
 484	struct extent_buffer *eb;
 485	struct btrfs_extent_item *ei;
 486	struct scrub_warning swarn;
 
 
 487	u64 flags = 0;
 
 488	u32 item_size;
 
 489	int ret;
 490
 491	/* Super block error, no need to search extent tree. */
 492	if (is_super) {
 493		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 494				  errstr, btrfs_dev_name(dev), physical);
 495		return;
 496	}
 497	path = btrfs_alloc_path();
 498	if (!path)
 499		return;
 500
 501	swarn.physical = physical;
 502	swarn.logical = logical;
 503	swarn.errstr = errstr;
 504	swarn.dev = NULL;
 505
 506	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 507				  &flags);
 508	if (ret < 0)
 509		goto out;
 510
 
 511	swarn.extent_item_size = found_key.offset;
 512
 513	eb = path->nodes[0];
 514	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 515	item_size = btrfs_item_size(eb, path->slots[0]);
 516
 517	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 518		unsigned long ptr = 0;
 519		u8 ref_level;
 520		u64 ref_root;
 521
 522		while (true) {
 523			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 524						      item_size, &ref_root,
 525						      &ref_level);
 526			if (ret < 0) {
 527				btrfs_warn(fs_info,
 528				"failed to resolve tree backref for logical %llu: %d",
 529						  swarn.logical, ret);
 530				break;
 531			}
 532			if (ret > 0)
 533				break;
 534			btrfs_warn_in_rcu(fs_info,
 535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 536				errstr, swarn.logical, btrfs_dev_name(dev),
 537				swarn.physical, (ref_level ? "node" : "leaf"),
 538				ref_level, ref_root);
 539		}
 
 
 
 540		btrfs_release_path(path);
 541	} else {
 542		struct btrfs_backref_walk_ctx ctx = { 0 };
 543
 544		btrfs_release_path(path);
 545
 546		ctx.bytenr = found_key.objectid;
 547		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 548		ctx.fs_info = fs_info;
 549
 550		swarn.path = path;
 551		swarn.dev = dev;
 552
 553		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 
 554	}
 555
 556out:
 557	btrfs_free_path(path);
 558}
 559
 560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 561{
 562	int ret = 0;
 563	u64 length;
 564
 565	if (!btrfs_is_zoned(sctx->fs_info))
 566		return 0;
 567
 568	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 569		return 0;
 570
 571	if (sctx->write_pointer < physical) {
 572		length = physical - sctx->write_pointer;
 573
 574		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 575						sctx->write_pointer, length);
 576		if (!ret)
 577			sctx->write_pointer = physical;
 578	}
 579	return ret;
 580}
 581
 582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
 
 583{
 584	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 585	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
 586
 587	return stripe->pages[page_index];
 
 588}
 589
 590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
 591						 int sector_nr)
 
 
 
 
 
 
 
 592{
 593	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
 596}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597
 598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
 599{
 600	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 601	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 602	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
 603	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
 604	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
 605	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 606	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 607	u8 calculated_csum[BTRFS_CSUM_SIZE];
 608	struct btrfs_header *header;
 609
 610	/*
 611	 * Here we don't have a good way to attach the pages (and subpages)
 612	 * to a dummy extent buffer, thus we have to directly grab the members
 613	 * from pages.
 614	 */
 615	header = (struct btrfs_header *)(page_address(first_page) + first_off);
 616	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
 617
 618	if (logical != btrfs_stack_header_bytenr(header)) {
 619		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 620		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 621		btrfs_warn_rl(fs_info,
 622		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
 623			      logical, stripe->mirror_num,
 624			      btrfs_stack_header_bytenr(header), logical);
 625		return;
 
 
 
 
 
 
 
 
 
 
 
 626	}
 627	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
 628		   BTRFS_FSID_SIZE) != 0) {
 629		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 630		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 631		btrfs_warn_rl(fs_info,
 632		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
 633			      logical, stripe->mirror_num,
 634			      header->fsid, fs_info->fs_devices->fsid);
 635		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 638		   BTRFS_UUID_SIZE) != 0) {
 639		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 640		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 641		btrfs_warn_rl(fs_info,
 642		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
 643			      logical, stripe->mirror_num,
 644			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
 645		return;
 
 646	}
 
 
 647
 648	/* Now check tree block csum. */
 649	shash->tfm = fs_info->csum_shash;
 650	crypto_shash_init(shash);
 651	crypto_shash_update(shash, page_address(first_page) + first_off +
 652			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
 653
 654	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
 655		struct page *page = scrub_stripe_get_page(stripe, i);
 656		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
 
 
 
 
 
 
 
 
 
 
 
 657
 658		crypto_shash_update(shash, page_address(page) + page_off,
 659				    fs_info->sectorsize);
 
 660	}
 661
 662	crypto_shash_final(shash, calculated_csum);
 663	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
 664		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 665		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 666		btrfs_warn_rl(fs_info,
 667		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
 668			      logical, stripe->mirror_num,
 669			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
 670			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
 671		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672	}
 673	if (stripe->sectors[sector_nr].generation !=
 674	    btrfs_stack_header_generation(header)) {
 675		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 676		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 677		btrfs_warn_rl(fs_info,
 678		"tree block %llu mirror %u has bad generation, has %llu want %llu",
 679			      logical, stripe->mirror_num,
 680			      btrfs_stack_header_generation(header),
 681			      stripe->sectors[sector_nr].generation);
 682		return;
 683	}
 684	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 685	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 686	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 687}
 688
 689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
 690{
 691	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 692	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
 693	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 694	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 695	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 696	u8 csum_buf[BTRFS_CSUM_SIZE];
 697	int ret;
 
 
 
 
 
 
 
 
 698
 699	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
 
 700
 701	/* Sector not utilized, skip it. */
 702	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
 703		return;
 
 
 
 704
 705	/* IO error, no need to check. */
 706	if (test_bit(sector_nr, &stripe->io_error_bitmap))
 707		return;
 
 
 708
 709	/* Metadata, verify the full tree block. */
 710	if (sector->is_metadata) {
 711		/*
 712		 * Check if the tree block crosses the stripe boundary.  If
 713		 * crossed the boundary, we cannot verify it but only give a
 714		 * warning.
 715		 *
 716		 * This can only happen on a very old filesystem where chunks
 717		 * are not ensured to be stripe aligned.
 718		 */
 719		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
 720			btrfs_warn_rl(fs_info,
 721			"tree block at %llu crosses stripe boundary %llu",
 722				      stripe->logical +
 723				      (sector_nr << fs_info->sectorsize_bits),
 724				      stripe->logical);
 725			return;
 
 
 
 
 
 
 
 
 726		}
 727		scrub_verify_one_metadata(stripe, sector_nr);
 728		return;
 729	}
 730
 
 
 
 731	/*
 732	 * Data is easier, we just verify the data csum (if we have it).  For
 733	 * cases without csum, we have no other choice but to trust it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734	 */
 735	if (!sector->csum) {
 736		clear_bit(sector_nr, &stripe->error_bitmap);
 737		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738	}
 739
 740	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
 741	if (ret < 0) {
 742		set_bit(sector_nr, &stripe->csum_error_bitmap);
 743		set_bit(sector_nr, &stripe->error_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744	} else {
 745		clear_bit(sector_nr, &stripe->csum_error_bitmap);
 746		clear_bit(sector_nr, &stripe->error_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748}
 749
 750/* Verify specified sectors of a stripe. */
 751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
 
 
 
 
 752{
 753	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 754	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 755	int sector_nr;
 756
 757	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
 758		scrub_verify_one_sector(stripe, sector_nr);
 759		if (stripe->sectors[sector_nr].is_metadata)
 760			sector_nr += sectors_per_tree - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	}
 762}
 763
 764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
 
 765{
 766	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767
 768	for (i = 0; i < stripe->nr_sectors; i++) {
 769		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
 770		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
 771			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772	}
 773	ASSERT(i < stripe->nr_sectors);
 774	return i;
 
 
 
 
 
 
 
 
 
 775}
 776
 777/*
 778 * Repair read is different to the regular read:
 779 *
 780 * - Only reads the failed sectors
 781 * - May have extra blocksize limits
 
 782 */
 783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
 
 
 784{
 785	struct scrub_stripe *stripe = bbio->private;
 786	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 787	struct bio_vec *bvec;
 788	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 789	u32 bio_size = 0;
 790	int i;
 791
 792	ASSERT(sector_nr < stripe->nr_sectors);
 793
 794	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 795		bio_size += bvec->bv_len;
 
 796
 797	if (bbio->bio.bi_status) {
 798		bitmap_set(&stripe->io_error_bitmap, sector_nr,
 799			   bio_size >> fs_info->sectorsize_bits);
 800		bitmap_set(&stripe->error_bitmap, sector_nr,
 801			   bio_size >> fs_info->sectorsize_bits);
 802	} else {
 803		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
 804			     bio_size >> fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	}
 806	bio_put(&bbio->bio);
 807	if (atomic_dec_and_test(&stripe->pending_io))
 808		wake_up(&stripe->io_wait);
 809}
 810
 811static int calc_next_mirror(int mirror, int num_copies)
 
 812{
 813	ASSERT(mirror <= num_copies);
 814	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
 
 
 
 815}
 816
 817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
 818					    int mirror, int blocksize, bool wait)
 819{
 820	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 821	struct btrfs_bio *bbio = NULL;
 822	const unsigned long old_error_bitmap = stripe->error_bitmap;
 823	int i;
 824
 825	ASSERT(stripe->mirror_num >= 1);
 826	ASSERT(atomic_read(&stripe->pending_io) == 0);
 
 
 
 827
 828	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
 829		struct page *page;
 830		int pgoff;
 831		int ret;
 
 832
 833		page = scrub_stripe_get_page(stripe, i);
 834		pgoff = scrub_stripe_get_page_offset(stripe, i);
 835
 836		/* The current sector cannot be merged, submit the bio. */
 837		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
 838			     bbio->bio.bi_iter.bi_size >= blocksize)) {
 839			ASSERT(bbio->bio.bi_iter.bi_size);
 840			atomic_inc(&stripe->pending_io);
 841			btrfs_submit_bio(bbio, mirror);
 842			if (wait)
 843				wait_scrub_stripe_io(stripe);
 844			bbio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845		}
 846
 847		if (!bbio) {
 848			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 849				fs_info, scrub_repair_read_endio, stripe);
 850			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 851				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
 
 
 
 
 852		}
 853
 854		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 855		ASSERT(ret == fs_info->sectorsize);
 856	}
 857	if (bbio) {
 858		ASSERT(bbio->bio.bi_iter.bi_size);
 859		atomic_inc(&stripe->pending_io);
 860		btrfs_submit_bio(bbio, mirror);
 861		if (wait)
 862			wait_scrub_stripe_io(stripe);
 863	}
 
 
 864}
 865
 866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
 867				       struct scrub_stripe *stripe)
 868{
 869	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 870				      DEFAULT_RATELIMIT_BURST);
 871	struct btrfs_fs_info *fs_info = sctx->fs_info;
 872	struct btrfs_device *dev = NULL;
 873	u64 physical = 0;
 874	int nr_data_sectors = 0;
 875	int nr_meta_sectors = 0;
 876	int nr_nodatacsum_sectors = 0;
 877	int nr_repaired_sectors = 0;
 878	int sector_nr;
 879
 880	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
 881		return;
 882
 883	/*
 884	 * Init needed infos for error reporting.
 885	 *
 886	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
 887	 * thus no need for dev/physical, error reporting still needs dev and physical.
 888	 */
 889	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
 890		u64 mapped_len = fs_info->sectorsize;
 891		struct btrfs_io_context *bioc = NULL;
 892		int stripe_index = stripe->mirror_num - 1;
 893		int ret;
 894
 895		/* For scrub, our mirror_num should always start at 1. */
 896		ASSERT(stripe->mirror_num >= 1);
 897		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 898				      stripe->logical, &mapped_len, &bioc,
 899				      NULL, NULL);
 900		/*
 901		 * If we failed, dev will be NULL, and later detailed reports
 902		 * will just be skipped.
 903		 */
 904		if (ret < 0)
 905			goto skip;
 906		physical = bioc->stripes[stripe_index].physical;
 907		dev = bioc->stripes[stripe_index].dev;
 908		btrfs_put_bioc(bioc);
 909	}
 
 910
 911skip:
 912	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 913		bool repaired = false;
 
 914
 915		if (stripe->sectors[sector_nr].is_metadata) {
 916			nr_meta_sectors++;
 917		} else {
 918			nr_data_sectors++;
 919			if (!stripe->sectors[sector_nr].csum)
 920				nr_nodatacsum_sectors++;
 921		}
 922
 923		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
 924		    !test_bit(sector_nr, &stripe->error_bitmap)) {
 925			nr_repaired_sectors++;
 926			repaired = true;
 927		}
 928
 929		/* Good sector from the beginning, nothing need to be done. */
 930		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
 931			continue;
 
 932
 933		/*
 934		 * Report error for the corrupted sectors.  If repaired, just
 935		 * output the message of repaired message.
 936		 */
 937		if (repaired) {
 938			if (dev) {
 939				btrfs_err_rl_in_rcu(fs_info,
 940			"fixed up error at logical %llu on dev %s physical %llu",
 941					    stripe->logical, btrfs_dev_name(dev),
 942					    physical);
 943			} else {
 944				btrfs_err_rl_in_rcu(fs_info,
 945			"fixed up error at logical %llu on mirror %u",
 946					    stripe->logical, stripe->mirror_num);
 947			}
 948			continue;
 949		}
 950
 951		/* The remaining are all for unrepaired. */
 952		if (dev) {
 953			btrfs_err_rl_in_rcu(fs_info,
 954	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
 955					    stripe->logical, btrfs_dev_name(dev),
 956					    physical);
 957		} else {
 958			btrfs_err_rl_in_rcu(fs_info,
 959	"unable to fixup (regular) error at logical %llu on mirror %u",
 960					    stripe->logical, stripe->mirror_num);
 961		}
 962
 963		if (test_bit(sector_nr, &stripe->io_error_bitmap))
 964			if (__ratelimit(&rs) && dev)
 965				scrub_print_common_warning("i/o error", dev, false,
 966						     stripe->logical, physical);
 967		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
 968			if (__ratelimit(&rs) && dev)
 969				scrub_print_common_warning("checksum error", dev, false,
 970						     stripe->logical, physical);
 971		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
 972			if (__ratelimit(&rs) && dev)
 973				scrub_print_common_warning("header error", dev, false,
 974						     stripe->logical, physical);
 975	}
 
 
 976
 977	spin_lock(&sctx->stat_lock);
 978	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
 979	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
 980	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
 981	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
 982	sctx->stat.no_csum += nr_nodatacsum_sectors;
 983	sctx->stat.read_errors += stripe->init_nr_io_errors;
 984	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
 985	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
 986	sctx->stat.uncorrectable_errors +=
 987		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
 988	sctx->stat.corrected_errors += nr_repaired_sectors;
 989	spin_unlock(&sctx->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990}
 991
 992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 993				unsigned long write_bitmap, bool dev_replace);
 
 994
 995/*
 996 * The main entrance for all read related scrub work, including:
 997 *
 998 * - Wait for the initial read to finish
 999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 *   possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
 
 
 
 
 
1009{
1010	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011	struct scrub_ctx *sctx = stripe->sctx;
1012	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014					  stripe->bg->length);
1015	int mirror;
1016	int i;
1017
1018	ASSERT(stripe->mirror_num > 0);
 
1019
1020	wait_scrub_stripe_io(stripe);
1021	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022	/* Save the initial failed bitmap for later repair and report usage. */
1023	stripe->init_error_bitmap = stripe->error_bitmap;
1024	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025						  stripe->nr_sectors);
1026	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027						    stripe->nr_sectors);
1028	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029						    stripe->nr_sectors);
1030
1031	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032		goto out;
 
 
 
1033
1034	/*
1035	 * Try all remaining mirrors.
1036	 *
1037	 * Here we still try to read as large block as possible, as this is
1038	 * faster and we have extra safety nets to rely on.
1039	 */
1040	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041	     mirror != stripe->mirror_num;
1042	     mirror = calc_next_mirror(mirror, num_copies)) {
1043		const unsigned long old_error_bitmap = stripe->error_bitmap;
1044
1045		scrub_stripe_submit_repair_read(stripe, mirror,
1046						BTRFS_STRIPE_LEN, false);
1047		wait_scrub_stripe_io(stripe);
1048		scrub_verify_one_stripe(stripe, old_error_bitmap);
1049		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050			goto out;
1051	}
1052
 
 
 
 
 
 
 
 
 
 
 
 
 
1053	/*
1054	 * Last safety net, try re-checking all mirrors, including the failed
1055	 * one, sector-by-sector.
1056	 *
1057	 * As if one sector failed the drive's internal csum, the whole read
1058	 * containing the offending sector would be marked as error.
1059	 * Thus here we do sector-by-sector read.
1060	 *
1061	 * This can be slow, thus we only try it as the last resort.
 
1062	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064	for (i = 0, mirror = stripe->mirror_num;
1065	     i < num_copies;
1066	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067		const unsigned long old_error_bitmap = stripe->error_bitmap;
1068
1069		scrub_stripe_submit_repair_read(stripe, mirror,
1070						fs_info->sectorsize, true);
1071		wait_scrub_stripe_io(stripe);
1072		scrub_verify_one_stripe(stripe, old_error_bitmap);
1073		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074			goto out;
1075	}
1076out:
1077	/*
1078	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1079	 * in-place, but queue the bg to be relocated.
1080	 */
1081	if (btrfs_is_zoned(fs_info)) {
1082		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084	} else if (!sctx->readonly) {
1085		unsigned long repaired;
1086
1087		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088			      &stripe->error_bitmap, stripe->nr_sectors);
1089		scrub_write_sectors(sctx, stripe, repaired, false);
1090		wait_scrub_stripe_io(stripe);
1091	}
1092
1093	scrub_stripe_report_errors(sctx, stripe);
1094	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095	wake_up(&stripe->repair_wait);
1096}
1097
1098static void scrub_read_endio(struct btrfs_bio *bbio)
1099{
1100	struct scrub_stripe *stripe = bbio->private;
1101	struct bio_vec *bvec;
1102	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103	int num_sectors;
1104	u32 bio_size = 0;
 
 
 
 
 
 
 
 
1105	int i;
 
 
1106
1107	ASSERT(sector_nr < stripe->nr_sectors);
1108	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109		bio_size += bvec->bv_len;
1110	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112	if (bbio->bio.bi_status) {
1113		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115	} else {
1116		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
 
 
 
 
 
 
 
 
 
 
 
1117	}
1118	bio_put(&bbio->bio);
1119	if (atomic_dec_and_test(&stripe->pending_io)) {
1120		wake_up(&stripe->io_wait);
1121		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
 
 
 
 
 
 
 
 
 
 
 
1123	}
 
 
 
 
 
 
1124}
1125
1126static void scrub_write_endio(struct btrfs_bio *bbio)
1127{
1128	struct scrub_stripe *stripe = bbio->private;
1129	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130	struct bio_vec *bvec;
1131	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132	u32 bio_size = 0;
1133	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134
1135	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136		bio_size += bvec->bv_len;
1137
1138	if (bbio->bio.bi_status) {
1139		unsigned long flags;
 
 
1140
1141		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143			   bio_size >> fs_info->sectorsize_bits);
1144		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145	}
1146	bio_put(&bbio->bio);
1147
1148	if (atomic_dec_and_test(&stripe->pending_io))
1149		wake_up(&stripe->io_wait);
1150}
1151
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153				   struct scrub_stripe *stripe,
1154				   struct btrfs_bio *bbio, bool dev_replace)
1155{
1156	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159		      stripe->logical;
1160
1161	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162	atomic_inc(&stripe->pending_io);
1163	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164	if (!btrfs_is_zoned(fs_info))
1165		return;
1166	/*
1167	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168	 * the write to finish before the next write.
1169	 */
1170	wait_scrub_stripe_io(stripe);
1171
1172	/*
1173	 * And also need to update the write pointer if write finished
1174	 * successfully.
1175	 */
1176	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177		      &stripe->write_error_bitmap))
1178		sctx->write_pointer += bio_len;
1179}
1180
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 *   Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 *   Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195				unsigned long write_bitmap, bool dev_replace)
1196{
1197	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198	struct btrfs_bio *bbio = NULL;
1199	int sector_nr;
1200
1201	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204		int ret;
1205
1206		/* We should only writeback sectors covered by an extent. */
1207		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
 
 
 
1208
1209		/* Cannot merge with previous sector, submit the current one. */
1210		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212			bbio = NULL;
1213		}
1214		if (!bbio) {
1215			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216					       fs_info, scrub_write_endio, stripe);
1217			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218				(sector_nr << fs_info->sectorsize_bits)) >>
1219				SECTOR_SHIFT;
1220		}
1221		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222		ASSERT(ret == fs_info->sectorsize);
1223	}
1224	if (bbio)
1225		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226}
1227
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233				  unsigned int bio_size)
1234{
1235	const int time_slice = 1000;
 
 
1236	s64 delta;
1237	ktime_t now;
1238	u32 div;
1239	u64 bwlimit;
1240
 
 
1241	bwlimit = READ_ONCE(device->scrub_speed_max);
1242	if (bwlimit == 0)
1243		return;
1244
1245	/*
1246	 * Slice is divided into intervals when the IO is submitted, adjust by
1247	 * bwlimit and maximum of 64 intervals.
1248	 */
1249	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250	div = min_t(u32, 64, div);
1251
1252	/* Start new epoch, set deadline */
1253	now = ktime_get();
1254	if (sctx->throttle_deadline == 0) {
1255		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256		sctx->throttle_sent = 0;
1257	}
1258
1259	/* Still in the time to send? */
1260	if (ktime_before(now, sctx->throttle_deadline)) {
1261		/* If current bio is within the limit, send it */
1262		sctx->throttle_sent += bio_size;
1263		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264			return;
1265
1266		/* We're over the limit, sleep until the rest of the slice */
1267		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268	} else {
1269		/* New request after deadline, start new epoch */
1270		delta = 0;
1271	}
1272
1273	if (delta) {
1274		long timeout;
1275
1276		timeout = div_u64(delta * HZ, 1000);
1277		schedule_timeout_interruptible(timeout);
1278	}
1279
1280	/* Next call will start the deadline period */
1281	sctx->throttle_deadline = 0;
1282}
1283
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
1292				   struct btrfs_chunk_map *map, u64 *offset,
1293				   u64 *stripe_start)
1294{
1295	int i;
1296	int j = 0;
1297	u64 last_offset;
1298	const int data_stripes = nr_data_stripes(map);
1299
1300	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301	if (stripe_start)
1302		*stripe_start = last_offset;
1303
1304	*offset = last_offset;
1305	for (i = 0; i < data_stripes; i++) {
1306		u32 stripe_nr;
1307		u32 stripe_index;
1308		u32 rot;
1309
1310		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
 
1311
1312		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313
1314		/* Work out the disk rotation on this stripe-set */
1315		rot = stripe_nr % map->num_stripes;
1316		/* calculate which stripe this data locates */
1317		rot += i;
1318		stripe_index = rot % map->num_stripes;
1319		if (stripe_index == num)
1320			return 0;
1321		if (stripe_index < num)
1322			j++;
1323	}
1324	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325	return 1;
1326}
1327
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334				     u64 search_start, u64 search_len)
1335{
1336	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337	u64 len;
1338	struct btrfs_key key;
 
1339
1340	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342	       key.type == BTRFS_METADATA_ITEM_KEY);
1343	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344		len = fs_info->nodesize;
1345	else
1346		len = key.offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347
1348	if (key.objectid + len <= search_start)
1349		return -1;
1350	if (key.objectid >= search_start + search_len)
1351		return 1;
1352	return 0;
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372				  struct btrfs_path *path,
1373				  u64 search_start, u64 search_len)
1374{
1375	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376	struct btrfs_key key;
1377	int ret;
1378
1379	/* Continue using the existing path */
1380	if (path->nodes[0])
1381		goto search_forward;
1382
1383	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384		key.type = BTRFS_METADATA_ITEM_KEY;
1385	else
1386		key.type = BTRFS_EXTENT_ITEM_KEY;
1387	key.objectid = search_start;
1388	key.offset = (u64)-1;
1389
1390	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391	if (ret < 0)
1392		return ret;
1393
1394	ASSERT(ret > 0);
1395	/*
1396	 * Here we intentionally pass 0 as @min_objectid, as there could be
1397	 * an extent item starting before @search_start.
1398	 */
1399	ret = btrfs_previous_extent_item(extent_root, path, 0);
1400	if (ret < 0)
1401		return ret;
1402	/*
1403	 * No matter whether we have found an extent item, the next loop will
1404	 * properly do every check on the key.
1405	 */
1406search_forward:
1407	while (true) {
1408		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1409		if (key.objectid >= search_start + search_len)
1410			break;
1411		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1412		    key.type != BTRFS_EXTENT_ITEM_KEY)
1413			goto next;
1414
1415		ret = compare_extent_item_range(path, search_start, search_len);
1416		if (ret == 0)
1417			return ret;
1418		if (ret > 0)
1419			break;
1420next:
1421		ret = btrfs_next_item(extent_root, path);
1422		if (ret) {
1423			/* Either no more items or a fatal error. */
1424			btrfs_release_path(path);
1425			return ret;
1426		}
 
 
 
 
 
 
 
 
 
 
1427	}
1428	btrfs_release_path(path);
1429	return 1;
1430}
1431
1432static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1433			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1434{
1435	struct btrfs_key key;
1436	struct btrfs_extent_item *ei;
1437
1438	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1439	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1440	       key.type == BTRFS_EXTENT_ITEM_KEY);
1441	*extent_start_ret = key.objectid;
1442	if (key.type == BTRFS_METADATA_ITEM_KEY)
1443		*size_ret = path->nodes[0]->fs_info->nodesize;
1444	else
1445		*size_ret = key.offset;
1446	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1447	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1448	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1449}
1450
1451static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1452					u64 physical, u64 physical_end)
1453{
 
1454	struct btrfs_fs_info *fs_info = sctx->fs_info;
1455	int ret = 0;
 
 
 
 
 
 
1456
1457	if (!btrfs_is_zoned(fs_info))
1458		return 0;
 
 
 
1459
1460	mutex_lock(&sctx->wr_lock);
1461	if (sctx->write_pointer < physical_end) {
1462		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1463						    physical,
1464						    sctx->write_pointer);
1465		if (ret)
1466			btrfs_err(fs_info,
1467				  "zoned: failed to recover write pointer");
 
1468	}
1469	mutex_unlock(&sctx->wr_lock);
1470	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1471
1472	return ret;
1473}
 
 
1474
1475static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1476				 struct scrub_stripe *stripe,
1477				 u64 extent_start, u64 extent_len,
1478				 u64 extent_flags, u64 extent_gen)
1479{
1480	for (u64 cur_logical = max(stripe->logical, extent_start);
1481	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1482			       extent_start + extent_len);
1483	     cur_logical += fs_info->sectorsize) {
1484		const int nr_sector = (cur_logical - stripe->logical) >>
1485				      fs_info->sectorsize_bits;
1486		struct scrub_sector_verification *sector =
1487						&stripe->sectors[nr_sector];
1488
1489		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1490		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1491			sector->is_metadata = true;
1492			sector->generation = extent_gen;
1493		}
1494	}
1495}
1496
1497static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1498{
1499	stripe->extent_sector_bitmap = 0;
1500	stripe->init_error_bitmap = 0;
1501	stripe->init_nr_io_errors = 0;
1502	stripe->init_nr_csum_errors = 0;
1503	stripe->init_nr_meta_errors = 0;
1504	stripe->error_bitmap = 0;
1505	stripe->io_error_bitmap = 0;
1506	stripe->csum_error_bitmap = 0;
1507	stripe->meta_error_bitmap = 0;
 
 
 
1508}
1509
1510/*
1511 * Locate one stripe which has at least one extent in its range.
1512 *
1513 * Return 0 if found such stripe, and store its info into @stripe.
1514 * Return >0 if there is no such stripe in the specified range.
1515 * Return <0 for error.
1516 */
1517static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1518					struct btrfs_path *extent_path,
1519					struct btrfs_path *csum_path,
1520					struct btrfs_device *dev, u64 physical,
1521					int mirror_num, u64 logical_start,
1522					u32 logical_len,
1523					struct scrub_stripe *stripe)
1524{
1525	struct btrfs_fs_info *fs_info = bg->fs_info;
1526	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1527	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1528	const u64 logical_end = logical_start + logical_len;
1529	u64 cur_logical = logical_start;
1530	u64 stripe_end;
1531	u64 extent_start;
1532	u64 extent_len;
1533	u64 extent_flags;
1534	u64 extent_gen;
1535	int ret;
1536
1537	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1538				   stripe->nr_sectors);
1539	scrub_stripe_reset_bitmaps(stripe);
1540
1541	/* The range must be inside the bg. */
1542	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1543
1544	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1545				     logical_len);
1546	/* Either error or not found. */
1547	if (ret)
1548		goto out;
1549	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1550			&extent_gen);
1551	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1552		stripe->nr_meta_extents++;
1553	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1554		stripe->nr_data_extents++;
1555	cur_logical = max(extent_start, cur_logical);
1556
1557	/*
1558	 * Round down to stripe boundary.
1559	 *
1560	 * The extra calculation against bg->start is to handle block groups
1561	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1562	 */
1563	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1564			  bg->start;
1565	stripe->physical = physical + stripe->logical - logical_start;
1566	stripe->dev = dev;
1567	stripe->bg = bg;
1568	stripe->mirror_num = mirror_num;
1569	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1570
1571	/* Fill the first extent info into stripe->sectors[] array. */
1572	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1573			     extent_flags, extent_gen);
1574	cur_logical = extent_start + extent_len;
1575
1576	/* Fill the extent info for the remaining sectors. */
1577	while (cur_logical <= stripe_end) {
1578		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1579					     stripe_end - cur_logical + 1);
1580		if (ret < 0)
1581			goto out;
1582		if (ret > 0) {
1583			ret = 0;
1584			break;
1585		}
1586		get_extent_info(extent_path, &extent_start, &extent_len,
1587				&extent_flags, &extent_gen);
1588		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1589			stripe->nr_meta_extents++;
1590		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1591			stripe->nr_data_extents++;
1592		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1593				     extent_flags, extent_gen);
1594		cur_logical = extent_start + extent_len;
1595	}
1596
1597	/* Now fill the data csum. */
1598	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1599		int sector_nr;
1600		unsigned long csum_bitmap = 0;
1601
1602		/* Csum space should have already been allocated. */
1603		ASSERT(stripe->csums);
1604
1605		/*
1606		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1607		 * should contain at most 16 sectors.
1608		 */
1609		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1610
1611		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1612						stripe->logical, stripe_end,
1613						stripe->csums, &csum_bitmap);
1614		if (ret < 0)
1615			goto out;
1616		if (ret > 0)
1617			ret = 0;
1618
1619		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1620			stripe->sectors[sector_nr].csum = stripe->csums +
1621				sector_nr * fs_info->csum_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1622		}
 
 
 
1623	}
1624	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1625out:
1626	return ret;
 
1627}
1628
1629static void scrub_reset_stripe(struct scrub_stripe *stripe)
1630{
1631	scrub_stripe_reset_bitmaps(stripe);
 
1632
1633	stripe->nr_meta_extents = 0;
1634	stripe->nr_data_extents = 0;
1635	stripe->state = 0;
1636
1637	for (int i = 0; i < stripe->nr_sectors; i++) {
1638		stripe->sectors[i].is_metadata = false;
1639		stripe->sectors[i].csum = NULL;
1640		stripe->sectors[i].generation = 0;
1641	}
1642}
1643
1644static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1645					    struct scrub_stripe *stripe)
1646{
1647	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1648	struct btrfs_bio *bbio = NULL;
1649	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1650				      stripe->bg->length - stripe->logical) >>
1651				  fs_info->sectorsize_bits;
1652	u64 stripe_len = BTRFS_STRIPE_LEN;
1653	int mirror = stripe->mirror_num;
1654	int i;
1655
1656	atomic_inc(&stripe->pending_io);
1657
1658	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1659		struct page *page = scrub_stripe_get_page(stripe, i);
1660		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1661
1662		/* We're beyond the chunk boundary, no need to read anymore. */
1663		if (i >= nr_sectors)
1664			break;
1665
1666		/* The current sector cannot be merged, submit the bio. */
1667		if (bbio &&
1668		    ((i > 0 &&
1669		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1670		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1671			ASSERT(bbio->bio.bi_iter.bi_size);
1672			atomic_inc(&stripe->pending_io);
1673			btrfs_submit_bio(bbio, mirror);
1674			bbio = NULL;
1675		}
 
1676
1677		if (!bbio) {
1678			struct btrfs_io_stripe io_stripe = {};
1679			struct btrfs_io_context *bioc = NULL;
1680			const u64 logical = stripe->logical +
1681					    (i << fs_info->sectorsize_bits);
1682			int err;
1683
1684			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1685					       fs_info, scrub_read_endio, stripe);
1686			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1687
1688			io_stripe.is_scrub = true;
1689			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1690					      &stripe_len, &bioc, &io_stripe,
1691					      &mirror);
1692			btrfs_put_bioc(bioc);
1693			if (err) {
1694				btrfs_bio_end_io(bbio,
1695						 errno_to_blk_status(err));
1696				return;
1697			}
1698		}
1699
1700		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1701	}
1702
1703	if (bbio) {
1704		ASSERT(bbio->bio.bi_iter.bi_size);
1705		atomic_inc(&stripe->pending_io);
1706		btrfs_submit_bio(bbio, mirror);
1707	}
 
1708
1709	if (atomic_dec_and_test(&stripe->pending_io)) {
1710		wake_up(&stripe->io_wait);
1711		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1712		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1713	}
 
 
1714}
1715
1716static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1717				      struct scrub_stripe *stripe)
 
1718{
1719	struct btrfs_fs_info *fs_info = sctx->fs_info;
1720	struct btrfs_bio *bbio;
1721	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1722				      stripe->bg->length - stripe->logical) >>
1723				  fs_info->sectorsize_bits;
1724	int mirror = stripe->mirror_num;
1725
1726	ASSERT(stripe->bg);
1727	ASSERT(stripe->mirror_num > 0);
1728	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1729
1730	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1731		scrub_submit_extent_sector_read(sctx, stripe);
1732		return;
1733	}
1734
1735	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1736			       scrub_read_endio, stripe);
1737
1738	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1739	/* Read the whole range inside the chunk boundary. */
1740	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1741		struct page *page = scrub_stripe_get_page(stripe, cur);
1742		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1743		int ret;
1744
1745		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1746		/* We should have allocated enough bio vectors. */
1747		ASSERT(ret == fs_info->sectorsize);
1748	}
1749	atomic_inc(&stripe->pending_io);
1750
1751	/*
1752	 * For dev-replace, either user asks to avoid the source dev, or
1753	 * the device is missing, we try the next mirror instead.
1754	 */
1755	if (sctx->is_dev_replace &&
1756	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1757	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1758	     !stripe->dev->bdev)) {
1759		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1760						  stripe->bg->length);
1761
1762		mirror = calc_next_mirror(mirror, num_copies);
1763	}
1764	btrfs_submit_bio(bbio, mirror);
1765}
1766
1767static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
 
1768{
1769	int i;
1770
1771	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1772		if (stripe->sectors[i].is_metadata) {
1773			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1774
1775			btrfs_err(fs_info,
1776			"stripe %llu has unrepaired metadata sector at %llu",
1777				  stripe->logical,
1778				  stripe->logical + (i << fs_info->sectorsize_bits));
1779			return true;
1780		}
1781	}
1782	return false;
1783}
1784
1785static void submit_initial_group_read(struct scrub_ctx *sctx,
1786				      unsigned int first_slot,
1787				      unsigned int nr_stripes)
1788{
1789	struct blk_plug plug;
1790
1791	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1792	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
 
 
 
 
 
 
 
 
 
 
 
1793
1794	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1795			      btrfs_stripe_nr_to_offset(nr_stripes));
1796	blk_start_plug(&plug);
1797	for (int i = 0; i < nr_stripes; i++) {
1798		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1799
1800		/* Those stripes should be initialized. */
1801		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1802		scrub_submit_initial_read(sctx, stripe);
1803	}
1804	blk_finish_plug(&plug);
1805}
1806
1807static int flush_scrub_stripes(struct scrub_ctx *sctx)
1808{
1809	struct btrfs_fs_info *fs_info = sctx->fs_info;
1810	struct scrub_stripe *stripe;
1811	const int nr_stripes = sctx->cur_stripe;
1812	int ret = 0;
1813
1814	if (!nr_stripes)
1815		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1816
1817	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
 
 
 
 
 
 
 
 
 
1818
1819	/* Submit the stripes which are populated but not submitted. */
1820	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1821		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
 
 
 
 
 
 
 
1822
1823		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
 
 
 
 
 
 
 
 
 
 
 
1824	}
 
 
 
 
1825
1826	for (int i = 0; i < nr_stripes; i++) {
1827		stripe = &sctx->stripes[i];
 
 
 
 
 
 
 
1828
1829		wait_event(stripe->repair_wait,
1830			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831	}
1832
1833	/* Submit for dev-replace. */
1834	if (sctx->is_dev_replace) {
1835		/*
1836		 * For dev-replace, if we know there is something wrong with
1837		 * metadata, we should immediately abort.
1838		 */
1839		for (int i = 0; i < nr_stripes; i++) {
1840			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1841				ret = -EIO;
1842				goto out;
1843			}
1844		}
1845		for (int i = 0; i < nr_stripes; i++) {
1846			unsigned long good;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847
1848			stripe = &sctx->stripes[i];
1849
1850			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
 
 
 
 
 
 
1851
1852			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1853				      &stripe->error_bitmap, stripe->nr_sectors);
1854			scrub_write_sectors(sctx, stripe, good, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856	}
1857
1858	/* Wait for the above writebacks to finish. */
1859	for (int i = 0; i < nr_stripes; i++) {
1860		stripe = &sctx->stripes[i];
 
1861
1862		wait_scrub_stripe_io(stripe);
1863		scrub_reset_stripe(stripe);
 
 
 
1864	}
1865out:
1866	sctx->cur_stripe = 0;
1867	return ret;
1868}
1869
1870static void raid56_scrub_wait_endio(struct bio *bio)
1871{
1872	complete(bio->bi_private);
1873}
1874
1875static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1876			      struct btrfs_device *dev, int mirror_num,
1877			      u64 logical, u32 length, u64 physical,
1878			      u64 *found_logical_ret)
1879{
1880	struct scrub_stripe *stripe;
1881	int ret;
 
 
1882
1883	/*
1884	 * There should always be one slot left, as caller filling the last
1885	 * slot should flush them all.
1886	 */
1887	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1888
1889	/* @found_logical_ret must be specified. */
1890	ASSERT(found_logical_ret);
1891
1892	stripe = &sctx->stripes[sctx->cur_stripe];
1893	scrub_reset_stripe(stripe);
1894	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1895					   &sctx->csum_path, dev, physical,
1896					   mirror_num, logical, length, stripe);
1897	/* Either >0 as no more extents or <0 for error. */
1898	if (ret)
1899		return ret;
1900	*found_logical_ret = stripe->logical;
1901	sctx->cur_stripe++;
1902
1903	/* We filled one group, submit it. */
1904	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1905		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1906
1907		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
 
 
 
 
 
 
1908	}
1909
1910	/* Last slot used, flush them all. */
1911	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1912		return flush_scrub_stripes(sctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913	return 0;
1914}
1915
1916static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1917				      struct btrfs_device *scrub_dev,
1918				      struct btrfs_block_group *bg,
1919				      struct btrfs_chunk_map *map,
1920				      u64 full_stripe_start)
 
 
 
 
 
1921{
1922	DECLARE_COMPLETION_ONSTACK(io_done);
1923	struct btrfs_fs_info *fs_info = sctx->fs_info;
1924	struct btrfs_raid_bio *rbio;
1925	struct btrfs_io_context *bioc = NULL;
1926	struct btrfs_path extent_path = { 0 };
1927	struct btrfs_path csum_path = { 0 };
1928	struct bio *bio;
1929	struct scrub_stripe *stripe;
1930	bool all_empty = true;
1931	const int data_stripes = nr_data_stripes(map);
1932	unsigned long extent_bitmap = 0;
1933	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1934	int ret;
1935
1936	ASSERT(sctx->raid56_data_stripes);
 
 
1937
1938	/*
1939	 * For data stripe search, we cannot re-use the same extent/csum paths,
1940	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1941	 * we have to use our own extent/csum paths.
1942	 */
1943	extent_path.search_commit_root = 1;
1944	extent_path.skip_locking = 1;
1945	csum_path.search_commit_root = 1;
1946	csum_path.skip_locking = 1;
1947
1948	for (int i = 0; i < data_stripes; i++) {
1949		int stripe_index;
1950		int rot;
1951		u64 physical;
1952
1953		stripe = &sctx->raid56_data_stripes[i];
1954		rot = div_u64(full_stripe_start - bg->start,
1955			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1956		stripe_index = (i + rot) % map->num_stripes;
1957		physical = map->stripes[stripe_index].physical +
1958			   btrfs_stripe_nr_to_offset(rot);
1959
1960		scrub_reset_stripe(stripe);
1961		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1962		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1963				map->stripes[stripe_index].dev, physical, 1,
1964				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1965				BTRFS_STRIPE_LEN, stripe);
1966		if (ret < 0)
1967			goto out;
1968		/*
1969		 * No extent in this data stripe, need to manually mark them
1970		 * initialized to make later read submission happy.
1971		 */
1972		if (ret > 0) {
1973			stripe->logical = full_stripe_start +
1974					  btrfs_stripe_nr_to_offset(i);
1975			stripe->dev = map->stripes[stripe_index].dev;
1976			stripe->mirror_num = 1;
1977			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1978		}
1979	}
1980
1981	/* Check if all data stripes are empty. */
1982	for (int i = 0; i < data_stripes; i++) {
1983		stripe = &sctx->raid56_data_stripes[i];
1984		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1985			all_empty = false;
1986			break;
1987		}
1988	}
1989	if (all_empty) {
1990		ret = 0;
1991		goto out;
 
1992	}
 
 
 
1993
1994	for (int i = 0; i < data_stripes; i++) {
1995		stripe = &sctx->raid56_data_stripes[i];
1996		scrub_submit_initial_read(sctx, stripe);
 
 
 
 
 
 
 
 
 
1997	}
1998	for (int i = 0; i < data_stripes; i++) {
1999		stripe = &sctx->raid56_data_stripes[i];
2000
2001		wait_event(stripe->repair_wait,
2002			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
2003	}
2004	/* For now, no zoned support for RAID56. */
2005	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2006
2007	/*
2008	 * Now all data stripes are properly verified. Check if we have any
2009	 * unrepaired, if so abort immediately or we could further corrupt the
2010	 * P/Q stripes.
2011	 *
2012	 * During the loop, also populate extent_bitmap.
2013	 */
2014	for (int i = 0; i < data_stripes; i++) {
2015		unsigned long error;
2016
2017		stripe = &sctx->raid56_data_stripes[i];
 
 
 
 
2018
2019		/*
2020		 * We should only check the errors where there is an extent.
2021		 * As we may hit an empty data stripe while it's missing.
2022		 */
2023		bitmap_and(&error, &stripe->error_bitmap,
2024			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2025		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2026			btrfs_err(fs_info,
2027"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2028				  full_stripe_start, i, stripe->nr_sectors,
2029				  &error);
2030			ret = -EIO;
2031			goto out;
2032		}
2033		bitmap_or(&extent_bitmap, &extent_bitmap,
2034			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2035	}
2036
2037	/* Now we can check and regenerate the P/Q stripe. */
2038	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2039	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2040	bio->bi_private = &io_done;
2041	bio->bi_end_io = raid56_scrub_wait_endio;
2042
2043	btrfs_bio_counter_inc_blocked(fs_info);
2044	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2045			      &length, &bioc, NULL, NULL);
2046	if (ret < 0) {
2047		btrfs_put_bioc(bioc);
2048		btrfs_bio_counter_dec(fs_info);
2049		goto out;
2050	}
2051	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2052				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2053	btrfs_put_bioc(bioc);
2054	if (!rbio) {
2055		ret = -ENOMEM;
2056		btrfs_bio_counter_dec(fs_info);
 
 
 
 
 
 
 
 
 
2057		goto out;
2058	}
2059	/* Use the recovered stripes as cache to avoid read them from disk again. */
2060	for (int i = 0; i < data_stripes; i++) {
2061		stripe = &sctx->raid56_data_stripes[i];
2062
2063		raid56_parity_cache_data_pages(rbio, stripe->pages,
2064				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2065	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066	raid56_parity_submit_scrub_rbio(rbio);
2067	wait_for_completion_io(&io_done);
2068	ret = blk_status_to_errno(bio->bi_status);
 
2069	bio_put(bio);
 
2070	btrfs_bio_counter_dec(fs_info);
2071
2072	btrfs_release_path(&extent_path);
2073	btrfs_release_path(&csum_path);
 
 
 
2074out:
2075	return ret;
2076}
2077
2078/*
2079 * Scrub one range which can only has simple mirror based profile.
2080 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2081 *  RAID0/RAID10).
2082 *
2083 * Since we may need to handle a subset of block group, we need @logical_start
2084 * and @logical_length parameter.
2085 */
2086static int scrub_simple_mirror(struct scrub_ctx *sctx,
2087			       struct btrfs_block_group *bg,
2088			       struct btrfs_chunk_map *map,
2089			       u64 logical_start, u64 logical_length,
2090			       struct btrfs_device *device,
2091			       u64 physical, int mirror_num)
 
 
 
 
 
 
 
 
 
 
2092{
2093	struct btrfs_fs_info *fs_info = sctx->fs_info;
2094	const u64 logical_end = logical_start + logical_length;
2095	u64 cur_logical = logical_start;
 
 
 
2096	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097
2098	/* The range must be inside the bg */
2099	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
 
 
 
 
 
 
 
 
 
2100
2101	/* Go through each extent items inside the logical range */
2102	while (cur_logical < logical_end) {
2103		u64 found_logical = U64_MAX;
2104		u64 cur_physical = physical + cur_logical - logical_start;
 
 
 
 
 
 
 
2105
2106		/* Canceled? */
2107		if (atomic_read(&fs_info->scrub_cancel_req) ||
2108		    atomic_read(&sctx->cancel_req)) {
2109			ret = -ECANCELED;
2110			break;
2111		}
2112		/* Paused? */
2113		if (atomic_read(&fs_info->scrub_pause_req)) {
2114			/* Push queued extents */
2115			scrub_blocked_if_needed(fs_info);
2116		}
2117		/* Block group removed? */
2118		spin_lock(&bg->lock);
2119		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2120			spin_unlock(&bg->lock);
2121			ret = 0;
2122			break;
2123		}
2124		spin_unlock(&bg->lock);
2125
2126		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2127					 cur_logical, logical_end - cur_logical,
2128					 cur_physical, &found_logical);
2129		if (ret > 0) {
2130			/* No more extent, just update the accounting */
2131			sctx->stat.last_physical = physical + logical_length;
2132			ret = 0;
2133			break;
 
 
 
 
 
 
2134		}
2135		if (ret < 0)
2136			break;
2137
2138		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2139		ASSERT(found_logical != U64_MAX);
2140		cur_logical = found_logical + BTRFS_STRIPE_LEN;
 
 
 
 
 
 
 
 
 
2141
2142		/* Don't hold CPU for too long time */
2143		cond_resched();
2144	}
2145	return ret;
2146}
2147
2148/* Calculate the full stripe length for simple stripe based profiles */
2149static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2150{
2151	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2152			    BTRFS_BLOCK_GROUP_RAID10));
2153
2154	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2155}
 
 
2156
2157/* Get the logical bytenr for the stripe */
2158static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2159				     struct btrfs_block_group *bg,
2160				     int stripe_index)
2161{
2162	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2163			    BTRFS_BLOCK_GROUP_RAID10));
2164	ASSERT(stripe_index < map->num_stripes);
2165
2166	/*
2167	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2168	 * skip.
2169	 */
2170	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2171	       bg->start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172}
2173
2174/* Get the mirror number for the stripe */
2175static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2176{
2177	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2178			    BTRFS_BLOCK_GROUP_RAID10));
2179	ASSERT(stripe_index < map->num_stripes);
 
 
 
 
 
2180
2181	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2182	return stripe_index % map->sub_stripes + 1;
2183}
2184
2185static int scrub_simple_stripe(struct scrub_ctx *sctx,
2186			       struct btrfs_block_group *bg,
2187			       struct btrfs_chunk_map *map,
2188			       struct btrfs_device *device,
2189			       int stripe_index)
2190{
2191	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2192	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2193	const u64 orig_physical = map->stripes[stripe_index].physical;
2194	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2195	u64 cur_logical = orig_logical;
2196	u64 cur_physical = orig_physical;
2197	int ret = 0;
2198
2199	while (cur_logical < bg->start + bg->length) {
2200		/*
2201		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2202		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2203		 * this stripe.
2204		 */
2205		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2206					  BTRFS_STRIPE_LEN, device, cur_physical,
2207					  mirror_num);
 
2208		if (ret)
2209			return ret;
2210		/* Skip to next stripe which belongs to the target device */
2211		cur_logical += logical_increment;
2212		/* For physical offset, we just go to next stripe */
2213		cur_physical += BTRFS_STRIPE_LEN;
2214	}
 
 
 
2215	return ret;
2216}
2217
2218static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2219					   struct btrfs_block_group *bg,
2220					   struct btrfs_chunk_map *map,
2221					   struct btrfs_device *scrub_dev,
2222					   int stripe_index)
 
2223{
 
2224	struct btrfs_fs_info *fs_info = sctx->fs_info;
2225	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2226	const u64 chunk_logical = bg->start;
 
 
 
2227	int ret;
2228	int ret2;
2229	u64 physical = map->stripes[stripe_index].physical;
2230	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2231	const u64 physical_end = physical + dev_stripe_len;
2232	u64 logical;
2233	u64 logic_end;
2234	/* The logical increment after finishing one stripe */
2235	u64 increment;
2236	/* Offset inside the chunk */
 
 
 
 
 
2237	u64 offset;
 
 
 
 
 
 
 
2238	u64 stripe_logical;
 
 
 
2239	int stop_loop = 0;
2240
2241	/* Extent_path should be released by now. */
2242	ASSERT(sctx->extent_path.nodes[0] == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244	scrub_blocked_if_needed(fs_info);
2245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246	if (sctx->is_dev_replace &&
2247	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2248		mutex_lock(&sctx->wr_lock);
2249		sctx->write_pointer = physical;
2250		mutex_unlock(&sctx->wr_lock);
 
2251	}
2252
2253	/* Prepare the extra data stripes used by RAID56. */
2254	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2255		ASSERT(sctx->raid56_data_stripes == NULL);
2256
2257		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2258						    sizeof(struct scrub_stripe),
2259						    GFP_KERNEL);
2260		if (!sctx->raid56_data_stripes) {
2261			ret = -ENOMEM;
 
 
2262			goto out;
2263		}
2264		for (int i = 0; i < nr_data_stripes(map); i++) {
2265			ret = init_scrub_stripe(fs_info,
2266						&sctx->raid56_data_stripes[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2267			if (ret < 0)
2268				goto out;
2269			sctx->raid56_data_stripes[i].bg = bg;
2270			sctx->raid56_data_stripes[i].sctx = sctx;
 
 
 
 
 
 
 
2271		}
2272	}
2273	/*
2274	 * There used to be a big double loop to handle all profiles using the
2275	 * same routine, which grows larger and more gross over time.
2276	 *
2277	 * So here we handle each profile differently, so simpler profiles
2278	 * have simpler scrubbing function.
2279	 */
2280	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2281			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2282		/*
2283		 * Above check rules out all complex profile, the remaining
2284		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2285		 * mirrored duplication without stripe.
2286		 *
2287		 * Only @physical and @mirror_num needs to calculated using
2288		 * @stripe_index.
2289		 */
2290		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2291				scrub_dev, map->stripes[stripe_index].physical,
2292				stripe_index + 1);
2293		offset = 0;
2294		goto out;
2295	}
2296	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2297		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2298		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2299		goto out;
2300	}
2301
2302	/* Only RAID56 goes through the old code */
2303	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2304	ret = 0;
 
 
 
 
 
 
 
 
 
2305
2306	/* Calculate the logical end of the stripe */
2307	get_raid56_logic_offset(physical_end, stripe_index,
2308				map, &logic_end, NULL);
2309	logic_end += chunk_logical;
2310
2311	/* Initialize @offset in case we need to go to out: label */
2312	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2313	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314
2315	/*
2316	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2317	 * using their physical offset.
2318	 */
2319	while (physical < physical_end) {
2320		ret = get_raid56_logic_offset(physical, stripe_index, map,
2321					      &logical, &stripe_logical);
2322		logical += chunk_logical;
2323		if (ret) {
2324			/* it is parity strip */
2325			stripe_logical += chunk_logical;
2326			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2327							 map, stripe_logical);
2328			if (ret)
2329				goto out;
2330			goto next;
2331		}
2332
2333		/*
2334		 * Now we're at a data stripe, scrub each extents in the range.
2335		 *
2336		 * At this stage, if we ignore the repair part, inside each data
2337		 * stripe it is no different than SINGLE profile.
2338		 * We can reuse scrub_simple_mirror() here, as the repair part
2339		 * is still based on @mirror_num.
2340		 */
2341		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2342					  scrub_dev, physical, 1);
2343		if (ret < 0)
2344			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345next:
 
 
 
 
2346		logical += increment;
2347		physical += BTRFS_STRIPE_LEN;
2348		spin_lock(&sctx->stat_lock);
2349		if (stop_loop)
2350			sctx->stat.last_physical =
2351				map->stripes[stripe_index].physical + dev_stripe_len;
2352		else
2353			sctx->stat.last_physical = physical;
2354		spin_unlock(&sctx->stat_lock);
2355		if (stop_loop)
2356			break;
2357	}
2358out:
2359	ret2 = flush_scrub_stripes(sctx);
2360	if (!ret)
2361		ret = ret2;
2362	btrfs_release_path(&sctx->extent_path);
2363	btrfs_release_path(&sctx->csum_path);
2364
2365	if (sctx->raid56_data_stripes) {
2366		for (int i = 0; i < nr_data_stripes(map); i++)
2367			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2368		kfree(sctx->raid56_data_stripes);
2369		sctx->raid56_data_stripes = NULL;
2370	}
2371
2372	if (sctx->is_dev_replace && ret >= 0) {
2373		int ret2;
2374
2375		ret2 = sync_write_pointer_for_zoned(sctx,
2376				chunk_logical + offset,
2377				map->stripes[stripe_index].physical,
2378				physical_end);
2379		if (ret2)
2380			ret = ret2;
2381	}
2382
2383	return ret < 0 ? ret : 0;
2384}
2385
2386static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2387					  struct btrfs_block_group *bg,
2388					  struct btrfs_device *scrub_dev,
 
2389					  u64 dev_offset,
2390					  u64 dev_extent_len)
2391{
2392	struct btrfs_fs_info *fs_info = sctx->fs_info;
2393	struct btrfs_chunk_map *map;
 
 
2394	int i;
2395	int ret = 0;
2396
2397	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2398	if (!map) {
 
 
 
2399		/*
2400		 * Might have been an unused block group deleted by the cleaner
2401		 * kthread or relocation.
2402		 */
2403		spin_lock(&bg->lock);
2404		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2405			ret = -EINVAL;
2406		spin_unlock(&bg->lock);
2407
2408		return ret;
2409	}
2410	if (map->start != bg->start)
 
 
2411		goto out;
2412	if (map->chunk_len < dev_extent_len)
 
2413		goto out;
2414
2415	for (i = 0; i < map->num_stripes; ++i) {
2416		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2417		    map->stripes[i].physical == dev_offset) {
2418			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
 
2419			if (ret)
2420				goto out;
2421		}
2422	}
2423out:
2424	btrfs_free_chunk_map(map);
2425
2426	return ret;
2427}
2428
2429static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2430					  struct btrfs_block_group *cache)
2431{
2432	struct btrfs_fs_info *fs_info = cache->fs_info;
2433	struct btrfs_trans_handle *trans;
2434
2435	if (!btrfs_is_zoned(fs_info))
2436		return 0;
2437
2438	btrfs_wait_block_group_reservations(cache);
2439	btrfs_wait_nocow_writers(cache);
2440	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2441
2442	trans = btrfs_join_transaction(root);
2443	if (IS_ERR(trans))
2444		return PTR_ERR(trans);
2445	return btrfs_commit_transaction(trans);
2446}
2447
2448static noinline_for_stack
2449int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2450			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2451{
2452	struct btrfs_dev_extent *dev_extent = NULL;
2453	struct btrfs_path *path;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	struct btrfs_root *root = fs_info->dev_root;
 
2456	u64 chunk_offset;
2457	int ret = 0;
2458	int ro_set;
2459	int slot;
2460	struct extent_buffer *l;
2461	struct btrfs_key key;
2462	struct btrfs_key found_key;
2463	struct btrfs_block_group *cache;
2464	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2465
2466	path = btrfs_alloc_path();
2467	if (!path)
2468		return -ENOMEM;
2469
2470	path->reada = READA_FORWARD;
2471	path->search_commit_root = 1;
2472	path->skip_locking = 1;
2473
2474	key.objectid = scrub_dev->devid;
2475	key.offset = 0ull;
2476	key.type = BTRFS_DEV_EXTENT_KEY;
2477
2478	while (1) {
2479		u64 dev_extent_len;
2480
2481		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482		if (ret < 0)
2483			break;
2484		if (ret > 0) {
2485			if (path->slots[0] >=
2486			    btrfs_header_nritems(path->nodes[0])) {
2487				ret = btrfs_next_leaf(root, path);
2488				if (ret < 0)
2489					break;
2490				if (ret > 0) {
2491					ret = 0;
2492					break;
2493				}
2494			} else {
2495				ret = 0;
2496			}
2497		}
2498
2499		l = path->nodes[0];
2500		slot = path->slots[0];
2501
2502		btrfs_item_key_to_cpu(l, &found_key, slot);
2503
2504		if (found_key.objectid != scrub_dev->devid)
2505			break;
2506
2507		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2508			break;
2509
2510		if (found_key.offset >= end)
2511			break;
2512
2513		if (found_key.offset < key.offset)
2514			break;
2515
2516		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2517		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2518
2519		if (found_key.offset + dev_extent_len <= start)
2520			goto skip;
2521
2522		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2523
2524		/*
2525		 * get a reference on the corresponding block group to prevent
2526		 * the chunk from going away while we scrub it
2527		 */
2528		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2529
2530		/* some chunks are removed but not committed to disk yet,
2531		 * continue scrubbing */
2532		if (!cache)
2533			goto skip;
2534
2535		ASSERT(cache->start <= chunk_offset);
2536		/*
2537		 * We are using the commit root to search for device extents, so
2538		 * that means we could have found a device extent item from a
2539		 * block group that was deleted in the current transaction. The
2540		 * logical start offset of the deleted block group, stored at
2541		 * @chunk_offset, might be part of the logical address range of
2542		 * a new block group (which uses different physical extents).
2543		 * In this case btrfs_lookup_block_group() has returned the new
2544		 * block group, and its start address is less than @chunk_offset.
2545		 *
2546		 * We skip such new block groups, because it's pointless to
2547		 * process them, as we won't find their extents because we search
2548		 * for them using the commit root of the extent tree. For a device
2549		 * replace it's also fine to skip it, we won't miss copying them
2550		 * to the target device because we have the write duplication
2551		 * setup through the regular write path (by btrfs_map_block()),
2552		 * and we have committed a transaction when we started the device
2553		 * replace, right after setting up the device replace state.
2554		 */
2555		if (cache->start < chunk_offset) {
2556			btrfs_put_block_group(cache);
2557			goto skip;
2558		}
2559
2560		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2561			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
 
 
2562				btrfs_put_block_group(cache);
2563				goto skip;
2564			}
 
2565		}
2566
2567		/*
2568		 * Make sure that while we are scrubbing the corresponding block
2569		 * group doesn't get its logical address and its device extents
2570		 * reused for another block group, which can possibly be of a
2571		 * different type and different profile. We do this to prevent
2572		 * false error detections and crashes due to bogus attempts to
2573		 * repair extents.
2574		 */
2575		spin_lock(&cache->lock);
2576		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2577			spin_unlock(&cache->lock);
2578			btrfs_put_block_group(cache);
2579			goto skip;
2580		}
2581		btrfs_freeze_block_group(cache);
2582		spin_unlock(&cache->lock);
2583
2584		/*
2585		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2586		 * to avoid deadlock caused by:
2587		 * btrfs_inc_block_group_ro()
2588		 * -> btrfs_wait_for_commit()
2589		 * -> btrfs_commit_transaction()
2590		 * -> btrfs_scrub_pause()
2591		 */
2592		scrub_pause_on(fs_info);
2593
2594		/*
2595		 * Don't do chunk preallocation for scrub.
2596		 *
2597		 * This is especially important for SYSTEM bgs, or we can hit
2598		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2599		 * 1. The only SYSTEM bg is marked RO.
2600		 *    Since SYSTEM bg is small, that's pretty common.
2601		 * 2. New SYSTEM bg will be allocated
2602		 *    Due to regular version will allocate new chunk.
2603		 * 3. New SYSTEM bg is empty and will get cleaned up
2604		 *    Before cleanup really happens, it's marked RO again.
2605		 * 4. Empty SYSTEM bg get scrubbed
2606		 *    We go back to 2.
2607		 *
2608		 * This can easily boost the amount of SYSTEM chunks if cleaner
2609		 * thread can't be triggered fast enough, and use up all space
2610		 * of btrfs_super_block::sys_chunk_array
2611		 *
2612		 * While for dev replace, we need to try our best to mark block
2613		 * group RO, to prevent race between:
2614		 * - Write duplication
2615		 *   Contains latest data
2616		 * - Scrub copy
2617		 *   Contains data from commit tree
2618		 *
2619		 * If target block group is not marked RO, nocow writes can
2620		 * be overwritten by scrub copy, causing data corruption.
2621		 * So for dev-replace, it's not allowed to continue if a block
2622		 * group is not RO.
2623		 */
2624		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2625		if (!ret && sctx->is_dev_replace) {
2626			ret = finish_extent_writes_for_zoned(root, cache);
2627			if (ret) {
2628				btrfs_dec_block_group_ro(cache);
2629				scrub_pause_off(fs_info);
2630				btrfs_put_block_group(cache);
2631				break;
2632			}
2633		}
2634
2635		if (ret == 0) {
2636			ro_set = 1;
2637		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2638			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2639			/*
2640			 * btrfs_inc_block_group_ro return -ENOSPC when it
2641			 * failed in creating new chunk for metadata.
2642			 * It is not a problem for scrub, because
2643			 * metadata are always cowed, and our scrub paused
2644			 * commit_transactions.
2645			 *
2646			 * For RAID56 chunks, we have to mark them read-only
2647			 * for scrub, as later we would use our own cache
2648			 * out of RAID56 realm.
2649			 * Thus we want the RAID56 bg to be marked RO to
2650			 * prevent RMW from screwing up out cache.
2651			 */
2652			ro_set = 0;
2653		} else if (ret == -ETXTBSY) {
2654			btrfs_warn(fs_info,
2655		   "skipping scrub of block group %llu due to active swapfile",
2656				   cache->start);
2657			scrub_pause_off(fs_info);
2658			ret = 0;
2659			goto skip_unfreeze;
2660		} else {
2661			btrfs_warn(fs_info,
2662				   "failed setting block group ro: %d", ret);
2663			btrfs_unfreeze_block_group(cache);
2664			btrfs_put_block_group(cache);
2665			scrub_pause_off(fs_info);
2666			break;
2667		}
2668
2669		/*
2670		 * Now the target block is marked RO, wait for nocow writes to
2671		 * finish before dev-replace.
2672		 * COW is fine, as COW never overwrites extents in commit tree.
2673		 */
2674		if (sctx->is_dev_replace) {
2675			btrfs_wait_nocow_writers(cache);
2676			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2677					cache->length);
2678		}
2679
2680		scrub_pause_off(fs_info);
2681		down_write(&dev_replace->rwsem);
2682		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2683		dev_replace->cursor_left = found_key.offset;
2684		dev_replace->item_needs_writeback = 1;
2685		up_write(&dev_replace->rwsem);
2686
2687		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2688				  dev_extent_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2689		if (sctx->is_dev_replace &&
2690		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2691						      cache, found_key.offset))
2692			ro_set = 0;
2693
2694		down_write(&dev_replace->rwsem);
2695		dev_replace->cursor_left = dev_replace->cursor_right;
2696		dev_replace->item_needs_writeback = 1;
2697		up_write(&dev_replace->rwsem);
2698
2699		if (ro_set)
2700			btrfs_dec_block_group_ro(cache);
2701
2702		/*
2703		 * We might have prevented the cleaner kthread from deleting
2704		 * this block group if it was already unused because we raced
2705		 * and set it to RO mode first. So add it back to the unused
2706		 * list, otherwise it might not ever be deleted unless a manual
2707		 * balance is triggered or it becomes used and unused again.
2708		 */
2709		spin_lock(&cache->lock);
2710		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2711		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2712			spin_unlock(&cache->lock);
2713			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2714				btrfs_discard_queue_work(&fs_info->discard_ctl,
2715							 cache);
2716			else
2717				btrfs_mark_bg_unused(cache);
2718		} else {
2719			spin_unlock(&cache->lock);
2720		}
2721skip_unfreeze:
2722		btrfs_unfreeze_block_group(cache);
2723		btrfs_put_block_group(cache);
2724		if (ret)
2725			break;
2726		if (sctx->is_dev_replace &&
2727		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2728			ret = -EIO;
2729			break;
2730		}
2731		if (sctx->stat.malloc_errors > 0) {
2732			ret = -ENOMEM;
2733			break;
2734		}
2735skip:
2736		key.offset = found_key.offset + dev_extent_len;
2737		btrfs_release_path(path);
2738	}
2739
2740	btrfs_free_path(path);
2741
2742	return ret;
2743}
2744
2745static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2746			   struct page *page, u64 physical, u64 generation)
2747{
2748	struct btrfs_fs_info *fs_info = sctx->fs_info;
2749	struct bio_vec bvec;
2750	struct bio bio;
2751	struct btrfs_super_block *sb = page_address(page);
2752	int ret;
2753
2754	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2755	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2756	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2757	ret = submit_bio_wait(&bio);
2758	bio_uninit(&bio);
2759
2760	if (ret < 0)
2761		return ret;
2762	ret = btrfs_check_super_csum(fs_info, sb);
2763	if (ret != 0) {
2764		btrfs_err_rl(fs_info,
2765			"super block at physical %llu devid %llu has bad csum",
2766			physical, dev->devid);
2767		return -EIO;
2768	}
2769	if (btrfs_super_generation(sb) != generation) {
2770		btrfs_err_rl(fs_info,
2771"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2772			     physical, dev->devid,
2773			     btrfs_super_generation(sb), generation);
2774		return -EUCLEAN;
2775	}
2776
2777	return btrfs_validate_super(fs_info, sb, -1);
2778}
2779
2780static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2781					   struct btrfs_device *scrub_dev)
2782{
2783	int	i;
2784	u64	bytenr;
2785	u64	gen;
2786	int ret = 0;
2787	struct page *page;
2788	struct btrfs_fs_info *fs_info = sctx->fs_info;
2789
2790	if (BTRFS_FS_ERROR(fs_info))
2791		return -EROFS;
2792
2793	page = alloc_page(GFP_KERNEL);
2794	if (!page) {
2795		spin_lock(&sctx->stat_lock);
2796		sctx->stat.malloc_errors++;
2797		spin_unlock(&sctx->stat_lock);
2798		return -ENOMEM;
2799	}
2800
2801	/* Seed devices of a new filesystem has their own generation. */
2802	if (scrub_dev->fs_devices != fs_info->fs_devices)
2803		gen = scrub_dev->generation;
2804	else
2805		gen = btrfs_get_last_trans_committed(fs_info);
2806
2807	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2808		bytenr = btrfs_sb_offset(i);
2809		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2810		    scrub_dev->commit_total_bytes)
2811			break;
2812		if (!btrfs_check_super_location(scrub_dev, bytenr))
2813			continue;
2814
2815		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2816		if (ret) {
2817			spin_lock(&sctx->stat_lock);
2818			sctx->stat.super_errors++;
2819			spin_unlock(&sctx->stat_lock);
2820		}
2821	}
2822	__free_page(page);
 
2823	return 0;
2824}
2825
2826static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2827{
2828	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2829					&fs_info->scrub_lock)) {
2830		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
 
 
 
 
 
 
2831
2832		fs_info->scrub_workers = NULL;
 
 
2833		mutex_unlock(&fs_info->scrub_lock);
2834
2835		if (scrub_workers)
2836			destroy_workqueue(scrub_workers);
 
2837	}
2838}
2839
2840/*
2841 * get a reference count on fs_info->scrub_workers. start worker if necessary
2842 */
2843static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
 
2844{
2845	struct workqueue_struct *scrub_workers = NULL;
 
 
2846	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2847	int max_active = fs_info->thread_pool_size;
2848	int ret = -ENOMEM;
2849
2850	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2851		return 0;
2852
2853	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
 
2854	if (!scrub_workers)
2855		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
2856
2857	mutex_lock(&fs_info->scrub_lock);
2858	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2859		ASSERT(fs_info->scrub_workers == NULL);
 
 
2860		fs_info->scrub_workers = scrub_workers;
 
 
2861		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2862		mutex_unlock(&fs_info->scrub_lock);
2863		return 0;
2864	}
2865	/* Other thread raced in and created the workers for us */
2866	refcount_inc(&fs_info->scrub_workers_refcnt);
2867	mutex_unlock(&fs_info->scrub_lock);
2868
2869	ret = 0;
2870
2871	destroy_workqueue(scrub_workers);
 
 
 
 
2872	return ret;
2873}
2874
2875int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2876		    u64 end, struct btrfs_scrub_progress *progress,
2877		    int readonly, int is_dev_replace)
2878{
2879	struct btrfs_dev_lookup_args args = { .devid = devid };
2880	struct scrub_ctx *sctx;
2881	int ret;
2882	struct btrfs_device *dev;
2883	unsigned int nofs_flag;
2884	bool need_commit = false;
2885
2886	if (btrfs_fs_closing(fs_info))
2887		return -EAGAIN;
2888
2889	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2890	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
 
 
 
 
 
 
 
 
 
 
2891
2892	/*
2893	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2894	 * value (max nodesize / min sectorsize), thus nodesize should always
2895	 * be fine.
2896	 */
2897	ASSERT(fs_info->nodesize <=
2898	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
2899
2900	/* Allocate outside of device_list_mutex */
2901	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2902	if (IS_ERR(sctx))
2903		return PTR_ERR(sctx);
2904
2905	ret = scrub_workers_get(fs_info);
2906	if (ret)
2907		goto out_free_ctx;
2908
2909	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2910	dev = btrfs_find_device(fs_info->fs_devices, &args);
2911	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2912		     !is_dev_replace)) {
2913		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2914		ret = -ENODEV;
2915		goto out;
2916	}
2917
2918	if (!is_dev_replace && !readonly &&
2919	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2920		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2921		btrfs_err_in_rcu(fs_info,
2922			"scrub on devid %llu: filesystem on %s is not writable",
2923				 devid, btrfs_dev_name(dev));
2924		ret = -EROFS;
2925		goto out;
2926	}
2927
2928	mutex_lock(&fs_info->scrub_lock);
2929	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2930	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2931		mutex_unlock(&fs_info->scrub_lock);
2932		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933		ret = -EIO;
2934		goto out;
2935	}
2936
2937	down_read(&fs_info->dev_replace.rwsem);
2938	if (dev->scrub_ctx ||
2939	    (!is_dev_replace &&
2940	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2941		up_read(&fs_info->dev_replace.rwsem);
2942		mutex_unlock(&fs_info->scrub_lock);
2943		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2944		ret = -EINPROGRESS;
2945		goto out;
2946	}
2947	up_read(&fs_info->dev_replace.rwsem);
2948
2949	sctx->readonly = readonly;
2950	dev->scrub_ctx = sctx;
2951	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2952
2953	/*
2954	 * checking @scrub_pause_req here, we can avoid
2955	 * race between committing transaction and scrubbing.
2956	 */
2957	__scrub_blocked_if_needed(fs_info);
2958	atomic_inc(&fs_info->scrubs_running);
2959	mutex_unlock(&fs_info->scrub_lock);
2960
2961	/*
2962	 * In order to avoid deadlock with reclaim when there is a transaction
2963	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2964	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2965	 * invoked by our callees. The pausing request is done when the
2966	 * transaction commit starts, and it blocks the transaction until scrub
2967	 * is paused (done at specific points at scrub_stripe() or right above
2968	 * before incrementing fs_info->scrubs_running).
2969	 */
2970	nofs_flag = memalloc_nofs_save();
2971	if (!is_dev_replace) {
2972		u64 old_super_errors;
2973
2974		spin_lock(&sctx->stat_lock);
2975		old_super_errors = sctx->stat.super_errors;
2976		spin_unlock(&sctx->stat_lock);
2977
2978		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2979		/*
2980		 * by holding device list mutex, we can
2981		 * kick off writing super in log tree sync.
2982		 */
2983		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2984		ret = scrub_supers(sctx, dev);
2985		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986
2987		spin_lock(&sctx->stat_lock);
2988		/*
2989		 * Super block errors found, but we can not commit transaction
2990		 * at current context, since btrfs_commit_transaction() needs
2991		 * to pause the current running scrub (hold by ourselves).
2992		 */
2993		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2994			need_commit = true;
2995		spin_unlock(&sctx->stat_lock);
2996	}
2997
2998	if (!ret)
2999		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3000	memalloc_nofs_restore(nofs_flag);
3001
 
3002	atomic_dec(&fs_info->scrubs_running);
3003	wake_up(&fs_info->scrub_pause_wait);
3004
 
 
3005	if (progress)
3006		memcpy(progress, &sctx->stat, sizeof(*progress));
3007
3008	if (!is_dev_replace)
3009		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3010			ret ? "not finished" : "finished", devid, ret);
3011
3012	mutex_lock(&fs_info->scrub_lock);
3013	dev->scrub_ctx = NULL;
3014	mutex_unlock(&fs_info->scrub_lock);
3015
3016	scrub_workers_put(fs_info);
3017	scrub_put_ctx(sctx);
3018
3019	/*
3020	 * We found some super block errors before, now try to force a
3021	 * transaction commit, as scrub has finished.
3022	 */
3023	if (need_commit) {
3024		struct btrfs_trans_handle *trans;
3025
3026		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3027		if (IS_ERR(trans)) {
3028			ret = PTR_ERR(trans);
3029			btrfs_err(fs_info,
3030	"scrub: failed to start transaction to fix super block errors: %d", ret);
3031			return ret;
3032		}
3033		ret = btrfs_commit_transaction(trans);
3034		if (ret < 0)
3035			btrfs_err(fs_info,
3036	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3037	}
3038	return ret;
3039out:
3040	scrub_workers_put(fs_info);
3041out_free_ctx:
3042	scrub_free_ctx(sctx);
3043
3044	return ret;
3045}
3046
3047void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3048{
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3063{
3064	atomic_dec(&fs_info->scrub_pause_req);
3065	wake_up(&fs_info->scrub_pause_wait);
3066}
3067
3068int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3069{
3070	mutex_lock(&fs_info->scrub_lock);
3071	if (!atomic_read(&fs_info->scrubs_running)) {
3072		mutex_unlock(&fs_info->scrub_lock);
3073		return -ENOTCONN;
3074	}
3075
3076	atomic_inc(&fs_info->scrub_cancel_req);
3077	while (atomic_read(&fs_info->scrubs_running)) {
3078		mutex_unlock(&fs_info->scrub_lock);
3079		wait_event(fs_info->scrub_pause_wait,
3080			   atomic_read(&fs_info->scrubs_running) == 0);
3081		mutex_lock(&fs_info->scrub_lock);
3082	}
3083	atomic_dec(&fs_info->scrub_cancel_req);
3084	mutex_unlock(&fs_info->scrub_lock);
3085
3086	return 0;
3087}
3088
3089int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3090{
3091	struct btrfs_fs_info *fs_info = dev->fs_info;
3092	struct scrub_ctx *sctx;
3093
3094	mutex_lock(&fs_info->scrub_lock);
3095	sctx = dev->scrub_ctx;
3096	if (!sctx) {
3097		mutex_unlock(&fs_info->scrub_lock);
3098		return -ENOTCONN;
3099	}
3100	atomic_inc(&sctx->cancel_req);
3101	while (dev->scrub_ctx) {
3102		mutex_unlock(&fs_info->scrub_lock);
3103		wait_event(fs_info->scrub_pause_wait,
3104			   dev->scrub_ctx == NULL);
3105		mutex_lock(&fs_info->scrub_lock);
3106	}
3107	mutex_unlock(&fs_info->scrub_lock);
3108
3109	return 0;
3110}
3111
3112int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3113			 struct btrfs_scrub_progress *progress)
3114{
3115	struct btrfs_dev_lookup_args args = { .devid = devid };
3116	struct btrfs_device *dev;
3117	struct scrub_ctx *sctx = NULL;
3118
3119	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3120	dev = btrfs_find_device(fs_info->fs_devices, &args);
3121	if (dev)
3122		sctx = dev->scrub_ctx;
3123	if (sctx)
3124		memcpy(progress, &sctx->stat, sizeof(*progress));
3125	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3126
3127	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3128}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
  19#include "check-integrity.h"
  20#include "rcu-string.h"
  21#include "raid56.h"
  22#include "block-group.h"
  23#include "zoned.h"
 
 
 
 
 
  24
  25/*
  26 * This is only the first step towards a full-features scrub. It reads all
  27 * extent and super block and verifies the checksums. In case a bad checksum
  28 * is found or the extent cannot be read, good data will be written back if
  29 * any can be found.
  30 *
  31 * Future enhancements:
  32 *  - In case an unrepairable extent is encountered, track which files are
  33 *    affected and report them
  34 *  - track and record media errors, throw out bad devices
  35 *  - add a mode to also read unallocated space
  36 */
  37
  38struct scrub_block;
  39struct scrub_ctx;
  40
  41/*
  42 * the following three values only influence the performance.
  43 * The last one configures the number of parallel and outstanding I/O
  44 * operations. The first two values configure an upper limit for the number
  45 * of (dynamically allocated) pages that are added to a bio.
 
 
 
 
 
 
 
 
  46 */
  47#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  48#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  49#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  50
  51/*
  52 * the following value times PAGE_SIZE needs to be large enough to match the
  53 * largest node/leaf/sector size that shall be supported.
  54 * Values larger than BTRFS_STRIPE_LEN are not supported.
  55 */
  56#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
 
 
 
 
 
 
 
 
 
 
 
 
 
  57
  58struct scrub_recover {
  59	refcount_t		refs;
  60	struct btrfs_bio	*bbio;
  61	u64			map_length;
 
 
  62};
  63
  64struct scrub_page {
  65	struct scrub_block	*sblock;
  66	struct page		*page;
  67	struct btrfs_device	*dev;
  68	struct list_head	list;
  69	u64			flags;  /* extent flags */
  70	u64			generation;
  71	u64			logical;
  72	u64			physical;
  73	u64			physical_for_dev_replace;
  74	atomic_t		refs;
  75	u8			mirror_num;
  76	int			have_csum:1;
  77	int			io_error:1;
  78	u8			csum[BTRFS_CSUM_SIZE];
  79
  80	struct scrub_recover	*recover;
  81};
  82
  83struct scrub_bio {
  84	int			index;
  85	struct scrub_ctx	*sctx;
  86	struct btrfs_device	*dev;
  87	struct bio		*bio;
  88	blk_status_t		status;
  89	u64			logical;
  90	u64			physical;
  91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  93#else
  94	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  95#endif
  96	int			page_count;
  97	int			next_free;
  98	struct btrfs_work	work;
  99};
 100
 101struct scrub_block {
 102	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 103	int			page_count;
 104	atomic_t		outstanding_pages;
 105	refcount_t		refs; /* free mem on transition to zero */
 106	struct scrub_ctx	*sctx;
 107	struct scrub_parity	*sparity;
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 113
 114		/* The following is for the data used to check parity */
 115		/* It is for the data with checksum */
 116		unsigned int	data_corrected:1;
 117	};
 118	struct btrfs_work	work;
 119};
 120
 121/* Used for the chunks with parity stripe such RAID5/6 */
 122struct scrub_parity {
 123	struct scrub_ctx	*sctx;
 
 
 
 124
 125	struct btrfs_device	*scrub_dev;
 
 126
 127	u64			logic_start;
 
 
 128
 129	u64			logic_end;
 130
 131	int			nsectors;
 
 132
 133	u32			stripe_len;
 
 
 
 
 
 134
 135	refcount_t		refs;
 
 
 136
 137	struct list_head	spages;
 
 
 
 
 138
 139	/* Work of parity check and repair */
 140	struct btrfs_work	work;
 141
 142	/* Mark the parity blocks which have data */
 143	unsigned long		*dbitmap;
 
 
 
 
 
 
 
 
 
 
 144
 145	/*
 146	 * Mark the parity blocks which have data, but errors happen when
 147	 * read data or check data
 
 
 
 
 148	 */
 149	unsigned long		*ebitmap;
 
 
 
 
 
 
 150
 151	unsigned long		bitmap[];
 
 
 
 
 
 
 
 
 
 152};
 153
 154struct scrub_ctx {
 155	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 
 156	struct btrfs_fs_info	*fs_info;
 
 
 157	int			first_free;
 158	int			curr;
 159	atomic_t		bios_in_flight;
 160	atomic_t		workers_pending;
 161	spinlock_t		list_lock;
 162	wait_queue_head_t	list_wait;
 163	struct list_head	csum_list;
 164	atomic_t		cancel_req;
 165	int			readonly;
 166	int			pages_per_rd_bio;
 167
 168	/* State of IO submission throttling affecting the associated device */
 169	ktime_t			throttle_deadline;
 170	u64			throttle_sent;
 171
 172	int			is_dev_replace;
 173	u64			write_pointer;
 174
 175	struct scrub_bio        *wr_curr_bio;
 176	struct mutex            wr_lock;
 177	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 178	struct btrfs_device     *wr_tgtdev;
 179	bool                    flush_all_writes;
 180
 181	/*
 182	 * statistics
 183	 */
 184	struct btrfs_scrub_progress stat;
 185	spinlock_t		stat_lock;
 186
 187	/*
 188	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 189	 * decrement bios_in_flight and workers_pending and then do a wakeup
 190	 * on the list_wait wait queue. We must ensure the main scrub task
 191	 * doesn't free the scrub context before or while the workers are
 192	 * doing the wakeup() call.
 193	 */
 194	refcount_t              refs;
 195};
 196
 197struct scrub_warning {
 198	struct btrfs_path	*path;
 199	u64			extent_item_size;
 200	const char		*errstr;
 201	u64			physical;
 202	u64			logical;
 203	struct btrfs_device	*dev;
 204};
 205
 206struct full_stripe_lock {
 207	struct rb_node node;
 208	u64 logical;
 209	u64 refs;
 210	struct mutex mutex;
 211};
 212
 213static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 214				     struct scrub_block *sblocks_for_recheck);
 215static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 216				struct scrub_block *sblock,
 217				int retry_failed_mirror);
 218static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 219static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 220					     struct scrub_block *sblock_good);
 221static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 222					    struct scrub_block *sblock_good,
 223					    int page_num, int force_write);
 224static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 225static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 226					   int page_num);
 227static int scrub_checksum_data(struct scrub_block *sblock);
 228static int scrub_checksum_tree_block(struct scrub_block *sblock);
 229static int scrub_checksum_super(struct scrub_block *sblock);
 230static void scrub_block_put(struct scrub_block *sblock);
 231static void scrub_page_get(struct scrub_page *spage);
 232static void scrub_page_put(struct scrub_page *spage);
 233static void scrub_parity_get(struct scrub_parity *sparity);
 234static void scrub_parity_put(struct scrub_parity *sparity);
 235static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
 236		       u64 physical, struct btrfs_device *dev, u64 flags,
 237		       u64 gen, int mirror_num, u8 *csum,
 238		       u64 physical_for_dev_replace);
 239static void scrub_bio_end_io(struct bio *bio);
 240static void scrub_bio_end_io_worker(struct btrfs_work *work);
 241static void scrub_block_complete(struct scrub_block *sblock);
 242static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 243			       u64 extent_logical, u32 extent_len,
 244			       u64 *extent_physical,
 245			       struct btrfs_device **extent_dev,
 246			       int *extent_mirror_num);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248				    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static void scrub_put_ctx(struct scrub_ctx *sctx);
 253
 254static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
 
 255{
 256	return spage->recover &&
 257	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258}
 259
 260static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 261{
 262	refcount_inc(&sctx->refs);
 263	atomic_inc(&sctx->bios_in_flight);
 264}
 265
 266static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 267{
 268	atomic_dec(&sctx->bios_in_flight);
 269	wake_up(&sctx->list_wait);
 270	scrub_put_ctx(sctx);
 271}
 272
 273static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 274{
 275	while (atomic_read(&fs_info->scrub_pause_req)) {
 276		mutex_unlock(&fs_info->scrub_lock);
 277		wait_event(fs_info->scrub_pause_wait,
 278		   atomic_read(&fs_info->scrub_pause_req) == 0);
 279		mutex_lock(&fs_info->scrub_lock);
 280	}
 281}
 282
 283static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 284{
 285	atomic_inc(&fs_info->scrubs_paused);
 286	wake_up(&fs_info->scrub_pause_wait);
 287}
 288
 289static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 290{
 291	mutex_lock(&fs_info->scrub_lock);
 292	__scrub_blocked_if_needed(fs_info);
 293	atomic_dec(&fs_info->scrubs_paused);
 294	mutex_unlock(&fs_info->scrub_lock);
 295
 296	wake_up(&fs_info->scrub_pause_wait);
 297}
 298
 299static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 300{
 301	scrub_pause_on(fs_info);
 302	scrub_pause_off(fs_info);
 303}
 304
 305/*
 306 * Insert new full stripe lock into full stripe locks tree
 307 *
 308 * Return pointer to existing or newly inserted full_stripe_lock structure if
 309 * everything works well.
 310 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 311 *
 312 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 313 * function
 314 */
 315static struct full_stripe_lock *insert_full_stripe_lock(
 316		struct btrfs_full_stripe_locks_tree *locks_root,
 317		u64 fstripe_logical)
 318{
 319	struct rb_node **p;
 320	struct rb_node *parent = NULL;
 321	struct full_stripe_lock *entry;
 322	struct full_stripe_lock *ret;
 323
 324	lockdep_assert_held(&locks_root->lock);
 325
 326	p = &locks_root->root.rb_node;
 327	while (*p) {
 328		parent = *p;
 329		entry = rb_entry(parent, struct full_stripe_lock, node);
 330		if (fstripe_logical < entry->logical) {
 331			p = &(*p)->rb_left;
 332		} else if (fstripe_logical > entry->logical) {
 333			p = &(*p)->rb_right;
 334		} else {
 335			entry->refs++;
 336			return entry;
 337		}
 338	}
 339
 340	/*
 341	 * Insert new lock.
 342	 */
 343	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 344	if (!ret)
 345		return ERR_PTR(-ENOMEM);
 346	ret->logical = fstripe_logical;
 347	ret->refs = 1;
 348	mutex_init(&ret->mutex);
 349
 350	rb_link_node(&ret->node, parent, p);
 351	rb_insert_color(&ret->node, &locks_root->root);
 352	return ret;
 353}
 354
 355/*
 356 * Search for a full stripe lock of a block group
 357 *
 358 * Return pointer to existing full stripe lock if found
 359 * Return NULL if not found
 360 */
 361static struct full_stripe_lock *search_full_stripe_lock(
 362		struct btrfs_full_stripe_locks_tree *locks_root,
 363		u64 fstripe_logical)
 364{
 365	struct rb_node *node;
 366	struct full_stripe_lock *entry;
 367
 368	lockdep_assert_held(&locks_root->lock);
 369
 370	node = locks_root->root.rb_node;
 371	while (node) {
 372		entry = rb_entry(node, struct full_stripe_lock, node);
 373		if (fstripe_logical < entry->logical)
 374			node = node->rb_left;
 375		else if (fstripe_logical > entry->logical)
 376			node = node->rb_right;
 377		else
 378			return entry;
 379	}
 380	return NULL;
 381}
 382
 383/*
 384 * Helper to get full stripe logical from a normal bytenr.
 385 *
 386 * Caller must ensure @cache is a RAID56 block group.
 387 */
 388static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 389{
 390	u64 ret;
 391
 392	/*
 393	 * Due to chunk item size limit, full stripe length should not be
 394	 * larger than U32_MAX. Just a sanity check here.
 395	 */
 396	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 397
 398	/*
 399	 * round_down() can only handle power of 2, while RAID56 full
 400	 * stripe length can be 64KiB * n, so we need to manually round down.
 401	 */
 402	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 403			cache->full_stripe_len + cache->start;
 404	return ret;
 405}
 406
 407/*
 408 * Lock a full stripe to avoid concurrency of recovery and read
 409 *
 410 * It's only used for profiles with parities (RAID5/6), for other profiles it
 411 * does nothing.
 412 *
 413 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 414 * So caller must call unlock_full_stripe() at the same context.
 415 *
 416 * Return <0 if encounters error.
 417 */
 418static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 419			    bool *locked_ret)
 420{
 421	struct btrfs_block_group *bg_cache;
 422	struct btrfs_full_stripe_locks_tree *locks_root;
 423	struct full_stripe_lock *existing;
 424	u64 fstripe_start;
 425	int ret = 0;
 426
 427	*locked_ret = false;
 428	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 429	if (!bg_cache) {
 430		ASSERT(0);
 431		return -ENOENT;
 432	}
 433
 434	/* Profiles not based on parity don't need full stripe lock */
 435	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 436		goto out;
 437	locks_root = &bg_cache->full_stripe_locks_root;
 438
 439	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 440
 441	/* Now insert the full stripe lock */
 442	mutex_lock(&locks_root->lock);
 443	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 444	mutex_unlock(&locks_root->lock);
 445	if (IS_ERR(existing)) {
 446		ret = PTR_ERR(existing);
 447		goto out;
 448	}
 449	mutex_lock(&existing->mutex);
 450	*locked_ret = true;
 451out:
 452	btrfs_put_block_group(bg_cache);
 453	return ret;
 454}
 455
 456/*
 457 * Unlock a full stripe.
 458 *
 459 * NOTE: Caller must ensure it's the same context calling corresponding
 460 * lock_full_stripe().
 461 *
 462 * Return 0 if we unlock full stripe without problem.
 463 * Return <0 for error
 464 */
 465static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 466			      bool locked)
 467{
 468	struct btrfs_block_group *bg_cache;
 469	struct btrfs_full_stripe_locks_tree *locks_root;
 470	struct full_stripe_lock *fstripe_lock;
 471	u64 fstripe_start;
 472	bool freeit = false;
 473	int ret = 0;
 474
 475	/* If we didn't acquire full stripe lock, no need to continue */
 476	if (!locked)
 477		return 0;
 478
 479	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 480	if (!bg_cache) {
 481		ASSERT(0);
 482		return -ENOENT;
 483	}
 484	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 485		goto out;
 486
 487	locks_root = &bg_cache->full_stripe_locks_root;
 488	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 489
 490	mutex_lock(&locks_root->lock);
 491	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 492	/* Unpaired unlock_full_stripe() detected */
 493	if (!fstripe_lock) {
 494		WARN_ON(1);
 495		ret = -ENOENT;
 496		mutex_unlock(&locks_root->lock);
 497		goto out;
 498	}
 499
 500	if (fstripe_lock->refs == 0) {
 501		WARN_ON(1);
 502		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 503			fstripe_lock->logical);
 504	} else {
 505		fstripe_lock->refs--;
 506	}
 507
 508	if (fstripe_lock->refs == 0) {
 509		rb_erase(&fstripe_lock->node, &locks_root->root);
 510		freeit = true;
 511	}
 512	mutex_unlock(&locks_root->lock);
 513
 514	mutex_unlock(&fstripe_lock->mutex);
 515	if (freeit)
 516		kfree(fstripe_lock);
 517out:
 518	btrfs_put_block_group(bg_cache);
 519	return ret;
 520}
 521
 522static void scrub_free_csums(struct scrub_ctx *sctx)
 523{
 524	while (!list_empty(&sctx->csum_list)) {
 525		struct btrfs_ordered_sum *sum;
 526		sum = list_first_entry(&sctx->csum_list,
 527				       struct btrfs_ordered_sum, list);
 528		list_del(&sum->list);
 529		kfree(sum);
 530	}
 531}
 532
 533static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 534{
 535	int i;
 536
 537	if (!sctx)
 538		return;
 539
 540	/* this can happen when scrub is cancelled */
 541	if (sctx->curr != -1) {
 542		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 543
 544		for (i = 0; i < sbio->page_count; i++) {
 545			WARN_ON(!sbio->pagev[i]->page);
 546			scrub_block_put(sbio->pagev[i]->sblock);
 547		}
 548		bio_put(sbio->bio);
 549	}
 550
 551	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 552		struct scrub_bio *sbio = sctx->bios[i];
 553
 554		if (!sbio)
 555			break;
 556		kfree(sbio);
 557	}
 558
 559	kfree(sctx->wr_curr_bio);
 560	scrub_free_csums(sctx);
 561	kfree(sctx);
 562}
 563
 564static void scrub_put_ctx(struct scrub_ctx *sctx)
 565{
 566	if (refcount_dec_and_test(&sctx->refs))
 567		scrub_free_ctx(sctx);
 568}
 569
 570static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 571		struct btrfs_fs_info *fs_info, int is_dev_replace)
 572{
 573	struct scrub_ctx *sctx;
 574	int		i;
 575
 576	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 577	if (!sctx)
 578		goto nomem;
 579	refcount_set(&sctx->refs, 1);
 580	sctx->is_dev_replace = is_dev_replace;
 581	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 582	sctx->curr = -1;
 583	sctx->fs_info = fs_info;
 584	INIT_LIST_HEAD(&sctx->csum_list);
 585	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 586		struct scrub_bio *sbio;
 
 
 
 587
 588		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 589		if (!sbio)
 590			goto nomem;
 591		sctx->bios[i] = sbio;
 592
 593		sbio->index = i;
 594		sbio->sctx = sctx;
 595		sbio->page_count = 0;
 596		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
 597				NULL);
 598
 599		if (i != SCRUB_BIOS_PER_SCTX - 1)
 600			sctx->bios[i]->next_free = i + 1;
 601		else
 602			sctx->bios[i]->next_free = -1;
 603	}
 604	sctx->first_free = 0;
 605	atomic_set(&sctx->bios_in_flight, 0);
 606	atomic_set(&sctx->workers_pending, 0);
 607	atomic_set(&sctx->cancel_req, 0);
 608
 609	spin_lock_init(&sctx->list_lock);
 610	spin_lock_init(&sctx->stat_lock);
 611	init_waitqueue_head(&sctx->list_wait);
 612	sctx->throttle_deadline = 0;
 613
 614	WARN_ON(sctx->wr_curr_bio != NULL);
 615	mutex_init(&sctx->wr_lock);
 616	sctx->wr_curr_bio = NULL;
 617	if (is_dev_replace) {
 618		WARN_ON(!fs_info->dev_replace.tgtdev);
 619		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 620		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 621		sctx->flush_all_writes = false;
 622	}
 623
 624	return sctx;
 625
 626nomem:
 627	scrub_free_ctx(sctx);
 628	return ERR_PTR(-ENOMEM);
 629}
 630
 631static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 632				     void *warn_ctx)
 633{
 634	u32 nlink;
 635	int ret;
 636	int i;
 637	unsigned nofs_flag;
 638	struct extent_buffer *eb;
 639	struct btrfs_inode_item *inode_item;
 640	struct scrub_warning *swarn = warn_ctx;
 641	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 642	struct inode_fs_paths *ipath = NULL;
 643	struct btrfs_root *local_root;
 644	struct btrfs_key key;
 645
 646	local_root = btrfs_get_fs_root(fs_info, root, true);
 647	if (IS_ERR(local_root)) {
 648		ret = PTR_ERR(local_root);
 649		goto err;
 650	}
 651
 652	/*
 653	 * this makes the path point to (inum INODE_ITEM ioff)
 654	 */
 655	key.objectid = inum;
 656	key.type = BTRFS_INODE_ITEM_KEY;
 657	key.offset = 0;
 658
 659	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 660	if (ret) {
 661		btrfs_put_root(local_root);
 662		btrfs_release_path(swarn->path);
 663		goto err;
 664	}
 665
 666	eb = swarn->path->nodes[0];
 667	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 668					struct btrfs_inode_item);
 669	nlink = btrfs_inode_nlink(eb, inode_item);
 670	btrfs_release_path(swarn->path);
 671
 672	/*
 673	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 674	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 675	 * not seem to be strictly necessary.
 676	 */
 677	nofs_flag = memalloc_nofs_save();
 678	ipath = init_ipath(4096, local_root, swarn->path);
 679	memalloc_nofs_restore(nofs_flag);
 680	if (IS_ERR(ipath)) {
 681		btrfs_put_root(local_root);
 682		ret = PTR_ERR(ipath);
 683		ipath = NULL;
 684		goto err;
 685	}
 686	ret = paths_from_inode(inum, ipath);
 687
 688	if (ret < 0)
 689		goto err;
 690
 691	/*
 692	 * we deliberately ignore the bit ipath might have been too small to
 693	 * hold all of the paths here
 694	 */
 695	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 696		btrfs_warn_in_rcu(fs_info,
 697"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 698				  swarn->errstr, swarn->logical,
 699				  rcu_str_deref(swarn->dev->name),
 700				  swarn->physical,
 701				  root, inum, offset,
 702				  fs_info->sectorsize, nlink,
 703				  (char *)(unsigned long)ipath->fspath->val[i]);
 704
 705	btrfs_put_root(local_root);
 706	free_ipath(ipath);
 707	return 0;
 708
 709err:
 710	btrfs_warn_in_rcu(fs_info,
 711			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 712			  swarn->errstr, swarn->logical,
 713			  rcu_str_deref(swarn->dev->name),
 714			  swarn->physical,
 715			  root, inum, offset, ret);
 716
 717	free_ipath(ipath);
 718	return 0;
 719}
 720
 721static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 
 722{
 723	struct btrfs_device *dev;
 724	struct btrfs_fs_info *fs_info;
 725	struct btrfs_path *path;
 726	struct btrfs_key found_key;
 727	struct extent_buffer *eb;
 728	struct btrfs_extent_item *ei;
 729	struct scrub_warning swarn;
 730	unsigned long ptr = 0;
 731	u64 extent_item_pos;
 732	u64 flags = 0;
 733	u64 ref_root;
 734	u32 item_size;
 735	u8 ref_level = 0;
 736	int ret;
 737
 738	WARN_ON(sblock->page_count < 1);
 739	dev = sblock->pagev[0]->dev;
 740	fs_info = sblock->sctx->fs_info;
 741
 
 
 742	path = btrfs_alloc_path();
 743	if (!path)
 744		return;
 745
 746	swarn.physical = sblock->pagev[0]->physical;
 747	swarn.logical = sblock->pagev[0]->logical;
 748	swarn.errstr = errstr;
 749	swarn.dev = NULL;
 750
 751	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 752				  &flags);
 753	if (ret < 0)
 754		goto out;
 755
 756	extent_item_pos = swarn.logical - found_key.objectid;
 757	swarn.extent_item_size = found_key.offset;
 758
 759	eb = path->nodes[0];
 760	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 761	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 762
 763	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 764		do {
 
 
 
 
 765			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 766						      item_size, &ref_root,
 767						      &ref_level);
 
 
 
 
 
 
 
 
 768			btrfs_warn_in_rcu(fs_info,
 769"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 770				errstr, swarn.logical,
 771				rcu_str_deref(dev->name),
 772				swarn.physical,
 773				ref_level ? "node" : "leaf",
 774				ret < 0 ? -1 : ref_level,
 775				ret < 0 ? -1 : ref_root);
 776		} while (ret != 1);
 777		btrfs_release_path(path);
 778	} else {
 
 
 779		btrfs_release_path(path);
 
 
 
 
 
 780		swarn.path = path;
 781		swarn.dev = dev;
 782		iterate_extent_inodes(fs_info, found_key.objectid,
 783					extent_item_pos, 1,
 784					scrub_print_warning_inode, &swarn, false);
 785	}
 786
 787out:
 788	btrfs_free_path(path);
 789}
 790
 791static inline void scrub_get_recover(struct scrub_recover *recover)
 792{
 793	refcount_inc(&recover->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794}
 795
 796static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 797				     struct scrub_recover *recover)
 798{
 799	if (refcount_dec_and_test(&recover->refs)) {
 800		btrfs_bio_counter_dec(fs_info);
 801		btrfs_put_bbio(recover->bbio);
 802		kfree(recover);
 803	}
 804}
 805
 806/*
 807 * scrub_handle_errored_block gets called when either verification of the
 808 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 809 * case, this function handles all pages in the bio, even though only one
 810 * may be bad.
 811 * The goal of this function is to repair the errored block by using the
 812 * contents of one of the mirrors.
 813 */
 814static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 815{
 816	struct scrub_ctx *sctx = sblock_to_check->sctx;
 817	struct btrfs_device *dev;
 818	struct btrfs_fs_info *fs_info;
 819	u64 logical;
 820	unsigned int failed_mirror_index;
 821	unsigned int is_metadata;
 822	unsigned int have_csum;
 823	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 824	struct scrub_block *sblock_bad;
 825	int ret;
 826	int mirror_index;
 827	int page_num;
 828	int success;
 829	bool full_stripe_locked;
 830	unsigned int nofs_flag;
 831	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 832				      DEFAULT_RATELIMIT_BURST);
 833
 834	BUG_ON(sblock_to_check->page_count < 1);
 835	fs_info = sctx->fs_info;
 836	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 837		/*
 838		 * if we find an error in a super block, we just report it.
 839		 * They will get written with the next transaction commit
 840		 * anyway
 841		 */
 842		spin_lock(&sctx->stat_lock);
 843		++sctx->stat.super_errors;
 844		spin_unlock(&sctx->stat_lock);
 845		return 0;
 846	}
 847	logical = sblock_to_check->pagev[0]->logical;
 848	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 849	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 850	is_metadata = !(sblock_to_check->pagev[0]->flags &
 851			BTRFS_EXTENT_FLAG_DATA);
 852	have_csum = sblock_to_check->pagev[0]->have_csum;
 853	dev = sblock_to_check->pagev[0]->dev;
 854
 855	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
 856		return btrfs_repair_one_zone(fs_info, logical);
 
 
 
 
 
 
 
 
 
 857
 858	/*
 859	 * We must use GFP_NOFS because the scrub task might be waiting for a
 860	 * worker task executing this function and in turn a transaction commit
 861	 * might be waiting the scrub task to pause (which needs to wait for all
 862	 * the worker tasks to complete before pausing).
 863	 * We do allocations in the workers through insert_full_stripe_lock()
 864	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 865	 * this function.
 866	 */
 867	nofs_flag = memalloc_nofs_save();
 868	/*
 869	 * For RAID5/6, race can happen for a different device scrub thread.
 870	 * For data corruption, Parity and Data threads will both try
 871	 * to recovery the data.
 872	 * Race can lead to doubly added csum error, or even unrecoverable
 873	 * error.
 874	 */
 875	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 876	if (ret < 0) {
 877		memalloc_nofs_restore(nofs_flag);
 878		spin_lock(&sctx->stat_lock);
 879		if (ret == -ENOMEM)
 880			sctx->stat.malloc_errors++;
 881		sctx->stat.read_errors++;
 882		sctx->stat.uncorrectable_errors++;
 883		spin_unlock(&sctx->stat_lock);
 884		return ret;
 885	}
 886
 887	/*
 888	 * read all mirrors one after the other. This includes to
 889	 * re-read the extent or metadata block that failed (that was
 890	 * the cause that this fixup code is called) another time,
 891	 * sector by sector this time in order to know which sectors
 892	 * caused I/O errors and which ones are good (for all mirrors).
 893	 * It is the goal to handle the situation when more than one
 894	 * mirror contains I/O errors, but the errors do not
 895	 * overlap, i.e. the data can be repaired by selecting the
 896	 * sectors from those mirrors without I/O error on the
 897	 * particular sectors. One example (with blocks >= 2 * sectorsize)
 898	 * would be that mirror #1 has an I/O error on the first sector,
 899	 * the second sector is good, and mirror #2 has an I/O error on
 900	 * the second sector, but the first sector is good.
 901	 * Then the first sector of the first mirror can be repaired by
 902	 * taking the first sector of the second mirror, and the
 903	 * second sector of the second mirror can be repaired by
 904	 * copying the contents of the 2nd sector of the 1st mirror.
 905	 * One more note: if the sectors of one mirror contain I/O
 906	 * errors, the checksum cannot be verified. In order to get
 907	 * the best data for repairing, the first attempt is to find
 908	 * a mirror without I/O errors and with a validated checksum.
 909	 * Only if this is not possible, the sectors are picked from
 910	 * mirrors with I/O errors without considering the checksum.
 911	 * If the latter is the case, at the end, the checksum of the
 912	 * repaired area is verified in order to correctly maintain
 913	 * the statistics.
 914	 */
 915
 916	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 917				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 918	if (!sblocks_for_recheck) {
 919		spin_lock(&sctx->stat_lock);
 920		sctx->stat.malloc_errors++;
 921		sctx->stat.read_errors++;
 922		sctx->stat.uncorrectable_errors++;
 923		spin_unlock(&sctx->stat_lock);
 924		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 925		goto out;
 926	}
 927
 928	/* setup the context, map the logical blocks and alloc the pages */
 929	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 930	if (ret) {
 931		spin_lock(&sctx->stat_lock);
 932		sctx->stat.read_errors++;
 933		sctx->stat.uncorrectable_errors++;
 934		spin_unlock(&sctx->stat_lock);
 935		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 936		goto out;
 937	}
 938	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 939	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 940
 941	/* build and submit the bios for the failed mirror, check checksums */
 942	scrub_recheck_block(fs_info, sblock_bad, 1);
 
 
 
 943
 944	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 945	    sblock_bad->no_io_error_seen) {
 946		/*
 947		 * the error disappeared after reading page by page, or
 948		 * the area was part of a huge bio and other parts of the
 949		 * bio caused I/O errors, or the block layer merged several
 950		 * read requests into one and the error is caused by a
 951		 * different bio (usually one of the two latter cases is
 952		 * the cause)
 953		 */
 954		spin_lock(&sctx->stat_lock);
 955		sctx->stat.unverified_errors++;
 956		sblock_to_check->data_corrected = 1;
 957		spin_unlock(&sctx->stat_lock);
 958
 959		if (sctx->is_dev_replace)
 960			scrub_write_block_to_dev_replace(sblock_bad);
 961		goto out;
 962	}
 963
 964	if (!sblock_bad->no_io_error_seen) {
 965		spin_lock(&sctx->stat_lock);
 966		sctx->stat.read_errors++;
 967		spin_unlock(&sctx->stat_lock);
 968		if (__ratelimit(&rs))
 969			scrub_print_warning("i/o error", sblock_to_check);
 970		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 971	} else if (sblock_bad->checksum_error) {
 972		spin_lock(&sctx->stat_lock);
 973		sctx->stat.csum_errors++;
 974		spin_unlock(&sctx->stat_lock);
 975		if (__ratelimit(&rs))
 976			scrub_print_warning("checksum error", sblock_to_check);
 977		btrfs_dev_stat_inc_and_print(dev,
 978					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 979	} else if (sblock_bad->header_error) {
 980		spin_lock(&sctx->stat_lock);
 981		sctx->stat.verify_errors++;
 982		spin_unlock(&sctx->stat_lock);
 983		if (__ratelimit(&rs))
 984			scrub_print_warning("checksum/header error",
 985					    sblock_to_check);
 986		if (sblock_bad->generation_error)
 987			btrfs_dev_stat_inc_and_print(dev,
 988				BTRFS_DEV_STAT_GENERATION_ERRS);
 989		else
 990			btrfs_dev_stat_inc_and_print(dev,
 991				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 992	}
 993
 994	if (sctx->readonly) {
 995		ASSERT(!sctx->is_dev_replace);
 996		goto out;
 
 
 
 
 
 
 997	}
 
 
 
 
 998
 999	/*
1000	 * now build and submit the bios for the other mirrors, check
1001	 * checksums.
1002	 * First try to pick the mirror which is completely without I/O
1003	 * errors and also does not have a checksum error.
1004	 * If one is found, and if a checksum is present, the full block
1005	 * that is known to contain an error is rewritten. Afterwards
1006	 * the block is known to be corrected.
1007	 * If a mirror is found which is completely correct, and no
1008	 * checksum is present, only those pages are rewritten that had
1009	 * an I/O error in the block to be repaired, since it cannot be
1010	 * determined, which copy of the other pages is better (and it
1011	 * could happen otherwise that a correct page would be
1012	 * overwritten by a bad one).
1013	 */
1014	for (mirror_index = 0; ;mirror_index++) {
1015		struct scrub_block *sblock_other;
1016
1017		if (mirror_index == failed_mirror_index)
1018			continue;
1019
1020		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1021		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1022			if (mirror_index >= BTRFS_MAX_MIRRORS)
1023				break;
1024			if (!sblocks_for_recheck[mirror_index].page_count)
1025				break;
1026
1027			sblock_other = sblocks_for_recheck + mirror_index;
1028		} else {
1029			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1030			int max_allowed = r->bbio->num_stripes -
1031						r->bbio->num_tgtdevs;
1032
1033			if (mirror_index >= max_allowed)
1034				break;
1035			if (!sblocks_for_recheck[1].page_count)
1036				break;
1037
1038			ASSERT(failed_mirror_index == 0);
1039			sblock_other = sblocks_for_recheck + 1;
1040			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1041		}
1042
1043		/* build and submit the bios, check checksums */
1044		scrub_recheck_block(fs_info, sblock_other, 0);
1045
1046		if (!sblock_other->header_error &&
1047		    !sblock_other->checksum_error &&
1048		    sblock_other->no_io_error_seen) {
1049			if (sctx->is_dev_replace) {
1050				scrub_write_block_to_dev_replace(sblock_other);
1051				goto corrected_error;
1052			} else {
1053				ret = scrub_repair_block_from_good_copy(
1054						sblock_bad, sblock_other);
1055				if (!ret)
1056					goto corrected_error;
1057			}
1058		}
 
 
1059	}
1060
1061	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1062		goto did_not_correct_error;
1063
1064	/*
1065	 * In case of I/O errors in the area that is supposed to be
1066	 * repaired, continue by picking good copies of those sectors.
1067	 * Select the good sectors from mirrors to rewrite bad sectors from
1068	 * the area to fix. Afterwards verify the checksum of the block
1069	 * that is supposed to be repaired. This verification step is
1070	 * only done for the purpose of statistic counting and for the
1071	 * final scrub report, whether errors remain.
1072	 * A perfect algorithm could make use of the checksum and try
1073	 * all possible combinations of sectors from the different mirrors
1074	 * until the checksum verification succeeds. For example, when
1075	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1076	 * of mirror #2 is readable but the final checksum test fails,
1077	 * then the 2nd sector of mirror #3 could be tried, whether now
1078	 * the final checksum succeeds. But this would be a rare
1079	 * exception and is therefore not implemented. At least it is
1080	 * avoided that the good copy is overwritten.
1081	 * A more useful improvement would be to pick the sectors
1082	 * without I/O error based on sector sizes (512 bytes on legacy
1083	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1084	 * mirror could be repaired by taking 512 byte of a different
1085	 * mirror, even if other 512 byte sectors in the same sectorsize
1086	 * area are unreadable.
1087	 */
1088	success = 1;
1089	for (page_num = 0; page_num < sblock_bad->page_count;
1090	     page_num++) {
1091		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1092		struct scrub_block *sblock_other = NULL;
1093
1094		/* skip no-io-error page in scrub */
1095		if (!spage_bad->io_error && !sctx->is_dev_replace)
1096			continue;
1097
1098		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1099			/*
1100			 * In case of dev replace, if raid56 rebuild process
1101			 * didn't work out correct data, then copy the content
1102			 * in sblock_bad to make sure target device is identical
1103			 * to source device, instead of writing garbage data in
1104			 * sblock_for_recheck array to target device.
1105			 */
1106			sblock_other = NULL;
1107		} else if (spage_bad->io_error) {
1108			/* try to find no-io-error page in mirrors */
1109			for (mirror_index = 0;
1110			     mirror_index < BTRFS_MAX_MIRRORS &&
1111			     sblocks_for_recheck[mirror_index].page_count > 0;
1112			     mirror_index++) {
1113				if (!sblocks_for_recheck[mirror_index].
1114				    pagev[page_num]->io_error) {
1115					sblock_other = sblocks_for_recheck +
1116						       mirror_index;
1117					break;
1118				}
1119			}
1120			if (!sblock_other)
1121				success = 0;
1122		}
1123
1124		if (sctx->is_dev_replace) {
1125			/*
1126			 * did not find a mirror to fetch the page
1127			 * from. scrub_write_page_to_dev_replace()
1128			 * handles this case (page->io_error), by
1129			 * filling the block with zeros before
1130			 * submitting the write request
1131			 */
1132			if (!sblock_other)
1133				sblock_other = sblock_bad;
1134
1135			if (scrub_write_page_to_dev_replace(sblock_other,
1136							    page_num) != 0) {
1137				atomic64_inc(
1138					&fs_info->dev_replace.num_write_errors);
1139				success = 0;
1140			}
1141		} else if (sblock_other) {
1142			ret = scrub_repair_page_from_good_copy(sblock_bad,
1143							       sblock_other,
1144							       page_num, 0);
1145			if (0 == ret)
1146				spage_bad->io_error = 0;
1147			else
1148				success = 0;
1149		}
1150	}
1151
1152	if (success && !sctx->is_dev_replace) {
1153		if (is_metadata || have_csum) {
1154			/*
1155			 * need to verify the checksum now that all
1156			 * sectors on disk are repaired (the write
1157			 * request for data to be repaired is on its way).
1158			 * Just be lazy and use scrub_recheck_block()
1159			 * which re-reads the data before the checksum
1160			 * is verified, but most likely the data comes out
1161			 * of the page cache.
1162			 */
1163			scrub_recheck_block(fs_info, sblock_bad, 1);
1164			if (!sblock_bad->header_error &&
1165			    !sblock_bad->checksum_error &&
1166			    sblock_bad->no_io_error_seen)
1167				goto corrected_error;
1168			else
1169				goto did_not_correct_error;
1170		} else {
1171corrected_error:
1172			spin_lock(&sctx->stat_lock);
1173			sctx->stat.corrected_errors++;
1174			sblock_to_check->data_corrected = 1;
1175			spin_unlock(&sctx->stat_lock);
1176			btrfs_err_rl_in_rcu(fs_info,
1177				"fixed up error at logical %llu on dev %s",
1178				logical, rcu_str_deref(dev->name));
1179		}
1180	} else {
1181did_not_correct_error:
1182		spin_lock(&sctx->stat_lock);
1183		sctx->stat.uncorrectable_errors++;
1184		spin_unlock(&sctx->stat_lock);
1185		btrfs_err_rl_in_rcu(fs_info,
1186			"unable to fixup (regular) error at logical %llu on dev %s",
1187			logical, rcu_str_deref(dev->name));
1188	}
1189
1190out:
1191	if (sblocks_for_recheck) {
1192		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1193		     mirror_index++) {
1194			struct scrub_block *sblock = sblocks_for_recheck +
1195						     mirror_index;
1196			struct scrub_recover *recover;
1197			int page_index;
1198
1199			for (page_index = 0; page_index < sblock->page_count;
1200			     page_index++) {
1201				sblock->pagev[page_index]->sblock = NULL;
1202				recover = sblock->pagev[page_index]->recover;
1203				if (recover) {
1204					scrub_put_recover(fs_info, recover);
1205					sblock->pagev[page_index]->recover =
1206									NULL;
1207				}
1208				scrub_page_put(sblock->pagev[page_index]);
1209			}
1210		}
1211		kfree(sblocks_for_recheck);
1212	}
1213
1214	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1215	memalloc_nofs_restore(nofs_flag);
1216	if (ret < 0)
1217		return ret;
1218	return 0;
1219}
1220
1221static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1222{
1223	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1224		return 2;
1225	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1226		return 3;
1227	else
1228		return (int)bbio->num_stripes;
1229}
1230
1231static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1232						 u64 *raid_map,
1233						 u64 mapped_length,
1234						 int nstripes, int mirror,
1235						 int *stripe_index,
1236						 u64 *stripe_offset)
1237{
1238	int i;
 
 
1239
1240	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1241		/* RAID5/6 */
1242		for (i = 0; i < nstripes; i++) {
1243			if (raid_map[i] == RAID6_Q_STRIPE ||
1244			    raid_map[i] == RAID5_P_STRIPE)
1245				continue;
1246
1247			if (logical >= raid_map[i] &&
1248			    logical < raid_map[i] + mapped_length)
1249				break;
1250		}
1251
1252		*stripe_index = i;
1253		*stripe_offset = logical - raid_map[i];
1254	} else {
1255		/* The other RAID type */
1256		*stripe_index = mirror;
1257		*stripe_offset = 0;
1258	}
1259}
1260
1261static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1262				     struct scrub_block *sblocks_for_recheck)
1263{
1264	struct scrub_ctx *sctx = original_sblock->sctx;
1265	struct btrfs_fs_info *fs_info = sctx->fs_info;
1266	u64 length = original_sblock->page_count * fs_info->sectorsize;
1267	u64 logical = original_sblock->pagev[0]->logical;
1268	u64 generation = original_sblock->pagev[0]->generation;
1269	u64 flags = original_sblock->pagev[0]->flags;
1270	u64 have_csum = original_sblock->pagev[0]->have_csum;
1271	struct scrub_recover *recover;
1272	struct btrfs_bio *bbio;
1273	u64 sublen;
1274	u64 mapped_length;
1275	u64 stripe_offset;
1276	int stripe_index;
1277	int page_index = 0;
1278	int mirror_index;
1279	int nmirrors;
1280	int ret;
1281
1282	/*
1283	 * note: the two members refs and outstanding_pages
1284	 * are not used (and not set) in the blocks that are used for
1285	 * the recheck procedure
1286	 */
1287
1288	while (length > 0) {
1289		sublen = min_t(u64, length, fs_info->sectorsize);
1290		mapped_length = sublen;
1291		bbio = NULL;
1292
1293		/*
1294		 * With a length of sectorsize, each returned stripe represents
1295		 * one mirror
1296		 */
1297		btrfs_bio_counter_inc_blocked(fs_info);
1298		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1299				logical, &mapped_length, &bbio);
1300		if (ret || !bbio || mapped_length < sublen) {
1301			btrfs_put_bbio(bbio);
1302			btrfs_bio_counter_dec(fs_info);
1303			return -EIO;
1304		}
1305
1306		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1307		if (!recover) {
1308			btrfs_put_bbio(bbio);
1309			btrfs_bio_counter_dec(fs_info);
1310			return -ENOMEM;
1311		}
1312
1313		refcount_set(&recover->refs, 1);
1314		recover->bbio = bbio;
1315		recover->map_length = mapped_length;
1316
1317		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1318
1319		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1320
1321		for (mirror_index = 0; mirror_index < nmirrors;
1322		     mirror_index++) {
1323			struct scrub_block *sblock;
1324			struct scrub_page *spage;
1325
1326			sblock = sblocks_for_recheck + mirror_index;
1327			sblock->sctx = sctx;
1328
1329			spage = kzalloc(sizeof(*spage), GFP_NOFS);
1330			if (!spage) {
1331leave_nomem:
1332				spin_lock(&sctx->stat_lock);
1333				sctx->stat.malloc_errors++;
1334				spin_unlock(&sctx->stat_lock);
1335				scrub_put_recover(fs_info, recover);
1336				return -ENOMEM;
1337			}
1338			scrub_page_get(spage);
1339			sblock->pagev[page_index] = spage;
1340			spage->sblock = sblock;
1341			spage->flags = flags;
1342			spage->generation = generation;
1343			spage->logical = logical;
1344			spage->have_csum = have_csum;
1345			if (have_csum)
1346				memcpy(spage->csum,
1347				       original_sblock->pagev[0]->csum,
1348				       sctx->fs_info->csum_size);
1349
1350			scrub_stripe_index_and_offset(logical,
1351						      bbio->map_type,
1352						      bbio->raid_map,
1353						      mapped_length,
1354						      bbio->num_stripes -
1355						      bbio->num_tgtdevs,
1356						      mirror_index,
1357						      &stripe_index,
1358						      &stripe_offset);
1359			spage->physical = bbio->stripes[stripe_index].physical +
1360					 stripe_offset;
1361			spage->dev = bbio->stripes[stripe_index].dev;
1362
1363			BUG_ON(page_index >= original_sblock->page_count);
1364			spage->physical_for_dev_replace =
1365				original_sblock->pagev[page_index]->
1366				physical_for_dev_replace;
1367			/* for missing devices, dev->bdev is NULL */
1368			spage->mirror_num = mirror_index + 1;
1369			sblock->page_count++;
1370			spage->page = alloc_page(GFP_NOFS);
1371			if (!spage->page)
1372				goto leave_nomem;
1373
1374			scrub_get_recover(recover);
1375			spage->recover = recover;
1376		}
1377		scrub_put_recover(fs_info, recover);
1378		length -= sublen;
1379		logical += sublen;
1380		page_index++;
1381	}
1382
1383	return 0;
1384}
1385
1386static void scrub_bio_wait_endio(struct bio *bio)
1387{
1388	complete(bio->bi_private);
1389}
1390
1391static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1392					struct bio *bio,
1393					struct scrub_page *spage)
1394{
1395	DECLARE_COMPLETION_ONSTACK(done);
1396	int ret;
1397	int mirror_num;
1398
1399	bio->bi_iter.bi_sector = spage->logical >> 9;
1400	bio->bi_private = &done;
1401	bio->bi_end_io = scrub_bio_wait_endio;
1402
1403	mirror_num = spage->sblock->pagev[0]->mirror_num;
1404	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
1405				    spage->recover->map_length,
1406				    mirror_num, 0);
1407	if (ret)
1408		return ret;
1409
1410	wait_for_completion_io(&done);
1411	return blk_status_to_errno(bio->bi_status);
1412}
1413
1414static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1415					  struct scrub_block *sblock)
1416{
1417	struct scrub_page *first_page = sblock->pagev[0];
1418	struct bio *bio;
1419	int page_num;
1420
1421	/* All pages in sblock belong to the same stripe on the same device. */
1422	ASSERT(first_page->dev);
1423	if (!first_page->dev->bdev)
1424		goto out;
1425
1426	bio = btrfs_io_bio_alloc(BIO_MAX_VECS);
1427	bio_set_dev(bio, first_page->dev->bdev);
1428
1429	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1430		struct scrub_page *spage = sblock->pagev[page_num];
1431
1432		WARN_ON(!spage->page);
1433		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1434	}
1435
1436	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1437		bio_put(bio);
1438		goto out;
1439	}
1440
1441	bio_put(bio);
1442
1443	scrub_recheck_block_checksum(sblock);
1444
1445	return;
1446out:
1447	for (page_num = 0; page_num < sblock->page_count; page_num++)
1448		sblock->pagev[page_num]->io_error = 1;
1449
1450	sblock->no_io_error_seen = 0;
1451}
1452
1453/*
1454 * this function will check the on disk data for checksum errors, header
1455 * errors and read I/O errors. If any I/O errors happen, the exact pages
1456 * which are errored are marked as being bad. The goal is to enable scrub
1457 * to take those pages that are not errored from all the mirrors so that
1458 * the pages that are errored in the just handled mirror can be repaired.
1459 */
1460static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1461				struct scrub_block *sblock,
1462				int retry_failed_mirror)
1463{
1464	int page_num;
 
 
 
 
 
1465
1466	sblock->no_io_error_seen = 1;
1467
1468	/* short cut for raid56 */
1469	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1470		return scrub_recheck_block_on_raid56(fs_info, sblock);
1471
1472	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1473		struct bio *bio;
1474		struct scrub_page *spage = sblock->pagev[page_num];
1475
1476		if (spage->dev->bdev == NULL) {
1477			spage->io_error = 1;
1478			sblock->no_io_error_seen = 0;
1479			continue;
1480		}
1481
1482		WARN_ON(!spage->page);
1483		bio = btrfs_io_bio_alloc(1);
1484		bio_set_dev(bio, spage->dev->bdev);
1485
1486		bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1487		bio->bi_iter.bi_sector = spage->physical >> 9;
1488		bio->bi_opf = REQ_OP_READ;
1489
1490		if (btrfsic_submit_bio_wait(bio)) {
1491			spage->io_error = 1;
1492			sblock->no_io_error_seen = 0;
1493		}
1494
1495		bio_put(bio);
1496	}
1497
1498	if (sblock->no_io_error_seen)
1499		scrub_recheck_block_checksum(sblock);
1500}
1501
1502static inline int scrub_check_fsid(u8 fsid[],
1503				   struct scrub_page *spage)
1504{
1505	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1506	int ret;
1507
1508	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1509	return !ret;
1510}
1511
1512static void scrub_recheck_block_checksum(struct scrub_block *sblock)
 
1513{
1514	sblock->header_error = 0;
1515	sblock->checksum_error = 0;
1516	sblock->generation_error = 0;
 
1517
1518	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1519		scrub_checksum_data(sblock);
1520	else
1521		scrub_checksum_tree_block(sblock);
1522}
1523
1524static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1525					     struct scrub_block *sblock_good)
1526{
1527	int page_num;
1528	int ret = 0;
1529
1530	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1531		int ret_sub;
1532
1533		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1534							   sblock_good,
1535							   page_num, 1);
1536		if (ret_sub)
1537			ret = ret_sub;
1538	}
1539
1540	return ret;
1541}
1542
1543static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1544					    struct scrub_block *sblock_good,
1545					    int page_num, int force_write)
1546{
1547	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1548	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1549	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1550	const u32 sectorsize = fs_info->sectorsize;
1551
1552	BUG_ON(spage_bad->page == NULL);
1553	BUG_ON(spage_good->page == NULL);
1554	if (force_write || sblock_bad->header_error ||
1555	    sblock_bad->checksum_error || spage_bad->io_error) {
1556		struct bio *bio;
1557		int ret;
1558
1559		if (!spage_bad->dev->bdev) {
1560			btrfs_warn_rl(fs_info,
1561				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1562			return -EIO;
1563		}
1564
1565		bio = btrfs_io_bio_alloc(1);
1566		bio_set_dev(bio, spage_bad->dev->bdev);
1567		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1568		bio->bi_opf = REQ_OP_WRITE;
1569
1570		ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
1571		if (ret != sectorsize) {
1572			bio_put(bio);
1573			return -EIO;
1574		}
1575
1576		if (btrfsic_submit_bio_wait(bio)) {
1577			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1578				BTRFS_DEV_STAT_WRITE_ERRS);
1579			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1580			bio_put(bio);
1581			return -EIO;
1582		}
1583		bio_put(bio);
 
1584	}
1585
1586	return 0;
1587}
1588
1589static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
 
1590{
1591	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1592	int page_num;
 
 
 
 
 
 
 
 
 
 
 
1593
1594	/*
1595	 * This block is used for the check of the parity on the source device,
1596	 * so the data needn't be written into the destination device.
 
 
1597	 */
1598	if (sblock->sparity)
1599		return;
1600
1601	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1602		int ret;
1603
1604		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1605		if (ret)
1606			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 
 
 
 
 
 
 
 
 
 
 
1607	}
1608}
1609
1610static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1611					   int page_num)
1612{
1613	struct scrub_page *spage = sblock->pagev[page_num];
1614
1615	BUG_ON(spage->page == NULL);
1616	if (spage->io_error)
1617		clear_page(page_address(spage->page));
 
 
 
 
1618
1619	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1620}
 
 
 
1621
1622static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1623{
1624	int ret = 0;
1625	u64 length;
1626
1627	if (!btrfs_is_zoned(sctx->fs_info))
1628		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
1630	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1631		return 0;
1632
1633	if (sctx->write_pointer < physical) {
1634		length = physical - sctx->write_pointer;
 
 
 
 
 
 
1635
1636		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1637						sctx->write_pointer, length);
1638		if (!ret)
1639			sctx->write_pointer = physical;
 
 
 
 
 
 
 
 
1640	}
1641	return ret;
1642}
1643
1644static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1645				    struct scrub_page *spage)
1646{
1647	struct scrub_bio *sbio;
1648	int ret;
1649	const u32 sectorsize = sctx->fs_info->sectorsize;
1650
1651	mutex_lock(&sctx->wr_lock);
1652again:
1653	if (!sctx->wr_curr_bio) {
1654		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1655					      GFP_KERNEL);
1656		if (!sctx->wr_curr_bio) {
1657			mutex_unlock(&sctx->wr_lock);
1658			return -ENOMEM;
1659		}
1660		sctx->wr_curr_bio->sctx = sctx;
1661		sctx->wr_curr_bio->page_count = 0;
1662	}
1663	sbio = sctx->wr_curr_bio;
1664	if (sbio->page_count == 0) {
1665		struct bio *bio;
1666
1667		ret = fill_writer_pointer_gap(sctx,
1668					      spage->physical_for_dev_replace);
1669		if (ret) {
1670			mutex_unlock(&sctx->wr_lock);
1671			return ret;
1672		}
1673
1674		sbio->physical = spage->physical_for_dev_replace;
1675		sbio->logical = spage->logical;
1676		sbio->dev = sctx->wr_tgtdev;
1677		bio = sbio->bio;
1678		if (!bio) {
1679			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1680			sbio->bio = bio;
1681		}
1682
1683		bio->bi_private = sbio;
1684		bio->bi_end_io = scrub_wr_bio_end_io;
1685		bio_set_dev(bio, sbio->dev->bdev);
1686		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687		bio->bi_opf = REQ_OP_WRITE;
1688		sbio->status = 0;
1689	} else if (sbio->physical + sbio->page_count * sectorsize !=
1690		   spage->physical_for_dev_replace ||
1691		   sbio->logical + sbio->page_count * sectorsize !=
1692		   spage->logical) {
1693		scrub_wr_submit(sctx);
1694		goto again;
1695	}
1696
1697	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
1698	if (ret != sectorsize) {
1699		if (sbio->page_count < 1) {
1700			bio_put(sbio->bio);
1701			sbio->bio = NULL;
1702			mutex_unlock(&sctx->wr_lock);
1703			return -EIO;
1704		}
1705		scrub_wr_submit(sctx);
1706		goto again;
1707	}
1708
1709	sbio->pagev[sbio->page_count] = spage;
1710	scrub_page_get(spage);
1711	sbio->page_count++;
1712	if (sbio->page_count == sctx->pages_per_wr_bio)
1713		scrub_wr_submit(sctx);
1714	mutex_unlock(&sctx->wr_lock);
1715
1716	return 0;
1717}
1718
1719static void scrub_wr_submit(struct scrub_ctx *sctx)
1720{
1721	struct scrub_bio *sbio;
1722
1723	if (!sctx->wr_curr_bio)
1724		return;
1725
1726	sbio = sctx->wr_curr_bio;
1727	sctx->wr_curr_bio = NULL;
1728	WARN_ON(!sbio->bio->bi_bdev);
1729	scrub_pending_bio_inc(sctx);
1730	/* process all writes in a single worker thread. Then the block layer
1731	 * orders the requests before sending them to the driver which
1732	 * doubled the write performance on spinning disks when measured
1733	 * with Linux 3.5 */
1734	btrfsic_submit_bio(sbio->bio);
1735
1736	if (btrfs_is_zoned(sctx->fs_info))
1737		sctx->write_pointer = sbio->physical + sbio->page_count *
1738			sctx->fs_info->sectorsize;
1739}
1740
1741static void scrub_wr_bio_end_io(struct bio *bio)
1742{
1743	struct scrub_bio *sbio = bio->bi_private;
1744	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 
 
 
 
 
1745
1746	sbio->status = bio->bi_status;
1747	sbio->bio = bio;
1748
1749	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1750	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1751}
 
 
 
 
 
 
 
1752
1753static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1754{
1755	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1756	struct scrub_ctx *sctx = sbio->sctx;
1757	int i;
1758
1759	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1760	if (sbio->status) {
1761		struct btrfs_dev_replace *dev_replace =
1762			&sbio->sctx->fs_info->dev_replace;
1763
1764		for (i = 0; i < sbio->page_count; i++) {
1765			struct scrub_page *spage = sbio->pagev[i];
1766
1767			spage->io_error = 1;
1768			atomic64_inc(&dev_replace->num_write_errors);
1769		}
 
 
 
 
 
 
1770	}
1771
1772	for (i = 0; i < sbio->page_count; i++)
1773		scrub_page_put(sbio->pagev[i]);
1774
1775	bio_put(sbio->bio);
1776	kfree(sbio);
1777	scrub_pending_bio_dec(sctx);
1778}
1779
1780static int scrub_checksum(struct scrub_block *sblock)
1781{
1782	u64 flags;
1783	int ret;
1784
1785	/*
1786	 * No need to initialize these stats currently,
1787	 * because this function only use return value
1788	 * instead of these stats value.
 
 
 
1789	 *
1790	 * Todo:
1791	 * always use stats
1792	 */
1793	sblock->header_error = 0;
1794	sblock->generation_error = 0;
1795	sblock->checksum_error = 0;
1796
1797	WARN_ON(sblock->page_count < 1);
1798	flags = sblock->pagev[0]->flags;
1799	ret = 0;
1800	if (flags & BTRFS_EXTENT_FLAG_DATA)
1801		ret = scrub_checksum_data(sblock);
1802	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1803		ret = scrub_checksum_tree_block(sblock);
1804	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1805		(void)scrub_checksum_super(sblock);
1806	else
1807		WARN_ON(1);
1808	if (ret)
1809		scrub_handle_errored_block(sblock);
1810
1811	return ret;
1812}
1813
1814static int scrub_checksum_data(struct scrub_block *sblock)
1815{
1816	struct scrub_ctx *sctx = sblock->sctx;
1817	struct btrfs_fs_info *fs_info = sctx->fs_info;
1818	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1819	u8 csum[BTRFS_CSUM_SIZE];
1820	struct scrub_page *spage;
1821	char *kaddr;
1822
1823	BUG_ON(sblock->page_count < 1);
1824	spage = sblock->pagev[0];
1825	if (!spage->have_csum)
1826		return 0;
1827
1828	kaddr = page_address(spage->page);
1829
1830	shash->tfm = fs_info->csum_shash;
1831	crypto_shash_init(shash);
1832
 
 
 
 
 
 
 
 
 
 
 
 
 
1833	/*
1834	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1835	 * only contains one sector of data.
1836	 */
1837	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
 
 
 
 
 
 
 
 
 
 
1838
1839	if (memcmp(csum, spage->csum, fs_info->csum_size))
1840		sblock->checksum_error = 1;
1841	return sblock->checksum_error;
1842}
1843
1844static int scrub_checksum_tree_block(struct scrub_block *sblock)
1845{
1846	struct scrub_ctx *sctx = sblock->sctx;
1847	struct btrfs_header *h;
1848	struct btrfs_fs_info *fs_info = sctx->fs_info;
1849	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1850	u8 calculated_csum[BTRFS_CSUM_SIZE];
1851	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1852	/*
1853	 * This is done in sectorsize steps even for metadata as there's a
1854	 * constraint for nodesize to be aligned to sectorsize. This will need
1855	 * to change so we don't misuse data and metadata units like that.
1856	 */
1857	const u32 sectorsize = sctx->fs_info->sectorsize;
1858	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1859	int i;
1860	struct scrub_page *spage;
1861	char *kaddr;
1862
1863	BUG_ON(sblock->page_count < 1);
1864
1865	/* Each member in pagev is just one block, not a full page */
1866	ASSERT(sblock->page_count == num_sectors);
1867
1868	spage = sblock->pagev[0];
1869	kaddr = page_address(spage->page);
1870	h = (struct btrfs_header *)kaddr;
1871	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1872
1873	/*
1874	 * we don't use the getter functions here, as we
1875	 * a) don't have an extent buffer and
1876	 * b) the page is already kmapped
1877	 */
1878	if (spage->logical != btrfs_stack_header_bytenr(h))
1879		sblock->header_error = 1;
1880
1881	if (spage->generation != btrfs_stack_header_generation(h)) {
1882		sblock->header_error = 1;
1883		sblock->generation_error = 1;
1884	}
1885
1886	if (!scrub_check_fsid(h->fsid, spage))
1887		sblock->header_error = 1;
1888
1889	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1890		   BTRFS_UUID_SIZE))
1891		sblock->header_error = 1;
1892
1893	shash->tfm = fs_info->csum_shash;
1894	crypto_shash_init(shash);
1895	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1896			    sectorsize - BTRFS_CSUM_SIZE);
1897
1898	for (i = 1; i < num_sectors; i++) {
1899		kaddr = page_address(sblock->pagev[i]->page);
1900		crypto_shash_update(shash, kaddr, sectorsize);
1901	}
1902
1903	crypto_shash_final(shash, calculated_csum);
1904	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1905		sblock->checksum_error = 1;
1906
1907	return sblock->header_error || sblock->checksum_error;
1908}
1909
1910static int scrub_checksum_super(struct scrub_block *sblock)
1911{
1912	struct btrfs_super_block *s;
1913	struct scrub_ctx *sctx = sblock->sctx;
1914	struct btrfs_fs_info *fs_info = sctx->fs_info;
1915	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1916	u8 calculated_csum[BTRFS_CSUM_SIZE];
1917	struct scrub_page *spage;
1918	char *kaddr;
1919	int fail_gen = 0;
1920	int fail_cor = 0;
1921
1922	BUG_ON(sblock->page_count < 1);
1923	spage = sblock->pagev[0];
1924	kaddr = page_address(spage->page);
1925	s = (struct btrfs_super_block *)kaddr;
1926
1927	if (spage->logical != btrfs_super_bytenr(s))
1928		++fail_cor;
1929
1930	if (spage->generation != btrfs_super_generation(s))
1931		++fail_gen;
1932
1933	if (!scrub_check_fsid(s->fsid, spage))
1934		++fail_cor;
1935
1936	shash->tfm = fs_info->csum_shash;
1937	crypto_shash_init(shash);
1938	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1939			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1940
1941	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1942		++fail_cor;
1943
1944	if (fail_cor + fail_gen) {
1945		/*
1946		 * if we find an error in a super block, we just report it.
1947		 * They will get written with the next transaction commit
1948		 * anyway
1949		 */
1950		spin_lock(&sctx->stat_lock);
1951		++sctx->stat.super_errors;
1952		spin_unlock(&sctx->stat_lock);
1953		if (fail_cor)
1954			btrfs_dev_stat_inc_and_print(spage->dev,
1955				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1956		else
1957			btrfs_dev_stat_inc_and_print(spage->dev,
1958				BTRFS_DEV_STAT_GENERATION_ERRS);
1959	}
 
1960
1961	return fail_cor + fail_gen;
 
1962}
1963
1964static void scrub_block_get(struct scrub_block *sblock)
 
 
1965{
1966	refcount_inc(&sblock->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967}
1968
1969static void scrub_block_put(struct scrub_block *sblock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970{
1971	if (refcount_dec_and_test(&sblock->refs)) {
1972		int i;
 
1973
1974		if (sblock->sparity)
1975			scrub_parity_put(sblock->sparity);
 
 
1976
1977		for (i = 0; i < sblock->page_count; i++)
1978			scrub_page_put(sblock->pagev[i]);
1979		kfree(sblock);
1980	}
1981}
1982
1983static void scrub_page_get(struct scrub_page *spage)
1984{
1985	atomic_inc(&spage->refs);
1986}
1987
1988static void scrub_page_put(struct scrub_page *spage)
1989{
1990	if (atomic_dec_and_test(&spage->refs)) {
1991		if (spage->page)
1992			__free_page(spage->page);
1993		kfree(spage);
 
 
 
1994	}
 
 
1995}
1996
1997/*
1998 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1999 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2000 */
2001static void scrub_throttle(struct scrub_ctx *sctx)
 
2002{
2003	const int time_slice = 1000;
2004	struct scrub_bio *sbio;
2005	struct btrfs_device *device;
2006	s64 delta;
2007	ktime_t now;
2008	u32 div;
2009	u64 bwlimit;
2010
2011	sbio = sctx->bios[sctx->curr];
2012	device = sbio->dev;
2013	bwlimit = READ_ONCE(device->scrub_speed_max);
2014	if (bwlimit == 0)
2015		return;
2016
2017	/*
2018	 * Slice is divided into intervals when the IO is submitted, adjust by
2019	 * bwlimit and maximum of 64 intervals.
2020	 */
2021	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2022	div = min_t(u32, 64, div);
2023
2024	/* Start new epoch, set deadline */
2025	now = ktime_get();
2026	if (sctx->throttle_deadline == 0) {
2027		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2028		sctx->throttle_sent = 0;
2029	}
2030
2031	/* Still in the time to send? */
2032	if (ktime_before(now, sctx->throttle_deadline)) {
2033		/* If current bio is within the limit, send it */
2034		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2035		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2036			return;
2037
2038		/* We're over the limit, sleep until the rest of the slice */
2039		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2040	} else {
2041		/* New request after deadline, start new epoch */
2042		delta = 0;
2043	}
2044
2045	if (delta) {
2046		long timeout;
2047
2048		timeout = div_u64(delta * HZ, 1000);
2049		schedule_timeout_interruptible(timeout);
2050	}
2051
2052	/* Next call will start the deadline period */
2053	sctx->throttle_deadline = 0;
2054}
2055
2056static void scrub_submit(struct scrub_ctx *sctx)
 
 
 
 
 
 
 
 
 
2057{
2058	struct scrub_bio *sbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
2059
2060	if (sctx->curr == -1)
2061		return;
2062
2063	scrub_throttle(sctx);
2064
2065	sbio = sctx->bios[sctx->curr];
2066	sctx->curr = -1;
2067	scrub_pending_bio_inc(sctx);
2068	btrfsic_submit_bio(sbio->bio);
 
 
 
 
 
 
 
 
2069}
2070
2071static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2072				    struct scrub_page *spage)
 
 
 
 
 
2073{
2074	struct scrub_block *sblock = spage->sblock;
2075	struct scrub_bio *sbio;
2076	const u32 sectorsize = sctx->fs_info->sectorsize;
2077	int ret;
2078
2079again:
2080	/*
2081	 * grab a fresh bio or wait for one to become available
2082	 */
2083	while (sctx->curr == -1) {
2084		spin_lock(&sctx->list_lock);
2085		sctx->curr = sctx->first_free;
2086		if (sctx->curr != -1) {
2087			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2088			sctx->bios[sctx->curr]->next_free = -1;
2089			sctx->bios[sctx->curr]->page_count = 0;
2090			spin_unlock(&sctx->list_lock);
2091		} else {
2092			spin_unlock(&sctx->list_lock);
2093			wait_event(sctx->list_wait, sctx->first_free != -1);
2094		}
2095	}
2096	sbio = sctx->bios[sctx->curr];
2097	if (sbio->page_count == 0) {
2098		struct bio *bio;
2099
2100		sbio->physical = spage->physical;
2101		sbio->logical = spage->logical;
2102		sbio->dev = spage->dev;
2103		bio = sbio->bio;
2104		if (!bio) {
2105			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2106			sbio->bio = bio;
2107		}
2108
2109		bio->bi_private = sbio;
2110		bio->bi_end_io = scrub_bio_end_io;
2111		bio_set_dev(bio, sbio->dev->bdev);
2112		bio->bi_iter.bi_sector = sbio->physical >> 9;
2113		bio->bi_opf = REQ_OP_READ;
2114		sbio->status = 0;
2115	} else if (sbio->physical + sbio->page_count * sectorsize !=
2116		   spage->physical ||
2117		   sbio->logical + sbio->page_count * sectorsize !=
2118		   spage->logical ||
2119		   sbio->dev != spage->dev) {
2120		scrub_submit(sctx);
2121		goto again;
2122	}
2123
2124	sbio->pagev[sbio->page_count] = spage;
2125	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
2126	if (ret != sectorsize) {
2127		if (sbio->page_count < 1) {
2128			bio_put(sbio->bio);
2129			sbio->bio = NULL;
2130			return -EIO;
2131		}
2132		scrub_submit(sctx);
2133		goto again;
2134	}
2135
2136	scrub_block_get(sblock); /* one for the page added to the bio */
2137	atomic_inc(&sblock->outstanding_pages);
2138	sbio->page_count++;
2139	if (sbio->page_count == sctx->pages_per_rd_bio)
2140		scrub_submit(sctx);
2141
 
 
 
 
2142	return 0;
2143}
2144
2145static void scrub_missing_raid56_end_io(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146{
2147	struct scrub_block *sblock = bio->bi_private;
2148	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
 
2149
2150	if (bio->bi_status)
2151		sblock->no_io_error_seen = 0;
 
2152
2153	bio_put(bio);
 
 
 
 
 
2154
2155	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2156}
 
2157
2158static void scrub_missing_raid56_worker(struct btrfs_work *work)
2159{
2160	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2161	struct scrub_ctx *sctx = sblock->sctx;
2162	struct btrfs_fs_info *fs_info = sctx->fs_info;
2163	u64 logical;
2164	struct btrfs_device *dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
2165
2166	logical = sblock->pagev[0]->logical;
2167	dev = sblock->pagev[0]->dev;
2168
2169	if (sblock->no_io_error_seen)
2170		scrub_recheck_block_checksum(sblock);
2171
2172	if (!sblock->no_io_error_seen) {
2173		spin_lock(&sctx->stat_lock);
2174		sctx->stat.read_errors++;
2175		spin_unlock(&sctx->stat_lock);
2176		btrfs_err_rl_in_rcu(fs_info,
2177			"IO error rebuilding logical %llu for dev %s",
2178			logical, rcu_str_deref(dev->name));
2179	} else if (sblock->header_error || sblock->checksum_error) {
2180		spin_lock(&sctx->stat_lock);
2181		sctx->stat.uncorrectable_errors++;
2182		spin_unlock(&sctx->stat_lock);
2183		btrfs_err_rl_in_rcu(fs_info,
2184			"failed to rebuild valid logical %llu for dev %s",
2185			logical, rcu_str_deref(dev->name));
2186	} else {
2187		scrub_write_block_to_dev_replace(sblock);
2188	}
 
 
 
2189
2190	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2191		mutex_lock(&sctx->wr_lock);
2192		scrub_wr_submit(sctx);
2193		mutex_unlock(&sctx->wr_lock);
2194	}
2195
2196	scrub_block_put(sblock);
2197	scrub_pending_bio_dec(sctx);
 
 
 
 
 
 
 
 
 
2198}
2199
2200static void scrub_missing_raid56_pages(struct scrub_block *sblock)
 
2201{
2202	struct scrub_ctx *sctx = sblock->sctx;
2203	struct btrfs_fs_info *fs_info = sctx->fs_info;
2204	u64 length = sblock->page_count * PAGE_SIZE;
2205	u64 logical = sblock->pagev[0]->logical;
2206	struct btrfs_bio *bbio = NULL;
2207	struct bio *bio;
2208	struct btrfs_raid_bio *rbio;
2209	int ret;
2210	int i;
2211
2212	btrfs_bio_counter_inc_blocked(fs_info);
2213	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2214			&length, &bbio);
2215	if (ret || !bbio || !bbio->raid_map)
2216		goto bbio_out;
2217
2218	if (WARN_ON(!sctx->is_dev_replace ||
2219		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2220		/*
2221		 * We shouldn't be scrubbing a missing device. Even for dev
2222		 * replace, we should only get here for RAID 5/6. We either
2223		 * managed to mount something with no mirrors remaining or
2224		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2225		 */
2226		goto bbio_out;
2227	}
 
 
2228
2229	bio = btrfs_io_bio_alloc(0);
2230	bio->bi_iter.bi_sector = logical >> 9;
2231	bio->bi_private = sblock;
2232	bio->bi_end_io = scrub_missing_raid56_end_io;
2233
2234	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2235	if (!rbio)
2236		goto rbio_out;
2237
2238	for (i = 0; i < sblock->page_count; i++) {
2239		struct scrub_page *spage = sblock->pagev[i];
2240
2241		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
 
 
 
 
 
 
 
 
 
 
 
2242	}
 
2243
2244	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2245	scrub_block_get(sblock);
2246	scrub_pending_bio_inc(sctx);
2247	raid56_submit_missing_rbio(rbio);
2248	return;
2249
2250rbio_out:
2251	bio_put(bio);
2252bbio_out:
2253	btrfs_bio_counter_dec(fs_info);
2254	btrfs_put_bbio(bbio);
2255	spin_lock(&sctx->stat_lock);
2256	sctx->stat.malloc_errors++;
2257	spin_unlock(&sctx->stat_lock);
2258}
2259
2260static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2261		       u64 physical, struct btrfs_device *dev, u64 flags,
2262		       u64 gen, int mirror_num, u8 *csum,
2263		       u64 physical_for_dev_replace)
2264{
2265	struct scrub_block *sblock;
2266	const u32 sectorsize = sctx->fs_info->sectorsize;
2267	int index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2268
2269	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2270	if (!sblock) {
2271		spin_lock(&sctx->stat_lock);
2272		sctx->stat.malloc_errors++;
2273		spin_unlock(&sctx->stat_lock);
2274		return -ENOMEM;
2275	}
 
 
 
 
 
 
 
 
 
 
 
 
2276
2277	/* one ref inside this function, plus one for each page added to
2278	 * a bio later on */
2279	refcount_set(&sblock->refs, 1);
2280	sblock->sctx = sctx;
2281	sblock->no_io_error_seen = 1;
2282
2283	for (index = 0; len > 0; index++) {
2284		struct scrub_page *spage;
2285		/*
2286		 * Here we will allocate one page for one sector to scrub.
2287		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2288		 * more memory for PAGE_SIZE > sectorsize case.
2289		 */
2290		u32 l = min(sectorsize, len);
2291
2292		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2293		if (!spage) {
2294leave_nomem:
2295			spin_lock(&sctx->stat_lock);
2296			sctx->stat.malloc_errors++;
2297			spin_unlock(&sctx->stat_lock);
2298			scrub_block_put(sblock);
2299			return -ENOMEM;
 
 
 
 
 
2300		}
2301		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2302		scrub_page_get(spage);
2303		sblock->pagev[index] = spage;
2304		spage->sblock = sblock;
2305		spage->dev = dev;
2306		spage->flags = flags;
2307		spage->generation = gen;
2308		spage->logical = logical;
2309		spage->physical = physical;
2310		spage->physical_for_dev_replace = physical_for_dev_replace;
2311		spage->mirror_num = mirror_num;
2312		if (csum) {
2313			spage->have_csum = 1;
2314			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2315		} else {
2316			spage->have_csum = 0;
2317		}
2318		sblock->page_count++;
2319		spage->page = alloc_page(GFP_KERNEL);
2320		if (!spage->page)
2321			goto leave_nomem;
2322		len -= l;
2323		logical += l;
2324		physical += l;
2325		physical_for_dev_replace += l;
2326	}
 
 
 
 
 
 
2327
2328	WARN_ON(sblock->page_count == 0);
2329	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2330		/*
2331		 * This case should only be hit for RAID 5/6 device replace. See
2332		 * the comment in scrub_missing_raid56_pages() for details.
2333		 */
2334		scrub_missing_raid56_pages(sblock);
2335	} else {
2336		for (index = 0; index < sblock->page_count; index++) {
2337			struct scrub_page *spage = sblock->pagev[index];
2338			int ret;
2339
2340			ret = scrub_add_page_to_rd_bio(sctx, spage);
2341			if (ret) {
2342				scrub_block_put(sblock);
2343				return ret;
2344			}
2345		}
2346
2347		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2348			scrub_submit(sctx);
2349	}
2350
2351	/* last one frees, either here or in bio completion for last page */
2352	scrub_block_put(sblock);
2353	return 0;
2354}
2355
2356static void scrub_bio_end_io(struct bio *bio)
2357{
2358	struct scrub_bio *sbio = bio->bi_private;
2359	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2360
2361	sbio->status = bio->bi_status;
2362	sbio->bio = bio;
 
2363
2364	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
 
 
 
 
2365}
2366
2367static void scrub_bio_end_io_worker(struct btrfs_work *work)
 
2368{
2369	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2370	struct scrub_ctx *sctx = sbio->sctx;
 
 
 
 
 
2371	int i;
2372
2373	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2374	if (sbio->status) {
2375		for (i = 0; i < sbio->page_count; i++) {
2376			struct scrub_page *spage = sbio->pagev[i];
 
 
 
 
 
2377
2378			spage->io_error = 1;
2379			spage->sblock->no_io_error_seen = 0;
 
 
 
 
 
 
 
2380		}
2381	}
2382
2383	/* now complete the scrub_block items that have all pages completed */
2384	for (i = 0; i < sbio->page_count; i++) {
2385		struct scrub_page *spage = sbio->pagev[i];
2386		struct scrub_block *sblock = spage->sblock;
 
 
 
 
 
 
2387
2388		if (atomic_dec_and_test(&sblock->outstanding_pages))
2389			scrub_block_complete(sblock);
2390		scrub_block_put(sblock);
 
 
 
 
 
 
 
 
 
 
2391	}
2392
2393	bio_put(sbio->bio);
2394	sbio->bio = NULL;
2395	spin_lock(&sctx->list_lock);
2396	sbio->next_free = sctx->first_free;
2397	sctx->first_free = sbio->index;
2398	spin_unlock(&sctx->list_lock);
2399
2400	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2401		mutex_lock(&sctx->wr_lock);
2402		scrub_wr_submit(sctx);
2403		mutex_unlock(&sctx->wr_lock);
2404	}
2405
2406	scrub_pending_bio_dec(sctx);
2407}
2408
2409static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2410				       unsigned long *bitmap,
2411				       u64 start, u32 len)
2412{
2413	u64 offset;
2414	u32 nsectors;
2415	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
 
 
 
 
 
 
 
2416
2417	if (len >= sparity->stripe_len) {
2418		bitmap_set(bitmap, 0, sparity->nsectors);
2419		return;
2420	}
2421
2422	start -= sparity->logic_start;
2423	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2424	offset = offset >> sectorsize_bits;
2425	nsectors = len >> sectorsize_bits;
 
 
 
 
 
2426
2427	if (offset + nsectors <= sparity->nsectors) {
2428		bitmap_set(bitmap, offset, nsectors);
2429		return;
2430	}
 
 
 
 
 
 
 
 
 
 
 
 
2431
2432	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2433	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
 
2434}
2435
2436static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2437						   u64 start, u32 len)
2438{
2439	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2440}
 
 
 
2441
2442static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2443						  u64 start, u32 len)
2444{
2445	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
 
 
 
 
2446}
2447
2448static void scrub_block_complete(struct scrub_block *sblock)
 
 
2449{
2450	int corrupted = 0;
2451
2452	if (!sblock->no_io_error_seen) {
2453		corrupted = 1;
2454		scrub_handle_errored_block(sblock);
2455	} else {
2456		/*
2457		 * if has checksum error, write via repair mechanism in
2458		 * dev replace case, otherwise write here in dev replace
2459		 * case.
2460		 */
2461		corrupted = scrub_checksum(sblock);
2462		if (!corrupted && sblock->sctx->is_dev_replace)
2463			scrub_write_block_to_dev_replace(sblock);
2464	}
2465
2466	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2467		u64 start = sblock->pagev[0]->logical;
2468		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2469			  sblock->sctx->fs_info->sectorsize;
 
2470
2471		ASSERT(end - start <= U32_MAX);
2472		scrub_parity_mark_sectors_error(sblock->sparity,
2473						start, end - start);
2474	}
 
2475}
2476
2477static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2478{
2479	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2480	list_del(&sum->list);
2481	kfree(sum);
2482}
2483
2484/*
2485 * Find the desired csum for range [logical, logical + sectorsize), and store
2486 * the csum into @csum.
2487 *
2488 * The search source is sctx->csum_list, which is a pre-populated list
2489 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2490 * that is before @logical.
2491 *
2492 * Return 0 if there is no csum for the range.
2493 * Return 1 if there is csum for the range and copied to @csum.
2494 */
2495static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2496{
2497	bool found = false;
2498
2499	while (!list_empty(&sctx->csum_list)) {
2500		struct btrfs_ordered_sum *sum = NULL;
2501		unsigned long index;
2502		unsigned long num_sectors;
2503
2504		sum = list_first_entry(&sctx->csum_list,
2505				       struct btrfs_ordered_sum, list);
2506		/* The current csum range is beyond our range, no csum found */
2507		if (sum->bytenr > logical)
2508			break;
2509
2510		/*
2511		 * The current sum is before our bytenr, since scrub is always
2512		 * done in bytenr order, the csum will never be used anymore,
2513		 * clean it up so that later calls won't bother with the range,
2514		 * and continue search the next range.
2515		 */
2516		if (sum->bytenr + sum->len <= logical) {
2517			drop_csum_range(sctx, sum);
2518			continue;
2519		}
2520
2521		/* Now the csum range covers our bytenr, copy the csum */
2522		found = true;
2523		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2524		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2525
2526		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2527		       sctx->fs_info->csum_size);
2528
2529		/* Cleanup the range if we're at the end of the csum range */
2530		if (index == num_sectors - 1)
2531			drop_csum_range(sctx, sum);
2532		break;
2533	}
2534	if (!found)
2535		return 0;
2536	return 1;
2537}
2538
2539/* scrub extent tries to collect up to 64 kB for each bio */
2540static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2541			u64 logical, u32 len,
2542			u64 physical, struct btrfs_device *dev, u64 flags,
2543			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2544{
2545	int ret;
2546	u8 csum[BTRFS_CSUM_SIZE];
2547	u32 blocksize;
2548
2549	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2550		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2551			blocksize = map->stripe_len;
2552		else
2553			blocksize = sctx->fs_info->sectorsize;
2554		spin_lock(&sctx->stat_lock);
2555		sctx->stat.data_extents_scrubbed++;
2556		sctx->stat.data_bytes_scrubbed += len;
2557		spin_unlock(&sctx->stat_lock);
2558	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2559		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2560			blocksize = map->stripe_len;
2561		else
2562			blocksize = sctx->fs_info->nodesize;
2563		spin_lock(&sctx->stat_lock);
2564		sctx->stat.tree_extents_scrubbed++;
2565		sctx->stat.tree_bytes_scrubbed += len;
2566		spin_unlock(&sctx->stat_lock);
2567	} else {
2568		blocksize = sctx->fs_info->sectorsize;
2569		WARN_ON(1);
2570	}
2571
2572	while (len) {
2573		u32 l = min(len, blocksize);
2574		int have_csum = 0;
2575
2576		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2577			/* push csums to sbio */
2578			have_csum = scrub_find_csum(sctx, logical, csum);
2579			if (have_csum == 0)
2580				++sctx->stat.no_csum;
2581		}
2582		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2583				  mirror_num, have_csum ? csum : NULL,
2584				  physical_for_dev_replace);
2585		if (ret)
2586			return ret;
2587		len -= l;
2588		logical += l;
2589		physical += l;
2590		physical_for_dev_replace += l;
2591	}
2592	return 0;
2593}
2594
2595static int scrub_pages_for_parity(struct scrub_parity *sparity,
2596				  u64 logical, u32 len,
2597				  u64 physical, struct btrfs_device *dev,
2598				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2599{
2600	struct scrub_ctx *sctx = sparity->sctx;
2601	struct scrub_block *sblock;
2602	const u32 sectorsize = sctx->fs_info->sectorsize;
2603	int index;
2604
2605	ASSERT(IS_ALIGNED(len, sectorsize));
2606
2607	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2608	if (!sblock) {
2609		spin_lock(&sctx->stat_lock);
2610		sctx->stat.malloc_errors++;
2611		spin_unlock(&sctx->stat_lock);
2612		return -ENOMEM;
2613	}
2614
2615	/* one ref inside this function, plus one for each page added to
2616	 * a bio later on */
2617	refcount_set(&sblock->refs, 1);
2618	sblock->sctx = sctx;
2619	sblock->no_io_error_seen = 1;
2620	sblock->sparity = sparity;
2621	scrub_parity_get(sparity);
2622
2623	for (index = 0; len > 0; index++) {
2624		struct scrub_page *spage;
2625
2626		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2627		if (!spage) {
2628leave_nomem:
2629			spin_lock(&sctx->stat_lock);
2630			sctx->stat.malloc_errors++;
2631			spin_unlock(&sctx->stat_lock);
2632			scrub_block_put(sblock);
2633			return -ENOMEM;
2634		}
2635		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2636		/* For scrub block */
2637		scrub_page_get(spage);
2638		sblock->pagev[index] = spage;
2639		/* For scrub parity */
2640		scrub_page_get(spage);
2641		list_add_tail(&spage->list, &sparity->spages);
2642		spage->sblock = sblock;
2643		spage->dev = dev;
2644		spage->flags = flags;
2645		spage->generation = gen;
2646		spage->logical = logical;
2647		spage->physical = physical;
2648		spage->mirror_num = mirror_num;
2649		if (csum) {
2650			spage->have_csum = 1;
2651			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2652		} else {
2653			spage->have_csum = 0;
2654		}
2655		sblock->page_count++;
2656		spage->page = alloc_page(GFP_KERNEL);
2657		if (!spage->page)
2658			goto leave_nomem;
2659
2660
2661		/* Iterate over the stripe range in sectorsize steps */
2662		len -= sectorsize;
2663		logical += sectorsize;
2664		physical += sectorsize;
2665	}
2666
2667	WARN_ON(sblock->page_count == 0);
2668	for (index = 0; index < sblock->page_count; index++) {
2669		struct scrub_page *spage = sblock->pagev[index];
2670		int ret;
2671
2672		ret = scrub_add_page_to_rd_bio(sctx, spage);
2673		if (ret) {
2674			scrub_block_put(sblock);
2675			return ret;
2676		}
2677	}
 
 
 
 
2678
2679	/* last one frees, either here or in bio completion for last page */
2680	scrub_block_put(sblock);
2681	return 0;
2682}
2683
2684static int scrub_extent_for_parity(struct scrub_parity *sparity,
2685				   u64 logical, u32 len,
2686				   u64 physical, struct btrfs_device *dev,
2687				   u64 flags, u64 gen, int mirror_num)
2688{
2689	struct scrub_ctx *sctx = sparity->sctx;
2690	int ret;
2691	u8 csum[BTRFS_CSUM_SIZE];
2692	u32 blocksize;
2693
2694	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2695		scrub_parity_mark_sectors_error(sparity, logical, len);
2696		return 0;
2697	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698
2699	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2700		blocksize = sparity->stripe_len;
2701	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702		blocksize = sparity->stripe_len;
2703	} else {
2704		blocksize = sctx->fs_info->sectorsize;
2705		WARN_ON(1);
2706	}
2707
2708	while (len) {
2709		u32 l = min(len, blocksize);
2710		int have_csum = 0;
2711
2712		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2713			/* push csums to sbio */
2714			have_csum = scrub_find_csum(sctx, logical, csum);
2715			if (have_csum == 0)
2716				goto skip;
2717		}
2718		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2719					     flags, gen, mirror_num,
2720					     have_csum ? csum : NULL);
2721		if (ret)
2722			return ret;
2723skip:
2724		len -= l;
2725		logical += l;
2726		physical += l;
2727	}
2728	return 0;
2729}
2730
2731/*
2732 * Given a physical address, this will calculate it's
2733 * logical offset. if this is a parity stripe, it will return
2734 * the most left data stripe's logical offset.
2735 *
2736 * return 0 if it is a data stripe, 1 means parity stripe.
2737 */
2738static int get_raid56_logic_offset(u64 physical, int num,
2739				   struct map_lookup *map, u64 *offset,
2740				   u64 *stripe_start)
2741{
2742	int i;
2743	int j = 0;
2744	u64 stripe_nr;
2745	u64 last_offset;
2746	u32 stripe_index;
2747	u32 rot;
 
 
 
2748	const int data_stripes = nr_data_stripes(map);
 
 
 
2749
2750	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2751	if (stripe_start)
2752		*stripe_start = last_offset;
2753
2754	*offset = last_offset;
2755	for (i = 0; i < data_stripes; i++) {
2756		*offset = last_offset + i * map->stripe_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757
2758		stripe_nr = div64_u64(*offset, map->stripe_len);
2759		stripe_nr = div_u64(stripe_nr, data_stripes);
2760
2761		/* Work out the disk rotation on this stripe-set */
2762		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2763		/* calculate which stripe this data locates */
2764		rot += i;
2765		stripe_index = rot % map->num_stripes;
2766		if (stripe_index == num)
2767			return 0;
2768		if (stripe_index < num)
2769			j++;
2770	}
2771	*offset = last_offset + j * map->stripe_len;
2772	return 1;
2773}
2774
2775static void scrub_free_parity(struct scrub_parity *sparity)
2776{
2777	struct scrub_ctx *sctx = sparity->sctx;
2778	struct scrub_page *curr, *next;
2779	int nbits;
2780
2781	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2782	if (nbits) {
2783		spin_lock(&sctx->stat_lock);
2784		sctx->stat.read_errors += nbits;
2785		sctx->stat.uncorrectable_errors += nbits;
2786		spin_unlock(&sctx->stat_lock);
2787	}
 
 
2788
2789	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2790		list_del_init(&curr->list);
2791		scrub_page_put(curr);
2792	}
 
 
2793
2794	kfree(sparity);
2795}
 
 
 
 
 
 
 
2796
2797static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2798{
2799	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2800						    work);
2801	struct scrub_ctx *sctx = sparity->sctx;
2802
2803	scrub_free_parity(sparity);
2804	scrub_pending_bio_dec(sctx);
2805}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806
2807static void scrub_parity_bio_endio(struct bio *bio)
2808{
2809	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2810	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
 
2811
2812	if (bio->bi_status)
2813		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2814			  sparity->nsectors);
2815
2816	bio_put(bio);
2817
2818	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2819			NULL);
2820	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2821}
2822
2823static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2824{
2825	struct scrub_ctx *sctx = sparity->sctx;
2826	struct btrfs_fs_info *fs_info = sctx->fs_info;
2827	struct bio *bio;
2828	struct btrfs_raid_bio *rbio;
2829	struct btrfs_bio *bbio = NULL;
2830	u64 length;
2831	int ret;
2832
2833	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2834			   sparity->nsectors))
2835		goto out;
 
 
 
 
2836
2837	length = sparity->logic_end - sparity->logic_start;
2838
2839	btrfs_bio_counter_inc_blocked(fs_info);
2840	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2841			       &length, &bbio);
2842	if (ret || !bbio || !bbio->raid_map)
2843		goto bbio_out;
2844
2845	bio = btrfs_io_bio_alloc(0);
2846	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2847	bio->bi_private = sparity;
2848	bio->bi_end_io = scrub_parity_bio_endio;
2849
2850	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2851					      length, sparity->scrub_dev,
2852					      sparity->dbitmap,
2853					      sparity->nsectors);
2854	if (!rbio)
2855		goto rbio_out;
2856
2857	scrub_pending_bio_inc(sctx);
2858	raid56_parity_submit_scrub_rbio(rbio);
2859	return;
2860
2861rbio_out:
2862	bio_put(bio);
2863bbio_out:
2864	btrfs_bio_counter_dec(fs_info);
2865	btrfs_put_bbio(bbio);
2866	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2867		  sparity->nsectors);
2868	spin_lock(&sctx->stat_lock);
2869	sctx->stat.malloc_errors++;
2870	spin_unlock(&sctx->stat_lock);
2871out:
2872	scrub_free_parity(sparity);
2873}
2874
2875static inline int scrub_calc_parity_bitmap_len(int nsectors)
2876{
2877	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2878}
2879
2880static void scrub_parity_get(struct scrub_parity *sparity)
2881{
2882	refcount_inc(&sparity->refs);
2883}
2884
2885static void scrub_parity_put(struct scrub_parity *sparity)
2886{
2887	if (!refcount_dec_and_test(&sparity->refs))
2888		return;
2889
2890	scrub_parity_check_and_repair(sparity);
2891}
2892
2893static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2894						  struct map_lookup *map,
2895						  struct btrfs_device *sdev,
2896						  struct btrfs_path *path,
2897						  u64 logic_start,
2898						  u64 logic_end)
2899{
2900	struct btrfs_fs_info *fs_info = sctx->fs_info;
2901	struct btrfs_root *root = fs_info->extent_root;
2902	struct btrfs_root *csum_root = fs_info->csum_root;
2903	struct btrfs_extent_item *extent;
2904	struct btrfs_bio *bbio = NULL;
2905	u64 flags;
2906	int ret;
2907	int slot;
2908	struct extent_buffer *l;
2909	struct btrfs_key key;
2910	u64 generation;
2911	u64 extent_logical;
2912	u64 extent_physical;
2913	/* Check the comment in scrub_stripe() for why u32 is enough here */
2914	u32 extent_len;
2915	u64 mapped_length;
2916	struct btrfs_device *extent_dev;
2917	struct scrub_parity *sparity;
2918	int nsectors;
2919	int bitmap_len;
2920	int extent_mirror_num;
2921	int stop_loop = 0;
2922
2923	ASSERT(map->stripe_len <= U32_MAX);
2924	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2925	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2926	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2927			  GFP_NOFS);
2928	if (!sparity) {
2929		spin_lock(&sctx->stat_lock);
2930		sctx->stat.malloc_errors++;
2931		spin_unlock(&sctx->stat_lock);
2932		return -ENOMEM;
2933	}
2934
2935	ASSERT(map->stripe_len <= U32_MAX);
2936	sparity->stripe_len = map->stripe_len;
2937	sparity->nsectors = nsectors;
2938	sparity->sctx = sctx;
2939	sparity->scrub_dev = sdev;
2940	sparity->logic_start = logic_start;
2941	sparity->logic_end = logic_end;
2942	refcount_set(&sparity->refs, 1);
2943	INIT_LIST_HEAD(&sparity->spages);
2944	sparity->dbitmap = sparity->bitmap;
2945	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2946
2947	ret = 0;
2948	while (logic_start < logic_end) {
2949		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2950			key.type = BTRFS_METADATA_ITEM_KEY;
2951		else
2952			key.type = BTRFS_EXTENT_ITEM_KEY;
2953		key.objectid = logic_start;
2954		key.offset = (u64)-1;
2955
2956		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2957		if (ret < 0)
2958			goto out;
 
 
 
 
 
 
 
2959
 
 
 
2960		if (ret > 0) {
2961			ret = btrfs_previous_extent_item(root, path, 0);
2962			if (ret < 0)
2963				goto out;
2964			if (ret > 0) {
2965				btrfs_release_path(path);
2966				ret = btrfs_search_slot(NULL, root, &key,
2967							path, 0, 0);
2968				if (ret < 0)
2969					goto out;
2970			}
2971		}
 
 
2972
2973		stop_loop = 0;
2974		while (1) {
2975			u64 bytes;
2976
2977			l = path->nodes[0];
2978			slot = path->slots[0];
2979			if (slot >= btrfs_header_nritems(l)) {
2980				ret = btrfs_next_leaf(root, path);
2981				if (ret == 0)
2982					continue;
2983				if (ret < 0)
2984					goto out;
2985
2986				stop_loop = 1;
2987				break;
2988			}
2989			btrfs_item_key_to_cpu(l, &key, slot);
 
2990
2991			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2992			    key.type != BTRFS_METADATA_ITEM_KEY)
2993				goto next;
 
 
2994
2995			if (key.type == BTRFS_METADATA_ITEM_KEY)
2996				bytes = fs_info->nodesize;
2997			else
2998				bytes = key.offset;
2999
3000			if (key.objectid + bytes <= logic_start)
3001				goto next;
 
 
 
 
 
 
3002
3003			if (key.objectid >= logic_end) {
3004				stop_loop = 1;
3005				break;
3006			}
3007
3008			while (key.objectid >= logic_start + map->stripe_len)
3009				logic_start += map->stripe_len;
3010
3011			extent = btrfs_item_ptr(l, slot,
3012						struct btrfs_extent_item);
3013			flags = btrfs_extent_flags(l, extent);
3014			generation = btrfs_extent_generation(l, extent);
3015
3016			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3017			    (key.objectid < logic_start ||
3018			     key.objectid + bytes >
3019			     logic_start + map->stripe_len)) {
3020				btrfs_err(fs_info,
3021					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3022					  key.objectid, logic_start);
3023				spin_lock(&sctx->stat_lock);
3024				sctx->stat.uncorrectable_errors++;
3025				spin_unlock(&sctx->stat_lock);
3026				goto next;
3027			}
3028again:
3029			extent_logical = key.objectid;
3030			ASSERT(bytes <= U32_MAX);
3031			extent_len = bytes;
3032
3033			if (extent_logical < logic_start) {
3034				extent_len -= logic_start - extent_logical;
3035				extent_logical = logic_start;
3036			}
3037
3038			if (extent_logical + extent_len >
3039			    logic_start + map->stripe_len)
3040				extent_len = logic_start + map->stripe_len -
3041					     extent_logical;
3042
3043			scrub_parity_mark_sectors_data(sparity, extent_logical,
3044						       extent_len);
3045
3046			mapped_length = extent_len;
3047			bbio = NULL;
3048			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3049					extent_logical, &mapped_length, &bbio,
3050					0);
3051			if (!ret) {
3052				if (!bbio || mapped_length < extent_len)
3053					ret = -EIO;
3054			}
3055			if (ret) {
3056				btrfs_put_bbio(bbio);
3057				goto out;
3058			}
3059			extent_physical = bbio->stripes[0].physical;
3060			extent_mirror_num = bbio->mirror_num;
3061			extent_dev = bbio->stripes[0].dev;
3062			btrfs_put_bbio(bbio);
3063
3064			ret = btrfs_lookup_csums_range(csum_root,
3065						extent_logical,
3066						extent_logical + extent_len - 1,
3067						&sctx->csum_list, 1);
3068			if (ret)
3069				goto out;
3070
3071			ret = scrub_extent_for_parity(sparity, extent_logical,
3072						      extent_len,
3073						      extent_physical,
3074						      extent_dev, flags,
3075						      generation,
3076						      extent_mirror_num);
3077
3078			scrub_free_csums(sctx);
3079
3080			if (ret)
3081				goto out;
3082
3083			if (extent_logical + extent_len <
3084			    key.objectid + bytes) {
3085				logic_start += map->stripe_len;
3086
3087				if (logic_start >= logic_end) {
3088					stop_loop = 1;
3089					break;
3090				}
3091
3092				if (logic_start < key.objectid + bytes) {
3093					cond_resched();
3094					goto again;
3095				}
3096			}
3097next:
3098			path->slots[0]++;
3099		}
3100
3101		btrfs_release_path(path);
3102
3103		if (stop_loop)
3104			break;
3105
3106		logic_start += map->stripe_len;
3107	}
3108out:
3109	if (ret < 0) {
3110		ASSERT(logic_end - logic_start <= U32_MAX);
3111		scrub_parity_mark_sectors_error(sparity, logic_start,
3112						logic_end - logic_start);
3113	}
3114	scrub_parity_put(sparity);
3115	scrub_submit(sctx);
3116	mutex_lock(&sctx->wr_lock);
3117	scrub_wr_submit(sctx);
3118	mutex_unlock(&sctx->wr_lock);
3119
3120	btrfs_release_path(path);
3121	return ret < 0 ? ret : 0;
3122}
3123
3124static void sync_replace_for_zoned(struct scrub_ctx *sctx)
 
3125{
3126	if (!btrfs_is_zoned(sctx->fs_info))
3127		return;
3128
3129	sctx->flush_all_writes = true;
3130	scrub_submit(sctx);
3131	mutex_lock(&sctx->wr_lock);
3132	scrub_wr_submit(sctx);
3133	mutex_unlock(&sctx->wr_lock);
3134
3135	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 
3136}
3137
3138static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3139					u64 physical, u64 physical_end)
 
 
 
3140{
3141	struct btrfs_fs_info *fs_info = sctx->fs_info;
 
 
 
 
 
3142	int ret = 0;
3143
3144	if (!btrfs_is_zoned(fs_info))
3145		return 0;
3146
3147	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3148
3149	mutex_lock(&sctx->wr_lock);
3150	if (sctx->write_pointer < physical_end) {
3151		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3152						    physical,
3153						    sctx->write_pointer);
3154		if (ret)
3155			btrfs_err(fs_info,
3156				  "zoned: failed to recover write pointer");
 
 
 
3157	}
3158	mutex_unlock(&sctx->wr_lock);
3159	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3160
3161	return ret;
3162}
3163
3164static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3165					   struct map_lookup *map,
 
3166					   struct btrfs_device *scrub_dev,
3167					   int num, u64 base, u64 length,
3168					   struct btrfs_block_group *cache)
3169{
3170	struct btrfs_path *path, *ppath;
3171	struct btrfs_fs_info *fs_info = sctx->fs_info;
3172	struct btrfs_root *root = fs_info->extent_root;
3173	struct btrfs_root *csum_root = fs_info->csum_root;
3174	struct btrfs_extent_item *extent;
3175	struct blk_plug plug;
3176	u64 flags;
3177	int ret;
3178	int slot;
3179	u64 nstripes;
3180	struct extent_buffer *l;
3181	u64 physical;
3182	u64 logical;
3183	u64 logic_end;
3184	u64 physical_end;
3185	u64 generation;
3186	int mirror_num;
3187	struct reada_control *reada1;
3188	struct reada_control *reada2;
3189	struct btrfs_key key;
3190	struct btrfs_key key_end;
3191	u64 increment = map->stripe_len;
3192	u64 offset;
3193	u64 extent_logical;
3194	u64 extent_physical;
3195	/*
3196	 * Unlike chunk length, extent length should never go beyond
3197	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3198	 */
3199	u32 extent_len;
3200	u64 stripe_logical;
3201	u64 stripe_end;
3202	struct btrfs_device *extent_dev;
3203	int extent_mirror_num;
3204	int stop_loop = 0;
3205
3206	physical = map->stripes[num].physical;
3207	offset = 0;
3208	nstripes = div64_u64(length, map->stripe_len);
3209	mirror_num = 1;
3210	increment = map->stripe_len;
3211	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3212		offset = map->stripe_len * num;
3213		increment = map->stripe_len * map->num_stripes;
3214	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3215		int factor = map->num_stripes / map->sub_stripes;
3216		offset = map->stripe_len * (num / map->sub_stripes);
3217		increment = map->stripe_len * factor;
3218		mirror_num = num % map->sub_stripes + 1;
3219	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3220		mirror_num = num % map->num_stripes + 1;
3221	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3222		mirror_num = num % map->num_stripes + 1;
3223	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3224		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3225		increment = map->stripe_len * nr_data_stripes(map);
3226	}
3227
3228	path = btrfs_alloc_path();
3229	if (!path)
3230		return -ENOMEM;
3231
3232	ppath = btrfs_alloc_path();
3233	if (!ppath) {
3234		btrfs_free_path(path);
3235		return -ENOMEM;
3236	}
3237
3238	/*
3239	 * work on commit root. The related disk blocks are static as
3240	 * long as COW is applied. This means, it is save to rewrite
3241	 * them to repair disk errors without any race conditions
3242	 */
3243	path->search_commit_root = 1;
3244	path->skip_locking = 1;
3245
3246	ppath->search_commit_root = 1;
3247	ppath->skip_locking = 1;
3248	/*
3249	 * trigger the readahead for extent tree csum tree and wait for
3250	 * completion. During readahead, the scrub is officially paused
3251	 * to not hold off transaction commits
3252	 */
3253	logical = base + offset;
3254	physical_end = physical + nstripes * map->stripe_len;
3255	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3256		get_raid56_logic_offset(physical_end, num,
3257					map, &logic_end, NULL);
3258		logic_end += base;
3259	} else {
3260		logic_end = logical + increment * nstripes;
3261	}
3262	wait_event(sctx->list_wait,
3263		   atomic_read(&sctx->bios_in_flight) == 0);
3264	scrub_blocked_if_needed(fs_info);
3265
3266	/* FIXME it might be better to start readahead at commit root */
3267	key.objectid = logical;
3268	key.type = BTRFS_EXTENT_ITEM_KEY;
3269	key.offset = (u64)0;
3270	key_end.objectid = logic_end;
3271	key_end.type = BTRFS_METADATA_ITEM_KEY;
3272	key_end.offset = (u64)-1;
3273	reada1 = btrfs_reada_add(root, &key, &key_end);
3274
3275	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3276		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3277		key.type = BTRFS_EXTENT_CSUM_KEY;
3278		key.offset = logical;
3279		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3280		key_end.type = BTRFS_EXTENT_CSUM_KEY;
3281		key_end.offset = logic_end;
3282		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3283	} else {
3284		reada2 = NULL;
3285	}
3286
3287	if (!IS_ERR(reada1))
3288		btrfs_reada_wait(reada1);
3289	if (!IS_ERR_OR_NULL(reada2))
3290		btrfs_reada_wait(reada2);
3291
3292
3293	/*
3294	 * collect all data csums for the stripe to avoid seeking during
3295	 * the scrub. This might currently (crc32) end up to be about 1MB
3296	 */
3297	blk_start_plug(&plug);
3298
3299	if (sctx->is_dev_replace &&
3300	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3301		mutex_lock(&sctx->wr_lock);
3302		sctx->write_pointer = physical;
3303		mutex_unlock(&sctx->wr_lock);
3304		sctx->flush_all_writes = true;
3305	}
3306
3307	/*
3308	 * now find all extents for each stripe and scrub them
3309	 */
3310	ret = 0;
3311	while (physical < physical_end) {
3312		/*
3313		 * canceled?
3314		 */
3315		if (atomic_read(&fs_info->scrub_cancel_req) ||
3316		    atomic_read(&sctx->cancel_req)) {
3317			ret = -ECANCELED;
3318			goto out;
3319		}
3320		/*
3321		 * check to see if we have to pause
3322		 */
3323		if (atomic_read(&fs_info->scrub_pause_req)) {
3324			/* push queued extents */
3325			sctx->flush_all_writes = true;
3326			scrub_submit(sctx);
3327			mutex_lock(&sctx->wr_lock);
3328			scrub_wr_submit(sctx);
3329			mutex_unlock(&sctx->wr_lock);
3330			wait_event(sctx->list_wait,
3331				   atomic_read(&sctx->bios_in_flight) == 0);
3332			sctx->flush_all_writes = false;
3333			scrub_blocked_if_needed(fs_info);
3334		}
3335
3336		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3337			ret = get_raid56_logic_offset(physical, num, map,
3338						      &logical,
3339						      &stripe_logical);
3340			logical += base;
3341			if (ret) {
3342				/* it is parity strip */
3343				stripe_logical += base;
3344				stripe_end = stripe_logical + increment;
3345				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3346							  ppath, stripe_logical,
3347							  stripe_end);
3348				if (ret)
3349					goto out;
3350				goto skip;
3351			}
3352		}
3353
3354		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3355			key.type = BTRFS_METADATA_ITEM_KEY;
3356		else
3357			key.type = BTRFS_EXTENT_ITEM_KEY;
3358		key.objectid = logical;
3359		key.offset = (u64)-1;
3360
3361		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3362		if (ret < 0)
3363			goto out;
3364
3365		if (ret > 0) {
3366			ret = btrfs_previous_extent_item(root, path, 0);
3367			if (ret < 0)
3368				goto out;
3369			if (ret > 0) {
3370				/* there's no smaller item, so stick with the
3371				 * larger one */
3372				btrfs_release_path(path);
3373				ret = btrfs_search_slot(NULL, root, &key,
3374							path, 0, 0);
3375				if (ret < 0)
3376					goto out;
3377			}
3378		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3379
3380		stop_loop = 0;
3381		while (1) {
3382			u64 bytes;
3383
3384			l = path->nodes[0];
3385			slot = path->slots[0];
3386			if (slot >= btrfs_header_nritems(l)) {
3387				ret = btrfs_next_leaf(root, path);
3388				if (ret == 0)
3389					continue;
3390				if (ret < 0)
3391					goto out;
3392
3393				stop_loop = 1;
3394				break;
3395			}
3396			btrfs_item_key_to_cpu(l, &key, slot);
3397
3398			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3399			    key.type != BTRFS_METADATA_ITEM_KEY)
3400				goto next;
3401
3402			if (key.type == BTRFS_METADATA_ITEM_KEY)
3403				bytes = fs_info->nodesize;
3404			else
3405				bytes = key.offset;
3406
3407			if (key.objectid + bytes <= logical)
3408				goto next;
3409
3410			if (key.objectid >= logical + map->stripe_len) {
3411				/* out of this device extent */
3412				if (key.objectid >= logic_end)
3413					stop_loop = 1;
3414				break;
3415			}
3416
3417			/*
3418			 * If our block group was removed in the meanwhile, just
3419			 * stop scrubbing since there is no point in continuing.
3420			 * Continuing would prevent reusing its device extents
3421			 * for new block groups for a long time.
3422			 */
3423			spin_lock(&cache->lock);
3424			if (cache->removed) {
3425				spin_unlock(&cache->lock);
3426				ret = 0;
3427				goto out;
3428			}
3429			spin_unlock(&cache->lock);
3430
3431			extent = btrfs_item_ptr(l, slot,
3432						struct btrfs_extent_item);
3433			flags = btrfs_extent_flags(l, extent);
3434			generation = btrfs_extent_generation(l, extent);
3435
3436			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3437			    (key.objectid < logical ||
3438			     key.objectid + bytes >
3439			     logical + map->stripe_len)) {
3440				btrfs_err(fs_info,
3441					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3442				       key.objectid, logical);
3443				spin_lock(&sctx->stat_lock);
3444				sctx->stat.uncorrectable_errors++;
3445				spin_unlock(&sctx->stat_lock);
3446				goto next;
3447			}
3448
3449again:
3450			extent_logical = key.objectid;
3451			ASSERT(bytes <= U32_MAX);
3452			extent_len = bytes;
3453
3454			/*
3455			 * trim extent to this stripe
3456			 */
3457			if (extent_logical < logical) {
3458				extent_len -= logical - extent_logical;
3459				extent_logical = logical;
3460			}
3461			if (extent_logical + extent_len >
3462			    logical + map->stripe_len) {
3463				extent_len = logical + map->stripe_len -
3464					     extent_logical;
3465			}
3466
3467			extent_physical = extent_logical - logical + physical;
3468			extent_dev = scrub_dev;
3469			extent_mirror_num = mirror_num;
3470			if (sctx->is_dev_replace)
3471				scrub_remap_extent(fs_info, extent_logical,
3472						   extent_len, &extent_physical,
3473						   &extent_dev,
3474						   &extent_mirror_num);
3475
3476			if (flags & BTRFS_EXTENT_FLAG_DATA) {
3477				ret = btrfs_lookup_csums_range(csum_root,
3478						extent_logical,
3479						extent_logical + extent_len - 1,
3480						&sctx->csum_list, 1);
3481				if (ret)
3482					goto out;
3483			}
3484
3485			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3486					   extent_physical, extent_dev, flags,
3487					   generation, extent_mirror_num,
3488					   extent_logical - logical + physical);
3489
3490			scrub_free_csums(sctx);
3491
 
 
 
 
 
 
 
 
 
 
 
 
 
3492			if (ret)
3493				goto out;
 
 
3494
3495			if (sctx->is_dev_replace)
3496				sync_replace_for_zoned(sctx);
3497
3498			if (extent_logical + extent_len <
3499			    key.objectid + bytes) {
3500				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3501					/*
3502					 * loop until we find next data stripe
3503					 * or we have finished all stripes.
3504					 */
3505loop:
3506					physical += map->stripe_len;
3507					ret = get_raid56_logic_offset(physical,
3508							num, map, &logical,
3509							&stripe_logical);
3510					logical += base;
3511
3512					if (ret && physical < physical_end) {
3513						stripe_logical += base;
3514						stripe_end = stripe_logical +
3515								increment;
3516						ret = scrub_raid56_parity(sctx,
3517							map, scrub_dev, ppath,
3518							stripe_logical,
3519							stripe_end);
3520						if (ret)
3521							goto out;
3522						goto loop;
3523					}
3524				} else {
3525					physical += map->stripe_len;
3526					logical += increment;
3527				}
3528				if (logical < key.objectid + bytes) {
3529					cond_resched();
3530					goto again;
3531				}
3532
3533				if (physical >= physical_end) {
3534					stop_loop = 1;
3535					break;
3536				}
3537			}
3538next:
3539			path->slots[0]++;
3540		}
3541		btrfs_release_path(path);
3542skip:
3543		logical += increment;
3544		physical += map->stripe_len;
3545		spin_lock(&sctx->stat_lock);
3546		if (stop_loop)
3547			sctx->stat.last_physical = map->stripes[num].physical +
3548						   length;
3549		else
3550			sctx->stat.last_physical = physical;
3551		spin_unlock(&sctx->stat_lock);
3552		if (stop_loop)
3553			break;
3554	}
3555out:
3556	/* push queued extents */
3557	scrub_submit(sctx);
3558	mutex_lock(&sctx->wr_lock);
3559	scrub_wr_submit(sctx);
3560	mutex_unlock(&sctx->wr_lock);
3561
3562	blk_finish_plug(&plug);
3563	btrfs_free_path(path);
3564	btrfs_free_path(ppath);
 
 
 
3565
3566	if (sctx->is_dev_replace && ret >= 0) {
3567		int ret2;
3568
3569		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
3570						    map->stripes[num].physical,
3571						    physical_end);
 
3572		if (ret2)
3573			ret = ret2;
3574	}
3575
3576	return ret < 0 ? ret : 0;
3577}
3578
3579static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 
3580					  struct btrfs_device *scrub_dev,
3581					  u64 chunk_offset, u64 length,
3582					  u64 dev_offset,
3583					  struct btrfs_block_group *cache)
3584{
3585	struct btrfs_fs_info *fs_info = sctx->fs_info;
3586	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3587	struct map_lookup *map;
3588	struct extent_map *em;
3589	int i;
3590	int ret = 0;
3591
3592	read_lock(&map_tree->lock);
3593	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3594	read_unlock(&map_tree->lock);
3595
3596	if (!em) {
3597		/*
3598		 * Might have been an unused block group deleted by the cleaner
3599		 * kthread or relocation.
3600		 */
3601		spin_lock(&cache->lock);
3602		if (!cache->removed)
3603			ret = -EINVAL;
3604		spin_unlock(&cache->lock);
3605
3606		return ret;
3607	}
3608
3609	map = em->map_lookup;
3610	if (em->start != chunk_offset)
3611		goto out;
3612
3613	if (em->len < length)
3614		goto out;
3615
3616	for (i = 0; i < map->num_stripes; ++i) {
3617		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3618		    map->stripes[i].physical == dev_offset) {
3619			ret = scrub_stripe(sctx, map, scrub_dev, i,
3620					   chunk_offset, length, cache);
3621			if (ret)
3622				goto out;
3623		}
3624	}
3625out:
3626	free_extent_map(em);
3627
3628	return ret;
3629}
3630
3631static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3632					  struct btrfs_block_group *cache)
3633{
3634	struct btrfs_fs_info *fs_info = cache->fs_info;
3635	struct btrfs_trans_handle *trans;
3636
3637	if (!btrfs_is_zoned(fs_info))
3638		return 0;
3639
3640	btrfs_wait_block_group_reservations(cache);
3641	btrfs_wait_nocow_writers(cache);
3642	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3643
3644	trans = btrfs_join_transaction(root);
3645	if (IS_ERR(trans))
3646		return PTR_ERR(trans);
3647	return btrfs_commit_transaction(trans);
3648}
3649
3650static noinline_for_stack
3651int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3652			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3653{
3654	struct btrfs_dev_extent *dev_extent = NULL;
3655	struct btrfs_path *path;
3656	struct btrfs_fs_info *fs_info = sctx->fs_info;
3657	struct btrfs_root *root = fs_info->dev_root;
3658	u64 length;
3659	u64 chunk_offset;
3660	int ret = 0;
3661	int ro_set;
3662	int slot;
3663	struct extent_buffer *l;
3664	struct btrfs_key key;
3665	struct btrfs_key found_key;
3666	struct btrfs_block_group *cache;
3667	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3668
3669	path = btrfs_alloc_path();
3670	if (!path)
3671		return -ENOMEM;
3672
3673	path->reada = READA_FORWARD;
3674	path->search_commit_root = 1;
3675	path->skip_locking = 1;
3676
3677	key.objectid = scrub_dev->devid;
3678	key.offset = 0ull;
3679	key.type = BTRFS_DEV_EXTENT_KEY;
3680
3681	while (1) {
 
 
3682		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3683		if (ret < 0)
3684			break;
3685		if (ret > 0) {
3686			if (path->slots[0] >=
3687			    btrfs_header_nritems(path->nodes[0])) {
3688				ret = btrfs_next_leaf(root, path);
3689				if (ret < 0)
3690					break;
3691				if (ret > 0) {
3692					ret = 0;
3693					break;
3694				}
3695			} else {
3696				ret = 0;
3697			}
3698		}
3699
3700		l = path->nodes[0];
3701		slot = path->slots[0];
3702
3703		btrfs_item_key_to_cpu(l, &found_key, slot);
3704
3705		if (found_key.objectid != scrub_dev->devid)
3706			break;
3707
3708		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3709			break;
3710
3711		if (found_key.offset >= end)
3712			break;
3713
3714		if (found_key.offset < key.offset)
3715			break;
3716
3717		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3718		length = btrfs_dev_extent_length(l, dev_extent);
3719
3720		if (found_key.offset + length <= start)
3721			goto skip;
3722
3723		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3724
3725		/*
3726		 * get a reference on the corresponding block group to prevent
3727		 * the chunk from going away while we scrub it
3728		 */
3729		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3730
3731		/* some chunks are removed but not committed to disk yet,
3732		 * continue scrubbing */
3733		if (!cache)
3734			goto skip;
3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3736		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3737			spin_lock(&cache->lock);
3738			if (!cache->to_copy) {
3739				spin_unlock(&cache->lock);
3740				btrfs_put_block_group(cache);
3741				goto skip;
3742			}
3743			spin_unlock(&cache->lock);
3744		}
3745
3746		/*
3747		 * Make sure that while we are scrubbing the corresponding block
3748		 * group doesn't get its logical address and its device extents
3749		 * reused for another block group, which can possibly be of a
3750		 * different type and different profile. We do this to prevent
3751		 * false error detections and crashes due to bogus attempts to
3752		 * repair extents.
3753		 */
3754		spin_lock(&cache->lock);
3755		if (cache->removed) {
3756			spin_unlock(&cache->lock);
3757			btrfs_put_block_group(cache);
3758			goto skip;
3759		}
3760		btrfs_freeze_block_group(cache);
3761		spin_unlock(&cache->lock);
3762
3763		/*
3764		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3765		 * to avoid deadlock caused by:
3766		 * btrfs_inc_block_group_ro()
3767		 * -> btrfs_wait_for_commit()
3768		 * -> btrfs_commit_transaction()
3769		 * -> btrfs_scrub_pause()
3770		 */
3771		scrub_pause_on(fs_info);
3772
3773		/*
3774		 * Don't do chunk preallocation for scrub.
3775		 *
3776		 * This is especially important for SYSTEM bgs, or we can hit
3777		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3778		 * 1. The only SYSTEM bg is marked RO.
3779		 *    Since SYSTEM bg is small, that's pretty common.
3780		 * 2. New SYSTEM bg will be allocated
3781		 *    Due to regular version will allocate new chunk.
3782		 * 3. New SYSTEM bg is empty and will get cleaned up
3783		 *    Before cleanup really happens, it's marked RO again.
3784		 * 4. Empty SYSTEM bg get scrubbed
3785		 *    We go back to 2.
3786		 *
3787		 * This can easily boost the amount of SYSTEM chunks if cleaner
3788		 * thread can't be triggered fast enough, and use up all space
3789		 * of btrfs_super_block::sys_chunk_array
3790		 *
3791		 * While for dev replace, we need to try our best to mark block
3792		 * group RO, to prevent race between:
3793		 * - Write duplication
3794		 *   Contains latest data
3795		 * - Scrub copy
3796		 *   Contains data from commit tree
3797		 *
3798		 * If target block group is not marked RO, nocow writes can
3799		 * be overwritten by scrub copy, causing data corruption.
3800		 * So for dev-replace, it's not allowed to continue if a block
3801		 * group is not RO.
3802		 */
3803		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3804		if (!ret && sctx->is_dev_replace) {
3805			ret = finish_extent_writes_for_zoned(root, cache);
3806			if (ret) {
3807				btrfs_dec_block_group_ro(cache);
3808				scrub_pause_off(fs_info);
3809				btrfs_put_block_group(cache);
3810				break;
3811			}
3812		}
3813
3814		if (ret == 0) {
3815			ro_set = 1;
3816		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
 
3817			/*
3818			 * btrfs_inc_block_group_ro return -ENOSPC when it
3819			 * failed in creating new chunk for metadata.
3820			 * It is not a problem for scrub, because
3821			 * metadata are always cowed, and our scrub paused
3822			 * commit_transactions.
 
 
 
 
 
 
3823			 */
3824			ro_set = 0;
3825		} else if (ret == -ETXTBSY) {
3826			btrfs_warn(fs_info,
3827		   "skipping scrub of block group %llu due to active swapfile",
3828				   cache->start);
3829			scrub_pause_off(fs_info);
3830			ret = 0;
3831			goto skip_unfreeze;
3832		} else {
3833			btrfs_warn(fs_info,
3834				   "failed setting block group ro: %d", ret);
3835			btrfs_unfreeze_block_group(cache);
3836			btrfs_put_block_group(cache);
3837			scrub_pause_off(fs_info);
3838			break;
3839		}
3840
3841		/*
3842		 * Now the target block is marked RO, wait for nocow writes to
3843		 * finish before dev-replace.
3844		 * COW is fine, as COW never overwrites extents in commit tree.
3845		 */
3846		if (sctx->is_dev_replace) {
3847			btrfs_wait_nocow_writers(cache);
3848			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3849					cache->length);
3850		}
3851
3852		scrub_pause_off(fs_info);
3853		down_write(&dev_replace->rwsem);
3854		dev_replace->cursor_right = found_key.offset + length;
3855		dev_replace->cursor_left = found_key.offset;
3856		dev_replace->item_needs_writeback = 1;
3857		up_write(&dev_replace->rwsem);
3858
3859		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3860				  found_key.offset, cache);
3861
3862		/*
3863		 * flush, submit all pending read and write bios, afterwards
3864		 * wait for them.
3865		 * Note that in the dev replace case, a read request causes
3866		 * write requests that are submitted in the read completion
3867		 * worker. Therefore in the current situation, it is required
3868		 * that all write requests are flushed, so that all read and
3869		 * write requests are really completed when bios_in_flight
3870		 * changes to 0.
3871		 */
3872		sctx->flush_all_writes = true;
3873		scrub_submit(sctx);
3874		mutex_lock(&sctx->wr_lock);
3875		scrub_wr_submit(sctx);
3876		mutex_unlock(&sctx->wr_lock);
3877
3878		wait_event(sctx->list_wait,
3879			   atomic_read(&sctx->bios_in_flight) == 0);
3880
3881		scrub_pause_on(fs_info);
3882
3883		/*
3884		 * must be called before we decrease @scrub_paused.
3885		 * make sure we don't block transaction commit while
3886		 * we are waiting pending workers finished.
3887		 */
3888		wait_event(sctx->list_wait,
3889			   atomic_read(&sctx->workers_pending) == 0);
3890		sctx->flush_all_writes = false;
3891
3892		scrub_pause_off(fs_info);
3893
3894		if (sctx->is_dev_replace &&
3895		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3896						      cache, found_key.offset))
3897			ro_set = 0;
3898
3899		down_write(&dev_replace->rwsem);
3900		dev_replace->cursor_left = dev_replace->cursor_right;
3901		dev_replace->item_needs_writeback = 1;
3902		up_write(&dev_replace->rwsem);
3903
3904		if (ro_set)
3905			btrfs_dec_block_group_ro(cache);
3906
3907		/*
3908		 * We might have prevented the cleaner kthread from deleting
3909		 * this block group if it was already unused because we raced
3910		 * and set it to RO mode first. So add it back to the unused
3911		 * list, otherwise it might not ever be deleted unless a manual
3912		 * balance is triggered or it becomes used and unused again.
3913		 */
3914		spin_lock(&cache->lock);
3915		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3916		    cache->used == 0) {
3917			spin_unlock(&cache->lock);
3918			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3919				btrfs_discard_queue_work(&fs_info->discard_ctl,
3920							 cache);
3921			else
3922				btrfs_mark_bg_unused(cache);
3923		} else {
3924			spin_unlock(&cache->lock);
3925		}
3926skip_unfreeze:
3927		btrfs_unfreeze_block_group(cache);
3928		btrfs_put_block_group(cache);
3929		if (ret)
3930			break;
3931		if (sctx->is_dev_replace &&
3932		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3933			ret = -EIO;
3934			break;
3935		}
3936		if (sctx->stat.malloc_errors > 0) {
3937			ret = -ENOMEM;
3938			break;
3939		}
3940skip:
3941		key.offset = found_key.offset + length;
3942		btrfs_release_path(path);
3943	}
3944
3945	btrfs_free_path(path);
3946
3947	return ret;
3948}
3949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3950static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3951					   struct btrfs_device *scrub_dev)
3952{
3953	int	i;
3954	u64	bytenr;
3955	u64	gen;
3956	int	ret;
 
3957	struct btrfs_fs_info *fs_info = sctx->fs_info;
3958
3959	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3960		return -EROFS;
3961
 
 
 
 
 
 
 
 
3962	/* Seed devices of a new filesystem has their own generation. */
3963	if (scrub_dev->fs_devices != fs_info->fs_devices)
3964		gen = scrub_dev->generation;
3965	else
3966		gen = fs_info->last_trans_committed;
3967
3968	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3969		bytenr = btrfs_sb_offset(i);
3970		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3971		    scrub_dev->commit_total_bytes)
3972			break;
3973		if (!btrfs_check_super_location(scrub_dev, bytenr))
3974			continue;
3975
3976		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3977				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3978				  NULL, bytenr);
3979		if (ret)
3980			return ret;
 
3981	}
3982	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3983
3984	return 0;
3985}
3986
3987static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3988{
3989	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3990					&fs_info->scrub_lock)) {
3991		struct btrfs_workqueue *scrub_workers = NULL;
3992		struct btrfs_workqueue *scrub_wr_comp = NULL;
3993		struct btrfs_workqueue *scrub_parity = NULL;
3994
3995		scrub_workers = fs_info->scrub_workers;
3996		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3997		scrub_parity = fs_info->scrub_parity_workers;
3998
3999		fs_info->scrub_workers = NULL;
4000		fs_info->scrub_wr_completion_workers = NULL;
4001		fs_info->scrub_parity_workers = NULL;
4002		mutex_unlock(&fs_info->scrub_lock);
4003
4004		btrfs_destroy_workqueue(scrub_workers);
4005		btrfs_destroy_workqueue(scrub_wr_comp);
4006		btrfs_destroy_workqueue(scrub_parity);
4007	}
4008}
4009
4010/*
4011 * get a reference count on fs_info->scrub_workers. start worker if necessary
4012 */
4013static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4014						int is_dev_replace)
4015{
4016	struct btrfs_workqueue *scrub_workers = NULL;
4017	struct btrfs_workqueue *scrub_wr_comp = NULL;
4018	struct btrfs_workqueue *scrub_parity = NULL;
4019	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4020	int max_active = fs_info->thread_pool_size;
4021	int ret = -ENOMEM;
4022
4023	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4024		return 0;
4025
4026	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
4027					      is_dev_replace ? 1 : max_active, 4);
4028	if (!scrub_workers)
4029		goto fail_scrub_workers;
4030
4031	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4032					      max_active, 2);
4033	if (!scrub_wr_comp)
4034		goto fail_scrub_wr_completion_workers;
4035
4036	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4037					     max_active, 2);
4038	if (!scrub_parity)
4039		goto fail_scrub_parity_workers;
4040
4041	mutex_lock(&fs_info->scrub_lock);
4042	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4043		ASSERT(fs_info->scrub_workers == NULL &&
4044		       fs_info->scrub_wr_completion_workers == NULL &&
4045		       fs_info->scrub_parity_workers == NULL);
4046		fs_info->scrub_workers = scrub_workers;
4047		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4048		fs_info->scrub_parity_workers = scrub_parity;
4049		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4050		mutex_unlock(&fs_info->scrub_lock);
4051		return 0;
4052	}
4053	/* Other thread raced in and created the workers for us */
4054	refcount_inc(&fs_info->scrub_workers_refcnt);
4055	mutex_unlock(&fs_info->scrub_lock);
4056
4057	ret = 0;
4058	btrfs_destroy_workqueue(scrub_parity);
4059fail_scrub_parity_workers:
4060	btrfs_destroy_workqueue(scrub_wr_comp);
4061fail_scrub_wr_completion_workers:
4062	btrfs_destroy_workqueue(scrub_workers);
4063fail_scrub_workers:
4064	return ret;
4065}
4066
4067int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4068		    u64 end, struct btrfs_scrub_progress *progress,
4069		    int readonly, int is_dev_replace)
4070{
 
4071	struct scrub_ctx *sctx;
4072	int ret;
4073	struct btrfs_device *dev;
4074	unsigned int nofs_flag;
 
4075
4076	if (btrfs_fs_closing(fs_info))
4077		return -EAGAIN;
4078
4079	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4080		/*
4081		 * in this case scrub is unable to calculate the checksum
4082		 * the way scrub is implemented. Do not handle this
4083		 * situation at all because it won't ever happen.
4084		 */
4085		btrfs_err(fs_info,
4086			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4087		       fs_info->nodesize,
4088		       BTRFS_STRIPE_LEN);
4089		return -EINVAL;
4090	}
4091
4092	if (fs_info->nodesize >
4093	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4094	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4095		/*
4096		 * would exhaust the array bounds of pagev member in
4097		 * struct scrub_block
4098		 */
4099		btrfs_err(fs_info,
4100			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4101		       fs_info->nodesize,
4102		       SCRUB_MAX_PAGES_PER_BLOCK,
4103		       fs_info->sectorsize,
4104		       SCRUB_MAX_PAGES_PER_BLOCK);
4105		return -EINVAL;
4106	}
4107
4108	/* Allocate outside of device_list_mutex */
4109	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4110	if (IS_ERR(sctx))
4111		return PTR_ERR(sctx);
4112
4113	ret = scrub_workers_get(fs_info, is_dev_replace);
4114	if (ret)
4115		goto out_free_ctx;
4116
4117	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4118	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4119	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4120		     !is_dev_replace)) {
4121		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122		ret = -ENODEV;
4123		goto out;
4124	}
4125
4126	if (!is_dev_replace && !readonly &&
4127	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4128		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4129		btrfs_err_in_rcu(fs_info,
4130			"scrub on devid %llu: filesystem on %s is not writable",
4131				 devid, rcu_str_deref(dev->name));
4132		ret = -EROFS;
4133		goto out;
4134	}
4135
4136	mutex_lock(&fs_info->scrub_lock);
4137	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4138	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4139		mutex_unlock(&fs_info->scrub_lock);
4140		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141		ret = -EIO;
4142		goto out;
4143	}
4144
4145	down_read(&fs_info->dev_replace.rwsem);
4146	if (dev->scrub_ctx ||
4147	    (!is_dev_replace &&
4148	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4149		up_read(&fs_info->dev_replace.rwsem);
4150		mutex_unlock(&fs_info->scrub_lock);
4151		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152		ret = -EINPROGRESS;
4153		goto out;
4154	}
4155	up_read(&fs_info->dev_replace.rwsem);
4156
4157	sctx->readonly = readonly;
4158	dev->scrub_ctx = sctx;
4159	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4160
4161	/*
4162	 * checking @scrub_pause_req here, we can avoid
4163	 * race between committing transaction and scrubbing.
4164	 */
4165	__scrub_blocked_if_needed(fs_info);
4166	atomic_inc(&fs_info->scrubs_running);
4167	mutex_unlock(&fs_info->scrub_lock);
4168
4169	/*
4170	 * In order to avoid deadlock with reclaim when there is a transaction
4171	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4172	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4173	 * invoked by our callees. The pausing request is done when the
4174	 * transaction commit starts, and it blocks the transaction until scrub
4175	 * is paused (done at specific points at scrub_stripe() or right above
4176	 * before incrementing fs_info->scrubs_running).
4177	 */
4178	nofs_flag = memalloc_nofs_save();
4179	if (!is_dev_replace) {
 
 
 
 
 
 
4180		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4181		/*
4182		 * by holding device list mutex, we can
4183		 * kick off writing super in log tree sync.
4184		 */
4185		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4186		ret = scrub_supers(sctx, dev);
4187		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
4188	}
4189
4190	if (!ret)
4191		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4192	memalloc_nofs_restore(nofs_flag);
4193
4194	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4195	atomic_dec(&fs_info->scrubs_running);
4196	wake_up(&fs_info->scrub_pause_wait);
4197
4198	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4199
4200	if (progress)
4201		memcpy(progress, &sctx->stat, sizeof(*progress));
4202
4203	if (!is_dev_replace)
4204		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4205			ret ? "not finished" : "finished", devid, ret);
4206
4207	mutex_lock(&fs_info->scrub_lock);
4208	dev->scrub_ctx = NULL;
4209	mutex_unlock(&fs_info->scrub_lock);
4210
4211	scrub_workers_put(fs_info);
4212	scrub_put_ctx(sctx);
4213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4214	return ret;
4215out:
4216	scrub_workers_put(fs_info);
4217out_free_ctx:
4218	scrub_free_ctx(sctx);
4219
4220	return ret;
4221}
4222
4223void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4224{
4225	mutex_lock(&fs_info->scrub_lock);
4226	atomic_inc(&fs_info->scrub_pause_req);
4227	while (atomic_read(&fs_info->scrubs_paused) !=
4228	       atomic_read(&fs_info->scrubs_running)) {
4229		mutex_unlock(&fs_info->scrub_lock);
4230		wait_event(fs_info->scrub_pause_wait,
4231			   atomic_read(&fs_info->scrubs_paused) ==
4232			   atomic_read(&fs_info->scrubs_running));
4233		mutex_lock(&fs_info->scrub_lock);
4234	}
4235	mutex_unlock(&fs_info->scrub_lock);
4236}
4237
4238void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4239{
4240	atomic_dec(&fs_info->scrub_pause_req);
4241	wake_up(&fs_info->scrub_pause_wait);
4242}
4243
4244int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4245{
4246	mutex_lock(&fs_info->scrub_lock);
4247	if (!atomic_read(&fs_info->scrubs_running)) {
4248		mutex_unlock(&fs_info->scrub_lock);
4249		return -ENOTCONN;
4250	}
4251
4252	atomic_inc(&fs_info->scrub_cancel_req);
4253	while (atomic_read(&fs_info->scrubs_running)) {
4254		mutex_unlock(&fs_info->scrub_lock);
4255		wait_event(fs_info->scrub_pause_wait,
4256			   atomic_read(&fs_info->scrubs_running) == 0);
4257		mutex_lock(&fs_info->scrub_lock);
4258	}
4259	atomic_dec(&fs_info->scrub_cancel_req);
4260	mutex_unlock(&fs_info->scrub_lock);
4261
4262	return 0;
4263}
4264
4265int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4266{
4267	struct btrfs_fs_info *fs_info = dev->fs_info;
4268	struct scrub_ctx *sctx;
4269
4270	mutex_lock(&fs_info->scrub_lock);
4271	sctx = dev->scrub_ctx;
4272	if (!sctx) {
4273		mutex_unlock(&fs_info->scrub_lock);
4274		return -ENOTCONN;
4275	}
4276	atomic_inc(&sctx->cancel_req);
4277	while (dev->scrub_ctx) {
4278		mutex_unlock(&fs_info->scrub_lock);
4279		wait_event(fs_info->scrub_pause_wait,
4280			   dev->scrub_ctx == NULL);
4281		mutex_lock(&fs_info->scrub_lock);
4282	}
4283	mutex_unlock(&fs_info->scrub_lock);
4284
4285	return 0;
4286}
4287
4288int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4289			 struct btrfs_scrub_progress *progress)
4290{
 
4291	struct btrfs_device *dev;
4292	struct scrub_ctx *sctx = NULL;
4293
4294	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4295	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4296	if (dev)
4297		sctx = dev->scrub_ctx;
4298	if (sctx)
4299		memcpy(progress, &sctx->stat, sizeof(*progress));
4300	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4301
4302	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4303}
4304
4305static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4306			       u64 extent_logical, u32 extent_len,
4307			       u64 *extent_physical,
4308			       struct btrfs_device **extent_dev,
4309			       int *extent_mirror_num)
4310{
4311	u64 mapped_length;
4312	struct btrfs_bio *bbio = NULL;
4313	int ret;
4314
4315	mapped_length = extent_len;
4316	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4317			      &mapped_length, &bbio, 0);
4318	if (ret || !bbio || mapped_length < extent_len ||
4319	    !bbio->stripes[0].dev->bdev) {
4320		btrfs_put_bbio(bbio);
4321		return;
4322	}
4323
4324	*extent_physical = bbio->stripes[0].physical;
4325	*extent_mirror_num = bbio->mirror_num;
4326	*extent_dev = bbio->stripes[0].dev;
4327	btrfs_put_bbio(bbio);
4328}