Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
 
 
  19#include "raid56.h"
  20#include "block-group.h"
  21#include "zoned.h"
  22#include "fs.h"
  23#include "accessors.h"
  24#include "file-item.h"
  25#include "scrub.h"
  26#include "raid-stripe-tree.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
  39 */
  40
 
  41struct scrub_ctx;
  42
  43/*
  44 * The following value only influences the performance.
  45 *
  46 * This determines how many stripes would be submitted in one go,
  47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
  48 */
  49#define SCRUB_STRIPES_PER_GROUP		8
  50
  51/*
  52 * How many groups we have for each sctx.
  53 *
  54 * This would be 8M per device, the same value as the old scrub in-flight bios
  55 * size limit.
  56 */
  57#define SCRUB_GROUPS_PER_SCTX		16
  58
  59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
  60
  61/*
  62 * The following value times PAGE_SIZE needs to be large enough to match the
  63 * largest node/leaf/sector size that shall be supported.
 
  64 */
  65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  66
  67/* Represent one sector and its needed info to verify the content. */
  68struct scrub_sector_verification {
  69	bool is_metadata;
  70
  71	union {
  72		/*
  73		 * Csum pointer for data csum verification.  Should point to a
  74		 * sector csum inside scrub_stripe::csums.
  75		 *
  76		 * NULL if this data sector has no csum.
  77		 */
  78		u8 *csum;
  79
  80		/*
  81		 * Extra info for metadata verification.  All sectors inside a
  82		 * tree block share the same generation.
  83		 */
  84		u64 generation;
  85	};
 
  86};
  87
  88enum scrub_stripe_flags {
  89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
  90	SCRUB_STRIPE_FLAG_INITIALIZED,
  91
  92	/* Set when the read-repair is finished. */
  93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
  94
  95	/*
  96	 * Set for data stripes if it's triggered from P/Q stripe.
  97	 * During such scrub, we should not report errors in data stripes, nor
  98	 * update the accounting.
  99	 */
 100	SCRUB_STRIPE_FLAG_NO_REPORT,
 
 
 
 101};
 102
 103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
 104
 105/*
 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 107 */
 108struct scrub_stripe {
 109	struct scrub_ctx *sctx;
 110	struct btrfs_block_group *bg;
 111
 112	struct page *pages[SCRUB_STRIPE_PAGES];
 113	struct scrub_sector_verification *sectors;
 114
 115	struct btrfs_device *dev;
 116	u64 logical;
 117	u64 physical;
 118
 119	u16 mirror_num;
 120
 121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
 122	u16 nr_sectors;
 123
 124	/*
 125	 * How many data/meta extents are in this stripe.  Only for scrub status
 126	 * reporting purposes.
 127	 */
 128	u16 nr_data_extents;
 129	u16 nr_meta_extents;
 130
 131	atomic_t pending_io;
 132	wait_queue_head_t io_wait;
 133	wait_queue_head_t repair_wait;
 134
 135	/*
 136	 * Indicate the states of the stripe.  Bits are defined in
 137	 * scrub_stripe_flags enum.
 138	 */
 139	unsigned long state;
 140
 141	/* Indicate which sectors are covered by extent items. */
 142	unsigned long extent_sector_bitmap;
 143
 144	/*
 145	 * The errors hit during the initial read of the stripe.
 146	 *
 147	 * Would be utilized for error reporting and repair.
 148	 *
 149	 * The remaining init_nr_* records the number of errors hit, only used
 150	 * by error reporting.
 151	 */
 152	unsigned long init_error_bitmap;
 153	unsigned int init_nr_io_errors;
 154	unsigned int init_nr_csum_errors;
 155	unsigned int init_nr_meta_errors;
 156
 157	/*
 158	 * The following error bitmaps are all for the current status.
 159	 * Every time we submit a new read, these bitmaps may be updated.
 160	 *
 161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
 162	 *
 163	 * IO and csum errors can happen for both metadata and data.
 164	 */
 165	unsigned long error_bitmap;
 166	unsigned long io_error_bitmap;
 167	unsigned long csum_error_bitmap;
 168	unsigned long meta_error_bitmap;
 169
 170	/* For writeback (repair or replace) error reporting. */
 171	unsigned long write_error_bitmap;
 172
 173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
 174	spinlock_t write_error_lock;
 175
 176	/*
 177	 * Checksum for the whole stripe if this stripe is inside a data block
 178	 * group.
 179	 */
 180	u8 *csums;
 181
 182	struct work_struct work;
 
 
 
 
 
 183};
 184
 185struct scrub_ctx {
 186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
 187	struct scrub_stripe	*raid56_data_stripes;
 188	struct btrfs_fs_info	*fs_info;
 189	struct btrfs_path	extent_path;
 190	struct btrfs_path	csum_path;
 191	int			first_free;
 192	int			cur_stripe;
 
 
 
 
 
 
 193	atomic_t		cancel_req;
 194	int			readonly;
 195
 196	/* State of IO submission throttling affecting the associated device */
 197	ktime_t			throttle_deadline;
 198	u64			throttle_sent;
 199
 200	int			is_dev_replace;
 201	u64			write_pointer;
 202
 203	struct mutex            wr_lock;
 204	struct btrfs_device     *wr_tgtdev;
 205
 206	/*
 207	 * statistics
 208	 */
 209	struct btrfs_scrub_progress stat;
 210	spinlock_t		stat_lock;
 
 211
 212	/*
 213	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 214	 * decrement bios_in_flight and workers_pending and then do a wakeup
 215	 * on the list_wait wait queue. We must ensure the main scrub task
 216	 * doesn't free the scrub context before or while the workers are
 217	 * doing the wakeup() call.
 218	 */
 219	refcount_t              refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220};
 221
 222struct scrub_warning {
 223	struct btrfs_path	*path;
 224	u64			extent_item_size;
 
 
 225	const char		*errstr;
 226	u64			physical;
 227	u64			logical;
 228	struct btrfs_device	*dev;
 
 
 229};
 230
 231static void release_scrub_stripe(struct scrub_stripe *stripe)
 232{
 233	if (!stripe)
 234		return;
 235
 236	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
 237		if (stripe->pages[i])
 238			__free_page(stripe->pages[i]);
 239		stripe->pages[i] = NULL;
 240	}
 241	kfree(stripe->sectors);
 242	kfree(stripe->csums);
 243	stripe->sectors = NULL;
 244	stripe->csums = NULL;
 245	stripe->sctx = NULL;
 246	stripe->state = 0;
 247}
 248
 249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
 250			     struct scrub_stripe *stripe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251{
 252	int ret;
 253
 254	memset(stripe, 0, sizeof(*stripe));
 255
 256	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 257	stripe->state = 0;
 258
 259	init_waitqueue_head(&stripe->io_wait);
 260	init_waitqueue_head(&stripe->repair_wait);
 261	atomic_set(&stripe->pending_io, 0);
 262	spin_lock_init(&stripe->write_error_lock);
 263
 264	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
 265	if (ret < 0)
 266		goto error;
 267
 268	stripe->sectors = kcalloc(stripe->nr_sectors,
 269				  sizeof(struct scrub_sector_verification),
 270				  GFP_KERNEL);
 271	if (!stripe->sectors)
 272		goto error;
 273
 274	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
 275				fs_info->csum_size, GFP_KERNEL);
 276	if (!stripe->csums)
 277		goto error;
 278	return 0;
 279error:
 280	release_scrub_stripe(stripe);
 281	return -ENOMEM;
 282}
 283
 284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
 285{
 286	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
 
 287}
 288
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 290
 291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 292{
 293	while (atomic_read(&fs_info->scrub_pause_req)) {
 294		mutex_unlock(&fs_info->scrub_lock);
 295		wait_event(fs_info->scrub_pause_wait,
 296		   atomic_read(&fs_info->scrub_pause_req) == 0);
 297		mutex_lock(&fs_info->scrub_lock);
 298	}
 299}
 300
 301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 302{
 303	atomic_inc(&fs_info->scrubs_paused);
 304	wake_up(&fs_info->scrub_pause_wait);
 305}
 306
 307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 308{
 309	mutex_lock(&fs_info->scrub_lock);
 310	__scrub_blocked_if_needed(fs_info);
 311	atomic_dec(&fs_info->scrubs_paused);
 312	mutex_unlock(&fs_info->scrub_lock);
 313
 314	wake_up(&fs_info->scrub_pause_wait);
 315}
 316
 317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318{
 319	scrub_pause_on(fs_info);
 320	scrub_pause_off(fs_info);
 
 
 
 
 
 321}
 322
 323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 324{
 325	int i;
 326
 327	if (!sctx)
 328		return;
 329
 330	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
 331		release_scrub_stripe(&sctx->stripes[i]);
 332
 333	kvfree(sctx);
 334}
 
 335
 336static void scrub_put_ctx(struct scrub_ctx *sctx)
 337{
 338	if (refcount_dec_and_test(&sctx->refs))
 339		scrub_free_ctx(sctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 343		struct btrfs_fs_info *fs_info, int is_dev_replace)
 344{
 345	struct scrub_ctx *sctx;
 346	int		i;
 
 
 
 347
 348	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
 349	 * kvzalloc().
 350	 */
 351	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 352	if (!sctx)
 353		goto nomem;
 354	refcount_set(&sctx->refs, 1);
 355	sctx->is_dev_replace = is_dev_replace;
 356	sctx->fs_info = fs_info;
 357	sctx->extent_path.search_commit_root = 1;
 358	sctx->extent_path.skip_locking = 1;
 359	sctx->csum_path.search_commit_root = 1;
 360	sctx->csum_path.skip_locking = 1;
 361	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
 362		int ret;
 363
 364		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
 365		if (ret < 0)
 366			goto nomem;
 367		sctx->stripes[i].sctx = sctx;
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369	sctx->first_free = 0;
 
 
 
 
 
 370	atomic_set(&sctx->cancel_req, 0);
 
 
 371
 
 372	spin_lock_init(&sctx->stat_lock);
 373	sctx->throttle_deadline = 0;
 374
 375	mutex_init(&sctx->wr_lock);
 376	if (is_dev_replace) {
 377		WARN_ON(!fs_info->dev_replace.tgtdev);
 378		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 
 379	}
 380
 381	return sctx;
 382
 383nomem:
 384	scrub_free_ctx(sctx);
 385	return ERR_PTR(-ENOMEM);
 386}
 387
 388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 389				     u64 root, void *warn_ctx)
 390{
 
 391	u32 nlink;
 392	int ret;
 393	int i;
 394	unsigned nofs_flag;
 395	struct extent_buffer *eb;
 396	struct btrfs_inode_item *inode_item;
 397	struct scrub_warning *swarn = warn_ctx;
 398	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 399	struct inode_fs_paths *ipath = NULL;
 400	struct btrfs_root *local_root;
 401	struct btrfs_key key;
 402
 403	local_root = btrfs_get_fs_root(fs_info, root, true);
 
 
 
 404	if (IS_ERR(local_root)) {
 405		ret = PTR_ERR(local_root);
 406		goto err;
 407	}
 408
 409	/*
 410	 * this makes the path point to (inum INODE_ITEM ioff)
 411	 */
 412	key.objectid = inum;
 413	key.type = BTRFS_INODE_ITEM_KEY;
 414	key.offset = 0;
 415
 416	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 417	if (ret) {
 418		btrfs_put_root(local_root);
 419		btrfs_release_path(swarn->path);
 420		goto err;
 421	}
 422
 423	eb = swarn->path->nodes[0];
 424	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 425					struct btrfs_inode_item);
 
 426	nlink = btrfs_inode_nlink(eb, inode_item);
 427	btrfs_release_path(swarn->path);
 428
 429	/*
 430	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 431	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 432	 * not seem to be strictly necessary.
 433	 */
 434	nofs_flag = memalloc_nofs_save();
 435	ipath = init_ipath(4096, local_root, swarn->path);
 436	memalloc_nofs_restore(nofs_flag);
 437	if (IS_ERR(ipath)) {
 438		btrfs_put_root(local_root);
 439		ret = PTR_ERR(ipath);
 440		ipath = NULL;
 441		goto err;
 442	}
 443	ret = paths_from_inode(inum, ipath);
 444
 445	if (ret < 0)
 446		goto err;
 447
 448	/*
 449	 * we deliberately ignore the bit ipath might have been too small to
 450	 * hold all of the paths here
 451	 */
 452	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 453		btrfs_warn_in_rcu(fs_info,
 454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 455				  swarn->errstr, swarn->logical,
 456				  btrfs_dev_name(swarn->dev),
 457				  swarn->physical,
 458				  root, inum, offset,
 459				  fs_info->sectorsize, nlink,
 460				  (char *)(unsigned long)ipath->fspath->val[i]);
 461
 462	btrfs_put_root(local_root);
 463	free_ipath(ipath);
 464	return 0;
 465
 466err:
 467	btrfs_warn_in_rcu(fs_info,
 468			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 469			  swarn->errstr, swarn->logical,
 470			  btrfs_dev_name(swarn->dev),
 471			  swarn->physical,
 472			  root, inum, offset, ret);
 473
 474	free_ipath(ipath);
 475	return 0;
 476}
 477
 478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
 479				       bool is_super, u64 logical, u64 physical)
 480{
 481	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 482	struct btrfs_path *path;
 483	struct btrfs_key found_key;
 484	struct extent_buffer *eb;
 485	struct btrfs_extent_item *ei;
 486	struct scrub_warning swarn;
 
 
 487	u64 flags = 0;
 
 488	u32 item_size;
 
 
 489	int ret;
 490
 491	/* Super block error, no need to search extent tree. */
 492	if (is_super) {
 493		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 494				  errstr, btrfs_dev_name(dev), physical);
 495		return;
 496	}
 497	path = btrfs_alloc_path();
 498	if (!path)
 499		return;
 500
 501	swarn.physical = physical;
 502	swarn.logical = logical;
 
 
 503	swarn.errstr = errstr;
 504	swarn.dev = NULL;
 
 
 
 
 
 505
 506	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 507				  &flags);
 508	if (ret < 0)
 509		goto out;
 510
 
 511	swarn.extent_item_size = found_key.offset;
 512
 513	eb = path->nodes[0];
 514	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 515	item_size = btrfs_item_size(eb, path->slots[0]);
 516
 517	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 518		unsigned long ptr = 0;
 519		u8 ref_level;
 520		u64 ref_root;
 521
 522		while (true) {
 523			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 524						      item_size, &ref_root,
 525						      &ref_level);
 526			if (ret < 0) {
 527				btrfs_warn(fs_info,
 528				"failed to resolve tree backref for logical %llu: %d",
 529						  swarn.logical, ret);
 530				break;
 531			}
 532			if (ret > 0)
 533				break;
 534			btrfs_warn_in_rcu(fs_info,
 535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 536				errstr, swarn.logical, btrfs_dev_name(dev),
 537				swarn.physical, (ref_level ? "node" : "leaf"),
 538				ref_level, ref_root);
 539		}
 540		btrfs_release_path(path);
 541	} else {
 542		struct btrfs_backref_walk_ctx ctx = { 0 };
 543
 544		btrfs_release_path(path);
 545
 546		ctx.bytenr = found_key.objectid;
 547		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 548		ctx.fs_info = fs_info;
 549
 550		swarn.path = path;
 551		swarn.dev = dev;
 552
 553		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 
 554	}
 555
 556out:
 557	btrfs_free_path(path);
 
 
 558}
 559
 560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 561{
 562	int ret = 0;
 563	u64 length;
 564
 565	if (!btrfs_is_zoned(sctx->fs_info))
 566		return 0;
 
 
 
 
 
 
 567
 568	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 569		return 0;
 
 570
 571	if (sctx->write_pointer < physical) {
 572		length = physical - sctx->write_pointer;
 573
 574		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 575						sctx->write_pointer, length);
 576		if (!ret)
 577			sctx->write_pointer = physical;
 578	}
 579	return ret;
 580}
 581
 582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
 583{
 584	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 585	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
 586
 587	return stripe->pages[page_index];
 588}
 
 
 
 
 
 589
 590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
 591						 int sector_nr)
 592{
 593	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 594
 595	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
 596}
 
 
 
 597
 598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
 599{
 600	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 601	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 602	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
 603	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
 604	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
 605	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 606	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 607	u8 calculated_csum[BTRFS_CSUM_SIZE];
 608	struct btrfs_header *header;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609
 610	/*
 611	 * Here we don't have a good way to attach the pages (and subpages)
 612	 * to a dummy extent buffer, thus we have to directly grab the members
 613	 * from pages.
 614	 */
 615	header = (struct btrfs_header *)(page_address(first_page) + first_off);
 616	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
 617
 618	if (logical != btrfs_stack_header_bytenr(header)) {
 619		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 620		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 621		btrfs_warn_rl(fs_info,
 622		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
 623			      logical, stripe->mirror_num,
 624			      btrfs_stack_header_bytenr(header), logical);
 625		return;
 626	}
 627	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
 628		   BTRFS_FSID_SIZE) != 0) {
 629		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 630		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 631		btrfs_warn_rl(fs_info,
 632		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
 633			      logical, stripe->mirror_num,
 634			      header->fsid, fs_info->fs_devices->fsid);
 635		return;
 636	}
 637	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 638		   BTRFS_UUID_SIZE) != 0) {
 639		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 640		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 641		btrfs_warn_rl(fs_info,
 642		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
 643			      logical, stripe->mirror_num,
 644			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
 645		return;
 646	}
 647
 648	/* Now check tree block csum. */
 649	shash->tfm = fs_info->csum_shash;
 650	crypto_shash_init(shash);
 651	crypto_shash_update(shash, page_address(first_page) + first_off +
 652			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
 653
 654	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
 655		struct page *page = scrub_stripe_get_page(stripe, i);
 656		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
 657
 658		crypto_shash_update(shash, page_address(page) + page_off,
 659				    fs_info->sectorsize);
 660	}
 661
 662	crypto_shash_final(shash, calculated_csum);
 663	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
 664		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 665		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 666		btrfs_warn_rl(fs_info,
 667		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
 668			      logical, stripe->mirror_num,
 669			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
 670			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
 671		return;
 672	}
 673	if (stripe->sectors[sector_nr].generation !=
 674	    btrfs_stack_header_generation(header)) {
 675		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 676		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 677		btrfs_warn_rl(fs_info,
 678		"tree block %llu mirror %u has bad generation, has %llu want %llu",
 679			      logical, stripe->mirror_num,
 680			      btrfs_stack_header_generation(header),
 681			      stripe->sectors[sector_nr].generation);
 682		return;
 683	}
 684	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 685	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 686	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 687}
 688
 689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
 690{
 691	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 692	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
 693	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 694	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 695	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 696	u8 csum_buf[BTRFS_CSUM_SIZE];
 697	int ret;
 
 
 
 
 
 698
 699	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
 700
 701	/* Sector not utilized, skip it. */
 702	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
 703		return;
 704
 705	/* IO error, no need to check. */
 706	if (test_bit(sector_nr, &stripe->io_error_bitmap))
 707		return;
 708
 709	/* Metadata, verify the full tree block. */
 710	if (sector->is_metadata) {
 711		/*
 712		 * Check if the tree block crosses the stripe boundary.  If
 713		 * crossed the boundary, we cannot verify it but only give a
 714		 * warning.
 715		 *
 716		 * This can only happen on a very old filesystem where chunks
 717		 * are not ensured to be stripe aligned.
 718		 */
 719		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
 720			btrfs_warn_rl(fs_info,
 721			"tree block at %llu crosses stripe boundary %llu",
 722				      stripe->logical +
 723				      (sector_nr << fs_info->sectorsize_bits),
 724				      stripe->logical);
 725			return;
 726		}
 727		scrub_verify_one_metadata(stripe, sector_nr);
 728		return;
 729	}
 730
 731	/*
 732	 * Data is easier, we just verify the data csum (if we have it).  For
 733	 * cases without csum, we have no other choice but to trust it.
 734	 */
 735	if (!sector->csum) {
 736		clear_bit(sector_nr, &stripe->error_bitmap);
 737		return;
 738	}
 739
 740	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
 
 
 
 
 
 
 
 
 
 
 
 741	if (ret < 0) {
 742		set_bit(sector_nr, &stripe->csum_error_bitmap);
 743		set_bit(sector_nr, &stripe->error_bitmap);
 744	} else {
 745		clear_bit(sector_nr, &stripe->csum_error_bitmap);
 746		clear_bit(sector_nr, &stripe->error_bitmap);
 747	}
 748}
 749
 750/* Verify specified sectors of a stripe. */
 751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
 752{
 753	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 754	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 755	int sector_nr;
 756
 757	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
 758		scrub_verify_one_sector(stripe, sector_nr);
 759		if (stripe->sectors[sector_nr].is_metadata)
 760			sector_nr += sectors_per_tree - 1;
 
 
 
 
 
 
 
 
 
 761	}
 762}
 763
 764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
 765{
 766	int i;
 767
 768	for (i = 0; i < stripe->nr_sectors; i++) {
 769		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
 770		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
 771			break;
 772	}
 773	ASSERT(i < stripe->nr_sectors);
 774	return i;
 775}
 776
 777/*
 778 * Repair read is different to the regular read:
 779 *
 780 * - Only reads the failed sectors
 781 * - May have extra blocksize limits
 
 
 782 */
 783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
 784{
 785	struct scrub_stripe *stripe = bbio->private;
 786	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 787	struct bio_vec *bvec;
 788	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 789	u32 bio_size = 0;
 790	int i;
 791
 792	ASSERT(sector_nr < stripe->nr_sectors);
 793
 794	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 795		bio_size += bvec->bv_len;
 
 
 
 
 
 
 
 796
 797	if (bbio->bio.bi_status) {
 798		bitmap_set(&stripe->io_error_bitmap, sector_nr,
 799			   bio_size >> fs_info->sectorsize_bits);
 800		bitmap_set(&stripe->error_bitmap, sector_nr,
 801			   bio_size >> fs_info->sectorsize_bits);
 802	} else {
 803		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
 804			     bio_size >> fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	}
 806	bio_put(&bbio->bio);
 807	if (atomic_dec_and_test(&stripe->pending_io))
 808		wake_up(&stripe->io_wait);
 809}
 810
 811static int calc_next_mirror(int mirror, int num_copies)
 812{
 813	ASSERT(mirror <= num_copies);
 814	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
 815}
 816
 817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
 818					    int mirror, int blocksize, bool wait)
 819{
 820	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 821	struct btrfs_bio *bbio = NULL;
 822	const unsigned long old_error_bitmap = stripe->error_bitmap;
 823	int i;
 824
 825	ASSERT(stripe->mirror_num >= 1);
 826	ASSERT(atomic_read(&stripe->pending_io) == 0);
 827
 828	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
 829		struct page *page;
 830		int pgoff;
 831		int ret;
 832
 833		page = scrub_stripe_get_page(stripe, i);
 834		pgoff = scrub_stripe_get_page_offset(stripe, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836		/* The current sector cannot be merged, submit the bio. */
 837		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
 838			     bbio->bio.bi_iter.bi_size >= blocksize)) {
 839			ASSERT(bbio->bio.bi_iter.bi_size);
 840			atomic_inc(&stripe->pending_io);
 841			btrfs_submit_bio(bbio, mirror);
 842			if (wait)
 843				wait_scrub_stripe_io(stripe);
 844			bbio = NULL;
 845		}
 
 
 
 846
 847		if (!bbio) {
 848			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 849				fs_info, scrub_repair_read_endio, stripe);
 850			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 851				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
 852		}
 
 
 
 
 
 
 
 
 
 
 
 853
 854		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 855		ASSERT(ret == fs_info->sectorsize);
 
 856	}
 857	if (bbio) {
 858		ASSERT(bbio->bio.bi_iter.bi_size);
 859		atomic_inc(&stripe->pending_io);
 860		btrfs_submit_bio(bbio, mirror);
 861		if (wait)
 862			wait_scrub_stripe_io(stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863	}
 864}
 865
 866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
 867				       struct scrub_stripe *stripe)
 868{
 869	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 870				      DEFAULT_RATELIMIT_BURST);
 871	struct btrfs_fs_info *fs_info = sctx->fs_info;
 872	struct btrfs_device *dev = NULL;
 873	u64 physical = 0;
 874	int nr_data_sectors = 0;
 875	int nr_meta_sectors = 0;
 876	int nr_nodatacsum_sectors = 0;
 877	int nr_repaired_sectors = 0;
 878	int sector_nr;
 879
 880	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
 881		return;
 882
 883	/*
 884	 * Init needed infos for error reporting.
 885	 *
 886	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
 887	 * thus no need for dev/physical, error reporting still needs dev and physical.
 888	 */
 889	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
 890		u64 mapped_len = fs_info->sectorsize;
 891		struct btrfs_io_context *bioc = NULL;
 892		int stripe_index = stripe->mirror_num - 1;
 893		int ret;
 894
 895		/* For scrub, our mirror_num should always start at 1. */
 896		ASSERT(stripe->mirror_num >= 1);
 897		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 898				      stripe->logical, &mapped_len, &bioc,
 899				      NULL, NULL);
 900		/*
 901		 * If we failed, dev will be NULL, and later detailed reports
 902		 * will just be skipped.
 903		 */
 904		if (ret < 0)
 905			goto skip;
 906		physical = bioc->stripes[stripe_index].physical;
 907		dev = bioc->stripes[stripe_index].dev;
 908		btrfs_put_bioc(bioc);
 
 
 
 
 
 
 
 
 
 
 
 
 909	}
 910
 911skip:
 912	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 913		bool repaired = false;
 914
 915		if (stripe->sectors[sector_nr].is_metadata) {
 916			nr_meta_sectors++;
 917		} else {
 918			nr_data_sectors++;
 919			if (!stripe->sectors[sector_nr].csum)
 920				nr_nodatacsum_sectors++;
 921		}
 922
 923		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
 924		    !test_bit(sector_nr, &stripe->error_bitmap)) {
 925			nr_repaired_sectors++;
 926			repaired = true;
 927		}
 
 
 
 928
 929		/* Good sector from the beginning, nothing need to be done. */
 930		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
 931			continue;
 
 932
 933		/*
 934		 * Report error for the corrupted sectors.  If repaired, just
 935		 * output the message of repaired message.
 936		 */
 937		if (repaired) {
 938			if (dev) {
 939				btrfs_err_rl_in_rcu(fs_info,
 940			"fixed up error at logical %llu on dev %s physical %llu",
 941					    stripe->logical, btrfs_dev_name(dev),
 942					    physical);
 943			} else {
 944				btrfs_err_rl_in_rcu(fs_info,
 945			"fixed up error at logical %llu on mirror %u",
 946					    stripe->logical, stripe->mirror_num);
 
 
 947			}
 948			continue;
 
 949		}
 950
 951		/* The remaining are all for unrepaired. */
 952		if (dev) {
 953			btrfs_err_rl_in_rcu(fs_info,
 954	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
 955					    stripe->logical, btrfs_dev_name(dev),
 956					    physical);
 957		} else {
 958			btrfs_err_rl_in_rcu(fs_info,
 959	"unable to fixup (regular) error at logical %llu on mirror %u",
 960					    stripe->logical, stripe->mirror_num);
 961		}
 962
 963		if (test_bit(sector_nr, &stripe->io_error_bitmap))
 964			if (__ratelimit(&rs) && dev)
 965				scrub_print_common_warning("i/o error", dev, false,
 966						     stripe->logical, physical);
 967		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
 968			if (__ratelimit(&rs) && dev)
 969				scrub_print_common_warning("checksum error", dev, false,
 970						     stripe->logical, physical);
 971		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
 972			if (__ratelimit(&rs) && dev)
 973				scrub_print_common_warning("header error", dev, false,
 974						     stripe->logical, physical);
 975	}
 976
 977	spin_lock(&sctx->stat_lock);
 978	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
 979	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
 980	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
 981	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
 982	sctx->stat.no_csum += nr_nodatacsum_sectors;
 983	sctx->stat.read_errors += stripe->init_nr_io_errors;
 984	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
 985	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
 986	sctx->stat.uncorrectable_errors +=
 987		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
 988	sctx->stat.corrected_errors += nr_repaired_sectors;
 989	spin_unlock(&sctx->stat_lock);
 990}
 991
 992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 993				unsigned long write_bitmap, bool dev_replace);
 994
 995/*
 996 * The main entrance for all read related scrub work, including:
 997 *
 998 * - Wait for the initial read to finish
 999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 *   possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009{
1010	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011	struct scrub_ctx *sctx = stripe->sctx;
1012	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014					  stripe->bg->length);
1015	int mirror;
1016	int i;
1017
1018	ASSERT(stripe->mirror_num > 0);
1019
1020	wait_scrub_stripe_io(stripe);
1021	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022	/* Save the initial failed bitmap for later repair and report usage. */
1023	stripe->init_error_bitmap = stripe->error_bitmap;
1024	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025						  stripe->nr_sectors);
1026	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027						    stripe->nr_sectors);
1028	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029						    stripe->nr_sectors);
 
 
 
 
 
 
 
1030
1031	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032		goto out;
1033
1034	/*
1035	 * Try all remaining mirrors.
1036	 *
1037	 * Here we still try to read as large block as possible, as this is
1038	 * faster and we have extra safety nets to rely on.
1039	 */
1040	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041	     mirror != stripe->mirror_num;
1042	     mirror = calc_next_mirror(mirror, num_copies)) {
1043		const unsigned long old_error_bitmap = stripe->error_bitmap;
1044
1045		scrub_stripe_submit_repair_read(stripe, mirror,
1046						BTRFS_STRIPE_LEN, false);
1047		wait_scrub_stripe_io(stripe);
1048		scrub_verify_one_stripe(stripe, old_error_bitmap);
1049		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050			goto out;
1051	}
1052
1053	/*
1054	 * Last safety net, try re-checking all mirrors, including the failed
1055	 * one, sector-by-sector.
1056	 *
1057	 * As if one sector failed the drive's internal csum, the whole read
1058	 * containing the offending sector would be marked as error.
1059	 * Thus here we do sector-by-sector read.
1060	 *
1061	 * This can be slow, thus we only try it as the last resort.
1062	 */
1063
1064	for (i = 0, mirror = stripe->mirror_num;
1065	     i < num_copies;
1066	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067		const unsigned long old_error_bitmap = stripe->error_bitmap;
1068
1069		scrub_stripe_submit_repair_read(stripe, mirror,
1070						fs_info->sectorsize, true);
1071		wait_scrub_stripe_io(stripe);
1072		scrub_verify_one_stripe(stripe, old_error_bitmap);
1073		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074			goto out;
1075	}
1076out:
1077	/*
1078	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1079	 * in-place, but queue the bg to be relocated.
1080	 */
1081	if (btrfs_is_zoned(fs_info)) {
1082		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084	} else if (!sctx->readonly) {
1085		unsigned long repaired;
1086
1087		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088			      &stripe->error_bitmap, stripe->nr_sectors);
1089		scrub_write_sectors(sctx, stripe, repaired, false);
1090		wait_scrub_stripe_io(stripe);
1091	}
1092
1093	scrub_stripe_report_errors(sctx, stripe);
1094	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095	wake_up(&stripe->repair_wait);
1096}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1097
1098static void scrub_read_endio(struct btrfs_bio *bbio)
1099{
1100	struct scrub_stripe *stripe = bbio->private;
1101	struct bio_vec *bvec;
1102	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103	int num_sectors;
1104	u32 bio_size = 0;
1105	int i;
1106
1107	ASSERT(sector_nr < stripe->nr_sectors);
1108	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109		bio_size += bvec->bv_len;
1110	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112	if (bbio->bio.bi_status) {
1113		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115	} else {
1116		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117	}
1118	bio_put(&bbio->bio);
1119	if (atomic_dec_and_test(&stripe->pending_io)) {
1120		wake_up(&stripe->io_wait);
1121		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123	}
1124}
1125
1126static void scrub_write_endio(struct btrfs_bio *bbio)
1127{
1128	struct scrub_stripe *stripe = bbio->private;
1129	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130	struct bio_vec *bvec;
1131	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132	u32 bio_size = 0;
1133	int i;
1134
1135	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136		bio_size += bvec->bv_len;
1137
1138	if (bbio->bio.bi_status) {
1139		unsigned long flags;
1140
1141		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143			   bio_size >> fs_info->sectorsize_bits);
1144		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
 
 
 
 
 
 
 
 
1145	}
1146	bio_put(&bbio->bio);
1147
1148	if (atomic_dec_and_test(&stripe->pending_io))
1149		wake_up(&stripe->io_wait);
1150}
1151
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153				   struct scrub_stripe *stripe,
1154				   struct btrfs_bio *bbio, bool dev_replace)
 
 
1155{
1156	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159		      stripe->logical;
1160
1161	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162	atomic_inc(&stripe->pending_io);
1163	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164	if (!btrfs_is_zoned(fs_info))
1165		return;
1166	/*
1167	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168	 * the write to finish before the next write.
1169	 */
1170	wait_scrub_stripe_io(stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171
1172	/*
1173	 * And also need to update the write pointer if write finished
1174	 * successfully.
1175	 */
1176	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177		      &stripe->write_error_bitmap))
1178		sctx->write_pointer += bio_len;
1179}
1180
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 *   Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 *   Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195				unsigned long write_bitmap, bool dev_replace)
1196{
1197	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198	struct btrfs_bio *bbio = NULL;
1199	int sector_nr;
1200
1201	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204		int ret;
1205
1206		/* We should only writeback sectors covered by an extent. */
1207		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208
1209		/* Cannot merge with previous sector, submit the current one. */
1210		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212			bbio = NULL;
1213		}
1214		if (!bbio) {
1215			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216					       fs_info, scrub_write_endio, stripe);
1217			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218				(sector_nr << fs_info->sectorsize_bits)) >>
1219				SECTOR_SHIFT;
1220		}
1221		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222		ASSERT(ret == fs_info->sectorsize);
1223	}
1224	if (bbio)
1225		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226}
1227
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233				  unsigned int bio_size)
1234{
1235	const int time_slice = 1000;
1236	s64 delta;
1237	ktime_t now;
1238	u32 div;
1239	u64 bwlimit;
1240
1241	bwlimit = READ_ONCE(device->scrub_speed_max);
1242	if (bwlimit == 0)
1243		return;
1244
1245	/*
1246	 * Slice is divided into intervals when the IO is submitted, adjust by
1247	 * bwlimit and maximum of 64 intervals.
1248	 */
1249	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250	div = min_t(u32, 64, div);
1251
1252	/* Start new epoch, set deadline */
1253	now = ktime_get();
1254	if (sctx->throttle_deadline == 0) {
1255		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256		sctx->throttle_sent = 0;
1257	}
1258
1259	/* Still in the time to send? */
1260	if (ktime_before(now, sctx->throttle_deadline)) {
1261		/* If current bio is within the limit, send it */
1262		sctx->throttle_sent += bio_size;
1263		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264			return;
1265
1266		/* We're over the limit, sleep until the rest of the slice */
1267		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268	} else {
1269		/* New request after deadline, start new epoch */
1270		delta = 0;
1271	}
1272
1273	if (delta) {
1274		long timeout;
1275
1276		timeout = div_u64(delta * HZ, 1000);
1277		schedule_timeout_interruptible(timeout);
1278	}
1279
1280	/* Next call will start the deadline period */
1281	sctx->throttle_deadline = 0;
1282}
1283
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
1292				   struct btrfs_chunk_map *map, u64 *offset,
1293				   u64 *stripe_start)
1294{
1295	int i;
1296	int j = 0;
1297	u64 last_offset;
1298	const int data_stripes = nr_data_stripes(map);
1299
1300	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301	if (stripe_start)
1302		*stripe_start = last_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304	*offset = last_offset;
1305	for (i = 0; i < data_stripes; i++) {
1306		u32 stripe_nr;
1307		u32 stripe_index;
1308		u32 rot;
1309
1310		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
 
 
 
 
 
 
1311
1312		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
 
 
 
 
1313
1314		/* Work out the disk rotation on this stripe-set */
1315		rot = stripe_nr % map->num_stripes;
1316		/* calculate which stripe this data locates */
1317		rot += i;
1318		stripe_index = rot % map->num_stripes;
1319		if (stripe_index == num)
1320			return 0;
1321		if (stripe_index < num)
1322			j++;
1323	}
1324	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325	return 1;
1326}
1327
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334				     u64 search_start, u64 search_len)
1335{
1336	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337	u64 len;
1338	struct btrfs_key key;
1339
1340	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342	       key.type == BTRFS_METADATA_ITEM_KEY);
1343	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344		len = fs_info->nodesize;
1345	else
1346		len = key.offset;
1347
1348	if (key.objectid + len <= search_start)
1349		return -1;
1350	if (key.objectid >= search_start + search_len)
1351		return 1;
1352	return 0;
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372				  struct btrfs_path *path,
1373				  u64 search_start, u64 search_len)
1374{
1375	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376	struct btrfs_key key;
1377	int ret;
1378
1379	/* Continue using the existing path */
1380	if (path->nodes[0])
1381		goto search_forward;
1382
1383	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384		key.type = BTRFS_METADATA_ITEM_KEY;
1385	else
1386		key.type = BTRFS_EXTENT_ITEM_KEY;
1387	key.objectid = search_start;
1388	key.offset = (u64)-1;
 
1389
1390	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391	if (ret < 0)
1392		return ret;
1393
1394	ASSERT(ret > 0);
1395	/*
1396	 * Here we intentionally pass 0 as @min_objectid, as there could be
1397	 * an extent item starting before @search_start.
1398	 */
1399	ret = btrfs_previous_extent_item(extent_root, path, 0);
1400	if (ret < 0)
1401		return ret;
1402	/*
1403	 * No matter whether we have found an extent item, the next loop will
1404	 * properly do every check on the key.
1405	 */
1406search_forward:
1407	while (true) {
1408		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1409		if (key.objectid >= search_start + search_len)
1410			break;
1411		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1412		    key.type != BTRFS_EXTENT_ITEM_KEY)
1413			goto next;
1414
1415		ret = compare_extent_item_range(path, search_start, search_len);
1416		if (ret == 0)
1417			return ret;
1418		if (ret > 0)
1419			break;
1420next:
1421		ret = btrfs_next_item(extent_root, path);
1422		if (ret) {
1423			/* Either no more items or a fatal error. */
1424			btrfs_release_path(path);
1425			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426		}
 
1427	}
1428	btrfs_release_path(path);
1429	return 1;
1430}
1431
1432static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1433			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1434{
1435	struct btrfs_key key;
1436	struct btrfs_extent_item *ei;
1437
1438	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1439	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1440	       key.type == BTRFS_EXTENT_ITEM_KEY);
1441	*extent_start_ret = key.objectid;
1442	if (key.type == BTRFS_METADATA_ITEM_KEY)
1443		*size_ret = path->nodes[0]->fs_info->nodesize;
1444	else
1445		*size_ret = key.offset;
1446	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1447	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1448	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1449}
1450
1451static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1452					u64 physical, u64 physical_end)
1453{
1454	struct btrfs_fs_info *fs_info = sctx->fs_info;
1455	int ret = 0;
1456
1457	if (!btrfs_is_zoned(fs_info))
1458		return 0;
1459
1460	mutex_lock(&sctx->wr_lock);
1461	if (sctx->write_pointer < physical_end) {
1462		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1463						    physical,
1464						    sctx->write_pointer);
1465		if (ret)
1466			btrfs_err(fs_info,
1467				  "zoned: failed to recover write pointer");
 
1468	}
1469	mutex_unlock(&sctx->wr_lock);
1470	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1471
1472	return ret;
1473}
1474
1475static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1476				 struct scrub_stripe *stripe,
1477				 u64 extent_start, u64 extent_len,
1478				 u64 extent_flags, u64 extent_gen)
1479{
1480	for (u64 cur_logical = max(stripe->logical, extent_start);
1481	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1482			       extent_start + extent_len);
1483	     cur_logical += fs_info->sectorsize) {
1484		const int nr_sector = (cur_logical - stripe->logical) >>
1485				      fs_info->sectorsize_bits;
1486		struct scrub_sector_verification *sector =
1487						&stripe->sectors[nr_sector];
1488
1489		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1490		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1491			sector->is_metadata = true;
1492			sector->generation = extent_gen;
1493		}
1494	}
1495}
1496
1497static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1498{
1499	stripe->extent_sector_bitmap = 0;
1500	stripe->init_error_bitmap = 0;
1501	stripe->init_nr_io_errors = 0;
1502	stripe->init_nr_csum_errors = 0;
1503	stripe->init_nr_meta_errors = 0;
1504	stripe->error_bitmap = 0;
1505	stripe->io_error_bitmap = 0;
1506	stripe->csum_error_bitmap = 0;
1507	stripe->meta_error_bitmap = 0;
1508}
1509
1510/*
1511 * Locate one stripe which has at least one extent in its range.
1512 *
1513 * Return 0 if found such stripe, and store its info into @stripe.
1514 * Return >0 if there is no such stripe in the specified range.
1515 * Return <0 for error.
1516 */
1517static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1518					struct btrfs_path *extent_path,
1519					struct btrfs_path *csum_path,
1520					struct btrfs_device *dev, u64 physical,
1521					int mirror_num, u64 logical_start,
1522					u32 logical_len,
1523					struct scrub_stripe *stripe)
1524{
1525	struct btrfs_fs_info *fs_info = bg->fs_info;
1526	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1527	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1528	const u64 logical_end = logical_start + logical_len;
1529	u64 cur_logical = logical_start;
1530	u64 stripe_end;
1531	u64 extent_start;
1532	u64 extent_len;
1533	u64 extent_flags;
1534	u64 extent_gen;
1535	int ret;
1536
1537	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1538				   stripe->nr_sectors);
1539	scrub_stripe_reset_bitmaps(stripe);
1540
1541	/* The range must be inside the bg. */
1542	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1543
1544	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1545				     logical_len);
1546	/* Either error or not found. */
1547	if (ret)
1548		goto out;
1549	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1550			&extent_gen);
1551	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1552		stripe->nr_meta_extents++;
1553	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1554		stripe->nr_data_extents++;
1555	cur_logical = max(extent_start, cur_logical);
1556
1557	/*
1558	 * Round down to stripe boundary.
1559	 *
1560	 * The extra calculation against bg->start is to handle block groups
1561	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1562	 */
1563	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1564			  bg->start;
1565	stripe->physical = physical + stripe->logical - logical_start;
1566	stripe->dev = dev;
1567	stripe->bg = bg;
1568	stripe->mirror_num = mirror_num;
1569	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1570
1571	/* Fill the first extent info into stripe->sectors[] array. */
1572	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1573			     extent_flags, extent_gen);
1574	cur_logical = extent_start + extent_len;
1575
1576	/* Fill the extent info for the remaining sectors. */
1577	while (cur_logical <= stripe_end) {
1578		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1579					     stripe_end - cur_logical + 1);
1580		if (ret < 0)
1581			goto out;
1582		if (ret > 0) {
1583			ret = 0;
1584			break;
1585		}
1586		get_extent_info(extent_path, &extent_start, &extent_len,
1587				&extent_flags, &extent_gen);
1588		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1589			stripe->nr_meta_extents++;
1590		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1591			stripe->nr_data_extents++;
1592		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1593				     extent_flags, extent_gen);
1594		cur_logical = extent_start + extent_len;
1595	}
1596
1597	/* Now fill the data csum. */
1598	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1599		int sector_nr;
1600		unsigned long csum_bitmap = 0;
1601
1602		/* Csum space should have already been allocated. */
1603		ASSERT(stripe->csums);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604
1605		/*
1606		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1607		 * should contain at most 16 sectors.
1608		 */
1609		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1610
1611		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1612						stripe->logical, stripe_end,
1613						stripe->csums, &csum_bitmap);
1614		if (ret < 0)
1615			goto out;
1616		if (ret > 0)
1617			ret = 0;
1618
1619		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1620			stripe->sectors[sector_nr].csum = stripe->csums +
1621				sector_nr * fs_info->csum_size;
1622		}
1623	}
1624	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1625out:
1626	return ret;
 
 
 
 
1627}
1628
1629static void scrub_reset_stripe(struct scrub_stripe *stripe)
1630{
1631	scrub_stripe_reset_bitmaps(stripe);
 
1632
1633	stripe->nr_meta_extents = 0;
1634	stripe->nr_data_extents = 0;
1635	stripe->state = 0;
1636
1637	for (int i = 0; i < stripe->nr_sectors; i++) {
1638		stripe->sectors[i].is_metadata = false;
1639		stripe->sectors[i].csum = NULL;
1640		stripe->sectors[i].generation = 0;
1641	}
1642}
1643
1644static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1645					    struct scrub_stripe *stripe)
1646{
1647	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1648	struct btrfs_bio *bbio = NULL;
1649	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1650				      stripe->bg->length - stripe->logical) >>
1651				  fs_info->sectorsize_bits;
1652	u64 stripe_len = BTRFS_STRIPE_LEN;
1653	int mirror = stripe->mirror_num;
1654	int i;
1655
1656	atomic_inc(&stripe->pending_io);
 
 
 
1657
1658	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1659		struct page *page = scrub_stripe_get_page(stripe, i);
1660		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1661
1662		/* We're beyond the chunk boundary, no need to read anymore. */
1663		if (i >= nr_sectors)
1664			break;
1665
1666		/* The current sector cannot be merged, submit the bio. */
1667		if (bbio &&
1668		    ((i > 0 &&
1669		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1670		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1671			ASSERT(bbio->bio.bi_iter.bi_size);
1672			atomic_inc(&stripe->pending_io);
1673			btrfs_submit_bio(bbio, mirror);
1674			bbio = NULL;
1675		}
1676
1677		if (!bbio) {
1678			struct btrfs_io_stripe io_stripe = {};
1679			struct btrfs_io_context *bioc = NULL;
1680			const u64 logical = stripe->logical +
1681					    (i << fs_info->sectorsize_bits);
1682			int err;
1683
1684			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1685					       fs_info, scrub_read_endio, stripe);
1686			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1687
1688			io_stripe.is_scrub = true;
1689			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1690					      &stripe_len, &bioc, &io_stripe,
1691					      &mirror);
1692			btrfs_put_bioc(bioc);
1693			if (err) {
1694				btrfs_bio_end_io(bbio,
1695						 errno_to_blk_status(err));
1696				return;
1697			}
1698		}
1699
1700		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1701	}
1702
1703	if (bbio) {
1704		ASSERT(bbio->bio.bi_iter.bi_size);
1705		atomic_inc(&stripe->pending_io);
1706		btrfs_submit_bio(bbio, mirror);
1707	}
1708
1709	if (atomic_dec_and_test(&stripe->pending_io)) {
1710		wake_up(&stripe->io_wait);
1711		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1712		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1713	}
1714}
1715
1716static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1717				      struct scrub_stripe *stripe)
1718{
1719	struct btrfs_fs_info *fs_info = sctx->fs_info;
1720	struct btrfs_bio *bbio;
1721	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1722				      stripe->bg->length - stripe->logical) >>
1723				  fs_info->sectorsize_bits;
1724	int mirror = stripe->mirror_num;
1725
1726	ASSERT(stripe->bg);
1727	ASSERT(stripe->mirror_num > 0);
1728	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
 
 
 
 
 
 
 
 
 
 
1729
1730	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1731		scrub_submit_extent_sector_read(sctx, stripe);
1732		return;
1733	}
1734
1735	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1736			       scrub_read_endio, stripe);
 
 
 
 
 
 
 
 
 
1737
1738	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1739	/* Read the whole range inside the chunk boundary. */
1740	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1741		struct page *page = scrub_stripe_get_page(stripe, cur);
1742		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1743		int ret;
1744
1745		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1746		/* We should have allocated enough bio vectors. */
1747		ASSERT(ret == fs_info->sectorsize);
1748	}
1749	atomic_inc(&stripe->pending_io);
1750
1751	/*
1752	 * For dev-replace, either user asks to avoid the source dev, or
1753	 * the device is missing, we try the next mirror instead.
1754	 */
1755	if (sctx->is_dev_replace &&
1756	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1757	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1758	     !stripe->dev->bdev)) {
1759		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1760						  stripe->bg->length);
1761
1762		mirror = calc_next_mirror(mirror, num_copies);
 
 
 
 
 
 
 
 
 
1763	}
1764	btrfs_submit_bio(bbio, mirror);
1765}
1766
1767static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1768{
1769	int i;
1770
1771	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1772		if (stripe->sectors[i].is_metadata) {
1773			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1774
1775			btrfs_err(fs_info,
1776			"stripe %llu has unrepaired metadata sector at %llu",
1777				  stripe->logical,
1778				  stripe->logical + (i << fs_info->sectorsize_bits));
1779			return true;
1780		}
1781	}
1782	return false;
1783}
1784
1785static void submit_initial_group_read(struct scrub_ctx *sctx,
1786				      unsigned int first_slot,
1787				      unsigned int nr_stripes)
1788{
1789	struct blk_plug plug;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790
1791	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1792	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
 
 
 
1793
1794	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1795			      btrfs_stripe_nr_to_offset(nr_stripes));
1796	blk_start_plug(&plug);
1797	for (int i = 0; i < nr_stripes; i++) {
1798		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1799
1800		/* Those stripes should be initialized. */
1801		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1802		scrub_submit_initial_read(sctx, stripe);
1803	}
1804	blk_finish_plug(&plug);
1805}
1806
1807static int flush_scrub_stripes(struct scrub_ctx *sctx)
1808{
1809	struct btrfs_fs_info *fs_info = sctx->fs_info;
1810	struct scrub_stripe *stripe;
1811	const int nr_stripes = sctx->cur_stripe;
1812	int ret = 0;
1813
1814	if (!nr_stripes)
1815		return 0;
1816
1817	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
 
 
1818
1819	/* Submit the stripes which are populated but not submitted. */
1820	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1821		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
 
 
 
 
1822
1823		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
 
 
 
 
 
 
 
 
 
 
 
1824	}
1825
1826	for (int i = 0; i < nr_stripes; i++) {
1827		stripe = &sctx->stripes[i];
 
1828
1829		wait_event(stripe->repair_wait,
1830			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1831	}
1832
1833	/* Submit for dev-replace. */
1834	if (sctx->is_dev_replace) {
1835		/*
1836		 * For dev-replace, if we know there is something wrong with
1837		 * metadata, we should immediately abort.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838		 */
1839		for (int i = 0; i < nr_stripes; i++) {
1840			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1841				ret = -EIO;
1842				goto out;
1843			}
1844		}
1845		for (int i = 0; i < nr_stripes; i++) {
1846			unsigned long good;
 
 
1847
1848			stripe = &sctx->stripes[i];
 
1849
1850			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
 
 
 
1851
1852			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1853				      &stripe->error_bitmap, stripe->nr_sectors);
1854			scrub_write_sectors(sctx, stripe, good, true);
1855		}
 
 
 
 
1856	}
 
1857
1858	/* Wait for the above writebacks to finish. */
1859	for (int i = 0; i < nr_stripes; i++) {
1860		stripe = &sctx->stripes[i];
 
1861
1862		wait_scrub_stripe_io(stripe);
1863		scrub_reset_stripe(stripe);
 
 
 
 
1864	}
1865out:
1866	sctx->cur_stripe = 0;
1867	return ret;
1868}
1869
1870static void raid56_scrub_wait_endio(struct bio *bio)
1871{
1872	complete(bio->bi_private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873}
1874
1875static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1876			      struct btrfs_device *dev, int mirror_num,
1877			      u64 logical, u32 length, u64 physical,
1878			      u64 *found_logical_ret)
1879{
1880	struct scrub_stripe *stripe;
 
1881	int ret;
1882
 
1883	/*
1884	 * There should always be one slot left, as caller filling the last
1885	 * slot should flush them all.
1886	 */
1887	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1888
1889	/* @found_logical_ret must be specified. */
1890	ASSERT(found_logical_ret);
1891
1892	stripe = &sctx->stripes[sctx->cur_stripe];
1893	scrub_reset_stripe(stripe);
1894	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1895					   &sctx->csum_path, dev, physical,
1896					   mirror_num, logical, length, stripe);
1897	/* Either >0 as no more extents or <0 for error. */
1898	if (ret)
1899		return ret;
1900	*found_logical_ret = stripe->logical;
1901	sctx->cur_stripe++;
1902
1903	/* We filled one group, submit it. */
1904	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1905		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1906
1907		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1908	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909
1910	/* Last slot used, flush them all. */
1911	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1912		return flush_scrub_stripes(sctx);
1913	return 0;
1914}
1915
1916static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1917				      struct btrfs_device *scrub_dev,
1918				      struct btrfs_block_group *bg,
1919				      struct btrfs_chunk_map *map,
1920				      u64 full_stripe_start)
1921{
1922	DECLARE_COMPLETION_ONSTACK(io_done);
1923	struct btrfs_fs_info *fs_info = sctx->fs_info;
1924	struct btrfs_raid_bio *rbio;
1925	struct btrfs_io_context *bioc = NULL;
1926	struct btrfs_path extent_path = { 0 };
1927	struct btrfs_path csum_path = { 0 };
1928	struct bio *bio;
1929	struct scrub_stripe *stripe;
1930	bool all_empty = true;
1931	const int data_stripes = nr_data_stripes(map);
1932	unsigned long extent_bitmap = 0;
1933	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1934	int ret;
1935
1936	ASSERT(sctx->raid56_data_stripes);
1937
1938	/*
1939	 * For data stripe search, we cannot re-use the same extent/csum paths,
1940	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1941	 * we have to use our own extent/csum paths.
1942	 */
1943	extent_path.search_commit_root = 1;
1944	extent_path.skip_locking = 1;
1945	csum_path.search_commit_root = 1;
1946	csum_path.skip_locking = 1;
1947
1948	for (int i = 0; i < data_stripes; i++) {
1949		int stripe_index;
1950		int rot;
1951		u64 physical;
1952
1953		stripe = &sctx->raid56_data_stripes[i];
1954		rot = div_u64(full_stripe_start - bg->start,
1955			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1956		stripe_index = (i + rot) % map->num_stripes;
1957		physical = map->stripes[stripe_index].physical +
1958			   btrfs_stripe_nr_to_offset(rot);
1959
1960		scrub_reset_stripe(stripe);
1961		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1962		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1963				map->stripes[stripe_index].dev, physical, 1,
1964				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1965				BTRFS_STRIPE_LEN, stripe);
1966		if (ret < 0)
1967			goto out;
1968		/*
1969		 * No extent in this data stripe, need to manually mark them
1970		 * initialized to make later read submission happy.
1971		 */
1972		if (ret > 0) {
1973			stripe->logical = full_stripe_start +
1974					  btrfs_stripe_nr_to_offset(i);
1975			stripe->dev = map->stripes[stripe_index].dev;
1976			stripe->mirror_num = 1;
1977			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1978		}
1979	}
1980
1981	/* Check if all data stripes are empty. */
1982	for (int i = 0; i < data_stripes; i++) {
1983		stripe = &sctx->raid56_data_stripes[i];
1984		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1985			all_empty = false;
1986			break;
 
 
 
 
 
 
 
 
 
 
 
 
1987		}
1988	}
1989	if (all_empty) {
1990		ret = 0;
1991		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992	}
1993
1994	for (int i = 0; i < data_stripes; i++) {
1995		stripe = &sctx->raid56_data_stripes[i];
1996		scrub_submit_initial_read(sctx, stripe);
1997	}
1998	for (int i = 0; i < data_stripes; i++) {
1999		stripe = &sctx->raid56_data_stripes[i];
2000
2001		wait_event(stripe->repair_wait,
2002			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
 
 
2003	}
2004	/* For now, no zoned support for RAID56. */
2005	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2006
2007	/*
2008	 * Now all data stripes are properly verified. Check if we have any
2009	 * unrepaired, if so abort immediately or we could further corrupt the
2010	 * P/Q stripes.
2011	 *
2012	 * During the loop, also populate extent_bitmap.
2013	 */
2014	for (int i = 0; i < data_stripes; i++) {
2015		unsigned long error;
2016
2017		stripe = &sctx->raid56_data_stripes[i];
 
 
 
2018
2019		/*
2020		 * We should only check the errors where there is an extent.
2021		 * As we may hit an empty data stripe while it's missing.
2022		 */
2023		bitmap_and(&error, &stripe->error_bitmap,
2024			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2025		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2026			btrfs_err(fs_info,
2027"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2028				  full_stripe_start, i, stripe->nr_sectors,
2029				  &error);
2030			ret = -EIO;
2031			goto out;
2032		}
2033		bitmap_or(&extent_bitmap, &extent_bitmap,
2034			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2035	}
2036
2037	/* Now we can check and regenerate the P/Q stripe. */
2038	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2039	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2040	bio->bi_private = &io_done;
2041	bio->bi_end_io = raid56_scrub_wait_endio;
2042
2043	btrfs_bio_counter_inc_blocked(fs_info);
2044	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2045			      &length, &bioc, NULL, NULL);
2046	if (ret < 0) {
2047		btrfs_put_bioc(bioc);
2048		btrfs_bio_counter_dec(fs_info);
2049		goto out;
2050	}
2051	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2052				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2053	btrfs_put_bioc(bioc);
2054	if (!rbio) {
2055		ret = -ENOMEM;
2056		btrfs_bio_counter_dec(fs_info);
2057		goto out;
2058	}
2059	/* Use the recovered stripes as cache to avoid read them from disk again. */
2060	for (int i = 0; i < data_stripes; i++) {
2061		stripe = &sctx->raid56_data_stripes[i];
2062
2063		raid56_parity_cache_data_pages(rbio, stripe->pages,
2064				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2065	}
2066	raid56_parity_submit_scrub_rbio(rbio);
2067	wait_for_completion_io(&io_done);
2068	ret = blk_status_to_errno(bio->bi_status);
2069	bio_put(bio);
2070	btrfs_bio_counter_dec(fs_info);
2071
2072	btrfs_release_path(&extent_path);
2073	btrfs_release_path(&csum_path);
2074out:
2075	return ret;
2076}
2077
2078/*
2079 * Scrub one range which can only has simple mirror based profile.
2080 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2081 *  RAID0/RAID10).
2082 *
2083 * Since we may need to handle a subset of block group, we need @logical_start
2084 * and @logical_length parameter.
2085 */
2086static int scrub_simple_mirror(struct scrub_ctx *sctx,
2087			       struct btrfs_block_group *bg,
2088			       struct btrfs_chunk_map *map,
2089			       u64 logical_start, u64 logical_length,
2090			       struct btrfs_device *device,
2091			       u64 physical, int mirror_num)
2092{
2093	struct btrfs_fs_info *fs_info = sctx->fs_info;
2094	const u64 logical_end = logical_start + logical_length;
2095	u64 cur_logical = logical_start;
2096	int ret;
2097
2098	/* The range must be inside the bg */
2099	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2100
2101	/* Go through each extent items inside the logical range */
2102	while (cur_logical < logical_end) {
2103		u64 found_logical = U64_MAX;
2104		u64 cur_physical = physical + cur_logical - logical_start;
2105
2106		/* Canceled? */
2107		if (atomic_read(&fs_info->scrub_cancel_req) ||
2108		    atomic_read(&sctx->cancel_req)) {
2109			ret = -ECANCELED;
2110			break;
2111		}
2112		/* Paused? */
2113		if (atomic_read(&fs_info->scrub_pause_req)) {
2114			/* Push queued extents */
2115			scrub_blocked_if_needed(fs_info);
2116		}
2117		/* Block group removed? */
2118		spin_lock(&bg->lock);
2119		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2120			spin_unlock(&bg->lock);
2121			ret = 0;
2122			break;
2123		}
2124		spin_unlock(&bg->lock);
2125
2126		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2127					 cur_logical, logical_end - cur_logical,
2128					 cur_physical, &found_logical);
2129		if (ret > 0) {
2130			/* No more extent, just update the accounting */
2131			sctx->stat.last_physical = physical + logical_length;
2132			ret = 0;
2133			break;
2134		}
2135		if (ret < 0)
2136			break;
2137
2138		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2139		ASSERT(found_logical != U64_MAX);
2140		cur_logical = found_logical + BTRFS_STRIPE_LEN;
 
2141
2142		/* Don't hold CPU for too long time */
2143		cond_resched();
 
 
 
 
 
 
 
 
 
 
2144	}
2145	return ret;
 
2146}
2147
2148/* Calculate the full stripe length for simple stripe based profiles */
2149static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2150{
2151	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2152			    BTRFS_BLOCK_GROUP_RAID10));
2153
2154	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
 
 
 
 
 
 
 
2155}
2156
2157/* Get the logical bytenr for the stripe */
2158static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2159				     struct btrfs_block_group *bg,
2160				     int stripe_index)
2161{
2162	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2163			    BTRFS_BLOCK_GROUP_RAID10));
2164	ASSERT(stripe_index < map->num_stripes);
2165
2166	/*
2167	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2168	 * skip.
2169	 */
2170	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2171	       bg->start;
2172}
2173
2174/* Get the mirror number for the stripe */
2175static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2176{
2177	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2178			    BTRFS_BLOCK_GROUP_RAID10));
2179	ASSERT(stripe_index < map->num_stripes);
 
2180
2181	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2182	return stripe_index % map->sub_stripes + 1;
 
 
 
 
 
 
2183}
2184
2185static int scrub_simple_stripe(struct scrub_ctx *sctx,
2186			       struct btrfs_block_group *bg,
2187			       struct btrfs_chunk_map *map,
2188			       struct btrfs_device *device,
2189			       int stripe_index)
2190{
2191	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2192	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2193	const u64 orig_physical = map->stripes[stripe_index].physical;
2194	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2195	u64 cur_logical = orig_logical;
2196	u64 cur_physical = orig_physical;
2197	int ret = 0;
2198
2199	while (cur_logical < bg->start + bg->length) {
2200		/*
2201		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2202		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2203		 * this stripe.
2204		 */
2205		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2206					  BTRFS_STRIPE_LEN, device, cur_physical,
2207					  mirror_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208		if (ret)
2209			return ret;
2210		/* Skip to next stripe which belongs to the target device */
2211		cur_logical += logical_increment;
2212		/* For physical offset, we just go to next stripe */
2213		cur_physical += BTRFS_STRIPE_LEN;
2214	}
2215	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216}
2217
2218static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2219					   struct btrfs_block_group *bg,
2220					   struct btrfs_chunk_map *map,
2221					   struct btrfs_device *scrub_dev,
2222					   int stripe_index)
 
2223{
2224	struct btrfs_fs_info *fs_info = sctx->fs_info;
2225	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2226	const u64 chunk_logical = bg->start;
 
 
 
 
2227	int ret;
2228	int ret2;
2229	u64 physical = map->stripes[stripe_index].physical;
2230	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2231	const u64 physical_end = physical + dev_stripe_len;
 
2232	u64 logical;
2233	u64 logic_end;
2234	/* The logical increment after finishing one stripe */
2235	u64 increment;
2236	/* Offset inside the chunk */
 
 
 
 
 
2237	u64 offset;
2238	u64 stripe_logical;
 
 
 
 
2239	int stop_loop = 0;
2240
2241	/* Extent_path should be released by now. */
2242	ASSERT(sctx->extent_path.nodes[0] == NULL);
2243
2244	scrub_blocked_if_needed(fs_info);
2245
2246	if (sctx->is_dev_replace &&
2247	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2248		mutex_lock(&sctx->wr_lock);
2249		sctx->write_pointer = physical;
2250		mutex_unlock(&sctx->wr_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251	}
2252
2253	/* Prepare the extra data stripes used by RAID56. */
2254	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2255		ASSERT(sctx->raid56_data_stripes == NULL);
2256
2257		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2258						    sizeof(struct scrub_stripe),
2259						    GFP_KERNEL);
2260		if (!sctx->raid56_data_stripes) {
2261			ret = -ENOMEM;
2262			goto out;
2263		}
2264		for (int i = 0; i < nr_data_stripes(map); i++) {
2265			ret = init_scrub_stripe(fs_info,
2266						&sctx->raid56_data_stripes[i]);
2267			if (ret < 0)
2268				goto out;
2269			sctx->raid56_data_stripes[i].bg = bg;
2270			sctx->raid56_data_stripes[i].sctx = sctx;
2271		}
2272	}
2273	/*
2274	 * There used to be a big double loop to handle all profiles using the
2275	 * same routine, which grows larger and more gross over time.
2276	 *
2277	 * So here we handle each profile differently, so simpler profiles
2278	 * have simpler scrubbing function.
2279	 */
2280	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2281			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2282		/*
2283		 * Above check rules out all complex profile, the remaining
2284		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2285		 * mirrored duplication without stripe.
2286		 *
2287		 * Only @physical and @mirror_num needs to calculated using
2288		 * @stripe_index.
2289		 */
2290		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2291				scrub_dev, map->stripes[stripe_index].physical,
2292				stripe_index + 1);
2293		offset = 0;
2294		goto out;
2295	}
2296	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2297		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2298		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2299		goto out;
2300	}
 
 
 
2301
2302	/* Only RAID56 goes through the old code */
2303	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2304	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305
2306	/* Calculate the logical end of the stripe */
2307	get_raid56_logic_offset(physical_end, stripe_index,
2308				map, &logic_end, NULL);
2309	logic_end += chunk_logical;
2310
2311	/* Initialize @offset in case we need to go to out: label */
2312	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2313	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2314
2315	/*
2316	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2317	 * using their physical offset.
2318	 */
 
 
 
 
 
 
2319	while (physical < physical_end) {
2320		ret = get_raid56_logic_offset(physical, stripe_index, map,
2321					      &logical, &stripe_logical);
2322		logical += chunk_logical;
2323		if (ret) {
2324			/* it is parity strip */
2325			stripe_logical += chunk_logical;
2326			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2327							 map, stripe_logical);
2328			if (ret)
2329				goto out;
2330			goto next;
 
 
 
 
 
 
 
2331		}
2332
2333		/*
2334		 * Now we're at a data stripe, scrub each extents in the range.
2335		 *
2336		 * At this stage, if we ignore the repair part, inside each data
2337		 * stripe it is no different than SINGLE profile.
2338		 * We can reuse scrub_simple_mirror() here, as the repair part
2339		 * is still based on @mirror_num.
2340		 */
2341		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2342					  scrub_dev, physical, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343		if (ret < 0)
2344			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345next:
 
 
 
 
2346		logical += increment;
2347		physical += BTRFS_STRIPE_LEN;
2348		spin_lock(&sctx->stat_lock);
2349		if (stop_loop)
2350			sctx->stat.last_physical =
2351				map->stripes[stripe_index].physical + dev_stripe_len;
2352		else
2353			sctx->stat.last_physical = physical;
2354		spin_unlock(&sctx->stat_lock);
2355		if (stop_loop)
2356			break;
2357	}
2358out:
2359	ret2 = flush_scrub_stripes(sctx);
2360	if (!ret)
2361		ret = ret2;
2362	btrfs_release_path(&sctx->extent_path);
2363	btrfs_release_path(&sctx->csum_path);
2364
2365	if (sctx->raid56_data_stripes) {
2366		for (int i = 0; i < nr_data_stripes(map); i++)
2367			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2368		kfree(sctx->raid56_data_stripes);
2369		sctx->raid56_data_stripes = NULL;
2370	}
2371
2372	if (sctx->is_dev_replace && ret >= 0) {
2373		int ret2;
2374
2375		ret2 = sync_write_pointer_for_zoned(sctx,
2376				chunk_logical + offset,
2377				map->stripes[stripe_index].physical,
2378				physical_end);
2379		if (ret2)
2380			ret = ret2;
2381	}
2382
 
 
2383	return ret < 0 ? ret : 0;
2384}
2385
2386static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2387					  struct btrfs_block_group *bg,
2388					  struct btrfs_device *scrub_dev,
2389					  u64 dev_offset,
2390					  u64 dev_extent_len)
2391{
2392	struct btrfs_fs_info *fs_info = sctx->fs_info;
2393	struct btrfs_chunk_map *map;
 
 
 
2394	int i;
2395	int ret = 0;
2396
2397	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2398	if (!map) {
2399		/*
2400		 * Might have been an unused block group deleted by the cleaner
2401		 * kthread or relocation.
2402		 */
2403		spin_lock(&bg->lock);
2404		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2405			ret = -EINVAL;
2406		spin_unlock(&bg->lock);
2407
2408		return ret;
2409	}
2410	if (map->start != bg->start)
 
 
2411		goto out;
2412	if (map->chunk_len < dev_extent_len)
 
2413		goto out;
2414
2415	for (i = 0; i < map->num_stripes; ++i) {
2416		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2417		    map->stripes[i].physical == dev_offset) {
2418			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
 
 
2419			if (ret)
2420				goto out;
2421		}
2422	}
2423out:
2424	btrfs_free_chunk_map(map);
2425
2426	return ret;
2427}
2428
2429static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2430					  struct btrfs_block_group *cache)
2431{
2432	struct btrfs_fs_info *fs_info = cache->fs_info;
2433	struct btrfs_trans_handle *trans;
2434
2435	if (!btrfs_is_zoned(fs_info))
2436		return 0;
2437
2438	btrfs_wait_block_group_reservations(cache);
2439	btrfs_wait_nocow_writers(cache);
2440	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2441
2442	trans = btrfs_join_transaction(root);
2443	if (IS_ERR(trans))
2444		return PTR_ERR(trans);
2445	return btrfs_commit_transaction(trans);
2446}
2447
2448static noinline_for_stack
2449int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2450			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 
2451{
2452	struct btrfs_dev_extent *dev_extent = NULL;
2453	struct btrfs_path *path;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	struct btrfs_root *root = fs_info->dev_root;
 
 
 
2456	u64 chunk_offset;
2457	int ret = 0;
2458	int ro_set;
2459	int slot;
2460	struct extent_buffer *l;
2461	struct btrfs_key key;
2462	struct btrfs_key found_key;
2463	struct btrfs_block_group *cache;
2464	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2465
2466	path = btrfs_alloc_path();
2467	if (!path)
2468		return -ENOMEM;
2469
2470	path->reada = READA_FORWARD;
2471	path->search_commit_root = 1;
2472	path->skip_locking = 1;
2473
2474	key.objectid = scrub_dev->devid;
2475	key.offset = 0ull;
2476	key.type = BTRFS_DEV_EXTENT_KEY;
2477
2478	while (1) {
2479		u64 dev_extent_len;
2480
2481		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482		if (ret < 0)
2483			break;
2484		if (ret > 0) {
2485			if (path->slots[0] >=
2486			    btrfs_header_nritems(path->nodes[0])) {
2487				ret = btrfs_next_leaf(root, path);
2488				if (ret < 0)
2489					break;
2490				if (ret > 0) {
2491					ret = 0;
2492					break;
2493				}
2494			} else {
2495				ret = 0;
2496			}
2497		}
2498
2499		l = path->nodes[0];
2500		slot = path->slots[0];
2501
2502		btrfs_item_key_to_cpu(l, &found_key, slot);
2503
2504		if (found_key.objectid != scrub_dev->devid)
2505			break;
2506
2507		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2508			break;
2509
2510		if (found_key.offset >= end)
2511			break;
2512
2513		if (found_key.offset < key.offset)
2514			break;
2515
2516		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2517		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2518
2519		if (found_key.offset + dev_extent_len <= start)
2520			goto skip;
 
 
 
2521
 
 
2522		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2523
2524		/*
2525		 * get a reference on the corresponding block group to prevent
2526		 * the chunk from going away while we scrub it
2527		 */
2528		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2529
2530		/* some chunks are removed but not committed to disk yet,
2531		 * continue scrubbing */
2532		if (!cache)
2533			goto skip;
2534
2535		ASSERT(cache->start <= chunk_offset);
2536		/*
2537		 * We are using the commit root to search for device extents, so
2538		 * that means we could have found a device extent item from a
2539		 * block group that was deleted in the current transaction. The
2540		 * logical start offset of the deleted block group, stored at
2541		 * @chunk_offset, might be part of the logical address range of
2542		 * a new block group (which uses different physical extents).
2543		 * In this case btrfs_lookup_block_group() has returned the new
2544		 * block group, and its start address is less than @chunk_offset.
2545		 *
2546		 * We skip such new block groups, because it's pointless to
2547		 * process them, as we won't find their extents because we search
2548		 * for them using the commit root of the extent tree. For a device
2549		 * replace it's also fine to skip it, we won't miss copying them
2550		 * to the target device because we have the write duplication
2551		 * setup through the regular write path (by btrfs_map_block()),
2552		 * and we have committed a transaction when we started the device
2553		 * replace, right after setting up the device replace state.
2554		 */
2555		if (cache->start < chunk_offset) {
2556			btrfs_put_block_group(cache);
2557			goto skip;
2558		}
2559
2560		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2561			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2562				btrfs_put_block_group(cache);
2563				goto skip;
2564			}
2565		}
2566
2567		/*
2568		 * Make sure that while we are scrubbing the corresponding block
2569		 * group doesn't get its logical address and its device extents
2570		 * reused for another block group, which can possibly be of a
2571		 * different type and different profile. We do this to prevent
2572		 * false error detections and crashes due to bogus attempts to
2573		 * repair extents.
2574		 */
2575		spin_lock(&cache->lock);
2576		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2577			spin_unlock(&cache->lock);
2578			btrfs_put_block_group(cache);
2579			goto skip;
2580		}
2581		btrfs_freeze_block_group(cache);
2582		spin_unlock(&cache->lock);
2583
2584		/*
2585		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2586		 * to avoid deadlock caused by:
2587		 * btrfs_inc_block_group_ro()
2588		 * -> btrfs_wait_for_commit()
2589		 * -> btrfs_commit_transaction()
2590		 * -> btrfs_scrub_pause()
2591		 */
2592		scrub_pause_on(fs_info);
2593
2594		/*
2595		 * Don't do chunk preallocation for scrub.
2596		 *
2597		 * This is especially important for SYSTEM bgs, or we can hit
2598		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2599		 * 1. The only SYSTEM bg is marked RO.
2600		 *    Since SYSTEM bg is small, that's pretty common.
2601		 * 2. New SYSTEM bg will be allocated
2602		 *    Due to regular version will allocate new chunk.
2603		 * 3. New SYSTEM bg is empty and will get cleaned up
2604		 *    Before cleanup really happens, it's marked RO again.
2605		 * 4. Empty SYSTEM bg get scrubbed
2606		 *    We go back to 2.
2607		 *
2608		 * This can easily boost the amount of SYSTEM chunks if cleaner
2609		 * thread can't be triggered fast enough, and use up all space
2610		 * of btrfs_super_block::sys_chunk_array
2611		 *
2612		 * While for dev replace, we need to try our best to mark block
2613		 * group RO, to prevent race between:
2614		 * - Write duplication
2615		 *   Contains latest data
2616		 * - Scrub copy
2617		 *   Contains data from commit tree
2618		 *
2619		 * If target block group is not marked RO, nocow writes can
2620		 * be overwritten by scrub copy, causing data corruption.
2621		 * So for dev-replace, it's not allowed to continue if a block
2622		 * group is not RO.
2623		 */
2624		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2625		if (!ret && sctx->is_dev_replace) {
2626			ret = finish_extent_writes_for_zoned(root, cache);
2627			if (ret) {
2628				btrfs_dec_block_group_ro(cache);
2629				scrub_pause_off(fs_info);
2630				btrfs_put_block_group(cache);
2631				break;
2632			}
2633		}
2634
2635		if (ret == 0) {
2636			ro_set = 1;
2637		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2638			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2639			/*
2640			 * btrfs_inc_block_group_ro return -ENOSPC when it
2641			 * failed in creating new chunk for metadata.
2642			 * It is not a problem for scrub, because
2643			 * metadata are always cowed, and our scrub paused
2644			 * commit_transactions.
2645			 *
2646			 * For RAID56 chunks, we have to mark them read-only
2647			 * for scrub, as later we would use our own cache
2648			 * out of RAID56 realm.
2649			 * Thus we want the RAID56 bg to be marked RO to
2650			 * prevent RMW from screwing up out cache.
2651			 */
2652			ro_set = 0;
2653		} else if (ret == -ETXTBSY) {
2654			btrfs_warn(fs_info,
2655		   "skipping scrub of block group %llu due to active swapfile",
2656				   cache->start);
2657			scrub_pause_off(fs_info);
2658			ret = 0;
2659			goto skip_unfreeze;
2660		} else {
2661			btrfs_warn(fs_info,
2662				   "failed setting block group ro: %d", ret);
2663			btrfs_unfreeze_block_group(cache);
2664			btrfs_put_block_group(cache);
2665			scrub_pause_off(fs_info);
2666			break;
2667		}
2668
2669		/*
2670		 * Now the target block is marked RO, wait for nocow writes to
2671		 * finish before dev-replace.
2672		 * COW is fine, as COW never overwrites extents in commit tree.
2673		 */
2674		if (sctx->is_dev_replace) {
2675			btrfs_wait_nocow_writers(cache);
2676			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2677					cache->length);
2678		}
2679
2680		scrub_pause_off(fs_info);
2681		down_write(&dev_replace->rwsem);
2682		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2683		dev_replace->cursor_left = found_key.offset;
2684		dev_replace->item_needs_writeback = 1;
2685		up_write(&dev_replace->rwsem);
2686
2687		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2688				  dev_extent_len);
2689		if (sctx->is_dev_replace &&
2690		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2691						      cache, found_key.offset))
2692			ro_set = 0;
2693
2694		down_write(&dev_replace->rwsem);
2695		dev_replace->cursor_left = dev_replace->cursor_right;
2696		dev_replace->item_needs_writeback = 1;
2697		up_write(&dev_replace->rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698
2699		if (ro_set)
2700			btrfs_dec_block_group_ro(cache);
 
 
 
2701
2702		/*
2703		 * We might have prevented the cleaner kthread from deleting
2704		 * this block group if it was already unused because we raced
2705		 * and set it to RO mode first. So add it back to the unused
2706		 * list, otherwise it might not ever be deleted unless a manual
2707		 * balance is triggered or it becomes used and unused again.
2708		 */
2709		spin_lock(&cache->lock);
2710		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2711		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2712			spin_unlock(&cache->lock);
2713			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2714				btrfs_discard_queue_work(&fs_info->discard_ctl,
2715							 cache);
2716			else
2717				btrfs_mark_bg_unused(cache);
2718		} else {
2719			spin_unlock(&cache->lock);
2720		}
2721skip_unfreeze:
2722		btrfs_unfreeze_block_group(cache);
2723		btrfs_put_block_group(cache);
2724		if (ret)
2725			break;
2726		if (sctx->is_dev_replace &&
2727		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2728			ret = -EIO;
2729			break;
2730		}
2731		if (sctx->stat.malloc_errors > 0) {
2732			ret = -ENOMEM;
2733			break;
2734		}
2735skip:
2736		key.offset = found_key.offset + dev_extent_len;
 
 
 
2737		btrfs_release_path(path);
2738	}
2739
2740	btrfs_free_path(path);
2741
2742	return ret;
2743}
2744
2745static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2746			   struct page *page, u64 physical, u64 generation)
2747{
2748	struct btrfs_fs_info *fs_info = sctx->fs_info;
2749	struct bio_vec bvec;
2750	struct bio bio;
2751	struct btrfs_super_block *sb = page_address(page);
2752	int ret;
2753
2754	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2755	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2756	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2757	ret = submit_bio_wait(&bio);
2758	bio_uninit(&bio);
2759
2760	if (ret < 0)
2761		return ret;
2762	ret = btrfs_check_super_csum(fs_info, sb);
2763	if (ret != 0) {
2764		btrfs_err_rl(fs_info,
2765			"super block at physical %llu devid %llu has bad csum",
2766			physical, dev->devid);
2767		return -EIO;
2768	}
2769	if (btrfs_super_generation(sb) != generation) {
2770		btrfs_err_rl(fs_info,
2771"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2772			     physical, dev->devid,
2773			     btrfs_super_generation(sb), generation);
2774		return -EUCLEAN;
2775	}
2776
2777	return btrfs_validate_super(fs_info, sb, -1);
2778}
2779
2780static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2781					   struct btrfs_device *scrub_dev)
2782{
2783	int	i;
2784	u64	bytenr;
2785	u64	gen;
2786	int ret = 0;
2787	struct page *page;
2788	struct btrfs_fs_info *fs_info = sctx->fs_info;
2789
2790	if (BTRFS_FS_ERROR(fs_info))
2791		return -EROFS;
2792
2793	page = alloc_page(GFP_KERNEL);
2794	if (!page) {
2795		spin_lock(&sctx->stat_lock);
2796		sctx->stat.malloc_errors++;
2797		spin_unlock(&sctx->stat_lock);
2798		return -ENOMEM;
2799	}
2800
2801	/* Seed devices of a new filesystem has their own generation. */
2802	if (scrub_dev->fs_devices != fs_info->fs_devices)
2803		gen = scrub_dev->generation;
2804	else
2805		gen = btrfs_get_last_trans_committed(fs_info);
2806
2807	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2808		bytenr = btrfs_sb_offset(i);
2809		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2810		    scrub_dev->commit_total_bytes)
2811			break;
2812		if (!btrfs_check_super_location(scrub_dev, bytenr))
2813			continue;
2814
2815		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2816		if (ret) {
2817			spin_lock(&sctx->stat_lock);
2818			sctx->stat.super_errors++;
2819			spin_unlock(&sctx->stat_lock);
2820		}
2821	}
2822	__free_page(page);
2823	return 0;
2824}
2825
2826static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2827{
2828	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2829					&fs_info->scrub_lock)) {
2830		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2831
2832		fs_info->scrub_workers = NULL;
2833		mutex_unlock(&fs_info->scrub_lock);
2834
2835		if (scrub_workers)
2836			destroy_workqueue(scrub_workers);
2837	}
2838}
2839
2840/*
2841 * get a reference count on fs_info->scrub_workers. start worker if necessary
2842 */
2843static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
 
2844{
2845	struct workqueue_struct *scrub_workers = NULL;
2846	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2847	int max_active = fs_info->thread_pool_size;
2848	int ret = -ENOMEM;
2849
2850	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2851		return 0;
2852
2853	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2854	if (!scrub_workers)
2855		return -ENOMEM;
2856
2857	mutex_lock(&fs_info->scrub_lock);
2858	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2859		ASSERT(fs_info->scrub_workers == NULL);
2860		fs_info->scrub_workers = scrub_workers;
2861		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2862		mutex_unlock(&fs_info->scrub_lock);
2863		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864	}
2865	/* Other thread raced in and created the workers for us */
2866	refcount_inc(&fs_info->scrub_workers_refcnt);
2867	mutex_unlock(&fs_info->scrub_lock);
2868
2869	ret = 0;
2870
2871	destroy_workqueue(scrub_workers);
2872	return ret;
2873}
2874
 
 
 
 
 
 
 
 
 
 
2875int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2876		    u64 end, struct btrfs_scrub_progress *progress,
2877		    int readonly, int is_dev_replace)
2878{
2879	struct btrfs_dev_lookup_args args = { .devid = devid };
2880	struct scrub_ctx *sctx;
2881	int ret;
2882	struct btrfs_device *dev;
2883	unsigned int nofs_flag;
2884	bool need_commit = false;
2885
2886	if (btrfs_fs_closing(fs_info))
2887		return -EAGAIN;
2888
2889	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2890	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2891
2892	/*
2893	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2894	 * value (max nodesize / min sectorsize), thus nodesize should always
2895	 * be fine.
2896	 */
2897	ASSERT(fs_info->nodesize <=
2898	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
 
 
 
 
 
2899
2900	/* Allocate outside of device_list_mutex */
2901	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2902	if (IS_ERR(sctx))
2903		return PTR_ERR(sctx);
 
 
 
 
 
 
 
2904
2905	ret = scrub_workers_get(fs_info);
2906	if (ret)
2907		goto out_free_ctx;
 
 
 
 
 
2908
2909	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2910	dev = btrfs_find_device(fs_info->fs_devices, &args);
2911	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2912		     !is_dev_replace)) {
2913		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2914		ret = -ENODEV;
2915		goto out;
 
 
 
 
 
 
 
 
2916	}
2917
2918	if (!is_dev_replace && !readonly &&
2919	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
 
 
2920		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2921		btrfs_err_in_rcu(fs_info,
2922			"scrub on devid %llu: filesystem on %s is not writable",
2923				 devid, btrfs_dev_name(dev));
2924		ret = -EROFS;
2925		goto out;
2926	}
2927
2928	mutex_lock(&fs_info->scrub_lock);
2929	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2930	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2931		mutex_unlock(&fs_info->scrub_lock);
2932		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933		ret = -EIO;
2934		goto out;
2935	}
2936
2937	down_read(&fs_info->dev_replace.rwsem);
2938	if (dev->scrub_ctx ||
2939	    (!is_dev_replace &&
2940	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2941		up_read(&fs_info->dev_replace.rwsem);
2942		mutex_unlock(&fs_info->scrub_lock);
2943		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2944		ret = -EINPROGRESS;
2945		goto out;
2946	}
2947	up_read(&fs_info->dev_replace.rwsem);
2948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2949	sctx->readonly = readonly;
2950	dev->scrub_ctx = sctx;
2951	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2952
2953	/*
2954	 * checking @scrub_pause_req here, we can avoid
2955	 * race between committing transaction and scrubbing.
2956	 */
2957	__scrub_blocked_if_needed(fs_info);
2958	atomic_inc(&fs_info->scrubs_running);
2959	mutex_unlock(&fs_info->scrub_lock);
2960
2961	/*
2962	 * In order to avoid deadlock with reclaim when there is a transaction
2963	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2964	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2965	 * invoked by our callees. The pausing request is done when the
2966	 * transaction commit starts, and it blocks the transaction until scrub
2967	 * is paused (done at specific points at scrub_stripe() or right above
2968	 * before incrementing fs_info->scrubs_running).
2969	 */
2970	nofs_flag = memalloc_nofs_save();
2971	if (!is_dev_replace) {
2972		u64 old_super_errors;
2973
2974		spin_lock(&sctx->stat_lock);
2975		old_super_errors = sctx->stat.super_errors;
2976		spin_unlock(&sctx->stat_lock);
2977
2978		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2979		/*
2980		 * by holding device list mutex, we can
2981		 * kick off writing super in log tree sync.
2982		 */
2983		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2984		ret = scrub_supers(sctx, dev);
2985		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986
2987		spin_lock(&sctx->stat_lock);
2988		/*
2989		 * Super block errors found, but we can not commit transaction
2990		 * at current context, since btrfs_commit_transaction() needs
2991		 * to pause the current running scrub (hold by ourselves).
2992		 */
2993		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2994			need_commit = true;
2995		spin_unlock(&sctx->stat_lock);
2996	}
2997
2998	if (!ret)
2999		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3000	memalloc_nofs_restore(nofs_flag);
3001
 
3002	atomic_dec(&fs_info->scrubs_running);
3003	wake_up(&fs_info->scrub_pause_wait);
3004
 
 
3005	if (progress)
3006		memcpy(progress, &sctx->stat, sizeof(*progress));
3007
3008	if (!is_dev_replace)
3009		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3010			ret ? "not finished" : "finished", devid, ret);
3011
3012	mutex_lock(&fs_info->scrub_lock);
3013	dev->scrub_ctx = NULL;
3014	mutex_unlock(&fs_info->scrub_lock);
3015
3016	scrub_workers_put(fs_info);
3017	scrub_put_ctx(sctx);
3018
3019	/*
3020	 * We found some super block errors before, now try to force a
3021	 * transaction commit, as scrub has finished.
3022	 */
3023	if (need_commit) {
3024		struct btrfs_trans_handle *trans;
3025
3026		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3027		if (IS_ERR(trans)) {
3028			ret = PTR_ERR(trans);
3029			btrfs_err(fs_info,
3030	"scrub: failed to start transaction to fix super block errors: %d", ret);
3031			return ret;
3032		}
3033		ret = btrfs_commit_transaction(trans);
3034		if (ret < 0)
3035			btrfs_err(fs_info,
3036	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3037	}
3038	return ret;
3039out:
3040	scrub_workers_put(fs_info);
3041out_free_ctx:
3042	scrub_free_ctx(sctx);
3043
3044	return ret;
3045}
3046
3047void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3048{
 
 
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3063{
 
 
3064	atomic_dec(&fs_info->scrub_pause_req);
3065	wake_up(&fs_info->scrub_pause_wait);
3066}
3067
3068int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3069{
3070	mutex_lock(&fs_info->scrub_lock);
3071	if (!atomic_read(&fs_info->scrubs_running)) {
3072		mutex_unlock(&fs_info->scrub_lock);
3073		return -ENOTCONN;
3074	}
3075
3076	atomic_inc(&fs_info->scrub_cancel_req);
3077	while (atomic_read(&fs_info->scrubs_running)) {
3078		mutex_unlock(&fs_info->scrub_lock);
3079		wait_event(fs_info->scrub_pause_wait,
3080			   atomic_read(&fs_info->scrubs_running) == 0);
3081		mutex_lock(&fs_info->scrub_lock);
3082	}
3083	atomic_dec(&fs_info->scrub_cancel_req);
3084	mutex_unlock(&fs_info->scrub_lock);
3085
3086	return 0;
3087}
3088
3089int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 
3090{
3091	struct btrfs_fs_info *fs_info = dev->fs_info;
3092	struct scrub_ctx *sctx;
3093
3094	mutex_lock(&fs_info->scrub_lock);
3095	sctx = dev->scrub_ctx;
3096	if (!sctx) {
3097		mutex_unlock(&fs_info->scrub_lock);
3098		return -ENOTCONN;
3099	}
3100	atomic_inc(&sctx->cancel_req);
3101	while (dev->scrub_ctx) {
3102		mutex_unlock(&fs_info->scrub_lock);
3103		wait_event(fs_info->scrub_pause_wait,
3104			   dev->scrub_ctx == NULL);
3105		mutex_lock(&fs_info->scrub_lock);
3106	}
3107	mutex_unlock(&fs_info->scrub_lock);
3108
3109	return 0;
3110}
3111
3112int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3113			 struct btrfs_scrub_progress *progress)
3114{
3115	struct btrfs_dev_lookup_args args = { .devid = devid };
3116	struct btrfs_device *dev;
3117	struct scrub_ctx *sctx = NULL;
3118
3119	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3120	dev = btrfs_find_device(fs_info->fs_devices, &args);
3121	if (dev)
3122		sctx = dev->scrub_ctx;
3123	if (sctx)
3124		memcpy(progress, &sctx->stat, sizeof(*progress));
3125	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3126
3127	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3128}
v3.15
 
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
 
 
  21#include "ctree.h"
 
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
 
 
 
 
 
 
 
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
 
 
 
 
 
 
 
 
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
 
 
 
 
  65
  66struct scrub_page {
  67	struct scrub_block	*sblock;
  68	struct page		*page;
  69	struct btrfs_device	*dev;
  70	u64			flags;  /* extent flags */
  71	u64			generation;
  72	u64			logical;
  73	u64			physical;
  74	u64			physical_for_dev_replace;
  75	atomic_t		ref_count;
  76	struct {
  77		unsigned int	mirror_num:8;
  78		unsigned int	have_csum:1;
  79		unsigned int	io_error:1;
  80	};
  81	u8			csum[BTRFS_CSUM_SIZE];
  82};
  83
  84struct scrub_bio {
  85	int			index;
  86	struct scrub_ctx	*sctx;
  87	struct btrfs_device	*dev;
  88	struct bio		*bio;
  89	int			err;
  90	u64			logical;
  91	u64			physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97	int			page_count;
  98	int			next_free;
  99	struct btrfs_work	work;
 100};
 101
 102struct scrub_block {
 103	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104	int			page_count;
 105	atomic_t		outstanding_pages;
 106	atomic_t		ref_count; /* free mem on transition to zero */
 107	struct scrub_ctx	*sctx;
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 113	};
 114};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115
 116struct scrub_wr_ctx {
 117	struct scrub_bio *wr_curr_bio;
 118	struct btrfs_device *tgtdev;
 119	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 120	atomic_t flush_all_writes;
 121	struct mutex wr_lock;
 122};
 123
 124struct scrub_ctx {
 125	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 126	struct btrfs_root	*dev_root;
 
 
 
 127	int			first_free;
 128	int			curr;
 129	atomic_t		bios_in_flight;
 130	atomic_t		workers_pending;
 131	spinlock_t		list_lock;
 132	wait_queue_head_t	list_wait;
 133	u16			csum_size;
 134	struct list_head	csum_list;
 135	atomic_t		cancel_req;
 136	int			readonly;
 137	int			pages_per_rd_bio;
 138	u32			sectorsize;
 139	u32			nodesize;
 140	u32			leafsize;
 141
 142	int			is_dev_replace;
 143	struct scrub_wr_ctx	wr_ctx;
 
 
 
 144
 145	/*
 146	 * statistics
 147	 */
 148	struct btrfs_scrub_progress stat;
 149	spinlock_t		stat_lock;
 150};
 151
 152struct scrub_fixup_nodatasum {
 153	struct scrub_ctx	*sctx;
 154	struct btrfs_device	*dev;
 155	u64			logical;
 156	struct btrfs_root	*root;
 157	struct btrfs_work	work;
 158	int			mirror_num;
 159};
 160
 161struct scrub_nocow_inode {
 162	u64			inum;
 163	u64			offset;
 164	u64			root;
 165	struct list_head	list;
 166};
 167
 168struct scrub_copy_nocow_ctx {
 169	struct scrub_ctx	*sctx;
 170	u64			logical;
 171	u64			len;
 172	int			mirror_num;
 173	u64			physical_for_dev_replace;
 174	struct list_head	inodes;
 175	struct btrfs_work	work;
 176};
 177
 178struct scrub_warning {
 179	struct btrfs_path	*path;
 180	u64			extent_item_size;
 181	char			*scratch_buf;
 182	char			*msg_buf;
 183	const char		*errstr;
 184	sector_t		sector;
 185	u64			logical;
 186	struct btrfs_device	*dev;
 187	int			msg_bufsize;
 188	int			scratch_bufsize;
 189};
 190
 
 
 
 
 191
 192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
 198				     struct btrfs_fs_info *fs_info,
 199				     struct scrub_block *original_sblock,
 200				     u64 length, u64 logical,
 201				     struct scrub_block *sblocks_for_recheck);
 202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 203				struct scrub_block *sblock, int is_metadata,
 204				int have_csum, u8 *csum, u64 generation,
 205				u16 csum_size);
 206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 207					 struct scrub_block *sblock,
 208					 int is_metadata, int have_csum,
 209					 const u8 *csum, u64 generation,
 210					 u16 csum_size);
 211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 212					     struct scrub_block *sblock_good,
 213					     int force_write);
 214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 215					    struct scrub_block *sblock_good,
 216					    int page_num, int force_write);
 217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 219					   int page_num);
 220static int scrub_checksum_data(struct scrub_block *sblock);
 221static int scrub_checksum_tree_block(struct scrub_block *sblock);
 222static int scrub_checksum_super(struct scrub_block *sblock);
 223static void scrub_block_get(struct scrub_block *sblock);
 224static void scrub_block_put(struct scrub_block *sblock);
 225static void scrub_page_get(struct scrub_page *spage);
 226static void scrub_page_put(struct scrub_page *spage);
 227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 228				    struct scrub_page *spage);
 229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 230		       u64 physical, struct btrfs_device *dev, u64 flags,
 231		       u64 gen, int mirror_num, u8 *csum, int force,
 232		       u64 physical_for_dev_replace);
 233static void scrub_bio_end_io(struct bio *bio, int err);
 234static void scrub_bio_end_io_worker(struct btrfs_work *work);
 235static void scrub_block_complete(struct scrub_block *sblock);
 236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 237			       u64 extent_logical, u64 extent_len,
 238			       u64 *extent_physical,
 239			       struct btrfs_device **extent_dev,
 240			       int *extent_mirror_num);
 241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 242			      struct scrub_wr_ctx *wr_ctx,
 243			      struct btrfs_fs_info *fs_info,
 244			      struct btrfs_device *dev,
 245			      int is_dev_replace);
 246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248				    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio, int err);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static int write_page_nocow(struct scrub_ctx *sctx,
 253			    u64 physical_for_dev_replace, struct page *page);
 254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 255				      struct scrub_copy_nocow_ctx *ctx);
 256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 257			    int mirror_num, u64 physical_for_dev_replace);
 258static void copy_nocow_pages_worker(struct btrfs_work *work);
 259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 261
 262
 263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 264{
 265	atomic_inc(&sctx->bios_in_flight);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266}
 267
 268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 269{
 270	atomic_dec(&sctx->bios_in_flight);
 271	wake_up(&sctx->list_wait);
 272}
 273
 
 
 274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 275{
 276	while (atomic_read(&fs_info->scrub_pause_req)) {
 277		mutex_unlock(&fs_info->scrub_lock);
 278		wait_event(fs_info->scrub_pause_wait,
 279		   atomic_read(&fs_info->scrub_pause_req) == 0);
 280		mutex_lock(&fs_info->scrub_lock);
 281	}
 282}
 283
 284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 285{
 286	atomic_inc(&fs_info->scrubs_paused);
 287	wake_up(&fs_info->scrub_pause_wait);
 
 288
 
 
 289	mutex_lock(&fs_info->scrub_lock);
 290	__scrub_blocked_if_needed(fs_info);
 291	atomic_dec(&fs_info->scrubs_paused);
 292	mutex_unlock(&fs_info->scrub_lock);
 293
 294	wake_up(&fs_info->scrub_pause_wait);
 295}
 296
 297/*
 298 * used for workers that require transaction commits (i.e., for the
 299 * NOCOW case)
 300 */
 301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 302{
 303	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 304
 305	/*
 306	 * increment scrubs_running to prevent cancel requests from
 307	 * completing as long as a worker is running. we must also
 308	 * increment scrubs_paused to prevent deadlocking on pause
 309	 * requests used for transactions commits (as the worker uses a
 310	 * transaction context). it is safe to regard the worker
 311	 * as paused for all matters practical. effectively, we only
 312	 * avoid cancellation requests from completing.
 313	 */
 314	mutex_lock(&fs_info->scrub_lock);
 315	atomic_inc(&fs_info->scrubs_running);
 316	atomic_inc(&fs_info->scrubs_paused);
 317	mutex_unlock(&fs_info->scrub_lock);
 318
 319	/*
 320	 * check if @scrubs_running=@scrubs_paused condition
 321	 * inside wait_event() is not an atomic operation.
 322	 * which means we may inc/dec @scrub_running/paused
 323	 * at any time. Let's wake up @scrub_pause_wait as
 324	 * much as we can to let commit transaction blocked less.
 325	 */
 326	wake_up(&fs_info->scrub_pause_wait);
 327
 328	atomic_inc(&sctx->workers_pending);
 329}
 330
 331/* used for workers that require transaction commits */
 332static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 333{
 334	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 335
 336	/*
 337	 * see scrub_pending_trans_workers_inc() why we're pretending
 338	 * to be paused in the scrub counters
 339	 */
 340	mutex_lock(&fs_info->scrub_lock);
 341	atomic_dec(&fs_info->scrubs_running);
 342	atomic_dec(&fs_info->scrubs_paused);
 343	mutex_unlock(&fs_info->scrub_lock);
 344	atomic_dec(&sctx->workers_pending);
 345	wake_up(&fs_info->scrub_pause_wait);
 346	wake_up(&sctx->list_wait);
 347}
 348
 349static void scrub_free_csums(struct scrub_ctx *sctx)
 350{
 351	while (!list_empty(&sctx->csum_list)) {
 352		struct btrfs_ordered_sum *sum;
 353		sum = list_first_entry(&sctx->csum_list,
 354				       struct btrfs_ordered_sum, list);
 355		list_del(&sum->list);
 356		kfree(sum);
 357	}
 358}
 359
 360static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 361{
 362	int i;
 363
 364	if (!sctx)
 365		return;
 366
 367	scrub_free_wr_ctx(&sctx->wr_ctx);
 
 368
 369	/* this can happen when scrub is cancelled */
 370	if (sctx->curr != -1) {
 371		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 372
 373		for (i = 0; i < sbio->page_count; i++) {
 374			WARN_ON(!sbio->pagev[i]->page);
 375			scrub_block_put(sbio->pagev[i]->sblock);
 376		}
 377		bio_put(sbio->bio);
 378	}
 379
 380	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 381		struct scrub_bio *sbio = sctx->bios[i];
 382
 383		if (!sbio)
 384			break;
 385		kfree(sbio);
 386	}
 387
 388	scrub_free_csums(sctx);
 389	kfree(sctx);
 390}
 391
 392static noinline_for_stack
 393struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 394{
 395	struct scrub_ctx *sctx;
 396	int		i;
 397	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 398	int pages_per_rd_bio;
 399	int ret;
 400
 401	/*
 402	 * the setting of pages_per_rd_bio is correct for scrub but might
 403	 * be wrong for the dev_replace code where we might read from
 404	 * different devices in the initial huge bios. However, that
 405	 * code is able to correctly handle the case when adding a page
 406	 * to a bio fails.
 407	 */
 408	if (dev->bdev)
 409		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
 410					 bio_get_nr_vecs(dev->bdev));
 411	else
 412		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 413	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
 414	if (!sctx)
 415		goto nomem;
 
 416	sctx->is_dev_replace = is_dev_replace;
 417	sctx->pages_per_rd_bio = pages_per_rd_bio;
 418	sctx->curr = -1;
 419	sctx->dev_root = dev->dev_root;
 420	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 421		struct scrub_bio *sbio;
 
 
 422
 423		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 424		if (!sbio)
 425			goto nomem;
 426		sctx->bios[i] = sbio;
 427
 428		sbio->index = i;
 429		sbio->sctx = sctx;
 430		sbio->page_count = 0;
 431		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
 432				NULL, NULL);
 433
 434		if (i != SCRUB_BIOS_PER_SCTX - 1)
 435			sctx->bios[i]->next_free = i + 1;
 436		else
 437			sctx->bios[i]->next_free = -1;
 438	}
 439	sctx->first_free = 0;
 440	sctx->nodesize = dev->dev_root->nodesize;
 441	sctx->leafsize = dev->dev_root->leafsize;
 442	sctx->sectorsize = dev->dev_root->sectorsize;
 443	atomic_set(&sctx->bios_in_flight, 0);
 444	atomic_set(&sctx->workers_pending, 0);
 445	atomic_set(&sctx->cancel_req, 0);
 446	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 447	INIT_LIST_HEAD(&sctx->csum_list);
 448
 449	spin_lock_init(&sctx->list_lock);
 450	spin_lock_init(&sctx->stat_lock);
 451	init_waitqueue_head(&sctx->list_wait);
 452
 453	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 454				 fs_info->dev_replace.tgtdev, is_dev_replace);
 455	if (ret) {
 456		scrub_free_ctx(sctx);
 457		return ERR_PTR(ret);
 458	}
 
 459	return sctx;
 460
 461nomem:
 462	scrub_free_ctx(sctx);
 463	return ERR_PTR(-ENOMEM);
 464}
 465
 466static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 467				     void *warn_ctx)
 468{
 469	u64 isize;
 470	u32 nlink;
 471	int ret;
 472	int i;
 
 473	struct extent_buffer *eb;
 474	struct btrfs_inode_item *inode_item;
 475	struct scrub_warning *swarn = warn_ctx;
 476	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 477	struct inode_fs_paths *ipath = NULL;
 478	struct btrfs_root *local_root;
 479	struct btrfs_key root_key;
 480
 481	root_key.objectid = root;
 482	root_key.type = BTRFS_ROOT_ITEM_KEY;
 483	root_key.offset = (u64)-1;
 484	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 485	if (IS_ERR(local_root)) {
 486		ret = PTR_ERR(local_root);
 487		goto err;
 488	}
 489
 490	ret = inode_item_info(inum, 0, local_root, swarn->path);
 
 
 
 
 
 
 
 491	if (ret) {
 
 492		btrfs_release_path(swarn->path);
 493		goto err;
 494	}
 495
 496	eb = swarn->path->nodes[0];
 497	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 498					struct btrfs_inode_item);
 499	isize = btrfs_inode_size(eb, inode_item);
 500	nlink = btrfs_inode_nlink(eb, inode_item);
 501	btrfs_release_path(swarn->path);
 502
 
 
 
 
 
 
 503	ipath = init_ipath(4096, local_root, swarn->path);
 
 504	if (IS_ERR(ipath)) {
 
 505		ret = PTR_ERR(ipath);
 506		ipath = NULL;
 507		goto err;
 508	}
 509	ret = paths_from_inode(inum, ipath);
 510
 511	if (ret < 0)
 512		goto err;
 513
 514	/*
 515	 * we deliberately ignore the bit ipath might have been too small to
 516	 * hold all of the paths here
 517	 */
 518	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 519		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 520			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 521			"length %llu, links %u (path: %s)\n", swarn->errstr,
 522			swarn->logical, rcu_str_deref(swarn->dev->name),
 523			(unsigned long long)swarn->sector, root, inum, offset,
 524			min(isize - offset, (u64)PAGE_SIZE), nlink,
 525			(char *)(unsigned long)ipath->fspath->val[i]);
 
 526
 
 527	free_ipath(ipath);
 528	return 0;
 529
 530err:
 531	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 532		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 533		"resolving failed with ret=%d\n", swarn->errstr,
 534		swarn->logical, rcu_str_deref(swarn->dev->name),
 535		(unsigned long long)swarn->sector, root, inum, offset, ret);
 
 536
 537	free_ipath(ipath);
 538	return 0;
 539}
 540
 541static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 
 542{
 543	struct btrfs_device *dev;
 544	struct btrfs_fs_info *fs_info;
 545	struct btrfs_path *path;
 546	struct btrfs_key found_key;
 547	struct extent_buffer *eb;
 548	struct btrfs_extent_item *ei;
 549	struct scrub_warning swarn;
 550	unsigned long ptr = 0;
 551	u64 extent_item_pos;
 552	u64 flags = 0;
 553	u64 ref_root;
 554	u32 item_size;
 555	u8 ref_level;
 556	const int bufsize = 4096;
 557	int ret;
 558
 559	WARN_ON(sblock->page_count < 1);
 560	dev = sblock->pagev[0]->dev;
 561	fs_info = sblock->sctx->dev_root->fs_info;
 562
 
 
 563	path = btrfs_alloc_path();
 
 
 564
 565	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 566	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 567	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 568	swarn.logical = sblock->pagev[0]->logical;
 569	swarn.errstr = errstr;
 570	swarn.dev = NULL;
 571	swarn.msg_bufsize = bufsize;
 572	swarn.scratch_bufsize = bufsize;
 573
 574	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 575		goto out;
 576
 577	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 578				  &flags);
 579	if (ret < 0)
 580		goto out;
 581
 582	extent_item_pos = swarn.logical - found_key.objectid;
 583	swarn.extent_item_size = found_key.offset;
 584
 585	eb = path->nodes[0];
 586	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 587	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 588
 589	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 590		do {
 591			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 592							&ref_root, &ref_level);
 593			printk_in_rcu(KERN_WARNING
 594				"BTRFS: %s at logical %llu on dev %s, "
 595				"sector %llu: metadata %s (level %d) in tree "
 596				"%llu\n", errstr, swarn.logical,
 597				rcu_str_deref(dev->name),
 598				(unsigned long long)swarn.sector,
 599				ref_level ? "node" : "leaf",
 600				ret < 0 ? -1 : ref_level,
 601				ret < 0 ? -1 : ref_root);
 602		} while (ret != 1);
 
 
 
 
 
 
 
 
 
 603		btrfs_release_path(path);
 604	} else {
 
 
 605		btrfs_release_path(path);
 
 
 
 
 
 606		swarn.path = path;
 607		swarn.dev = dev;
 608		iterate_extent_inodes(fs_info, found_key.objectid,
 609					extent_item_pos, 1,
 610					scrub_print_warning_inode, &swarn);
 611	}
 612
 613out:
 614	btrfs_free_path(path);
 615	kfree(swarn.scratch_buf);
 616	kfree(swarn.msg_buf);
 617}
 618
 619static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 620{
 621	struct page *page = NULL;
 622	unsigned long index;
 623	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 624	int ret;
 625	int corrected = 0;
 626	struct btrfs_key key;
 627	struct inode *inode = NULL;
 628	struct btrfs_fs_info *fs_info;
 629	u64 end = offset + PAGE_SIZE - 1;
 630	struct btrfs_root *local_root;
 631	int srcu_index;
 632
 633	key.objectid = root;
 634	key.type = BTRFS_ROOT_ITEM_KEY;
 635	key.offset = (u64)-1;
 636
 637	fs_info = fixup->root->fs_info;
 638	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 639
 640	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 641	if (IS_ERR(local_root)) {
 642		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 643		return PTR_ERR(local_root);
 644	}
 
 
 
 
 
 
 
 645
 646	key.type = BTRFS_INODE_ITEM_KEY;
 647	key.objectid = inum;
 648	key.offset = 0;
 649	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 650	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 651	if (IS_ERR(inode))
 652		return PTR_ERR(inode);
 653
 654	index = offset >> PAGE_CACHE_SHIFT;
 
 
 
 655
 656	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 657	if (!page) {
 658		ret = -ENOMEM;
 659		goto out;
 660	}
 661
 662	if (PageUptodate(page)) {
 663		if (PageDirty(page)) {
 664			/*
 665			 * we need to write the data to the defect sector. the
 666			 * data that was in that sector is not in memory,
 667			 * because the page was modified. we must not write the
 668			 * modified page to that sector.
 669			 *
 670			 * TODO: what could be done here: wait for the delalloc
 671			 *       runner to write out that page (might involve
 672			 *       COW) and see whether the sector is still
 673			 *       referenced afterwards.
 674			 *
 675			 * For the meantime, we'll treat this error
 676			 * incorrectable, although there is a chance that a
 677			 * later scrub will find the bad sector again and that
 678			 * there's no dirty page in memory, then.
 679			 */
 680			ret = -EIO;
 681			goto out;
 682		}
 683		fs_info = BTRFS_I(inode)->root->fs_info;
 684		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
 685					fixup->logical, page,
 686					fixup->mirror_num);
 687		unlock_page(page);
 688		corrected = !ret;
 689	} else {
 690		/*
 691		 * we need to get good data first. the general readpage path
 692		 * will call repair_io_failure for us, we just have to make
 693		 * sure we read the bad mirror.
 694		 */
 695		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 696					EXTENT_DAMAGED, GFP_NOFS);
 697		if (ret) {
 698			/* set_extent_bits should give proper error */
 699			WARN_ON(ret > 0);
 700			if (ret > 0)
 701				ret = -EFAULT;
 702			goto out;
 703		}
 704
 705		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 706						btrfs_get_extent,
 707						fixup->mirror_num);
 708		wait_on_page_locked(page);
 709
 710		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 711						end, EXTENT_DAMAGED, 0, NULL);
 712		if (!corrected)
 713			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 714						EXTENT_DAMAGED, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715	}
 716
 717out:
 718	if (page)
 719		put_page(page);
 720	if (inode)
 721		iput(inode);
 722
 723	if (ret < 0)
 724		return ret;
 725
 726	if (ret == 0 && corrected) {
 727		/*
 728		 * we only need to call readpage for one of the inodes belonging
 729		 * to this extent. so make iterate_extent_inodes stop
 730		 */
 731		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	}
 733
 734	return -EIO;
 
 735}
 736
 737static void scrub_fixup_nodatasum(struct btrfs_work *work)
 738{
 
 
 
 
 
 
 739	int ret;
 740	struct scrub_fixup_nodatasum *fixup;
 741	struct scrub_ctx *sctx;
 742	struct btrfs_trans_handle *trans = NULL;
 743	struct btrfs_path *path;
 744	int uncorrectable = 0;
 745
 746	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 747	sctx = fixup->sctx;
 
 
 
 
 
 
 
 748
 749	path = btrfs_alloc_path();
 750	if (!path) {
 751		spin_lock(&sctx->stat_lock);
 752		++sctx->stat.malloc_errors;
 753		spin_unlock(&sctx->stat_lock);
 754		uncorrectable = 1;
 755		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 756	}
 757
 758	trans = btrfs_join_transaction(fixup->root);
 759	if (IS_ERR(trans)) {
 760		uncorrectable = 1;
 761		goto out;
 
 
 
 762	}
 763
 764	/*
 765	 * the idea is to trigger a regular read through the standard path. we
 766	 * read a page from the (failed) logical address by specifying the
 767	 * corresponding copynum of the failed sector. thus, that readpage is
 768	 * expected to fail.
 769	 * that is the point where on-the-fly error correction will kick in
 770	 * (once it's finished) and rewrite the failed sector if a good copy
 771	 * can be found.
 772	 */
 773	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 774						path, scrub_fixup_readpage,
 775						fixup);
 776	if (ret < 0) {
 777		uncorrectable = 1;
 778		goto out;
 
 
 
 779	}
 780	WARN_ON(ret != 1);
 781
 782	spin_lock(&sctx->stat_lock);
 783	++sctx->stat.corrected_errors;
 784	spin_unlock(&sctx->stat_lock);
 
 
 
 785
 786out:
 787	if (trans && !IS_ERR(trans))
 788		btrfs_end_transaction(trans, fixup->root);
 789	if (uncorrectable) {
 790		spin_lock(&sctx->stat_lock);
 791		++sctx->stat.uncorrectable_errors;
 792		spin_unlock(&sctx->stat_lock);
 793		btrfs_dev_replace_stats_inc(
 794			&sctx->dev_root->fs_info->dev_replace.
 795			num_uncorrectable_read_errors);
 796		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
 797		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 798			fixup->logical, rcu_str_deref(fixup->dev->name));
 799	}
 
 800
 801	btrfs_free_path(path);
 802	kfree(fixup);
 
 803
 804	scrub_pending_trans_workers_dec(sctx);
 
 
 
 
 
 
 805}
 806
 807/*
 808 * scrub_handle_errored_block gets called when either verification of the
 809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 810 * case, this function handles all pages in the bio, even though only one
 811 * may be bad.
 812 * The goal of this function is to repair the errored block by using the
 813 * contents of one of the mirrors.
 814 */
 815static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 816{
 817	struct scrub_ctx *sctx = sblock_to_check->sctx;
 818	struct btrfs_device *dev;
 819	struct btrfs_fs_info *fs_info;
 820	u64 length;
 821	u64 logical;
 822	u64 generation;
 823	unsigned int failed_mirror_index;
 824	unsigned int is_metadata;
 825	unsigned int have_csum;
 826	u8 *csum;
 827	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 828	struct scrub_block *sblock_bad;
 829	int ret;
 830	int mirror_index;
 831	int page_num;
 832	int success;
 833	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 834				      DEFAULT_RATELIMIT_BURST);
 835
 836	BUG_ON(sblock_to_check->page_count < 1);
 837	fs_info = sctx->dev_root->fs_info;
 838	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 839		/*
 840		 * if we find an error in a super block, we just report it.
 841		 * They will get written with the next transaction commit
 842		 * anyway
 843		 */
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.super_errors;
 846		spin_unlock(&sctx->stat_lock);
 847		return 0;
 848	}
 849	length = sblock_to_check->page_count * PAGE_SIZE;
 850	logical = sblock_to_check->pagev[0]->logical;
 851	generation = sblock_to_check->pagev[0]->generation;
 852	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 853	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 854	is_metadata = !(sblock_to_check->pagev[0]->flags &
 855			BTRFS_EXTENT_FLAG_DATA);
 856	have_csum = sblock_to_check->pagev[0]->have_csum;
 857	csum = sblock_to_check->pagev[0]->csum;
 858	dev = sblock_to_check->pagev[0]->dev;
 859
 860	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 861		sblocks_for_recheck = NULL;
 862		goto nodatasum_case;
 863	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864
 865	/*
 866	 * read all mirrors one after the other. This includes to
 867	 * re-read the extent or metadata block that failed (that was
 868	 * the cause that this fixup code is called) another time,
 869	 * page by page this time in order to know which pages
 870	 * caused I/O errors and which ones are good (for all mirrors).
 871	 * It is the goal to handle the situation when more than one
 872	 * mirror contains I/O errors, but the errors do not
 873	 * overlap, i.e. the data can be repaired by selecting the
 874	 * pages from those mirrors without I/O error on the
 875	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 876	 * would be that mirror #1 has an I/O error on the first page,
 877	 * the second page is good, and mirror #2 has an I/O error on
 878	 * the second page, but the first page is good.
 879	 * Then the first page of the first mirror can be repaired by
 880	 * taking the first page of the second mirror, and the
 881	 * second page of the second mirror can be repaired by
 882	 * copying the contents of the 2nd page of the 1st mirror.
 883	 * One more note: if the pages of one mirror contain I/O
 884	 * errors, the checksum cannot be verified. In order to get
 885	 * the best data for repairing, the first attempt is to find
 886	 * a mirror without I/O errors and with a validated checksum.
 887	 * Only if this is not possible, the pages are picked from
 888	 * mirrors with I/O errors without considering the checksum.
 889	 * If the latter is the case, at the end, the checksum of the
 890	 * repaired area is verified in order to correctly maintain
 891	 * the statistics.
 892	 */
 893
 894	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 895				     sizeof(*sblocks_for_recheck),
 896				     GFP_NOFS);
 897	if (!sblocks_for_recheck) {
 898		spin_lock(&sctx->stat_lock);
 899		sctx->stat.malloc_errors++;
 900		sctx->stat.read_errors++;
 901		sctx->stat.uncorrectable_errors++;
 902		spin_unlock(&sctx->stat_lock);
 903		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 904		goto out;
 905	}
 906
 907	/* setup the context, map the logical blocks and alloc the pages */
 908	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
 909					logical, sblocks_for_recheck);
 910	if (ret) {
 911		spin_lock(&sctx->stat_lock);
 912		sctx->stat.read_errors++;
 913		sctx->stat.uncorrectable_errors++;
 914		spin_unlock(&sctx->stat_lock);
 915		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 916		goto out;
 917	}
 918	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 919	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 920
 921	/* build and submit the bios for the failed mirror, check checksums */
 922	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 923			    csum, generation, sctx->csum_size);
 924
 925	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 926	    sblock_bad->no_io_error_seen) {
 927		/*
 928		 * the error disappeared after reading page by page, or
 929		 * the area was part of a huge bio and other parts of the
 930		 * bio caused I/O errors, or the block layer merged several
 931		 * read requests into one and the error is caused by a
 932		 * different bio (usually one of the two latter cases is
 933		 * the cause)
 934		 */
 935		spin_lock(&sctx->stat_lock);
 936		sctx->stat.unverified_errors++;
 937		spin_unlock(&sctx->stat_lock);
 938
 939		if (sctx->is_dev_replace)
 940			scrub_write_block_to_dev_replace(sblock_bad);
 941		goto out;
 942	}
 943
 944	if (!sblock_bad->no_io_error_seen) {
 945		spin_lock(&sctx->stat_lock);
 946		sctx->stat.read_errors++;
 947		spin_unlock(&sctx->stat_lock);
 948		if (__ratelimit(&_rs))
 949			scrub_print_warning("i/o error", sblock_to_check);
 950		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 951	} else if (sblock_bad->checksum_error) {
 952		spin_lock(&sctx->stat_lock);
 953		sctx->stat.csum_errors++;
 954		spin_unlock(&sctx->stat_lock);
 955		if (__ratelimit(&_rs))
 956			scrub_print_warning("checksum error", sblock_to_check);
 957		btrfs_dev_stat_inc_and_print(dev,
 958					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 959	} else if (sblock_bad->header_error) {
 960		spin_lock(&sctx->stat_lock);
 961		sctx->stat.verify_errors++;
 962		spin_unlock(&sctx->stat_lock);
 963		if (__ratelimit(&_rs))
 964			scrub_print_warning("checksum/header error",
 965					    sblock_to_check);
 966		if (sblock_bad->generation_error)
 967			btrfs_dev_stat_inc_and_print(dev,
 968				BTRFS_DEV_STAT_GENERATION_ERRS);
 969		else
 970			btrfs_dev_stat_inc_and_print(dev,
 971				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 972	}
 
 973
 974	if (sctx->readonly) {
 975		ASSERT(!sctx->is_dev_replace);
 976		goto out;
 977	}
 
 
 
 
 
 
 
 
 
 978
 979	if (!is_metadata && !have_csum) {
 980		struct scrub_fixup_nodatasum *fixup_nodatasum;
 981
 982nodatasum_case:
 983		WARN_ON(sctx->is_dev_replace);
 
 
 
 
 
 
 
 
 
 984
 
 
 
 
 
 985		/*
 986		 * !is_metadata and !have_csum, this means that the data
 987		 * might not be COW'ed, that it might be modified
 988		 * concurrently. The general strategy to work on the
 989		 * commit root does not help in the case when COW is not
 990		 * used.
 991		 */
 992		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 993		if (!fixup_nodatasum)
 994			goto did_not_correct_error;
 995		fixup_nodatasum->sctx = sctx;
 996		fixup_nodatasum->dev = dev;
 997		fixup_nodatasum->logical = logical;
 998		fixup_nodatasum->root = fs_info->extent_root;
 999		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000		scrub_pending_trans_workers_inc(sctx);
1001		btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002				NULL, NULL);
1003		btrfs_queue_work(fs_info->scrub_workers,
1004				 &fixup_nodatasum->work);
1005		goto out;
1006	}
1007
1008	/*
1009	 * now build and submit the bios for the other mirrors, check
1010	 * checksums.
1011	 * First try to pick the mirror which is completely without I/O
1012	 * errors and also does not have a checksum error.
1013	 * If one is found, and if a checksum is present, the full block
1014	 * that is known to contain an error is rewritten. Afterwards
1015	 * the block is known to be corrected.
1016	 * If a mirror is found which is completely correct, and no
1017	 * checksum is present, only those pages are rewritten that had
1018	 * an I/O error in the block to be repaired, since it cannot be
1019	 * determined, which copy of the other pages is better (and it
1020	 * could happen otherwise that a correct page would be
1021	 * overwritten by a bad one).
1022	 */
1023	for (mirror_index = 0;
1024	     mirror_index < BTRFS_MAX_MIRRORS &&
1025	     sblocks_for_recheck[mirror_index].page_count > 0;
1026	     mirror_index++) {
1027		struct scrub_block *sblock_other;
1028
1029		if (mirror_index == failed_mirror_index)
 
1030			continue;
1031		sblock_other = sblocks_for_recheck + mirror_index;
1032
1033		/* build and submit the bios, check checksums */
1034		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035				    have_csum, csum, generation,
1036				    sctx->csum_size);
1037
1038		if (!sblock_other->header_error &&
1039		    !sblock_other->checksum_error &&
1040		    sblock_other->no_io_error_seen) {
1041			if (sctx->is_dev_replace) {
1042				scrub_write_block_to_dev_replace(sblock_other);
1043			} else {
1044				int force_write = is_metadata || have_csum;
1045
1046				ret = scrub_repair_block_from_good_copy(
1047						sblock_bad, sblock_other,
1048						force_write);
1049			}
1050			if (0 == ret)
1051				goto corrected_error;
1052		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053	}
1054
1055	/*
1056	 * for dev_replace, pick good pages and write to the target device.
1057	 */
1058	if (sctx->is_dev_replace) {
1059		success = 1;
1060		for (page_num = 0; page_num < sblock_bad->page_count;
1061		     page_num++) {
1062			int sub_success;
1063
1064			sub_success = 0;
1065			for (mirror_index = 0;
1066			     mirror_index < BTRFS_MAX_MIRRORS &&
1067			     sblocks_for_recheck[mirror_index].page_count > 0;
1068			     mirror_index++) {
1069				struct scrub_block *sblock_other =
1070					sblocks_for_recheck + mirror_index;
1071				struct scrub_page *page_other =
1072					sblock_other->pagev[page_num];
1073
1074				if (!page_other->io_error) {
1075					ret = scrub_write_page_to_dev_replace(
1076							sblock_other, page_num);
1077					if (ret == 0) {
1078						/* succeeded for this page */
1079						sub_success = 1;
1080						break;
1081					} else {
1082						btrfs_dev_replace_stats_inc(
1083							&sctx->dev_root->
1084							fs_info->dev_replace.
1085							num_write_errors);
1086					}
1087				}
1088			}
 
 
 
 
 
 
 
 
1089
1090			if (!sub_success) {
1091				/*
1092				 * did not find a mirror to fetch the page
1093				 * from. scrub_write_page_to_dev_replace()
1094				 * handles this case (page->io_error), by
1095				 * filling the block with zeros before
1096				 * submitting the write request
1097				 */
1098				success = 0;
1099				ret = scrub_write_page_to_dev_replace(
1100						sblock_bad, page_num);
1101				if (ret)
1102					btrfs_dev_replace_stats_inc(
1103						&sctx->dev_root->fs_info->
1104						dev_replace.num_write_errors);
1105			}
1106		}
1107
 
1108		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109	}
1110
1111	/*
1112	 * for regular scrub, repair those pages that are errored.
1113	 * In case of I/O errors in the area that is supposed to be
1114	 * repaired, continue by picking good copies of those pages.
1115	 * Select the good pages from mirrors to rewrite bad pages from
1116	 * the area to fix. Afterwards verify the checksum of the block
1117	 * that is supposed to be repaired. This verification step is
1118	 * only done for the purpose of statistic counting and for the
1119	 * final scrub report, whether errors remain.
1120	 * A perfect algorithm could make use of the checksum and try
1121	 * all possible combinations of pages from the different mirrors
1122	 * until the checksum verification succeeds. For example, when
1123	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124	 * of mirror #2 is readable but the final checksum test fails,
1125	 * then the 2nd page of mirror #3 could be tried, whether now
1126	 * the final checksum succeedes. But this would be a rare
1127	 * exception and is therefore not implemented. At least it is
1128	 * avoided that the good copy is overwritten.
1129	 * A more useful improvement would be to pick the sectors
1130	 * without I/O error based on sector sizes (512 bytes on legacy
1131	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132	 * mirror could be repaired by taking 512 byte of a different
1133	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134	 * area are unreadable.
1135	 */
1136
1137	/* can only fix I/O errors from here on */
1138	if (sblock_bad->no_io_error_seen)
1139		goto did_not_correct_error;
1140
1141	success = 1;
1142	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1144
1145		if (!page_bad->io_error)
1146			continue;
 
 
 
1147
1148		for (mirror_index = 0;
1149		     mirror_index < BTRFS_MAX_MIRRORS &&
1150		     sblocks_for_recheck[mirror_index].page_count > 0;
1151		     mirror_index++) {
1152			struct scrub_block *sblock_other = sblocks_for_recheck +
1153							   mirror_index;
1154			struct scrub_page *page_other = sblock_other->pagev[
1155							page_num];
1156
1157			if (!page_other->io_error) {
1158				ret = scrub_repair_page_from_good_copy(
1159					sblock_bad, sblock_other, page_num, 0);
1160				if (0 == ret) {
1161					page_bad->io_error = 0;
1162					break; /* succeeded for this page */
1163				}
1164			}
1165		}
1166
1167		if (page_bad->io_error) {
1168			/* did not find a mirror to copy the page from */
1169			success = 0;
1170		}
1171	}
 
 
 
1172
1173	if (success) {
1174		if (is_metadata || have_csum) {
1175			/*
1176			 * need to verify the checksum now that all
1177			 * sectors on disk are repaired (the write
1178			 * request for data to be repaired is on its way).
1179			 * Just be lazy and use scrub_recheck_block()
1180			 * which re-reads the data before the checksum
1181			 * is verified, but most likely the data comes out
1182			 * of the page cache.
1183			 */
1184			scrub_recheck_block(fs_info, sblock_bad,
1185					    is_metadata, have_csum, csum,
1186					    generation, sctx->csum_size);
1187			if (!sblock_bad->header_error &&
1188			    !sblock_bad->checksum_error &&
1189			    sblock_bad->no_io_error_seen)
1190				goto corrected_error;
1191			else
1192				goto did_not_correct_error;
1193		} else {
1194corrected_error:
1195			spin_lock(&sctx->stat_lock);
1196			sctx->stat.corrected_errors++;
1197			spin_unlock(&sctx->stat_lock);
1198			printk_ratelimited_in_rcu(KERN_ERR
1199				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200				logical, rcu_str_deref(dev->name));
1201		}
1202	} else {
1203did_not_correct_error:
1204		spin_lock(&sctx->stat_lock);
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		printk_ratelimited_in_rcu(KERN_ERR
1208			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209			logical, rcu_str_deref(dev->name));
1210	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1211
1212out:
1213	if (sblocks_for_recheck) {
1214		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215		     mirror_index++) {
1216			struct scrub_block *sblock = sblocks_for_recheck +
1217						     mirror_index;
1218			int page_index;
1219
1220			for (page_index = 0; page_index < sblock->page_count;
1221			     page_index++) {
1222				sblock->pagev[page_index]->sblock = NULL;
1223				scrub_page_put(sblock->pagev[page_index]);
1224			}
1225		}
1226		kfree(sblocks_for_recheck);
1227	}
 
1228
1229	return 0;
 
1230}
1231
1232static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233				     struct btrfs_fs_info *fs_info,
1234				     struct scrub_block *original_sblock,
1235				     u64 length, u64 logical,
1236				     struct scrub_block *sblocks_for_recheck)
1237{
1238	int page_index;
1239	int mirror_index;
1240	int ret;
 
1241
 
 
 
 
 
1242	/*
1243	 * note: the two members ref_count and outstanding_pages
1244	 * are not used (and not set) in the blocks that are used for
1245	 * the recheck procedure
1246	 */
1247
1248	page_index = 0;
1249	while (length > 0) {
1250		u64 sublen = min_t(u64, length, PAGE_SIZE);
1251		u64 mapped_length = sublen;
1252		struct btrfs_bio *bbio = NULL;
1253
1254		/*
1255		 * with a length of PAGE_SIZE, each returned stripe
1256		 * represents one mirror
1257		 */
1258		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259				      &mapped_length, &bbio, 0);
1260		if (ret || !bbio || mapped_length < sublen) {
1261			kfree(bbio);
1262			return -EIO;
1263		}
1264
1265		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1267		     mirror_index++) {
1268			struct scrub_block *sblock;
1269			struct scrub_page *page;
1270
1271			if (mirror_index >= BTRFS_MAX_MIRRORS)
1272				continue;
1273
1274			sblock = sblocks_for_recheck + mirror_index;
1275			sblock->sctx = sctx;
1276			page = kzalloc(sizeof(*page), GFP_NOFS);
1277			if (!page) {
1278leave_nomem:
1279				spin_lock(&sctx->stat_lock);
1280				sctx->stat.malloc_errors++;
1281				spin_unlock(&sctx->stat_lock);
1282				kfree(bbio);
1283				return -ENOMEM;
1284			}
1285			scrub_page_get(page);
1286			sblock->pagev[page_index] = page;
1287			page->logical = logical;
1288			page->physical = bbio->stripes[mirror_index].physical;
1289			BUG_ON(page_index >= original_sblock->page_count);
1290			page->physical_for_dev_replace =
1291				original_sblock->pagev[page_index]->
1292				physical_for_dev_replace;
1293			/* for missing devices, dev->bdev is NULL */
1294			page->dev = bbio->stripes[mirror_index].dev;
1295			page->mirror_num = mirror_index + 1;
1296			sblock->page_count++;
1297			page->page = alloc_page(GFP_NOFS);
1298			if (!page->page)
1299				goto leave_nomem;
1300		}
1301		kfree(bbio);
1302		length -= sublen;
1303		logical += sublen;
1304		page_index++;
1305	}
1306
1307	return 0;
 
 
 
 
 
 
1308}
1309
1310/*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
 
 
 
 
 
 
1316 */
1317static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318				struct scrub_block *sblock, int is_metadata,
1319				int have_csum, u8 *csum, u64 generation,
1320				u16 csum_size)
1321{
1322	int page_num;
1323
1324	sblock->no_io_error_seen = 1;
1325	sblock->header_error = 0;
1326	sblock->checksum_error = 0;
1327
1328	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329		struct bio *bio;
1330		struct scrub_page *page = sblock->pagev[page_num];
1331
1332		if (page->dev->bdev == NULL) {
1333			page->io_error = 1;
1334			sblock->no_io_error_seen = 0;
1335			continue;
 
 
 
 
 
 
 
1336		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337
1338		WARN_ON(!page->page);
1339		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340		if (!bio) {
1341			page->io_error = 1;
1342			sblock->no_io_error_seen = 0;
1343			continue;
1344		}
1345		bio->bi_bdev = page->dev->bdev;
1346		bio->bi_iter.bi_sector = page->physical >> 9;
 
1347
1348		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349		if (btrfsic_submit_bio_wait(READ, bio))
1350			sblock->no_io_error_seen = 0;
 
 
 
 
 
 
 
 
 
 
1351
1352		bio_put(bio);
 
 
 
 
1353	}
1354
1355	if (sblock->no_io_error_seen)
1356		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357					     have_csum, csum, generation,
1358					     csum_size);
 
 
1359
1360	return;
 
1361}
1362
1363static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364					 struct scrub_block *sblock,
1365					 int is_metadata, int have_csum,
1366					 const u8 *csum, u64 generation,
1367					 u16 csum_size)
 
 
 
 
 
1368{
1369	int page_num;
1370	u8 calculated_csum[BTRFS_CSUM_SIZE];
1371	u32 crc = ~(u32)0;
1372	void *mapped_buffer;
1373
1374	WARN_ON(!sblock->pagev[0]->page);
1375	if (is_metadata) {
1376		struct btrfs_header *h;
1377
1378		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379		h = (struct btrfs_header *)mapped_buffer;
1380
1381		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384			   BTRFS_UUID_SIZE)) {
1385			sblock->header_error = 1;
1386		} else if (generation != btrfs_stack_header_generation(h)) {
1387			sblock->header_error = 1;
1388			sblock->generation_error = 1;
1389		}
1390		csum = h->csum;
1391	} else {
1392		if (!have_csum)
1393			return;
1394
1395		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396	}
 
 
 
1397
1398	for (page_num = 0;;) {
1399		if (page_num == 0 && is_metadata)
1400			crc = btrfs_csum_data(
1401				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403		else
1404			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406		kunmap_atomic(mapped_buffer);
1407		page_num++;
1408		if (page_num >= sblock->page_count)
1409			break;
1410		WARN_ON(!sblock->pagev[page_num]->page);
1411
1412		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
 
 
 
 
 
 
 
 
1413	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414
1415	btrfs_csum_final(crc, calculated_csum);
1416	if (memcmp(calculated_csum, csum, csum_size))
1417		sblock->checksum_error = 1;
 
 
 
 
 
 
 
 
 
 
1418}
1419
1420static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421					     struct scrub_block *sblock_good,
1422					     int force_write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423{
1424	int page_num;
1425	int ret = 0;
 
1426
1427	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428		int ret_sub;
 
1429
1430		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431							   sblock_good,
1432							   page_num,
1433							   force_write);
1434		if (ret_sub)
1435			ret = ret_sub;
1436	}
1437
1438	return ret;
1439}
 
1440
1441static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442					    struct scrub_block *sblock_good,
1443					    int page_num, int force_write)
1444{
1445	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446	struct scrub_page *page_good = sblock_good->pagev[page_num];
1447
1448	BUG_ON(page_bad->page == NULL);
1449	BUG_ON(page_good->page == NULL);
1450	if (force_write || sblock_bad->header_error ||
1451	    sblock_bad->checksum_error || page_bad->io_error) {
1452		struct bio *bio;
1453		int ret;
 
 
 
 
 
 
 
1454
1455		if (!page_bad->dev->bdev) {
1456			printk_ratelimited(KERN_WARNING "BTRFS: "
1457				"scrub_repair_page_from_good_copy(bdev == NULL) "
1458				"is unexpected!\n");
1459			return -EIO;
1460		}
1461
1462		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463		if (!bio)
1464			return -EIO;
1465		bio->bi_bdev = page_bad->dev->bdev;
1466		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1467
1468		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469		if (PAGE_SIZE != ret) {
1470			bio_put(bio);
1471			return -EIO;
1472		}
1473
1474		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475			btrfs_dev_stat_inc_and_print(page_bad->dev,
1476				BTRFS_DEV_STAT_WRITE_ERRS);
1477			btrfs_dev_replace_stats_inc(
1478				&sblock_bad->sctx->dev_root->fs_info->
1479				dev_replace.num_write_errors);
1480			bio_put(bio);
1481			return -EIO;
1482		}
1483		bio_put(bio);
1484	}
 
 
 
 
 
 
 
 
 
1485
1486	return 0;
 
 
 
 
 
 
 
 
 
 
1487}
1488
1489static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
 
1490{
1491	int page_num;
 
1492
1493	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494		int ret;
1495
1496		ret = scrub_write_page_to_dev_replace(sblock, page_num);
 
 
 
 
1497		if (ret)
1498			btrfs_dev_replace_stats_inc(
1499				&sblock->sctx->dev_root->fs_info->dev_replace.
1500				num_write_errors);
1501	}
 
 
 
 
1502}
1503
1504static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505					   int page_num)
1506{
1507	struct scrub_page *spage = sblock->pagev[page_num];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508
1509	BUG_ON(spage->page == NULL);
1510	if (spage->io_error) {
1511		void *mapped_buffer = kmap_atomic(spage->page);
1512
1513		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514		flush_dcache_page(spage->page);
1515		kunmap_atomic(mapped_buffer);
1516	}
1517	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
 
 
1518}
1519
1520static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521				    struct scrub_page *spage)
1522{
1523	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524	struct scrub_bio *sbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525	int ret;
1526
1527	mutex_lock(&wr_ctx->wr_lock);
1528again:
1529	if (!wr_ctx->wr_curr_bio) {
1530		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531					      GFP_NOFS);
1532		if (!wr_ctx->wr_curr_bio) {
1533			mutex_unlock(&wr_ctx->wr_lock);
1534			return -ENOMEM;
1535		}
1536		wr_ctx->wr_curr_bio->sctx = sctx;
1537		wr_ctx->wr_curr_bio->page_count = 0;
1538	}
1539	sbio = wr_ctx->wr_curr_bio;
1540	if (sbio->page_count == 0) {
1541		struct bio *bio;
1542
1543		sbio->physical = spage->physical_for_dev_replace;
1544		sbio->logical = spage->logical;
1545		sbio->dev = wr_ctx->tgtdev;
1546		bio = sbio->bio;
1547		if (!bio) {
1548			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549			if (!bio) {
1550				mutex_unlock(&wr_ctx->wr_lock);
1551				return -ENOMEM;
1552			}
1553			sbio->bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555
1556		bio->bi_private = sbio;
1557		bio->bi_end_io = scrub_wr_bio_end_io;
1558		bio->bi_bdev = sbio->dev->bdev;
1559		bio->bi_iter.bi_sector = sbio->physical >> 9;
1560		sbio->err = 0;
1561	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562		   spage->physical_for_dev_replace ||
1563		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1564		   spage->logical) {
1565		scrub_wr_submit(sctx);
1566		goto again;
1567	}
1568
1569	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570	if (ret != PAGE_SIZE) {
1571		if (sbio->page_count < 1) {
1572			bio_put(sbio->bio);
1573			sbio->bio = NULL;
1574			mutex_unlock(&wr_ctx->wr_lock);
1575			return -EIO;
1576		}
1577		scrub_wr_submit(sctx);
1578		goto again;
1579	}
1580
1581	sbio->pagev[sbio->page_count] = spage;
1582	scrub_page_get(spage);
1583	sbio->page_count++;
1584	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585		scrub_wr_submit(sctx);
1586	mutex_unlock(&wr_ctx->wr_lock);
1587
1588	return 0;
1589}
 
 
 
1590
1591static void scrub_wr_submit(struct scrub_ctx *sctx)
1592{
1593	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594	struct scrub_bio *sbio;
 
 
 
1595
1596	if (!wr_ctx->wr_curr_bio)
1597		return;
1598
1599	sbio = wr_ctx->wr_curr_bio;
1600	wr_ctx->wr_curr_bio = NULL;
1601	WARN_ON(!sbio->bio->bi_bdev);
1602	scrub_pending_bio_inc(sctx);
1603	/* process all writes in a single worker thread. Then the block layer
1604	 * orders the requests before sending them to the driver which
1605	 * doubled the write performance on spinning disks when measured
1606	 * with Linux 3.5 */
1607	btrfsic_submit_bio(WRITE, sbio->bio);
1608}
1609
1610static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611{
1612	struct scrub_bio *sbio = bio->bi_private;
1613	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614
1615	sbio->err = err;
1616	sbio->bio = bio;
 
1617
1618	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1619	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
 
 
 
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
 
1623{
1624	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625	struct scrub_ctx *sctx = sbio->sctx;
 
 
 
 
 
1626	int i;
1627
1628	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629	if (sbio->err) {
1630		struct btrfs_dev_replace *dev_replace =
1631			&sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633		for (i = 0; i < sbio->page_count; i++) {
1634			struct scrub_page *spage = sbio->pagev[i];
 
1635
1636			spage->io_error = 1;
1637			btrfs_dev_replace_stats_inc(&dev_replace->
1638						    num_write_errors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639		}
 
 
1640	}
1641
1642	for (i = 0; i < sbio->page_count; i++)
1643		scrub_page_put(sbio->pagev[i]);
 
 
 
1644
1645	bio_put(sbio->bio);
1646	kfree(sbio);
1647	scrub_pending_bio_dec(sctx);
 
 
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
 
1651{
1652	u64 flags;
1653	int ret;
 
 
 
 
1654
1655	WARN_ON(sblock->page_count < 1);
1656	flags = sblock->pagev[0]->flags;
1657	ret = 0;
1658	if (flags & BTRFS_EXTENT_FLAG_DATA)
1659		ret = scrub_checksum_data(sblock);
1660	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661		ret = scrub_checksum_tree_block(sblock);
1662	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663		(void)scrub_checksum_super(sblock);
1664	else
1665		WARN_ON(1);
1666	if (ret)
1667		scrub_handle_errored_block(sblock);
1668
1669	return ret;
1670}
 
 
1671
1672static int scrub_checksum_data(struct scrub_block *sblock)
1673{
1674	struct scrub_ctx *sctx = sblock->sctx;
1675	u8 csum[BTRFS_CSUM_SIZE];
1676	u8 *on_disk_csum;
1677	struct page *page;
1678	void *buffer;
1679	u32 crc = ~(u32)0;
1680	int fail = 0;
1681	u64 len;
1682	int index;
1683
1684	BUG_ON(sblock->page_count < 1);
1685	if (!sblock->pagev[0]->have_csum)
1686		return 0;
 
 
 
1687
1688	on_disk_csum = sblock->pagev[0]->csum;
1689	page = sblock->pagev[0]->page;
1690	buffer = kmap_atomic(page);
 
 
1691
1692	len = sctx->sectorsize;
1693	index = 0;
1694	for (;;) {
1695		u64 l = min_t(u64, len, PAGE_SIZE);
 
 
 
 
 
 
1696
1697		crc = btrfs_csum_data(buffer, crc, l);
1698		kunmap_atomic(buffer);
1699		len -= l;
1700		if (len == 0)
1701			break;
1702		index++;
1703		BUG_ON(index >= sblock->page_count);
1704		BUG_ON(!sblock->pagev[index]->page);
1705		page = sblock->pagev[index]->page;
1706		buffer = kmap_atomic(page);
1707	}
 
 
1708
1709	btrfs_csum_final(crc, csum);
1710	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711		fail = 1;
 
 
 
 
1712
1713	return fail;
 
 
 
 
 
 
 
1714}
1715
1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
 
 
1717{
1718	struct scrub_ctx *sctx = sblock->sctx;
1719	struct btrfs_header *h;
1720	struct btrfs_root *root = sctx->dev_root;
1721	struct btrfs_fs_info *fs_info = root->fs_info;
1722	u8 calculated_csum[BTRFS_CSUM_SIZE];
1723	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724	struct page *page;
1725	void *mapped_buffer;
1726	u64 mapped_size;
1727	void *p;
1728	u32 crc = ~(u32)0;
1729	int fail = 0;
1730	int crc_fail = 0;
1731	u64 len;
1732	int index;
1733
1734	BUG_ON(sblock->page_count < 1);
1735	page = sblock->pagev[0]->page;
1736	mapped_buffer = kmap_atomic(page);
1737	h = (struct btrfs_header *)mapped_buffer;
1738	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740	/*
1741	 * we don't use the getter functions here, as we
1742	 * a) don't have an extent buffer and
1743	 * b) the page is already kmapped
1744	 */
1745
1746	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747		++fail;
 
 
 
 
1748
1749	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750		++fail;
 
 
 
 
1751
1752	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753		++fail;
1754
1755	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756		   BTRFS_UUID_SIZE))
1757		++fail;
1758
1759	WARN_ON(sctx->nodesize != sctx->leafsize);
1760	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763	index = 0;
1764	for (;;) {
1765		u64 l = min_t(u64, len, mapped_size);
1766
1767		crc = btrfs_csum_data(p, crc, l);
1768		kunmap_atomic(mapped_buffer);
1769		len -= l;
1770		if (len == 0)
1771			break;
1772		index++;
1773		BUG_ON(index >= sblock->page_count);
1774		BUG_ON(!sblock->pagev[index]->page);
1775		page = sblock->pagev[index]->page;
1776		mapped_buffer = kmap_atomic(page);
1777		mapped_size = PAGE_SIZE;
1778		p = mapped_buffer;
1779	}
1780
1781	btrfs_csum_final(crc, calculated_csum);
1782	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783		++crc_fail;
1784
1785	return fail || crc_fail;
1786}
 
1787
1788static int scrub_checksum_super(struct scrub_block *sblock)
1789{
1790	struct btrfs_super_block *s;
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_root *root = sctx->dev_root;
1793	struct btrfs_fs_info *fs_info = root->fs_info;
1794	u8 calculated_csum[BTRFS_CSUM_SIZE];
1795	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796	struct page *page;
1797	void *mapped_buffer;
1798	u64 mapped_size;
1799	void *p;
1800	u32 crc = ~(u32)0;
1801	int fail_gen = 0;
1802	int fail_cor = 0;
1803	u64 len;
1804	int index;
1805
1806	BUG_ON(sblock->page_count < 1);
1807	page = sblock->pagev[0]->page;
1808	mapped_buffer = kmap_atomic(page);
1809	s = (struct btrfs_super_block *)mapped_buffer;
1810	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813		++fail_cor;
1814
1815	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816		++fail_gen;
1817
1818	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819		++fail_cor;
1820
1821	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824	index = 0;
1825	for (;;) {
1826		u64 l = min_t(u64, len, mapped_size);
1827
1828		crc = btrfs_csum_data(p, crc, l);
1829		kunmap_atomic(mapped_buffer);
1830		len -= l;
1831		if (len == 0)
1832			break;
1833		index++;
1834		BUG_ON(index >= sblock->page_count);
1835		BUG_ON(!sblock->pagev[index]->page);
1836		page = sblock->pagev[index]->page;
1837		mapped_buffer = kmap_atomic(page);
1838		mapped_size = PAGE_SIZE;
1839		p = mapped_buffer;
1840	}
1841
1842	btrfs_csum_final(crc, calculated_csum);
1843	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844		++fail_cor;
1845
1846	if (fail_cor + fail_gen) {
1847		/*
1848		 * if we find an error in a super block, we just report it.
1849		 * They will get written with the next transaction commit
1850		 * anyway
1851		 */
1852		spin_lock(&sctx->stat_lock);
1853		++sctx->stat.super_errors;
1854		spin_unlock(&sctx->stat_lock);
1855		if (fail_cor)
1856			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858		else
1859			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860				BTRFS_DEV_STAT_GENERATION_ERRS);
1861	}
1862
1863	return fail_cor + fail_gen;
1864}
1865
1866static void scrub_block_get(struct scrub_block *sblock)
1867{
1868	atomic_inc(&sblock->ref_count);
1869}
1870
1871static void scrub_block_put(struct scrub_block *sblock)
1872{
1873	if (atomic_dec_and_test(&sblock->ref_count)) {
1874		int i;
1875
1876		for (i = 0; i < sblock->page_count; i++)
1877			scrub_page_put(sblock->pagev[i]);
1878		kfree(sblock);
1879	}
1880}
1881
1882static void scrub_page_get(struct scrub_page *spage)
1883{
1884	atomic_inc(&spage->ref_count);
1885}
1886
1887static void scrub_page_put(struct scrub_page *spage)
1888{
1889	if (atomic_dec_and_test(&spage->ref_count)) {
1890		if (spage->page)
1891			__free_page(spage->page);
1892		kfree(spage);
1893	}
 
 
 
1894}
1895
1896static void scrub_submit(struct scrub_ctx *sctx)
1897{
1898	struct scrub_bio *sbio;
1899
1900	if (sctx->curr == -1)
1901		return;
1902
1903	sbio = sctx->bios[sctx->curr];
1904	sctx->curr = -1;
1905	scrub_pending_bio_inc(sctx);
1906
1907	if (!sbio->bio->bi_bdev) {
1908		/*
1909		 * this case should not happen. If btrfs_map_block() is
1910		 * wrong, it could happen for dev-replace operations on
1911		 * missing devices when no mirrors are available, but in
1912		 * this case it should already fail the mount.
1913		 * This case is handled correctly (but _very_ slowly).
1914		 */
1915		printk_ratelimited(KERN_WARNING
1916			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917		bio_endio(sbio->bio, -EIO);
1918	} else {
1919		btrfsic_submit_bio(READ, sbio->bio);
1920	}
1921}
1922
1923static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924				    struct scrub_page *spage)
 
 
1925{
1926	struct scrub_block *sblock = spage->sblock;
1927	struct scrub_bio *sbio;
1928	int ret;
1929
1930again:
1931	/*
1932	 * grab a fresh bio or wait for one to become available
 
1933	 */
1934	while (sctx->curr == -1) {
1935		spin_lock(&sctx->list_lock);
1936		sctx->curr = sctx->first_free;
1937		if (sctx->curr != -1) {
1938			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939			sctx->bios[sctx->curr]->next_free = -1;
1940			sctx->bios[sctx->curr]->page_count = 0;
1941			spin_unlock(&sctx->list_lock);
1942		} else {
1943			spin_unlock(&sctx->list_lock);
1944			wait_event(sctx->list_wait, sctx->first_free != -1);
1945		}
 
 
 
 
 
 
 
 
 
1946	}
1947	sbio = sctx->bios[sctx->curr];
1948	if (sbio->page_count == 0) {
1949		struct bio *bio;
1950
1951		sbio->physical = spage->physical;
1952		sbio->logical = spage->logical;
1953		sbio->dev = spage->dev;
1954		bio = sbio->bio;
1955		if (!bio) {
1956			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957			if (!bio)
1958				return -ENOMEM;
1959			sbio->bio = bio;
1960		}
1961
1962		bio->bi_private = sbio;
1963		bio->bi_end_io = scrub_bio_end_io;
1964		bio->bi_bdev = sbio->dev->bdev;
1965		bio->bi_iter.bi_sector = sbio->physical >> 9;
1966		sbio->err = 0;
1967	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968		   spage->physical ||
1969		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1970		   spage->logical ||
1971		   sbio->dev != spage->dev) {
1972		scrub_submit(sctx);
1973		goto again;
1974	}
1975
1976	sbio->pagev[sbio->page_count] = spage;
1977	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978	if (ret != PAGE_SIZE) {
1979		if (sbio->page_count < 1) {
1980			bio_put(sbio->bio);
1981			sbio->bio = NULL;
1982			return -EIO;
1983		}
1984		scrub_submit(sctx);
1985		goto again;
1986	}
1987
1988	scrub_block_get(sblock); /* one for the page added to the bio */
1989	atomic_inc(&sblock->outstanding_pages);
1990	sbio->page_count++;
1991	if (sbio->page_count == sctx->pages_per_rd_bio)
1992		scrub_submit(sctx);
1993
 
 
 
1994	return 0;
1995}
1996
1997static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998		       u64 physical, struct btrfs_device *dev, u64 flags,
1999		       u64 gen, int mirror_num, u8 *csum, int force,
2000		       u64 physical_for_dev_replace)
2001{
2002	struct scrub_block *sblock;
2003	int index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004
2005	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006	if (!sblock) {
2007		spin_lock(&sctx->stat_lock);
2008		sctx->stat.malloc_errors++;
2009		spin_unlock(&sctx->stat_lock);
2010		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011	}
2012
2013	/* one ref inside this function, plus one for each page added to
2014	 * a bio later on */
2015	atomic_set(&sblock->ref_count, 1);
2016	sblock->sctx = sctx;
2017	sblock->no_io_error_seen = 1;
2018
2019	for (index = 0; len > 0; index++) {
2020		struct scrub_page *spage;
2021		u64 l = min_t(u64, len, PAGE_SIZE);
2022
2023		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024		if (!spage) {
2025leave_nomem:
2026			spin_lock(&sctx->stat_lock);
2027			sctx->stat.malloc_errors++;
2028			spin_unlock(&sctx->stat_lock);
2029			scrub_block_put(sblock);
2030			return -ENOMEM;
2031		}
2032		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033		scrub_page_get(spage);
2034		sblock->pagev[index] = spage;
2035		spage->sblock = sblock;
2036		spage->dev = dev;
2037		spage->flags = flags;
2038		spage->generation = gen;
2039		spage->logical = logical;
2040		spage->physical = physical;
2041		spage->physical_for_dev_replace = physical_for_dev_replace;
2042		spage->mirror_num = mirror_num;
2043		if (csum) {
2044			spage->have_csum = 1;
2045			memcpy(spage->csum, csum, sctx->csum_size);
2046		} else {
2047			spage->have_csum = 0;
2048		}
2049		sblock->page_count++;
2050		spage->page = alloc_page(GFP_NOFS);
2051		if (!spage->page)
2052			goto leave_nomem;
2053		len -= l;
2054		logical += l;
2055		physical += l;
2056		physical_for_dev_replace += l;
2057	}
2058
2059	WARN_ON(sblock->page_count == 0);
2060	for (index = 0; index < sblock->page_count; index++) {
2061		struct scrub_page *spage = sblock->pagev[index];
2062		int ret;
 
 
2063
2064		ret = scrub_add_page_to_rd_bio(sctx, spage);
2065		if (ret) {
2066			scrub_block_put(sblock);
2067			return ret;
2068		}
2069	}
 
 
2070
2071	if (force)
2072		scrub_submit(sctx);
 
 
 
 
 
 
 
2073
2074	/* last one frees, either here or in bio completion for last page */
2075	scrub_block_put(sblock);
2076	return 0;
2077}
2078
2079static void scrub_bio_end_io(struct bio *bio, int err)
2080{
2081	struct scrub_bio *sbio = bio->bi_private;
2082	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
2083
2084	sbio->err = err;
2085	sbio->bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086
2087	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
 
 
 
2088}
2089
2090static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091{
2092	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093	struct scrub_ctx *sctx = sbio->sctx;
2094	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095
2096	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097	if (sbio->err) {
2098		for (i = 0; i < sbio->page_count; i++) {
2099			struct scrub_page *spage = sbio->pagev[i];
2100
2101			spage->io_error = 1;
2102			spage->sblock->no_io_error_seen = 0;
 
 
 
2103		}
2104	}
 
 
 
 
 
 
 
 
 
 
 
 
2105
2106	/* now complete the scrub_block items that have all pages completed */
2107	for (i = 0; i < sbio->page_count; i++) {
2108		struct scrub_page *spage = sbio->pagev[i];
2109		struct scrub_block *sblock = spage->sblock;
 
 
 
 
 
 
 
2110
2111		if (atomic_dec_and_test(&sblock->outstanding_pages))
2112			scrub_block_complete(sblock);
2113		scrub_block_put(sblock);
2114	}
2115
2116	bio_put(sbio->bio);
2117	sbio->bio = NULL;
2118	spin_lock(&sctx->list_lock);
2119	sbio->next_free = sctx->first_free;
2120	sctx->first_free = sbio->index;
2121	spin_unlock(&sctx->list_lock);
2122
2123	if (sctx->is_dev_replace &&
2124	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125		mutex_lock(&sctx->wr_ctx.wr_lock);
2126		scrub_wr_submit(sctx);
2127		mutex_unlock(&sctx->wr_ctx.wr_lock);
2128	}
2129
2130	scrub_pending_bio_dec(sctx);
2131}
2132
2133static void scrub_block_complete(struct scrub_block *sblock)
 
2134{
2135	if (!sblock->no_io_error_seen) {
2136		scrub_handle_errored_block(sblock);
2137	} else {
2138		/*
2139		 * if has checksum error, write via repair mechanism in
2140		 * dev replace case, otherwise write here in dev replace
2141		 * case.
2142		 */
2143		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2144			scrub_write_block_to_dev_replace(sblock);
2145	}
2146}
2147
2148static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149			   u8 *csum)
 
 
2150{
2151	struct btrfs_ordered_sum *sum = NULL;
2152	unsigned long index;
2153	unsigned long num_sectors;
2154
2155	while (!list_empty(&sctx->csum_list)) {
2156		sum = list_first_entry(&sctx->csum_list,
2157				       struct btrfs_ordered_sum, list);
2158		if (sum->bytenr > logical)
2159			return 0;
2160		if (sum->bytenr + sum->len > logical)
2161			break;
2162
2163		++sctx->stat.csum_discards;
2164		list_del(&sum->list);
2165		kfree(sum);
2166		sum = NULL;
2167	}
2168	if (!sum)
2169		return 0;
2170
2171	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172	num_sectors = sum->len / sctx->sectorsize;
2173	memcpy(csum, sum->sums + index, sctx->csum_size);
2174	if (index == num_sectors - 1) {
2175		list_del(&sum->list);
2176		kfree(sum);
2177	}
2178	return 1;
2179}
2180
2181/* scrub extent tries to collect up to 64 kB for each bio */
2182static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2183			u64 physical, struct btrfs_device *dev, u64 flags,
2184			u64 gen, int mirror_num, u64 physical_for_dev_replace)
 
2185{
2186	int ret;
2187	u8 csum[BTRFS_CSUM_SIZE];
2188	u32 blocksize;
 
 
 
 
2189
2190	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191		blocksize = sctx->sectorsize;
2192		spin_lock(&sctx->stat_lock);
2193		sctx->stat.data_extents_scrubbed++;
2194		sctx->stat.data_bytes_scrubbed += len;
2195		spin_unlock(&sctx->stat_lock);
2196	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197		WARN_ON(sctx->nodesize != sctx->leafsize);
2198		blocksize = sctx->nodesize;
2199		spin_lock(&sctx->stat_lock);
2200		sctx->stat.tree_extents_scrubbed++;
2201		sctx->stat.tree_bytes_scrubbed += len;
2202		spin_unlock(&sctx->stat_lock);
2203	} else {
2204		blocksize = sctx->sectorsize;
2205		WARN_ON(1);
2206	}
2207
2208	while (len) {
2209		u64 l = min_t(u64, len, blocksize);
2210		int have_csum = 0;
2211
2212		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213			/* push csums to sbio */
2214			have_csum = scrub_find_csum(sctx, logical, l, csum);
2215			if (have_csum == 0)
2216				++sctx->stat.no_csum;
2217			if (sctx->is_dev_replace && !have_csum) {
2218				ret = copy_nocow_pages(sctx, logical, l,
2219						       mirror_num,
2220						      physical_for_dev_replace);
2221				goto behind_scrub_pages;
2222			}
2223		}
2224		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225				  mirror_num, have_csum ? csum : NULL, 0,
2226				  physical_for_dev_replace);
2227behind_scrub_pages:
2228		if (ret)
2229			return ret;
2230		len -= l;
2231		logical += l;
2232		physical += l;
2233		physical_for_dev_replace += l;
2234	}
2235	return 0;
2236}
2237
2238/*
2239 * Given a physical address, this will calculate it's
2240 * logical offset. if this is a parity stripe, it will return
2241 * the most left data stripe's logical offset.
2242 *
2243 * return 0 if it is a data stripe, 1 means parity stripe.
2244 */
2245static int get_raid56_logic_offset(u64 physical, int num,
2246				   struct map_lookup *map, u64 *offset)
2247{
2248	int i;
2249	int j = 0;
2250	u64 stripe_nr;
2251	u64 last_offset;
2252	int stripe_index;
2253	int rot;
2254
2255	last_offset = (physical - map->stripes[num].physical) *
2256		      nr_data_stripes(map);
2257	*offset = last_offset;
2258	for (i = 0; i < nr_data_stripes(map); i++) {
2259		*offset = last_offset + i * map->stripe_len;
2260
2261		stripe_nr = *offset;
2262		do_div(stripe_nr, map->stripe_len);
2263		do_div(stripe_nr, nr_data_stripes(map));
2264
2265		/* Work out the disk rotation on this stripe-set */
2266		rot = do_div(stripe_nr, map->num_stripes);
2267		/* calculate which stripe this data locates */
2268		rot += i;
2269		stripe_index = rot % map->num_stripes;
2270		if (stripe_index == num)
2271			return 0;
2272		if (stripe_index < num)
2273			j++;
2274	}
2275	*offset = last_offset + j * map->stripe_len;
2276	return 1;
2277}
2278
2279static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280					   struct map_lookup *map,
 
2281					   struct btrfs_device *scrub_dev,
2282					   int num, u64 base, u64 length,
2283					   int is_dev_replace)
2284{
2285	struct btrfs_path *path;
2286	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287	struct btrfs_root *root = fs_info->extent_root;
2288	struct btrfs_root *csum_root = fs_info->csum_root;
2289	struct btrfs_extent_item *extent;
2290	struct blk_plug plug;
2291	u64 flags;
2292	int ret;
2293	int slot;
2294	u64 nstripes;
2295	struct extent_buffer *l;
2296	struct btrfs_key key;
2297	u64 physical;
2298	u64 logical;
2299	u64 logic_end;
2300	u64 physical_end;
2301	u64 generation;
2302	int mirror_num;
2303	struct reada_control *reada1;
2304	struct reada_control *reada2;
2305	struct btrfs_key key_start;
2306	struct btrfs_key key_end;
2307	u64 increment = map->stripe_len;
2308	u64 offset;
2309	u64 extent_logical;
2310	u64 extent_physical;
2311	u64 extent_len;
2312	struct btrfs_device *extent_dev;
2313	int extent_mirror_num;
2314	int stop_loop = 0;
2315
2316	nstripes = length;
2317	physical = map->stripes[num].physical;
2318	offset = 0;
2319	do_div(nstripes, map->stripe_len);
2320	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321		offset = map->stripe_len * num;
2322		increment = map->stripe_len * map->num_stripes;
2323		mirror_num = 1;
2324	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325		int factor = map->num_stripes / map->sub_stripes;
2326		offset = map->stripe_len * (num / map->sub_stripes);
2327		increment = map->stripe_len * factor;
2328		mirror_num = num % map->sub_stripes + 1;
2329	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330		increment = map->stripe_len;
2331		mirror_num = num % map->num_stripes + 1;
2332	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333		increment = map->stripe_len;
2334		mirror_num = num % map->num_stripes + 1;
2335	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336				BTRFS_BLOCK_GROUP_RAID6)) {
2337		get_raid56_logic_offset(physical, num, map, &offset);
2338		increment = map->stripe_len * nr_data_stripes(map);
2339		mirror_num = 1;
2340	} else {
2341		increment = map->stripe_len;
2342		mirror_num = 1;
2343	}
2344
2345	path = btrfs_alloc_path();
2346	if (!path)
2347		return -ENOMEM;
2348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349	/*
2350	 * work on commit root. The related disk blocks are static as
2351	 * long as COW is applied. This means, it is save to rewrite
2352	 * them to repair disk errors without any race conditions
 
 
2353	 */
2354	path->search_commit_root = 1;
2355	path->skip_locking = 1;
2356
2357	/*
2358	 * trigger the readahead for extent tree csum tree and wait for
2359	 * completion. During readahead, the scrub is officially paused
2360	 * to not hold off transaction commits
2361	 */
2362	logical = base + offset;
2363	physical_end = physical + nstripes * map->stripe_len;
2364	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365			 BTRFS_BLOCK_GROUP_RAID6)) {
2366		get_raid56_logic_offset(physical_end, num,
2367					map, &logic_end);
2368		logic_end += base;
2369	} else {
2370		logic_end = logical + increment * nstripes;
 
 
 
2371	}
2372	wait_event(sctx->list_wait,
2373		   atomic_read(&sctx->bios_in_flight) == 0);
2374	scrub_blocked_if_needed(fs_info);
2375
2376	/* FIXME it might be better to start readahead at commit root */
2377	key_start.objectid = logical;
2378	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379	key_start.offset = (u64)0;
2380	key_end.objectid = logic_end;
2381	key_end.type = BTRFS_METADATA_ITEM_KEY;
2382	key_end.offset = (u64)-1;
2383	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2384
2385	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387	key_start.offset = logical;
2388	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390	key_end.offset = logic_end;
2391	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2392
2393	if (!IS_ERR(reada1))
2394		btrfs_reada_wait(reada1);
2395	if (!IS_ERR(reada2))
2396		btrfs_reada_wait(reada2);
2397
 
 
 
 
 
 
 
 
2398
2399	/*
2400	 * collect all data csums for the stripe to avoid seeking during
2401	 * the scrub. This might currently (crc32) end up to be about 1MB
2402	 */
2403	blk_start_plug(&plug);
2404
2405	/*
2406	 * now find all extents for each stripe and scrub them
2407	 */
2408	ret = 0;
2409	while (physical < physical_end) {
2410		/* for raid56, we skip parity stripe */
2411		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412				BTRFS_BLOCK_GROUP_RAID6)) {
2413			ret = get_raid56_logic_offset(physical, num,
2414					map, &logical);
2415			logical += base;
 
 
2416			if (ret)
2417				goto skip;
2418		}
2419		/*
2420		 * canceled?
2421		 */
2422		if (atomic_read(&fs_info->scrub_cancel_req) ||
2423		    atomic_read(&sctx->cancel_req)) {
2424			ret = -ECANCELED;
2425			goto out;
2426		}
 
2427		/*
2428		 * check to see if we have to pause
 
 
 
 
 
2429		 */
2430		if (atomic_read(&fs_info->scrub_pause_req)) {
2431			/* push queued extents */
2432			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2433			scrub_submit(sctx);
2434			mutex_lock(&sctx->wr_ctx.wr_lock);
2435			scrub_wr_submit(sctx);
2436			mutex_unlock(&sctx->wr_ctx.wr_lock);
2437			wait_event(sctx->list_wait,
2438				   atomic_read(&sctx->bios_in_flight) == 0);
2439			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440			scrub_blocked_if_needed(fs_info);
2441		}
2442
2443		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444			key.type = BTRFS_METADATA_ITEM_KEY;
2445		else
2446			key.type = BTRFS_EXTENT_ITEM_KEY;
2447		key.objectid = logical;
2448		key.offset = (u64)-1;
2449
2450		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2451		if (ret < 0)
2452			goto out;
2453
2454		if (ret > 0) {
2455			ret = btrfs_previous_extent_item(root, path, 0);
2456			if (ret < 0)
2457				goto out;
2458			if (ret > 0) {
2459				/* there's no smaller item, so stick with the
2460				 * larger one */
2461				btrfs_release_path(path);
2462				ret = btrfs_search_slot(NULL, root, &key,
2463							path, 0, 0);
2464				if (ret < 0)
2465					goto out;
2466			}
2467		}
2468
2469		stop_loop = 0;
2470		while (1) {
2471			u64 bytes;
2472
2473			l = path->nodes[0];
2474			slot = path->slots[0];
2475			if (slot >= btrfs_header_nritems(l)) {
2476				ret = btrfs_next_leaf(root, path);
2477				if (ret == 0)
2478					continue;
2479				if (ret < 0)
2480					goto out;
2481
2482				stop_loop = 1;
2483				break;
2484			}
2485			btrfs_item_key_to_cpu(l, &key, slot);
2486
2487			if (key.type == BTRFS_METADATA_ITEM_KEY)
2488				bytes = root->leafsize;
2489			else
2490				bytes = key.offset;
2491
2492			if (key.objectid + bytes <= logical)
2493				goto next;
2494
2495			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496			    key.type != BTRFS_METADATA_ITEM_KEY)
2497				goto next;
2498
2499			if (key.objectid >= logical + map->stripe_len) {
2500				/* out of this device extent */
2501				if (key.objectid >= logic_end)
2502					stop_loop = 1;
2503				break;
2504			}
2505
2506			extent = btrfs_item_ptr(l, slot,
2507						struct btrfs_extent_item);
2508			flags = btrfs_extent_flags(l, extent);
2509			generation = btrfs_extent_generation(l, extent);
2510
2511			if (key.objectid < logical &&
2512			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2513				btrfs_err(fs_info,
2514					   "scrub: tree block %llu spanning "
2515					   "stripes, ignored. logical=%llu",
2516				       key.objectid, logical);
2517				goto next;
2518			}
2519
2520again:
2521			extent_logical = key.objectid;
2522			extent_len = bytes;
2523
2524			/*
2525			 * trim extent to this stripe
2526			 */
2527			if (extent_logical < logical) {
2528				extent_len -= logical - extent_logical;
2529				extent_logical = logical;
2530			}
2531			if (extent_logical + extent_len >
2532			    logical + map->stripe_len) {
2533				extent_len = logical + map->stripe_len -
2534					     extent_logical;
2535			}
2536
2537			extent_physical = extent_logical - logical + physical;
2538			extent_dev = scrub_dev;
2539			extent_mirror_num = mirror_num;
2540			if (is_dev_replace)
2541				scrub_remap_extent(fs_info, extent_logical,
2542						   extent_len, &extent_physical,
2543						   &extent_dev,
2544						   &extent_mirror_num);
2545
2546			ret = btrfs_lookup_csums_range(csum_root, logical,
2547						logical + map->stripe_len - 1,
2548						&sctx->csum_list, 1);
2549			if (ret)
2550				goto out;
2551
2552			ret = scrub_extent(sctx, extent_logical, extent_len,
2553					   extent_physical, extent_dev, flags,
2554					   generation, extent_mirror_num,
2555					   extent_logical - logical + physical);
2556			if (ret)
2557				goto out;
2558
2559			scrub_free_csums(sctx);
2560			if (extent_logical + extent_len <
2561			    key.objectid + bytes) {
2562				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563					BTRFS_BLOCK_GROUP_RAID6)) {
2564					/*
2565					 * loop until we find next data stripe
2566					 * or we have finished all stripes.
2567					 */
2568					do {
2569						physical += map->stripe_len;
2570						ret = get_raid56_logic_offset(
2571								physical, num,
2572								map, &logical);
2573						logical += base;
2574					} while (physical < physical_end && ret);
2575				} else {
2576					physical += map->stripe_len;
2577					logical += increment;
2578				}
2579				if (logical < key.objectid + bytes) {
2580					cond_resched();
2581					goto again;
2582				}
2583
2584				if (physical >= physical_end) {
2585					stop_loop = 1;
2586					break;
2587				}
2588			}
2589next:
2590			path->slots[0]++;
2591		}
2592		btrfs_release_path(path);
2593skip:
2594		logical += increment;
2595		physical += map->stripe_len;
2596		spin_lock(&sctx->stat_lock);
2597		if (stop_loop)
2598			sctx->stat.last_physical = map->stripes[num].physical +
2599						   length;
2600		else
2601			sctx->stat.last_physical = physical;
2602		spin_unlock(&sctx->stat_lock);
2603		if (stop_loop)
2604			break;
2605	}
2606out:
2607	/* push queued extents */
2608	scrub_submit(sctx);
2609	mutex_lock(&sctx->wr_ctx.wr_lock);
2610	scrub_wr_submit(sctx);
2611	mutex_unlock(&sctx->wr_ctx.wr_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2612
2613	blk_finish_plug(&plug);
2614	btrfs_free_path(path);
2615	return ret < 0 ? ret : 0;
2616}
2617
2618static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 
2619					  struct btrfs_device *scrub_dev,
2620					  u64 chunk_tree, u64 chunk_objectid,
2621					  u64 chunk_offset, u64 length,
2622					  u64 dev_offset, int is_dev_replace)
2623{
2624	struct btrfs_mapping_tree *map_tree =
2625		&sctx->dev_root->fs_info->mapping_tree;
2626	struct map_lookup *map;
2627	struct extent_map *em;
2628	int i;
2629	int ret = 0;
2630
2631	read_lock(&map_tree->map_tree.lock);
2632	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633	read_unlock(&map_tree->map_tree.lock);
 
 
 
 
 
 
 
2634
2635	if (!em)
2636		return -EINVAL;
2637
2638	map = (struct map_lookup *)em->bdev;
2639	if (em->start != chunk_offset)
2640		goto out;
2641
2642	if (em->len < length)
2643		goto out;
2644
2645	for (i = 0; i < map->num_stripes; ++i) {
2646		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647		    map->stripes[i].physical == dev_offset) {
2648			ret = scrub_stripe(sctx, map, scrub_dev, i,
2649					   chunk_offset, length,
2650					   is_dev_replace);
2651			if (ret)
2652				goto out;
2653		}
2654	}
2655out:
2656	free_extent_map(em);
2657
2658	return ret;
2659}
2660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661static noinline_for_stack
2662int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2664			   int is_dev_replace)
2665{
2666	struct btrfs_dev_extent *dev_extent = NULL;
2667	struct btrfs_path *path;
2668	struct btrfs_root *root = sctx->dev_root;
2669	struct btrfs_fs_info *fs_info = root->fs_info;
2670	u64 length;
2671	u64 chunk_tree;
2672	u64 chunk_objectid;
2673	u64 chunk_offset;
2674	int ret;
 
2675	int slot;
2676	struct extent_buffer *l;
2677	struct btrfs_key key;
2678	struct btrfs_key found_key;
2679	struct btrfs_block_group_cache *cache;
2680	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2681
2682	path = btrfs_alloc_path();
2683	if (!path)
2684		return -ENOMEM;
2685
2686	path->reada = 2;
2687	path->search_commit_root = 1;
2688	path->skip_locking = 1;
2689
2690	key.objectid = scrub_dev->devid;
2691	key.offset = 0ull;
2692	key.type = BTRFS_DEV_EXTENT_KEY;
2693
2694	while (1) {
 
 
2695		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696		if (ret < 0)
2697			break;
2698		if (ret > 0) {
2699			if (path->slots[0] >=
2700			    btrfs_header_nritems(path->nodes[0])) {
2701				ret = btrfs_next_leaf(root, path);
2702				if (ret)
2703					break;
 
 
 
 
 
 
2704			}
2705		}
2706
2707		l = path->nodes[0];
2708		slot = path->slots[0];
2709
2710		btrfs_item_key_to_cpu(l, &found_key, slot);
2711
2712		if (found_key.objectid != scrub_dev->devid)
2713			break;
2714
2715		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2716			break;
2717
2718		if (found_key.offset >= end)
2719			break;
2720
2721		if (found_key.offset < key.offset)
2722			break;
2723
2724		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725		length = btrfs_dev_extent_length(l, dev_extent);
2726
2727		if (found_key.offset + length <= start) {
2728			key.offset = found_key.offset + length;
2729			btrfs_release_path(path);
2730			continue;
2731		}
2732
2733		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2736
2737		/*
2738		 * get a reference on the corresponding block group to prevent
2739		 * the chunk from going away while we scrub it
2740		 */
2741		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2742		if (!cache) {
2743			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744			break;
2745		}
2746		dev_replace->cursor_right = found_key.offset + length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747		dev_replace->cursor_left = found_key.offset;
2748		dev_replace->item_needs_writeback = 1;
2749		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750				  chunk_offset, length, found_key.offset,
2751				  is_dev_replace);
2752
2753		/*
2754		 * flush, submit all pending read and write bios, afterwards
2755		 * wait for them.
2756		 * Note that in the dev replace case, a read request causes
2757		 * write requests that are submitted in the read completion
2758		 * worker. Therefore in the current situation, it is required
2759		 * that all write requests are flushed, so that all read and
2760		 * write requests are really completed when bios_in_flight
2761		 * changes to 0.
2762		 */
2763		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764		scrub_submit(sctx);
2765		mutex_lock(&sctx->wr_ctx.wr_lock);
2766		scrub_wr_submit(sctx);
2767		mutex_unlock(&sctx->wr_ctx.wr_lock);
2768
2769		wait_event(sctx->list_wait,
2770			   atomic_read(&sctx->bios_in_flight) == 0);
2771		atomic_inc(&fs_info->scrubs_paused);
2772		wake_up(&fs_info->scrub_pause_wait);
2773
2774		/*
2775		 * must be called before we decrease @scrub_paused.
2776		 * make sure we don't block transaction commit while
2777		 * we are waiting pending workers finished.
2778		 */
2779		wait_event(sctx->list_wait,
2780			   atomic_read(&sctx->workers_pending) == 0);
2781		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2782
2783		mutex_lock(&fs_info->scrub_lock);
2784		__scrub_blocked_if_needed(fs_info);
2785		atomic_dec(&fs_info->scrubs_paused);
2786		mutex_unlock(&fs_info->scrub_lock);
2787		wake_up(&fs_info->scrub_pause_wait);
2788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789		btrfs_put_block_group(cache);
2790		if (ret)
2791			break;
2792		if (is_dev_replace &&
2793		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2794			ret = -EIO;
2795			break;
2796		}
2797		if (sctx->stat.malloc_errors > 0) {
2798			ret = -ENOMEM;
2799			break;
2800		}
2801
2802		dev_replace->cursor_left = dev_replace->cursor_right;
2803		dev_replace->item_needs_writeback = 1;
2804
2805		key.offset = found_key.offset + length;
2806		btrfs_release_path(path);
2807	}
2808
2809	btrfs_free_path(path);
2810
2811	/*
2812	 * ret can still be 1 from search_slot or next_leaf,
2813	 * that's not an error
2814	 */
2815	return ret < 0 ? ret : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2816}
2817
2818static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819					   struct btrfs_device *scrub_dev)
2820{
2821	int	i;
2822	u64	bytenr;
2823	u64	gen;
2824	int	ret;
2825	struct btrfs_root *root = sctx->dev_root;
 
2826
2827	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828		return -EIO;
 
 
 
 
 
 
 
 
2829
2830	gen = root->fs_info->last_trans_committed;
 
 
 
 
2831
2832	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833		bytenr = btrfs_sb_offset(i);
2834		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
 
2835			break;
 
 
2836
2837		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839				  NULL, 1, bytenr);
2840		if (ret)
2841			return ret;
 
2842	}
2843	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 
 
 
 
 
 
 
 
 
 
 
2844
2845	return 0;
 
 
2846}
2847
2848/*
2849 * get a reference count on fs_info->scrub_workers. start worker if necessary
2850 */
2851static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852						int is_dev_replace)
2853{
2854	int ret = 0;
2855	int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856	int max_active = fs_info->thread_pool_size;
 
 
 
 
 
 
 
 
2857
2858	if (fs_info->scrub_workers_refcnt == 0) {
2859		if (is_dev_replace)
2860			fs_info->scrub_workers =
2861				btrfs_alloc_workqueue("btrfs-scrub", flags,
2862						      1, 4);
2863		else
2864			fs_info->scrub_workers =
2865				btrfs_alloc_workqueue("btrfs-scrub", flags,
2866						      max_active, 4);
2867		if (!fs_info->scrub_workers) {
2868			ret = -ENOMEM;
2869			goto out;
2870		}
2871		fs_info->scrub_wr_completion_workers =
2872			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2873					      max_active, 2);
2874		if (!fs_info->scrub_wr_completion_workers) {
2875			ret = -ENOMEM;
2876			goto out;
2877		}
2878		fs_info->scrub_nocow_workers =
2879			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880		if (!fs_info->scrub_nocow_workers) {
2881			ret = -ENOMEM;
2882			goto out;
2883		}
2884	}
2885	++fs_info->scrub_workers_refcnt;
2886out:
 
 
 
 
 
2887	return ret;
2888}
2889
2890static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891{
2892	if (--fs_info->scrub_workers_refcnt == 0) {
2893		btrfs_destroy_workqueue(fs_info->scrub_workers);
2894		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2896	}
2897	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2898}
2899
2900int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901		    u64 end, struct btrfs_scrub_progress *progress,
2902		    int readonly, int is_dev_replace)
2903{
 
2904	struct scrub_ctx *sctx;
2905	int ret;
2906	struct btrfs_device *dev;
 
 
2907
2908	if (btrfs_fs_closing(fs_info))
2909		return -EINVAL;
 
 
 
2910
2911	/*
2912	 * check some assumptions
 
 
2913	 */
2914	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915		btrfs_err(fs_info,
2916			   "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917		       fs_info->chunk_root->nodesize,
2918		       fs_info->chunk_root->leafsize);
2919		return -EINVAL;
2920	}
2921
2922	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923		/*
2924		 * in this case scrub is unable to calculate the checksum
2925		 * the way scrub is implemented. Do not handle this
2926		 * situation at all because it won't ever happen.
2927		 */
2928		btrfs_err(fs_info,
2929			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935		/* not supported for data w/o checksums */
2936		btrfs_err(fs_info,
2937			   "scrub: size assumption sectorsize != PAGE_SIZE "
2938			   "(%d != %lu) fails",
2939		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940		return -EINVAL;
2941	}
2942
2943	if (fs_info->chunk_root->nodesize >
2944	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945	    fs_info->chunk_root->sectorsize >
2946	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947		/*
2948		 * would exhaust the array bounds of pagev member in
2949		 * struct scrub_block
2950		 */
2951		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953		       fs_info->chunk_root->nodesize,
2954		       SCRUB_MAX_PAGES_PER_BLOCK,
2955		       fs_info->chunk_root->sectorsize,
2956		       SCRUB_MAX_PAGES_PER_BLOCK);
2957		return -EINVAL;
2958	}
2959
2960
2961	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963	if (!dev || (dev->missing && !is_dev_replace)) {
2964		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965		return -ENODEV;
 
 
 
 
2966	}
2967
2968	mutex_lock(&fs_info->scrub_lock);
2969	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
 
2970		mutex_unlock(&fs_info->scrub_lock);
2971		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972		return -EIO;
 
2973	}
2974
2975	btrfs_dev_replace_lock(&fs_info->dev_replace);
2976	if (dev->scrub_device ||
2977	    (!is_dev_replace &&
2978	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980		mutex_unlock(&fs_info->scrub_lock);
2981		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982		return -EINPROGRESS;
 
2983	}
2984	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985
2986	ret = scrub_workers_get(fs_info, is_dev_replace);
2987	if (ret) {
2988		mutex_unlock(&fs_info->scrub_lock);
2989		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990		return ret;
2991	}
2992
2993	sctx = scrub_setup_ctx(dev, is_dev_replace);
2994	if (IS_ERR(sctx)) {
2995		mutex_unlock(&fs_info->scrub_lock);
2996		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997		scrub_workers_put(fs_info);
2998		return PTR_ERR(sctx);
2999	}
3000	sctx->readonly = readonly;
3001	dev->scrub_device = sctx;
3002	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004	/*
3005	 * checking @scrub_pause_req here, we can avoid
3006	 * race between committing transaction and scrubbing.
3007	 */
3008	__scrub_blocked_if_needed(fs_info);
3009	atomic_inc(&fs_info->scrubs_running);
3010	mutex_unlock(&fs_info->scrub_lock);
3011
 
 
 
 
 
 
 
 
 
 
3012	if (!is_dev_replace) {
 
 
 
 
 
 
 
3013		/*
3014		 * by holding device list mutex, we can
3015		 * kick off writing super in log tree sync.
3016		 */
3017		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018		ret = scrub_supers(sctx, dev);
3019		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
3020	}
3021
3022	if (!ret)
3023		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024					     is_dev_replace);
3025
3026	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027	atomic_dec(&fs_info->scrubs_running);
3028	wake_up(&fs_info->scrub_pause_wait);
3029
3030	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031
3032	if (progress)
3033		memcpy(progress, &sctx->stat, sizeof(*progress));
3034
 
 
 
 
3035	mutex_lock(&fs_info->scrub_lock);
3036	dev->scrub_device = NULL;
 
 
3037	scrub_workers_put(fs_info);
3038	mutex_unlock(&fs_info->scrub_lock);
 
 
 
 
 
 
 
3039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3040	scrub_free_ctx(sctx);
3041
3042	return ret;
3043}
3044
3045void btrfs_scrub_pause(struct btrfs_root *root)
3046{
3047	struct btrfs_fs_info *fs_info = root->fs_info;
3048
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_root *root)
3063{
3064	struct btrfs_fs_info *fs_info = root->fs_info;
3065
3066	atomic_dec(&fs_info->scrub_pause_req);
3067	wake_up(&fs_info->scrub_pause_wait);
3068}
3069
3070int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071{
3072	mutex_lock(&fs_info->scrub_lock);
3073	if (!atomic_read(&fs_info->scrubs_running)) {
3074		mutex_unlock(&fs_info->scrub_lock);
3075		return -ENOTCONN;
3076	}
3077
3078	atomic_inc(&fs_info->scrub_cancel_req);
3079	while (atomic_read(&fs_info->scrubs_running)) {
3080		mutex_unlock(&fs_info->scrub_lock);
3081		wait_event(fs_info->scrub_pause_wait,
3082			   atomic_read(&fs_info->scrubs_running) == 0);
3083		mutex_lock(&fs_info->scrub_lock);
3084	}
3085	atomic_dec(&fs_info->scrub_cancel_req);
3086	mutex_unlock(&fs_info->scrub_lock);
3087
3088	return 0;
3089}
3090
3091int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092			   struct btrfs_device *dev)
3093{
 
3094	struct scrub_ctx *sctx;
3095
3096	mutex_lock(&fs_info->scrub_lock);
3097	sctx = dev->scrub_device;
3098	if (!sctx) {
3099		mutex_unlock(&fs_info->scrub_lock);
3100		return -ENOTCONN;
3101	}
3102	atomic_inc(&sctx->cancel_req);
3103	while (dev->scrub_device) {
3104		mutex_unlock(&fs_info->scrub_lock);
3105		wait_event(fs_info->scrub_pause_wait,
3106			   dev->scrub_device == NULL);
3107		mutex_lock(&fs_info->scrub_lock);
3108	}
3109	mutex_unlock(&fs_info->scrub_lock);
3110
3111	return 0;
3112}
3113
3114int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115			 struct btrfs_scrub_progress *progress)
3116{
 
3117	struct btrfs_device *dev;
3118	struct scrub_ctx *sctx = NULL;
3119
3120	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122	if (dev)
3123		sctx = dev->scrub_device;
3124	if (sctx)
3125		memcpy(progress, &sctx->stat, sizeof(*progress));
3126	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127
3128	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129}
3130
3131static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132			       u64 extent_logical, u64 extent_len,
3133			       u64 *extent_physical,
3134			       struct btrfs_device **extent_dev,
3135			       int *extent_mirror_num)
3136{
3137	u64 mapped_length;
3138	struct btrfs_bio *bbio = NULL;
3139	int ret;
3140
3141	mapped_length = extent_len;
3142	ret = btrfs_map_block(fs_info, READ, extent_logical,
3143			      &mapped_length, &bbio, 0);
3144	if (ret || !bbio || mapped_length < extent_len ||
3145	    !bbio->stripes[0].dev->bdev) {
3146		kfree(bbio);
3147		return;
3148	}
3149
3150	*extent_physical = bbio->stripes[0].physical;
3151	*extent_mirror_num = bbio->mirror_num;
3152	*extent_dev = bbio->stripes[0].dev;
3153	kfree(bbio);
3154}
3155
3156static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157			      struct scrub_wr_ctx *wr_ctx,
3158			      struct btrfs_fs_info *fs_info,
3159			      struct btrfs_device *dev,
3160			      int is_dev_replace)
3161{
3162	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163
3164	mutex_init(&wr_ctx->wr_lock);
3165	wr_ctx->wr_curr_bio = NULL;
3166	if (!is_dev_replace)
3167		return 0;
3168
3169	WARN_ON(!dev->bdev);
3170	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171					 bio_get_nr_vecs(dev->bdev));
3172	wr_ctx->tgtdev = dev;
3173	atomic_set(&wr_ctx->flush_all_writes, 0);
3174	return 0;
3175}
3176
3177static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178{
3179	mutex_lock(&wr_ctx->wr_lock);
3180	kfree(wr_ctx->wr_curr_bio);
3181	wr_ctx->wr_curr_bio = NULL;
3182	mutex_unlock(&wr_ctx->wr_lock);
3183}
3184
3185static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186			    int mirror_num, u64 physical_for_dev_replace)
3187{
3188	struct scrub_copy_nocow_ctx *nocow_ctx;
3189	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190
3191	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192	if (!nocow_ctx) {
3193		spin_lock(&sctx->stat_lock);
3194		sctx->stat.malloc_errors++;
3195		spin_unlock(&sctx->stat_lock);
3196		return -ENOMEM;
3197	}
3198
3199	scrub_pending_trans_workers_inc(sctx);
3200
3201	nocow_ctx->sctx = sctx;
3202	nocow_ctx->logical = logical;
3203	nocow_ctx->len = len;
3204	nocow_ctx->mirror_num = mirror_num;
3205	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206	btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3207	INIT_LIST_HEAD(&nocow_ctx->inodes);
3208	btrfs_queue_work(fs_info->scrub_nocow_workers,
3209			 &nocow_ctx->work);
3210
3211	return 0;
3212}
3213
3214static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215{
3216	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217	struct scrub_nocow_inode *nocow_inode;
3218
3219	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220	if (!nocow_inode)
3221		return -ENOMEM;
3222	nocow_inode->inum = inum;
3223	nocow_inode->offset = offset;
3224	nocow_inode->root = root;
3225	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226	return 0;
3227}
3228
3229#define COPY_COMPLETE 1
3230
3231static void copy_nocow_pages_worker(struct btrfs_work *work)
3232{
3233	struct scrub_copy_nocow_ctx *nocow_ctx =
3234		container_of(work, struct scrub_copy_nocow_ctx, work);
3235	struct scrub_ctx *sctx = nocow_ctx->sctx;
3236	u64 logical = nocow_ctx->logical;
3237	u64 len = nocow_ctx->len;
3238	int mirror_num = nocow_ctx->mirror_num;
3239	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240	int ret;
3241	struct btrfs_trans_handle *trans = NULL;
3242	struct btrfs_fs_info *fs_info;
3243	struct btrfs_path *path;
3244	struct btrfs_root *root;
3245	int not_written = 0;
3246
3247	fs_info = sctx->dev_root->fs_info;
3248	root = fs_info->extent_root;
3249
3250	path = btrfs_alloc_path();
3251	if (!path) {
3252		spin_lock(&sctx->stat_lock);
3253		sctx->stat.malloc_errors++;
3254		spin_unlock(&sctx->stat_lock);
3255		not_written = 1;
3256		goto out;
3257	}
3258
3259	trans = btrfs_join_transaction(root);
3260	if (IS_ERR(trans)) {
3261		not_written = 1;
3262		goto out;
3263	}
3264
3265	ret = iterate_inodes_from_logical(logical, fs_info, path,
3266					  record_inode_for_nocow, nocow_ctx);
3267	if (ret != 0 && ret != -ENOENT) {
3268		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269			"phys %llu, len %llu, mir %u, ret %d",
3270			logical, physical_for_dev_replace, len, mirror_num,
3271			ret);
3272		not_written = 1;
3273		goto out;
3274	}
3275
3276	btrfs_end_transaction(trans, root);
3277	trans = NULL;
3278	while (!list_empty(&nocow_ctx->inodes)) {
3279		struct scrub_nocow_inode *entry;
3280		entry = list_first_entry(&nocow_ctx->inodes,
3281					 struct scrub_nocow_inode,
3282					 list);
3283		list_del_init(&entry->list);
3284		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285						 entry->root, nocow_ctx);
3286		kfree(entry);
3287		if (ret == COPY_COMPLETE) {
3288			ret = 0;
3289			break;
3290		} else if (ret) {
3291			break;
3292		}
3293	}
3294out:
3295	while (!list_empty(&nocow_ctx->inodes)) {
3296		struct scrub_nocow_inode *entry;
3297		entry = list_first_entry(&nocow_ctx->inodes,
3298					 struct scrub_nocow_inode,
3299					 list);
3300		list_del_init(&entry->list);
3301		kfree(entry);
3302	}
3303	if (trans && !IS_ERR(trans))
3304		btrfs_end_transaction(trans, root);
3305	if (not_written)
3306		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307					    num_uncorrectable_read_errors);
3308
3309	btrfs_free_path(path);
3310	kfree(nocow_ctx);
3311
3312	scrub_pending_trans_workers_dec(sctx);
3313}
3314
3315static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316				      struct scrub_copy_nocow_ctx *nocow_ctx)
3317{
3318	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319	struct btrfs_key key;
3320	struct inode *inode;
3321	struct page *page;
3322	struct btrfs_root *local_root;
3323	struct btrfs_ordered_extent *ordered;
3324	struct extent_map *em;
3325	struct extent_state *cached_state = NULL;
3326	struct extent_io_tree *io_tree;
3327	u64 physical_for_dev_replace;
3328	u64 len = nocow_ctx->len;
3329	u64 lockstart = offset, lockend = offset + len - 1;
3330	unsigned long index;
3331	int srcu_index;
3332	int ret = 0;
3333	int err = 0;
3334
3335	key.objectid = root;
3336	key.type = BTRFS_ROOT_ITEM_KEY;
3337	key.offset = (u64)-1;
3338
3339	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340
3341	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342	if (IS_ERR(local_root)) {
3343		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344		return PTR_ERR(local_root);
3345	}
3346
3347	key.type = BTRFS_INODE_ITEM_KEY;
3348	key.objectid = inum;
3349	key.offset = 0;
3350	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352	if (IS_ERR(inode))
3353		return PTR_ERR(inode);
3354
3355	/* Avoid truncate/dio/punch hole.. */
3356	mutex_lock(&inode->i_mutex);
3357	inode_dio_wait(inode);
3358
3359	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360	io_tree = &BTRFS_I(inode)->io_tree;
3361
3362	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364	if (ordered) {
3365		btrfs_put_ordered_extent(ordered);
3366		goto out_unlock;
3367	}
3368
3369	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370	if (IS_ERR(em)) {
3371		ret = PTR_ERR(em);
3372		goto out_unlock;
3373	}
3374
3375	/*
3376	 * This extent does not actually cover the logical extent anymore,
3377	 * move on to the next inode.
3378	 */
3379	if (em->block_start > nocow_ctx->logical ||
3380	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3381		free_extent_map(em);
3382		goto out_unlock;
3383	}
3384	free_extent_map(em);
3385
3386	while (len >= PAGE_CACHE_SIZE) {
3387		index = offset >> PAGE_CACHE_SHIFT;
3388again:
3389		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390		if (!page) {
3391			btrfs_err(fs_info, "find_or_create_page() failed");
3392			ret = -ENOMEM;
3393			goto out;
3394		}
3395
3396		if (PageUptodate(page)) {
3397			if (PageDirty(page))
3398				goto next_page;
3399		} else {
3400			ClearPageError(page);
3401			err = extent_read_full_page_nolock(io_tree, page,
3402							   btrfs_get_extent,
3403							   nocow_ctx->mirror_num);
3404			if (err) {
3405				ret = err;
3406				goto next_page;
3407			}
3408
3409			lock_page(page);
3410			/*
3411			 * If the page has been remove from the page cache,
3412			 * the data on it is meaningless, because it may be
3413			 * old one, the new data may be written into the new
3414			 * page in the page cache.
3415			 */
3416			if (page->mapping != inode->i_mapping) {
3417				unlock_page(page);
3418				page_cache_release(page);
3419				goto again;
3420			}
3421			if (!PageUptodate(page)) {
3422				ret = -EIO;
3423				goto next_page;
3424			}
3425		}
3426		err = write_page_nocow(nocow_ctx->sctx,
3427				       physical_for_dev_replace, page);
3428		if (err)
3429			ret = err;
3430next_page:
3431		unlock_page(page);
3432		page_cache_release(page);
3433
3434		if (ret)
3435			break;
3436
3437		offset += PAGE_CACHE_SIZE;
3438		physical_for_dev_replace += PAGE_CACHE_SIZE;
3439		len -= PAGE_CACHE_SIZE;
3440	}
3441	ret = COPY_COMPLETE;
3442out_unlock:
3443	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444			     GFP_NOFS);
3445out:
3446	mutex_unlock(&inode->i_mutex);
3447	iput(inode);
3448	return ret;
3449}
3450
3451static int write_page_nocow(struct scrub_ctx *sctx,
3452			    u64 physical_for_dev_replace, struct page *page)
3453{
3454	struct bio *bio;
3455	struct btrfs_device *dev;
3456	int ret;
3457
3458	dev = sctx->wr_ctx.tgtdev;
3459	if (!dev)
3460		return -EIO;
3461	if (!dev->bdev) {
3462		printk_ratelimited(KERN_WARNING
3463			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464		return -EIO;
3465	}
3466	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467	if (!bio) {
3468		spin_lock(&sctx->stat_lock);
3469		sctx->stat.malloc_errors++;
3470		spin_unlock(&sctx->stat_lock);
3471		return -ENOMEM;
3472	}
3473	bio->bi_iter.bi_size = 0;
3474	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475	bio->bi_bdev = dev->bdev;
3476	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477	if (ret != PAGE_CACHE_SIZE) {
3478leave_with_eio:
3479		bio_put(bio);
3480		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481		return -EIO;
3482	}
3483
3484	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485		goto leave_with_eio;
3486
3487	bio_put(bio);
3488	return 0;
3489}