Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
 
 
  19#include "raid56.h"
  20#include "block-group.h"
  21#include "zoned.h"
  22#include "fs.h"
  23#include "accessors.h"
  24#include "file-item.h"
  25#include "scrub.h"
  26#include "raid-stripe-tree.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
  39 */
  40
 
  41struct scrub_ctx;
  42
  43/*
  44 * The following value only influences the performance.
  45 *
  46 * This determines how many stripes would be submitted in one go,
  47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
  48 */
  49#define SCRUB_STRIPES_PER_GROUP		8
  50
  51/*
  52 * How many groups we have for each sctx.
  53 *
  54 * This would be 8M per device, the same value as the old scrub in-flight bios
  55 * size limit.
  56 */
  57#define SCRUB_GROUPS_PER_SCTX		16
  58
  59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
  60
  61/*
  62 * The following value times PAGE_SIZE needs to be large enough to match the
  63 * largest node/leaf/sector size that shall be supported.
 
  64 */
  65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  66
  67/* Represent one sector and its needed info to verify the content. */
  68struct scrub_sector_verification {
  69	bool is_metadata;
  70
  71	union {
  72		/*
  73		 * Csum pointer for data csum verification.  Should point to a
  74		 * sector csum inside scrub_stripe::csums.
  75		 *
  76		 * NULL if this data sector has no csum.
  77		 */
  78		u8 *csum;
  79
  80		/*
  81		 * Extra info for metadata verification.  All sectors inside a
  82		 * tree block share the same generation.
  83		 */
  84		u64 generation;
  85	};
  86};
  87
  88enum scrub_stripe_flags {
  89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
  90	SCRUB_STRIPE_FLAG_INITIALIZED,
  91
  92	/* Set when the read-repair is finished. */
  93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
 
 
 
 
 
 
 
 
 
 
 
  94
  95	/*
  96	 * Set for data stripes if it's triggered from P/Q stripe.
  97	 * During such scrub, we should not report errors in data stripes, nor
  98	 * update the accounting.
  99	 */
 100	SCRUB_STRIPE_FLAG_NO_REPORT,
 101};
 102
 103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
 104
 105/*
 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 107 */
 108struct scrub_stripe {
 109	struct scrub_ctx *sctx;
 110	struct btrfs_block_group *bg;
 
 
 
 
 
 
 
 
 
 111
 112	struct page *pages[SCRUB_STRIPE_PAGES];
 113	struct scrub_sector_verification *sectors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115	struct btrfs_device *dev;
 116	u64 logical;
 117	u64 physical;
 118
 119	u16 mirror_num;
 120
 121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
 122	u16 nr_sectors;
 123
 124	/*
 125	 * How many data/meta extents are in this stripe.  Only for scrub status
 126	 * reporting purposes.
 127	 */
 128	u16 nr_data_extents;
 129	u16 nr_meta_extents;
 130
 131	atomic_t pending_io;
 132	wait_queue_head_t io_wait;
 133	wait_queue_head_t repair_wait;
 134
 135	/*
 136	 * Indicate the states of the stripe.  Bits are defined in
 137	 * scrub_stripe_flags enum.
 138	 */
 139	unsigned long state;
 140
 141	/* Indicate which sectors are covered by extent items. */
 142	unsigned long extent_sector_bitmap;
 143
 144	/*
 145	 * The errors hit during the initial read of the stripe.
 146	 *
 147	 * Would be utilized for error reporting and repair.
 148	 *
 149	 * The remaining init_nr_* records the number of errors hit, only used
 150	 * by error reporting.
 151	 */
 152	unsigned long init_error_bitmap;
 153	unsigned int init_nr_io_errors;
 154	unsigned int init_nr_csum_errors;
 155	unsigned int init_nr_meta_errors;
 156
 157	/*
 158	 * The following error bitmaps are all for the current status.
 159	 * Every time we submit a new read, these bitmaps may be updated.
 160	 *
 161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
 162	 *
 163	 * IO and csum errors can happen for both metadata and data.
 164	 */
 165	unsigned long error_bitmap;
 166	unsigned long io_error_bitmap;
 167	unsigned long csum_error_bitmap;
 168	unsigned long meta_error_bitmap;
 169
 170	/* For writeback (repair or replace) error reporting. */
 171	unsigned long write_error_bitmap;
 172
 173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
 174	spinlock_t write_error_lock;
 175
 176	/*
 177	 * Checksum for the whole stripe if this stripe is inside a data block
 178	 * group.
 179	 */
 180	u8 *csums;
 181
 182	struct work_struct work;
 183};
 184
 185struct scrub_ctx {
 186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
 187	struct scrub_stripe	*raid56_data_stripes;
 188	struct btrfs_fs_info	*fs_info;
 189	struct btrfs_path	extent_path;
 190	struct btrfs_path	csum_path;
 191	int			first_free;
 192	int			cur_stripe;
 
 
 
 
 
 
 193	atomic_t		cancel_req;
 194	int			readonly;
 195
 196	/* State of IO submission throttling affecting the associated device */
 197	ktime_t			throttle_deadline;
 198	u64			throttle_sent;
 199
 200	int			is_dev_replace;
 201	u64			write_pointer;
 202
 
 203	struct mutex            wr_lock;
 
 204	struct btrfs_device     *wr_tgtdev;
 
 205
 206	/*
 207	 * statistics
 208	 */
 209	struct btrfs_scrub_progress stat;
 210	spinlock_t		stat_lock;
 211
 212	/*
 213	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 214	 * decrement bios_in_flight and workers_pending and then do a wakeup
 215	 * on the list_wait wait queue. We must ensure the main scrub task
 216	 * doesn't free the scrub context before or while the workers are
 217	 * doing the wakeup() call.
 218	 */
 219	refcount_t              refs;
 220};
 221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222struct scrub_warning {
 223	struct btrfs_path	*path;
 224	u64			extent_item_size;
 225	const char		*errstr;
 226	u64			physical;
 227	u64			logical;
 228	struct btrfs_device	*dev;
 229};
 230
 231static void release_scrub_stripe(struct scrub_stripe *stripe)
 232{
 233	if (!stripe)
 234		return;
 
 
 235
 236	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
 237		if (stripe->pages[i])
 238			__free_page(stripe->pages[i]);
 239		stripe->pages[i] = NULL;
 240	}
 241	kfree(stripe->sectors);
 242	kfree(stripe->csums);
 243	stripe->sectors = NULL;
 244	stripe->csums = NULL;
 245	stripe->sctx = NULL;
 246	stripe->state = 0;
 247}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
 250			     struct scrub_stripe *stripe)
 251{
 252	int ret;
 253
 254	memset(stripe, 0, sizeof(*stripe));
 255
 256	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 257	stripe->state = 0;
 258
 259	init_waitqueue_head(&stripe->io_wait);
 260	init_waitqueue_head(&stripe->repair_wait);
 261	atomic_set(&stripe->pending_io, 0);
 262	spin_lock_init(&stripe->write_error_lock);
 263
 264	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
 265	if (ret < 0)
 266		goto error;
 267
 268	stripe->sectors = kcalloc(stripe->nr_sectors,
 269				  sizeof(struct scrub_sector_verification),
 270				  GFP_KERNEL);
 271	if (!stripe->sectors)
 272		goto error;
 273
 274	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
 275				fs_info->csum_size, GFP_KERNEL);
 276	if (!stripe->csums)
 277		goto error;
 278	return 0;
 279error:
 280	release_scrub_stripe(stripe);
 281	return -ENOMEM;
 282}
 283
 284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
 285{
 286	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
 
 287}
 288
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 
 
 
 
 
 290
 291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 292{
 293	while (atomic_read(&fs_info->scrub_pause_req)) {
 294		mutex_unlock(&fs_info->scrub_lock);
 295		wait_event(fs_info->scrub_pause_wait,
 296		   atomic_read(&fs_info->scrub_pause_req) == 0);
 297		mutex_lock(&fs_info->scrub_lock);
 298	}
 299}
 300
 301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 302{
 303	atomic_inc(&fs_info->scrubs_paused);
 304	wake_up(&fs_info->scrub_pause_wait);
 305}
 306
 307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 308{
 309	mutex_lock(&fs_info->scrub_lock);
 310	__scrub_blocked_if_needed(fs_info);
 311	atomic_dec(&fs_info->scrubs_paused);
 312	mutex_unlock(&fs_info->scrub_lock);
 313
 314	wake_up(&fs_info->scrub_pause_wait);
 315}
 316
 317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 318{
 319	scrub_pause_on(fs_info);
 320	scrub_pause_off(fs_info);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 324{
 325	int i;
 326
 327	if (!sctx)
 328		return;
 329
 330	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
 331		release_scrub_stripe(&sctx->stripes[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332
 333	kvfree(sctx);
 
 
 334}
 335
 336static void scrub_put_ctx(struct scrub_ctx *sctx)
 337{
 338	if (refcount_dec_and_test(&sctx->refs))
 339		scrub_free_ctx(sctx);
 340}
 341
 342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 343		struct btrfs_fs_info *fs_info, int is_dev_replace)
 344{
 345	struct scrub_ctx *sctx;
 346	int		i;
 
 347
 348	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
 349	 * kvzalloc().
 350	 */
 351	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
 352	if (!sctx)
 353		goto nomem;
 354	refcount_set(&sctx->refs, 1);
 355	sctx->is_dev_replace = is_dev_replace;
 356	sctx->fs_info = fs_info;
 357	sctx->extent_path.search_commit_root = 1;
 358	sctx->extent_path.skip_locking = 1;
 359	sctx->csum_path.search_commit_root = 1;
 360	sctx->csum_path.skip_locking = 1;
 361	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
 362		int ret;
 363
 364		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
 365		if (ret < 0)
 366			goto nomem;
 367		sctx->stripes[i].sctx = sctx;
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369	sctx->first_free = 0;
 
 
 370	atomic_set(&sctx->cancel_req, 0);
 
 
 371
 
 372	spin_lock_init(&sctx->stat_lock);
 373	sctx->throttle_deadline = 0;
 374
 
 375	mutex_init(&sctx->wr_lock);
 
 376	if (is_dev_replace) {
 377		WARN_ON(!fs_info->dev_replace.tgtdev);
 
 378		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 
 379	}
 380
 381	return sctx;
 382
 383nomem:
 384	scrub_free_ctx(sctx);
 385	return ERR_PTR(-ENOMEM);
 386}
 387
 388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 389				     u64 root, void *warn_ctx)
 390{
 
 391	u32 nlink;
 392	int ret;
 393	int i;
 394	unsigned nofs_flag;
 395	struct extent_buffer *eb;
 396	struct btrfs_inode_item *inode_item;
 397	struct scrub_warning *swarn = warn_ctx;
 398	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 399	struct inode_fs_paths *ipath = NULL;
 400	struct btrfs_root *local_root;
 
 401	struct btrfs_key key;
 402
 403	local_root = btrfs_get_fs_root(fs_info, root, true);
 
 
 
 404	if (IS_ERR(local_root)) {
 405		ret = PTR_ERR(local_root);
 406		goto err;
 407	}
 408
 409	/*
 410	 * this makes the path point to (inum INODE_ITEM ioff)
 411	 */
 412	key.objectid = inum;
 413	key.type = BTRFS_INODE_ITEM_KEY;
 414	key.offset = 0;
 415
 416	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 417	if (ret) {
 418		btrfs_put_root(local_root);
 419		btrfs_release_path(swarn->path);
 420		goto err;
 421	}
 422
 423	eb = swarn->path->nodes[0];
 424	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 425					struct btrfs_inode_item);
 
 426	nlink = btrfs_inode_nlink(eb, inode_item);
 427	btrfs_release_path(swarn->path);
 428
 429	/*
 430	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 431	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 432	 * not seem to be strictly necessary.
 433	 */
 434	nofs_flag = memalloc_nofs_save();
 435	ipath = init_ipath(4096, local_root, swarn->path);
 436	memalloc_nofs_restore(nofs_flag);
 437	if (IS_ERR(ipath)) {
 438		btrfs_put_root(local_root);
 439		ret = PTR_ERR(ipath);
 440		ipath = NULL;
 441		goto err;
 442	}
 443	ret = paths_from_inode(inum, ipath);
 444
 445	if (ret < 0)
 446		goto err;
 447
 448	/*
 449	 * we deliberately ignore the bit ipath might have been too small to
 450	 * hold all of the paths here
 451	 */
 452	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 453		btrfs_warn_in_rcu(fs_info,
 454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 455				  swarn->errstr, swarn->logical,
 456				  btrfs_dev_name(swarn->dev),
 457				  swarn->physical,
 458				  root, inum, offset,
 459				  fs_info->sectorsize, nlink,
 460				  (char *)(unsigned long)ipath->fspath->val[i]);
 461
 462	btrfs_put_root(local_root);
 463	free_ipath(ipath);
 464	return 0;
 465
 466err:
 467	btrfs_warn_in_rcu(fs_info,
 468			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 469			  swarn->errstr, swarn->logical,
 470			  btrfs_dev_name(swarn->dev),
 471			  swarn->physical,
 472			  root, inum, offset, ret);
 473
 474	free_ipath(ipath);
 475	return 0;
 476}
 477
 478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
 479				       bool is_super, u64 logical, u64 physical)
 480{
 481	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 482	struct btrfs_path *path;
 483	struct btrfs_key found_key;
 484	struct extent_buffer *eb;
 485	struct btrfs_extent_item *ei;
 486	struct scrub_warning swarn;
 
 
 487	u64 flags = 0;
 
 488	u32 item_size;
 
 489	int ret;
 490
 491	/* Super block error, no need to search extent tree. */
 492	if (is_super) {
 493		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 494				  errstr, btrfs_dev_name(dev), physical);
 495		return;
 496	}
 497	path = btrfs_alloc_path();
 498	if (!path)
 499		return;
 500
 501	swarn.physical = physical;
 502	swarn.logical = logical;
 503	swarn.errstr = errstr;
 504	swarn.dev = NULL;
 505
 506	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 507				  &flags);
 508	if (ret < 0)
 509		goto out;
 510
 
 511	swarn.extent_item_size = found_key.offset;
 512
 513	eb = path->nodes[0];
 514	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 515	item_size = btrfs_item_size(eb, path->slots[0]);
 516
 517	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 518		unsigned long ptr = 0;
 519		u8 ref_level;
 520		u64 ref_root;
 521
 522		while (true) {
 523			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 524						      item_size, &ref_root,
 525						      &ref_level);
 526			if (ret < 0) {
 527				btrfs_warn(fs_info,
 528				"failed to resolve tree backref for logical %llu: %d",
 529						  swarn.logical, ret);
 530				break;
 531			}
 532			if (ret > 0)
 533				break;
 534			btrfs_warn_in_rcu(fs_info,
 535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 536				errstr, swarn.logical, btrfs_dev_name(dev),
 537				swarn.physical, (ref_level ? "node" : "leaf"),
 538				ref_level, ref_root);
 539		}
 
 
 
 540		btrfs_release_path(path);
 541	} else {
 542		struct btrfs_backref_walk_ctx ctx = { 0 };
 543
 544		btrfs_release_path(path);
 545
 546		ctx.bytenr = found_key.objectid;
 547		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 548		ctx.fs_info = fs_info;
 549
 550		swarn.path = path;
 551		swarn.dev = dev;
 552
 553		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 
 554	}
 555
 556out:
 557	btrfs_free_path(path);
 558}
 559
 560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 561{
 562	int ret = 0;
 563	u64 length;
 
 
 
 
 
 
 
 
 
 564
 565	if (!btrfs_is_zoned(sctx->fs_info))
 566		return 0;
 
 567
 568	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 569		return 0;
 570
 571	if (sctx->write_pointer < physical) {
 572		length = physical - sctx->write_pointer;
 
 
 
 573
 574		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 575						sctx->write_pointer, length);
 576		if (!ret)
 577			sctx->write_pointer = physical;
 
 
 
 
 
 
 
 
 
 
 578	}
 579	return ret;
 580}
 581
 582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
 583{
 584	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 585	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586
 587	return stripe->pages[page_index];
 588}
 
 
 
 
 
 
 
 
 
 589
 590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
 591						 int sector_nr)
 592{
 593	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 594
 595	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
 596}
 597
 598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
 599{
 600	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 601	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 602	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
 603	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
 604	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
 605	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 606	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 607	u8 calculated_csum[BTRFS_CSUM_SIZE];
 608	struct btrfs_header *header;
 609
 610	/*
 611	 * Here we don't have a good way to attach the pages (and subpages)
 612	 * to a dummy extent buffer, thus we have to directly grab the members
 613	 * from pages.
 614	 */
 615	header = (struct btrfs_header *)(page_address(first_page) + first_off);
 616	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
 617
 618	if (logical != btrfs_stack_header_bytenr(header)) {
 619		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 620		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 621		btrfs_warn_rl(fs_info,
 622		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
 623			      logical, stripe->mirror_num,
 624			      btrfs_stack_header_bytenr(header), logical);
 625		return;
 626	}
 627	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
 628		   BTRFS_FSID_SIZE) != 0) {
 629		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 630		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 631		btrfs_warn_rl(fs_info,
 632		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
 633			      logical, stripe->mirror_num,
 634			      header->fsid, fs_info->fs_devices->fsid);
 635		return;
 636	}
 637	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 638		   BTRFS_UUID_SIZE) != 0) {
 639		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 640		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 641		btrfs_warn_rl(fs_info,
 642		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
 643			      logical, stripe->mirror_num,
 644			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
 645		return;
 646	}
 647
 648	/* Now check tree block csum. */
 649	shash->tfm = fs_info->csum_shash;
 650	crypto_shash_init(shash);
 651	crypto_shash_update(shash, page_address(first_page) + first_off +
 652			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
 653
 654	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
 655		struct page *page = scrub_stripe_get_page(stripe, i);
 656		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
 657
 658		crypto_shash_update(shash, page_address(page) + page_off,
 659				    fs_info->sectorsize);
 660	}
 661
 662	crypto_shash_final(shash, calculated_csum);
 663	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
 664		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 665		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 666		btrfs_warn_rl(fs_info,
 667		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
 668			      logical, stripe->mirror_num,
 669			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
 670			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
 671		return;
 672	}
 673	if (stripe->sectors[sector_nr].generation !=
 674	    btrfs_stack_header_generation(header)) {
 675		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 676		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 677		btrfs_warn_rl(fs_info,
 678		"tree block %llu mirror %u has bad generation, has %llu want %llu",
 679			      logical, stripe->mirror_num,
 680			      btrfs_stack_header_generation(header),
 681			      stripe->sectors[sector_nr].generation);
 682		return;
 683	}
 684	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 685	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 686	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 687}
 688
 689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
 690{
 691	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 692	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
 693	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 694	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 695	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 696	u8 csum_buf[BTRFS_CSUM_SIZE];
 697	int ret;
 
 
 
 
 
 698
 699	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
 700
 701	/* Sector not utilized, skip it. */
 702	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
 703		return;
 704
 705	/* IO error, no need to check. */
 706	if (test_bit(sector_nr, &stripe->io_error_bitmap))
 707		return;
 
 
 
 
 
 708
 709	/* Metadata, verify the full tree block. */
 710	if (sector->is_metadata) {
 711		/*
 712		 * Check if the tree block crosses the stripe boundary.  If
 713		 * crossed the boundary, we cannot verify it but only give a
 714		 * warning.
 715		 *
 716		 * This can only happen on a very old filesystem where chunks
 717		 * are not ensured to be stripe aligned.
 718		 */
 719		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
 720			btrfs_warn_rl(fs_info,
 721			"tree block at %llu crosses stripe boundary %llu",
 722				      stripe->logical +
 723				      (sector_nr << fs_info->sectorsize_bits),
 724				      stripe->logical);
 725			return;
 726		}
 727		scrub_verify_one_metadata(stripe, sector_nr);
 728		return;
 729	}
 730
 731	/*
 732	 * Data is easier, we just verify the data csum (if we have it).  For
 733	 * cases without csum, we have no other choice but to trust it.
 
 
 
 
 
 734	 */
 735	if (!sector->csum) {
 736		clear_bit(sector_nr, &stripe->error_bitmap);
 737		return;
 738	}
 739
 740	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
 741	if (ret < 0) {
 742		set_bit(sector_nr, &stripe->csum_error_bitmap);
 743		set_bit(sector_nr, &stripe->error_bitmap);
 744	} else {
 745		clear_bit(sector_nr, &stripe->csum_error_bitmap);
 746		clear_bit(sector_nr, &stripe->error_bitmap);
 747	}
 748}
 749
 750/* Verify specified sectors of a stripe. */
 751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
 752{
 753	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 754	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 755	int sector_nr;
 756
 757	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
 758		scrub_verify_one_sector(stripe, sector_nr);
 759		if (stripe->sectors[sector_nr].is_metadata)
 760			sector_nr += sectors_per_tree - 1;
 
 
 
 
 
 
 
 
 761	}
 
 
 
 
 
 762}
 763
 764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
 765{
 766	int i;
 
 767
 768	for (i = 0; i < stripe->nr_sectors; i++) {
 769		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
 770		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
 771			break;
 
 
 
 772	}
 773	ASSERT(i < stripe->nr_sectors);
 774	return i;
 775}
 776
 777/*
 778 * Repair read is different to the regular read:
 779 *
 780 * - Only reads the failed sectors
 781 * - May have extra blocksize limits
 
 
 782 */
 783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
 784{
 785	struct scrub_stripe *stripe = bbio->private;
 786	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 787	struct bio_vec *bvec;
 788	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 789	u32 bio_size = 0;
 790	int i;
 791
 792	ASSERT(sector_nr < stripe->nr_sectors);
 
 
 
 
 
 
 
 
 793
 794	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 795		bio_size += bvec->bv_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796
 797	if (bbio->bio.bi_status) {
 798		bitmap_set(&stripe->io_error_bitmap, sector_nr,
 799			   bio_size >> fs_info->sectorsize_bits);
 800		bitmap_set(&stripe->error_bitmap, sector_nr,
 801			   bio_size >> fs_info->sectorsize_bits);
 802	} else {
 803		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
 804			     bio_size >> fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
 805	}
 806	bio_put(&bbio->bio);
 807	if (atomic_dec_and_test(&stripe->pending_io))
 808		wake_up(&stripe->io_wait);
 809}
 810
 811static int calc_next_mirror(int mirror, int num_copies)
 812{
 813	ASSERT(mirror <= num_copies);
 814	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
 815}
 816
 817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
 818					    int mirror, int blocksize, bool wait)
 819{
 820	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 821	struct btrfs_bio *bbio = NULL;
 822	const unsigned long old_error_bitmap = stripe->error_bitmap;
 823	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	ASSERT(stripe->mirror_num >= 1);
 826	ASSERT(atomic_read(&stripe->pending_io) == 0);
 
 
 
 
 
 
 
 
 
 827
 828	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
 829		struct page *page;
 830		int pgoff;
 831		int ret;
 
 
 
 
 
 
 
 
 832
 833		page = scrub_stripe_get_page(stripe, i);
 834		pgoff = scrub_stripe_get_page_offset(stripe, i);
 835
 836		/* The current sector cannot be merged, submit the bio. */
 837		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
 838			     bbio->bio.bi_iter.bi_size >= blocksize)) {
 839			ASSERT(bbio->bio.bi_iter.bi_size);
 840			atomic_inc(&stripe->pending_io);
 841			btrfs_submit_bio(bbio, mirror);
 842			if (wait)
 843				wait_scrub_stripe_io(stripe);
 844			bbio = NULL;
 845		}
 
 
 
 
 846
 847		if (!bbio) {
 848			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 849				fs_info, scrub_repair_read_endio, stripe);
 850			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 851				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
 852		}
 853
 854		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 855		ASSERT(ret == fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	}
 857	if (bbio) {
 858		ASSERT(bbio->bio.bi_iter.bi_size);
 859		atomic_inc(&stripe->pending_io);
 860		btrfs_submit_bio(bbio, mirror);
 861		if (wait)
 862			wait_scrub_stripe_io(stripe);
 863	}
 864}
 865
 866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
 867				       struct scrub_stripe *stripe)
 868{
 869	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 870				      DEFAULT_RATELIMIT_BURST);
 871	struct btrfs_fs_info *fs_info = sctx->fs_info;
 872	struct btrfs_device *dev = NULL;
 873	u64 physical = 0;
 874	int nr_data_sectors = 0;
 875	int nr_meta_sectors = 0;
 876	int nr_nodatacsum_sectors = 0;
 877	int nr_repaired_sectors = 0;
 878	int sector_nr;
 879
 880	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
 881		return;
 882
 883	/*
 884	 * Init needed infos for error reporting.
 885	 *
 886	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
 887	 * thus no need for dev/physical, error reporting still needs dev and physical.
 888	 */
 889	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
 890		u64 mapped_len = fs_info->sectorsize;
 891		struct btrfs_io_context *bioc = NULL;
 892		int stripe_index = stripe->mirror_num - 1;
 893		int ret;
 894
 895		/* For scrub, our mirror_num should always start at 1. */
 896		ASSERT(stripe->mirror_num >= 1);
 897		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 898				      stripe->logical, &mapped_len, &bioc,
 899				      NULL, NULL);
 900		/*
 901		 * If we failed, dev will be NULL, and later detailed reports
 902		 * will just be skipped.
 
 
 
 903		 */
 904		if (ret < 0)
 905			goto skip;
 906		physical = bioc->stripes[stripe_index].physical;
 907		dev = bioc->stripes[stripe_index].dev;
 908		btrfs_put_bioc(bioc);
 
 
 
 
 
 
 
 
 
 909	}
 910
 911skip:
 912	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 913		bool repaired = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914
 915		if (stripe->sectors[sector_nr].is_metadata) {
 916			nr_meta_sectors++;
 917		} else {
 918			nr_data_sectors++;
 919			if (!stripe->sectors[sector_nr].csum)
 920				nr_nodatacsum_sectors++;
 
 
 
 
 
 
 
 
 
 921		}
 922
 923		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
 924		    !test_bit(sector_nr, &stripe->error_bitmap)) {
 925			nr_repaired_sectors++;
 926			repaired = true;
 
 
 
 
 
 
 
 
 
 
 
 927		}
 
 928
 929		/* Good sector from the beginning, nothing need to be done. */
 930		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931			continue;
 932
 933		/*
 934		 * Report error for the corrupted sectors.  If repaired, just
 935		 * output the message of repaired message.
 936		 */
 937		if (repaired) {
 938			if (dev) {
 939				btrfs_err_rl_in_rcu(fs_info,
 940			"fixed up error at logical %llu on dev %s physical %llu",
 941					    stripe->logical, btrfs_dev_name(dev),
 942					    physical);
 943			} else {
 944				btrfs_err_rl_in_rcu(fs_info,
 945			"fixed up error at logical %llu on mirror %u",
 946					    stripe->logical, stripe->mirror_num);
 
 
 
 
 
 
 
 947			}
 948			continue;
 
 949		}
 950
 951		/* The remaining are all for unrepaired. */
 952		if (dev) {
 953			btrfs_err_rl_in_rcu(fs_info,
 954	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
 955					    stripe->logical, btrfs_dev_name(dev),
 956					    physical);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957		} else {
 
 
 
 
 
 958			btrfs_err_rl_in_rcu(fs_info,
 959	"unable to fixup (regular) error at logical %llu on mirror %u",
 960					    stripe->logical, stripe->mirror_num);
 961		}
 
 
 
 
 
 
 
 
 
 962
 963		if (test_bit(sector_nr, &stripe->io_error_bitmap))
 964			if (__ratelimit(&rs) && dev)
 965				scrub_print_common_warning("i/o error", dev, false,
 966						     stripe->logical, physical);
 967		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
 968			if (__ratelimit(&rs) && dev)
 969				scrub_print_common_warning("checksum error", dev, false,
 970						     stripe->logical, physical);
 971		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
 972			if (__ratelimit(&rs) && dev)
 973				scrub_print_common_warning("header error", dev, false,
 974						     stripe->logical, physical);
 
 
 
 
 
 
 
 
 
 
 975	}
 976
 977	spin_lock(&sctx->stat_lock);
 978	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
 979	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
 980	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
 981	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
 982	sctx->stat.no_csum += nr_nodatacsum_sectors;
 983	sctx->stat.read_errors += stripe->init_nr_io_errors;
 984	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
 985	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
 986	sctx->stat.uncorrectable_errors +=
 987		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
 988	sctx->stat.corrected_errors += nr_repaired_sectors;
 989	spin_unlock(&sctx->stat_lock);
 990}
 991
 992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 993				unsigned long write_bitmap, bool dev_replace);
 
 
 
 
 
 
 
 994
 995/*
 996 * The main entrance for all read related scrub work, including:
 997 *
 998 * - Wait for the initial read to finish
 999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 *   possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009{
1010	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011	struct scrub_ctx *sctx = stripe->sctx;
1012	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014					  stripe->bg->length);
1015	int mirror;
1016	int i;
1017
1018	ASSERT(stripe->mirror_num > 0);
1019
1020	wait_scrub_stripe_io(stripe);
1021	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022	/* Save the initial failed bitmap for later repair and report usage. */
1023	stripe->init_error_bitmap = stripe->error_bitmap;
1024	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025						  stripe->nr_sectors);
1026	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027						    stripe->nr_sectors);
1028	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029						    stripe->nr_sectors);
1030
1031	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032		goto out;
 
 
1033
1034	/*
1035	 * Try all remaining mirrors.
1036	 *
1037	 * Here we still try to read as large block as possible, as this is
1038	 * faster and we have extra safety nets to rely on.
1039	 */
1040	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041	     mirror != stripe->mirror_num;
1042	     mirror = calc_next_mirror(mirror, num_copies)) {
1043		const unsigned long old_error_bitmap = stripe->error_bitmap;
1044
1045		scrub_stripe_submit_repair_read(stripe, mirror,
1046						BTRFS_STRIPE_LEN, false);
1047		wait_scrub_stripe_io(stripe);
1048		scrub_verify_one_stripe(stripe, old_error_bitmap);
1049		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050			goto out;
1051	}
 
1052
1053	/*
1054	 * Last safety net, try re-checking all mirrors, including the failed
1055	 * one, sector-by-sector.
1056	 *
1057	 * As if one sector failed the drive's internal csum, the whole read
1058	 * containing the offending sector would be marked as error.
1059	 * Thus here we do sector-by-sector read.
1060	 *
1061	 * This can be slow, thus we only try it as the last resort.
1062	 */
 
 
 
 
 
 
 
 
 
 
1063
1064	for (i = 0, mirror = stripe->mirror_num;
1065	     i < num_copies;
1066	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067		const unsigned long old_error_bitmap = stripe->error_bitmap;
1068
1069		scrub_stripe_submit_repair_read(stripe, mirror,
1070						fs_info->sectorsize, true);
1071		wait_scrub_stripe_io(stripe);
1072		scrub_verify_one_stripe(stripe, old_error_bitmap);
1073		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074			goto out;
1075	}
1076out:
1077	/*
1078	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1079	 * in-place, but queue the bg to be relocated.
 
1080	 */
1081	if (btrfs_is_zoned(fs_info)) {
1082		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084	} else if (!sctx->readonly) {
1085		unsigned long repaired;
1086
1087		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088			      &stripe->error_bitmap, stripe->nr_sectors);
1089		scrub_write_sectors(sctx, stripe, repaired, false);
1090		wait_scrub_stripe_io(stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091	}
1092
1093	scrub_stripe_report_errors(sctx, stripe);
1094	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095	wake_up(&stripe->repair_wait);
1096}
1097
1098static void scrub_read_endio(struct btrfs_bio *bbio)
1099{
1100	struct scrub_stripe *stripe = bbio->private;
1101	struct bio_vec *bvec;
1102	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103	int num_sectors;
1104	u32 bio_size = 0;
1105	int i;
1106
1107	ASSERT(sector_nr < stripe->nr_sectors);
1108	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109		bio_size += bvec->bv_len;
1110	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112	if (bbio->bio.bi_status) {
1113		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115	} else {
1116		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117	}
1118	bio_put(&bbio->bio);
1119	if (atomic_dec_and_test(&stripe->pending_io)) {
1120		wake_up(&stripe->io_wait);
1121		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123	}
 
 
 
 
1124}
1125
1126static void scrub_write_endio(struct btrfs_bio *bbio)
 
1127{
1128	struct scrub_stripe *stripe = bbio->private;
1129	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130	struct bio_vec *bvec;
1131	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132	u32 bio_size = 0;
1133	int i;
1134
1135	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136		bio_size += bvec->bv_len;
 
 
 
 
 
1137
1138	if (bbio->bio.bi_status) {
1139		unsigned long flags;
1140
1141		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143			   bio_size >> fs_info->sectorsize_bits);
1144		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145	}
1146	bio_put(&bbio->bio);
1147
1148	if (atomic_dec_and_test(&stripe->pending_io))
1149		wake_up(&stripe->io_wait);
1150}
 
1151
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153				   struct scrub_stripe *stripe,
1154				   struct btrfs_bio *bbio, bool dev_replace)
1155{
1156	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159		      stripe->logical;
1160
1161	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162	atomic_inc(&stripe->pending_io);
1163	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164	if (!btrfs_is_zoned(fs_info))
1165		return;
1166	/*
1167	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168	 * the write to finish before the next write.
1169	 */
1170	wait_scrub_stripe_io(stripe);
1171
1172	/*
1173	 * And also need to update the write pointer if write finished
1174	 * successfully.
1175	 */
1176	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177		      &stripe->write_error_bitmap))
1178		sctx->write_pointer += bio_len;
 
1179}
1180
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 *   Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 *   Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195				unsigned long write_bitmap, bool dev_replace)
 
1196{
1197	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198	struct btrfs_bio *bbio = NULL;
1199	int sector_nr;
1200
1201	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204		int ret;
1205
1206		/* We should only writeback sectors covered by an extent. */
1207		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
 
1208
1209		/* Cannot merge with previous sector, submit the current one. */
1210		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212			bbio = NULL;
 
 
 
 
1213		}
1214		if (!bbio) {
1215			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216					       fs_info, scrub_write_endio, stripe);
1217			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218				(sector_nr << fs_info->sectorsize_bits)) >>
1219				SECTOR_SHIFT;
 
 
 
 
 
 
1220		}
1221		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222		ASSERT(ret == fs_info->sectorsize);
1223	}
1224	if (bbio)
1225		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
 
1226}
1227
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233				  unsigned int bio_size)
1234{
1235	const int time_slice = 1000;
1236	s64 delta;
1237	ktime_t now;
1238	u32 div;
1239	u64 bwlimit;
1240
1241	bwlimit = READ_ONCE(device->scrub_speed_max);
1242	if (bwlimit == 0)
1243		return;
1244
1245	/*
1246	 * Slice is divided into intervals when the IO is submitted, adjust by
1247	 * bwlimit and maximum of 64 intervals.
1248	 */
1249	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250	div = min_t(u32, 64, div);
1251
1252	/* Start new epoch, set deadline */
1253	now = ktime_get();
1254	if (sctx->throttle_deadline == 0) {
1255		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256		sctx->throttle_sent = 0;
1257	}
1258
1259	/* Still in the time to send? */
1260	if (ktime_before(now, sctx->throttle_deadline)) {
1261		/* If current bio is within the limit, send it */
1262		sctx->throttle_sent += bio_size;
1263		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264			return;
1265
1266		/* We're over the limit, sleep until the rest of the slice */
1267		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268	} else {
1269		/* New request after deadline, start new epoch */
1270		delta = 0;
1271	}
1272
1273	if (delta) {
1274		long timeout;
1275
1276		timeout = div_u64(delta * HZ, 1000);
1277		schedule_timeout_interruptible(timeout);
 
 
 
1278	}
1279
1280	/* Next call will start the deadline period */
1281	sctx->throttle_deadline = 0;
1282}
1283
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
1292				   struct btrfs_chunk_map *map, u64 *offset,
1293				   u64 *stripe_start)
1294{
1295	int i;
1296	int j = 0;
1297	u64 last_offset;
1298	const int data_stripes = nr_data_stripes(map);
1299
1300	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301	if (stripe_start)
1302		*stripe_start = last_offset;
 
 
1303
1304	*offset = last_offset;
1305	for (i = 0; i < data_stripes; i++) {
1306		u32 stripe_nr;
1307		u32 stripe_index;
1308		u32 rot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
 
1311
1312		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
 
 
 
1313
1314		/* Work out the disk rotation on this stripe-set */
1315		rot = stripe_nr % map->num_stripes;
1316		/* calculate which stripe this data locates */
1317		rot += i;
1318		stripe_index = rot % map->num_stripes;
1319		if (stripe_index == num)
1320			return 0;
1321		if (stripe_index < num)
1322			j++;
 
 
 
 
 
1323	}
1324	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325	return 1;
1326}
1327
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334				     u64 search_start, u64 search_len)
1335{
1336	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337	u64 len;
1338	struct btrfs_key key;
1339
1340	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342	       key.type == BTRFS_METADATA_ITEM_KEY);
1343	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344		len = fs_info->nodesize;
1345	else
1346		len = key.offset;
1347
1348	if (key.objectid + len <= search_start)
1349		return -1;
1350	if (key.objectid >= search_start + search_len)
1351		return 1;
1352	return 0;
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372				  struct btrfs_path *path,
1373				  u64 search_start, u64 search_len)
1374{
1375	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376	struct btrfs_key key;
1377	int ret;
1378
1379	/* Continue using the existing path */
1380	if (path->nodes[0])
1381		goto search_forward;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382
1383	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384		key.type = BTRFS_METADATA_ITEM_KEY;
1385	else
1386		key.type = BTRFS_EXTENT_ITEM_KEY;
1387	key.objectid = search_start;
1388	key.offset = (u64)-1;
1389
1390	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391	if (ret < 0)
1392		return ret;
1393
1394	ASSERT(ret > 0);
1395	/*
1396	 * Here we intentionally pass 0 as @min_objectid, as there could be
1397	 * an extent item starting before @search_start.
1398	 */
1399	ret = btrfs_previous_extent_item(extent_root, path, 0);
1400	if (ret < 0)
1401		return ret;
1402	/*
1403	 * No matter whether we have found an extent item, the next loop will
1404	 * properly do every check on the key.
1405	 */
1406search_forward:
1407	while (true) {
1408		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1409		if (key.objectid >= search_start + search_len)
1410			break;
1411		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1412		    key.type != BTRFS_EXTENT_ITEM_KEY)
1413			goto next;
1414
1415		ret = compare_extent_item_range(path, search_start, search_len);
1416		if (ret == 0)
1417			return ret;
1418		if (ret > 0)
1419			break;
1420next:
1421		ret = btrfs_next_item(extent_root, path);
1422		if (ret) {
1423			/* Either no more items or a fatal error. */
1424			btrfs_release_path(path);
1425			return ret;
1426		}
1427	}
1428	btrfs_release_path(path);
1429	return 1;
1430}
1431
1432static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1433			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1434{
1435	struct btrfs_key key;
1436	struct btrfs_extent_item *ei;
1437
1438	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1439	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1440	       key.type == BTRFS_EXTENT_ITEM_KEY);
1441	*extent_start_ret = key.objectid;
1442	if (key.type == BTRFS_METADATA_ITEM_KEY)
1443		*size_ret = path->nodes[0]->fs_info->nodesize;
1444	else
1445		*size_ret = key.offset;
1446	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1447	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1448	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1449}
1450
1451static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1452					u64 physical, u64 physical_end)
1453{
1454	struct btrfs_fs_info *fs_info = sctx->fs_info;
1455	int ret = 0;
1456
1457	if (!btrfs_is_zoned(fs_info))
1458		return 0;
1459
1460	mutex_lock(&sctx->wr_lock);
1461	if (sctx->write_pointer < physical_end) {
1462		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1463						    physical,
1464						    sctx->write_pointer);
1465		if (ret)
1466			btrfs_err(fs_info,
1467				  "zoned: failed to recover write pointer");
1468	}
1469	mutex_unlock(&sctx->wr_lock);
1470	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1471
1472	return ret;
1473}
1474
1475static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1476				 struct scrub_stripe *stripe,
1477				 u64 extent_start, u64 extent_len,
1478				 u64 extent_flags, u64 extent_gen)
1479{
1480	for (u64 cur_logical = max(stripe->logical, extent_start);
1481	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1482			       extent_start + extent_len);
1483	     cur_logical += fs_info->sectorsize) {
1484		const int nr_sector = (cur_logical - stripe->logical) >>
1485				      fs_info->sectorsize_bits;
1486		struct scrub_sector_verification *sector =
1487						&stripe->sectors[nr_sector];
1488
1489		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1490		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1491			sector->is_metadata = true;
1492			sector->generation = extent_gen;
1493		}
1494	}
1495}
1496
1497static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1498{
1499	stripe->extent_sector_bitmap = 0;
1500	stripe->init_error_bitmap = 0;
1501	stripe->init_nr_io_errors = 0;
1502	stripe->init_nr_csum_errors = 0;
1503	stripe->init_nr_meta_errors = 0;
1504	stripe->error_bitmap = 0;
1505	stripe->io_error_bitmap = 0;
1506	stripe->csum_error_bitmap = 0;
1507	stripe->meta_error_bitmap = 0;
1508}
1509
1510/*
1511 * Locate one stripe which has at least one extent in its range.
1512 *
1513 * Return 0 if found such stripe, and store its info into @stripe.
1514 * Return >0 if there is no such stripe in the specified range.
1515 * Return <0 for error.
1516 */
1517static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1518					struct btrfs_path *extent_path,
1519					struct btrfs_path *csum_path,
1520					struct btrfs_device *dev, u64 physical,
1521					int mirror_num, u64 logical_start,
1522					u32 logical_len,
1523					struct scrub_stripe *stripe)
1524{
1525	struct btrfs_fs_info *fs_info = bg->fs_info;
1526	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1527	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1528	const u64 logical_end = logical_start + logical_len;
1529	u64 cur_logical = logical_start;
1530	u64 stripe_end;
1531	u64 extent_start;
1532	u64 extent_len;
1533	u64 extent_flags;
1534	u64 extent_gen;
1535	int ret;
1536
1537	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1538				   stripe->nr_sectors);
1539	scrub_stripe_reset_bitmaps(stripe);
1540
1541	/* The range must be inside the bg. */
1542	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1543
1544	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1545				     logical_len);
1546	/* Either error or not found. */
1547	if (ret)
1548		goto out;
1549	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1550			&extent_gen);
1551	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1552		stripe->nr_meta_extents++;
1553	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1554		stripe->nr_data_extents++;
1555	cur_logical = max(extent_start, cur_logical);
1556
1557	/*
1558	 * Round down to stripe boundary.
 
 
1559	 *
1560	 * The extra calculation against bg->start is to handle block groups
1561	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1562	 */
1563	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1564			  bg->start;
1565	stripe->physical = physical + stripe->logical - logical_start;
1566	stripe->dev = dev;
1567	stripe->bg = bg;
1568	stripe->mirror_num = mirror_num;
1569	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1570
1571	/* Fill the first extent info into stripe->sectors[] array. */
1572	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1573			     extent_flags, extent_gen);
1574	cur_logical = extent_start + extent_len;
1575
1576	/* Fill the extent info for the remaining sectors. */
1577	while (cur_logical <= stripe_end) {
1578		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1579					     stripe_end - cur_logical + 1);
1580		if (ret < 0)
1581			goto out;
1582		if (ret > 0) {
1583			ret = 0;
1584			break;
1585		}
1586		get_extent_info(extent_path, &extent_start, &extent_len,
1587				&extent_flags, &extent_gen);
1588		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1589			stripe->nr_meta_extents++;
1590		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1591			stripe->nr_data_extents++;
1592		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1593				     extent_flags, extent_gen);
1594		cur_logical = extent_start + extent_len;
1595	}
1596
1597	/* Now fill the data csum. */
1598	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1599		int sector_nr;
1600		unsigned long csum_bitmap = 0;
1601
1602		/* Csum space should have already been allocated. */
1603		ASSERT(stripe->csums);
1604
1605		/*
1606		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1607		 * should contain at most 16 sectors.
1608		 */
1609		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1610
1611		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1612						stripe->logical, stripe_end,
1613						stripe->csums, &csum_bitmap);
1614		if (ret < 0)
1615			goto out;
1616		if (ret > 0)
1617			ret = 0;
1618
1619		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1620			stripe->sectors[sector_nr].csum = stripe->csums +
1621				sector_nr * fs_info->csum_size;
1622		}
1623	}
1624	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1625out:
1626	return ret;
1627}
1628
1629static void scrub_reset_stripe(struct scrub_stripe *stripe)
1630{
1631	scrub_stripe_reset_bitmaps(stripe);
 
 
 
 
 
 
 
1632
1633	stripe->nr_meta_extents = 0;
1634	stripe->nr_data_extents = 0;
1635	stripe->state = 0;
1636
1637	for (int i = 0; i < stripe->nr_sectors; i++) {
1638		stripe->sectors[i].is_metadata = false;
1639		stripe->sectors[i].csum = NULL;
1640		stripe->sectors[i].generation = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641	}
 
 
 
 
 
 
1642}
1643
1644static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1645					    struct scrub_stripe *stripe)
1646{
1647	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1648	struct btrfs_bio *bbio = NULL;
1649	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1650				      stripe->bg->length - stripe->logical) >>
1651				  fs_info->sectorsize_bits;
1652	u64 stripe_len = BTRFS_STRIPE_LEN;
1653	int mirror = stripe->mirror_num;
1654	int i;
 
 
 
 
1655
1656	atomic_inc(&stripe->pending_io);
 
 
 
 
1657
1658	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1659		struct page *page = scrub_stripe_get_page(stripe, i);
1660		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
 
 
 
 
1661
1662		/* We're beyond the chunk boundary, no need to read anymore. */
1663		if (i >= nr_sectors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664			break;
 
 
 
 
 
 
 
 
1665
1666		/* The current sector cannot be merged, submit the bio. */
1667		if (bbio &&
1668		    ((i > 0 &&
1669		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1670		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1671			ASSERT(bbio->bio.bi_iter.bi_size);
1672			atomic_inc(&stripe->pending_io);
1673			btrfs_submit_bio(bbio, mirror);
1674			bbio = NULL;
1675		}
1676
1677		if (!bbio) {
1678			struct btrfs_io_stripe io_stripe = {};
1679			struct btrfs_io_context *bioc = NULL;
1680			const u64 logical = stripe->logical +
1681					    (i << fs_info->sectorsize_bits);
1682			int err;
1683
1684			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1685					       fs_info, scrub_read_endio, stripe);
1686			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1687
1688			io_stripe.is_scrub = true;
1689			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1690					      &stripe_len, &bioc, &io_stripe,
1691					      &mirror);
1692			btrfs_put_bioc(bioc);
1693			if (err) {
1694				btrfs_bio_end_io(bbio,
1695						 errno_to_blk_status(err));
1696				return;
1697			}
1698		}
1699
1700		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701	}
1702
1703	if (bbio) {
1704		ASSERT(bbio->bio.bi_iter.bi_size);
1705		atomic_inc(&stripe->pending_io);
1706		btrfs_submit_bio(bbio, mirror);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707	}
1708
1709	if (atomic_dec_and_test(&stripe->pending_io)) {
1710		wake_up(&stripe->io_wait);
1711		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1712		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713	}
1714}
1715
1716static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1717				      struct scrub_stripe *stripe)
1718{
1719	struct btrfs_fs_info *fs_info = sctx->fs_info;
1720	struct btrfs_bio *bbio;
1721	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1722				      stripe->bg->length - stripe->logical) >>
1723				  fs_info->sectorsize_bits;
1724	int mirror = stripe->mirror_num;
1725
1726	ASSERT(stripe->bg);
1727	ASSERT(stripe->mirror_num > 0);
1728	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1729
1730	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1731		scrub_submit_extent_sector_read(sctx, stripe);
1732		return;
 
 
 
1733	}
 
1734
1735	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1736			       scrub_read_endio, stripe);
 
1737
1738	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1739	/* Read the whole range inside the chunk boundary. */
1740	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1741		struct page *page = scrub_stripe_get_page(stripe, cur);
1742		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1743		int ret;
1744
1745		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1746		/* We should have allocated enough bio vectors. */
1747		ASSERT(ret == fs_info->sectorsize);
1748	}
1749	atomic_inc(&stripe->pending_io);
 
 
 
 
 
 
 
1750
 
1751	/*
1752	 * For dev-replace, either user asks to avoid the source dev, or
1753	 * the device is missing, we try the next mirror instead.
1754	 */
1755	if (sctx->is_dev_replace &&
1756	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1757	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1758	     !stripe->dev->bdev)) {
1759		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1760						  stripe->bg->length);
1761
1762		mirror = calc_next_mirror(mirror, num_copies);
 
 
 
 
1763	}
1764	btrfs_submit_bio(bbio, mirror);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765}
1766
1767static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1768{
1769	int i;
 
1770
1771	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1772		if (stripe->sectors[i].is_metadata) {
1773			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1774
1775			btrfs_err(fs_info,
1776			"stripe %llu has unrepaired metadata sector at %llu",
1777				  stripe->logical,
1778				  stripe->logical + (i << fs_info->sectorsize_bits));
1779			return true;
1780		}
1781	}
1782	return false;
1783}
1784
1785static void submit_initial_group_read(struct scrub_ctx *sctx,
1786				      unsigned int first_slot,
1787				      unsigned int nr_stripes)
1788{
1789	struct blk_plug plug;
 
 
 
 
1790
1791	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1792	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1793
1794	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1795			      btrfs_stripe_nr_to_offset(nr_stripes));
1796	blk_start_plug(&plug);
1797	for (int i = 0; i < nr_stripes; i++) {
1798		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1799
1800		/* Those stripes should be initialized. */
1801		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1802		scrub_submit_initial_read(sctx, stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
1803	}
1804	blk_finish_plug(&plug);
 
 
 
 
 
 
 
 
 
1805}
1806
1807static int flush_scrub_stripes(struct scrub_ctx *sctx)
1808{
 
1809	struct btrfs_fs_info *fs_info = sctx->fs_info;
1810	struct scrub_stripe *stripe;
1811	const int nr_stripes = sctx->cur_stripe;
1812	int ret = 0;
 
 
 
 
1813
1814	if (!nr_stripes)
1815		return 0;
 
 
 
1816
1817	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
 
 
 
 
 
 
 
 
 
1818
1819	/* Submit the stripes which are populated but not submitted. */
1820	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1821		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
 
1822
1823		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
 
 
 
 
 
 
 
1824	}
1825
1826	for (int i = 0; i < nr_stripes; i++) {
1827		stripe = &sctx->stripes[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828
1829		wait_event(stripe->repair_wait,
1830			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831	}
1832
1833	/* Submit for dev-replace. */
1834	if (sctx->is_dev_replace) {
1835		/*
1836		 * For dev-replace, if we know there is something wrong with
1837		 * metadata, we should immediately abort.
1838		 */
1839		for (int i = 0; i < nr_stripes; i++) {
1840			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1841				ret = -EIO;
1842				goto out;
 
 
 
 
 
 
1843			}
1844		}
1845		for (int i = 0; i < nr_stripes; i++) {
1846			unsigned long good;
1847
1848			stripe = &sctx->stripes[i];
 
 
1849
1850			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
 
 
 
1851
1852			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1853				      &stripe->error_bitmap, stripe->nr_sectors);
1854			scrub_write_sectors(sctx, stripe, good, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855		}
1856	}
1857
1858	/* Wait for the above writebacks to finish. */
1859	for (int i = 0; i < nr_stripes; i++) {
1860		stripe = &sctx->stripes[i];
 
1861
1862		wait_scrub_stripe_io(stripe);
1863		scrub_reset_stripe(stripe);
 
1864	}
1865out:
1866	sctx->cur_stripe = 0;
1867	return ret;
1868}
1869
1870static void raid56_scrub_wait_endio(struct bio *bio)
1871{
1872	complete(bio->bi_private);
 
 
 
 
 
 
 
 
 
 
 
1873}
1874
1875static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1876			      struct btrfs_device *dev, int mirror_num,
1877			      u64 logical, u32 length, u64 physical,
1878			      u64 *found_logical_ret)
1879{
1880	struct scrub_stripe *stripe;
1881	int ret;
1882
1883	/*
1884	 * There should always be one slot left, as caller filling the last
1885	 * slot should flush them all.
1886	 */
1887	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1888
1889	/* @found_logical_ret must be specified. */
1890	ASSERT(found_logical_ret);
 
 
1891
1892	stripe = &sctx->stripes[sctx->cur_stripe];
1893	scrub_reset_stripe(stripe);
1894	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1895					   &sctx->csum_path, dev, physical,
1896					   mirror_num, logical, length, stripe);
1897	/* Either >0 as no more extents or <0 for error. */
1898	if (ret)
1899		return ret;
1900	*found_logical_ret = stripe->logical;
1901	sctx->cur_stripe++;
1902
1903	/* We filled one group, submit it. */
1904	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1905		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1906
1907		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
 
 
1908	}
1909
1910	/* Last slot used, flush them all. */
1911	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1912		return flush_scrub_stripes(sctx);
1913	return 0;
1914}
1915
1916static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1917				      struct btrfs_device *scrub_dev,
1918				      struct btrfs_block_group *bg,
1919				      struct btrfs_chunk_map *map,
1920				      u64 full_stripe_start)
1921{
1922	DECLARE_COMPLETION_ONSTACK(io_done);
1923	struct btrfs_fs_info *fs_info = sctx->fs_info;
1924	struct btrfs_raid_bio *rbio;
1925	struct btrfs_io_context *bioc = NULL;
1926	struct btrfs_path extent_path = { 0 };
1927	struct btrfs_path csum_path = { 0 };
1928	struct bio *bio;
1929	struct scrub_stripe *stripe;
1930	bool all_empty = true;
1931	const int data_stripes = nr_data_stripes(map);
1932	unsigned long extent_bitmap = 0;
1933	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1934	int ret;
1935
1936	ASSERT(sctx->raid56_data_stripes);
 
 
 
 
1937
1938	/*
1939	 * For data stripe search, we cannot re-use the same extent/csum paths,
1940	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1941	 * we have to use our own extent/csum paths.
1942	 */
1943	extent_path.search_commit_root = 1;
1944	extent_path.skip_locking = 1;
1945	csum_path.search_commit_root = 1;
1946	csum_path.skip_locking = 1;
1947
1948	for (int i = 0; i < data_stripes; i++) {
1949		int stripe_index;
1950		int rot;
1951		u64 physical;
1952
1953		stripe = &sctx->raid56_data_stripes[i];
1954		rot = div_u64(full_stripe_start - bg->start,
1955			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1956		stripe_index = (i + rot) % map->num_stripes;
1957		physical = map->stripes[stripe_index].physical +
1958			   btrfs_stripe_nr_to_offset(rot);
1959
1960		scrub_reset_stripe(stripe);
1961		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1962		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1963				map->stripes[stripe_index].dev, physical, 1,
1964				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1965				BTRFS_STRIPE_LEN, stripe);
1966		if (ret < 0)
1967			goto out;
1968		/*
1969		 * No extent in this data stripe, need to manually mark them
1970		 * initialized to make later read submission happy.
 
1971		 */
1972		if (ret > 0) {
1973			stripe->logical = full_stripe_start +
1974					  btrfs_stripe_nr_to_offset(i);
1975			stripe->dev = map->stripes[stripe_index].dev;
1976			stripe->mirror_num = 1;
1977			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1978		}
1979	}
1980
1981	/* Check if all data stripes are empty. */
1982	for (int i = 0; i < data_stripes; i++) {
1983		stripe = &sctx->raid56_data_stripes[i];
1984		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1985			all_empty = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986			break;
1987		}
 
 
 
 
1988	}
1989	if (all_empty) {
1990		ret = 0;
1991		goto out;
 
 
 
 
 
 
 
 
1992	}
 
 
 
 
 
 
 
 
 
 
 
 
1993
1994	for (int i = 0; i < data_stripes; i++) {
1995		stripe = &sctx->raid56_data_stripes[i];
1996		scrub_submit_initial_read(sctx, stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997	}
1998	for (int i = 0; i < data_stripes; i++) {
1999		stripe = &sctx->raid56_data_stripes[i];
2000
2001		wait_event(stripe->repair_wait,
2002			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003	}
2004	/* For now, no zoned support for RAID56. */
2005	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2006
2007	/*
2008	 * Now all data stripes are properly verified. Check if we have any
2009	 * unrepaired, if so abort immediately or we could further corrupt the
2010	 * P/Q stripes.
2011	 *
2012	 * During the loop, also populate extent_bitmap.
2013	 */
2014	for (int i = 0; i < data_stripes; i++) {
2015		unsigned long error;
2016
2017		stripe = &sctx->raid56_data_stripes[i];
 
 
 
 
 
 
2018
2019		/*
2020		 * We should only check the errors where there is an extent.
2021		 * As we may hit an empty data stripe while it's missing.
2022		 */
2023		bitmap_and(&error, &stripe->error_bitmap,
2024			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2025		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2026			btrfs_err(fs_info,
2027"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2028				  full_stripe_start, i, stripe->nr_sectors,
2029				  &error);
2030			ret = -EIO;
2031			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2032		}
2033		bitmap_or(&extent_bitmap, &extent_bitmap,
2034			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
 
 
 
 
 
2035	}
2036
2037	/* Now we can check and regenerate the P/Q stripe. */
2038	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2039	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2040	bio->bi_private = &io_done;
2041	bio->bi_end_io = raid56_scrub_wait_endio;
2042
2043	btrfs_bio_counter_inc_blocked(fs_info);
2044	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2045			      &length, &bioc, NULL, NULL);
2046	if (ret < 0) {
2047		btrfs_put_bioc(bioc);
2048		btrfs_bio_counter_dec(fs_info);
2049		goto out;
2050	}
2051	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2052				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2053	btrfs_put_bioc(bioc);
2054	if (!rbio) {
2055		ret = -ENOMEM;
2056		btrfs_bio_counter_dec(fs_info);
2057		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2058	}
2059	/* Use the recovered stripes as cache to avoid read them from disk again. */
2060	for (int i = 0; i < data_stripes; i++) {
2061		stripe = &sctx->raid56_data_stripes[i];
2062
2063		raid56_parity_cache_data_pages(rbio, stripe->pages,
2064				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
 
 
 
 
 
2065	}
2066	raid56_parity_submit_scrub_rbio(rbio);
2067	wait_for_completion_io(&io_done);
2068	ret = blk_status_to_errno(bio->bi_status);
2069	bio_put(bio);
2070	btrfs_bio_counter_dec(fs_info);
2071
2072	btrfs_release_path(&extent_path);
2073	btrfs_release_path(&csum_path);
2074out:
2075	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076}
2077
2078/*
2079 * Scrub one range which can only has simple mirror based profile.
2080 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2081 *  RAID0/RAID10).
2082 *
2083 * Since we may need to handle a subset of block group, we need @logical_start
2084 * and @logical_length parameter.
2085 */
2086static int scrub_simple_mirror(struct scrub_ctx *sctx,
2087			       struct btrfs_block_group *bg,
2088			       struct btrfs_chunk_map *map,
2089			       u64 logical_start, u64 logical_length,
2090			       struct btrfs_device *device,
2091			       u64 physical, int mirror_num)
2092{
2093	struct btrfs_fs_info *fs_info = sctx->fs_info;
2094	const u64 logical_end = logical_start + logical_length;
2095	u64 cur_logical = logical_start;
2096	int ret;
 
 
2097
2098	/* The range must be inside the bg */
2099	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
 
 
2100
2101	/* Go through each extent items inside the logical range */
2102	while (cur_logical < logical_end) {
2103		u64 found_logical = U64_MAX;
2104		u64 cur_physical = physical + cur_logical - logical_start;
2105
2106		/* Canceled? */
2107		if (atomic_read(&fs_info->scrub_cancel_req) ||
2108		    atomic_read(&sctx->cancel_req)) {
2109			ret = -ECANCELED;
2110			break;
2111		}
2112		/* Paused? */
2113		if (atomic_read(&fs_info->scrub_pause_req)) {
2114			/* Push queued extents */
2115			scrub_blocked_if_needed(fs_info);
2116		}
2117		/* Block group removed? */
2118		spin_lock(&bg->lock);
2119		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2120			spin_unlock(&bg->lock);
2121			ret = 0;
2122			break;
2123		}
2124		spin_unlock(&bg->lock);
2125
2126		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2127					 cur_logical, logical_end - cur_logical,
2128					 cur_physical, &found_logical);
2129		if (ret > 0) {
2130			/* No more extent, just update the accounting */
2131			sctx->stat.last_physical = physical + logical_length;
2132			ret = 0;
2133			break;
2134		}
2135		if (ret < 0)
2136			break;
 
 
2137
2138		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2139		ASSERT(found_logical != U64_MAX);
2140		cur_logical = found_logical + BTRFS_STRIPE_LEN;
 
 
2141
2142		/* Don't hold CPU for too long time */
2143		cond_resched();
 
 
 
 
2144	}
2145	return ret;
 
 
 
 
 
 
2146}
2147
2148/* Calculate the full stripe length for simple stripe based profiles */
2149static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2150{
2151	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2152			    BTRFS_BLOCK_GROUP_RAID10));
 
2153
2154	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
 
2155}
2156
2157/* Get the logical bytenr for the stripe */
2158static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2159				     struct btrfs_block_group *bg,
2160				     int stripe_index)
2161{
2162	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2163			    BTRFS_BLOCK_GROUP_RAID10));
2164	ASSERT(stripe_index < map->num_stripes);
2165
2166	/*
2167	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2168	 * skip.
2169	 */
2170	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2171	       bg->start;
 
 
 
2172}
2173
2174/* Get the mirror number for the stripe */
2175static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2176{
2177	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2178			    BTRFS_BLOCK_GROUP_RAID10));
2179	ASSERT(stripe_index < map->num_stripes);
 
 
 
 
 
 
 
 
 
 
2180
2181	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2182	return stripe_index % map->sub_stripes + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2183}
2184
2185static int scrub_simple_stripe(struct scrub_ctx *sctx,
2186			       struct btrfs_block_group *bg,
2187			       struct btrfs_chunk_map *map,
2188			       struct btrfs_device *device,
2189			       int stripe_index)
2190{
2191	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2192	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2193	const u64 orig_physical = map->stripes[stripe_index].physical;
2194	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2195	u64 cur_logical = orig_logical;
2196	u64 cur_physical = orig_physical;
2197	int ret = 0;
2198
2199	while (cur_logical < bg->start + bg->length) {
2200		/*
2201		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2202		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2203		 * this stripe.
2204		 */
2205		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2206					  BTRFS_STRIPE_LEN, device, cur_physical,
2207					  mirror_num);
2208		if (ret)
2209			return ret;
2210		/* Skip to next stripe which belongs to the target device */
2211		cur_logical += logical_increment;
2212		/* For physical offset, we just go to next stripe */
2213		cur_physical += BTRFS_STRIPE_LEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2214	}
2215	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216}
2217
2218static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2219					   struct btrfs_block_group *bg,
2220					   struct btrfs_chunk_map *map,
2221					   struct btrfs_device *scrub_dev,
2222					   int stripe_index)
 
2223{
 
2224	struct btrfs_fs_info *fs_info = sctx->fs_info;
2225	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2226	const u64 chunk_logical = bg->start;
 
 
 
2227	int ret;
2228	int ret2;
2229	u64 physical = map->stripes[stripe_index].physical;
2230	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2231	const u64 physical_end = physical + dev_stripe_len;
2232	u64 logical;
2233	u64 logic_end;
2234	/* The logical increment after finishing one stripe */
2235	u64 increment;
2236	/* Offset inside the chunk */
 
 
 
 
 
2237	u64 offset;
 
 
 
2238	u64 stripe_logical;
 
 
 
2239	int stop_loop = 0;
2240
2241	/* Extent_path should be released by now. */
2242	ASSERT(sctx->extent_path.nodes[0] == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243
2244	scrub_blocked_if_needed(fs_info);
 
 
2245
2246	if (sctx->is_dev_replace &&
2247	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2248		mutex_lock(&sctx->wr_lock);
2249		sctx->write_pointer = physical;
2250		mutex_unlock(&sctx->wr_lock);
2251	}
2252
2253	/* Prepare the extra data stripes used by RAID56. */
2254	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2255		ASSERT(sctx->raid56_data_stripes == NULL);
2256
2257		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2258						    sizeof(struct scrub_stripe),
2259						    GFP_KERNEL);
2260		if (!sctx->raid56_data_stripes) {
2261			ret = -ENOMEM;
2262			goto out;
2263		}
2264		for (int i = 0; i < nr_data_stripes(map); i++) {
2265			ret = init_scrub_stripe(fs_info,
2266						&sctx->raid56_data_stripes[i]);
2267			if (ret < 0)
2268				goto out;
2269			sctx->raid56_data_stripes[i].bg = bg;
2270			sctx->raid56_data_stripes[i].sctx = sctx;
2271		}
2272	}
2273	/*
2274	 * There used to be a big double loop to handle all profiles using the
2275	 * same routine, which grows larger and more gross over time.
2276	 *
2277	 * So here we handle each profile differently, so simpler profiles
2278	 * have simpler scrubbing function.
2279	 */
2280	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2281			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2282		/*
2283		 * Above check rules out all complex profile, the remaining
2284		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2285		 * mirrored duplication without stripe.
2286		 *
2287		 * Only @physical and @mirror_num needs to calculated using
2288		 * @stripe_index.
2289		 */
2290		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2291				scrub_dev, map->stripes[stripe_index].physical,
2292				stripe_index + 1);
2293		offset = 0;
2294		goto out;
2295	}
2296	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2297		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2298		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2299		goto out;
2300	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301
2302	/* Only RAID56 goes through the old code */
2303	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2304	ret = 0;
2305
2306	/* Calculate the logical end of the stripe */
2307	get_raid56_logic_offset(physical_end, stripe_index,
2308				map, &logic_end, NULL);
2309	logic_end += chunk_logical;
2310
2311	/* Initialize @offset in case we need to go to out: label */
2312	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2313	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2314
2315	/*
2316	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2317	 * using their physical offset.
2318	 */
 
2319	while (physical < physical_end) {
2320		ret = get_raid56_logic_offset(physical, stripe_index, map,
2321					      &logical, &stripe_logical);
2322		logical += chunk_logical;
2323		if (ret) {
2324			/* it is parity strip */
2325			stripe_logical += chunk_logical;
2326			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2327							 map, stripe_logical);
2328			if (ret)
2329				goto out;
2330			goto next;
2331		}
2332
2333		/*
2334		 * Now we're at a data stripe, scrub each extents in the range.
2335		 *
2336		 * At this stage, if we ignore the repair part, inside each data
2337		 * stripe it is no different than SINGLE profile.
2338		 * We can reuse scrub_simple_mirror() here, as the repair part
2339		 * is still based on @mirror_num.
2340		 */
2341		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2342					  scrub_dev, physical, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343		if (ret < 0)
2344			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345next:
 
 
 
 
2346		logical += increment;
2347		physical += BTRFS_STRIPE_LEN;
2348		spin_lock(&sctx->stat_lock);
2349		if (stop_loop)
2350			sctx->stat.last_physical =
2351				map->stripes[stripe_index].physical + dev_stripe_len;
2352		else
2353			sctx->stat.last_physical = physical;
2354		spin_unlock(&sctx->stat_lock);
2355		if (stop_loop)
2356			break;
2357	}
2358out:
2359	ret2 = flush_scrub_stripes(sctx);
2360	if (!ret)
2361		ret = ret2;
2362	btrfs_release_path(&sctx->extent_path);
2363	btrfs_release_path(&sctx->csum_path);
2364
2365	if (sctx->raid56_data_stripes) {
2366		for (int i = 0; i < nr_data_stripes(map); i++)
2367			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2368		kfree(sctx->raid56_data_stripes);
2369		sctx->raid56_data_stripes = NULL;
2370	}
2371
2372	if (sctx->is_dev_replace && ret >= 0) {
2373		int ret2;
2374
2375		ret2 = sync_write_pointer_for_zoned(sctx,
2376				chunk_logical + offset,
2377				map->stripes[stripe_index].physical,
2378				physical_end);
2379		if (ret2)
2380			ret = ret2;
2381	}
2382
 
 
 
2383	return ret < 0 ? ret : 0;
2384}
2385
2386static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2387					  struct btrfs_block_group *bg,
2388					  struct btrfs_device *scrub_dev,
 
2389					  u64 dev_offset,
2390					  u64 dev_extent_len)
 
2391{
2392	struct btrfs_fs_info *fs_info = sctx->fs_info;
2393	struct btrfs_chunk_map *map;
 
 
2394	int i;
2395	int ret = 0;
2396
2397	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2398	if (!map) {
 
 
 
2399		/*
2400		 * Might have been an unused block group deleted by the cleaner
2401		 * kthread or relocation.
2402		 */
2403		spin_lock(&bg->lock);
2404		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2405			ret = -EINVAL;
2406		spin_unlock(&bg->lock);
2407
2408		return ret;
2409	}
2410	if (map->start != bg->start)
 
 
2411		goto out;
2412	if (map->chunk_len < dev_extent_len)
 
2413		goto out;
2414
2415	for (i = 0; i < map->num_stripes; ++i) {
2416		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2417		    map->stripes[i].physical == dev_offset) {
2418			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
 
 
2419			if (ret)
2420				goto out;
2421		}
2422	}
2423out:
2424	btrfs_free_chunk_map(map);
2425
2426	return ret;
2427}
2428
2429static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2430					  struct btrfs_block_group *cache)
2431{
2432	struct btrfs_fs_info *fs_info = cache->fs_info;
2433	struct btrfs_trans_handle *trans;
2434
2435	if (!btrfs_is_zoned(fs_info))
2436		return 0;
2437
2438	btrfs_wait_block_group_reservations(cache);
2439	btrfs_wait_nocow_writers(cache);
2440	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2441
2442	trans = btrfs_join_transaction(root);
2443	if (IS_ERR(trans))
2444		return PTR_ERR(trans);
2445	return btrfs_commit_transaction(trans);
2446}
2447
2448static noinline_for_stack
2449int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2450			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 
2451{
2452	struct btrfs_dev_extent *dev_extent = NULL;
2453	struct btrfs_path *path;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	struct btrfs_root *root = fs_info->dev_root;
 
2456	u64 chunk_offset;
2457	int ret = 0;
2458	int ro_set;
2459	int slot;
2460	struct extent_buffer *l;
2461	struct btrfs_key key;
2462	struct btrfs_key found_key;
2463	struct btrfs_block_group *cache;
2464	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2465
2466	path = btrfs_alloc_path();
2467	if (!path)
2468		return -ENOMEM;
2469
2470	path->reada = READA_FORWARD;
2471	path->search_commit_root = 1;
2472	path->skip_locking = 1;
2473
2474	key.objectid = scrub_dev->devid;
2475	key.offset = 0ull;
2476	key.type = BTRFS_DEV_EXTENT_KEY;
2477
2478	while (1) {
2479		u64 dev_extent_len;
2480
2481		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482		if (ret < 0)
2483			break;
2484		if (ret > 0) {
2485			if (path->slots[0] >=
2486			    btrfs_header_nritems(path->nodes[0])) {
2487				ret = btrfs_next_leaf(root, path);
2488				if (ret < 0)
2489					break;
2490				if (ret > 0) {
2491					ret = 0;
2492					break;
2493				}
2494			} else {
2495				ret = 0;
2496			}
2497		}
2498
2499		l = path->nodes[0];
2500		slot = path->slots[0];
2501
2502		btrfs_item_key_to_cpu(l, &found_key, slot);
2503
2504		if (found_key.objectid != scrub_dev->devid)
2505			break;
2506
2507		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2508			break;
2509
2510		if (found_key.offset >= end)
2511			break;
2512
2513		if (found_key.offset < key.offset)
2514			break;
2515
2516		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2517		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2518
2519		if (found_key.offset + dev_extent_len <= start)
2520			goto skip;
2521
2522		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2523
2524		/*
2525		 * get a reference on the corresponding block group to prevent
2526		 * the chunk from going away while we scrub it
2527		 */
2528		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2529
2530		/* some chunks are removed but not committed to disk yet,
2531		 * continue scrubbing */
2532		if (!cache)
2533			goto skip;
2534
2535		ASSERT(cache->start <= chunk_offset);
2536		/*
2537		 * We are using the commit root to search for device extents, so
2538		 * that means we could have found a device extent item from a
2539		 * block group that was deleted in the current transaction. The
2540		 * logical start offset of the deleted block group, stored at
2541		 * @chunk_offset, might be part of the logical address range of
2542		 * a new block group (which uses different physical extents).
2543		 * In this case btrfs_lookup_block_group() has returned the new
2544		 * block group, and its start address is less than @chunk_offset.
2545		 *
2546		 * We skip such new block groups, because it's pointless to
2547		 * process them, as we won't find their extents because we search
2548		 * for them using the commit root of the extent tree. For a device
2549		 * replace it's also fine to skip it, we won't miss copying them
2550		 * to the target device because we have the write duplication
2551		 * setup through the regular write path (by btrfs_map_block()),
2552		 * and we have committed a transaction when we started the device
2553		 * replace, right after setting up the device replace state.
2554		 */
2555		if (cache->start < chunk_offset) {
2556			btrfs_put_block_group(cache);
2557			goto skip;
2558		}
2559
2560		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2561			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2562				btrfs_put_block_group(cache);
2563				goto skip;
2564			}
2565		}
2566
2567		/*
2568		 * Make sure that while we are scrubbing the corresponding block
2569		 * group doesn't get its logical address and its device extents
2570		 * reused for another block group, which can possibly be of a
2571		 * different type and different profile. We do this to prevent
2572		 * false error detections and crashes due to bogus attempts to
2573		 * repair extents.
2574		 */
2575		spin_lock(&cache->lock);
2576		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2577			spin_unlock(&cache->lock);
2578			btrfs_put_block_group(cache);
2579			goto skip;
2580		}
2581		btrfs_freeze_block_group(cache);
2582		spin_unlock(&cache->lock);
2583
2584		/*
2585		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2586		 * to avoid deadlock caused by:
2587		 * btrfs_inc_block_group_ro()
2588		 * -> btrfs_wait_for_commit()
2589		 * -> btrfs_commit_transaction()
2590		 * -> btrfs_scrub_pause()
2591		 */
2592		scrub_pause_on(fs_info);
2593
2594		/*
2595		 * Don't do chunk preallocation for scrub.
2596		 *
2597		 * This is especially important for SYSTEM bgs, or we can hit
2598		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2599		 * 1. The only SYSTEM bg is marked RO.
2600		 *    Since SYSTEM bg is small, that's pretty common.
2601		 * 2. New SYSTEM bg will be allocated
2602		 *    Due to regular version will allocate new chunk.
2603		 * 3. New SYSTEM bg is empty and will get cleaned up
2604		 *    Before cleanup really happens, it's marked RO again.
2605		 * 4. Empty SYSTEM bg get scrubbed
2606		 *    We go back to 2.
2607		 *
2608		 * This can easily boost the amount of SYSTEM chunks if cleaner
2609		 * thread can't be triggered fast enough, and use up all space
2610		 * of btrfs_super_block::sys_chunk_array
2611		 *
2612		 * While for dev replace, we need to try our best to mark block
2613		 * group RO, to prevent race between:
2614		 * - Write duplication
2615		 *   Contains latest data
2616		 * - Scrub copy
2617		 *   Contains data from commit tree
2618		 *
2619		 * If target block group is not marked RO, nocow writes can
2620		 * be overwritten by scrub copy, causing data corruption.
2621		 * So for dev-replace, it's not allowed to continue if a block
2622		 * group is not RO.
2623		 */
2624		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2625		if (!ret && sctx->is_dev_replace) {
2626			ret = finish_extent_writes_for_zoned(root, cache);
2627			if (ret) {
2628				btrfs_dec_block_group_ro(cache);
2629				scrub_pause_off(fs_info);
2630				btrfs_put_block_group(cache);
2631				break;
2632			}
2633		}
 
2634
2635		if (ret == 0) {
2636			ro_set = 1;
2637		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2638			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2639			/*
2640			 * btrfs_inc_block_group_ro return -ENOSPC when it
2641			 * failed in creating new chunk for metadata.
2642			 * It is not a problem for scrub, because
2643			 * metadata are always cowed, and our scrub paused
2644			 * commit_transactions.
2645			 *
2646			 * For RAID56 chunks, we have to mark them read-only
2647			 * for scrub, as later we would use our own cache
2648			 * out of RAID56 realm.
2649			 * Thus we want the RAID56 bg to be marked RO to
2650			 * prevent RMW from screwing up out cache.
2651			 */
2652			ro_set = 0;
2653		} else if (ret == -ETXTBSY) {
2654			btrfs_warn(fs_info,
2655		   "skipping scrub of block group %llu due to active swapfile",
2656				   cache->start);
2657			scrub_pause_off(fs_info);
2658			ret = 0;
2659			goto skip_unfreeze;
2660		} else {
2661			btrfs_warn(fs_info,
2662				   "failed setting block group ro: %d", ret);
2663			btrfs_unfreeze_block_group(cache);
2664			btrfs_put_block_group(cache);
2665			scrub_pause_off(fs_info);
2666			break;
2667		}
2668
 
 
 
 
 
 
 
 
2669		/*
2670		 * Now the target block is marked RO, wait for nocow writes to
2671		 * finish before dev-replace.
2672		 * COW is fine, as COW never overwrites extents in commit tree.
 
 
 
 
 
2673		 */
2674		if (sctx->is_dev_replace) {
2675			btrfs_wait_nocow_writers(cache);
2676			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2677					cache->length);
2678		}
2679
2680		scrub_pause_off(fs_info);
2681		down_write(&dev_replace->rwsem);
2682		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2683		dev_replace->cursor_left = found_key.offset;
2684		dev_replace->item_needs_writeback = 1;
2685		up_write(&dev_replace->rwsem);
2686
2687		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2688				  dev_extent_len);
2689		if (sctx->is_dev_replace &&
2690		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2691						      cache, found_key.offset))
2692			ro_set = 0;
2693
2694		down_write(&dev_replace->rwsem);
 
 
 
 
 
 
 
 
 
 
 
2695		dev_replace->cursor_left = dev_replace->cursor_right;
2696		dev_replace->item_needs_writeback = 1;
2697		up_write(&dev_replace->rwsem);
2698
2699		if (ro_set)
2700			btrfs_dec_block_group_ro(cache);
2701
2702		/*
2703		 * We might have prevented the cleaner kthread from deleting
2704		 * this block group if it was already unused because we raced
2705		 * and set it to RO mode first. So add it back to the unused
2706		 * list, otherwise it might not ever be deleted unless a manual
2707		 * balance is triggered or it becomes used and unused again.
2708		 */
2709		spin_lock(&cache->lock);
2710		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2711		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2712			spin_unlock(&cache->lock);
2713			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2714				btrfs_discard_queue_work(&fs_info->discard_ctl,
2715							 cache);
2716			else
2717				btrfs_mark_bg_unused(cache);
 
 
2718		} else {
2719			spin_unlock(&cache->lock);
2720		}
2721skip_unfreeze:
2722		btrfs_unfreeze_block_group(cache);
2723		btrfs_put_block_group(cache);
2724		if (ret)
2725			break;
2726		if (sctx->is_dev_replace &&
2727		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2728			ret = -EIO;
2729			break;
2730		}
2731		if (sctx->stat.malloc_errors > 0) {
2732			ret = -ENOMEM;
2733			break;
2734		}
2735skip:
2736		key.offset = found_key.offset + dev_extent_len;
2737		btrfs_release_path(path);
2738	}
2739
2740	btrfs_free_path(path);
2741
2742	return ret;
2743}
2744
2745static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2746			   struct page *page, u64 physical, u64 generation)
2747{
2748	struct btrfs_fs_info *fs_info = sctx->fs_info;
2749	struct bio_vec bvec;
2750	struct bio bio;
2751	struct btrfs_super_block *sb = page_address(page);
2752	int ret;
2753
2754	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2755	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2756	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2757	ret = submit_bio_wait(&bio);
2758	bio_uninit(&bio);
2759
2760	if (ret < 0)
2761		return ret;
2762	ret = btrfs_check_super_csum(fs_info, sb);
2763	if (ret != 0) {
2764		btrfs_err_rl(fs_info,
2765			"super block at physical %llu devid %llu has bad csum",
2766			physical, dev->devid);
2767		return -EIO;
2768	}
2769	if (btrfs_super_generation(sb) != generation) {
2770		btrfs_err_rl(fs_info,
2771"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2772			     physical, dev->devid,
2773			     btrfs_super_generation(sb), generation);
2774		return -EUCLEAN;
2775	}
2776
2777	return btrfs_validate_super(fs_info, sb, -1);
2778}
2779
2780static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2781					   struct btrfs_device *scrub_dev)
2782{
2783	int	i;
2784	u64	bytenr;
2785	u64	gen;
2786	int ret = 0;
2787	struct page *page;
2788	struct btrfs_fs_info *fs_info = sctx->fs_info;
2789
2790	if (BTRFS_FS_ERROR(fs_info))
2791		return -EROFS;
2792
2793	page = alloc_page(GFP_KERNEL);
2794	if (!page) {
2795		spin_lock(&sctx->stat_lock);
2796		sctx->stat.malloc_errors++;
2797		spin_unlock(&sctx->stat_lock);
2798		return -ENOMEM;
2799	}
2800
2801	/* Seed devices of a new filesystem has their own generation. */
2802	if (scrub_dev->fs_devices != fs_info->fs_devices)
2803		gen = scrub_dev->generation;
2804	else
2805		gen = btrfs_get_last_trans_committed(fs_info);
2806
2807	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2808		bytenr = btrfs_sb_offset(i);
2809		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2810		    scrub_dev->commit_total_bytes)
2811			break;
2812		if (!btrfs_check_super_location(scrub_dev, bytenr))
2813			continue;
2814
2815		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2816		if (ret) {
2817			spin_lock(&sctx->stat_lock);
2818			sctx->stat.super_errors++;
2819			spin_unlock(&sctx->stat_lock);
2820		}
2821	}
2822	__free_page(page);
2823	return 0;
2824}
2825
2826static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2827{
2828	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2829					&fs_info->scrub_lock)) {
2830		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2831
2832		fs_info->scrub_workers = NULL;
2833		mutex_unlock(&fs_info->scrub_lock);
2834
2835		if (scrub_workers)
2836			destroy_workqueue(scrub_workers);
2837	}
2838}
2839
2840/*
2841 * get a reference count on fs_info->scrub_workers. start worker if necessary
2842 */
2843static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
 
2844{
2845	struct workqueue_struct *scrub_workers = NULL;
2846	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2847	int max_active = fs_info->thread_pool_size;
2848	int ret = -ENOMEM;
2849
2850	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2851		return 0;
2852
2853	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2854	if (!scrub_workers)
2855		return -ENOMEM;
2856
2857	mutex_lock(&fs_info->scrub_lock);
2858	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2859		ASSERT(fs_info->scrub_workers == NULL);
2860		fs_info->scrub_workers = scrub_workers;
2861		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2862		mutex_unlock(&fs_info->scrub_lock);
2863		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864	}
2865	/* Other thread raced in and created the workers for us */
2866	refcount_inc(&fs_info->scrub_workers_refcnt);
2867	mutex_unlock(&fs_info->scrub_lock);
2868
2869	ret = 0;
 
 
 
 
 
 
 
 
2870
2871	destroy_workqueue(scrub_workers);
2872	return ret;
 
 
 
 
 
 
 
2873}
2874
2875int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2876		    u64 end, struct btrfs_scrub_progress *progress,
2877		    int readonly, int is_dev_replace)
2878{
2879	struct btrfs_dev_lookup_args args = { .devid = devid };
2880	struct scrub_ctx *sctx;
2881	int ret;
2882	struct btrfs_device *dev;
2883	unsigned int nofs_flag;
2884	bool need_commit = false;
2885
2886	if (btrfs_fs_closing(fs_info))
2887		return -EAGAIN;
2888
2889	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2890	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
 
 
 
 
 
 
 
 
 
 
2891
2892	/*
2893	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2894	 * value (max nodesize / min sectorsize), thus nodesize should always
2895	 * be fine.
2896	 */
2897	ASSERT(fs_info->nodesize <=
2898	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2899
2900	/* Allocate outside of device_list_mutex */
2901	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2902	if (IS_ERR(sctx))
2903		return PTR_ERR(sctx);
 
 
 
 
 
 
 
 
 
 
 
2904
2905	ret = scrub_workers_get(fs_info);
2906	if (ret)
2907		goto out_free_ctx;
2908
2909	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2910	dev = btrfs_find_device(fs_info->fs_devices, &args);
2911	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2912		     !is_dev_replace)) {
2913		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2914		ret = -ENODEV;
2915		goto out;
2916	}
2917
2918	if (!is_dev_replace && !readonly &&
2919	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2920		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2921		btrfs_err_in_rcu(fs_info,
2922			"scrub on devid %llu: filesystem on %s is not writable",
2923				 devid, btrfs_dev_name(dev));
2924		ret = -EROFS;
2925		goto out;
 
2926	}
2927
2928	mutex_lock(&fs_info->scrub_lock);
2929	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2930	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2931		mutex_unlock(&fs_info->scrub_lock);
2932		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933		ret = -EIO;
2934		goto out;
2935	}
2936
2937	down_read(&fs_info->dev_replace.rwsem);
2938	if (dev->scrub_ctx ||
2939	    (!is_dev_replace &&
2940	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2941		up_read(&fs_info->dev_replace.rwsem);
2942		mutex_unlock(&fs_info->scrub_lock);
2943		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2944		ret = -EINPROGRESS;
2945		goto out;
2946	}
2947	up_read(&fs_info->dev_replace.rwsem);
2948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2949	sctx->readonly = readonly;
2950	dev->scrub_ctx = sctx;
2951	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2952
2953	/*
2954	 * checking @scrub_pause_req here, we can avoid
2955	 * race between committing transaction and scrubbing.
2956	 */
2957	__scrub_blocked_if_needed(fs_info);
2958	atomic_inc(&fs_info->scrubs_running);
2959	mutex_unlock(&fs_info->scrub_lock);
2960
2961	/*
2962	 * In order to avoid deadlock with reclaim when there is a transaction
2963	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2964	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2965	 * invoked by our callees. The pausing request is done when the
2966	 * transaction commit starts, and it blocks the transaction until scrub
2967	 * is paused (done at specific points at scrub_stripe() or right above
2968	 * before incrementing fs_info->scrubs_running).
2969	 */
2970	nofs_flag = memalloc_nofs_save();
2971	if (!is_dev_replace) {
2972		u64 old_super_errors;
2973
2974		spin_lock(&sctx->stat_lock);
2975		old_super_errors = sctx->stat.super_errors;
2976		spin_unlock(&sctx->stat_lock);
2977
2978		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2979		/*
2980		 * by holding device list mutex, we can
2981		 * kick off writing super in log tree sync.
2982		 */
2983		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2984		ret = scrub_supers(sctx, dev);
2985		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986
2987		spin_lock(&sctx->stat_lock);
2988		/*
2989		 * Super block errors found, but we can not commit transaction
2990		 * at current context, since btrfs_commit_transaction() needs
2991		 * to pause the current running scrub (hold by ourselves).
2992		 */
2993		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2994			need_commit = true;
2995		spin_unlock(&sctx->stat_lock);
2996	}
2997
2998	if (!ret)
2999		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3000	memalloc_nofs_restore(nofs_flag);
3001
 
3002	atomic_dec(&fs_info->scrubs_running);
3003	wake_up(&fs_info->scrub_pause_wait);
3004
 
 
3005	if (progress)
3006		memcpy(progress, &sctx->stat, sizeof(*progress));
3007
3008	if (!is_dev_replace)
3009		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3010			ret ? "not finished" : "finished", devid, ret);
3011
3012	mutex_lock(&fs_info->scrub_lock);
3013	dev->scrub_ctx = NULL;
 
3014	mutex_unlock(&fs_info->scrub_lock);
3015
3016	scrub_workers_put(fs_info);
3017	scrub_put_ctx(sctx);
3018
3019	/*
3020	 * We found some super block errors before, now try to force a
3021	 * transaction commit, as scrub has finished.
3022	 */
3023	if (need_commit) {
3024		struct btrfs_trans_handle *trans;
3025
3026		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3027		if (IS_ERR(trans)) {
3028			ret = PTR_ERR(trans);
3029			btrfs_err(fs_info,
3030	"scrub: failed to start transaction to fix super block errors: %d", ret);
3031			return ret;
3032		}
3033		ret = btrfs_commit_transaction(trans);
3034		if (ret < 0)
3035			btrfs_err(fs_info,
3036	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3037	}
3038	return ret;
3039out:
3040	scrub_workers_put(fs_info);
3041out_free_ctx:
3042	scrub_free_ctx(sctx);
3043
3044	return ret;
3045}
3046
3047void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3048{
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3063{
3064	atomic_dec(&fs_info->scrub_pause_req);
3065	wake_up(&fs_info->scrub_pause_wait);
3066}
3067
3068int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3069{
3070	mutex_lock(&fs_info->scrub_lock);
3071	if (!atomic_read(&fs_info->scrubs_running)) {
3072		mutex_unlock(&fs_info->scrub_lock);
3073		return -ENOTCONN;
3074	}
3075
3076	atomic_inc(&fs_info->scrub_cancel_req);
3077	while (atomic_read(&fs_info->scrubs_running)) {
3078		mutex_unlock(&fs_info->scrub_lock);
3079		wait_event(fs_info->scrub_pause_wait,
3080			   atomic_read(&fs_info->scrubs_running) == 0);
3081		mutex_lock(&fs_info->scrub_lock);
3082	}
3083	atomic_dec(&fs_info->scrub_cancel_req);
3084	mutex_unlock(&fs_info->scrub_lock);
3085
3086	return 0;
3087}
3088
3089int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 
3090{
3091	struct btrfs_fs_info *fs_info = dev->fs_info;
3092	struct scrub_ctx *sctx;
3093
3094	mutex_lock(&fs_info->scrub_lock);
3095	sctx = dev->scrub_ctx;
3096	if (!sctx) {
3097		mutex_unlock(&fs_info->scrub_lock);
3098		return -ENOTCONN;
3099	}
3100	atomic_inc(&sctx->cancel_req);
3101	while (dev->scrub_ctx) {
3102		mutex_unlock(&fs_info->scrub_lock);
3103		wait_event(fs_info->scrub_pause_wait,
3104			   dev->scrub_ctx == NULL);
3105		mutex_lock(&fs_info->scrub_lock);
3106	}
3107	mutex_unlock(&fs_info->scrub_lock);
3108
3109	return 0;
3110}
3111
3112int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3113			 struct btrfs_scrub_progress *progress)
3114{
3115	struct btrfs_dev_lookup_args args = { .devid = devid };
3116	struct btrfs_device *dev;
3117	struct scrub_ctx *sctx = NULL;
3118
3119	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3120	dev = btrfs_find_device(fs_info->fs_devices, &args);
3121	if (dev)
3122		sctx = dev->scrub_ctx;
3123	if (sctx)
3124		memcpy(progress, &sctx->stat, sizeof(*progress));
3125	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3126
3127	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3128}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
 
   9#include "ctree.h"
 
  10#include "volumes.h"
  11#include "disk-io.h"
  12#include "ordered-data.h"
  13#include "transaction.h"
  14#include "backref.h"
  15#include "extent_io.h"
  16#include "dev-replace.h"
  17#include "check-integrity.h"
  18#include "rcu-string.h"
  19#include "raid56.h"
 
 
 
 
 
 
 
  20
  21/*
  22 * This is only the first step towards a full-features scrub. It reads all
  23 * extent and super block and verifies the checksums. In case a bad checksum
  24 * is found or the extent cannot be read, good data will be written back if
  25 * any can be found.
  26 *
  27 * Future enhancements:
  28 *  - In case an unrepairable extent is encountered, track which files are
  29 *    affected and report them
  30 *  - track and record media errors, throw out bad devices
  31 *  - add a mode to also read unallocated space
  32 */
  33
  34struct scrub_block;
  35struct scrub_ctx;
  36
  37/*
  38 * the following three values only influence the performance.
  39 * The last one configures the number of parallel and outstanding I/O
  40 * operations. The first two values configure an upper limit for the number
  41 * of (dynamically allocated) pages that are added to a bio.
 
 
 
 
 
 
 
 
  42 */
  43#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  44#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  45#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  46
  47/*
  48 * the following value times PAGE_SIZE needs to be large enough to match the
  49 * largest node/leaf/sector size that shall be supported.
  50 * Values larger than BTRFS_STRIPE_LEN are not supported.
  51 */
  52#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  53
  54struct scrub_recover {
  55	refcount_t		refs;
  56	struct btrfs_bio	*bbio;
  57	u64			map_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58};
  59
  60struct scrub_page {
  61	struct scrub_block	*sblock;
  62	struct page		*page;
  63	struct btrfs_device	*dev;
  64	struct list_head	list;
  65	u64			flags;  /* extent flags */
  66	u64			generation;
  67	u64			logical;
  68	u64			physical;
  69	u64			physical_for_dev_replace;
  70	atomic_t		refs;
  71	struct {
  72		unsigned int	mirror_num:8;
  73		unsigned int	have_csum:1;
  74		unsigned int	io_error:1;
  75	};
  76	u8			csum[BTRFS_CSUM_SIZE];
  77
  78	struct scrub_recover	*recover;
 
 
 
 
 
  79};
  80
  81struct scrub_bio {
  82	int			index;
  83	struct scrub_ctx	*sctx;
  84	struct btrfs_device	*dev;
  85	struct bio		*bio;
  86	blk_status_t		status;
  87	u64			logical;
  88	u64			physical;
  89#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  90	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  91#else
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  93#endif
  94	int			page_count;
  95	int			next_free;
  96	struct btrfs_work	work;
  97};
  98
  99struct scrub_block {
 100	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 101	int			page_count;
 102	atomic_t		outstanding_pages;
 103	refcount_t		refs; /* free mem on transition to zero */
 104	struct scrub_ctx	*sctx;
 105	struct scrub_parity	*sparity;
 106	struct {
 107		unsigned int	header_error:1;
 108		unsigned int	checksum_error:1;
 109		unsigned int	no_io_error_seen:1;
 110		unsigned int	generation_error:1; /* also sets header_error */
 111
 112		/* The following is for the data used to check parity */
 113		/* It is for the data with checksum */
 114		unsigned int	data_corrected:1;
 115	};
 116	struct btrfs_work	work;
 117};
 118
 119/* Used for the chunks with parity stripe such RAID5/6 */
 120struct scrub_parity {
 121	struct scrub_ctx	*sctx;
 122
 123	struct btrfs_device	*scrub_dev;
 124
 125	u64			logic_start;
 
 126
 127	u64			logic_end;
 
 
 
 
 
 128
 129	int			nsectors;
 
 
 130
 131	u64			stripe_len;
 
 
 
 
 132
 133	refcount_t		refs;
 
 134
 135	struct list_head	spages;
 
 
 
 
 
 
 
 
 
 
 
 136
 137	/* Work of parity check and repair */
 138	struct btrfs_work	work;
 
 
 
 
 
 
 
 
 
 
 139
 140	/* Mark the parity blocks which have data */
 141	unsigned long		*dbitmap;
 
 
 
 142
 143	/*
 144	 * Mark the parity blocks which have data, but errors happen when
 145	 * read data or check data
 146	 */
 147	unsigned long		*ebitmap;
 148
 149	unsigned long		bitmap[0];
 150};
 151
 152struct scrub_ctx {
 153	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 
 154	struct btrfs_fs_info	*fs_info;
 
 
 155	int			first_free;
 156	int			curr;
 157	atomic_t		bios_in_flight;
 158	atomic_t		workers_pending;
 159	spinlock_t		list_lock;
 160	wait_queue_head_t	list_wait;
 161	u16			csum_size;
 162	struct list_head	csum_list;
 163	atomic_t		cancel_req;
 164	int			readonly;
 165	int			pages_per_rd_bio;
 
 
 
 166
 167	int			is_dev_replace;
 
 168
 169	struct scrub_bio        *wr_curr_bio;
 170	struct mutex            wr_lock;
 171	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 172	struct btrfs_device     *wr_tgtdev;
 173	bool                    flush_all_writes;
 174
 175	/*
 176	 * statistics
 177	 */
 178	struct btrfs_scrub_progress stat;
 179	spinlock_t		stat_lock;
 180
 181	/*
 182	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 183	 * decrement bios_in_flight and workers_pending and then do a wakeup
 184	 * on the list_wait wait queue. We must ensure the main scrub task
 185	 * doesn't free the scrub context before or while the workers are
 186	 * doing the wakeup() call.
 187	 */
 188	refcount_t              refs;
 189};
 190
 191struct scrub_fixup_nodatasum {
 192	struct scrub_ctx	*sctx;
 193	struct btrfs_device	*dev;
 194	u64			logical;
 195	struct btrfs_root	*root;
 196	struct btrfs_work	work;
 197	int			mirror_num;
 198};
 199
 200struct scrub_nocow_inode {
 201	u64			inum;
 202	u64			offset;
 203	u64			root;
 204	struct list_head	list;
 205};
 206
 207struct scrub_copy_nocow_ctx {
 208	struct scrub_ctx	*sctx;
 209	u64			logical;
 210	u64			len;
 211	int			mirror_num;
 212	u64			physical_for_dev_replace;
 213	struct list_head	inodes;
 214	struct btrfs_work	work;
 215};
 216
 217struct scrub_warning {
 218	struct btrfs_path	*path;
 219	u64			extent_item_size;
 220	const char		*errstr;
 221	u64			physical;
 222	u64			logical;
 223	struct btrfs_device	*dev;
 224};
 225
 226struct full_stripe_lock {
 227	struct rb_node node;
 228	u64 logical;
 229	u64 refs;
 230	struct mutex mutex;
 231};
 232
 233static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 234static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 235static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 236static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 237static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 238static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 239				     struct scrub_block *sblocks_for_recheck);
 240static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 241				struct scrub_block *sblock,
 242				int retry_failed_mirror);
 243static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 244static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 245					     struct scrub_block *sblock_good);
 246static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 247					    struct scrub_block *sblock_good,
 248					    int page_num, int force_write);
 249static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 250static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 251					   int page_num);
 252static int scrub_checksum_data(struct scrub_block *sblock);
 253static int scrub_checksum_tree_block(struct scrub_block *sblock);
 254static int scrub_checksum_super(struct scrub_block *sblock);
 255static void scrub_block_get(struct scrub_block *sblock);
 256static void scrub_block_put(struct scrub_block *sblock);
 257static void scrub_page_get(struct scrub_page *spage);
 258static void scrub_page_put(struct scrub_page *spage);
 259static void scrub_parity_get(struct scrub_parity *sparity);
 260static void scrub_parity_put(struct scrub_parity *sparity);
 261static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 262				    struct scrub_page *spage);
 263static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 264		       u64 physical, struct btrfs_device *dev, u64 flags,
 265		       u64 gen, int mirror_num, u8 *csum, int force,
 266		       u64 physical_for_dev_replace);
 267static void scrub_bio_end_io(struct bio *bio);
 268static void scrub_bio_end_io_worker(struct btrfs_work *work);
 269static void scrub_block_complete(struct scrub_block *sblock);
 270static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 271			       u64 extent_logical, u64 extent_len,
 272			       u64 *extent_physical,
 273			       struct btrfs_device **extent_dev,
 274			       int *extent_mirror_num);
 275static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 276				    struct scrub_page *spage);
 277static void scrub_wr_submit(struct scrub_ctx *sctx);
 278static void scrub_wr_bio_end_io(struct bio *bio);
 279static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 280static int write_page_nocow(struct scrub_ctx *sctx,
 281			    u64 physical_for_dev_replace, struct page *page);
 282static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 283				      struct scrub_copy_nocow_ctx *ctx);
 284static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 285			    int mirror_num, u64 physical_for_dev_replace);
 286static void copy_nocow_pages_worker(struct btrfs_work *work);
 287static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 288static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 290
 291static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 
 292{
 293	return page->recover &&
 294	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295}
 296
 297static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 298{
 299	refcount_inc(&sctx->refs);
 300	atomic_inc(&sctx->bios_in_flight);
 301}
 302
 303static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 304{
 305	atomic_dec(&sctx->bios_in_flight);
 306	wake_up(&sctx->list_wait);
 307	scrub_put_ctx(sctx);
 308}
 309
 310static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 311{
 312	while (atomic_read(&fs_info->scrub_pause_req)) {
 313		mutex_unlock(&fs_info->scrub_lock);
 314		wait_event(fs_info->scrub_pause_wait,
 315		   atomic_read(&fs_info->scrub_pause_req) == 0);
 316		mutex_lock(&fs_info->scrub_lock);
 317	}
 318}
 319
 320static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 321{
 322	atomic_inc(&fs_info->scrubs_paused);
 323	wake_up(&fs_info->scrub_pause_wait);
 324}
 325
 326static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 327{
 328	mutex_lock(&fs_info->scrub_lock);
 329	__scrub_blocked_if_needed(fs_info);
 330	atomic_dec(&fs_info->scrubs_paused);
 331	mutex_unlock(&fs_info->scrub_lock);
 332
 333	wake_up(&fs_info->scrub_pause_wait);
 334}
 335
 336static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 337{
 338	scrub_pause_on(fs_info);
 339	scrub_pause_off(fs_info);
 340}
 341
 342/*
 343 * Insert new full stripe lock into full stripe locks tree
 344 *
 345 * Return pointer to existing or newly inserted full_stripe_lock structure if
 346 * everything works well.
 347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 348 *
 349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 350 * function
 351 */
 352static struct full_stripe_lock *insert_full_stripe_lock(
 353		struct btrfs_full_stripe_locks_tree *locks_root,
 354		u64 fstripe_logical)
 355{
 356	struct rb_node **p;
 357	struct rb_node *parent = NULL;
 358	struct full_stripe_lock *entry;
 359	struct full_stripe_lock *ret;
 360
 361	lockdep_assert_held(&locks_root->lock);
 362
 363	p = &locks_root->root.rb_node;
 364	while (*p) {
 365		parent = *p;
 366		entry = rb_entry(parent, struct full_stripe_lock, node);
 367		if (fstripe_logical < entry->logical) {
 368			p = &(*p)->rb_left;
 369		} else if (fstripe_logical > entry->logical) {
 370			p = &(*p)->rb_right;
 371		} else {
 372			entry->refs++;
 373			return entry;
 374		}
 375	}
 376
 377	/* Insert new lock */
 378	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 379	if (!ret)
 380		return ERR_PTR(-ENOMEM);
 381	ret->logical = fstripe_logical;
 382	ret->refs = 1;
 383	mutex_init(&ret->mutex);
 384
 385	rb_link_node(&ret->node, parent, p);
 386	rb_insert_color(&ret->node, &locks_root->root);
 387	return ret;
 388}
 389
 390/*
 391 * Search for a full stripe lock of a block group
 392 *
 393 * Return pointer to existing full stripe lock if found
 394 * Return NULL if not found
 395 */
 396static struct full_stripe_lock *search_full_stripe_lock(
 397		struct btrfs_full_stripe_locks_tree *locks_root,
 398		u64 fstripe_logical)
 399{
 400	struct rb_node *node;
 401	struct full_stripe_lock *entry;
 402
 403	lockdep_assert_held(&locks_root->lock);
 404
 405	node = locks_root->root.rb_node;
 406	while (node) {
 407		entry = rb_entry(node, struct full_stripe_lock, node);
 408		if (fstripe_logical < entry->logical)
 409			node = node->rb_left;
 410		else if (fstripe_logical > entry->logical)
 411			node = node->rb_right;
 412		else
 413			return entry;
 414	}
 415	return NULL;
 416}
 417
 418/*
 419 * Helper to get full stripe logical from a normal bytenr.
 420 *
 421 * Caller must ensure @cache is a RAID56 block group.
 422 */
 423static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 424				   u64 bytenr)
 425{
 426	u64 ret;
 427
 428	/*
 429	 * Due to chunk item size limit, full stripe length should not be
 430	 * larger than U32_MAX. Just a sanity check here.
 431	 */
 432	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 433
 434	/*
 435	 * round_down() can only handle power of 2, while RAID56 full
 436	 * stripe length can be 64KiB * n, so we need to manually round down.
 437	 */
 438	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 439		cache->full_stripe_len + cache->key.objectid;
 440	return ret;
 441}
 442
 443/*
 444 * Lock a full stripe to avoid concurrency of recovery and read
 445 *
 446 * It's only used for profiles with parities (RAID5/6), for other profiles it
 447 * does nothing.
 448 *
 449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 450 * So caller must call unlock_full_stripe() at the same context.
 451 *
 452 * Return <0 if encounters error.
 453 */
 454static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 455			    bool *locked_ret)
 456{
 457	struct btrfs_block_group_cache *bg_cache;
 458	struct btrfs_full_stripe_locks_tree *locks_root;
 459	struct full_stripe_lock *existing;
 460	u64 fstripe_start;
 461	int ret = 0;
 462
 463	*locked_ret = false;
 464	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 465	if (!bg_cache) {
 466		ASSERT(0);
 467		return -ENOENT;
 468	}
 469
 470	/* Profiles not based on parity don't need full stripe lock */
 471	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 472		goto out;
 473	locks_root = &bg_cache->full_stripe_locks_root;
 474
 475	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 476
 477	/* Now insert the full stripe lock */
 478	mutex_lock(&locks_root->lock);
 479	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 480	mutex_unlock(&locks_root->lock);
 481	if (IS_ERR(existing)) {
 482		ret = PTR_ERR(existing);
 483		goto out;
 484	}
 485	mutex_lock(&existing->mutex);
 486	*locked_ret = true;
 487out:
 488	btrfs_put_block_group(bg_cache);
 489	return ret;
 490}
 491
 492/*
 493 * Unlock a full stripe.
 494 *
 495 * NOTE: Caller must ensure it's the same context calling corresponding
 496 * lock_full_stripe().
 497 *
 498 * Return 0 if we unlock full stripe without problem.
 499 * Return <0 for error
 500 */
 501static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 502			      bool locked)
 503{
 504	struct btrfs_block_group_cache *bg_cache;
 505	struct btrfs_full_stripe_locks_tree *locks_root;
 506	struct full_stripe_lock *fstripe_lock;
 507	u64 fstripe_start;
 508	bool freeit = false;
 509	int ret = 0;
 510
 511	/* If we didn't acquire full stripe lock, no need to continue */
 512	if (!locked)
 513		return 0;
 514
 515	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 516	if (!bg_cache) {
 517		ASSERT(0);
 518		return -ENOENT;
 519	}
 520	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 521		goto out;
 522
 523	locks_root = &bg_cache->full_stripe_locks_root;
 524	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 525
 526	mutex_lock(&locks_root->lock);
 527	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 528	/* Unpaired unlock_full_stripe() detected */
 529	if (!fstripe_lock) {
 530		WARN_ON(1);
 531		ret = -ENOENT;
 532		mutex_unlock(&locks_root->lock);
 533		goto out;
 534	}
 535
 536	if (fstripe_lock->refs == 0) {
 537		WARN_ON(1);
 538		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 539			fstripe_lock->logical);
 540	} else {
 541		fstripe_lock->refs--;
 542	}
 543
 544	if (fstripe_lock->refs == 0) {
 545		rb_erase(&fstripe_lock->node, &locks_root->root);
 546		freeit = true;
 547	}
 548	mutex_unlock(&locks_root->lock);
 549
 550	mutex_unlock(&fstripe_lock->mutex);
 551	if (freeit)
 552		kfree(fstripe_lock);
 553out:
 554	btrfs_put_block_group(bg_cache);
 555	return ret;
 556}
 557
 558/*
 559 * used for workers that require transaction commits (i.e., for the
 560 * NOCOW case)
 561 */
 562static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 563{
 564	struct btrfs_fs_info *fs_info = sctx->fs_info;
 565
 566	refcount_inc(&sctx->refs);
 567	/*
 568	 * increment scrubs_running to prevent cancel requests from
 569	 * completing as long as a worker is running. we must also
 570	 * increment scrubs_paused to prevent deadlocking on pause
 571	 * requests used for transactions commits (as the worker uses a
 572	 * transaction context). it is safe to regard the worker
 573	 * as paused for all matters practical. effectively, we only
 574	 * avoid cancellation requests from completing.
 575	 */
 576	mutex_lock(&fs_info->scrub_lock);
 577	atomic_inc(&fs_info->scrubs_running);
 578	atomic_inc(&fs_info->scrubs_paused);
 579	mutex_unlock(&fs_info->scrub_lock);
 580
 581	/*
 582	 * check if @scrubs_running=@scrubs_paused condition
 583	 * inside wait_event() is not an atomic operation.
 584	 * which means we may inc/dec @scrub_running/paused
 585	 * at any time. Let's wake up @scrub_pause_wait as
 586	 * much as we can to let commit transaction blocked less.
 587	 */
 588	wake_up(&fs_info->scrub_pause_wait);
 589
 590	atomic_inc(&sctx->workers_pending);
 591}
 592
 593/* used for workers that require transaction commits */
 594static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 595{
 596	struct btrfs_fs_info *fs_info = sctx->fs_info;
 597
 598	/*
 599	 * see scrub_pending_trans_workers_inc() why we're pretending
 600	 * to be paused in the scrub counters
 601	 */
 602	mutex_lock(&fs_info->scrub_lock);
 603	atomic_dec(&fs_info->scrubs_running);
 604	atomic_dec(&fs_info->scrubs_paused);
 605	mutex_unlock(&fs_info->scrub_lock);
 606	atomic_dec(&sctx->workers_pending);
 607	wake_up(&fs_info->scrub_pause_wait);
 608	wake_up(&sctx->list_wait);
 609	scrub_put_ctx(sctx);
 610}
 611
 612static void scrub_free_csums(struct scrub_ctx *sctx)
 613{
 614	while (!list_empty(&sctx->csum_list)) {
 615		struct btrfs_ordered_sum *sum;
 616		sum = list_first_entry(&sctx->csum_list,
 617				       struct btrfs_ordered_sum, list);
 618		list_del(&sum->list);
 619		kfree(sum);
 620	}
 621}
 622
 623static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 624{
 625	int i;
 626
 627	if (!sctx)
 628		return;
 629
 630	/* this can happen when scrub is cancelled */
 631	if (sctx->curr != -1) {
 632		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 633
 634		for (i = 0; i < sbio->page_count; i++) {
 635			WARN_ON(!sbio->pagev[i]->page);
 636			scrub_block_put(sbio->pagev[i]->sblock);
 637		}
 638		bio_put(sbio->bio);
 639	}
 640
 641	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 642		struct scrub_bio *sbio = sctx->bios[i];
 643
 644		if (!sbio)
 645			break;
 646		kfree(sbio);
 647	}
 648
 649	kfree(sctx->wr_curr_bio);
 650	scrub_free_csums(sctx);
 651	kfree(sctx);
 652}
 653
 654static void scrub_put_ctx(struct scrub_ctx *sctx)
 655{
 656	if (refcount_dec_and_test(&sctx->refs))
 657		scrub_free_ctx(sctx);
 658}
 659
 660static noinline_for_stack
 661struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 662{
 663	struct scrub_ctx *sctx;
 664	int		i;
 665	struct btrfs_fs_info *fs_info = dev->fs_info;
 666
 667	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 668	if (!sctx)
 669		goto nomem;
 670	refcount_set(&sctx->refs, 1);
 671	sctx->is_dev_replace = is_dev_replace;
 672	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 673	sctx->curr = -1;
 674	sctx->fs_info = dev->fs_info;
 675	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 676		struct scrub_bio *sbio;
 
 
 677
 678		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 679		if (!sbio)
 680			goto nomem;
 681		sctx->bios[i] = sbio;
 682
 683		sbio->index = i;
 684		sbio->sctx = sctx;
 685		sbio->page_count = 0;
 686		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 687				scrub_bio_end_io_worker, NULL, NULL);
 688
 689		if (i != SCRUB_BIOS_PER_SCTX - 1)
 690			sctx->bios[i]->next_free = i + 1;
 691		else
 692			sctx->bios[i]->next_free = -1;
 693	}
 694	sctx->first_free = 0;
 695	atomic_set(&sctx->bios_in_flight, 0);
 696	atomic_set(&sctx->workers_pending, 0);
 697	atomic_set(&sctx->cancel_req, 0);
 698	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 699	INIT_LIST_HEAD(&sctx->csum_list);
 700
 701	spin_lock_init(&sctx->list_lock);
 702	spin_lock_init(&sctx->stat_lock);
 703	init_waitqueue_head(&sctx->list_wait);
 704
 705	WARN_ON(sctx->wr_curr_bio != NULL);
 706	mutex_init(&sctx->wr_lock);
 707	sctx->wr_curr_bio = NULL;
 708	if (is_dev_replace) {
 709		WARN_ON(!fs_info->dev_replace.tgtdev);
 710		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 711		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 712		sctx->flush_all_writes = false;
 713	}
 714
 715	return sctx;
 716
 717nomem:
 718	scrub_free_ctx(sctx);
 719	return ERR_PTR(-ENOMEM);
 720}
 721
 722static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 723				     void *warn_ctx)
 724{
 725	u64 isize;
 726	u32 nlink;
 727	int ret;
 728	int i;
 729	unsigned nofs_flag;
 730	struct extent_buffer *eb;
 731	struct btrfs_inode_item *inode_item;
 732	struct scrub_warning *swarn = warn_ctx;
 733	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 734	struct inode_fs_paths *ipath = NULL;
 735	struct btrfs_root *local_root;
 736	struct btrfs_key root_key;
 737	struct btrfs_key key;
 738
 739	root_key.objectid = root;
 740	root_key.type = BTRFS_ROOT_ITEM_KEY;
 741	root_key.offset = (u64)-1;
 742	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 743	if (IS_ERR(local_root)) {
 744		ret = PTR_ERR(local_root);
 745		goto err;
 746	}
 747
 748	/*
 749	 * this makes the path point to (inum INODE_ITEM ioff)
 750	 */
 751	key.objectid = inum;
 752	key.type = BTRFS_INODE_ITEM_KEY;
 753	key.offset = 0;
 754
 755	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 756	if (ret) {
 
 757		btrfs_release_path(swarn->path);
 758		goto err;
 759	}
 760
 761	eb = swarn->path->nodes[0];
 762	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 763					struct btrfs_inode_item);
 764	isize = btrfs_inode_size(eb, inode_item);
 765	nlink = btrfs_inode_nlink(eb, inode_item);
 766	btrfs_release_path(swarn->path);
 767
 768	/*
 769	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 770	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 771	 * not seem to be strictly necessary.
 772	 */
 773	nofs_flag = memalloc_nofs_save();
 774	ipath = init_ipath(4096, local_root, swarn->path);
 775	memalloc_nofs_restore(nofs_flag);
 776	if (IS_ERR(ipath)) {
 
 777		ret = PTR_ERR(ipath);
 778		ipath = NULL;
 779		goto err;
 780	}
 781	ret = paths_from_inode(inum, ipath);
 782
 783	if (ret < 0)
 784		goto err;
 785
 786	/*
 787	 * we deliberately ignore the bit ipath might have been too small to
 788	 * hold all of the paths here
 789	 */
 790	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 791		btrfs_warn_in_rcu(fs_info,
 792"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 793				  swarn->errstr, swarn->logical,
 794				  rcu_str_deref(swarn->dev->name),
 795				  swarn->physical,
 796				  root, inum, offset,
 797				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 798				  (char *)(unsigned long)ipath->fspath->val[i]);
 799
 
 800	free_ipath(ipath);
 801	return 0;
 802
 803err:
 804	btrfs_warn_in_rcu(fs_info,
 805			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 806			  swarn->errstr, swarn->logical,
 807			  rcu_str_deref(swarn->dev->name),
 808			  swarn->physical,
 809			  root, inum, offset, ret);
 810
 811	free_ipath(ipath);
 812	return 0;
 813}
 814
 815static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 
 816{
 817	struct btrfs_device *dev;
 818	struct btrfs_fs_info *fs_info;
 819	struct btrfs_path *path;
 820	struct btrfs_key found_key;
 821	struct extent_buffer *eb;
 822	struct btrfs_extent_item *ei;
 823	struct scrub_warning swarn;
 824	unsigned long ptr = 0;
 825	u64 extent_item_pos;
 826	u64 flags = 0;
 827	u64 ref_root;
 828	u32 item_size;
 829	u8 ref_level = 0;
 830	int ret;
 831
 832	WARN_ON(sblock->page_count < 1);
 833	dev = sblock->pagev[0]->dev;
 834	fs_info = sblock->sctx->fs_info;
 835
 
 
 836	path = btrfs_alloc_path();
 837	if (!path)
 838		return;
 839
 840	swarn.physical = sblock->pagev[0]->physical;
 841	swarn.logical = sblock->pagev[0]->logical;
 842	swarn.errstr = errstr;
 843	swarn.dev = NULL;
 844
 845	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 846				  &flags);
 847	if (ret < 0)
 848		goto out;
 849
 850	extent_item_pos = swarn.logical - found_key.objectid;
 851	swarn.extent_item_size = found_key.offset;
 852
 853	eb = path->nodes[0];
 854	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 855	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 856
 857	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 858		do {
 
 
 
 
 859			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 860						      item_size, &ref_root,
 861						      &ref_level);
 
 
 
 
 
 
 
 
 862			btrfs_warn_in_rcu(fs_info,
 863"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 864				errstr, swarn.logical,
 865				rcu_str_deref(dev->name),
 866				swarn.physical,
 867				ref_level ? "node" : "leaf",
 868				ret < 0 ? -1 : ref_level,
 869				ret < 0 ? -1 : ref_root);
 870		} while (ret != 1);
 871		btrfs_release_path(path);
 872	} else {
 
 
 873		btrfs_release_path(path);
 
 
 
 
 
 874		swarn.path = path;
 875		swarn.dev = dev;
 876		iterate_extent_inodes(fs_info, found_key.objectid,
 877					extent_item_pos, 1,
 878					scrub_print_warning_inode, &swarn, false);
 879	}
 880
 881out:
 882	btrfs_free_path(path);
 883}
 884
 885static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 886{
 887	struct page *page = NULL;
 888	unsigned long index;
 889	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 890	int ret;
 891	int corrected = 0;
 892	struct btrfs_key key;
 893	struct inode *inode = NULL;
 894	struct btrfs_fs_info *fs_info;
 895	u64 end = offset + PAGE_SIZE - 1;
 896	struct btrfs_root *local_root;
 897	int srcu_index;
 898
 899	key.objectid = root;
 900	key.type = BTRFS_ROOT_ITEM_KEY;
 901	key.offset = (u64)-1;
 902
 903	fs_info = fixup->root->fs_info;
 904	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 905
 906	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 907	if (IS_ERR(local_root)) {
 908		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 909		return PTR_ERR(local_root);
 910	}
 911
 912	key.type = BTRFS_INODE_ITEM_KEY;
 913	key.objectid = inum;
 914	key.offset = 0;
 915	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 916	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 917	if (IS_ERR(inode))
 918		return PTR_ERR(inode);
 919
 920	index = offset >> PAGE_SHIFT;
 921
 922	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 923	if (!page) {
 924		ret = -ENOMEM;
 925		goto out;
 926	}
 
 
 927
 928	if (PageUptodate(page)) {
 929		if (PageDirty(page)) {
 930			/*
 931			 * we need to write the data to the defect sector. the
 932			 * data that was in that sector is not in memory,
 933			 * because the page was modified. we must not write the
 934			 * modified page to that sector.
 935			 *
 936			 * TODO: what could be done here: wait for the delalloc
 937			 *       runner to write out that page (might involve
 938			 *       COW) and see whether the sector is still
 939			 *       referenced afterwards.
 940			 *
 941			 * For the meantime, we'll treat this error
 942			 * incorrectable, although there is a chance that a
 943			 * later scrub will find the bad sector again and that
 944			 * there's no dirty page in memory, then.
 945			 */
 946			ret = -EIO;
 947			goto out;
 948		}
 949		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
 950					fixup->logical, page,
 951					offset - page_offset(page),
 952					fixup->mirror_num);
 953		unlock_page(page);
 954		corrected = !ret;
 955	} else {
 956		/*
 957		 * we need to get good data first. the general readpage path
 958		 * will call repair_io_failure for us, we just have to make
 959		 * sure we read the bad mirror.
 960		 */
 961		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 962					EXTENT_DAMAGED);
 963		if (ret) {
 964			/* set_extent_bits should give proper error */
 965			WARN_ON(ret > 0);
 966			if (ret > 0)
 967				ret = -EFAULT;
 968			goto out;
 969		}
 970
 971		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 972						btrfs_get_extent,
 973						fixup->mirror_num);
 974		wait_on_page_locked(page);
 975
 976		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 977						end, EXTENT_DAMAGED, 0, NULL);
 978		if (!corrected)
 979			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 980						EXTENT_DAMAGED);
 981	}
 982
 983out:
 984	if (page)
 985		put_page(page);
 
 986
 987	iput(inode);
 
 988
 989	if (ret < 0)
 990		return ret;
 
 
 
 
 
 
 
 
 
 991
 992	if (ret == 0 && corrected) {
 993		/*
 994		 * we only need to call readpage for one of the inodes belonging
 995		 * to this extent. so make iterate_extent_inodes stop
 996		 */
 997		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998	}
 999
1000	return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001}
1002
1003static void scrub_fixup_nodatasum(struct btrfs_work *work)
1004{
1005	struct btrfs_fs_info *fs_info;
 
 
 
 
 
1006	int ret;
1007	struct scrub_fixup_nodatasum *fixup;
1008	struct scrub_ctx *sctx;
1009	struct btrfs_trans_handle *trans = NULL;
1010	struct btrfs_path *path;
1011	int uncorrectable = 0;
1012
1013	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014	sctx = fixup->sctx;
1015	fs_info = fixup->root->fs_info;
 
 
1016
1017	path = btrfs_alloc_path();
1018	if (!path) {
1019		spin_lock(&sctx->stat_lock);
1020		++sctx->stat.malloc_errors;
1021		spin_unlock(&sctx->stat_lock);
1022		uncorrectable = 1;
1023		goto out;
1024	}
1025
1026	trans = btrfs_join_transaction(fixup->root);
1027	if (IS_ERR(trans)) {
1028		uncorrectable = 1;
1029		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030	}
1031
1032	/*
1033	 * the idea is to trigger a regular read through the standard path. we
1034	 * read a page from the (failed) logical address by specifying the
1035	 * corresponding copynum of the failed sector. thus, that readpage is
1036	 * expected to fail.
1037	 * that is the point where on-the-fly error correction will kick in
1038	 * (once it's finished) and rewrite the failed sector if a good copy
1039	 * can be found.
1040	 */
1041	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042					  scrub_fixup_readpage, fixup, false);
 
 
 
 
1043	if (ret < 0) {
1044		uncorrectable = 1;
1045		goto out;
 
 
 
1046	}
1047	WARN_ON(ret != 1);
1048
1049	spin_lock(&sctx->stat_lock);
1050	++sctx->stat.corrected_errors;
1051	spin_unlock(&sctx->stat_lock);
 
 
 
1052
1053out:
1054	if (trans && !IS_ERR(trans))
1055		btrfs_end_transaction(trans);
1056	if (uncorrectable) {
1057		spin_lock(&sctx->stat_lock);
1058		++sctx->stat.uncorrectable_errors;
1059		spin_unlock(&sctx->stat_lock);
1060		btrfs_dev_replace_stats_inc(
1061			&fs_info->dev_replace.num_uncorrectable_read_errors);
1062		btrfs_err_rl_in_rcu(fs_info,
1063		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064			fixup->logical, rcu_str_deref(fixup->dev->name));
1065	}
1066
1067	btrfs_free_path(path);
1068	kfree(fixup);
1069
1070	scrub_pending_trans_workers_dec(sctx);
1071}
1072
1073static inline void scrub_get_recover(struct scrub_recover *recover)
1074{
1075	refcount_inc(&recover->refs);
1076}
1077
1078static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079				     struct scrub_recover *recover)
1080{
1081	if (refcount_dec_and_test(&recover->refs)) {
1082		btrfs_bio_counter_dec(fs_info);
1083		btrfs_put_bbio(recover->bbio);
1084		kfree(recover);
1085	}
 
 
1086}
1087
1088/*
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1092 * may be bad.
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1095 */
1096static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1097{
1098	struct scrub_ctx *sctx = sblock_to_check->sctx;
1099	struct btrfs_device *dev;
1100	struct btrfs_fs_info *fs_info;
1101	u64 logical;
1102	unsigned int failed_mirror_index;
1103	unsigned int is_metadata;
1104	unsigned int have_csum;
1105	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106	struct scrub_block *sblock_bad;
1107	int ret;
1108	int mirror_index;
1109	int page_num;
1110	int success;
1111	bool full_stripe_locked;
1112	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113				      DEFAULT_RATELIMIT_BURST);
1114
1115	BUG_ON(sblock_to_check->page_count < 1);
1116	fs_info = sctx->fs_info;
1117	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1118		/*
1119		 * if we find an error in a super block, we just report it.
1120		 * They will get written with the next transaction commit
1121		 * anyway
1122		 */
1123		spin_lock(&sctx->stat_lock);
1124		++sctx->stat.super_errors;
1125		spin_unlock(&sctx->stat_lock);
1126		return 0;
1127	}
1128	logical = sblock_to_check->pagev[0]->logical;
1129	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131	is_metadata = !(sblock_to_check->pagev[0]->flags &
1132			BTRFS_EXTENT_FLAG_DATA);
1133	have_csum = sblock_to_check->pagev[0]->have_csum;
1134	dev = sblock_to_check->pagev[0]->dev;
1135
1136	/*
1137	 * For RAID5/6, race can happen for a different device scrub thread.
1138	 * For data corruption, Parity and Data threads will both try
1139	 * to recovery the data.
1140	 * Race can lead to doubly added csum error, or even unrecoverable
1141	 * error.
1142	 */
1143	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1144	if (ret < 0) {
1145		spin_lock(&sctx->stat_lock);
1146		if (ret == -ENOMEM)
1147			sctx->stat.malloc_errors++;
1148		sctx->stat.read_errors++;
1149		sctx->stat.uncorrectable_errors++;
1150		spin_unlock(&sctx->stat_lock);
1151		return ret;
1152	}
 
 
 
 
1153
1154	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1155		sblocks_for_recheck = NULL;
1156		goto nodatasum_case;
1157	}
 
1158
1159	/*
1160	 * read all mirrors one after the other. This includes to
1161	 * re-read the extent or metadata block that failed (that was
1162	 * the cause that this fixup code is called) another time,
1163	 * page by page this time in order to know which pages
1164	 * caused I/O errors and which ones are good (for all mirrors).
1165	 * It is the goal to handle the situation when more than one
1166	 * mirror contains I/O errors, but the errors do not
1167	 * overlap, i.e. the data can be repaired by selecting the
1168	 * pages from those mirrors without I/O error on the
1169	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170	 * would be that mirror #1 has an I/O error on the first page,
1171	 * the second page is good, and mirror #2 has an I/O error on
1172	 * the second page, but the first page is good.
1173	 * Then the first page of the first mirror can be repaired by
1174	 * taking the first page of the second mirror, and the
1175	 * second page of the second mirror can be repaired by
1176	 * copying the contents of the 2nd page of the 1st mirror.
1177	 * One more note: if the pages of one mirror contain I/O
1178	 * errors, the checksum cannot be verified. In order to get
1179	 * the best data for repairing, the first attempt is to find
1180	 * a mirror without I/O errors and with a validated checksum.
1181	 * Only if this is not possible, the pages are picked from
1182	 * mirrors with I/O errors without considering the checksum.
1183	 * If the latter is the case, at the end, the checksum of the
1184	 * repaired area is verified in order to correctly maintain
1185	 * the statistics.
1186	 */
1187
1188	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1189				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1190	if (!sblocks_for_recheck) {
1191		spin_lock(&sctx->stat_lock);
1192		sctx->stat.malloc_errors++;
1193		sctx->stat.read_errors++;
1194		sctx->stat.uncorrectable_errors++;
1195		spin_unlock(&sctx->stat_lock);
1196		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1197		goto out;
1198	}
1199
1200	/* setup the context, map the logical blocks and alloc the pages */
1201	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1202	if (ret) {
1203		spin_lock(&sctx->stat_lock);
1204		sctx->stat.read_errors++;
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1208		goto out;
1209	}
1210	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1211	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1212
1213	/* build and submit the bios for the failed mirror, check checksums */
1214	scrub_recheck_block(fs_info, sblock_bad, 1);
1215
1216	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1217	    sblock_bad->no_io_error_seen) {
1218		/*
1219		 * the error disappeared after reading page by page, or
1220		 * the area was part of a huge bio and other parts of the
1221		 * bio caused I/O errors, or the block layer merged several
1222		 * read requests into one and the error is caused by a
1223		 * different bio (usually one of the two latter cases is
1224		 * the cause)
1225		 */
1226		spin_lock(&sctx->stat_lock);
1227		sctx->stat.unverified_errors++;
1228		sblock_to_check->data_corrected = 1;
1229		spin_unlock(&sctx->stat_lock);
1230
1231		if (sctx->is_dev_replace)
1232			scrub_write_block_to_dev_replace(sblock_bad);
1233		goto out;
1234	}
 
 
1235
1236	if (!sblock_bad->no_io_error_seen) {
1237		spin_lock(&sctx->stat_lock);
1238		sctx->stat.read_errors++;
1239		spin_unlock(&sctx->stat_lock);
1240		if (__ratelimit(&_rs))
1241			scrub_print_warning("i/o error", sblock_to_check);
1242		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1243	} else if (sblock_bad->checksum_error) {
1244		spin_lock(&sctx->stat_lock);
1245		sctx->stat.csum_errors++;
1246		spin_unlock(&sctx->stat_lock);
1247		if (__ratelimit(&_rs))
1248			scrub_print_warning("checksum error", sblock_to_check);
1249		btrfs_dev_stat_inc_and_print(dev,
1250					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251	} else if (sblock_bad->header_error) {
1252		spin_lock(&sctx->stat_lock);
1253		sctx->stat.verify_errors++;
1254		spin_unlock(&sctx->stat_lock);
1255		if (__ratelimit(&_rs))
1256			scrub_print_warning("checksum/header error",
1257					    sblock_to_check);
1258		if (sblock_bad->generation_error)
1259			btrfs_dev_stat_inc_and_print(dev,
1260				BTRFS_DEV_STAT_GENERATION_ERRS);
1261		else
1262			btrfs_dev_stat_inc_and_print(dev,
1263				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1264	}
1265
1266	if (sctx->readonly) {
1267		ASSERT(!sctx->is_dev_replace);
1268		goto out;
 
 
1269	}
 
1270
1271	if (!is_metadata && !have_csum) {
1272		struct scrub_fixup_nodatasum *fixup_nodatasum;
 
 
 
 
 
 
 
 
 
 
 
1273
1274		WARN_ON(sctx->is_dev_replace);
 
1275
1276nodatasum_case:
 
 
 
 
 
 
 
 
 
 
1277
 
 
 
 
 
1278		/*
1279		 * !is_metadata and !have_csum, this means that the data
1280		 * might not be COWed, that it might be modified
1281		 * concurrently. The general strategy to work on the
1282		 * commit root does not help in the case when COW is not
1283		 * used.
1284		 */
1285		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1286		if (!fixup_nodatasum)
1287			goto did_not_correct_error;
1288		fixup_nodatasum->sctx = sctx;
1289		fixup_nodatasum->dev = dev;
1290		fixup_nodatasum->logical = logical;
1291		fixup_nodatasum->root = fs_info->extent_root;
1292		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293		scrub_pending_trans_workers_inc(sctx);
1294		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1295				scrub_fixup_nodatasum, NULL, NULL);
1296		btrfs_queue_work(fs_info->scrub_workers,
1297				 &fixup_nodatasum->work);
1298		goto out;
1299	}
1300
1301	/*
1302	 * now build and submit the bios for the other mirrors, check
1303	 * checksums.
1304	 * First try to pick the mirror which is completely without I/O
1305	 * errors and also does not have a checksum error.
1306	 * If one is found, and if a checksum is present, the full block
1307	 * that is known to contain an error is rewritten. Afterwards
1308	 * the block is known to be corrected.
1309	 * If a mirror is found which is completely correct, and no
1310	 * checksum is present, only those pages are rewritten that had
1311	 * an I/O error in the block to be repaired, since it cannot be
1312	 * determined, which copy of the other pages is better (and it
1313	 * could happen otherwise that a correct page would be
1314	 * overwritten by a bad one).
1315	 */
1316	for (mirror_index = 0; ;mirror_index++) {
1317		struct scrub_block *sblock_other;
1318
1319		if (mirror_index == failed_mirror_index)
1320			continue;
1321
1322		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1324			if (mirror_index >= BTRFS_MAX_MIRRORS)
1325				break;
1326			if (!sblocks_for_recheck[mirror_index].page_count)
1327				break;
1328
1329			sblock_other = sblocks_for_recheck + mirror_index;
 
1330		} else {
1331			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1332			int max_allowed = r->bbio->num_stripes -
1333						r->bbio->num_tgtdevs;
1334
1335			if (mirror_index >= max_allowed)
1336				break;
1337			if (!sblocks_for_recheck[1].page_count)
1338				break;
1339
1340			ASSERT(failed_mirror_index == 0);
1341			sblock_other = sblocks_for_recheck + 1;
1342			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1343		}
1344
1345		/* build and submit the bios, check checksums */
1346		scrub_recheck_block(fs_info, sblock_other, 0);
1347
1348		if (!sblock_other->header_error &&
1349		    !sblock_other->checksum_error &&
1350		    sblock_other->no_io_error_seen) {
1351			if (sctx->is_dev_replace) {
1352				scrub_write_block_to_dev_replace(sblock_other);
1353				goto corrected_error;
1354			} else {
1355				ret = scrub_repair_block_from_good_copy(
1356						sblock_bad, sblock_other);
1357				if (!ret)
1358					goto corrected_error;
1359			}
1360		}
1361	}
1362
1363	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1364		goto did_not_correct_error;
1365
1366	/*
1367	 * In case of I/O errors in the area that is supposed to be
1368	 * repaired, continue by picking good copies of those pages.
1369	 * Select the good pages from mirrors to rewrite bad pages from
1370	 * the area to fix. Afterwards verify the checksum of the block
1371	 * that is supposed to be repaired. This verification step is
1372	 * only done for the purpose of statistic counting and for the
1373	 * final scrub report, whether errors remain.
1374	 * A perfect algorithm could make use of the checksum and try
1375	 * all possible combinations of pages from the different mirrors
1376	 * until the checksum verification succeeds. For example, when
1377	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378	 * of mirror #2 is readable but the final checksum test fails,
1379	 * then the 2nd page of mirror #3 could be tried, whether now
1380	 * the final checksum succeeds. But this would be a rare
1381	 * exception and is therefore not implemented. At least it is
1382	 * avoided that the good copy is overwritten.
1383	 * A more useful improvement would be to pick the sectors
1384	 * without I/O error based on sector sizes (512 bytes on legacy
1385	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386	 * mirror could be repaired by taking 512 byte of a different
1387	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388	 * area are unreadable.
1389	 */
1390	success = 1;
1391	for (page_num = 0; page_num < sblock_bad->page_count;
1392	     page_num++) {
1393		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394		struct scrub_block *sblock_other = NULL;
1395
1396		/* skip no-io-error page in scrub */
1397		if (!page_bad->io_error && !sctx->is_dev_replace)
1398			continue;
1399
1400		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1401			/*
1402			 * In case of dev replace, if raid56 rebuild process
1403			 * didn't work out correct data, then copy the content
1404			 * in sblock_bad to make sure target device is identical
1405			 * to source device, instead of writing garbage data in
1406			 * sblock_for_recheck array to target device.
1407			 */
1408			sblock_other = NULL;
1409		} else if (page_bad->io_error) {
1410			/* try to find no-io-error page in mirrors */
1411			for (mirror_index = 0;
1412			     mirror_index < BTRFS_MAX_MIRRORS &&
1413			     sblocks_for_recheck[mirror_index].page_count > 0;
1414			     mirror_index++) {
1415				if (!sblocks_for_recheck[mirror_index].
1416				    pagev[page_num]->io_error) {
1417					sblock_other = sblocks_for_recheck +
1418						       mirror_index;
1419					break;
1420				}
1421			}
1422			if (!sblock_other)
1423				success = 0;
1424		}
1425
1426		if (sctx->is_dev_replace) {
1427			/*
1428			 * did not find a mirror to fetch the page
1429			 * from. scrub_write_page_to_dev_replace()
1430			 * handles this case (page->io_error), by
1431			 * filling the block with zeros before
1432			 * submitting the write request
1433			 */
1434			if (!sblock_other)
1435				sblock_other = sblock_bad;
1436
1437			if (scrub_write_page_to_dev_replace(sblock_other,
1438							    page_num) != 0) {
1439				btrfs_dev_replace_stats_inc(
1440					&fs_info->dev_replace.num_write_errors);
1441				success = 0;
1442			}
1443		} else if (sblock_other) {
1444			ret = scrub_repair_page_from_good_copy(sblock_bad,
1445							       sblock_other,
1446							       page_num, 0);
1447			if (0 == ret)
1448				page_bad->io_error = 0;
1449			else
1450				success = 0;
1451		}
1452	}
1453
1454	if (success && !sctx->is_dev_replace) {
1455		if (is_metadata || have_csum) {
1456			/*
1457			 * need to verify the checksum now that all
1458			 * sectors on disk are repaired (the write
1459			 * request for data to be repaired is on its way).
1460			 * Just be lazy and use scrub_recheck_block()
1461			 * which re-reads the data before the checksum
1462			 * is verified, but most likely the data comes out
1463			 * of the page cache.
1464			 */
1465			scrub_recheck_block(fs_info, sblock_bad, 1);
1466			if (!sblock_bad->header_error &&
1467			    !sblock_bad->checksum_error &&
1468			    sblock_bad->no_io_error_seen)
1469				goto corrected_error;
1470			else
1471				goto did_not_correct_error;
1472		} else {
1473corrected_error:
1474			spin_lock(&sctx->stat_lock);
1475			sctx->stat.corrected_errors++;
1476			sblock_to_check->data_corrected = 1;
1477			spin_unlock(&sctx->stat_lock);
1478			btrfs_err_rl_in_rcu(fs_info,
1479				"fixed up error at logical %llu on dev %s",
1480				logical, rcu_str_deref(dev->name));
1481		}
1482	} else {
1483did_not_correct_error:
1484		spin_lock(&sctx->stat_lock);
1485		sctx->stat.uncorrectable_errors++;
1486		spin_unlock(&sctx->stat_lock);
1487		btrfs_err_rl_in_rcu(fs_info,
1488			"unable to fixup (regular) error at logical %llu on dev %s",
1489			logical, rcu_str_deref(dev->name));
1490	}
1491
1492out:
1493	if (sblocks_for_recheck) {
1494		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1495		     mirror_index++) {
1496			struct scrub_block *sblock = sblocks_for_recheck +
1497						     mirror_index;
1498			struct scrub_recover *recover;
1499			int page_index;
1500
1501			for (page_index = 0; page_index < sblock->page_count;
1502			     page_index++) {
1503				sblock->pagev[page_index]->sblock = NULL;
1504				recover = sblock->pagev[page_index]->recover;
1505				if (recover) {
1506					scrub_put_recover(fs_info, recover);
1507					sblock->pagev[page_index]->recover =
1508									NULL;
1509				}
1510				scrub_page_put(sblock->pagev[page_index]);
1511			}
1512		}
1513		kfree(sblocks_for_recheck);
1514	}
1515
1516	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1517	if (ret < 0)
1518		return ret;
1519	return 0;
 
 
 
 
 
 
 
 
 
1520}
1521
1522static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1523{
1524	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1525		return 2;
1526	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1527		return 3;
1528	else
1529		return (int)bbio->num_stripes;
1530}
1531
1532static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1533						 u64 *raid_map,
1534						 u64 mapped_length,
1535						 int nstripes, int mirror,
1536						 int *stripe_index,
1537						 u64 *stripe_offset)
 
 
 
 
 
 
 
 
1538{
 
 
 
 
 
 
1539	int i;
1540
1541	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1542		/* RAID5/6 */
1543		for (i = 0; i < nstripes; i++) {
1544			if (raid_map[i] == RAID6_Q_STRIPE ||
1545			    raid_map[i] == RAID5_P_STRIPE)
1546				continue;
 
 
 
 
 
 
1547
1548			if (logical >= raid_map[i] &&
1549			    logical < raid_map[i] + mapped_length)
1550				break;
1551		}
1552
1553		*stripe_index = i;
1554		*stripe_offset = logical - raid_map[i];
1555	} else {
1556		/* The other RAID type */
1557		*stripe_index = mirror;
1558		*stripe_offset = 0;
 
 
 
 
 
 
 
 
 
 
 
1559	}
1560}
1561
1562static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563				     struct scrub_block *sblocks_for_recheck)
1564{
1565	struct scrub_ctx *sctx = original_sblock->sctx;
1566	struct btrfs_fs_info *fs_info = sctx->fs_info;
1567	u64 length = original_sblock->page_count * PAGE_SIZE;
1568	u64 logical = original_sblock->pagev[0]->logical;
1569	u64 generation = original_sblock->pagev[0]->generation;
1570	u64 flags = original_sblock->pagev[0]->flags;
1571	u64 have_csum = original_sblock->pagev[0]->have_csum;
1572	struct scrub_recover *recover;
1573	struct btrfs_bio *bbio;
1574	u64 sublen;
1575	u64 mapped_length;
1576	u64 stripe_offset;
1577	int stripe_index;
1578	int page_index = 0;
1579	int mirror_index;
1580	int nmirrors;
1581	int ret;
1582
 
 
 
 
 
 
 
 
 
 
 
 
 
1583	/*
1584	 * note: the two members refs and outstanding_pages
1585	 * are not used (and not set) in the blocks that are used for
1586	 * the recheck procedure
1587	 */
 
 
 
 
 
1588
1589	while (length > 0) {
1590		sublen = min_t(u64, length, PAGE_SIZE);
1591		mapped_length = sublen;
1592		bbio = NULL;
1593
1594		/*
1595		 * with a length of PAGE_SIZE, each returned stripe
1596		 * represents one mirror
1597		 */
1598		btrfs_bio_counter_inc_blocked(fs_info);
1599		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600				logical, &mapped_length, &bbio);
1601		if (ret || !bbio || mapped_length < sublen) {
1602			btrfs_put_bbio(bbio);
1603			btrfs_bio_counter_dec(fs_info);
1604			return -EIO;
1605		}
1606
1607		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1608		if (!recover) {
1609			btrfs_put_bbio(bbio);
1610			btrfs_bio_counter_dec(fs_info);
1611			return -ENOMEM;
1612		}
1613
1614		refcount_set(&recover->refs, 1);
1615		recover->bbio = bbio;
1616		recover->map_length = mapped_length;
1617
1618		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1619
1620		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1621
1622		for (mirror_index = 0; mirror_index < nmirrors;
1623		     mirror_index++) {
1624			struct scrub_block *sblock;
1625			struct scrub_page *page;
1626
1627			sblock = sblocks_for_recheck + mirror_index;
1628			sblock->sctx = sctx;
1629
1630			page = kzalloc(sizeof(*page), GFP_NOFS);
1631			if (!page) {
1632leave_nomem:
1633				spin_lock(&sctx->stat_lock);
1634				sctx->stat.malloc_errors++;
1635				spin_unlock(&sctx->stat_lock);
1636				scrub_put_recover(fs_info, recover);
1637				return -ENOMEM;
1638			}
1639			scrub_page_get(page);
1640			sblock->pagev[page_index] = page;
1641			page->sblock = sblock;
1642			page->flags = flags;
1643			page->generation = generation;
1644			page->logical = logical;
1645			page->have_csum = have_csum;
1646			if (have_csum)
1647				memcpy(page->csum,
1648				       original_sblock->pagev[0]->csum,
1649				       sctx->csum_size);
1650
1651			scrub_stripe_index_and_offset(logical,
1652						      bbio->map_type,
1653						      bbio->raid_map,
1654						      mapped_length,
1655						      bbio->num_stripes -
1656						      bbio->num_tgtdevs,
1657						      mirror_index,
1658						      &stripe_index,
1659						      &stripe_offset);
1660			page->physical = bbio->stripes[stripe_index].physical +
1661					 stripe_offset;
1662			page->dev = bbio->stripes[stripe_index].dev;
1663
1664			BUG_ON(page_index >= original_sblock->page_count);
1665			page->physical_for_dev_replace =
1666				original_sblock->pagev[page_index]->
1667				physical_for_dev_replace;
1668			/* for missing devices, dev->bdev is NULL */
1669			page->mirror_num = mirror_index + 1;
1670			sblock->page_count++;
1671			page->page = alloc_page(GFP_NOFS);
1672			if (!page->page)
1673				goto leave_nomem;
1674
1675			scrub_get_recover(recover);
1676			page->recover = recover;
1677		}
1678		scrub_put_recover(fs_info, recover);
1679		length -= sublen;
1680		logical += sublen;
1681		page_index++;
1682	}
1683
1684	return 0;
 
 
1685}
1686
1687static void scrub_bio_wait_endio(struct bio *bio)
1688{
1689	complete(bio->bi_private);
1690}
 
 
 
 
1691
1692static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1693					struct bio *bio,
1694					struct scrub_page *page)
1695{
1696	DECLARE_COMPLETION_ONSTACK(done);
1697	int ret;
1698	int mirror_num;
1699
1700	bio->bi_iter.bi_sector = page->logical >> 9;
1701	bio->bi_private = &done;
1702	bio->bi_end_io = scrub_bio_wait_endio;
1703
1704	mirror_num = page->sblock->pagev[0]->mirror_num;
1705	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706				    page->recover->map_length,
1707				    mirror_num, 0);
1708	if (ret)
1709		return ret;
1710
1711	wait_for_completion_io(&done);
1712	return blk_status_to_errno(bio->bi_status);
1713}
1714
1715static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1716					  struct scrub_block *sblock)
1717{
1718	struct scrub_page *first_page = sblock->pagev[0];
1719	struct bio *bio;
1720	int page_num;
 
 
 
1721
1722	/* All pages in sblock belong to the same stripe on the same device. */
1723	ASSERT(first_page->dev);
1724	if (!first_page->dev->bdev)
1725		goto out;
1726
1727	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1728	bio_set_dev(bio, first_page->dev->bdev);
1729
1730	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1731		struct scrub_page *page = sblock->pagev[page_num];
1732
1733		WARN_ON(!page->page);
1734		bio_add_page(bio, page->page, PAGE_SIZE, 0);
 
 
1735	}
 
1736
1737	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1738		bio_put(bio);
1739		goto out;
1740	}
1741
1742	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743
1744	scrub_recheck_block_checksum(sblock);
1745
1746	return;
1747out:
1748	for (page_num = 0; page_num < sblock->page_count; page_num++)
1749		sblock->pagev[page_num]->io_error = 1;
1750
1751	sblock->no_io_error_seen = 0;
1752}
1753
1754/*
1755 * this function will check the on disk data for checksum errors, header
1756 * errors and read I/O errors. If any I/O errors happen, the exact pages
1757 * which are errored are marked as being bad. The goal is to enable scrub
1758 * to take those pages that are not errored from all the mirrors so that
1759 * the pages that are errored in the just handled mirror can be repaired.
 
 
 
 
 
 
1760 */
1761static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762				struct scrub_block *sblock,
1763				int retry_failed_mirror)
1764{
1765	int page_num;
 
 
1766
1767	sblock->no_io_error_seen = 1;
 
 
 
1768
1769	/* short cut for raid56 */
1770	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1771		return scrub_recheck_block_on_raid56(fs_info, sblock);
1772
1773	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1774		struct bio *bio;
1775		struct scrub_page *page = sblock->pagev[page_num];
1776
1777		if (page->dev->bdev == NULL) {
1778			page->io_error = 1;
1779			sblock->no_io_error_seen = 0;
1780			continue;
1781		}
1782
1783		WARN_ON(!page->page);
1784		bio = btrfs_io_bio_alloc(1);
1785		bio_set_dev(bio, page->dev->bdev);
1786
1787		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1788		bio->bi_iter.bi_sector = page->physical >> 9;
1789		bio->bi_opf = REQ_OP_READ;
1790
1791		if (btrfsic_submit_bio_wait(bio)) {
1792			page->io_error = 1;
1793			sblock->no_io_error_seen = 0;
1794		}
1795
1796		bio_put(bio);
1797	}
1798
1799	if (sblock->no_io_error_seen)
1800		scrub_recheck_block_checksum(sblock);
1801}
1802
1803static inline int scrub_check_fsid(u8 fsid[],
1804				   struct scrub_page *spage)
 
 
 
 
1805{
1806	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1807	int ret;
 
 
 
1808
1809	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1810	return !ret;
1811}
1812
1813static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1814{
1815	sblock->header_error = 0;
1816	sblock->checksum_error = 0;
1817	sblock->generation_error = 0;
 
1818
1819	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1820		scrub_checksum_data(sblock);
1821	else
1822		scrub_checksum_tree_block(sblock);
1823}
 
 
 
 
 
 
 
 
1824
1825static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826					     struct scrub_block *sblock_good)
1827{
1828	int page_num;
1829	int ret = 0;
 
1830
1831	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1832		int ret_sub;
1833
1834		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1835							   sblock_good,
1836							   page_num, 1);
1837		if (ret_sub)
1838			ret = ret_sub;
1839	}
1840
1841	return ret;
 
1842}
1843
1844static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1845					    struct scrub_block *sblock_good,
1846					    int page_num, int force_write)
1847{
1848	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1849	struct scrub_page *page_good = sblock_good->pagev[page_num];
1850	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1851
1852	BUG_ON(page_bad->page == NULL);
1853	BUG_ON(page_good->page == NULL);
1854	if (force_write || sblock_bad->header_error ||
1855	    sblock_bad->checksum_error || page_bad->io_error) {
1856		struct bio *bio;
1857		int ret;
 
1858
1859		if (!page_bad->dev->bdev) {
1860			btrfs_warn_rl(fs_info,
1861				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1862			return -EIO;
1863		}
1864
1865		bio = btrfs_io_bio_alloc(1);
1866		bio_set_dev(bio, page_bad->dev->bdev);
1867		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1868		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1869
1870		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1871		if (PAGE_SIZE != ret) {
1872			bio_put(bio);
1873			return -EIO;
1874		}
1875
1876		if (btrfsic_submit_bio_wait(bio)) {
1877			btrfs_dev_stat_inc_and_print(page_bad->dev,
1878				BTRFS_DEV_STAT_WRITE_ERRS);
1879			btrfs_dev_replace_stats_inc(
1880				&fs_info->dev_replace.num_write_errors);
1881			bio_put(bio);
1882			return -EIO;
1883		}
1884		bio_put(bio);
1885	}
1886
1887	return 0;
1888}
1889
1890static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1891{
1892	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1893	int page_num;
1894
1895	/*
1896	 * This block is used for the check of the parity on the source device,
1897	 * so the data needn't be written into the destination device.
1898	 */
1899	if (sblock->sparity)
1900		return;
1901
1902	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1903		int ret;
1904
1905		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1906		if (ret)
1907			btrfs_dev_replace_stats_inc(
1908				&fs_info->dev_replace.num_write_errors);
1909	}
 
 
1910}
1911
1912static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1913					   int page_num)
 
 
 
 
 
1914{
1915	struct scrub_page *spage = sblock->pagev[page_num];
 
 
1916
1917	BUG_ON(spage->page == NULL);
1918	if (spage->io_error) {
1919		void *mapped_buffer = kmap_atomic(spage->page);
 
 
 
 
1920
1921		clear_page(mapped_buffer);
1922		flush_dcache_page(spage->page);
1923		kunmap_atomic(mapped_buffer);
1924	}
1925	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1926}
1927
1928static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1929				    struct scrub_page *spage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1930{
1931	struct scrub_bio *sbio;
 
1932	int ret;
1933
1934	mutex_lock(&sctx->wr_lock);
1935again:
1936	if (!sctx->wr_curr_bio) {
1937		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1938					      GFP_KERNEL);
1939		if (!sctx->wr_curr_bio) {
1940			mutex_unlock(&sctx->wr_lock);
1941			return -ENOMEM;
1942		}
1943		sctx->wr_curr_bio->sctx = sctx;
1944		sctx->wr_curr_bio->page_count = 0;
1945	}
1946	sbio = sctx->wr_curr_bio;
1947	if (sbio->page_count == 0) {
1948		struct bio *bio;
1949
1950		sbio->physical = spage->physical_for_dev_replace;
1951		sbio->logical = spage->logical;
1952		sbio->dev = sctx->wr_tgtdev;
1953		bio = sbio->bio;
1954		if (!bio) {
1955			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1956			sbio->bio = bio;
1957		}
1958
1959		bio->bi_private = sbio;
1960		bio->bi_end_io = scrub_wr_bio_end_io;
1961		bio_set_dev(bio, sbio->dev->bdev);
1962		bio->bi_iter.bi_sector = sbio->physical >> 9;
1963		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1964		sbio->status = 0;
1965	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1966		   spage->physical_for_dev_replace ||
1967		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1968		   spage->logical) {
1969		scrub_wr_submit(sctx);
1970		goto again;
1971	}
1972
1973	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1974	if (ret != PAGE_SIZE) {
1975		if (sbio->page_count < 1) {
1976			bio_put(sbio->bio);
1977			sbio->bio = NULL;
1978			mutex_unlock(&sctx->wr_lock);
1979			return -EIO;
1980		}
1981		scrub_wr_submit(sctx);
1982		goto again;
1983	}
1984
1985	sbio->pagev[sbio->page_count] = spage;
1986	scrub_page_get(spage);
1987	sbio->page_count++;
1988	if (sbio->page_count == sctx->pages_per_wr_bio)
1989		scrub_wr_submit(sctx);
1990	mutex_unlock(&sctx->wr_lock);
1991
1992	return 0;
1993}
 
 
 
 
1994
1995static void scrub_wr_submit(struct scrub_ctx *sctx)
1996{
1997	struct scrub_bio *sbio;
1998
1999	if (!sctx->wr_curr_bio)
2000		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001
2002	sbio = sctx->wr_curr_bio;
2003	sctx->wr_curr_bio = NULL;
2004	WARN_ON(!sbio->bio->bi_disk);
2005	scrub_pending_bio_inc(sctx);
2006	/* process all writes in a single worker thread. Then the block layer
2007	 * orders the requests before sending them to the driver which
2008	 * doubled the write performance on spinning disks when measured
2009	 * with Linux 3.5 */
2010	btrfsic_submit_bio(sbio->bio);
 
 
 
 
 
 
2011}
2012
2013static void scrub_wr_bio_end_io(struct bio *bio)
 
2014{
2015	struct scrub_bio *sbio = bio->bi_private;
2016	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2017
2018	sbio->status = bio->bi_status;
2019	sbio->bio = bio;
2020
2021	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2022			 scrub_wr_bio_end_io_worker, NULL, NULL);
2023	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
 
 
 
 
 
2024}
2025
2026static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
 
2027{
2028	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2029	struct scrub_ctx *sctx = sbio->sctx;
2030	int i;
 
 
2031
2032	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2033	if (sbio->status) {
2034		struct btrfs_dev_replace *dev_replace =
2035			&sbio->sctx->fs_info->dev_replace;
 
 
 
 
 
 
 
2036
2037		for (i = 0; i < sbio->page_count; i++) {
2038			struct scrub_page *spage = sbio->pagev[i];
2039
2040			spage->io_error = 1;
2041			btrfs_dev_replace_stats_inc(&dev_replace->
2042						    num_write_errors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043		}
2044	}
 
2045
2046	for (i = 0; i < sbio->page_count; i++)
2047		scrub_page_put(sbio->pagev[i]);
2048
2049	bio_put(sbio->bio);
2050	kfree(sbio);
2051	scrub_pending_bio_dec(sctx);
 
 
 
 
 
2052}
2053
2054static int scrub_checksum(struct scrub_block *sblock)
2055{
2056	u64 flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057	int ret;
2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059	/*
2060	 * No need to initialize these stats currently,
2061	 * because this function only use return value
2062	 * instead of these stats value.
2063	 *
2064	 * Todo:
2065	 * always use stats
2066	 */
2067	sblock->header_error = 0;
2068	sblock->generation_error = 0;
2069	sblock->checksum_error = 0;
2070
2071	WARN_ON(sblock->page_count < 1);
2072	flags = sblock->pagev[0]->flags;
2073	ret = 0;
2074	if (flags & BTRFS_EXTENT_FLAG_DATA)
2075		ret = scrub_checksum_data(sblock);
2076	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2077		ret = scrub_checksum_tree_block(sblock);
2078	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2079		(void)scrub_checksum_super(sblock);
2080	else
2081		WARN_ON(1);
2082	if (ret)
2083		scrub_handle_errored_block(sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084
 
 
 
 
 
 
 
2085	return ret;
2086}
2087
2088static int scrub_checksum_data(struct scrub_block *sblock)
2089{
2090	struct scrub_ctx *sctx = sblock->sctx;
2091	u8 csum[BTRFS_CSUM_SIZE];
2092	u8 *on_disk_csum;
2093	struct page *page;
2094	void *buffer;
2095	u32 crc = ~(u32)0;
2096	u64 len;
2097	int index;
2098
2099	BUG_ON(sblock->page_count < 1);
2100	if (!sblock->pagev[0]->have_csum)
2101		return 0;
2102
2103	on_disk_csum = sblock->pagev[0]->csum;
2104	page = sblock->pagev[0]->page;
2105	buffer = kmap_atomic(page);
2106
2107	len = sctx->fs_info->sectorsize;
2108	index = 0;
2109	for (;;) {
2110		u64 l = min_t(u64, len, PAGE_SIZE);
2111
2112		crc = btrfs_csum_data(buffer, crc, l);
2113		kunmap_atomic(buffer);
2114		len -= l;
2115		if (len == 0)
2116			break;
2117		index++;
2118		BUG_ON(index >= sblock->page_count);
2119		BUG_ON(!sblock->pagev[index]->page);
2120		page = sblock->pagev[index]->page;
2121		buffer = kmap_atomic(page);
2122	}
2123
2124	btrfs_csum_final(crc, csum);
2125	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126		sblock->checksum_error = 1;
2127
2128	return sblock->checksum_error;
2129}
2130
2131static int scrub_checksum_tree_block(struct scrub_block *sblock)
 
2132{
2133	struct scrub_ctx *sctx = sblock->sctx;
2134	struct btrfs_header *h;
2135	struct btrfs_fs_info *fs_info = sctx->fs_info;
2136	u8 calculated_csum[BTRFS_CSUM_SIZE];
2137	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2138	struct page *page;
2139	void *mapped_buffer;
2140	u64 mapped_size;
2141	void *p;
2142	u32 crc = ~(u32)0;
2143	u64 len;
2144	int index;
2145
2146	BUG_ON(sblock->page_count < 1);
2147	page = sblock->pagev[0]->page;
2148	mapped_buffer = kmap_atomic(page);
2149	h = (struct btrfs_header *)mapped_buffer;
2150	memcpy(on_disk_csum, h->csum, sctx->csum_size);
2151
2152	/*
2153	 * we don't use the getter functions here, as we
2154	 * a) don't have an extent buffer and
2155	 * b) the page is already kmapped
2156	 */
2157	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158		sblock->header_error = 1;
2159
2160	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2161		sblock->header_error = 1;
2162		sblock->generation_error = 1;
2163	}
2164
2165	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166		sblock->header_error = 1;
2167
2168	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2169		   BTRFS_UUID_SIZE))
2170		sblock->header_error = 1;
2171
2172	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2173	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2174	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2175	index = 0;
2176	for (;;) {
2177		u64 l = min_t(u64, len, mapped_size);
2178
2179		crc = btrfs_csum_data(p, crc, l);
2180		kunmap_atomic(mapped_buffer);
2181		len -= l;
2182		if (len == 0)
2183			break;
2184		index++;
2185		BUG_ON(index >= sblock->page_count);
2186		BUG_ON(!sblock->pagev[index]->page);
2187		page = sblock->pagev[index]->page;
2188		mapped_buffer = kmap_atomic(page);
2189		mapped_size = PAGE_SIZE;
2190		p = mapped_buffer;
2191	}
2192
2193	btrfs_csum_final(crc, calculated_csum);
2194	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195		sblock->checksum_error = 1;
 
 
 
 
 
 
 
2196
2197	return sblock->header_error || sblock->checksum_error;
2198}
2199
2200static int scrub_checksum_super(struct scrub_block *sblock)
2201{
2202	struct btrfs_super_block *s;
2203	struct scrub_ctx *sctx = sblock->sctx;
2204	u8 calculated_csum[BTRFS_CSUM_SIZE];
2205	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2206	struct page *page;
2207	void *mapped_buffer;
2208	u64 mapped_size;
2209	void *p;
2210	u32 crc = ~(u32)0;
2211	int fail_gen = 0;
2212	int fail_cor = 0;
2213	u64 len;
2214	int index;
 
 
 
 
2215
2216	BUG_ON(sblock->page_count < 1);
2217	page = sblock->pagev[0]->page;
2218	mapped_buffer = kmap_atomic(page);
2219	s = (struct btrfs_super_block *)mapped_buffer;
2220	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2221
2222	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2223		++fail_cor;
2224
2225	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2226		++fail_gen;
2227
2228	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2229		++fail_cor;
2230
2231	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2232	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2233	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2234	index = 0;
2235	for (;;) {
2236		u64 l = min_t(u64, len, mapped_size);
2237
2238		crc = btrfs_csum_data(p, crc, l);
2239		kunmap_atomic(mapped_buffer);
2240		len -= l;
2241		if (len == 0)
2242			break;
2243		index++;
2244		BUG_ON(index >= sblock->page_count);
2245		BUG_ON(!sblock->pagev[index]->page);
2246		page = sblock->pagev[index]->page;
2247		mapped_buffer = kmap_atomic(page);
2248		mapped_size = PAGE_SIZE;
2249		p = mapped_buffer;
2250	}
2251
2252	btrfs_csum_final(crc, calculated_csum);
2253	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2254		++fail_cor;
2255
2256	if (fail_cor + fail_gen) {
2257		/*
2258		 * if we find an error in a super block, we just report it.
2259		 * They will get written with the next transaction commit
2260		 * anyway
2261		 */
2262		spin_lock(&sctx->stat_lock);
2263		++sctx->stat.super_errors;
2264		spin_unlock(&sctx->stat_lock);
2265		if (fail_cor)
2266			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2268		else
2269			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270				BTRFS_DEV_STAT_GENERATION_ERRS);
2271	}
2272
2273	return fail_cor + fail_gen;
2274}
2275
2276static void scrub_block_get(struct scrub_block *sblock)
2277{
2278	refcount_inc(&sblock->refs);
2279}
2280
2281static void scrub_block_put(struct scrub_block *sblock)
2282{
2283	if (refcount_dec_and_test(&sblock->refs)) {
2284		int i;
2285
2286		if (sblock->sparity)
2287			scrub_parity_put(sblock->sparity);
2288
2289		for (i = 0; i < sblock->page_count; i++)
2290			scrub_page_put(sblock->pagev[i]);
2291		kfree(sblock);
2292	}
2293}
2294
2295static void scrub_page_get(struct scrub_page *spage)
 
2296{
2297	atomic_inc(&spage->refs);
2298}
 
 
 
 
 
 
 
 
2299
2300static void scrub_page_put(struct scrub_page *spage)
2301{
2302	if (atomic_dec_and_test(&spage->refs)) {
2303		if (spage->page)
2304			__free_page(spage->page);
2305		kfree(spage);
2306	}
2307}
2308
2309static void scrub_submit(struct scrub_ctx *sctx)
2310{
2311	struct scrub_bio *sbio;
2312
2313	if (sctx->curr == -1)
2314		return;
 
 
 
 
2315
2316	sbio = sctx->bios[sctx->curr];
2317	sctx->curr = -1;
2318	scrub_pending_bio_inc(sctx);
2319	btrfsic_submit_bio(sbio->bio);
2320}
2321
2322static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2323				    struct scrub_page *spage)
2324{
2325	struct scrub_block *sblock = spage->sblock;
2326	struct scrub_bio *sbio;
2327	int ret;
2328
2329again:
2330	/*
2331	 * grab a fresh bio or wait for one to become available
 
2332	 */
2333	while (sctx->curr == -1) {
2334		spin_lock(&sctx->list_lock);
2335		sctx->curr = sctx->first_free;
2336		if (sctx->curr != -1) {
2337			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2338			sctx->bios[sctx->curr]->next_free = -1;
2339			sctx->bios[sctx->curr]->page_count = 0;
2340			spin_unlock(&sctx->list_lock);
2341		} else {
2342			spin_unlock(&sctx->list_lock);
2343			wait_event(sctx->list_wait, sctx->first_free != -1);
2344		}
2345	}
2346	sbio = sctx->bios[sctx->curr];
2347	if (sbio->page_count == 0) {
2348		struct bio *bio;
2349
2350		sbio->physical = spage->physical;
2351		sbio->logical = spage->logical;
2352		sbio->dev = spage->dev;
2353		bio = sbio->bio;
2354		if (!bio) {
2355			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2356			sbio->bio = bio;
2357		}
2358
2359		bio->bi_private = sbio;
2360		bio->bi_end_io = scrub_bio_end_io;
2361		bio_set_dev(bio, sbio->dev->bdev);
2362		bio->bi_iter.bi_sector = sbio->physical >> 9;
2363		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2364		sbio->status = 0;
2365	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2366		   spage->physical ||
2367		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2368		   spage->logical ||
2369		   sbio->dev != spage->dev) {
2370		scrub_submit(sctx);
2371		goto again;
2372	}
2373
2374	sbio->pagev[sbio->page_count] = spage;
2375	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2376	if (ret != PAGE_SIZE) {
2377		if (sbio->page_count < 1) {
2378			bio_put(sbio->bio);
2379			sbio->bio = NULL;
2380			return -EIO;
2381		}
2382		scrub_submit(sctx);
2383		goto again;
2384	}
2385
2386	scrub_block_get(sblock); /* one for the page added to the bio */
2387	atomic_inc(&sblock->outstanding_pages);
2388	sbio->page_count++;
2389	if (sbio->page_count == sctx->pages_per_rd_bio)
2390		scrub_submit(sctx);
2391
2392	return 0;
2393}
2394
2395static void scrub_missing_raid56_end_io(struct bio *bio)
2396{
2397	struct scrub_block *sblock = bio->bi_private;
2398	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2399
2400	if (bio->bi_status)
2401		sblock->no_io_error_seen = 0;
 
2402
2403	bio_put(bio);
2404
2405	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
 
 
 
 
 
2406}
2407
2408static void scrub_missing_raid56_worker(struct btrfs_work *work)
 
 
2409{
2410	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2411	struct scrub_ctx *sctx = sblock->sctx;
2412	struct btrfs_fs_info *fs_info = sctx->fs_info;
2413	u64 logical;
2414	struct btrfs_device *dev;
2415
2416	logical = sblock->pagev[0]->logical;
2417	dev = sblock->pagev[0]->dev;
2418
2419	if (sblock->no_io_error_seen)
2420		scrub_recheck_block_checksum(sblock);
 
 
 
2421
2422	if (!sblock->no_io_error_seen) {
2423		spin_lock(&sctx->stat_lock);
2424		sctx->stat.read_errors++;
2425		spin_unlock(&sctx->stat_lock);
2426		btrfs_err_rl_in_rcu(fs_info,
2427			"IO error rebuilding logical %llu for dev %s",
2428			logical, rcu_str_deref(dev->name));
2429	} else if (sblock->header_error || sblock->checksum_error) {
2430		spin_lock(&sctx->stat_lock);
2431		sctx->stat.uncorrectable_errors++;
2432		spin_unlock(&sctx->stat_lock);
2433		btrfs_err_rl_in_rcu(fs_info,
2434			"failed to rebuild valid logical %llu for dev %s",
2435			logical, rcu_str_deref(dev->name));
2436	} else {
2437		scrub_write_block_to_dev_replace(sblock);
2438	}
2439
2440	scrub_block_put(sblock);
2441
2442	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443		mutex_lock(&sctx->wr_lock);
2444		scrub_wr_submit(sctx);
2445		mutex_unlock(&sctx->wr_lock);
2446	}
2447
2448	scrub_pending_bio_dec(sctx);
2449}
2450
2451static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2452{
2453	struct scrub_ctx *sctx = sblock->sctx;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	u64 length = sblock->page_count * PAGE_SIZE;
2456	u64 logical = sblock->pagev[0]->logical;
2457	struct btrfs_bio *bbio = NULL;
2458	struct bio *bio;
2459	struct btrfs_raid_bio *rbio;
2460	int ret;
2461	int i;
2462
2463	btrfs_bio_counter_inc_blocked(fs_info);
2464	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2465			&length, &bbio);
2466	if (ret || !bbio || !bbio->raid_map)
2467		goto bbio_out;
2468
2469	if (WARN_ON(!sctx->is_dev_replace ||
2470		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2471		/*
2472		 * We shouldn't be scrubbing a missing device. Even for dev
2473		 * replace, we should only get here for RAID 5/6. We either
2474		 * managed to mount something with no mirrors remaining or
2475		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2476		 */
2477		goto bbio_out;
2478	}
2479
2480	bio = btrfs_io_bio_alloc(0);
2481	bio->bi_iter.bi_sector = logical >> 9;
2482	bio->bi_private = sblock;
2483	bio->bi_end_io = scrub_missing_raid56_end_io;
2484
2485	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2486	if (!rbio)
2487		goto rbio_out;
2488
2489	for (i = 0; i < sblock->page_count; i++) {
2490		struct scrub_page *spage = sblock->pagev[i];
2491
2492		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2493	}
2494
2495	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2496			scrub_missing_raid56_worker, NULL, NULL);
2497	scrub_block_get(sblock);
2498	scrub_pending_bio_inc(sctx);
2499	raid56_submit_missing_rbio(rbio);
2500	return;
2501
2502rbio_out:
2503	bio_put(bio);
2504bbio_out:
2505	btrfs_bio_counter_dec(fs_info);
2506	btrfs_put_bbio(bbio);
2507	spin_lock(&sctx->stat_lock);
2508	sctx->stat.malloc_errors++;
2509	spin_unlock(&sctx->stat_lock);
2510}
2511
2512static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513		       u64 physical, struct btrfs_device *dev, u64 flags,
2514		       u64 gen, int mirror_num, u8 *csum, int force,
2515		       u64 physical_for_dev_replace)
2516{
2517	struct scrub_block *sblock;
2518	int index;
2519
2520	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2521	if (!sblock) {
2522		spin_lock(&sctx->stat_lock);
2523		sctx->stat.malloc_errors++;
2524		spin_unlock(&sctx->stat_lock);
2525		return -ENOMEM;
2526	}
2527
2528	/* one ref inside this function, plus one for each page added to
2529	 * a bio later on */
2530	refcount_set(&sblock->refs, 1);
2531	sblock->sctx = sctx;
2532	sblock->no_io_error_seen = 1;
2533
2534	for (index = 0; len > 0; index++) {
2535		struct scrub_page *spage;
2536		u64 l = min_t(u64, len, PAGE_SIZE);
2537
2538		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2539		if (!spage) {
2540leave_nomem:
2541			spin_lock(&sctx->stat_lock);
2542			sctx->stat.malloc_errors++;
2543			spin_unlock(&sctx->stat_lock);
2544			scrub_block_put(sblock);
2545			return -ENOMEM;
2546		}
2547		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2548		scrub_page_get(spage);
2549		sblock->pagev[index] = spage;
2550		spage->sblock = sblock;
2551		spage->dev = dev;
2552		spage->flags = flags;
2553		spage->generation = gen;
2554		spage->logical = logical;
2555		spage->physical = physical;
2556		spage->physical_for_dev_replace = physical_for_dev_replace;
2557		spage->mirror_num = mirror_num;
2558		if (csum) {
2559			spage->have_csum = 1;
2560			memcpy(spage->csum, csum, sctx->csum_size);
2561		} else {
2562			spage->have_csum = 0;
2563		}
2564		sblock->page_count++;
2565		spage->page = alloc_page(GFP_KERNEL);
2566		if (!spage->page)
2567			goto leave_nomem;
2568		len -= l;
2569		logical += l;
2570		physical += l;
2571		physical_for_dev_replace += l;
2572	}
2573
2574	WARN_ON(sblock->page_count == 0);
2575	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2576		/*
2577		 * This case should only be hit for RAID 5/6 device replace. See
2578		 * the comment in scrub_missing_raid56_pages() for details.
2579		 */
2580		scrub_missing_raid56_pages(sblock);
2581	} else {
2582		for (index = 0; index < sblock->page_count; index++) {
2583			struct scrub_page *spage = sblock->pagev[index];
2584			int ret;
2585
2586			ret = scrub_add_page_to_rd_bio(sctx, spage);
2587			if (ret) {
2588				scrub_block_put(sblock);
2589				return ret;
2590			}
2591		}
 
 
2592
2593		if (force)
2594			scrub_submit(sctx);
2595	}
2596
2597	/* last one frees, either here or in bio completion for last page */
2598	scrub_block_put(sblock);
2599	return 0;
2600}
2601
2602static void scrub_bio_end_io(struct bio *bio)
2603{
2604	struct scrub_bio *sbio = bio->bi_private;
2605	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2606
2607	sbio->status = bio->bi_status;
2608	sbio->bio = bio;
2609
2610	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2611}
2612
2613static void scrub_bio_end_io_worker(struct btrfs_work *work)
2614{
2615	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616	struct scrub_ctx *sctx = sbio->sctx;
2617	int i;
2618
2619	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2620	if (sbio->status) {
2621		for (i = 0; i < sbio->page_count; i++) {
2622			struct scrub_page *spage = sbio->pagev[i];
2623
2624			spage->io_error = 1;
2625			spage->sblock->no_io_error_seen = 0;
2626		}
2627	}
2628
2629	/* now complete the scrub_block items that have all pages completed */
2630	for (i = 0; i < sbio->page_count; i++) {
2631		struct scrub_page *spage = sbio->pagev[i];
2632		struct scrub_block *sblock = spage->sblock;
2633
2634		if (atomic_dec_and_test(&sblock->outstanding_pages))
2635			scrub_block_complete(sblock);
2636		scrub_block_put(sblock);
2637	}
 
 
 
 
2638
2639	bio_put(sbio->bio);
2640	sbio->bio = NULL;
2641	spin_lock(&sctx->list_lock);
2642	sbio->next_free = sctx->first_free;
2643	sctx->first_free = sbio->index;
2644	spin_unlock(&sctx->list_lock);
2645
2646	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647		mutex_lock(&sctx->wr_lock);
2648		scrub_wr_submit(sctx);
2649		mutex_unlock(&sctx->wr_lock);
2650	}
2651
2652	scrub_pending_bio_dec(sctx);
2653}
2654
2655static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2656				       unsigned long *bitmap,
2657				       u64 start, u64 len)
 
2658{
2659	u64 offset;
2660	u64 nsectors64;
2661	u32 nsectors;
2662	int sectorsize = sparity->sctx->fs_info->sectorsize;
 
 
 
 
2663
2664	if (len >= sparity->stripe_len) {
2665		bitmap_set(bitmap, 0, sparity->nsectors);
2666		return;
2667	}
2668
2669	start -= sparity->logic_start;
2670	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2671	offset = div_u64(offset, sectorsize);
2672	nsectors64 = div_u64(len, sectorsize);
 
 
 
 
 
 
2673
2674	ASSERT(nsectors64 < UINT_MAX);
2675	nsectors = (u32)nsectors64;
 
2676
2677	if (offset + nsectors <= sparity->nsectors) {
2678		bitmap_set(bitmap, offset, nsectors);
2679		return;
2680	}
2681
2682	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2683	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
 
 
2684}
2685
2686static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2687						   u64 start, u64 len)
 
 
 
2688{
2689	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2690}
 
 
 
 
 
 
 
 
 
 
 
2691
2692static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2693						  u64 start, u64 len)
2694{
2695	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2696}
2697
2698static void scrub_block_complete(struct scrub_block *sblock)
2699{
2700	int corrupted = 0;
2701
2702	if (!sblock->no_io_error_seen) {
2703		corrupted = 1;
2704		scrub_handle_errored_block(sblock);
2705	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706		/*
2707		 * if has checksum error, write via repair mechanism in
2708		 * dev replace case, otherwise write here in dev replace
2709		 * case.
2710		 */
2711		corrupted = scrub_checksum(sblock);
2712		if (!corrupted && sblock->sctx->is_dev_replace)
2713			scrub_write_block_to_dev_replace(sblock);
 
 
 
 
2714	}
2715
2716	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2717		u64 start = sblock->pagev[0]->logical;
2718		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2719			  PAGE_SIZE;
2720
2721		scrub_parity_mark_sectors_error(sblock->sparity,
2722						start, end - start);
2723	}
2724}
2725
2726static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2727{
2728	struct btrfs_ordered_sum *sum = NULL;
2729	unsigned long index;
2730	unsigned long num_sectors;
2731
2732	while (!list_empty(&sctx->csum_list)) {
2733		sum = list_first_entry(&sctx->csum_list,
2734				       struct btrfs_ordered_sum, list);
2735		if (sum->bytenr > logical)
2736			return 0;
2737		if (sum->bytenr + sum->len > logical)
2738			break;
2739
2740		++sctx->stat.csum_discards;
2741		list_del(&sum->list);
2742		kfree(sum);
2743		sum = NULL;
2744	}
2745	if (!sum)
2746		return 0;
2747
2748	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2749	ASSERT(index < UINT_MAX);
2750
2751	num_sectors = sum->len / sctx->fs_info->sectorsize;
2752	memcpy(csum, sum->sums + index, sctx->csum_size);
2753	if (index == num_sectors - 1) {
2754		list_del(&sum->list);
2755		kfree(sum);
2756	}
2757	return 1;
2758}
2759
2760/* scrub extent tries to collect up to 64 kB for each bio */
2761static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2762			u64 logical, u64 len,
2763			u64 physical, struct btrfs_device *dev, u64 flags,
2764			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2765{
2766	int ret;
2767	u8 csum[BTRFS_CSUM_SIZE];
2768	u32 blocksize;
2769
2770	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2771		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2772			blocksize = map->stripe_len;
2773		else
2774			blocksize = sctx->fs_info->sectorsize;
2775		spin_lock(&sctx->stat_lock);
2776		sctx->stat.data_extents_scrubbed++;
2777		sctx->stat.data_bytes_scrubbed += len;
2778		spin_unlock(&sctx->stat_lock);
2779	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2780		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2781			blocksize = map->stripe_len;
2782		else
2783			blocksize = sctx->fs_info->nodesize;
2784		spin_lock(&sctx->stat_lock);
2785		sctx->stat.tree_extents_scrubbed++;
2786		sctx->stat.tree_bytes_scrubbed += len;
2787		spin_unlock(&sctx->stat_lock);
2788	} else {
2789		blocksize = sctx->fs_info->sectorsize;
2790		WARN_ON(1);
2791	}
 
 
2792
2793	while (len) {
2794		u64 l = min_t(u64, len, blocksize);
2795		int have_csum = 0;
2796
2797		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2798			/* push csums to sbio */
2799			have_csum = scrub_find_csum(sctx, logical, csum);
2800			if (have_csum == 0)
2801				++sctx->stat.no_csum;
2802			if (sctx->is_dev_replace && !have_csum) {
2803				ret = copy_nocow_pages(sctx, logical, l,
2804						       mirror_num,
2805						      physical_for_dev_replace);
2806				goto behind_scrub_pages;
2807			}
2808		}
2809		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810				  mirror_num, have_csum ? csum : NULL, 0,
2811				  physical_for_dev_replace);
2812behind_scrub_pages:
2813		if (ret)
2814			return ret;
2815		len -= l;
2816		logical += l;
2817		physical += l;
2818		physical_for_dev_replace += l;
2819	}
2820	return 0;
2821}
2822
2823static int scrub_pages_for_parity(struct scrub_parity *sparity,
2824				  u64 logical, u64 len,
2825				  u64 physical, struct btrfs_device *dev,
2826				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2827{
2828	struct scrub_ctx *sctx = sparity->sctx;
2829	struct scrub_block *sblock;
2830	int index;
 
2831
2832	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2833	if (!sblock) {
2834		spin_lock(&sctx->stat_lock);
2835		sctx->stat.malloc_errors++;
2836		spin_unlock(&sctx->stat_lock);
2837		return -ENOMEM;
2838	}
2839
2840	/* one ref inside this function, plus one for each page added to
2841	 * a bio later on */
2842	refcount_set(&sblock->refs, 1);
2843	sblock->sctx = sctx;
2844	sblock->no_io_error_seen = 1;
2845	sblock->sparity = sparity;
2846	scrub_parity_get(sparity);
2847
2848	for (index = 0; len > 0; index++) {
2849		struct scrub_page *spage;
2850		u64 l = min_t(u64, len, PAGE_SIZE);
2851
2852		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2853		if (!spage) {
2854leave_nomem:
2855			spin_lock(&sctx->stat_lock);
2856			sctx->stat.malloc_errors++;
2857			spin_unlock(&sctx->stat_lock);
2858			scrub_block_put(sblock);
2859			return -ENOMEM;
2860		}
2861		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2862		/* For scrub block */
2863		scrub_page_get(spage);
2864		sblock->pagev[index] = spage;
2865		/* For scrub parity */
2866		scrub_page_get(spage);
2867		list_add_tail(&spage->list, &sparity->spages);
2868		spage->sblock = sblock;
2869		spage->dev = dev;
2870		spage->flags = flags;
2871		spage->generation = gen;
2872		spage->logical = logical;
2873		spage->physical = physical;
2874		spage->mirror_num = mirror_num;
2875		if (csum) {
2876			spage->have_csum = 1;
2877			memcpy(spage->csum, csum, sctx->csum_size);
2878		} else {
2879			spage->have_csum = 0;
2880		}
2881		sblock->page_count++;
2882		spage->page = alloc_page(GFP_KERNEL);
2883		if (!spage->page)
2884			goto leave_nomem;
2885		len -= l;
2886		logical += l;
2887		physical += l;
2888	}
2889
2890	WARN_ON(sblock->page_count == 0);
2891	for (index = 0; index < sblock->page_count; index++) {
2892		struct scrub_page *spage = sblock->pagev[index];
2893		int ret;
 
2894
2895		ret = scrub_add_page_to_rd_bio(sctx, spage);
2896		if (ret) {
2897			scrub_block_put(sblock);
2898			return ret;
2899		}
 
 
2900	}
2901
2902	/* last one frees, either here or in bio completion for last page */
2903	scrub_block_put(sblock);
2904	return 0;
2905}
2906
2907static int scrub_extent_for_parity(struct scrub_parity *sparity,
2908				   u64 logical, u64 len,
2909				   u64 physical, struct btrfs_device *dev,
2910				   u64 flags, u64 gen, int mirror_num)
2911{
2912	struct scrub_ctx *sctx = sparity->sctx;
2913	int ret;
2914	u8 csum[BTRFS_CSUM_SIZE];
2915	u32 blocksize;
2916
2917	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918		scrub_parity_mark_sectors_error(sparity, logical, len);
2919		return 0;
2920	}
 
 
 
2921
2922	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2923		blocksize = sparity->stripe_len;
2924	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2925		blocksize = sparity->stripe_len;
2926	} else {
2927		blocksize = sctx->fs_info->sectorsize;
2928		WARN_ON(1);
2929	}
 
 
 
 
 
2930
2931	while (len) {
2932		u64 l = min_t(u64, len, blocksize);
2933		int have_csum = 0;
2934
2935		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2936			/* push csums to sbio */
2937			have_csum = scrub_find_csum(sctx, logical, csum);
2938			if (have_csum == 0)
2939				goto skip;
2940		}
2941		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2942					     flags, gen, mirror_num,
2943					     have_csum ? csum : NULL);
2944		if (ret)
2945			return ret;
2946skip:
2947		len -= l;
2948		logical += l;
2949		physical += l;
2950	}
2951	return 0;
2952}
2953
2954/*
2955 * Given a physical address, this will calculate it's
2956 * logical offset. if this is a parity stripe, it will return
2957 * the most left data stripe's logical offset.
2958 *
2959 * return 0 if it is a data stripe, 1 means parity stripe.
 
2960 */
2961static int get_raid56_logic_offset(u64 physical, int num,
2962				   struct map_lookup *map, u64 *offset,
2963				   u64 *stripe_start)
 
 
 
2964{
2965	int i;
2966	int j = 0;
2967	u64 stripe_nr;
2968	u64 last_offset;
2969	u32 stripe_index;
2970	u32 rot;
2971
2972	last_offset = (physical - map->stripes[num].physical) *
2973		      nr_data_stripes(map);
2974	if (stripe_start)
2975		*stripe_start = last_offset;
2976
2977	*offset = last_offset;
2978	for (i = 0; i < nr_data_stripes(map); i++) {
2979		*offset = last_offset + i * map->stripe_len;
 
2980
2981		stripe_nr = div64_u64(*offset, map->stripe_len);
2982		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2983
2984		/* Work out the disk rotation on this stripe-set */
2985		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986		/* calculate which stripe this data locates */
2987		rot += i;
2988		stripe_index = rot % map->num_stripes;
2989		if (stripe_index == num)
2990			return 0;
2991		if (stripe_index < num)
2992			j++;
2993	}
2994	*offset = last_offset + j * map->stripe_len;
2995	return 1;
2996}
2997
2998static void scrub_free_parity(struct scrub_parity *sparity)
2999{
3000	struct scrub_ctx *sctx = sparity->sctx;
3001	struct scrub_page *curr, *next;
3002	int nbits;
3003
3004	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3005	if (nbits) {
3006		spin_lock(&sctx->stat_lock);
3007		sctx->stat.read_errors += nbits;
3008		sctx->stat.uncorrectable_errors += nbits;
3009		spin_unlock(&sctx->stat_lock);
3010	}
3011
3012	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3013		list_del_init(&curr->list);
3014		scrub_page_put(curr);
3015	}
3016
3017	kfree(sparity);
3018}
3019
3020static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
 
3021{
3022	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3023						    work);
3024	struct scrub_ctx *sctx = sparity->sctx;
3025
3026	scrub_free_parity(sparity);
3027	scrub_pending_bio_dec(sctx);
3028}
3029
3030static void scrub_parity_bio_endio(struct bio *bio)
 
 
 
3031{
3032	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
 
3034
3035	if (bio->bi_status)
3036		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3037			  sparity->nsectors);
3038
3039	bio_put(bio);
3040
3041	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3042			scrub_parity_bio_endio_worker, NULL, NULL);
3043	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3044}
3045
3046static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
 
3047{
3048	struct scrub_ctx *sctx = sparity->sctx;
3049	struct btrfs_fs_info *fs_info = sctx->fs_info;
3050	struct bio *bio;
3051	struct btrfs_raid_bio *rbio;
3052	struct btrfs_bio *bbio = NULL;
3053	u64 length;
3054	int ret;
3055
3056	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3057			   sparity->nsectors))
3058		goto out;
3059
3060	length = sparity->logic_end - sparity->logic_start;
3061
3062	btrfs_bio_counter_inc_blocked(fs_info);
3063	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3064			       &length, &bbio);
3065	if (ret || !bbio || !bbio->raid_map)
3066		goto bbio_out;
3067
3068	bio = btrfs_io_bio_alloc(0);
3069	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3070	bio->bi_private = sparity;
3071	bio->bi_end_io = scrub_parity_bio_endio;
3072
3073	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074					      length, sparity->scrub_dev,
3075					      sparity->dbitmap,
3076					      sparity->nsectors);
3077	if (!rbio)
3078		goto rbio_out;
3079
3080	scrub_pending_bio_inc(sctx);
3081	raid56_parity_submit_scrub_rbio(rbio);
3082	return;
3083
3084rbio_out:
3085	bio_put(bio);
3086bbio_out:
3087	btrfs_bio_counter_dec(fs_info);
3088	btrfs_put_bbio(bbio);
3089	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3090		  sparity->nsectors);
3091	spin_lock(&sctx->stat_lock);
3092	sctx->stat.malloc_errors++;
3093	spin_unlock(&sctx->stat_lock);
3094out:
3095	scrub_free_parity(sparity);
3096}
3097
3098static inline int scrub_calc_parity_bitmap_len(int nsectors)
 
 
 
 
3099{
3100	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3101}
 
 
 
 
 
3102
3103static void scrub_parity_get(struct scrub_parity *sparity)
3104{
3105	refcount_inc(&sparity->refs);
3106}
3107
3108static void scrub_parity_put(struct scrub_parity *sparity)
3109{
3110	if (!refcount_dec_and_test(&sparity->refs))
3111		return;
3112
3113	scrub_parity_check_and_repair(sparity);
3114}
3115
3116static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3117						  struct map_lookup *map,
3118						  struct btrfs_device *sdev,
3119						  struct btrfs_path *path,
3120						  u64 logic_start,
3121						  u64 logic_end)
3122{
3123	struct btrfs_fs_info *fs_info = sctx->fs_info;
3124	struct btrfs_root *root = fs_info->extent_root;
3125	struct btrfs_root *csum_root = fs_info->csum_root;
3126	struct btrfs_extent_item *extent;
3127	struct btrfs_bio *bbio = NULL;
3128	u64 flags;
3129	int ret;
3130	int slot;
3131	struct extent_buffer *l;
3132	struct btrfs_key key;
3133	u64 generation;
3134	u64 extent_logical;
3135	u64 extent_physical;
3136	u64 extent_len;
3137	u64 mapped_length;
3138	struct btrfs_device *extent_dev;
3139	struct scrub_parity *sparity;
3140	int nsectors;
3141	int bitmap_len;
3142	int extent_mirror_num;
3143	int stop_loop = 0;
3144
3145	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3146	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3147	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3148			  GFP_NOFS);
3149	if (!sparity) {
3150		spin_lock(&sctx->stat_lock);
3151		sctx->stat.malloc_errors++;
3152		spin_unlock(&sctx->stat_lock);
3153		return -ENOMEM;
3154	}
3155
3156	sparity->stripe_len = map->stripe_len;
3157	sparity->nsectors = nsectors;
3158	sparity->sctx = sctx;
3159	sparity->scrub_dev = sdev;
3160	sparity->logic_start = logic_start;
3161	sparity->logic_end = logic_end;
3162	refcount_set(&sparity->refs, 1);
3163	INIT_LIST_HEAD(&sparity->spages);
3164	sparity->dbitmap = sparity->bitmap;
3165	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3166
3167	ret = 0;
3168	while (logic_start < logic_end) {
3169		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3170			key.type = BTRFS_METADATA_ITEM_KEY;
3171		else
3172			key.type = BTRFS_EXTENT_ITEM_KEY;
3173		key.objectid = logic_start;
3174		key.offset = (u64)-1;
3175
3176		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3177		if (ret < 0)
3178			goto out;
3179
3180		if (ret > 0) {
3181			ret = btrfs_previous_extent_item(root, path, 0);
3182			if (ret < 0)
3183				goto out;
3184			if (ret > 0) {
3185				btrfs_release_path(path);
3186				ret = btrfs_search_slot(NULL, root, &key,
3187							path, 0, 0);
3188				if (ret < 0)
3189					goto out;
3190			}
3191		}
3192
3193		stop_loop = 0;
3194		while (1) {
3195			u64 bytes;
3196
3197			l = path->nodes[0];
3198			slot = path->slots[0];
3199			if (slot >= btrfs_header_nritems(l)) {
3200				ret = btrfs_next_leaf(root, path);
3201				if (ret == 0)
3202					continue;
3203				if (ret < 0)
3204					goto out;
3205
3206				stop_loop = 1;
3207				break;
3208			}
3209			btrfs_item_key_to_cpu(l, &key, slot);
3210
3211			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3212			    key.type != BTRFS_METADATA_ITEM_KEY)
3213				goto next;
3214
3215			if (key.type == BTRFS_METADATA_ITEM_KEY)
3216				bytes = fs_info->nodesize;
3217			else
3218				bytes = key.offset;
3219
3220			if (key.objectid + bytes <= logic_start)
3221				goto next;
3222
3223			if (key.objectid >= logic_end) {
3224				stop_loop = 1;
3225				break;
3226			}
3227
3228			while (key.objectid >= logic_start + map->stripe_len)
3229				logic_start += map->stripe_len;
3230
3231			extent = btrfs_item_ptr(l, slot,
3232						struct btrfs_extent_item);
3233			flags = btrfs_extent_flags(l, extent);
3234			generation = btrfs_extent_generation(l, extent);
3235
3236			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237			    (key.objectid < logic_start ||
3238			     key.objectid + bytes >
3239			     logic_start + map->stripe_len)) {
3240				btrfs_err(fs_info,
3241					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242					  key.objectid, logic_start);
3243				spin_lock(&sctx->stat_lock);
3244				sctx->stat.uncorrectable_errors++;
3245				spin_unlock(&sctx->stat_lock);
3246				goto next;
3247			}
3248again:
3249			extent_logical = key.objectid;
3250			extent_len = bytes;
3251
3252			if (extent_logical < logic_start) {
3253				extent_len -= logic_start - extent_logical;
3254				extent_logical = logic_start;
3255			}
3256
3257			if (extent_logical + extent_len >
3258			    logic_start + map->stripe_len)
3259				extent_len = logic_start + map->stripe_len -
3260					     extent_logical;
3261
3262			scrub_parity_mark_sectors_data(sparity, extent_logical,
3263						       extent_len);
3264
3265			mapped_length = extent_len;
3266			bbio = NULL;
3267			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3268					extent_logical, &mapped_length, &bbio,
3269					0);
3270			if (!ret) {
3271				if (!bbio || mapped_length < extent_len)
3272					ret = -EIO;
3273			}
3274			if (ret) {
3275				btrfs_put_bbio(bbio);
3276				goto out;
3277			}
3278			extent_physical = bbio->stripes[0].physical;
3279			extent_mirror_num = bbio->mirror_num;
3280			extent_dev = bbio->stripes[0].dev;
3281			btrfs_put_bbio(bbio);
3282
3283			ret = btrfs_lookup_csums_range(csum_root,
3284						extent_logical,
3285						extent_logical + extent_len - 1,
3286						&sctx->csum_list, 1);
3287			if (ret)
3288				goto out;
3289
3290			ret = scrub_extent_for_parity(sparity, extent_logical,
3291						      extent_len,
3292						      extent_physical,
3293						      extent_dev, flags,
3294						      generation,
3295						      extent_mirror_num);
3296
3297			scrub_free_csums(sctx);
3298
3299			if (ret)
3300				goto out;
3301
3302			if (extent_logical + extent_len <
3303			    key.objectid + bytes) {
3304				logic_start += map->stripe_len;
3305
3306				if (logic_start >= logic_end) {
3307					stop_loop = 1;
3308					break;
3309				}
3310
3311				if (logic_start < key.objectid + bytes) {
3312					cond_resched();
3313					goto again;
3314				}
3315			}
3316next:
3317			path->slots[0]++;
3318		}
3319
3320		btrfs_release_path(path);
3321
3322		if (stop_loop)
3323			break;
3324
3325		logic_start += map->stripe_len;
3326	}
3327out:
3328	if (ret < 0)
3329		scrub_parity_mark_sectors_error(sparity, logic_start,
3330						logic_end - logic_start);
3331	scrub_parity_put(sparity);
3332	scrub_submit(sctx);
3333	mutex_lock(&sctx->wr_lock);
3334	scrub_wr_submit(sctx);
3335	mutex_unlock(&sctx->wr_lock);
3336
3337	btrfs_release_path(path);
3338	return ret < 0 ? ret : 0;
3339}
3340
3341static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342					   struct map_lookup *map,
 
3343					   struct btrfs_device *scrub_dev,
3344					   int num, u64 base, u64 length,
3345					   int is_dev_replace)
3346{
3347	struct btrfs_path *path, *ppath;
3348	struct btrfs_fs_info *fs_info = sctx->fs_info;
3349	struct btrfs_root *root = fs_info->extent_root;
3350	struct btrfs_root *csum_root = fs_info->csum_root;
3351	struct btrfs_extent_item *extent;
3352	struct blk_plug plug;
3353	u64 flags;
3354	int ret;
3355	int slot;
3356	u64 nstripes;
3357	struct extent_buffer *l;
3358	u64 physical;
3359	u64 logical;
3360	u64 logic_end;
3361	u64 physical_end;
3362	u64 generation;
3363	int mirror_num;
3364	struct reada_control *reada1;
3365	struct reada_control *reada2;
3366	struct btrfs_key key;
3367	struct btrfs_key key_end;
3368	u64 increment = map->stripe_len;
3369	u64 offset;
3370	u64 extent_logical;
3371	u64 extent_physical;
3372	u64 extent_len;
3373	u64 stripe_logical;
3374	u64 stripe_end;
3375	struct btrfs_device *extent_dev;
3376	int extent_mirror_num;
3377	int stop_loop = 0;
3378
3379	physical = map->stripes[num].physical;
3380	offset = 0;
3381	nstripes = div64_u64(length, map->stripe_len);
3382	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3383		offset = map->stripe_len * num;
3384		increment = map->stripe_len * map->num_stripes;
3385		mirror_num = 1;
3386	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3387		int factor = map->num_stripes / map->sub_stripes;
3388		offset = map->stripe_len * (num / map->sub_stripes);
3389		increment = map->stripe_len * factor;
3390		mirror_num = num % map->sub_stripes + 1;
3391	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3392		increment = map->stripe_len;
3393		mirror_num = num % map->num_stripes + 1;
3394	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3395		increment = map->stripe_len;
3396		mirror_num = num % map->num_stripes + 1;
3397	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3399		increment = map->stripe_len * nr_data_stripes(map);
3400		mirror_num = 1;
3401	} else {
3402		increment = map->stripe_len;
3403		mirror_num = 1;
3404	}
3405
3406	path = btrfs_alloc_path();
3407	if (!path)
3408		return -ENOMEM;
3409
3410	ppath = btrfs_alloc_path();
3411	if (!ppath) {
3412		btrfs_free_path(path);
3413		return -ENOMEM;
 
3414	}
3415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3416	/*
3417	 * work on commit root. The related disk blocks are static as
3418	 * long as COW is applied. This means, it is save to rewrite
3419	 * them to repair disk errors without any race conditions
 
 
3420	 */
3421	path->search_commit_root = 1;
3422	path->skip_locking = 1;
3423
3424	ppath->search_commit_root = 1;
3425	ppath->skip_locking = 1;
3426	/*
3427	 * trigger the readahead for extent tree csum tree and wait for
3428	 * completion. During readahead, the scrub is officially paused
3429	 * to not hold off transaction commits
3430	 */
3431	logical = base + offset;
3432	physical_end = physical + nstripes * map->stripe_len;
3433	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3434		get_raid56_logic_offset(physical_end, num,
3435					map, &logic_end, NULL);
3436		logic_end += base;
3437	} else {
3438		logic_end = logical + increment * nstripes;
 
 
3439	}
3440	wait_event(sctx->list_wait,
3441		   atomic_read(&sctx->bios_in_flight) == 0);
3442	scrub_blocked_if_needed(fs_info);
3443
3444	/* FIXME it might be better to start readahead at commit root */
3445	key.objectid = logical;
3446	key.type = BTRFS_EXTENT_ITEM_KEY;
3447	key.offset = (u64)0;
3448	key_end.objectid = logic_end;
3449	key_end.type = BTRFS_METADATA_ITEM_KEY;
3450	key_end.offset = (u64)-1;
3451	reada1 = btrfs_reada_add(root, &key, &key_end);
3452
3453	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3454	key.type = BTRFS_EXTENT_CSUM_KEY;
3455	key.offset = logical;
3456	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3457	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458	key_end.offset = logic_end;
3459	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3460
3461	if (!IS_ERR(reada1))
3462		btrfs_reada_wait(reada1);
3463	if (!IS_ERR(reada2))
3464		btrfs_reada_wait(reada2);
3465
 
 
 
3466
3467	/*
3468	 * collect all data csums for the stripe to avoid seeking during
3469	 * the scrub. This might currently (crc32) end up to be about 1MB
3470	 */
3471	blk_start_plug(&plug);
 
 
 
3472
3473	/*
3474	 * now find all extents for each stripe and scrub them
 
3475	 */
3476	ret = 0;
3477	while (physical < physical_end) {
3478		/*
3479		 * canceled?
3480		 */
3481		if (atomic_read(&fs_info->scrub_cancel_req) ||
3482		    atomic_read(&sctx->cancel_req)) {
3483			ret = -ECANCELED;
3484			goto out;
 
 
 
 
3485		}
 
3486		/*
3487		 * check to see if we have to pause
 
 
 
 
 
3488		 */
3489		if (atomic_read(&fs_info->scrub_pause_req)) {
3490			/* push queued extents */
3491			sctx->flush_all_writes = true;
3492			scrub_submit(sctx);
3493			mutex_lock(&sctx->wr_lock);
3494			scrub_wr_submit(sctx);
3495			mutex_unlock(&sctx->wr_lock);
3496			wait_event(sctx->list_wait,
3497				   atomic_read(&sctx->bios_in_flight) == 0);
3498			sctx->flush_all_writes = false;
3499			scrub_blocked_if_needed(fs_info);
3500		}
3501
3502		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3503			ret = get_raid56_logic_offset(physical, num, map,
3504						      &logical,
3505						      &stripe_logical);
3506			logical += base;
3507			if (ret) {
3508				/* it is parity strip */
3509				stripe_logical += base;
3510				stripe_end = stripe_logical + increment;
3511				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3512							  ppath, stripe_logical,
3513							  stripe_end);
3514				if (ret)
3515					goto out;
3516				goto skip;
3517			}
3518		}
3519
3520		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3521			key.type = BTRFS_METADATA_ITEM_KEY;
3522		else
3523			key.type = BTRFS_EXTENT_ITEM_KEY;
3524		key.objectid = logical;
3525		key.offset = (u64)-1;
3526
3527		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3528		if (ret < 0)
3529			goto out;
3530
3531		if (ret > 0) {
3532			ret = btrfs_previous_extent_item(root, path, 0);
3533			if (ret < 0)
3534				goto out;
3535			if (ret > 0) {
3536				/* there's no smaller item, so stick with the
3537				 * larger one */
3538				btrfs_release_path(path);
3539				ret = btrfs_search_slot(NULL, root, &key,
3540							path, 0, 0);
3541				if (ret < 0)
3542					goto out;
3543			}
3544		}
3545
3546		stop_loop = 0;
3547		while (1) {
3548			u64 bytes;
3549
3550			l = path->nodes[0];
3551			slot = path->slots[0];
3552			if (slot >= btrfs_header_nritems(l)) {
3553				ret = btrfs_next_leaf(root, path);
3554				if (ret == 0)
3555					continue;
3556				if (ret < 0)
3557					goto out;
3558
3559				stop_loop = 1;
3560				break;
3561			}
3562			btrfs_item_key_to_cpu(l, &key, slot);
3563
3564			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3565			    key.type != BTRFS_METADATA_ITEM_KEY)
3566				goto next;
3567
3568			if (key.type == BTRFS_METADATA_ITEM_KEY)
3569				bytes = fs_info->nodesize;
3570			else
3571				bytes = key.offset;
3572
3573			if (key.objectid + bytes <= logical)
3574				goto next;
3575
3576			if (key.objectid >= logical + map->stripe_len) {
3577				/* out of this device extent */
3578				if (key.objectid >= logic_end)
3579					stop_loop = 1;
3580				break;
3581			}
3582
3583			extent = btrfs_item_ptr(l, slot,
3584						struct btrfs_extent_item);
3585			flags = btrfs_extent_flags(l, extent);
3586			generation = btrfs_extent_generation(l, extent);
3587
3588			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3589			    (key.objectid < logical ||
3590			     key.objectid + bytes >
3591			     logical + map->stripe_len)) {
3592				btrfs_err(fs_info,
3593					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594				       key.objectid, logical);
3595				spin_lock(&sctx->stat_lock);
3596				sctx->stat.uncorrectable_errors++;
3597				spin_unlock(&sctx->stat_lock);
3598				goto next;
3599			}
3600
3601again:
3602			extent_logical = key.objectid;
3603			extent_len = bytes;
3604
3605			/*
3606			 * trim extent to this stripe
3607			 */
3608			if (extent_logical < logical) {
3609				extent_len -= logical - extent_logical;
3610				extent_logical = logical;
3611			}
3612			if (extent_logical + extent_len >
3613			    logical + map->stripe_len) {
3614				extent_len = logical + map->stripe_len -
3615					     extent_logical;
3616			}
3617
3618			extent_physical = extent_logical - logical + physical;
3619			extent_dev = scrub_dev;
3620			extent_mirror_num = mirror_num;
3621			if (is_dev_replace)
3622				scrub_remap_extent(fs_info, extent_logical,
3623						   extent_len, &extent_physical,
3624						   &extent_dev,
3625						   &extent_mirror_num);
3626
3627			ret = btrfs_lookup_csums_range(csum_root,
3628						       extent_logical,
3629						       extent_logical +
3630						       extent_len - 1,
3631						       &sctx->csum_list, 1);
3632			if (ret)
3633				goto out;
3634
3635			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636					   extent_physical, extent_dev, flags,
3637					   generation, extent_mirror_num,
3638					   extent_logical - logical + physical);
3639
3640			scrub_free_csums(sctx);
3641
3642			if (ret)
3643				goto out;
3644
3645			if (extent_logical + extent_len <
3646			    key.objectid + bytes) {
3647				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3648					/*
3649					 * loop until we find next data stripe
3650					 * or we have finished all stripes.
3651					 */
3652loop:
3653					physical += map->stripe_len;
3654					ret = get_raid56_logic_offset(physical,
3655							num, map, &logical,
3656							&stripe_logical);
3657					logical += base;
3658
3659					if (ret && physical < physical_end) {
3660						stripe_logical += base;
3661						stripe_end = stripe_logical +
3662								increment;
3663						ret = scrub_raid56_parity(sctx,
3664							map, scrub_dev, ppath,
3665							stripe_logical,
3666							stripe_end);
3667						if (ret)
3668							goto out;
3669						goto loop;
3670					}
3671				} else {
3672					physical += map->stripe_len;
3673					logical += increment;
3674				}
3675				if (logical < key.objectid + bytes) {
3676					cond_resched();
3677					goto again;
3678				}
3679
3680				if (physical >= physical_end) {
3681					stop_loop = 1;
3682					break;
3683				}
3684			}
3685next:
3686			path->slots[0]++;
3687		}
3688		btrfs_release_path(path);
3689skip:
3690		logical += increment;
3691		physical += map->stripe_len;
3692		spin_lock(&sctx->stat_lock);
3693		if (stop_loop)
3694			sctx->stat.last_physical = map->stripes[num].physical +
3695						   length;
3696		else
3697			sctx->stat.last_physical = physical;
3698		spin_unlock(&sctx->stat_lock);
3699		if (stop_loop)
3700			break;
3701	}
3702out:
3703	/* push queued extents */
3704	scrub_submit(sctx);
3705	mutex_lock(&sctx->wr_lock);
3706	scrub_wr_submit(sctx);
3707	mutex_unlock(&sctx->wr_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3708
3709	blk_finish_plug(&plug);
3710	btrfs_free_path(path);
3711	btrfs_free_path(ppath);
3712	return ret < 0 ? ret : 0;
3713}
3714
3715static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 
3716					  struct btrfs_device *scrub_dev,
3717					  u64 chunk_offset, u64 length,
3718					  u64 dev_offset,
3719					  struct btrfs_block_group_cache *cache,
3720					  int is_dev_replace)
3721{
3722	struct btrfs_fs_info *fs_info = sctx->fs_info;
3723	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3724	struct map_lookup *map;
3725	struct extent_map *em;
3726	int i;
3727	int ret = 0;
3728
3729	read_lock(&map_tree->map_tree.lock);
3730	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3731	read_unlock(&map_tree->map_tree.lock);
3732
3733	if (!em) {
3734		/*
3735		 * Might have been an unused block group deleted by the cleaner
3736		 * kthread or relocation.
3737		 */
3738		spin_lock(&cache->lock);
3739		if (!cache->removed)
3740			ret = -EINVAL;
3741		spin_unlock(&cache->lock);
3742
3743		return ret;
3744	}
3745
3746	map = em->map_lookup;
3747	if (em->start != chunk_offset)
3748		goto out;
3749
3750	if (em->len < length)
3751		goto out;
3752
3753	for (i = 0; i < map->num_stripes; ++i) {
3754		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755		    map->stripes[i].physical == dev_offset) {
3756			ret = scrub_stripe(sctx, map, scrub_dev, i,
3757					   chunk_offset, length,
3758					   is_dev_replace);
3759			if (ret)
3760				goto out;
3761		}
3762	}
3763out:
3764	free_extent_map(em);
3765
3766	return ret;
3767}
3768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3769static noinline_for_stack
3770int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3772			   int is_dev_replace)
3773{
3774	struct btrfs_dev_extent *dev_extent = NULL;
3775	struct btrfs_path *path;
3776	struct btrfs_fs_info *fs_info = sctx->fs_info;
3777	struct btrfs_root *root = fs_info->dev_root;
3778	u64 length;
3779	u64 chunk_offset;
3780	int ret = 0;
3781	int ro_set;
3782	int slot;
3783	struct extent_buffer *l;
3784	struct btrfs_key key;
3785	struct btrfs_key found_key;
3786	struct btrfs_block_group_cache *cache;
3787	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3788
3789	path = btrfs_alloc_path();
3790	if (!path)
3791		return -ENOMEM;
3792
3793	path->reada = READA_FORWARD;
3794	path->search_commit_root = 1;
3795	path->skip_locking = 1;
3796
3797	key.objectid = scrub_dev->devid;
3798	key.offset = 0ull;
3799	key.type = BTRFS_DEV_EXTENT_KEY;
3800
3801	while (1) {
 
 
3802		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3803		if (ret < 0)
3804			break;
3805		if (ret > 0) {
3806			if (path->slots[0] >=
3807			    btrfs_header_nritems(path->nodes[0])) {
3808				ret = btrfs_next_leaf(root, path);
3809				if (ret < 0)
3810					break;
3811				if (ret > 0) {
3812					ret = 0;
3813					break;
3814				}
3815			} else {
3816				ret = 0;
3817			}
3818		}
3819
3820		l = path->nodes[0];
3821		slot = path->slots[0];
3822
3823		btrfs_item_key_to_cpu(l, &found_key, slot);
3824
3825		if (found_key.objectid != scrub_dev->devid)
3826			break;
3827
3828		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3829			break;
3830
3831		if (found_key.offset >= end)
3832			break;
3833
3834		if (found_key.offset < key.offset)
3835			break;
3836
3837		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3838		length = btrfs_dev_extent_length(l, dev_extent);
3839
3840		if (found_key.offset + length <= start)
3841			goto skip;
3842
3843		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3844
3845		/*
3846		 * get a reference on the corresponding block group to prevent
3847		 * the chunk from going away while we scrub it
3848		 */
3849		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3850
3851		/* some chunks are removed but not committed to disk yet,
3852		 * continue scrubbing */
3853		if (!cache)
3854			goto skip;
3855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3856		/*
3857		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858		 * to avoid deadlock caused by:
3859		 * btrfs_inc_block_group_ro()
3860		 * -> btrfs_wait_for_commit()
3861		 * -> btrfs_commit_transaction()
3862		 * -> btrfs_scrub_pause()
3863		 */
3864		scrub_pause_on(fs_info);
3865		ret = btrfs_inc_block_group_ro(fs_info, cache);
3866		if (!ret && is_dev_replace) {
3867			/*
3868			 * If we are doing a device replace wait for any tasks
3869			 * that started dellaloc right before we set the block
3870			 * group to RO mode, as they might have just allocated
3871			 * an extent from it or decided they could do a nocow
3872			 * write. And if any such tasks did that, wait for their
3873			 * ordered extents to complete and then commit the
3874			 * current transaction, so that we can later see the new
3875			 * extent items in the extent tree - the ordered extents
3876			 * create delayed data references (for cow writes) when
3877			 * they complete, which will be run and insert the
3878			 * corresponding extent items into the extent tree when
3879			 * we commit the transaction they used when running
3880			 * inode.c:btrfs_finish_ordered_io(). We later use
3881			 * the commit root of the extent tree to find extents
3882			 * to copy from the srcdev into the tgtdev, and we don't
3883			 * want to miss any new extents.
3884			 */
3885			btrfs_wait_block_group_reservations(cache);
3886			btrfs_wait_nocow_writers(cache);
3887			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888						       cache->key.objectid,
3889						       cache->key.offset);
3890			if (ret > 0) {
3891				struct btrfs_trans_handle *trans;
3892
3893				trans = btrfs_join_transaction(root);
3894				if (IS_ERR(trans))
3895					ret = PTR_ERR(trans);
3896				else
3897					ret = btrfs_commit_transaction(trans);
3898				if (ret) {
3899					scrub_pause_off(fs_info);
3900					btrfs_put_block_group(cache);
3901					break;
3902				}
 
3903			}
3904		}
3905		scrub_pause_off(fs_info);
3906
3907		if (ret == 0) {
3908			ro_set = 1;
3909		} else if (ret == -ENOSPC) {
 
3910			/*
3911			 * btrfs_inc_block_group_ro return -ENOSPC when it
3912			 * failed in creating new chunk for metadata.
3913			 * It is not a problem for scrub/replace, because
3914			 * metadata are always cowed, and our scrub paused
3915			 * commit_transactions.
 
 
 
 
 
 
3916			 */
3917			ro_set = 0;
 
 
 
 
 
 
 
3918		} else {
3919			btrfs_warn(fs_info,
3920				   "failed setting block group ro: %d", ret);
 
3921			btrfs_put_block_group(cache);
 
3922			break;
3923		}
3924
3925		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3926		dev_replace->cursor_right = found_key.offset + length;
3927		dev_replace->cursor_left = found_key.offset;
3928		dev_replace->item_needs_writeback = 1;
3929		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3930		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931				  found_key.offset, cache, is_dev_replace);
3932
3933		/*
3934		 * flush, submit all pending read and write bios, afterwards
3935		 * wait for them.
3936		 * Note that in the dev replace case, a read request causes
3937		 * write requests that are submitted in the read completion
3938		 * worker. Therefore in the current situation, it is required
3939		 * that all write requests are flushed, so that all read and
3940		 * write requests are really completed when bios_in_flight
3941		 * changes to 0.
3942		 */
3943		sctx->flush_all_writes = true;
3944		scrub_submit(sctx);
3945		mutex_lock(&sctx->wr_lock);
3946		scrub_wr_submit(sctx);
3947		mutex_unlock(&sctx->wr_lock);
3948
3949		wait_event(sctx->list_wait,
3950			   atomic_read(&sctx->bios_in_flight) == 0);
 
 
 
 
3951
3952		scrub_pause_on(fs_info);
 
 
 
 
 
3953
3954		/*
3955		 * must be called before we decrease @scrub_paused.
3956		 * make sure we don't block transaction commit while
3957		 * we are waiting pending workers finished.
3958		 */
3959		wait_event(sctx->list_wait,
3960			   atomic_read(&sctx->workers_pending) == 0);
3961		sctx->flush_all_writes = false;
3962
3963		scrub_pause_off(fs_info);
3964
3965		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3966		dev_replace->cursor_left = dev_replace->cursor_right;
3967		dev_replace->item_needs_writeback = 1;
3968		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3969
3970		if (ro_set)
3971			btrfs_dec_block_group_ro(cache);
3972
3973		/*
3974		 * We might have prevented the cleaner kthread from deleting
3975		 * this block group if it was already unused because we raced
3976		 * and set it to RO mode first. So add it back to the unused
3977		 * list, otherwise it might not ever be deleted unless a manual
3978		 * balance is triggered or it becomes used and unused again.
3979		 */
3980		spin_lock(&cache->lock);
3981		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3982		    btrfs_block_group_used(&cache->item) == 0) {
3983			spin_unlock(&cache->lock);
3984			spin_lock(&fs_info->unused_bgs_lock);
3985			if (list_empty(&cache->bg_list)) {
3986				btrfs_get_block_group(cache);
3987				list_add_tail(&cache->bg_list,
3988					      &fs_info->unused_bgs);
3989			}
3990			spin_unlock(&fs_info->unused_bgs_lock);
3991		} else {
3992			spin_unlock(&cache->lock);
3993		}
3994
 
3995		btrfs_put_block_group(cache);
3996		if (ret)
3997			break;
3998		if (is_dev_replace &&
3999		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4000			ret = -EIO;
4001			break;
4002		}
4003		if (sctx->stat.malloc_errors > 0) {
4004			ret = -ENOMEM;
4005			break;
4006		}
4007skip:
4008		key.offset = found_key.offset + length;
4009		btrfs_release_path(path);
4010	}
4011
4012	btrfs_free_path(path);
4013
4014	return ret;
4015}
4016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4017static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4018					   struct btrfs_device *scrub_dev)
4019{
4020	int	i;
4021	u64	bytenr;
4022	u64	gen;
4023	int	ret;
 
4024	struct btrfs_fs_info *fs_info = sctx->fs_info;
4025
4026	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4027		return -EIO;
 
 
 
 
 
 
 
 
4028
4029	/* Seed devices of a new filesystem has their own generation. */
4030	if (scrub_dev->fs_devices != fs_info->fs_devices)
4031		gen = scrub_dev->generation;
4032	else
4033		gen = fs_info->last_trans_committed;
4034
4035	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4036		bytenr = btrfs_sb_offset(i);
4037		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4038		    scrub_dev->commit_total_bytes)
4039			break;
 
 
4040
4041		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4042				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4043				  NULL, 1, bytenr);
4044		if (ret)
4045			return ret;
 
4046	}
4047	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 
 
 
 
 
 
 
 
 
 
 
4048
4049	return 0;
 
 
4050}
4051
4052/*
4053 * get a reference count on fs_info->scrub_workers. start worker if necessary
4054 */
4055static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4056						int is_dev_replace)
4057{
 
4058	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4059	int max_active = fs_info->thread_pool_size;
 
 
 
 
 
 
 
 
4060
4061	if (fs_info->scrub_workers_refcnt == 0) {
4062		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4063				flags, is_dev_replace ? 1 : max_active, 4);
4064		if (!fs_info->scrub_workers)
4065			goto fail_scrub_workers;
4066
4067		fs_info->scrub_wr_completion_workers =
4068			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4069					      max_active, 2);
4070		if (!fs_info->scrub_wr_completion_workers)
4071			goto fail_scrub_wr_completion_workers;
4072
4073		fs_info->scrub_nocow_workers =
4074			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4075		if (!fs_info->scrub_nocow_workers)
4076			goto fail_scrub_nocow_workers;
4077		fs_info->scrub_parity_workers =
4078			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4079					      max_active, 2);
4080		if (!fs_info->scrub_parity_workers)
4081			goto fail_scrub_parity_workers;
4082	}
4083	++fs_info->scrub_workers_refcnt;
4084	return 0;
 
4085
4086fail_scrub_parity_workers:
4087	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4088fail_scrub_nocow_workers:
4089	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4090fail_scrub_wr_completion_workers:
4091	btrfs_destroy_workqueue(fs_info->scrub_workers);
4092fail_scrub_workers:
4093	return -ENOMEM;
4094}
4095
4096static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4097{
4098	if (--fs_info->scrub_workers_refcnt == 0) {
4099		btrfs_destroy_workqueue(fs_info->scrub_workers);
4100		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4101		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4102		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4103	}
4104	WARN_ON(fs_info->scrub_workers_refcnt < 0);
4105}
4106
4107int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4108		    u64 end, struct btrfs_scrub_progress *progress,
4109		    int readonly, int is_dev_replace)
4110{
 
4111	struct scrub_ctx *sctx;
4112	int ret;
4113	struct btrfs_device *dev;
4114	struct rcu_string *name;
 
4115
4116	if (btrfs_fs_closing(fs_info))
4117		return -EINVAL;
4118
4119	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4120		/*
4121		 * in this case scrub is unable to calculate the checksum
4122		 * the way scrub is implemented. Do not handle this
4123		 * situation at all because it won't ever happen.
4124		 */
4125		btrfs_err(fs_info,
4126			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4127		       fs_info->nodesize,
4128		       BTRFS_STRIPE_LEN);
4129		return -EINVAL;
4130	}
4131
4132	if (fs_info->sectorsize != PAGE_SIZE) {
4133		/* not supported for data w/o checksums */
4134		btrfs_err_rl(fs_info,
4135			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4136		       fs_info->sectorsize, PAGE_SIZE);
4137		return -EINVAL;
4138	}
4139
4140	if (fs_info->nodesize >
4141	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4142	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4143		/*
4144		 * would exhaust the array bounds of pagev member in
4145		 * struct scrub_block
4146		 */
4147		btrfs_err(fs_info,
4148			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4149		       fs_info->nodesize,
4150		       SCRUB_MAX_PAGES_PER_BLOCK,
4151		       fs_info->sectorsize,
4152		       SCRUB_MAX_PAGES_PER_BLOCK);
4153		return -EINVAL;
4154	}
4155
 
 
 
4156
4157	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4158	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4159	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4160		     !is_dev_replace)) {
4161		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4162		return -ENODEV;
 
4163	}
4164
4165	if (!is_dev_replace && !readonly &&
4166	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4167		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4168		rcu_read_lock();
4169		name = rcu_dereference(dev->name);
4170		btrfs_err(fs_info, "scrub: device %s is not writable",
4171			  name->str);
4172		rcu_read_unlock();
4173		return -EROFS;
4174	}
4175
4176	mutex_lock(&fs_info->scrub_lock);
4177	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4178	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4179		mutex_unlock(&fs_info->scrub_lock);
4180		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4181		return -EIO;
 
4182	}
4183
4184	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4185	if (dev->scrub_ctx ||
4186	    (!is_dev_replace &&
4187	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4188		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4189		mutex_unlock(&fs_info->scrub_lock);
4190		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4191		return -EINPROGRESS;
 
4192	}
4193	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4194
4195	ret = scrub_workers_get(fs_info, is_dev_replace);
4196	if (ret) {
4197		mutex_unlock(&fs_info->scrub_lock);
4198		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4199		return ret;
4200	}
4201
4202	sctx = scrub_setup_ctx(dev, is_dev_replace);
4203	if (IS_ERR(sctx)) {
4204		mutex_unlock(&fs_info->scrub_lock);
4205		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4206		scrub_workers_put(fs_info);
4207		return PTR_ERR(sctx);
4208	}
4209	sctx->readonly = readonly;
4210	dev->scrub_ctx = sctx;
4211	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4212
4213	/*
4214	 * checking @scrub_pause_req here, we can avoid
4215	 * race between committing transaction and scrubbing.
4216	 */
4217	__scrub_blocked_if_needed(fs_info);
4218	atomic_inc(&fs_info->scrubs_running);
4219	mutex_unlock(&fs_info->scrub_lock);
4220
 
 
 
 
 
 
 
 
 
 
4221	if (!is_dev_replace) {
 
 
 
 
 
 
 
4222		/*
4223		 * by holding device list mutex, we can
4224		 * kick off writing super in log tree sync.
4225		 */
4226		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4227		ret = scrub_supers(sctx, dev);
4228		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
4229	}
4230
4231	if (!ret)
4232		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4233					     is_dev_replace);
4234
4235	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4236	atomic_dec(&fs_info->scrubs_running);
4237	wake_up(&fs_info->scrub_pause_wait);
4238
4239	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4240
4241	if (progress)
4242		memcpy(progress, &sctx->stat, sizeof(*progress));
4243
 
 
 
 
4244	mutex_lock(&fs_info->scrub_lock);
4245	dev->scrub_ctx = NULL;
4246	scrub_workers_put(fs_info);
4247	mutex_unlock(&fs_info->scrub_lock);
4248
 
4249	scrub_put_ctx(sctx);
4250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4251	return ret;
4252}
4253
4254void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4255{
4256	mutex_lock(&fs_info->scrub_lock);
4257	atomic_inc(&fs_info->scrub_pause_req);
4258	while (atomic_read(&fs_info->scrubs_paused) !=
4259	       atomic_read(&fs_info->scrubs_running)) {
4260		mutex_unlock(&fs_info->scrub_lock);
4261		wait_event(fs_info->scrub_pause_wait,
4262			   atomic_read(&fs_info->scrubs_paused) ==
4263			   atomic_read(&fs_info->scrubs_running));
4264		mutex_lock(&fs_info->scrub_lock);
4265	}
4266	mutex_unlock(&fs_info->scrub_lock);
4267}
4268
4269void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4270{
4271	atomic_dec(&fs_info->scrub_pause_req);
4272	wake_up(&fs_info->scrub_pause_wait);
4273}
4274
4275int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4276{
4277	mutex_lock(&fs_info->scrub_lock);
4278	if (!atomic_read(&fs_info->scrubs_running)) {
4279		mutex_unlock(&fs_info->scrub_lock);
4280		return -ENOTCONN;
4281	}
4282
4283	atomic_inc(&fs_info->scrub_cancel_req);
4284	while (atomic_read(&fs_info->scrubs_running)) {
4285		mutex_unlock(&fs_info->scrub_lock);
4286		wait_event(fs_info->scrub_pause_wait,
4287			   atomic_read(&fs_info->scrubs_running) == 0);
4288		mutex_lock(&fs_info->scrub_lock);
4289	}
4290	atomic_dec(&fs_info->scrub_cancel_req);
4291	mutex_unlock(&fs_info->scrub_lock);
4292
4293	return 0;
4294}
4295
4296int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4297			   struct btrfs_device *dev)
4298{
 
4299	struct scrub_ctx *sctx;
4300
4301	mutex_lock(&fs_info->scrub_lock);
4302	sctx = dev->scrub_ctx;
4303	if (!sctx) {
4304		mutex_unlock(&fs_info->scrub_lock);
4305		return -ENOTCONN;
4306	}
4307	atomic_inc(&sctx->cancel_req);
4308	while (dev->scrub_ctx) {
4309		mutex_unlock(&fs_info->scrub_lock);
4310		wait_event(fs_info->scrub_pause_wait,
4311			   dev->scrub_ctx == NULL);
4312		mutex_lock(&fs_info->scrub_lock);
4313	}
4314	mutex_unlock(&fs_info->scrub_lock);
4315
4316	return 0;
4317}
4318
4319int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4320			 struct btrfs_scrub_progress *progress)
4321{
 
4322	struct btrfs_device *dev;
4323	struct scrub_ctx *sctx = NULL;
4324
4325	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4326	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4327	if (dev)
4328		sctx = dev->scrub_ctx;
4329	if (sctx)
4330		memcpy(progress, &sctx->stat, sizeof(*progress));
4331	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4332
4333	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4334}
4335
4336static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4337			       u64 extent_logical, u64 extent_len,
4338			       u64 *extent_physical,
4339			       struct btrfs_device **extent_dev,
4340			       int *extent_mirror_num)
4341{
4342	u64 mapped_length;
4343	struct btrfs_bio *bbio = NULL;
4344	int ret;
4345
4346	mapped_length = extent_len;
4347	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4348			      &mapped_length, &bbio, 0);
4349	if (ret || !bbio || mapped_length < extent_len ||
4350	    !bbio->stripes[0].dev->bdev) {
4351		btrfs_put_bbio(bbio);
4352		return;
4353	}
4354
4355	*extent_physical = bbio->stripes[0].physical;
4356	*extent_mirror_num = bbio->mirror_num;
4357	*extent_dev = bbio->stripes[0].dev;
4358	btrfs_put_bbio(bbio);
4359}
4360
4361static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4362			    int mirror_num, u64 physical_for_dev_replace)
4363{
4364	struct scrub_copy_nocow_ctx *nocow_ctx;
4365	struct btrfs_fs_info *fs_info = sctx->fs_info;
4366
4367	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4368	if (!nocow_ctx) {
4369		spin_lock(&sctx->stat_lock);
4370		sctx->stat.malloc_errors++;
4371		spin_unlock(&sctx->stat_lock);
4372		return -ENOMEM;
4373	}
4374
4375	scrub_pending_trans_workers_inc(sctx);
4376
4377	nocow_ctx->sctx = sctx;
4378	nocow_ctx->logical = logical;
4379	nocow_ctx->len = len;
4380	nocow_ctx->mirror_num = mirror_num;
4381	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4382	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4383			copy_nocow_pages_worker, NULL, NULL);
4384	INIT_LIST_HEAD(&nocow_ctx->inodes);
4385	btrfs_queue_work(fs_info->scrub_nocow_workers,
4386			 &nocow_ctx->work);
4387
4388	return 0;
4389}
4390
4391static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4392{
4393	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4394	struct scrub_nocow_inode *nocow_inode;
4395
4396	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4397	if (!nocow_inode)
4398		return -ENOMEM;
4399	nocow_inode->inum = inum;
4400	nocow_inode->offset = offset;
4401	nocow_inode->root = root;
4402	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4403	return 0;
4404}
4405
4406#define COPY_COMPLETE 1
4407
4408static void copy_nocow_pages_worker(struct btrfs_work *work)
4409{
4410	struct scrub_copy_nocow_ctx *nocow_ctx =
4411		container_of(work, struct scrub_copy_nocow_ctx, work);
4412	struct scrub_ctx *sctx = nocow_ctx->sctx;
4413	struct btrfs_fs_info *fs_info = sctx->fs_info;
4414	struct btrfs_root *root = fs_info->extent_root;
4415	u64 logical = nocow_ctx->logical;
4416	u64 len = nocow_ctx->len;
4417	int mirror_num = nocow_ctx->mirror_num;
4418	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4419	int ret;
4420	struct btrfs_trans_handle *trans = NULL;
4421	struct btrfs_path *path;
4422	int not_written = 0;
4423
4424	path = btrfs_alloc_path();
4425	if (!path) {
4426		spin_lock(&sctx->stat_lock);
4427		sctx->stat.malloc_errors++;
4428		spin_unlock(&sctx->stat_lock);
4429		not_written = 1;
4430		goto out;
4431	}
4432
4433	trans = btrfs_join_transaction(root);
4434	if (IS_ERR(trans)) {
4435		not_written = 1;
4436		goto out;
4437	}
4438
4439	ret = iterate_inodes_from_logical(logical, fs_info, path,
4440			record_inode_for_nocow, nocow_ctx, false);
4441	if (ret != 0 && ret != -ENOENT) {
4442		btrfs_warn(fs_info,
4443			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4444			   logical, physical_for_dev_replace, len, mirror_num,
4445			   ret);
4446		not_written = 1;
4447		goto out;
4448	}
4449
4450	btrfs_end_transaction(trans);
4451	trans = NULL;
4452	while (!list_empty(&nocow_ctx->inodes)) {
4453		struct scrub_nocow_inode *entry;
4454		entry = list_first_entry(&nocow_ctx->inodes,
4455					 struct scrub_nocow_inode,
4456					 list);
4457		list_del_init(&entry->list);
4458		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4459						 entry->root, nocow_ctx);
4460		kfree(entry);
4461		if (ret == COPY_COMPLETE) {
4462			ret = 0;
4463			break;
4464		} else if (ret) {
4465			break;
4466		}
4467	}
4468out:
4469	while (!list_empty(&nocow_ctx->inodes)) {
4470		struct scrub_nocow_inode *entry;
4471		entry = list_first_entry(&nocow_ctx->inodes,
4472					 struct scrub_nocow_inode,
4473					 list);
4474		list_del_init(&entry->list);
4475		kfree(entry);
4476	}
4477	if (trans && !IS_ERR(trans))
4478		btrfs_end_transaction(trans);
4479	if (not_written)
4480		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4481					    num_uncorrectable_read_errors);
4482
4483	btrfs_free_path(path);
4484	kfree(nocow_ctx);
4485
4486	scrub_pending_trans_workers_dec(sctx);
4487}
4488
4489static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4490				 u64 logical)
4491{
4492	struct extent_state *cached_state = NULL;
4493	struct btrfs_ordered_extent *ordered;
4494	struct extent_io_tree *io_tree;
4495	struct extent_map *em;
4496	u64 lockstart = start, lockend = start + len - 1;
4497	int ret = 0;
4498
4499	io_tree = &inode->io_tree;
4500
4501	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4502	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4503	if (ordered) {
4504		btrfs_put_ordered_extent(ordered);
4505		ret = 1;
4506		goto out_unlock;
4507	}
4508
4509	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4510	if (IS_ERR(em)) {
4511		ret = PTR_ERR(em);
4512		goto out_unlock;
4513	}
4514
4515	/*
4516	 * This extent does not actually cover the logical extent anymore,
4517	 * move on to the next inode.
4518	 */
4519	if (em->block_start > logical ||
4520	    em->block_start + em->block_len < logical + len ||
4521	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4522		free_extent_map(em);
4523		ret = 1;
4524		goto out_unlock;
4525	}
4526	free_extent_map(em);
4527
4528out_unlock:
4529	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4530	return ret;
4531}
4532
4533static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4534				      struct scrub_copy_nocow_ctx *nocow_ctx)
4535{
4536	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4537	struct btrfs_key key;
4538	struct inode *inode;
4539	struct page *page;
4540	struct btrfs_root *local_root;
4541	struct extent_io_tree *io_tree;
4542	u64 physical_for_dev_replace;
4543	u64 nocow_ctx_logical;
4544	u64 len = nocow_ctx->len;
4545	unsigned long index;
4546	int srcu_index;
4547	int ret = 0;
4548	int err = 0;
4549
4550	key.objectid = root;
4551	key.type = BTRFS_ROOT_ITEM_KEY;
4552	key.offset = (u64)-1;
4553
4554	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4555
4556	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4557	if (IS_ERR(local_root)) {
4558		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4559		return PTR_ERR(local_root);
4560	}
4561
4562	key.type = BTRFS_INODE_ITEM_KEY;
4563	key.objectid = inum;
4564	key.offset = 0;
4565	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4566	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4567	if (IS_ERR(inode))
4568		return PTR_ERR(inode);
4569
4570	/* Avoid truncate/dio/punch hole.. */
4571	inode_lock(inode);
4572	inode_dio_wait(inode);
4573
4574	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4575	io_tree = &BTRFS_I(inode)->io_tree;
4576	nocow_ctx_logical = nocow_ctx->logical;
4577
4578	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4579			nocow_ctx_logical);
4580	if (ret) {
4581		ret = ret > 0 ? 0 : ret;
4582		goto out;
4583	}
4584
4585	while (len >= PAGE_SIZE) {
4586		index = offset >> PAGE_SHIFT;
4587again:
4588		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4589		if (!page) {
4590			btrfs_err(fs_info, "find_or_create_page() failed");
4591			ret = -ENOMEM;
4592			goto out;
4593		}
4594
4595		if (PageUptodate(page)) {
4596			if (PageDirty(page))
4597				goto next_page;
4598		} else {
4599			ClearPageError(page);
4600			err = extent_read_full_page(io_tree, page,
4601							   btrfs_get_extent,
4602							   nocow_ctx->mirror_num);
4603			if (err) {
4604				ret = err;
4605				goto next_page;
4606			}
4607
4608			lock_page(page);
4609			/*
4610			 * If the page has been remove from the page cache,
4611			 * the data on it is meaningless, because it may be
4612			 * old one, the new data may be written into the new
4613			 * page in the page cache.
4614			 */
4615			if (page->mapping != inode->i_mapping) {
4616				unlock_page(page);
4617				put_page(page);
4618				goto again;
4619			}
4620			if (!PageUptodate(page)) {
4621				ret = -EIO;
4622				goto next_page;
4623			}
4624		}
4625
4626		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4627					    nocow_ctx_logical);
4628		if (ret) {
4629			ret = ret > 0 ? 0 : ret;
4630			goto next_page;
4631		}
4632
4633		err = write_page_nocow(nocow_ctx->sctx,
4634				       physical_for_dev_replace, page);
4635		if (err)
4636			ret = err;
4637next_page:
4638		unlock_page(page);
4639		put_page(page);
4640
4641		if (ret)
4642			break;
4643
4644		offset += PAGE_SIZE;
4645		physical_for_dev_replace += PAGE_SIZE;
4646		nocow_ctx_logical += PAGE_SIZE;
4647		len -= PAGE_SIZE;
4648	}
4649	ret = COPY_COMPLETE;
4650out:
4651	inode_unlock(inode);
4652	iput(inode);
4653	return ret;
4654}
4655
4656static int write_page_nocow(struct scrub_ctx *sctx,
4657			    u64 physical_for_dev_replace, struct page *page)
4658{
4659	struct bio *bio;
4660	struct btrfs_device *dev;
4661
4662	dev = sctx->wr_tgtdev;
4663	if (!dev)
4664		return -EIO;
4665	if (!dev->bdev) {
4666		btrfs_warn_rl(dev->fs_info,
4667			"scrub write_page_nocow(bdev == NULL) is unexpected");
4668		return -EIO;
4669	}
4670	bio = btrfs_io_bio_alloc(1);
4671	bio->bi_iter.bi_size = 0;
4672	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4673	bio_set_dev(bio, dev->bdev);
4674	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4675	/* bio_add_page won't fail on a freshly allocated bio */
4676	bio_add_page(bio, page, PAGE_SIZE, 0);
4677
4678	if (btrfsic_submit_bio_wait(bio)) {
4679		bio_put(bio);
4680		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4681		return -EIO;
4682	}
4683
4684	bio_put(bio);
4685	return 0;
4686}