Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
 
 
  19#include "raid56.h"
  20#include "block-group.h"
  21#include "zoned.h"
  22#include "fs.h"
  23#include "accessors.h"
  24#include "file-item.h"
  25#include "scrub.h"
  26#include "raid-stripe-tree.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
  39 */
  40
 
  41struct scrub_ctx;
  42
  43/*
  44 * The following value only influences the performance.
  45 *
  46 * This determines how many stripes would be submitted in one go,
  47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
  48 */
  49#define SCRUB_STRIPES_PER_GROUP		8
 
 
  50
  51/*
  52 * How many groups we have for each sctx.
  53 *
  54 * This would be 8M per device, the same value as the old scrub in-flight bios
  55 * size limit.
  56 */
  57#define SCRUB_GROUPS_PER_SCTX		16
  58
  59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
  60
  61/*
  62 * The following value times PAGE_SIZE needs to be large enough to match the
  63 * largest node/leaf/sector size that shall be supported.
 
  64 */
  65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  66
  67/* Represent one sector and its needed info to verify the content. */
  68struct scrub_sector_verification {
  69	bool is_metadata;
  70
  71	union {
  72		/*
  73		 * Csum pointer for data csum verification.  Should point to a
  74		 * sector csum inside scrub_stripe::csums.
  75		 *
  76		 * NULL if this data sector has no csum.
  77		 */
  78		u8 *csum;
  79
  80		/*
  81		 * Extra info for metadata verification.  All sectors inside a
  82		 * tree block share the same generation.
  83		 */
  84		u64 generation;
  85	};
  86};
  87
  88enum scrub_stripe_flags {
  89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
  90	SCRUB_STRIPE_FLAG_INITIALIZED,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92	/* Set when the read-repair is finished. */
  93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
  94
  95	/*
  96	 * Set for data stripes if it's triggered from P/Q stripe.
  97	 * During such scrub, we should not report errors in data stripes, nor
  98	 * update the accounting.
  99	 */
 100	SCRUB_STRIPE_FLAG_NO_REPORT,
 
 
 
 
 
 
 
 
 
 
 101};
 102
 103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105/*
 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 107 */
 108struct scrub_stripe {
 109	struct scrub_ctx *sctx;
 110	struct btrfs_block_group *bg;
 111
 112	struct page *pages[SCRUB_STRIPE_PAGES];
 113	struct scrub_sector_verification *sectors;
 114
 115	struct btrfs_device *dev;
 116	u64 logical;
 117	u64 physical;
 118
 119	u16 mirror_num;
 120
 121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
 122	u16 nr_sectors;
 123
 124	/*
 125	 * How many data/meta extents are in this stripe.  Only for scrub status
 126	 * reporting purposes.
 127	 */
 128	u16 nr_data_extents;
 129	u16 nr_meta_extents;
 130
 131	atomic_t pending_io;
 132	wait_queue_head_t io_wait;
 133	wait_queue_head_t repair_wait;
 134
 135	/*
 136	 * Indicate the states of the stripe.  Bits are defined in
 137	 * scrub_stripe_flags enum.
 138	 */
 139	unsigned long state;
 140
 141	/* Indicate which sectors are covered by extent items. */
 142	unsigned long extent_sector_bitmap;
 143
 144	/*
 145	 * The errors hit during the initial read of the stripe.
 146	 *
 147	 * Would be utilized for error reporting and repair.
 148	 *
 149	 * The remaining init_nr_* records the number of errors hit, only used
 150	 * by error reporting.
 151	 */
 152	unsigned long init_error_bitmap;
 153	unsigned int init_nr_io_errors;
 154	unsigned int init_nr_csum_errors;
 155	unsigned int init_nr_meta_errors;
 156
 157	/*
 158	 * The following error bitmaps are all for the current status.
 159	 * Every time we submit a new read, these bitmaps may be updated.
 160	 *
 161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
 162	 *
 163	 * IO and csum errors can happen for both metadata and data.
 164	 */
 165	unsigned long error_bitmap;
 166	unsigned long io_error_bitmap;
 167	unsigned long csum_error_bitmap;
 168	unsigned long meta_error_bitmap;
 169
 170	/* For writeback (repair or replace) error reporting. */
 171	unsigned long write_error_bitmap;
 172
 173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
 174	spinlock_t write_error_lock;
 175
 176	/*
 177	 * Checksum for the whole stripe if this stripe is inside a data block
 178	 * group.
 179	 */
 180	u8 *csums;
 181
 182	struct work_struct work;
 
 
 
 
 
 183};
 184
 185struct scrub_ctx {
 186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
 187	struct scrub_stripe	*raid56_data_stripes;
 188	struct btrfs_fs_info	*fs_info;
 189	struct btrfs_path	extent_path;
 190	struct btrfs_path	csum_path;
 191	int			first_free;
 192	int			cur_stripe;
 
 
 
 
 
 
 193	atomic_t		cancel_req;
 194	int			readonly;
 195
 196	/* State of IO submission throttling affecting the associated device */
 197	ktime_t			throttle_deadline;
 198	u64			throttle_sent;
 199
 200	int			is_dev_replace;
 201	u64			write_pointer;
 202
 203	struct mutex            wr_lock;
 204	struct btrfs_device     *wr_tgtdev;
 205
 206	/*
 207	 * statistics
 208	 */
 209	struct btrfs_scrub_progress stat;
 210	spinlock_t		stat_lock;
 211
 212	/*
 213	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 214	 * decrement bios_in_flight and workers_pending and then do a wakeup
 215	 * on the list_wait wait queue. We must ensure the main scrub task
 216	 * doesn't free the scrub context before or while the workers are
 217	 * doing the wakeup() call.
 218	 */
 219	refcount_t              refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220};
 221
 222struct scrub_warning {
 223	struct btrfs_path	*path;
 224	u64			extent_item_size;
 225	const char		*errstr;
 226	u64			physical;
 227	u64			logical;
 228	struct btrfs_device	*dev;
 229};
 230
 231static void release_scrub_stripe(struct scrub_stripe *stripe)
 232{
 233	if (!stripe)
 234		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235
 236	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
 237		if (stripe->pages[i])
 238			__free_page(stripe->pages[i]);
 239		stripe->pages[i] = NULL;
 240	}
 241	kfree(stripe->sectors);
 242	kfree(stripe->csums);
 243	stripe->sectors = NULL;
 244	stripe->csums = NULL;
 245	stripe->sctx = NULL;
 246	stripe->state = 0;
 247}
 248
 249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
 250			     struct scrub_stripe *stripe)
 251{
 252	int ret;
 253
 254	memset(stripe, 0, sizeof(*stripe));
 255
 256	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 257	stripe->state = 0;
 258
 259	init_waitqueue_head(&stripe->io_wait);
 260	init_waitqueue_head(&stripe->repair_wait);
 261	atomic_set(&stripe->pending_io, 0);
 262	spin_lock_init(&stripe->write_error_lock);
 263
 264	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
 265	if (ret < 0)
 266		goto error;
 267
 268	stripe->sectors = kcalloc(stripe->nr_sectors,
 269				  sizeof(struct scrub_sector_verification),
 270				  GFP_KERNEL);
 271	if (!stripe->sectors)
 272		goto error;
 273
 274	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
 275				fs_info->csum_size, GFP_KERNEL);
 276	if (!stripe->csums)
 277		goto error;
 278	return 0;
 279error:
 280	release_scrub_stripe(stripe);
 281	return -ENOMEM;
 282}
 283
 284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
 285{
 286	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
 
 
 287}
 288
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 290
 291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 292{
 293	while (atomic_read(&fs_info->scrub_pause_req)) {
 294		mutex_unlock(&fs_info->scrub_lock);
 295		wait_event(fs_info->scrub_pause_wait,
 296		   atomic_read(&fs_info->scrub_pause_req) == 0);
 297		mutex_lock(&fs_info->scrub_lock);
 298	}
 299}
 300
 301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 302{
 303	atomic_inc(&fs_info->scrubs_paused);
 304	wake_up(&fs_info->scrub_pause_wait);
 305}
 306
 307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 308{
 309	mutex_lock(&fs_info->scrub_lock);
 310	__scrub_blocked_if_needed(fs_info);
 311	atomic_dec(&fs_info->scrubs_paused);
 312	mutex_unlock(&fs_info->scrub_lock);
 313
 314	wake_up(&fs_info->scrub_pause_wait);
 315}
 316
 317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 318{
 319	scrub_pause_on(fs_info);
 320	scrub_pause_off(fs_info);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 324{
 325	int i;
 326
 327	if (!sctx)
 328		return;
 329
 330	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
 331		release_scrub_stripe(&sctx->stripes[i]);
 
 
 
 
 
 
 
 
 
 
 332
 333	kvfree(sctx);
 
 
 
 
 
 
 
 
 
 334}
 335
 336static void scrub_put_ctx(struct scrub_ctx *sctx)
 337{
 338	if (refcount_dec_and_test(&sctx->refs))
 339		scrub_free_ctx(sctx);
 340}
 341
 342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 343		struct btrfs_fs_info *fs_info, int is_dev_replace)
 344{
 345	struct scrub_ctx *sctx;
 346	int		i;
 
 
 347
 348	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
 349	 * kvzalloc().
 350	 */
 351	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
 352	if (!sctx)
 353		goto nomem;
 354	refcount_set(&sctx->refs, 1);
 355	sctx->is_dev_replace = is_dev_replace;
 356	sctx->fs_info = fs_info;
 357	sctx->extent_path.search_commit_root = 1;
 358	sctx->extent_path.skip_locking = 1;
 359	sctx->csum_path.search_commit_root = 1;
 360	sctx->csum_path.skip_locking = 1;
 361	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
 362		int ret;
 363
 364		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
 365		if (ret < 0)
 366			goto nomem;
 367		sctx->stripes[i].sctx = sctx;
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369	sctx->first_free = 0;
 
 
 
 
 370	atomic_set(&sctx->cancel_req, 0);
 
 
 371
 
 372	spin_lock_init(&sctx->stat_lock);
 373	sctx->throttle_deadline = 0;
 374
 375	mutex_init(&sctx->wr_lock);
 376	if (is_dev_replace) {
 377		WARN_ON(!fs_info->dev_replace.tgtdev);
 378		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 
 379	}
 380
 381	return sctx;
 382
 383nomem:
 384	scrub_free_ctx(sctx);
 385	return ERR_PTR(-ENOMEM);
 386}
 387
 388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 389				     u64 root, void *warn_ctx)
 390{
 
 391	u32 nlink;
 392	int ret;
 393	int i;
 394	unsigned nofs_flag;
 395	struct extent_buffer *eb;
 396	struct btrfs_inode_item *inode_item;
 397	struct scrub_warning *swarn = warn_ctx;
 398	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 399	struct inode_fs_paths *ipath = NULL;
 400	struct btrfs_root *local_root;
 
 401	struct btrfs_key key;
 402
 403	local_root = btrfs_get_fs_root(fs_info, root, true);
 
 
 
 404	if (IS_ERR(local_root)) {
 405		ret = PTR_ERR(local_root);
 406		goto err;
 407	}
 408
 409	/*
 410	 * this makes the path point to (inum INODE_ITEM ioff)
 411	 */
 412	key.objectid = inum;
 413	key.type = BTRFS_INODE_ITEM_KEY;
 414	key.offset = 0;
 415
 416	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 417	if (ret) {
 418		btrfs_put_root(local_root);
 419		btrfs_release_path(swarn->path);
 420		goto err;
 421	}
 422
 423	eb = swarn->path->nodes[0];
 424	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 425					struct btrfs_inode_item);
 
 426	nlink = btrfs_inode_nlink(eb, inode_item);
 427	btrfs_release_path(swarn->path);
 428
 429	/*
 430	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 431	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 432	 * not seem to be strictly necessary.
 433	 */
 434	nofs_flag = memalloc_nofs_save();
 435	ipath = init_ipath(4096, local_root, swarn->path);
 436	memalloc_nofs_restore(nofs_flag);
 437	if (IS_ERR(ipath)) {
 438		btrfs_put_root(local_root);
 439		ret = PTR_ERR(ipath);
 440		ipath = NULL;
 441		goto err;
 442	}
 443	ret = paths_from_inode(inum, ipath);
 444
 445	if (ret < 0)
 446		goto err;
 447
 448	/*
 449	 * we deliberately ignore the bit ipath might have been too small to
 450	 * hold all of the paths here
 451	 */
 452	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 453		btrfs_warn_in_rcu(fs_info,
 454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 455				  swarn->errstr, swarn->logical,
 456				  btrfs_dev_name(swarn->dev),
 457				  swarn->physical,
 458				  root, inum, offset,
 459				  fs_info->sectorsize, nlink,
 460				  (char *)(unsigned long)ipath->fspath->val[i]);
 461
 462	btrfs_put_root(local_root);
 463	free_ipath(ipath);
 464	return 0;
 465
 466err:
 467	btrfs_warn_in_rcu(fs_info,
 468			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 469			  swarn->errstr, swarn->logical,
 470			  btrfs_dev_name(swarn->dev),
 471			  swarn->physical,
 472			  root, inum, offset, ret);
 473
 474	free_ipath(ipath);
 475	return 0;
 476}
 477
 478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
 479				       bool is_super, u64 logical, u64 physical)
 480{
 481	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 482	struct btrfs_path *path;
 483	struct btrfs_key found_key;
 484	struct extent_buffer *eb;
 485	struct btrfs_extent_item *ei;
 486	struct scrub_warning swarn;
 
 
 487	u64 flags = 0;
 
 488	u32 item_size;
 
 489	int ret;
 490
 491	/* Super block error, no need to search extent tree. */
 492	if (is_super) {
 493		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 494				  errstr, btrfs_dev_name(dev), physical);
 495		return;
 496	}
 497	path = btrfs_alloc_path();
 498	if (!path)
 499		return;
 500
 501	swarn.physical = physical;
 502	swarn.logical = logical;
 503	swarn.errstr = errstr;
 504	swarn.dev = NULL;
 505
 506	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 507				  &flags);
 508	if (ret < 0)
 509		goto out;
 510
 
 511	swarn.extent_item_size = found_key.offset;
 512
 513	eb = path->nodes[0];
 514	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 515	item_size = btrfs_item_size(eb, path->slots[0]);
 516
 517	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 518		unsigned long ptr = 0;
 519		u8 ref_level;
 520		u64 ref_root;
 521
 522		while (true) {
 523			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 524						      item_size, &ref_root,
 525						      &ref_level);
 526			if (ret < 0) {
 527				btrfs_warn(fs_info,
 528				"failed to resolve tree backref for logical %llu: %d",
 529						  swarn.logical, ret);
 530				break;
 531			}
 532			if (ret > 0)
 533				break;
 534			btrfs_warn_in_rcu(fs_info,
 535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 536				errstr, swarn.logical, btrfs_dev_name(dev),
 537				swarn.physical, (ref_level ? "node" : "leaf"),
 538				ref_level, ref_root);
 539		}
 
 
 
 
 540		btrfs_release_path(path);
 541	} else {
 542		struct btrfs_backref_walk_ctx ctx = { 0 };
 543
 544		btrfs_release_path(path);
 545
 546		ctx.bytenr = found_key.objectid;
 547		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 548		ctx.fs_info = fs_info;
 549
 550		swarn.path = path;
 551		swarn.dev = dev;
 552
 553		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 
 554	}
 555
 556out:
 557	btrfs_free_path(path);
 558}
 559
 560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 561{
 562	int ret = 0;
 563	u64 length;
 
 
 
 
 
 
 
 
 
 564
 565	if (!btrfs_is_zoned(sctx->fs_info))
 566		return 0;
 
 567
 568	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 569		return 0;
 570
 571	if (sctx->write_pointer < physical) {
 572		length = physical - sctx->write_pointer;
 
 
 
 573
 574		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 575						sctx->write_pointer, length);
 576		if (!ret)
 577			sctx->write_pointer = physical;
 
 
 
 
 
 
 
 
 
 
 578	}
 579	return ret;
 580}
 581
 582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
 583{
 584	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 585	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586
 587	return stripe->pages[page_index];
 588}
 
 
 
 
 
 
 
 
 
 589
 590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
 591						 int sector_nr)
 592{
 593	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 594
 595	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
 596}
 597
 598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
 599{
 600	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 601	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 602	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
 603	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
 604	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
 605	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 606	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 607	u8 calculated_csum[BTRFS_CSUM_SIZE];
 608	struct btrfs_header *header;
 609
 610	/*
 611	 * Here we don't have a good way to attach the pages (and subpages)
 612	 * to a dummy extent buffer, thus we have to directly grab the members
 613	 * from pages.
 614	 */
 615	header = (struct btrfs_header *)(page_address(first_page) + first_off);
 616	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
 617
 618	if (logical != btrfs_stack_header_bytenr(header)) {
 619		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 620		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 621		btrfs_warn_rl(fs_info,
 622		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
 623			      logical, stripe->mirror_num,
 624			      btrfs_stack_header_bytenr(header), logical);
 625		return;
 626	}
 627	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
 628		   BTRFS_FSID_SIZE) != 0) {
 629		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 630		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 631		btrfs_warn_rl(fs_info,
 632		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
 633			      logical, stripe->mirror_num,
 634			      header->fsid, fs_info->fs_devices->fsid);
 635		return;
 636	}
 637	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 638		   BTRFS_UUID_SIZE) != 0) {
 639		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 640		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 641		btrfs_warn_rl(fs_info,
 642		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
 643			      logical, stripe->mirror_num,
 644			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
 645		return;
 646	}
 647
 648	/* Now check tree block csum. */
 649	shash->tfm = fs_info->csum_shash;
 650	crypto_shash_init(shash);
 651	crypto_shash_update(shash, page_address(first_page) + first_off +
 652			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
 653
 654	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
 655		struct page *page = scrub_stripe_get_page(stripe, i);
 656		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
 657
 658		crypto_shash_update(shash, page_address(page) + page_off,
 659				    fs_info->sectorsize);
 660	}
 661
 662	crypto_shash_final(shash, calculated_csum);
 663	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
 664		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 665		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 666		btrfs_warn_rl(fs_info,
 667		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
 668			      logical, stripe->mirror_num,
 669			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
 670			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
 671		return;
 672	}
 673	if (stripe->sectors[sector_nr].generation !=
 674	    btrfs_stack_header_generation(header)) {
 675		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 676		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 677		btrfs_warn_rl(fs_info,
 678		"tree block %llu mirror %u has bad generation, has %llu want %llu",
 679			      logical, stripe->mirror_num,
 680			      btrfs_stack_header_generation(header),
 681			      stripe->sectors[sector_nr].generation);
 682		return;
 683	}
 684	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 685	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 686	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 687}
 688
 689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
 690{
 691	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 692	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
 693	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 694	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 695	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 696	u8 csum_buf[BTRFS_CSUM_SIZE];
 697	int ret;
 
 
 
 
 
 698
 699	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
 700
 701	/* Sector not utilized, skip it. */
 702	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
 703		return;
 704
 705	/* IO error, no need to check. */
 706	if (test_bit(sector_nr, &stripe->io_error_bitmap))
 707		return;
 
 
 
 
 
 708
 709	/* Metadata, verify the full tree block. */
 710	if (sector->is_metadata) {
 711		/*
 712		 * Check if the tree block crosses the stripe boundary.  If
 713		 * crossed the boundary, we cannot verify it but only give a
 714		 * warning.
 715		 *
 716		 * This can only happen on a very old filesystem where chunks
 717		 * are not ensured to be stripe aligned.
 718		 */
 719		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
 720			btrfs_warn_rl(fs_info,
 721			"tree block at %llu crosses stripe boundary %llu",
 722				      stripe->logical +
 723				      (sector_nr << fs_info->sectorsize_bits),
 724				      stripe->logical);
 725			return;
 726		}
 727		scrub_verify_one_metadata(stripe, sector_nr);
 728		return;
 729	}
 730
 731	/*
 732	 * Data is easier, we just verify the data csum (if we have it).  For
 733	 * cases without csum, we have no other choice but to trust it.
 
 
 
 
 
 734	 */
 735	if (!sector->csum) {
 736		clear_bit(sector_nr, &stripe->error_bitmap);
 737		return;
 738	}
 739
 740	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
 741	if (ret < 0) {
 742		set_bit(sector_nr, &stripe->csum_error_bitmap);
 743		set_bit(sector_nr, &stripe->error_bitmap);
 744	} else {
 745		clear_bit(sector_nr, &stripe->csum_error_bitmap);
 746		clear_bit(sector_nr, &stripe->error_bitmap);
 747	}
 748}
 749
 750/* Verify specified sectors of a stripe. */
 751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
 752{
 753	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 754	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 755	int sector_nr;
 756
 757	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
 758		scrub_verify_one_sector(stripe, sector_nr);
 759		if (stripe->sectors[sector_nr].is_metadata)
 760			sector_nr += sectors_per_tree - 1;
 
 
 
 
 
 
 
 
 
 761	}
 
 
 
 
 
 762}
 763
 764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
 765{
 766	int i;
 
 767
 768	for (i = 0; i < stripe->nr_sectors; i++) {
 769		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
 770		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
 771			break;
 
 772	}
 773	ASSERT(i < stripe->nr_sectors);
 774	return i;
 775}
 776
 777/*
 778 * Repair read is different to the regular read:
 779 *
 780 * - Only reads the failed sectors
 781 * - May have extra blocksize limits
 
 
 782 */
 783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
 784{
 785	struct scrub_stripe *stripe = bbio->private;
 786	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 787	struct bio_vec *bvec;
 788	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 789	u32 bio_size = 0;
 790	int i;
 791
 792	ASSERT(sector_nr < stripe->nr_sectors);
 793
 794	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 795		bio_size += bvec->bv_len;
 
 
 
 
 
 796
 797	if (bbio->bio.bi_status) {
 798		bitmap_set(&stripe->io_error_bitmap, sector_nr,
 799			   bio_size >> fs_info->sectorsize_bits);
 800		bitmap_set(&stripe->error_bitmap, sector_nr,
 801			   bio_size >> fs_info->sectorsize_bits);
 802	} else {
 803		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
 804			     bio_size >> fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	}
 806	bio_put(&bbio->bio);
 807	if (atomic_dec_and_test(&stripe->pending_io))
 808		wake_up(&stripe->io_wait);
 809}
 810
 811static int calc_next_mirror(int mirror, int num_copies)
 812{
 813	ASSERT(mirror <= num_copies);
 814	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
 815}
 816
 817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
 818					    int mirror, int blocksize, bool wait)
 819{
 820	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 821	struct btrfs_bio *bbio = NULL;
 822	const unsigned long old_error_bitmap = stripe->error_bitmap;
 823	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	ASSERT(stripe->mirror_num >= 1);
 826	ASSERT(atomic_read(&stripe->pending_io) == 0);
 
 
 
 
 
 
 
 
 
 827
 828	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
 829		struct page *page;
 830		int pgoff;
 831		int ret;
 
 
 
 
 
 
 
 
 832
 833		page = scrub_stripe_get_page(stripe, i);
 834		pgoff = scrub_stripe_get_page_offset(stripe, i);
 835
 836		/* The current sector cannot be merged, submit the bio. */
 837		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
 838			     bbio->bio.bi_iter.bi_size >= blocksize)) {
 839			ASSERT(bbio->bio.bi_iter.bi_size);
 840			atomic_inc(&stripe->pending_io);
 841			btrfs_submit_bio(bbio, mirror);
 842			if (wait)
 843				wait_scrub_stripe_io(stripe);
 844			bbio = NULL;
 845		}
 
 
 
 
 846
 847		if (!bbio) {
 848			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 849				fs_info, scrub_repair_read_endio, stripe);
 850			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 851				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
 852		}
 853
 854		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 855		ASSERT(ret == fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	}
 857	if (bbio) {
 858		ASSERT(bbio->bio.bi_iter.bi_size);
 859		atomic_inc(&stripe->pending_io);
 860		btrfs_submit_bio(bbio, mirror);
 861		if (wait)
 862			wait_scrub_stripe_io(stripe);
 863	}
 864}
 865
 866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
 867				       struct scrub_stripe *stripe)
 868{
 869	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 870				      DEFAULT_RATELIMIT_BURST);
 871	struct btrfs_fs_info *fs_info = sctx->fs_info;
 872	struct btrfs_device *dev = NULL;
 873	u64 physical = 0;
 874	int nr_data_sectors = 0;
 875	int nr_meta_sectors = 0;
 876	int nr_nodatacsum_sectors = 0;
 877	int nr_repaired_sectors = 0;
 878	int sector_nr;
 879
 880	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
 881		return;
 882
 883	/*
 884	 * Init needed infos for error reporting.
 885	 *
 886	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
 887	 * thus no need for dev/physical, error reporting still needs dev and physical.
 888	 */
 889	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
 890		u64 mapped_len = fs_info->sectorsize;
 891		struct btrfs_io_context *bioc = NULL;
 892		int stripe_index = stripe->mirror_num - 1;
 893		int ret;
 894
 895		/* For scrub, our mirror_num should always start at 1. */
 896		ASSERT(stripe->mirror_num >= 1);
 897		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 898				      stripe->logical, &mapped_len, &bioc,
 899				      NULL, NULL);
 900		/*
 901		 * If we failed, dev will be NULL, and later detailed reports
 902		 * will just be skipped.
 
 
 
 903		 */
 904		if (ret < 0)
 905			goto skip;
 906		physical = bioc->stripes[stripe_index].physical;
 907		dev = bioc->stripes[stripe_index].dev;
 908		btrfs_put_bioc(bioc);
 
 
 
 
 
 
 
 
 
 909	}
 910
 911skip:
 912	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 913		bool repaired = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914
 915		if (stripe->sectors[sector_nr].is_metadata) {
 916			nr_meta_sectors++;
 917		} else {
 918			nr_data_sectors++;
 919			if (!stripe->sectors[sector_nr].csum)
 920				nr_nodatacsum_sectors++;
 921		}
 922
 923		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
 924		    !test_bit(sector_nr, &stripe->error_bitmap)) {
 925			nr_repaired_sectors++;
 926			repaired = true;
 
 
 
 
 
 
 
 
 927		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928
 929		/* Good sector from the beginning, nothing need to be done. */
 930		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
 931			continue;
 932
 933		/*
 934		 * Report error for the corrupted sectors.  If repaired, just
 935		 * output the message of repaired message.
 936		 */
 937		if (repaired) {
 938			if (dev) {
 939				btrfs_err_rl_in_rcu(fs_info,
 940			"fixed up error at logical %llu on dev %s physical %llu",
 941					    stripe->logical, btrfs_dev_name(dev),
 942					    physical);
 943			} else {
 944				btrfs_err_rl_in_rcu(fs_info,
 945			"fixed up error at logical %llu on mirror %u",
 946					    stripe->logical, stripe->mirror_num);
 947			}
 948			continue;
 
 949		}
 950
 951		/* The remaining are all for unrepaired. */
 952		if (dev) {
 953			btrfs_err_rl_in_rcu(fs_info,
 954	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
 955					    stripe->logical, btrfs_dev_name(dev),
 956					    physical);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957		} else {
 
 
 
 
 
 958			btrfs_err_rl_in_rcu(fs_info,
 959	"unable to fixup (regular) error at logical %llu on mirror %u",
 960					    stripe->logical, stripe->mirror_num);
 961		}
 
 
 
 
 
 
 
 
 
 962
 963		if (test_bit(sector_nr, &stripe->io_error_bitmap))
 964			if (__ratelimit(&rs) && dev)
 965				scrub_print_common_warning("i/o error", dev, false,
 966						     stripe->logical, physical);
 967		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
 968			if (__ratelimit(&rs) && dev)
 969				scrub_print_common_warning("checksum error", dev, false,
 970						     stripe->logical, physical);
 971		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
 972			if (__ratelimit(&rs) && dev)
 973				scrub_print_common_warning("header error", dev, false,
 974						     stripe->logical, physical);
 
 
 
 
 
 
 
 
 
 
 975	}
 976
 977	spin_lock(&sctx->stat_lock);
 978	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
 979	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
 980	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
 981	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
 982	sctx->stat.no_csum += nr_nodatacsum_sectors;
 983	sctx->stat.read_errors += stripe->init_nr_io_errors;
 984	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
 985	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
 986	sctx->stat.uncorrectable_errors +=
 987		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
 988	sctx->stat.corrected_errors += nr_repaired_sectors;
 989	spin_unlock(&sctx->stat_lock);
 990}
 991
 992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 993				unsigned long write_bitmap, bool dev_replace);
 
 
 
 
 
 
 
 994
 995/*
 996 * The main entrance for all read related scrub work, including:
 997 *
 998 * - Wait for the initial read to finish
 999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 *   possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009{
1010	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011	struct scrub_ctx *sctx = stripe->sctx;
1012	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014					  stripe->bg->length);
1015	int mirror;
1016	int i;
1017
1018	ASSERT(stripe->mirror_num > 0);
1019
1020	wait_scrub_stripe_io(stripe);
1021	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022	/* Save the initial failed bitmap for later repair and report usage. */
1023	stripe->init_error_bitmap = stripe->error_bitmap;
1024	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025						  stripe->nr_sectors);
1026	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027						    stripe->nr_sectors);
1028	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029						    stripe->nr_sectors);
1030
1031	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032		goto out;
 
 
1033
1034	/*
1035	 * Try all remaining mirrors.
1036	 *
1037	 * Here we still try to read as large block as possible, as this is
1038	 * faster and we have extra safety nets to rely on.
1039	 */
1040	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041	     mirror != stripe->mirror_num;
1042	     mirror = calc_next_mirror(mirror, num_copies)) {
1043		const unsigned long old_error_bitmap = stripe->error_bitmap;
1044
1045		scrub_stripe_submit_repair_read(stripe, mirror,
1046						BTRFS_STRIPE_LEN, false);
1047		wait_scrub_stripe_io(stripe);
1048		scrub_verify_one_stripe(stripe, old_error_bitmap);
1049		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050			goto out;
1051	}
 
1052
1053	/*
1054	 * Last safety net, try re-checking all mirrors, including the failed
1055	 * one, sector-by-sector.
1056	 *
1057	 * As if one sector failed the drive's internal csum, the whole read
1058	 * containing the offending sector would be marked as error.
1059	 * Thus here we do sector-by-sector read.
1060	 *
1061	 * This can be slow, thus we only try it as the last resort.
1062	 */
 
 
 
 
 
 
 
 
 
 
1063
1064	for (i = 0, mirror = stripe->mirror_num;
1065	     i < num_copies;
1066	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067		const unsigned long old_error_bitmap = stripe->error_bitmap;
1068
1069		scrub_stripe_submit_repair_read(stripe, mirror,
1070						fs_info->sectorsize, true);
1071		wait_scrub_stripe_io(stripe);
1072		scrub_verify_one_stripe(stripe, old_error_bitmap);
1073		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074			goto out;
1075	}
1076out:
1077	/*
1078	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1079	 * in-place, but queue the bg to be relocated.
 
1080	 */
1081	if (btrfs_is_zoned(fs_info)) {
1082		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084	} else if (!sctx->readonly) {
1085		unsigned long repaired;
1086
1087		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088			      &stripe->error_bitmap, stripe->nr_sectors);
1089		scrub_write_sectors(sctx, stripe, repaired, false);
1090		wait_scrub_stripe_io(stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091	}
1092
1093	scrub_stripe_report_errors(sctx, stripe);
1094	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095	wake_up(&stripe->repair_wait);
1096}
1097
1098static void scrub_read_endio(struct btrfs_bio *bbio)
 
 
 
 
 
1099{
1100	struct scrub_stripe *stripe = bbio->private;
1101	struct bio_vec *bvec;
1102	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103	int num_sectors;
1104	u32 bio_size = 0;
1105	int i;
1106
1107	ASSERT(sector_nr < stripe->nr_sectors);
1108	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109		bio_size += bvec->bv_len;
1110	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112	if (bbio->bio.bi_status) {
1113		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115	} else {
1116		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117	}
1118	bio_put(&bbio->bio);
1119	if (atomic_dec_and_test(&stripe->pending_io)) {
1120		wake_up(&stripe->io_wait);
1121		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123	}
1124}
1125
1126static void scrub_write_endio(struct btrfs_bio *bbio)
1127{
1128	struct scrub_stripe *stripe = bbio->private;
1129	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130	struct bio_vec *bvec;
1131	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132	u32 bio_size = 0;
1133	int i;
1134
1135	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136		bio_size += bvec->bv_len;
1137
1138	if (bbio->bio.bi_status) {
1139		unsigned long flags;
1140
1141		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143			   bio_size >> fs_info->sectorsize_bits);
1144		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145	}
1146	bio_put(&bbio->bio);
1147
1148	if (atomic_dec_and_test(&stripe->pending_io))
1149		wake_up(&stripe->io_wait);
1150}
1151
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153				   struct scrub_stripe *stripe,
1154				   struct btrfs_bio *bbio, bool dev_replace)
1155{
1156	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159		      stripe->logical;
1160
1161	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162	atomic_inc(&stripe->pending_io);
1163	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164	if (!btrfs_is_zoned(fs_info))
1165		return;
1166	/*
1167	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168	 * the write to finish before the next write.
1169	 */
1170	wait_scrub_stripe_io(stripe);
 
1171
1172	/*
1173	 * And also need to update the write pointer if write finished
1174	 * successfully.
1175	 */
1176	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177		      &stripe->write_error_bitmap))
1178		sctx->write_pointer += bio_len;
1179}
1180
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 *   Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 *   Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195				unsigned long write_bitmap, bool dev_replace)
 
1196{
1197	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198	struct btrfs_bio *bbio = NULL;
1199	int sector_nr;
1200
1201	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204		int ret;
1205
1206		/* We should only writeback sectors covered by an extent. */
1207		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
 
1208
1209		/* Cannot merge with previous sector, submit the current one. */
1210		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212			bbio = NULL;
1213		}
1214		if (!bbio) {
1215			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216					       fs_info, scrub_write_endio, stripe);
1217			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218				(sector_nr << fs_info->sectorsize_bits)) >>
1219				SECTOR_SHIFT;
1220		}
1221		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222		ASSERT(ret == fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223	}
1224	if (bbio)
1225		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
 
1226}
1227
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233				  unsigned int bio_size)
1234{
1235	const int time_slice = 1000;
1236	s64 delta;
1237	ktime_t now;
1238	u32 div;
1239	u64 bwlimit;
1240
1241	bwlimit = READ_ONCE(device->scrub_speed_max);
1242	if (bwlimit == 0)
1243		return;
1244
1245	/*
1246	 * Slice is divided into intervals when the IO is submitted, adjust by
1247	 * bwlimit and maximum of 64 intervals.
1248	 */
1249	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250	div = min_t(u32, 64, div);
1251
1252	/* Start new epoch, set deadline */
1253	now = ktime_get();
1254	if (sctx->throttle_deadline == 0) {
1255		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256		sctx->throttle_sent = 0;
1257	}
1258
1259	/* Still in the time to send? */
1260	if (ktime_before(now, sctx->throttle_deadline)) {
1261		/* If current bio is within the limit, send it */
1262		sctx->throttle_sent += bio_size;
1263		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264			return;
1265
1266		/* We're over the limit, sleep until the rest of the slice */
1267		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268	} else {
1269		/* New request after deadline, start new epoch */
1270		delta = 0;
1271	}
1272
1273	if (delta) {
1274		long timeout;
1275
1276		timeout = div_u64(delta * HZ, 1000);
1277		schedule_timeout_interruptible(timeout);
 
 
 
1278	}
1279
1280	/* Next call will start the deadline period */
1281	sctx->throttle_deadline = 0;
1282}
1283
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
1292				   struct btrfs_chunk_map *map, u64 *offset,
1293				   u64 *stripe_start)
1294{
1295	int i;
1296	int j = 0;
1297	u64 last_offset;
1298	const int data_stripes = nr_data_stripes(map);
1299
1300	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301	if (stripe_start)
1302		*stripe_start = last_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304	*offset = last_offset;
1305	for (i = 0; i < data_stripes; i++) {
1306		u32 stripe_nr;
1307		u32 stripe_index;
1308		u32 rot;
1309
1310		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
 
 
1311
1312		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
 
 
 
 
 
1313
1314		/* Work out the disk rotation on this stripe-set */
1315		rot = stripe_nr % map->num_stripes;
1316		/* calculate which stripe this data locates */
1317		rot += i;
1318		stripe_index = rot % map->num_stripes;
1319		if (stripe_index == num)
1320			return 0;
1321		if (stripe_index < num)
1322			j++;
1323	}
1324	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325	return 1;
1326}
1327
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334				     u64 search_start, u64 search_len)
1335{
1336	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337	u64 len;
1338	struct btrfs_key key;
1339
1340	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342	       key.type == BTRFS_METADATA_ITEM_KEY);
1343	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344		len = fs_info->nodesize;
1345	else
1346		len = key.offset;
1347
1348	if (key.objectid + len <= search_start)
1349		return -1;
1350	if (key.objectid >= search_start + search_len)
1351		return 1;
1352	return 0;
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372				  struct btrfs_path *path,
1373				  u64 search_start, u64 search_len)
1374{
1375	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376	struct btrfs_key key;
1377	int ret;
1378
1379	/* Continue using the existing path */
1380	if (path->nodes[0])
1381		goto search_forward;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382
1383	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384		key.type = BTRFS_METADATA_ITEM_KEY;
1385	else
1386		key.type = BTRFS_EXTENT_ITEM_KEY;
1387	key.objectid = search_start;
1388	key.offset = (u64)-1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389
1390	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391	if (ret < 0)
1392		return ret;
1393
1394	ASSERT(ret > 0);
1395	/*
1396	 * Here we intentionally pass 0 as @min_objectid, as there could be
1397	 * an extent item starting before @search_start.
1398	 */
1399	ret = btrfs_previous_extent_item(extent_root, path, 0);
1400	if (ret < 0)
1401		return ret;
1402	/*
1403	 * No matter whether we have found an extent item, the next loop will
1404	 * properly do every check on the key.
1405	 */
1406search_forward:
1407	while (true) {
1408		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1409		if (key.objectid >= search_start + search_len)
1410			break;
1411		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1412		    key.type != BTRFS_EXTENT_ITEM_KEY)
1413			goto next;
1414
1415		ret = compare_extent_item_range(path, search_start, search_len);
1416		if (ret == 0)
1417			return ret;
1418		if (ret > 0)
1419			break;
1420next:
1421		ret = btrfs_next_item(extent_root, path);
1422		if (ret) {
1423			/* Either no more items or a fatal error. */
1424			btrfs_release_path(path);
1425			return ret;
1426		}
1427	}
1428	btrfs_release_path(path);
1429	return 1;
1430}
1431
1432static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1433			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1434{
1435	struct btrfs_key key;
1436	struct btrfs_extent_item *ei;
1437
1438	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1439	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1440	       key.type == BTRFS_EXTENT_ITEM_KEY);
1441	*extent_start_ret = key.objectid;
1442	if (key.type == BTRFS_METADATA_ITEM_KEY)
1443		*size_ret = path->nodes[0]->fs_info->nodesize;
1444	else
1445		*size_ret = key.offset;
1446	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1447	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1448	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1449}
1450
1451static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1452					u64 physical, u64 physical_end)
1453{
1454	struct btrfs_fs_info *fs_info = sctx->fs_info;
1455	int ret = 0;
 
1456
1457	if (!btrfs_is_zoned(fs_info))
1458		return 0;
 
 
1459
1460	mutex_lock(&sctx->wr_lock);
1461	if (sctx->write_pointer < physical_end) {
1462		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1463						    physical,
1464						    sctx->write_pointer);
1465		if (ret)
1466			btrfs_err(fs_info,
1467				  "zoned: failed to recover write pointer");
1468	}
1469	mutex_unlock(&sctx->wr_lock);
1470	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1471
1472	return ret;
1473}
1474
1475static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1476				 struct scrub_stripe *stripe,
1477				 u64 extent_start, u64 extent_len,
1478				 u64 extent_flags, u64 extent_gen)
1479{
1480	for (u64 cur_logical = max(stripe->logical, extent_start);
1481	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1482			       extent_start + extent_len);
1483	     cur_logical += fs_info->sectorsize) {
1484		const int nr_sector = (cur_logical - stripe->logical) >>
1485				      fs_info->sectorsize_bits;
1486		struct scrub_sector_verification *sector =
1487						&stripe->sectors[nr_sector];
1488
1489		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1490		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1491			sector->is_metadata = true;
1492			sector->generation = extent_gen;
1493		}
1494	}
1495}
1496
1497static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1498{
1499	stripe->extent_sector_bitmap = 0;
1500	stripe->init_error_bitmap = 0;
1501	stripe->init_nr_io_errors = 0;
1502	stripe->init_nr_csum_errors = 0;
1503	stripe->init_nr_meta_errors = 0;
1504	stripe->error_bitmap = 0;
1505	stripe->io_error_bitmap = 0;
1506	stripe->csum_error_bitmap = 0;
1507	stripe->meta_error_bitmap = 0;
1508}
1509
1510/*
1511 * Locate one stripe which has at least one extent in its range.
1512 *
1513 * Return 0 if found such stripe, and store its info into @stripe.
1514 * Return >0 if there is no such stripe in the specified range.
1515 * Return <0 for error.
1516 */
1517static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1518					struct btrfs_path *extent_path,
1519					struct btrfs_path *csum_path,
1520					struct btrfs_device *dev, u64 physical,
1521					int mirror_num, u64 logical_start,
1522					u32 logical_len,
1523					struct scrub_stripe *stripe)
1524{
1525	struct btrfs_fs_info *fs_info = bg->fs_info;
1526	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1527	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1528	const u64 logical_end = logical_start + logical_len;
1529	u64 cur_logical = logical_start;
1530	u64 stripe_end;
1531	u64 extent_start;
1532	u64 extent_len;
1533	u64 extent_flags;
1534	u64 extent_gen;
1535	int ret;
1536
1537	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1538				   stripe->nr_sectors);
1539	scrub_stripe_reset_bitmaps(stripe);
1540
1541	/* The range must be inside the bg. */
1542	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1543
1544	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1545				     logical_len);
1546	/* Either error or not found. */
1547	if (ret)
1548		goto out;
1549	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1550			&extent_gen);
1551	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1552		stripe->nr_meta_extents++;
1553	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1554		stripe->nr_data_extents++;
1555	cur_logical = max(extent_start, cur_logical);
1556
1557	/*
1558	 * Round down to stripe boundary.
 
 
1559	 *
1560	 * The extra calculation against bg->start is to handle block groups
1561	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1562	 */
1563	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1564			  bg->start;
1565	stripe->physical = physical + stripe->logical - logical_start;
1566	stripe->dev = dev;
1567	stripe->bg = bg;
1568	stripe->mirror_num = mirror_num;
1569	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1570
1571	/* Fill the first extent info into stripe->sectors[] array. */
1572	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1573			     extent_flags, extent_gen);
1574	cur_logical = extent_start + extent_len;
1575
1576	/* Fill the extent info for the remaining sectors. */
1577	while (cur_logical <= stripe_end) {
1578		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1579					     stripe_end - cur_logical + 1);
1580		if (ret < 0)
1581			goto out;
1582		if (ret > 0) {
1583			ret = 0;
1584			break;
1585		}
1586		get_extent_info(extent_path, &extent_start, &extent_len,
1587				&extent_flags, &extent_gen);
1588		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1589			stripe->nr_meta_extents++;
1590		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1591			stripe->nr_data_extents++;
1592		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1593				     extent_flags, extent_gen);
1594		cur_logical = extent_start + extent_len;
1595	}
1596
1597	/* Now fill the data csum. */
1598	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1599		int sector_nr;
1600		unsigned long csum_bitmap = 0;
1601
1602		/* Csum space should have already been allocated. */
1603		ASSERT(stripe->csums);
1604
1605		/*
1606		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1607		 * should contain at most 16 sectors.
1608		 */
1609		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1610
1611		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1612						stripe->logical, stripe_end,
1613						stripe->csums, &csum_bitmap);
1614		if (ret < 0)
1615			goto out;
1616		if (ret > 0)
1617			ret = 0;
1618
1619		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1620			stripe->sectors[sector_nr].csum = stripe->csums +
1621				sector_nr * fs_info->csum_size;
1622		}
1623	}
1624	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1625out:
1626	return ret;
1627}
1628
1629static void scrub_reset_stripe(struct scrub_stripe *stripe)
1630{
1631	scrub_stripe_reset_bitmaps(stripe);
 
 
 
 
 
 
 
1632
1633	stripe->nr_meta_extents = 0;
1634	stripe->nr_data_extents = 0;
1635	stripe->state = 0;
1636
1637	for (int i = 0; i < stripe->nr_sectors; i++) {
1638		stripe->sectors[i].is_metadata = false;
1639		stripe->sectors[i].csum = NULL;
1640		stripe->sectors[i].generation = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641	}
 
 
 
 
 
 
1642}
1643
1644static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1645					    struct scrub_stripe *stripe)
1646{
1647	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1648	struct btrfs_bio *bbio = NULL;
1649	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1650				      stripe->bg->length - stripe->logical) >>
1651				  fs_info->sectorsize_bits;
1652	u64 stripe_len = BTRFS_STRIPE_LEN;
1653	int mirror = stripe->mirror_num;
1654	int i;
 
 
 
 
 
1655
1656	atomic_inc(&stripe->pending_io);
 
 
 
 
1657
1658	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1659		struct page *page = scrub_stripe_get_page(stripe, i);
1660		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
 
 
 
 
1661
1662		/* We're beyond the chunk boundary, no need to read anymore. */
1663		if (i >= nr_sectors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664			break;
 
 
 
 
 
 
 
 
1665
1666		/* The current sector cannot be merged, submit the bio. */
1667		if (bbio &&
1668		    ((i > 0 &&
1669		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1670		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1671			ASSERT(bbio->bio.bi_iter.bi_size);
1672			atomic_inc(&stripe->pending_io);
1673			btrfs_submit_bio(bbio, mirror);
1674			bbio = NULL;
1675		}
1676
1677		if (!bbio) {
1678			struct btrfs_io_stripe io_stripe = {};
1679			struct btrfs_io_context *bioc = NULL;
1680			const u64 logical = stripe->logical +
1681					    (i << fs_info->sectorsize_bits);
1682			int err;
1683
1684			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1685					       fs_info, scrub_read_endio, stripe);
1686			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1687
1688			io_stripe.is_scrub = true;
1689			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1690					      &stripe_len, &bioc, &io_stripe,
1691					      &mirror);
1692			btrfs_put_bioc(bioc);
1693			if (err) {
1694				btrfs_bio_end_io(bbio,
1695						 errno_to_blk_status(err));
1696				return;
1697			}
1698		}
1699
1700		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701	}
1702
1703	if (bbio) {
1704		ASSERT(bbio->bio.bi_iter.bi_size);
1705		atomic_inc(&stripe->pending_io);
1706		btrfs_submit_bio(bbio, mirror);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707	}
1708
1709	if (atomic_dec_and_test(&stripe->pending_io)) {
1710		wake_up(&stripe->io_wait);
1711		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1712		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713	}
1714}
1715
1716static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1717				      struct scrub_stripe *stripe)
1718{
1719	struct btrfs_fs_info *fs_info = sctx->fs_info;
1720	struct btrfs_bio *bbio;
1721	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1722				      stripe->bg->length - stripe->logical) >>
1723				  fs_info->sectorsize_bits;
1724	int mirror = stripe->mirror_num;
1725
1726	ASSERT(stripe->bg);
1727	ASSERT(stripe->mirror_num > 0);
1728	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1729
1730	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1731		scrub_submit_extent_sector_read(sctx, stripe);
1732		return;
 
 
 
1733	}
 
1734
1735	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1736			       scrub_read_endio, stripe);
 
1737
1738	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1739	/* Read the whole range inside the chunk boundary. */
1740	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1741		struct page *page = scrub_stripe_get_page(stripe, cur);
1742		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1743		int ret;
1744
1745		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1746		/* We should have allocated enough bio vectors. */
1747		ASSERT(ret == fs_info->sectorsize);
1748	}
1749	atomic_inc(&stripe->pending_io);
 
 
 
 
 
 
 
1750
 
1751	/*
1752	 * For dev-replace, either user asks to avoid the source dev, or
1753	 * the device is missing, we try the next mirror instead.
1754	 */
1755	if (sctx->is_dev_replace &&
1756	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1757	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1758	     !stripe->dev->bdev)) {
1759		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1760						  stripe->bg->length);
1761
1762		mirror = calc_next_mirror(mirror, num_copies);
 
 
 
 
1763	}
1764	btrfs_submit_bio(bbio, mirror);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765}
1766
1767static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1768{
1769	int i;
 
1770
1771	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1772		if (stripe->sectors[i].is_metadata) {
1773			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1774
1775			btrfs_err(fs_info,
1776			"stripe %llu has unrepaired metadata sector at %llu",
1777				  stripe->logical,
1778				  stripe->logical + (i << fs_info->sectorsize_bits));
1779			return true;
1780		}
1781	}
1782	return false;
1783}
1784
1785static void submit_initial_group_read(struct scrub_ctx *sctx,
1786				      unsigned int first_slot,
1787				      unsigned int nr_stripes)
1788{
1789	struct blk_plug plug;
 
 
 
1790
1791	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1792	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1793
1794	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1795			      btrfs_stripe_nr_to_offset(nr_stripes));
1796	blk_start_plug(&plug);
1797	for (int i = 0; i < nr_stripes; i++) {
1798		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1799
1800		/* Those stripes should be initialized. */
1801		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1802		scrub_submit_initial_read(sctx, stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
1803	}
1804	blk_finish_plug(&plug);
 
 
 
 
 
 
 
 
 
 
1805}
1806
1807static int flush_scrub_stripes(struct scrub_ctx *sctx)
1808{
1809	struct btrfs_fs_info *fs_info = sctx->fs_info;
1810	struct scrub_stripe *stripe;
1811	const int nr_stripes = sctx->cur_stripe;
1812	int ret = 0;
 
 
 
 
 
1813
1814	if (!nr_stripes)
1815		return 0;
 
 
1816
1817	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819	/* Submit the stripes which are populated but not submitted. */
1820	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1821		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1822
1823		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
 
 
 
1824	}
1825
1826	for (int i = 0; i < nr_stripes; i++) {
1827		stripe = &sctx->stripes[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828
1829		wait_event(stripe->repair_wait,
1830			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831	}
1832
1833	/* Submit for dev-replace. */
1834	if (sctx->is_dev_replace) {
1835		/*
1836		 * For dev-replace, if we know there is something wrong with
1837		 * metadata, we should immediately abort.
1838		 */
1839		for (int i = 0; i < nr_stripes; i++) {
1840			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1841				ret = -EIO;
1842				goto out;
 
 
 
 
 
 
1843			}
1844		}
1845		for (int i = 0; i < nr_stripes; i++) {
1846			unsigned long good;
1847
1848			stripe = &sctx->stripes[i];
 
 
1849
1850			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
 
 
 
 
 
 
 
 
1851
1852			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1853				      &stripe->error_bitmap, stripe->nr_sectors);
1854			scrub_write_sectors(sctx, stripe, good, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855		}
1856	}
1857
1858	/* Wait for the above writebacks to finish. */
1859	for (int i = 0; i < nr_stripes; i++) {
1860		stripe = &sctx->stripes[i];
 
1861
1862		wait_scrub_stripe_io(stripe);
1863		scrub_reset_stripe(stripe);
 
1864	}
1865out:
1866	sctx->cur_stripe = 0;
1867	return ret;
1868}
1869
1870static void raid56_scrub_wait_endio(struct bio *bio)
1871{
1872	complete(bio->bi_private);
 
 
 
 
 
 
 
 
 
 
 
 
1873}
1874
1875static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1876			      struct btrfs_device *dev, int mirror_num,
1877			      u64 logical, u32 length, u64 physical,
1878			      u64 *found_logical_ret)
1879{
1880	struct scrub_stripe *stripe;
1881	int ret;
 
1882
1883	/*
1884	 * There should always be one slot left, as caller filling the last
1885	 * slot should flush them all.
1886	 */
1887	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1888
1889	/* @found_logical_ret must be specified. */
1890	ASSERT(found_logical_ret);
 
 
1891
1892	stripe = &sctx->stripes[sctx->cur_stripe];
1893	scrub_reset_stripe(stripe);
1894	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1895					   &sctx->csum_path, dev, physical,
1896					   mirror_num, logical, length, stripe);
1897	/* Either >0 as no more extents or <0 for error. */
1898	if (ret)
1899		return ret;
1900	*found_logical_ret = stripe->logical;
1901	sctx->cur_stripe++;
1902
1903	/* We filled one group, submit it. */
1904	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1905		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1906
1907		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1908	}
 
 
 
1909
1910	/* Last slot used, flush them all. */
1911	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1912		return flush_scrub_stripes(sctx);
1913	return 0;
1914}
1915
1916static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1917				      struct btrfs_device *scrub_dev,
1918				      struct btrfs_block_group *bg,
1919				      struct btrfs_chunk_map *map,
1920				      u64 full_stripe_start)
1921{
1922	DECLARE_COMPLETION_ONSTACK(io_done);
1923	struct btrfs_fs_info *fs_info = sctx->fs_info;
1924	struct btrfs_raid_bio *rbio;
1925	struct btrfs_io_context *bioc = NULL;
1926	struct btrfs_path extent_path = { 0 };
1927	struct btrfs_path csum_path = { 0 };
1928	struct bio *bio;
1929	struct scrub_stripe *stripe;
1930	bool all_empty = true;
1931	const int data_stripes = nr_data_stripes(map);
1932	unsigned long extent_bitmap = 0;
1933	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1934	int ret;
1935
1936	ASSERT(sctx->raid56_data_stripes);
1937
1938	/*
1939	 * For data stripe search, we cannot re-use the same extent/csum paths,
1940	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1941	 * we have to use our own extent/csum paths.
1942	 */
1943	extent_path.search_commit_root = 1;
1944	extent_path.skip_locking = 1;
1945	csum_path.search_commit_root = 1;
1946	csum_path.skip_locking = 1;
1947
1948	for (int i = 0; i < data_stripes; i++) {
1949		int stripe_index;
1950		int rot;
1951		u64 physical;
1952
1953		stripe = &sctx->raid56_data_stripes[i];
1954		rot = div_u64(full_stripe_start - bg->start,
1955			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1956		stripe_index = (i + rot) % map->num_stripes;
1957		physical = map->stripes[stripe_index].physical +
1958			   btrfs_stripe_nr_to_offset(rot);
1959
1960		scrub_reset_stripe(stripe);
1961		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1962		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1963				map->stripes[stripe_index].dev, physical, 1,
1964				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1965				BTRFS_STRIPE_LEN, stripe);
1966		if (ret < 0)
1967			goto out;
1968		/*
1969		 * No extent in this data stripe, need to manually mark them
1970		 * initialized to make later read submission happy.
 
1971		 */
1972		if (ret > 0) {
1973			stripe->logical = full_stripe_start +
1974					  btrfs_stripe_nr_to_offset(i);
1975			stripe->dev = map->stripes[stripe_index].dev;
1976			stripe->mirror_num = 1;
1977			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1978		}
1979	}
1980
1981	/* Check if all data stripes are empty. */
1982	for (int i = 0; i < data_stripes; i++) {
1983		stripe = &sctx->raid56_data_stripes[i];
1984		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1985			all_empty = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986			break;
1987		}
 
 
 
 
1988	}
1989	if (all_empty) {
1990		ret = 0;
1991		goto out;
 
 
 
 
 
 
1992	}
 
 
 
 
 
 
 
 
 
 
 
1993
1994	for (int i = 0; i < data_stripes; i++) {
1995		stripe = &sctx->raid56_data_stripes[i];
1996		scrub_submit_initial_read(sctx, stripe);
 
 
 
 
 
 
 
 
 
 
 
 
1997	}
1998	for (int i = 0; i < data_stripes; i++) {
1999		stripe = &sctx->raid56_data_stripes[i];
2000
2001		wait_event(stripe->repair_wait,
2002			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003	}
2004	/* For now, no zoned support for RAID56. */
2005	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2006
2007	/*
2008	 * Now all data stripes are properly verified. Check if we have any
2009	 * unrepaired, if so abort immediately or we could further corrupt the
2010	 * P/Q stripes.
2011	 *
2012	 * During the loop, also populate extent_bitmap.
2013	 */
2014	for (int i = 0; i < data_stripes; i++) {
2015		unsigned long error;
2016
2017		stripe = &sctx->raid56_data_stripes[i];
 
 
 
 
 
 
2018
2019		/*
2020		 * We should only check the errors where there is an extent.
2021		 * As we may hit an empty data stripe while it's missing.
2022		 */
2023		bitmap_and(&error, &stripe->error_bitmap,
2024			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2025		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2026			btrfs_err(fs_info,
2027"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2028				  full_stripe_start, i, stripe->nr_sectors,
2029				  &error);
2030			ret = -EIO;
2031			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2032		}
2033		bitmap_or(&extent_bitmap, &extent_bitmap,
2034			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
 
 
 
 
 
2035	}
2036
2037	/* Now we can check and regenerate the P/Q stripe. */
2038	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2039	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2040	bio->bi_private = &io_done;
2041	bio->bi_end_io = raid56_scrub_wait_endio;
2042
2043	btrfs_bio_counter_inc_blocked(fs_info);
2044	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2045			      &length, &bioc, NULL, NULL);
2046	if (ret < 0) {
2047		btrfs_put_bioc(bioc);
2048		btrfs_bio_counter_dec(fs_info);
2049		goto out;
2050	}
2051	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2052				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2053	btrfs_put_bioc(bioc);
2054	if (!rbio) {
2055		ret = -ENOMEM;
2056		btrfs_bio_counter_dec(fs_info);
2057		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2058	}
2059	/* Use the recovered stripes as cache to avoid read them from disk again. */
2060	for (int i = 0; i < data_stripes; i++) {
2061		stripe = &sctx->raid56_data_stripes[i];
2062
2063		raid56_parity_cache_data_pages(rbio, stripe->pages,
2064				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
 
 
 
 
 
2065	}
2066	raid56_parity_submit_scrub_rbio(rbio);
2067	wait_for_completion_io(&io_done);
2068	ret = blk_status_to_errno(bio->bi_status);
2069	bio_put(bio);
2070	btrfs_bio_counter_dec(fs_info);
2071
2072	btrfs_release_path(&extent_path);
2073	btrfs_release_path(&csum_path);
2074out:
2075	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076}
2077
2078/*
2079 * Scrub one range which can only has simple mirror based profile.
2080 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2081 *  RAID0/RAID10).
2082 *
2083 * Since we may need to handle a subset of block group, we need @logical_start
2084 * and @logical_length parameter.
2085 */
2086static int scrub_simple_mirror(struct scrub_ctx *sctx,
2087			       struct btrfs_block_group *bg,
2088			       struct btrfs_chunk_map *map,
2089			       u64 logical_start, u64 logical_length,
2090			       struct btrfs_device *device,
2091			       u64 physical, int mirror_num)
2092{
2093	struct btrfs_fs_info *fs_info = sctx->fs_info;
2094	const u64 logical_end = logical_start + logical_length;
2095	u64 cur_logical = logical_start;
2096	int ret;
2097
2098	/* The range must be inside the bg */
2099	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2100
2101	/* Go through each extent items inside the logical range */
2102	while (cur_logical < logical_end) {
2103		u64 found_logical = U64_MAX;
2104		u64 cur_physical = physical + cur_logical - logical_start;
2105
2106		/* Canceled? */
2107		if (atomic_read(&fs_info->scrub_cancel_req) ||
2108		    atomic_read(&sctx->cancel_req)) {
2109			ret = -ECANCELED;
2110			break;
2111		}
2112		/* Paused? */
2113		if (atomic_read(&fs_info->scrub_pause_req)) {
2114			/* Push queued extents */
2115			scrub_blocked_if_needed(fs_info);
2116		}
2117		/* Block group removed? */
2118		spin_lock(&bg->lock);
2119		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2120			spin_unlock(&bg->lock);
2121			ret = 0;
2122			break;
2123		}
2124		spin_unlock(&bg->lock);
2125
2126		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2127					 cur_logical, logical_end - cur_logical,
2128					 cur_physical, &found_logical);
2129		if (ret > 0) {
2130			/* No more extent, just update the accounting */
2131			sctx->stat.last_physical = physical + logical_length;
2132			ret = 0;
2133			break;
2134		}
2135		if (ret < 0)
2136			break;
2137
2138		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2139		ASSERT(found_logical != U64_MAX);
2140		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2141
2142		/* Don't hold CPU for too long time */
2143		cond_resched();
 
 
 
 
 
 
 
2144	}
2145	return ret;
 
2146}
2147
2148/* Calculate the full stripe length for simple stripe based profiles */
2149static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2150{
2151	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2152			    BTRFS_BLOCK_GROUP_RAID10));
 
2153
2154	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157/* Get the logical bytenr for the stripe */
2158static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2159				     struct btrfs_block_group *bg,
2160				     int stripe_index)
2161{
2162	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2163			    BTRFS_BLOCK_GROUP_RAID10));
2164	ASSERT(stripe_index < map->num_stripes);
2165
2166	/*
2167	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2168	 * skip.
2169	 */
2170	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2171	       bg->start;
2172}
2173
2174/* Get the mirror number for the stripe */
2175static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2176{
2177	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2178			    BTRFS_BLOCK_GROUP_RAID10));
2179	ASSERT(stripe_index < map->num_stripes);
 
 
 
 
2180
2181	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2182	return stripe_index % map->sub_stripes + 1;
 
 
2183}
2184
2185static int scrub_simple_stripe(struct scrub_ctx *sctx,
2186			       struct btrfs_block_group *bg,
2187			       struct btrfs_chunk_map *map,
2188			       struct btrfs_device *device,
2189			       int stripe_index)
2190{
2191	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2192	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2193	const u64 orig_physical = map->stripes[stripe_index].physical;
2194	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2195	u64 cur_logical = orig_logical;
2196	u64 cur_physical = orig_physical;
2197	int ret = 0;
2198
2199	while (cur_logical < bg->start + bg->length) {
2200		/*
2201		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2202		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2203		 * this stripe.
2204		 */
2205		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2206					  BTRFS_STRIPE_LEN, device, cur_physical,
2207					  mirror_num);
2208		if (ret)
2209			return ret;
2210		/* Skip to next stripe which belongs to the target device */
2211		cur_logical += logical_increment;
2212		/* For physical offset, we just go to next stripe */
2213		cur_physical += BTRFS_STRIPE_LEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2214	}
2215	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216}
2217
2218static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2219					   struct btrfs_block_group *bg,
2220					   struct btrfs_chunk_map *map,
2221					   struct btrfs_device *scrub_dev,
2222					   int stripe_index)
 
2223{
2224	struct btrfs_fs_info *fs_info = sctx->fs_info;
2225	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2226	const u64 chunk_logical = bg->start;
2227	int ret;
2228	int ret2;
2229	u64 physical = map->stripes[stripe_index].physical;
2230	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2231	const u64 physical_end = physical + dev_stripe_len;
 
 
 
 
 
2232	u64 logical;
2233	u64 logic_end;
2234	/* The logical increment after finishing one stripe */
2235	u64 increment;
2236	/* Offset inside the chunk */
 
 
 
 
 
2237	u64 offset;
 
 
 
2238	u64 stripe_logical;
 
 
 
2239	int stop_loop = 0;
2240
2241	/* Extent_path should be released by now. */
2242	ASSERT(sctx->extent_path.nodes[0] == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243
2244	scrub_blocked_if_needed(fs_info);
 
 
2245
2246	if (sctx->is_dev_replace &&
2247	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2248		mutex_lock(&sctx->wr_lock);
2249		sctx->write_pointer = physical;
2250		mutex_unlock(&sctx->wr_lock);
2251	}
2252
2253	/* Prepare the extra data stripes used by RAID56. */
2254	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2255		ASSERT(sctx->raid56_data_stripes == NULL);
2256
2257		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2258						    sizeof(struct scrub_stripe),
2259						    GFP_KERNEL);
2260		if (!sctx->raid56_data_stripes) {
2261			ret = -ENOMEM;
2262			goto out;
2263		}
2264		for (int i = 0; i < nr_data_stripes(map); i++) {
2265			ret = init_scrub_stripe(fs_info,
2266						&sctx->raid56_data_stripes[i]);
2267			if (ret < 0)
2268				goto out;
2269			sctx->raid56_data_stripes[i].bg = bg;
2270			sctx->raid56_data_stripes[i].sctx = sctx;
2271		}
2272	}
2273	/*
2274	 * There used to be a big double loop to handle all profiles using the
2275	 * same routine, which grows larger and more gross over time.
2276	 *
2277	 * So here we handle each profile differently, so simpler profiles
2278	 * have simpler scrubbing function.
2279	 */
2280	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2281			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2282		/*
2283		 * Above check rules out all complex profile, the remaining
2284		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2285		 * mirrored duplication without stripe.
2286		 *
2287		 * Only @physical and @mirror_num needs to calculated using
2288		 * @stripe_index.
2289		 */
2290		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2291				scrub_dev, map->stripes[stripe_index].physical,
2292				stripe_index + 1);
2293		offset = 0;
2294		goto out;
2295	}
2296	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2297		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2298		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2299		goto out;
2300	}
 
 
 
2301
2302	/* Only RAID56 goes through the old code */
2303	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2304	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305
2306	/* Calculate the logical end of the stripe */
2307	get_raid56_logic_offset(physical_end, stripe_index,
2308				map, &logic_end, NULL);
2309	logic_end += chunk_logical;
2310
2311	/* Initialize @offset in case we need to go to out: label */
2312	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2313	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2314
2315	/*
2316	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2317	 * using their physical offset.
2318	 */
 
 
 
 
 
 
2319	while (physical < physical_end) {
2320		ret = get_raid56_logic_offset(physical, stripe_index, map,
2321					      &logical, &stripe_logical);
2322		logical += chunk_logical;
2323		if (ret) {
2324			/* it is parity strip */
2325			stripe_logical += chunk_logical;
2326			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2327							 map, stripe_logical);
2328			if (ret)
2329				goto out;
2330			goto next;
2331		}
2332
2333		/*
2334		 * Now we're at a data stripe, scrub each extents in the range.
2335		 *
2336		 * At this stage, if we ignore the repair part, inside each data
2337		 * stripe it is no different than SINGLE profile.
2338		 * We can reuse scrub_simple_mirror() here, as the repair part
2339		 * is still based on @mirror_num.
2340		 */
2341		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2342					  scrub_dev, physical, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343		if (ret < 0)
2344			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345next:
 
 
 
 
2346		logical += increment;
2347		physical += BTRFS_STRIPE_LEN;
2348		spin_lock(&sctx->stat_lock);
2349		if (stop_loop)
2350			sctx->stat.last_physical =
2351				map->stripes[stripe_index].physical + dev_stripe_len;
2352		else
2353			sctx->stat.last_physical = physical;
2354		spin_unlock(&sctx->stat_lock);
2355		if (stop_loop)
2356			break;
2357	}
2358out:
2359	ret2 = flush_scrub_stripes(sctx);
2360	if (!ret)
2361		ret = ret2;
2362	btrfs_release_path(&sctx->extent_path);
2363	btrfs_release_path(&sctx->csum_path);
2364
2365	if (sctx->raid56_data_stripes) {
2366		for (int i = 0; i < nr_data_stripes(map); i++)
2367			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2368		kfree(sctx->raid56_data_stripes);
2369		sctx->raid56_data_stripes = NULL;
2370	}
2371
2372	if (sctx->is_dev_replace && ret >= 0) {
2373		int ret2;
2374
2375		ret2 = sync_write_pointer_for_zoned(sctx,
2376				chunk_logical + offset,
2377				map->stripes[stripe_index].physical,
2378				physical_end);
2379		if (ret2)
2380			ret = ret2;
2381	}
2382
 
 
 
2383	return ret < 0 ? ret : 0;
2384}
2385
2386static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2387					  struct btrfs_block_group *bg,
2388					  struct btrfs_device *scrub_dev,
 
2389					  u64 dev_offset,
2390					  u64 dev_extent_len)
 
2391{
2392	struct btrfs_fs_info *fs_info = sctx->fs_info;
2393	struct btrfs_chunk_map *map;
 
 
2394	int i;
2395	int ret = 0;
2396
2397	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2398	if (!map) {
 
 
 
2399		/*
2400		 * Might have been an unused block group deleted by the cleaner
2401		 * kthread or relocation.
2402		 */
2403		spin_lock(&bg->lock);
2404		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2405			ret = -EINVAL;
2406		spin_unlock(&bg->lock);
2407
2408		return ret;
2409	}
2410	if (map->start != bg->start)
 
 
2411		goto out;
2412	if (map->chunk_len < dev_extent_len)
 
2413		goto out;
2414
2415	for (i = 0; i < map->num_stripes; ++i) {
2416		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2417		    map->stripes[i].physical == dev_offset) {
2418			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
 
 
2419			if (ret)
2420				goto out;
2421		}
2422	}
2423out:
2424	btrfs_free_chunk_map(map);
2425
2426	return ret;
2427}
2428
2429static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2430					  struct btrfs_block_group *cache)
2431{
2432	struct btrfs_fs_info *fs_info = cache->fs_info;
2433	struct btrfs_trans_handle *trans;
2434
2435	if (!btrfs_is_zoned(fs_info))
2436		return 0;
2437
2438	btrfs_wait_block_group_reservations(cache);
2439	btrfs_wait_nocow_writers(cache);
2440	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2441
2442	trans = btrfs_join_transaction(root);
2443	if (IS_ERR(trans))
2444		return PTR_ERR(trans);
2445	return btrfs_commit_transaction(trans);
2446}
2447
2448static noinline_for_stack
2449int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2450			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 
2451{
2452	struct btrfs_dev_extent *dev_extent = NULL;
2453	struct btrfs_path *path;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	struct btrfs_root *root = fs_info->dev_root;
 
2456	u64 chunk_offset;
2457	int ret = 0;
2458	int ro_set;
2459	int slot;
2460	struct extent_buffer *l;
2461	struct btrfs_key key;
2462	struct btrfs_key found_key;
2463	struct btrfs_block_group *cache;
2464	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2465
2466	path = btrfs_alloc_path();
2467	if (!path)
2468		return -ENOMEM;
2469
2470	path->reada = READA_FORWARD;
2471	path->search_commit_root = 1;
2472	path->skip_locking = 1;
2473
2474	key.objectid = scrub_dev->devid;
2475	key.offset = 0ull;
2476	key.type = BTRFS_DEV_EXTENT_KEY;
2477
2478	while (1) {
2479		u64 dev_extent_len;
2480
2481		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482		if (ret < 0)
2483			break;
2484		if (ret > 0) {
2485			if (path->slots[0] >=
2486			    btrfs_header_nritems(path->nodes[0])) {
2487				ret = btrfs_next_leaf(root, path);
2488				if (ret < 0)
2489					break;
2490				if (ret > 0) {
2491					ret = 0;
2492					break;
2493				}
2494			} else {
2495				ret = 0;
2496			}
2497		}
2498
2499		l = path->nodes[0];
2500		slot = path->slots[0];
2501
2502		btrfs_item_key_to_cpu(l, &found_key, slot);
2503
2504		if (found_key.objectid != scrub_dev->devid)
2505			break;
2506
2507		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2508			break;
2509
2510		if (found_key.offset >= end)
2511			break;
2512
2513		if (found_key.offset < key.offset)
2514			break;
2515
2516		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2517		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2518
2519		if (found_key.offset + dev_extent_len <= start)
2520			goto skip;
2521
2522		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2523
2524		/*
2525		 * get a reference on the corresponding block group to prevent
2526		 * the chunk from going away while we scrub it
2527		 */
2528		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2529
2530		/* some chunks are removed but not committed to disk yet,
2531		 * continue scrubbing */
2532		if (!cache)
2533			goto skip;
2534
2535		ASSERT(cache->start <= chunk_offset);
2536		/*
2537		 * We are using the commit root to search for device extents, so
2538		 * that means we could have found a device extent item from a
2539		 * block group that was deleted in the current transaction. The
2540		 * logical start offset of the deleted block group, stored at
2541		 * @chunk_offset, might be part of the logical address range of
2542		 * a new block group (which uses different physical extents).
2543		 * In this case btrfs_lookup_block_group() has returned the new
2544		 * block group, and its start address is less than @chunk_offset.
2545		 *
2546		 * We skip such new block groups, because it's pointless to
2547		 * process them, as we won't find their extents because we search
2548		 * for them using the commit root of the extent tree. For a device
2549		 * replace it's also fine to skip it, we won't miss copying them
2550		 * to the target device because we have the write duplication
2551		 * setup through the regular write path (by btrfs_map_block()),
2552		 * and we have committed a transaction when we started the device
2553		 * replace, right after setting up the device replace state.
2554		 */
2555		if (cache->start < chunk_offset) {
2556			btrfs_put_block_group(cache);
2557			goto skip;
2558		}
2559
2560		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2561			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2562				btrfs_put_block_group(cache);
2563				goto skip;
2564			}
2565		}
2566
2567		/*
2568		 * Make sure that while we are scrubbing the corresponding block
2569		 * group doesn't get its logical address and its device extents
2570		 * reused for another block group, which can possibly be of a
2571		 * different type and different profile. We do this to prevent
2572		 * false error detections and crashes due to bogus attempts to
2573		 * repair extents.
2574		 */
2575		spin_lock(&cache->lock);
2576		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2577			spin_unlock(&cache->lock);
2578			btrfs_put_block_group(cache);
2579			goto skip;
2580		}
2581		btrfs_freeze_block_group(cache);
2582		spin_unlock(&cache->lock);
2583
2584		/*
2585		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2586		 * to avoid deadlock caused by:
2587		 * btrfs_inc_block_group_ro()
2588		 * -> btrfs_wait_for_commit()
2589		 * -> btrfs_commit_transaction()
2590		 * -> btrfs_scrub_pause()
2591		 */
2592		scrub_pause_on(fs_info);
2593
2594		/*
2595		 * Don't do chunk preallocation for scrub.
2596		 *
2597		 * This is especially important for SYSTEM bgs, or we can hit
2598		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2599		 * 1. The only SYSTEM bg is marked RO.
2600		 *    Since SYSTEM bg is small, that's pretty common.
2601		 * 2. New SYSTEM bg will be allocated
2602		 *    Due to regular version will allocate new chunk.
2603		 * 3. New SYSTEM bg is empty and will get cleaned up
2604		 *    Before cleanup really happens, it's marked RO again.
2605		 * 4. Empty SYSTEM bg get scrubbed
2606		 *    We go back to 2.
2607		 *
2608		 * This can easily boost the amount of SYSTEM chunks if cleaner
2609		 * thread can't be triggered fast enough, and use up all space
2610		 * of btrfs_super_block::sys_chunk_array
2611		 *
2612		 * While for dev replace, we need to try our best to mark block
2613		 * group RO, to prevent race between:
2614		 * - Write duplication
2615		 *   Contains latest data
2616		 * - Scrub copy
2617		 *   Contains data from commit tree
2618		 *
2619		 * If target block group is not marked RO, nocow writes can
2620		 * be overwritten by scrub copy, causing data corruption.
2621		 * So for dev-replace, it's not allowed to continue if a block
2622		 * group is not RO.
2623		 */
2624		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2625		if (!ret && sctx->is_dev_replace) {
2626			ret = finish_extent_writes_for_zoned(root, cache);
2627			if (ret) {
2628				btrfs_dec_block_group_ro(cache);
2629				scrub_pause_off(fs_info);
2630				btrfs_put_block_group(cache);
2631				break;
2632			}
2633		}
2634
2635		if (ret == 0) {
2636			ro_set = 1;
2637		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2638			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2639			/*
2640			 * btrfs_inc_block_group_ro return -ENOSPC when it
2641			 * failed in creating new chunk for metadata.
2642			 * It is not a problem for scrub, because
2643			 * metadata are always cowed, and our scrub paused
2644			 * commit_transactions.
2645			 *
2646			 * For RAID56 chunks, we have to mark them read-only
2647			 * for scrub, as later we would use our own cache
2648			 * out of RAID56 realm.
2649			 * Thus we want the RAID56 bg to be marked RO to
2650			 * prevent RMW from screwing up out cache.
2651			 */
2652			ro_set = 0;
2653		} else if (ret == -ETXTBSY) {
2654			btrfs_warn(fs_info,
2655		   "skipping scrub of block group %llu due to active swapfile",
2656				   cache->start);
2657			scrub_pause_off(fs_info);
2658			ret = 0;
2659			goto skip_unfreeze;
2660		} else {
2661			btrfs_warn(fs_info,
2662				   "failed setting block group ro: %d", ret);
2663			btrfs_unfreeze_block_group(cache);
2664			btrfs_put_block_group(cache);
2665			scrub_pause_off(fs_info);
2666			break;
2667		}
2668
 
 
 
 
 
 
2669		/*
2670		 * Now the target block is marked RO, wait for nocow writes to
2671		 * finish before dev-replace.
2672		 * COW is fine, as COW never overwrites extents in commit tree.
 
 
 
 
 
2673		 */
2674		if (sctx->is_dev_replace) {
2675			btrfs_wait_nocow_writers(cache);
2676			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2677					cache->length);
2678		}
2679
2680		scrub_pause_off(fs_info);
2681		down_write(&dev_replace->rwsem);
2682		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2683		dev_replace->cursor_left = found_key.offset;
2684		dev_replace->item_needs_writeback = 1;
2685		up_write(&dev_replace->rwsem);
2686
2687		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2688				  dev_extent_len);
2689		if (sctx->is_dev_replace &&
2690		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2691						      cache, found_key.offset))
2692			ro_set = 0;
2693
2694		down_write(&dev_replace->rwsem);
2695		dev_replace->cursor_left = dev_replace->cursor_right;
2696		dev_replace->item_needs_writeback = 1;
2697		up_write(&dev_replace->rwsem);
 
 
 
 
 
 
2698
2699		if (ro_set)
2700			btrfs_dec_block_group_ro(cache);
2701
2702		/*
2703		 * We might have prevented the cleaner kthread from deleting
2704		 * this block group if it was already unused because we raced
2705		 * and set it to RO mode first. So add it back to the unused
2706		 * list, otherwise it might not ever be deleted unless a manual
2707		 * balance is triggered or it becomes used and unused again.
2708		 */
2709		spin_lock(&cache->lock);
2710		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2711		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2712			spin_unlock(&cache->lock);
2713			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2714				btrfs_discard_queue_work(&fs_info->discard_ctl,
2715							 cache);
2716			else
2717				btrfs_mark_bg_unused(cache);
 
 
2718		} else {
2719			spin_unlock(&cache->lock);
2720		}
2721skip_unfreeze:
2722		btrfs_unfreeze_block_group(cache);
2723		btrfs_put_block_group(cache);
2724		if (ret)
2725			break;
2726		if (sctx->is_dev_replace &&
2727		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2728			ret = -EIO;
2729			break;
2730		}
2731		if (sctx->stat.malloc_errors > 0) {
2732			ret = -ENOMEM;
2733			break;
2734		}
 
 
 
2735skip:
2736		key.offset = found_key.offset + dev_extent_len;
2737		btrfs_release_path(path);
2738	}
2739
2740	btrfs_free_path(path);
2741
2742	return ret;
2743}
2744
2745static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2746			   struct page *page, u64 physical, u64 generation)
2747{
2748	struct btrfs_fs_info *fs_info = sctx->fs_info;
2749	struct bio_vec bvec;
2750	struct bio bio;
2751	struct btrfs_super_block *sb = page_address(page);
2752	int ret;
2753
2754	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2755	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2756	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2757	ret = submit_bio_wait(&bio);
2758	bio_uninit(&bio);
2759
2760	if (ret < 0)
2761		return ret;
2762	ret = btrfs_check_super_csum(fs_info, sb);
2763	if (ret != 0) {
2764		btrfs_err_rl(fs_info,
2765			"super block at physical %llu devid %llu has bad csum",
2766			physical, dev->devid);
2767		return -EIO;
2768	}
2769	if (btrfs_super_generation(sb) != generation) {
2770		btrfs_err_rl(fs_info,
2771"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2772			     physical, dev->devid,
2773			     btrfs_super_generation(sb), generation);
2774		return -EUCLEAN;
2775	}
2776
2777	return btrfs_validate_super(fs_info, sb, -1);
2778}
2779
2780static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2781					   struct btrfs_device *scrub_dev)
2782{
2783	int	i;
2784	u64	bytenr;
2785	u64	gen;
2786	int ret = 0;
2787	struct page *page;
2788	struct btrfs_fs_info *fs_info = sctx->fs_info;
2789
2790	if (BTRFS_FS_ERROR(fs_info))
2791		return -EROFS;
2792
2793	page = alloc_page(GFP_KERNEL);
2794	if (!page) {
2795		spin_lock(&sctx->stat_lock);
2796		sctx->stat.malloc_errors++;
2797		spin_unlock(&sctx->stat_lock);
2798		return -ENOMEM;
2799	}
2800
2801	/* Seed devices of a new filesystem has their own generation. */
2802	if (scrub_dev->fs_devices != fs_info->fs_devices)
2803		gen = scrub_dev->generation;
2804	else
2805		gen = btrfs_get_last_trans_committed(fs_info);
2806
2807	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2808		bytenr = btrfs_sb_offset(i);
2809		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2810		    scrub_dev->commit_total_bytes)
2811			break;
2812		if (!btrfs_check_super_location(scrub_dev, bytenr))
2813			continue;
2814
2815		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2816		if (ret) {
2817			spin_lock(&sctx->stat_lock);
2818			sctx->stat.super_errors++;
2819			spin_unlock(&sctx->stat_lock);
2820		}
2821	}
2822	__free_page(page);
2823	return 0;
2824}
2825
2826static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2827{
2828	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2829					&fs_info->scrub_lock)) {
2830		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2831
2832		fs_info->scrub_workers = NULL;
2833		mutex_unlock(&fs_info->scrub_lock);
2834
2835		if (scrub_workers)
2836			destroy_workqueue(scrub_workers);
2837	}
2838}
2839
2840/*
2841 * get a reference count on fs_info->scrub_workers. start worker if necessary
2842 */
2843static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
 
2844{
2845	struct workqueue_struct *scrub_workers = NULL;
2846	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2847	int max_active = fs_info->thread_pool_size;
2848	int ret = -ENOMEM;
2849
2850	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2851		return 0;
2852
2853	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2854	if (!scrub_workers)
2855		return -ENOMEM;
2856
2857	mutex_lock(&fs_info->scrub_lock);
2858	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2859		ASSERT(fs_info->scrub_workers == NULL);
2860		fs_info->scrub_workers = scrub_workers;
2861		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2862		mutex_unlock(&fs_info->scrub_lock);
2863		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864	}
2865	/* Other thread raced in and created the workers for us */
2866	refcount_inc(&fs_info->scrub_workers_refcnt);
2867	mutex_unlock(&fs_info->scrub_lock);
2868
2869	ret = 0;
 
 
 
 
 
 
 
 
2870
2871	destroy_workqueue(scrub_workers);
2872	return ret;
 
 
 
 
 
 
 
2873}
2874
2875int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2876		    u64 end, struct btrfs_scrub_progress *progress,
2877		    int readonly, int is_dev_replace)
2878{
2879	struct btrfs_dev_lookup_args args = { .devid = devid };
2880	struct scrub_ctx *sctx;
2881	int ret;
2882	struct btrfs_device *dev;
2883	unsigned int nofs_flag;
2884	bool need_commit = false;
2885
2886	if (btrfs_fs_closing(fs_info))
2887		return -EAGAIN;
2888
2889	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2890	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2891
2892	/*
2893	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2894	 * value (max nodesize / min sectorsize), thus nodesize should always
2895	 * be fine.
2896	 */
2897	ASSERT(fs_info->nodesize <=
2898	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2899
2900	/* Allocate outside of device_list_mutex */
2901	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2902	if (IS_ERR(sctx))
2903		return PTR_ERR(sctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2904
2905	ret = scrub_workers_get(fs_info);
2906	if (ret)
2907		goto out_free_ctx;
2908
2909	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2910	dev = btrfs_find_device(fs_info->fs_devices, &args);
2911	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2912		     !is_dev_replace)) {
2913		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2914		ret = -ENODEV;
2915		goto out;
2916	}
2917
2918	if (!is_dev_replace && !readonly &&
2919	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2920		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2921		btrfs_err_in_rcu(fs_info,
2922			"scrub on devid %llu: filesystem on %s is not writable",
2923				 devid, btrfs_dev_name(dev));
2924		ret = -EROFS;
2925		goto out;
 
2926	}
2927
2928	mutex_lock(&fs_info->scrub_lock);
2929	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2930	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2931		mutex_unlock(&fs_info->scrub_lock);
2932		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933		ret = -EIO;
2934		goto out;
2935	}
2936
2937	down_read(&fs_info->dev_replace.rwsem);
2938	if (dev->scrub_ctx ||
2939	    (!is_dev_replace &&
2940	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2941		up_read(&fs_info->dev_replace.rwsem);
2942		mutex_unlock(&fs_info->scrub_lock);
2943		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2944		ret = -EINPROGRESS;
2945		goto out;
2946	}
2947	up_read(&fs_info->dev_replace.rwsem);
2948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2949	sctx->readonly = readonly;
2950	dev->scrub_ctx = sctx;
2951	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2952
2953	/*
2954	 * checking @scrub_pause_req here, we can avoid
2955	 * race between committing transaction and scrubbing.
2956	 */
2957	__scrub_blocked_if_needed(fs_info);
2958	atomic_inc(&fs_info->scrubs_running);
2959	mutex_unlock(&fs_info->scrub_lock);
2960
2961	/*
2962	 * In order to avoid deadlock with reclaim when there is a transaction
2963	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2964	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2965	 * invoked by our callees. The pausing request is done when the
2966	 * transaction commit starts, and it blocks the transaction until scrub
2967	 * is paused (done at specific points at scrub_stripe() or right above
2968	 * before incrementing fs_info->scrubs_running).
2969	 */
2970	nofs_flag = memalloc_nofs_save();
2971	if (!is_dev_replace) {
2972		u64 old_super_errors;
2973
2974		spin_lock(&sctx->stat_lock);
2975		old_super_errors = sctx->stat.super_errors;
2976		spin_unlock(&sctx->stat_lock);
2977
2978		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2979		/*
2980		 * by holding device list mutex, we can
2981		 * kick off writing super in log tree sync.
2982		 */
2983		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2984		ret = scrub_supers(sctx, dev);
2985		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986
2987		spin_lock(&sctx->stat_lock);
2988		/*
2989		 * Super block errors found, but we can not commit transaction
2990		 * at current context, since btrfs_commit_transaction() needs
2991		 * to pause the current running scrub (hold by ourselves).
2992		 */
2993		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2994			need_commit = true;
2995		spin_unlock(&sctx->stat_lock);
2996	}
2997
2998	if (!ret)
2999		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3000	memalloc_nofs_restore(nofs_flag);
3001
 
3002	atomic_dec(&fs_info->scrubs_running);
3003	wake_up(&fs_info->scrub_pause_wait);
3004
 
 
3005	if (progress)
3006		memcpy(progress, &sctx->stat, sizeof(*progress));
3007
3008	if (!is_dev_replace)
3009		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3010			ret ? "not finished" : "finished", devid, ret);
3011
3012	mutex_lock(&fs_info->scrub_lock);
3013	dev->scrub_ctx = NULL;
 
3014	mutex_unlock(&fs_info->scrub_lock);
3015
3016	scrub_workers_put(fs_info);
3017	scrub_put_ctx(sctx);
3018
3019	/*
3020	 * We found some super block errors before, now try to force a
3021	 * transaction commit, as scrub has finished.
3022	 */
3023	if (need_commit) {
3024		struct btrfs_trans_handle *trans;
3025
3026		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3027		if (IS_ERR(trans)) {
3028			ret = PTR_ERR(trans);
3029			btrfs_err(fs_info,
3030	"scrub: failed to start transaction to fix super block errors: %d", ret);
3031			return ret;
3032		}
3033		ret = btrfs_commit_transaction(trans);
3034		if (ret < 0)
3035			btrfs_err(fs_info,
3036	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3037	}
3038	return ret;
3039out:
3040	scrub_workers_put(fs_info);
3041out_free_ctx:
3042	scrub_free_ctx(sctx);
3043
3044	return ret;
3045}
3046
3047void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3048{
 
 
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3063{
 
 
3064	atomic_dec(&fs_info->scrub_pause_req);
3065	wake_up(&fs_info->scrub_pause_wait);
3066}
3067
3068int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3069{
3070	mutex_lock(&fs_info->scrub_lock);
3071	if (!atomic_read(&fs_info->scrubs_running)) {
3072		mutex_unlock(&fs_info->scrub_lock);
3073		return -ENOTCONN;
3074	}
3075
3076	atomic_inc(&fs_info->scrub_cancel_req);
3077	while (atomic_read(&fs_info->scrubs_running)) {
3078		mutex_unlock(&fs_info->scrub_lock);
3079		wait_event(fs_info->scrub_pause_wait,
3080			   atomic_read(&fs_info->scrubs_running) == 0);
3081		mutex_lock(&fs_info->scrub_lock);
3082	}
3083	atomic_dec(&fs_info->scrub_cancel_req);
3084	mutex_unlock(&fs_info->scrub_lock);
3085
3086	return 0;
3087}
3088
3089int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 
3090{
3091	struct btrfs_fs_info *fs_info = dev->fs_info;
3092	struct scrub_ctx *sctx;
3093
3094	mutex_lock(&fs_info->scrub_lock);
3095	sctx = dev->scrub_ctx;
3096	if (!sctx) {
3097		mutex_unlock(&fs_info->scrub_lock);
3098		return -ENOTCONN;
3099	}
3100	atomic_inc(&sctx->cancel_req);
3101	while (dev->scrub_ctx) {
3102		mutex_unlock(&fs_info->scrub_lock);
3103		wait_event(fs_info->scrub_pause_wait,
3104			   dev->scrub_ctx == NULL);
3105		mutex_lock(&fs_info->scrub_lock);
3106	}
3107	mutex_unlock(&fs_info->scrub_lock);
3108
3109	return 0;
3110}
3111
3112int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3113			 struct btrfs_scrub_progress *progress)
3114{
3115	struct btrfs_dev_lookup_args args = { .devid = devid };
3116	struct btrfs_device *dev;
3117	struct scrub_ctx *sctx = NULL;
3118
3119	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3120	dev = btrfs_find_device(fs_info->fs_devices, &args);
3121	if (dev)
3122		sctx = dev->scrub_ctx;
3123	if (sctx)
3124		memcpy(progress, &sctx->stat, sizeof(*progress));
3125	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3126
3127	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3128}
v4.6
 
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
 
 
  21#include "ctree.h"
 
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
 
 
 
 
 
 
 
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
 
 
 
 
 
 
 
 
 
 
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
 
 
 
 
 
 
 
 
 
 
 
 
 
  65
  66struct scrub_recover {
  67	atomic_t		refs;
  68	struct btrfs_bio	*bbio;
  69	u64			map_length;
 
 
  70};
  71
  72struct scrub_page {
  73	struct scrub_block	*sblock;
  74	struct page		*page;
  75	struct btrfs_device	*dev;
  76	struct list_head	list;
  77	u64			flags;  /* extent flags */
  78	u64			generation;
  79	u64			logical;
  80	u64			physical;
  81	u64			physical_for_dev_replace;
  82	atomic_t		refs;
  83	struct {
  84		unsigned int	mirror_num:8;
  85		unsigned int	have_csum:1;
  86		unsigned int	io_error:1;
  87	};
  88	u8			csum[BTRFS_CSUM_SIZE];
  89
  90	struct scrub_recover	*recover;
  91};
  92
  93struct scrub_bio {
  94	int			index;
  95	struct scrub_ctx	*sctx;
  96	struct btrfs_device	*dev;
  97	struct bio		*bio;
  98	int			err;
  99	u64			logical;
 100	u64			physical;
 101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
 102	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
 103#else
 104	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
 105#endif
 106	int			page_count;
 107	int			next_free;
 108	struct btrfs_work	work;
 109};
 110
 111struct scrub_block {
 112	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 113	int			page_count;
 114	atomic_t		outstanding_pages;
 115	atomic_t		refs; /* free mem on transition to zero */
 116	struct scrub_ctx	*sctx;
 117	struct scrub_parity	*sparity;
 118	struct {
 119		unsigned int	header_error:1;
 120		unsigned int	checksum_error:1;
 121		unsigned int	no_io_error_seen:1;
 122		unsigned int	generation_error:1; /* also sets header_error */
 123
 124		/* The following is for the data used to check parity */
 125		/* It is for the data with checksum */
 126		unsigned int	data_corrected:1;
 127	};
 128	struct btrfs_work	work;
 129};
 130
 131/* Used for the chunks with parity stripe such RAID5/6 */
 132struct scrub_parity {
 133	struct scrub_ctx	*sctx;
 
 
 
 134
 135	struct btrfs_device	*scrub_dev;
 
 136
 137	u64			logic_start;
 
 
 138
 139	u64			logic_end;
 140
 141	int			nsectors;
 
 142
 143	int			stripe_len;
 
 
 
 
 
 144
 145	atomic_t		refs;
 
 
 146
 147	struct list_head	spages;
 
 
 
 
 148
 149	/* Work of parity check and repair */
 150	struct btrfs_work	work;
 151
 152	/* Mark the parity blocks which have data */
 153	unsigned long		*dbitmap;
 
 
 
 
 
 
 
 
 
 
 154
 155	/*
 156	 * Mark the parity blocks which have data, but errors happen when
 157	 * read data or check data
 
 
 
 
 158	 */
 159	unsigned long		*ebitmap;
 
 
 
 160
 161	unsigned long		bitmap[0];
 162};
 
 
 
 
 
 
 
 
 
 163
 164struct scrub_wr_ctx {
 165	struct scrub_bio *wr_curr_bio;
 166	struct btrfs_device *tgtdev;
 167	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 168	atomic_t flush_all_writes;
 169	struct mutex wr_lock;
 170};
 171
 172struct scrub_ctx {
 173	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 174	struct btrfs_root	*dev_root;
 
 
 
 175	int			first_free;
 176	int			curr;
 177	atomic_t		bios_in_flight;
 178	atomic_t		workers_pending;
 179	spinlock_t		list_lock;
 180	wait_queue_head_t	list_wait;
 181	u16			csum_size;
 182	struct list_head	csum_list;
 183	atomic_t		cancel_req;
 184	int			readonly;
 185	int			pages_per_rd_bio;
 186	u32			sectorsize;
 187	u32			nodesize;
 
 188
 189	int			is_dev_replace;
 190	struct scrub_wr_ctx	wr_ctx;
 
 
 
 191
 192	/*
 193	 * statistics
 194	 */
 195	struct btrfs_scrub_progress stat;
 196	spinlock_t		stat_lock;
 197
 198	/*
 199	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 200	 * decrement bios_in_flight and workers_pending and then do a wakeup
 201	 * on the list_wait wait queue. We must ensure the main scrub task
 202	 * doesn't free the scrub context before or while the workers are
 203	 * doing the wakeup() call.
 204	 */
 205	atomic_t                refs;
 206};
 207
 208struct scrub_fixup_nodatasum {
 209	struct scrub_ctx	*sctx;
 210	struct btrfs_device	*dev;
 211	u64			logical;
 212	struct btrfs_root	*root;
 213	struct btrfs_work	work;
 214	int			mirror_num;
 215};
 216
 217struct scrub_nocow_inode {
 218	u64			inum;
 219	u64			offset;
 220	u64			root;
 221	struct list_head	list;
 222};
 223
 224struct scrub_copy_nocow_ctx {
 225	struct scrub_ctx	*sctx;
 226	u64			logical;
 227	u64			len;
 228	int			mirror_num;
 229	u64			physical_for_dev_replace;
 230	struct list_head	inodes;
 231	struct btrfs_work	work;
 232};
 233
 234struct scrub_warning {
 235	struct btrfs_path	*path;
 236	u64			extent_item_size;
 237	const char		*errstr;
 238	sector_t		sector;
 239	u64			logical;
 240	struct btrfs_device	*dev;
 241};
 242
 243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 249				     struct scrub_block *sblocks_for_recheck);
 250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 251				struct scrub_block *sblock,
 252				int retry_failed_mirror);
 253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 255					     struct scrub_block *sblock_good);
 256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 257					    struct scrub_block *sblock_good,
 258					    int page_num, int force_write);
 259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 261					   int page_num);
 262static int scrub_checksum_data(struct scrub_block *sblock);
 263static int scrub_checksum_tree_block(struct scrub_block *sblock);
 264static int scrub_checksum_super(struct scrub_block *sblock);
 265static void scrub_block_get(struct scrub_block *sblock);
 266static void scrub_block_put(struct scrub_block *sblock);
 267static void scrub_page_get(struct scrub_page *spage);
 268static void scrub_page_put(struct scrub_page *spage);
 269static void scrub_parity_get(struct scrub_parity *sparity);
 270static void scrub_parity_put(struct scrub_parity *sparity);
 271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 272				    struct scrub_page *spage);
 273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 274		       u64 physical, struct btrfs_device *dev, u64 flags,
 275		       u64 gen, int mirror_num, u8 *csum, int force,
 276		       u64 physical_for_dev_replace);
 277static void scrub_bio_end_io(struct bio *bio);
 278static void scrub_bio_end_io_worker(struct btrfs_work *work);
 279static void scrub_block_complete(struct scrub_block *sblock);
 280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 281			       u64 extent_logical, u64 extent_len,
 282			       u64 *extent_physical,
 283			       struct btrfs_device **extent_dev,
 284			       int *extent_mirror_num);
 285static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 286			      struct scrub_wr_ctx *wr_ctx,
 287			      struct btrfs_fs_info *fs_info,
 288			      struct btrfs_device *dev,
 289			      int is_dev_replace);
 290static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 291static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 292				    struct scrub_page *spage);
 293static void scrub_wr_submit(struct scrub_ctx *sctx);
 294static void scrub_wr_bio_end_io(struct bio *bio);
 295static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 296static int write_page_nocow(struct scrub_ctx *sctx,
 297			    u64 physical_for_dev_replace, struct page *page);
 298static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 299				      struct scrub_copy_nocow_ctx *ctx);
 300static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 301			    int mirror_num, u64 physical_for_dev_replace);
 302static void copy_nocow_pages_worker(struct btrfs_work *work);
 303static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 305static void scrub_put_ctx(struct scrub_ctx *sctx);
 306
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 
 309{
 310	atomic_inc(&sctx->refs);
 311	atomic_inc(&sctx->bios_in_flight);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312}
 313
 314static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 315{
 316	atomic_dec(&sctx->bios_in_flight);
 317	wake_up(&sctx->list_wait);
 318	scrub_put_ctx(sctx);
 319}
 320
 
 
 321static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 322{
 323	while (atomic_read(&fs_info->scrub_pause_req)) {
 324		mutex_unlock(&fs_info->scrub_lock);
 325		wait_event(fs_info->scrub_pause_wait,
 326		   atomic_read(&fs_info->scrub_pause_req) == 0);
 327		mutex_lock(&fs_info->scrub_lock);
 328	}
 329}
 330
 331static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 332{
 333	atomic_inc(&fs_info->scrubs_paused);
 334	wake_up(&fs_info->scrub_pause_wait);
 335}
 336
 337static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 338{
 339	mutex_lock(&fs_info->scrub_lock);
 340	__scrub_blocked_if_needed(fs_info);
 341	atomic_dec(&fs_info->scrubs_paused);
 342	mutex_unlock(&fs_info->scrub_lock);
 343
 344	wake_up(&fs_info->scrub_pause_wait);
 345}
 346
 347static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 348{
 349	scrub_pause_on(fs_info);
 350	scrub_pause_off(fs_info);
 351}
 352
 353/*
 354 * used for workers that require transaction commits (i.e., for the
 355 * NOCOW case)
 356 */
 357static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 358{
 359	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 360
 361	atomic_inc(&sctx->refs);
 362	/*
 363	 * increment scrubs_running to prevent cancel requests from
 364	 * completing as long as a worker is running. we must also
 365	 * increment scrubs_paused to prevent deadlocking on pause
 366	 * requests used for transactions commits (as the worker uses a
 367	 * transaction context). it is safe to regard the worker
 368	 * as paused for all matters practical. effectively, we only
 369	 * avoid cancellation requests from completing.
 370	 */
 371	mutex_lock(&fs_info->scrub_lock);
 372	atomic_inc(&fs_info->scrubs_running);
 373	atomic_inc(&fs_info->scrubs_paused);
 374	mutex_unlock(&fs_info->scrub_lock);
 375
 376	/*
 377	 * check if @scrubs_running=@scrubs_paused condition
 378	 * inside wait_event() is not an atomic operation.
 379	 * which means we may inc/dec @scrub_running/paused
 380	 * at any time. Let's wake up @scrub_pause_wait as
 381	 * much as we can to let commit transaction blocked less.
 382	 */
 383	wake_up(&fs_info->scrub_pause_wait);
 384
 385	atomic_inc(&sctx->workers_pending);
 386}
 387
 388/* used for workers that require transaction commits */
 389static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 390{
 391	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 392
 393	/*
 394	 * see scrub_pending_trans_workers_inc() why we're pretending
 395	 * to be paused in the scrub counters
 396	 */
 397	mutex_lock(&fs_info->scrub_lock);
 398	atomic_dec(&fs_info->scrubs_running);
 399	atomic_dec(&fs_info->scrubs_paused);
 400	mutex_unlock(&fs_info->scrub_lock);
 401	atomic_dec(&sctx->workers_pending);
 402	wake_up(&fs_info->scrub_pause_wait);
 403	wake_up(&sctx->list_wait);
 404	scrub_put_ctx(sctx);
 405}
 406
 407static void scrub_free_csums(struct scrub_ctx *sctx)
 408{
 409	while (!list_empty(&sctx->csum_list)) {
 410		struct btrfs_ordered_sum *sum;
 411		sum = list_first_entry(&sctx->csum_list,
 412				       struct btrfs_ordered_sum, list);
 413		list_del(&sum->list);
 414		kfree(sum);
 415	}
 416}
 417
 418static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 419{
 420	int i;
 421
 422	if (!sctx)
 423		return;
 424
 425	scrub_free_wr_ctx(&sctx->wr_ctx);
 426
 427	/* this can happen when scrub is cancelled */
 428	if (sctx->curr != -1) {
 429		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 430
 431		for (i = 0; i < sbio->page_count; i++) {
 432			WARN_ON(!sbio->pagev[i]->page);
 433			scrub_block_put(sbio->pagev[i]->sblock);
 434		}
 435		bio_put(sbio->bio);
 436	}
 437
 438	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 439		struct scrub_bio *sbio = sctx->bios[i];
 440
 441		if (!sbio)
 442			break;
 443		kfree(sbio);
 444	}
 445
 446	scrub_free_csums(sctx);
 447	kfree(sctx);
 448}
 449
 450static void scrub_put_ctx(struct scrub_ctx *sctx)
 451{
 452	if (atomic_dec_and_test(&sctx->refs))
 453		scrub_free_ctx(sctx);
 454}
 455
 456static noinline_for_stack
 457struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 458{
 459	struct scrub_ctx *sctx;
 460	int		i;
 461	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 462	int ret;
 463
 464	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 465	if (!sctx)
 466		goto nomem;
 467	atomic_set(&sctx->refs, 1);
 468	sctx->is_dev_replace = is_dev_replace;
 469	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 470	sctx->curr = -1;
 471	sctx->dev_root = dev->dev_root;
 472	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 473		struct scrub_bio *sbio;
 
 
 474
 475		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 476		if (!sbio)
 477			goto nomem;
 478		sctx->bios[i] = sbio;
 479
 480		sbio->index = i;
 481		sbio->sctx = sctx;
 482		sbio->page_count = 0;
 483		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 484				scrub_bio_end_io_worker, NULL, NULL);
 485
 486		if (i != SCRUB_BIOS_PER_SCTX - 1)
 487			sctx->bios[i]->next_free = i + 1;
 488		else
 489			sctx->bios[i]->next_free = -1;
 490	}
 491	sctx->first_free = 0;
 492	sctx->nodesize = dev->dev_root->nodesize;
 493	sctx->sectorsize = dev->dev_root->sectorsize;
 494	atomic_set(&sctx->bios_in_flight, 0);
 495	atomic_set(&sctx->workers_pending, 0);
 496	atomic_set(&sctx->cancel_req, 0);
 497	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 498	INIT_LIST_HEAD(&sctx->csum_list);
 499
 500	spin_lock_init(&sctx->list_lock);
 501	spin_lock_init(&sctx->stat_lock);
 502	init_waitqueue_head(&sctx->list_wait);
 503
 504	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 505				 fs_info->dev_replace.tgtdev, is_dev_replace);
 506	if (ret) {
 507		scrub_free_ctx(sctx);
 508		return ERR_PTR(ret);
 509	}
 
 510	return sctx;
 511
 512nomem:
 513	scrub_free_ctx(sctx);
 514	return ERR_PTR(-ENOMEM);
 515}
 516
 517static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 518				     void *warn_ctx)
 519{
 520	u64 isize;
 521	u32 nlink;
 522	int ret;
 523	int i;
 
 524	struct extent_buffer *eb;
 525	struct btrfs_inode_item *inode_item;
 526	struct scrub_warning *swarn = warn_ctx;
 527	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 528	struct inode_fs_paths *ipath = NULL;
 529	struct btrfs_root *local_root;
 530	struct btrfs_key root_key;
 531	struct btrfs_key key;
 532
 533	root_key.objectid = root;
 534	root_key.type = BTRFS_ROOT_ITEM_KEY;
 535	root_key.offset = (u64)-1;
 536	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 537	if (IS_ERR(local_root)) {
 538		ret = PTR_ERR(local_root);
 539		goto err;
 540	}
 541
 542	/*
 543	 * this makes the path point to (inum INODE_ITEM ioff)
 544	 */
 545	key.objectid = inum;
 546	key.type = BTRFS_INODE_ITEM_KEY;
 547	key.offset = 0;
 548
 549	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 550	if (ret) {
 
 551		btrfs_release_path(swarn->path);
 552		goto err;
 553	}
 554
 555	eb = swarn->path->nodes[0];
 556	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 557					struct btrfs_inode_item);
 558	isize = btrfs_inode_size(eb, inode_item);
 559	nlink = btrfs_inode_nlink(eb, inode_item);
 560	btrfs_release_path(swarn->path);
 561
 
 
 
 
 
 
 562	ipath = init_ipath(4096, local_root, swarn->path);
 
 563	if (IS_ERR(ipath)) {
 
 564		ret = PTR_ERR(ipath);
 565		ipath = NULL;
 566		goto err;
 567	}
 568	ret = paths_from_inode(inum, ipath);
 569
 570	if (ret < 0)
 571		goto err;
 572
 573	/*
 574	 * we deliberately ignore the bit ipath might have been too small to
 575	 * hold all of the paths here
 576	 */
 577	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 578		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
 579			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 580			"length %llu, links %u (path: %s)", swarn->errstr,
 581			swarn->logical, rcu_str_deref(swarn->dev->name),
 582			(unsigned long long)swarn->sector, root, inum, offset,
 583			min(isize - offset, (u64)PAGE_SIZE), nlink,
 584			(char *)(unsigned long)ipath->fspath->val[i]);
 
 585
 
 586	free_ipath(ipath);
 587	return 0;
 588
 589err:
 590	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
 591		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 592		"resolving failed with ret=%d", swarn->errstr,
 593		swarn->logical, rcu_str_deref(swarn->dev->name),
 594		(unsigned long long)swarn->sector, root, inum, offset, ret);
 
 595
 596	free_ipath(ipath);
 597	return 0;
 598}
 599
 600static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 
 601{
 602	struct btrfs_device *dev;
 603	struct btrfs_fs_info *fs_info;
 604	struct btrfs_path *path;
 605	struct btrfs_key found_key;
 606	struct extent_buffer *eb;
 607	struct btrfs_extent_item *ei;
 608	struct scrub_warning swarn;
 609	unsigned long ptr = 0;
 610	u64 extent_item_pos;
 611	u64 flags = 0;
 612	u64 ref_root;
 613	u32 item_size;
 614	u8 ref_level = 0;
 615	int ret;
 616
 617	WARN_ON(sblock->page_count < 1);
 618	dev = sblock->pagev[0]->dev;
 619	fs_info = sblock->sctx->dev_root->fs_info;
 620
 
 
 621	path = btrfs_alloc_path();
 622	if (!path)
 623		return;
 624
 625	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 626	swarn.logical = sblock->pagev[0]->logical;
 627	swarn.errstr = errstr;
 628	swarn.dev = NULL;
 629
 630	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 631				  &flags);
 632	if (ret < 0)
 633		goto out;
 634
 635	extent_item_pos = swarn.logical - found_key.objectid;
 636	swarn.extent_item_size = found_key.offset;
 637
 638	eb = path->nodes[0];
 639	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 640	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 641
 642	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 643		do {
 
 
 
 
 644			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 645						      item_size, &ref_root,
 646						      &ref_level);
 
 
 
 
 
 
 
 
 647			btrfs_warn_in_rcu(fs_info,
 648				"%s at logical %llu on dev %s, "
 649				"sector %llu: metadata %s (level %d) in tree "
 650				"%llu", errstr, swarn.logical,
 651				rcu_str_deref(dev->name),
 652				(unsigned long long)swarn.sector,
 653				ref_level ? "node" : "leaf",
 654				ret < 0 ? -1 : ref_level,
 655				ret < 0 ? -1 : ref_root);
 656		} while (ret != 1);
 657		btrfs_release_path(path);
 658	} else {
 
 
 659		btrfs_release_path(path);
 
 
 
 
 
 660		swarn.path = path;
 661		swarn.dev = dev;
 662		iterate_extent_inodes(fs_info, found_key.objectid,
 663					extent_item_pos, 1,
 664					scrub_print_warning_inode, &swarn);
 665	}
 666
 667out:
 668	btrfs_free_path(path);
 669}
 670
 671static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 672{
 673	struct page *page = NULL;
 674	unsigned long index;
 675	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 676	int ret;
 677	int corrected = 0;
 678	struct btrfs_key key;
 679	struct inode *inode = NULL;
 680	struct btrfs_fs_info *fs_info;
 681	u64 end = offset + PAGE_SIZE - 1;
 682	struct btrfs_root *local_root;
 683	int srcu_index;
 684
 685	key.objectid = root;
 686	key.type = BTRFS_ROOT_ITEM_KEY;
 687	key.offset = (u64)-1;
 688
 689	fs_info = fixup->root->fs_info;
 690	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 691
 692	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 693	if (IS_ERR(local_root)) {
 694		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 695		return PTR_ERR(local_root);
 696	}
 697
 698	key.type = BTRFS_INODE_ITEM_KEY;
 699	key.objectid = inum;
 700	key.offset = 0;
 701	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 702	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 703	if (IS_ERR(inode))
 704		return PTR_ERR(inode);
 705
 706	index = offset >> PAGE_SHIFT;
 707
 708	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 709	if (!page) {
 710		ret = -ENOMEM;
 711		goto out;
 712	}
 
 
 713
 714	if (PageUptodate(page)) {
 715		if (PageDirty(page)) {
 716			/*
 717			 * we need to write the data to the defect sector. the
 718			 * data that was in that sector is not in memory,
 719			 * because the page was modified. we must not write the
 720			 * modified page to that sector.
 721			 *
 722			 * TODO: what could be done here: wait for the delalloc
 723			 *       runner to write out that page (might involve
 724			 *       COW) and see whether the sector is still
 725			 *       referenced afterwards.
 726			 *
 727			 * For the meantime, we'll treat this error
 728			 * incorrectable, although there is a chance that a
 729			 * later scrub will find the bad sector again and that
 730			 * there's no dirty page in memory, then.
 731			 */
 732			ret = -EIO;
 733			goto out;
 734		}
 735		ret = repair_io_failure(inode, offset, PAGE_SIZE,
 736					fixup->logical, page,
 737					offset - page_offset(page),
 738					fixup->mirror_num);
 739		unlock_page(page);
 740		corrected = !ret;
 741	} else {
 742		/*
 743		 * we need to get good data first. the general readpage path
 744		 * will call repair_io_failure for us, we just have to make
 745		 * sure we read the bad mirror.
 746		 */
 747		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 748					EXTENT_DAMAGED, GFP_NOFS);
 749		if (ret) {
 750			/* set_extent_bits should give proper error */
 751			WARN_ON(ret > 0);
 752			if (ret > 0)
 753				ret = -EFAULT;
 754			goto out;
 755		}
 756
 757		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 758						btrfs_get_extent,
 759						fixup->mirror_num);
 760		wait_on_page_locked(page);
 761
 762		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 763						end, EXTENT_DAMAGED, 0, NULL);
 764		if (!corrected)
 765			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 766						EXTENT_DAMAGED, GFP_NOFS);
 767	}
 768
 769out:
 770	if (page)
 771		put_page(page);
 
 772
 773	iput(inode);
 
 774
 775	if (ret < 0)
 776		return ret;
 
 
 
 
 
 
 
 
 
 777
 778	if (ret == 0 && corrected) {
 779		/*
 780		 * we only need to call readpage for one of the inodes belonging
 781		 * to this extent. so make iterate_extent_inodes stop
 782		 */
 783		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788
 789static void scrub_fixup_nodatasum(struct btrfs_work *work)
 790{
 
 
 
 
 
 
 791	int ret;
 792	struct scrub_fixup_nodatasum *fixup;
 793	struct scrub_ctx *sctx;
 794	struct btrfs_trans_handle *trans = NULL;
 795	struct btrfs_path *path;
 796	int uncorrectable = 0;
 797
 798	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 799	sctx = fixup->sctx;
 
 
 
 800
 801	path = btrfs_alloc_path();
 802	if (!path) {
 803		spin_lock(&sctx->stat_lock);
 804		++sctx->stat.malloc_errors;
 805		spin_unlock(&sctx->stat_lock);
 806		uncorrectable = 1;
 807		goto out;
 808	}
 809
 810	trans = btrfs_join_transaction(fixup->root);
 811	if (IS_ERR(trans)) {
 812		uncorrectable = 1;
 813		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814	}
 815
 816	/*
 817	 * the idea is to trigger a regular read through the standard path. we
 818	 * read a page from the (failed) logical address by specifying the
 819	 * corresponding copynum of the failed sector. thus, that readpage is
 820	 * expected to fail.
 821	 * that is the point where on-the-fly error correction will kick in
 822	 * (once it's finished) and rewrite the failed sector if a good copy
 823	 * can be found.
 824	 */
 825	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 826						path, scrub_fixup_readpage,
 827						fixup);
 
 
 
 828	if (ret < 0) {
 829		uncorrectable = 1;
 830		goto out;
 
 
 
 831	}
 832	WARN_ON(ret != 1);
 833
 834	spin_lock(&sctx->stat_lock);
 835	++sctx->stat.corrected_errors;
 836	spin_unlock(&sctx->stat_lock);
 
 
 
 837
 838out:
 839	if (trans && !IS_ERR(trans))
 840		btrfs_end_transaction(trans, fixup->root);
 841	if (uncorrectable) {
 842		spin_lock(&sctx->stat_lock);
 843		++sctx->stat.uncorrectable_errors;
 844		spin_unlock(&sctx->stat_lock);
 845		btrfs_dev_replace_stats_inc(
 846			&sctx->dev_root->fs_info->dev_replace.
 847			num_uncorrectable_read_errors);
 848		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
 849		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
 850			fixup->logical, rcu_str_deref(fixup->dev->name));
 851	}
 852
 853	btrfs_free_path(path);
 854	kfree(fixup);
 855
 856	scrub_pending_trans_workers_dec(sctx);
 857}
 858
 859static inline void scrub_get_recover(struct scrub_recover *recover)
 860{
 861	atomic_inc(&recover->refs);
 862}
 863
 864static inline void scrub_put_recover(struct scrub_recover *recover)
 865{
 866	if (atomic_dec_and_test(&recover->refs)) {
 867		btrfs_put_bbio(recover->bbio);
 868		kfree(recover);
 869	}
 
 
 870}
 871
 872/*
 873 * scrub_handle_errored_block gets called when either verification of the
 874 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 875 * case, this function handles all pages in the bio, even though only one
 876 * may be bad.
 877 * The goal of this function is to repair the errored block by using the
 878 * contents of one of the mirrors.
 879 */
 880static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 881{
 882	struct scrub_ctx *sctx = sblock_to_check->sctx;
 883	struct btrfs_device *dev;
 884	struct btrfs_fs_info *fs_info;
 885	u64 length;
 886	u64 logical;
 887	unsigned int failed_mirror_index;
 888	unsigned int is_metadata;
 889	unsigned int have_csum;
 890	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 891	struct scrub_block *sblock_bad;
 892	int ret;
 893	int mirror_index;
 894	int page_num;
 895	int success;
 896	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 897				      DEFAULT_RATELIMIT_BURST);
 898
 899	BUG_ON(sblock_to_check->page_count < 1);
 900	fs_info = sctx->dev_root->fs_info;
 901	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 902		/*
 903		 * if we find an error in a super block, we just report it.
 904		 * They will get written with the next transaction commit
 905		 * anyway
 906		 */
 907		spin_lock(&sctx->stat_lock);
 908		++sctx->stat.super_errors;
 909		spin_unlock(&sctx->stat_lock);
 910		return 0;
 911	}
 912	length = sblock_to_check->page_count * PAGE_SIZE;
 913	logical = sblock_to_check->pagev[0]->logical;
 914	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 915	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 916	is_metadata = !(sblock_to_check->pagev[0]->flags &
 917			BTRFS_EXTENT_FLAG_DATA);
 918	have_csum = sblock_to_check->pagev[0]->have_csum;
 919	dev = sblock_to_check->pagev[0]->dev;
 920
 921	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 922		sblocks_for_recheck = NULL;
 923		goto nodatasum_case;
 924	}
 
 
 
 
 
 
 
 
 
 
 925
 926	/*
 927	 * read all mirrors one after the other. This includes to
 928	 * re-read the extent or metadata block that failed (that was
 929	 * the cause that this fixup code is called) another time,
 930	 * page by page this time in order to know which pages
 931	 * caused I/O errors and which ones are good (for all mirrors).
 932	 * It is the goal to handle the situation when more than one
 933	 * mirror contains I/O errors, but the errors do not
 934	 * overlap, i.e. the data can be repaired by selecting the
 935	 * pages from those mirrors without I/O error on the
 936	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 937	 * would be that mirror #1 has an I/O error on the first page,
 938	 * the second page is good, and mirror #2 has an I/O error on
 939	 * the second page, but the first page is good.
 940	 * Then the first page of the first mirror can be repaired by
 941	 * taking the first page of the second mirror, and the
 942	 * second page of the second mirror can be repaired by
 943	 * copying the contents of the 2nd page of the 1st mirror.
 944	 * One more note: if the pages of one mirror contain I/O
 945	 * errors, the checksum cannot be verified. In order to get
 946	 * the best data for repairing, the first attempt is to find
 947	 * a mirror without I/O errors and with a validated checksum.
 948	 * Only if this is not possible, the pages are picked from
 949	 * mirrors with I/O errors without considering the checksum.
 950	 * If the latter is the case, at the end, the checksum of the
 951	 * repaired area is verified in order to correctly maintain
 952	 * the statistics.
 953	 */
 954
 955	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 956				      sizeof(*sblocks_for_recheck), GFP_NOFS);
 957	if (!sblocks_for_recheck) {
 958		spin_lock(&sctx->stat_lock);
 959		sctx->stat.malloc_errors++;
 960		sctx->stat.read_errors++;
 961		sctx->stat.uncorrectable_errors++;
 962		spin_unlock(&sctx->stat_lock);
 963		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 964		goto out;
 965	}
 966
 967	/* setup the context, map the logical blocks and alloc the pages */
 968	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 969	if (ret) {
 970		spin_lock(&sctx->stat_lock);
 971		sctx->stat.read_errors++;
 972		sctx->stat.uncorrectable_errors++;
 973		spin_unlock(&sctx->stat_lock);
 974		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 975		goto out;
 976	}
 977	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 978	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 979
 980	/* build and submit the bios for the failed mirror, check checksums */
 981	scrub_recheck_block(fs_info, sblock_bad, 1);
 982
 983	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 984	    sblock_bad->no_io_error_seen) {
 985		/*
 986		 * the error disappeared after reading page by page, or
 987		 * the area was part of a huge bio and other parts of the
 988		 * bio caused I/O errors, or the block layer merged several
 989		 * read requests into one and the error is caused by a
 990		 * different bio (usually one of the two latter cases is
 991		 * the cause)
 992		 */
 993		spin_lock(&sctx->stat_lock);
 994		sctx->stat.unverified_errors++;
 995		sblock_to_check->data_corrected = 1;
 996		spin_unlock(&sctx->stat_lock);
 997
 998		if (sctx->is_dev_replace)
 999			scrub_write_block_to_dev_replace(sblock_bad);
1000		goto out;
1001	}
 
 
1002
1003	if (!sblock_bad->no_io_error_seen) {
1004		spin_lock(&sctx->stat_lock);
1005		sctx->stat.read_errors++;
1006		spin_unlock(&sctx->stat_lock);
1007		if (__ratelimit(&_rs))
1008			scrub_print_warning("i/o error", sblock_to_check);
1009		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1010	} else if (sblock_bad->checksum_error) {
1011		spin_lock(&sctx->stat_lock);
1012		sctx->stat.csum_errors++;
1013		spin_unlock(&sctx->stat_lock);
1014		if (__ratelimit(&_rs))
1015			scrub_print_warning("checksum error", sblock_to_check);
1016		btrfs_dev_stat_inc_and_print(dev,
1017					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1018	} else if (sblock_bad->header_error) {
1019		spin_lock(&sctx->stat_lock);
1020		sctx->stat.verify_errors++;
1021		spin_unlock(&sctx->stat_lock);
1022		if (__ratelimit(&_rs))
1023			scrub_print_warning("checksum/header error",
1024					    sblock_to_check);
1025		if (sblock_bad->generation_error)
1026			btrfs_dev_stat_inc_and_print(dev,
1027				BTRFS_DEV_STAT_GENERATION_ERRS);
1028		else
1029			btrfs_dev_stat_inc_and_print(dev,
1030				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031	}
1032
1033	if (sctx->readonly) {
1034		ASSERT(!sctx->is_dev_replace);
1035		goto out;
 
 
1036	}
 
1037
1038	if (!is_metadata && !have_csum) {
1039		struct scrub_fixup_nodatasum *fixup_nodatasum;
 
 
 
 
 
 
 
 
 
 
 
1040
1041		WARN_ON(sctx->is_dev_replace);
 
1042
1043nodatasum_case:
 
 
 
 
 
 
 
 
 
 
1044
 
 
 
 
 
1045		/*
1046		 * !is_metadata and !have_csum, this means that the data
1047		 * might not be COW'ed, that it might be modified
1048		 * concurrently. The general strategy to work on the
1049		 * commit root does not help in the case when COW is not
1050		 * used.
1051		 */
1052		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1053		if (!fixup_nodatasum)
1054			goto did_not_correct_error;
1055		fixup_nodatasum->sctx = sctx;
1056		fixup_nodatasum->dev = dev;
1057		fixup_nodatasum->logical = logical;
1058		fixup_nodatasum->root = fs_info->extent_root;
1059		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1060		scrub_pending_trans_workers_inc(sctx);
1061		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1062				scrub_fixup_nodatasum, NULL, NULL);
1063		btrfs_queue_work(fs_info->scrub_workers,
1064				 &fixup_nodatasum->work);
1065		goto out;
1066	}
1067
1068	/*
1069	 * now build and submit the bios for the other mirrors, check
1070	 * checksums.
1071	 * First try to pick the mirror which is completely without I/O
1072	 * errors and also does not have a checksum error.
1073	 * If one is found, and if a checksum is present, the full block
1074	 * that is known to contain an error is rewritten. Afterwards
1075	 * the block is known to be corrected.
1076	 * If a mirror is found which is completely correct, and no
1077	 * checksum is present, only those pages are rewritten that had
1078	 * an I/O error in the block to be repaired, since it cannot be
1079	 * determined, which copy of the other pages is better (and it
1080	 * could happen otherwise that a correct page would be
1081	 * overwritten by a bad one).
1082	 */
1083	for (mirror_index = 0;
1084	     mirror_index < BTRFS_MAX_MIRRORS &&
1085	     sblocks_for_recheck[mirror_index].page_count > 0;
1086	     mirror_index++) {
1087		struct scrub_block *sblock_other;
1088
1089		if (mirror_index == failed_mirror_index)
1090			continue;
1091		sblock_other = sblocks_for_recheck + mirror_index;
1092
1093		/* build and submit the bios, check checksums */
1094		scrub_recheck_block(fs_info, sblock_other, 0);
 
1095
1096		if (!sblock_other->header_error &&
1097		    !sblock_other->checksum_error &&
1098		    sblock_other->no_io_error_seen) {
1099			if (sctx->is_dev_replace) {
1100				scrub_write_block_to_dev_replace(sblock_other);
1101				goto corrected_error;
1102			} else {
1103				ret = scrub_repair_block_from_good_copy(
1104						sblock_bad, sblock_other);
1105				if (!ret)
1106					goto corrected_error;
1107			}
1108		}
1109	}
1110
1111	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1112		goto did_not_correct_error;
1113
1114	/*
1115	 * In case of I/O errors in the area that is supposed to be
1116	 * repaired, continue by picking good copies of those pages.
1117	 * Select the good pages from mirrors to rewrite bad pages from
1118	 * the area to fix. Afterwards verify the checksum of the block
1119	 * that is supposed to be repaired. This verification step is
1120	 * only done for the purpose of statistic counting and for the
1121	 * final scrub report, whether errors remain.
1122	 * A perfect algorithm could make use of the checksum and try
1123	 * all possible combinations of pages from the different mirrors
1124	 * until the checksum verification succeeds. For example, when
1125	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1126	 * of mirror #2 is readable but the final checksum test fails,
1127	 * then the 2nd page of mirror #3 could be tried, whether now
1128	 * the final checksum succeedes. But this would be a rare
1129	 * exception and is therefore not implemented. At least it is
1130	 * avoided that the good copy is overwritten.
1131	 * A more useful improvement would be to pick the sectors
1132	 * without I/O error based on sector sizes (512 bytes on legacy
1133	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1134	 * mirror could be repaired by taking 512 byte of a different
1135	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1136	 * area are unreadable.
1137	 */
1138	success = 1;
1139	for (page_num = 0; page_num < sblock_bad->page_count;
1140	     page_num++) {
1141		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1142		struct scrub_block *sblock_other = NULL;
1143
1144		/* skip no-io-error page in scrub */
1145		if (!page_bad->io_error && !sctx->is_dev_replace)
1146			continue;
1147
1148		/* try to find no-io-error page in mirrors */
1149		if (page_bad->io_error) {
1150			for (mirror_index = 0;
1151			     mirror_index < BTRFS_MAX_MIRRORS &&
1152			     sblocks_for_recheck[mirror_index].page_count > 0;
1153			     mirror_index++) {
1154				if (!sblocks_for_recheck[mirror_index].
1155				    pagev[page_num]->io_error) {
1156					sblock_other = sblocks_for_recheck +
1157						       mirror_index;
1158					break;
1159				}
 
 
1160			}
1161			if (!sblock_other)
1162				success = 0;
1163		}
1164
1165		if (sctx->is_dev_replace) {
1166			/*
1167			 * did not find a mirror to fetch the page
1168			 * from. scrub_write_page_to_dev_replace()
1169			 * handles this case (page->io_error), by
1170			 * filling the block with zeros before
1171			 * submitting the write request
1172			 */
1173			if (!sblock_other)
1174				sblock_other = sblock_bad;
1175
1176			if (scrub_write_page_to_dev_replace(sblock_other,
1177							    page_num) != 0) {
1178				btrfs_dev_replace_stats_inc(
1179					&sctx->dev_root->
1180					fs_info->dev_replace.
1181					num_write_errors);
1182				success = 0;
1183			}
1184		} else if (sblock_other) {
1185			ret = scrub_repair_page_from_good_copy(sblock_bad,
1186							       sblock_other,
1187							       page_num, 0);
1188			if (0 == ret)
1189				page_bad->io_error = 0;
1190			else
1191				success = 0;
1192		}
1193	}
1194
1195	if (success && !sctx->is_dev_replace) {
1196		if (is_metadata || have_csum) {
1197			/*
1198			 * need to verify the checksum now that all
1199			 * sectors on disk are repaired (the write
1200			 * request for data to be repaired is on its way).
1201			 * Just be lazy and use scrub_recheck_block()
1202			 * which re-reads the data before the checksum
1203			 * is verified, but most likely the data comes out
1204			 * of the page cache.
1205			 */
1206			scrub_recheck_block(fs_info, sblock_bad, 1);
1207			if (!sblock_bad->header_error &&
1208			    !sblock_bad->checksum_error &&
1209			    sblock_bad->no_io_error_seen)
1210				goto corrected_error;
1211			else
1212				goto did_not_correct_error;
1213		} else {
1214corrected_error:
1215			spin_lock(&sctx->stat_lock);
1216			sctx->stat.corrected_errors++;
1217			sblock_to_check->data_corrected = 1;
1218			spin_unlock(&sctx->stat_lock);
1219			btrfs_err_rl_in_rcu(fs_info,
1220				"fixed up error at logical %llu on dev %s",
1221				logical, rcu_str_deref(dev->name));
1222		}
1223	} else {
1224did_not_correct_error:
1225		spin_lock(&sctx->stat_lock);
1226		sctx->stat.uncorrectable_errors++;
1227		spin_unlock(&sctx->stat_lock);
1228		btrfs_err_rl_in_rcu(fs_info,
1229			"unable to fixup (regular) error at logical %llu on dev %s",
1230			logical, rcu_str_deref(dev->name));
1231	}
1232
1233out:
1234	if (sblocks_for_recheck) {
1235		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1236		     mirror_index++) {
1237			struct scrub_block *sblock = sblocks_for_recheck +
1238						     mirror_index;
1239			struct scrub_recover *recover;
1240			int page_index;
1241
1242			for (page_index = 0; page_index < sblock->page_count;
1243			     page_index++) {
1244				sblock->pagev[page_index]->sblock = NULL;
1245				recover = sblock->pagev[page_index]->recover;
1246				if (recover) {
1247					scrub_put_recover(recover);
1248					sblock->pagev[page_index]->recover =
1249									NULL;
1250				}
1251				scrub_page_put(sblock->pagev[page_index]);
1252			}
1253		}
1254		kfree(sblocks_for_recheck);
1255	}
1256
1257	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1258}
1259
1260static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1261{
1262	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1263		return 2;
1264	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1265		return 3;
1266	else
1267		return (int)bbio->num_stripes;
1268}
1269
1270static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1271						 u64 *raid_map,
1272						 u64 mapped_length,
1273						 int nstripes, int mirror,
1274						 int *stripe_index,
1275						 u64 *stripe_offset)
 
 
 
 
 
 
 
 
1276{
 
 
 
 
 
 
1277	int i;
1278
1279	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1280		/* RAID5/6 */
1281		for (i = 0; i < nstripes; i++) {
1282			if (raid_map[i] == RAID6_Q_STRIPE ||
1283			    raid_map[i] == RAID5_P_STRIPE)
1284				continue;
 
 
 
 
 
 
1285
1286			if (logical >= raid_map[i] &&
1287			    logical < raid_map[i] + mapped_length)
1288				break;
1289		}
1290
1291		*stripe_index = i;
1292		*stripe_offset = logical - raid_map[i];
1293	} else {
1294		/* The other RAID type */
1295		*stripe_index = mirror;
1296		*stripe_offset = 0;
 
 
 
 
 
 
 
 
 
 
 
1297	}
1298}
1299
1300static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1301				     struct scrub_block *sblocks_for_recheck)
1302{
1303	struct scrub_ctx *sctx = original_sblock->sctx;
1304	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1305	u64 length = original_sblock->page_count * PAGE_SIZE;
1306	u64 logical = original_sblock->pagev[0]->logical;
1307	u64 generation = original_sblock->pagev[0]->generation;
1308	u64 flags = original_sblock->pagev[0]->flags;
1309	u64 have_csum = original_sblock->pagev[0]->have_csum;
1310	struct scrub_recover *recover;
1311	struct btrfs_bio *bbio;
1312	u64 sublen;
1313	u64 mapped_length;
1314	u64 stripe_offset;
1315	int stripe_index;
1316	int page_index = 0;
1317	int mirror_index;
1318	int nmirrors;
1319	int ret;
1320
 
 
 
 
 
 
 
 
 
 
 
 
 
1321	/*
1322	 * note: the two members refs and outstanding_pages
1323	 * are not used (and not set) in the blocks that are used for
1324	 * the recheck procedure
1325	 */
 
 
 
 
 
1326
1327	while (length > 0) {
1328		sublen = min_t(u64, length, PAGE_SIZE);
1329		mapped_length = sublen;
1330		bbio = NULL;
1331
1332		/*
1333		 * with a length of PAGE_SIZE, each returned stripe
1334		 * represents one mirror
1335		 */
1336		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1337				       &mapped_length, &bbio, 0, 1);
1338		if (ret || !bbio || mapped_length < sublen) {
1339			btrfs_put_bbio(bbio);
1340			return -EIO;
1341		}
1342
1343		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1344		if (!recover) {
1345			btrfs_put_bbio(bbio);
1346			return -ENOMEM;
1347		}
1348
1349		atomic_set(&recover->refs, 1);
1350		recover->bbio = bbio;
1351		recover->map_length = mapped_length;
1352
1353		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1354
1355		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1356
1357		for (mirror_index = 0; mirror_index < nmirrors;
1358		     mirror_index++) {
1359			struct scrub_block *sblock;
1360			struct scrub_page *page;
1361
1362			sblock = sblocks_for_recheck + mirror_index;
1363			sblock->sctx = sctx;
1364
1365			page = kzalloc(sizeof(*page), GFP_NOFS);
1366			if (!page) {
1367leave_nomem:
1368				spin_lock(&sctx->stat_lock);
1369				sctx->stat.malloc_errors++;
1370				spin_unlock(&sctx->stat_lock);
1371				scrub_put_recover(recover);
1372				return -ENOMEM;
1373			}
1374			scrub_page_get(page);
1375			sblock->pagev[page_index] = page;
1376			page->sblock = sblock;
1377			page->flags = flags;
1378			page->generation = generation;
1379			page->logical = logical;
1380			page->have_csum = have_csum;
1381			if (have_csum)
1382				memcpy(page->csum,
1383				       original_sblock->pagev[0]->csum,
1384				       sctx->csum_size);
1385
1386			scrub_stripe_index_and_offset(logical,
1387						      bbio->map_type,
1388						      bbio->raid_map,
1389						      mapped_length,
1390						      bbio->num_stripes -
1391						      bbio->num_tgtdevs,
1392						      mirror_index,
1393						      &stripe_index,
1394						      &stripe_offset);
1395			page->physical = bbio->stripes[stripe_index].physical +
1396					 stripe_offset;
1397			page->dev = bbio->stripes[stripe_index].dev;
1398
1399			BUG_ON(page_index >= original_sblock->page_count);
1400			page->physical_for_dev_replace =
1401				original_sblock->pagev[page_index]->
1402				physical_for_dev_replace;
1403			/* for missing devices, dev->bdev is NULL */
1404			page->mirror_num = mirror_index + 1;
1405			sblock->page_count++;
1406			page->page = alloc_page(GFP_NOFS);
1407			if (!page->page)
1408				goto leave_nomem;
1409
1410			scrub_get_recover(recover);
1411			page->recover = recover;
1412		}
1413		scrub_put_recover(recover);
1414		length -= sublen;
1415		logical += sublen;
1416		page_index++;
1417	}
1418
1419	return 0;
 
 
1420}
1421
1422struct scrub_bio_ret {
1423	struct completion event;
1424	int error;
1425};
1426
1427static void scrub_bio_wait_endio(struct bio *bio)
1428{
1429	struct scrub_bio_ret *ret = bio->bi_private;
 
 
 
 
 
1430
1431	ret->error = bio->bi_error;
1432	complete(&ret->event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433}
1434
1435static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1436{
1437	return page->recover &&
1438	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439}
1440
1441static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1442					struct bio *bio,
1443					struct scrub_page *page)
1444{
1445	struct scrub_bio_ret done;
1446	int ret;
 
 
1447
1448	init_completion(&done.event);
1449	done.error = 0;
1450	bio->bi_iter.bi_sector = page->logical >> 9;
1451	bio->bi_private = &done;
1452	bio->bi_end_io = scrub_bio_wait_endio;
1453
1454	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1455				    page->recover->map_length,
1456				    page->mirror_num, 0);
1457	if (ret)
1458		return ret;
1459
1460	wait_for_completion(&done.event);
1461	if (done.error)
1462		return -EIO;
1463
1464	return 0;
 
 
1465}
1466
1467/*
1468 * this function will check the on disk data for checksum errors, header
1469 * errors and read I/O errors. If any I/O errors happen, the exact pages
1470 * which are errored are marked as being bad. The goal is to enable scrub
1471 * to take those pages that are not errored from all the mirrors so that
1472 * the pages that are errored in the just handled mirror can be repaired.
 
 
 
 
 
 
1473 */
1474static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1475				struct scrub_block *sblock,
1476				int retry_failed_mirror)
1477{
1478	int page_num;
 
 
1479
1480	sblock->no_io_error_seen = 1;
 
 
 
1481
1482	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1483		struct bio *bio;
1484		struct scrub_page *page = sblock->pagev[page_num];
1485
1486		if (page->dev->bdev == NULL) {
1487			page->io_error = 1;
1488			sblock->no_io_error_seen = 0;
1489			continue;
 
 
 
 
 
 
 
1490		}
1491
1492		WARN_ON(!page->page);
1493		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1494		if (!bio) {
1495			page->io_error = 1;
1496			sblock->no_io_error_seen = 0;
1497			continue;
1498		}
1499		bio->bi_bdev = page->dev->bdev;
1500
1501		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1502		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1503			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1504				sblock->no_io_error_seen = 0;
1505		} else {
1506			bio->bi_iter.bi_sector = page->physical >> 9;
1507
1508			if (btrfsic_submit_bio_wait(READ, bio))
1509				sblock->no_io_error_seen = 0;
1510		}
1511
1512		bio_put(bio);
1513	}
1514
1515	if (sblock->no_io_error_seen)
1516		scrub_recheck_block_checksum(sblock);
1517}
1518
1519static inline int scrub_check_fsid(u8 fsid[],
1520				   struct scrub_page *spage)
 
 
 
 
1521{
1522	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523	int ret;
 
 
 
1524
1525	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526	return !ret;
1527}
1528
1529static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530{
1531	sblock->header_error = 0;
1532	sblock->checksum_error = 0;
1533	sblock->generation_error = 0;
 
1534
1535	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536		scrub_checksum_data(sblock);
1537	else
1538		scrub_checksum_tree_block(sblock);
1539}
 
 
 
 
 
 
 
 
1540
1541static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542					     struct scrub_block *sblock_good)
1543{
1544	int page_num;
1545	int ret = 0;
 
1546
1547	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548		int ret_sub;
1549
1550		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551							   sblock_good,
1552							   page_num, 1);
1553		if (ret_sub)
1554			ret = ret_sub;
1555	}
1556
1557	return ret;
 
1558}
1559
1560static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561					    struct scrub_block *sblock_good,
1562					    int page_num, int force_write)
1563{
1564	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566
1567	BUG_ON(page_bad->page == NULL);
1568	BUG_ON(page_good->page == NULL);
1569	if (force_write || sblock_bad->header_error ||
1570	    sblock_bad->checksum_error || page_bad->io_error) {
1571		struct bio *bio;
1572		int ret;
 
 
1573
1574		if (!page_bad->dev->bdev) {
1575			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1576				"scrub_repair_page_from_good_copy(bdev == NULL) "
1577				"is unexpected");
1578			return -EIO;
1579		}
1580
1581		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582		if (!bio)
1583			return -EIO;
1584		bio->bi_bdev = page_bad->dev->bdev;
1585		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586
1587		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1588		if (PAGE_SIZE != ret) {
1589			bio_put(bio);
1590			return -EIO;
1591		}
1592
1593		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1594			btrfs_dev_stat_inc_and_print(page_bad->dev,
1595				BTRFS_DEV_STAT_WRITE_ERRS);
1596			btrfs_dev_replace_stats_inc(
1597				&sblock_bad->sctx->dev_root->fs_info->
1598				dev_replace.num_write_errors);
1599			bio_put(bio);
1600			return -EIO;
1601		}
1602		bio_put(bio);
1603	}
1604
1605	return 0;
1606}
 
 
 
1607
1608static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1609{
1610	int page_num;
1611
1612	/*
1613	 * This block is used for the check of the parity on the source device,
1614	 * so the data needn't be written into the destination device.
1615	 */
1616	if (sblock->sparity)
1617		return;
1618
1619	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1620		int ret;
1621
1622		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1623		if (ret)
1624			btrfs_dev_replace_stats_inc(
1625				&sblock->sctx->dev_root->fs_info->dev_replace.
1626				num_write_errors);
 
1627	}
 
 
1628}
1629
1630static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631					   int page_num)
 
 
 
 
 
1632{
1633	struct scrub_page *spage = sblock->pagev[page_num];
 
 
1634
1635	BUG_ON(spage->page == NULL);
1636	if (spage->io_error) {
1637		void *mapped_buffer = kmap_atomic(spage->page);
 
 
 
 
1638
1639		memset(mapped_buffer, 0, PAGE_SIZE);
1640		flush_dcache_page(spage->page);
1641		kunmap_atomic(mapped_buffer);
1642	}
1643	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1644}
1645
1646static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647				    struct scrub_page *spage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1648{
1649	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650	struct scrub_bio *sbio;
1651	int ret;
1652
1653	mutex_lock(&wr_ctx->wr_lock);
1654again:
1655	if (!wr_ctx->wr_curr_bio) {
1656		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657					      GFP_KERNEL);
1658		if (!wr_ctx->wr_curr_bio) {
1659			mutex_unlock(&wr_ctx->wr_lock);
1660			return -ENOMEM;
1661		}
1662		wr_ctx->wr_curr_bio->sctx = sctx;
1663		wr_ctx->wr_curr_bio->page_count = 0;
1664	}
1665	sbio = wr_ctx->wr_curr_bio;
1666	if (sbio->page_count == 0) {
1667		struct bio *bio;
1668
1669		sbio->physical = spage->physical_for_dev_replace;
1670		sbio->logical = spage->logical;
1671		sbio->dev = wr_ctx->tgtdev;
1672		bio = sbio->bio;
1673		if (!bio) {
1674			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675					wr_ctx->pages_per_wr_bio);
1676			if (!bio) {
1677				mutex_unlock(&wr_ctx->wr_lock);
1678				return -ENOMEM;
1679			}
1680			sbio->bio = bio;
1681		}
1682
1683		bio->bi_private = sbio;
1684		bio->bi_end_io = scrub_wr_bio_end_io;
1685		bio->bi_bdev = sbio->dev->bdev;
1686		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687		sbio->err = 0;
1688	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1689		   spage->physical_for_dev_replace ||
1690		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1691		   spage->logical) {
1692		scrub_wr_submit(sctx);
1693		goto again;
1694	}
1695
1696	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1697	if (ret != PAGE_SIZE) {
1698		if (sbio->page_count < 1) {
1699			bio_put(sbio->bio);
1700			sbio->bio = NULL;
1701			mutex_unlock(&wr_ctx->wr_lock);
1702			return -EIO;
1703		}
1704		scrub_wr_submit(sctx);
1705		goto again;
1706	}
1707
1708	sbio->pagev[sbio->page_count] = spage;
1709	scrub_page_get(spage);
1710	sbio->page_count++;
1711	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1712		scrub_wr_submit(sctx);
1713	mutex_unlock(&wr_ctx->wr_lock);
1714
1715	return 0;
1716}
 
1717
1718static void scrub_wr_submit(struct scrub_ctx *sctx)
1719{
1720	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1721	struct scrub_bio *sbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722
1723	if (!wr_ctx->wr_curr_bio)
1724		return;
1725
1726	sbio = wr_ctx->wr_curr_bio;
1727	wr_ctx->wr_curr_bio = NULL;
1728	WARN_ON(!sbio->bio->bi_bdev);
1729	scrub_pending_bio_inc(sctx);
1730	/* process all writes in a single worker thread. Then the block layer
1731	 * orders the requests before sending them to the driver which
1732	 * doubled the write performance on spinning disks when measured
1733	 * with Linux 3.5 */
1734	btrfsic_submit_bio(WRITE, sbio->bio);
 
 
 
1735}
1736
1737static void scrub_wr_bio_end_io(struct bio *bio)
 
1738{
1739	struct scrub_bio *sbio = bio->bi_private;
1740	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1741
1742	sbio->err = bio->bi_error;
1743	sbio->bio = bio;
1744
1745	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1746			 scrub_wr_bio_end_io_worker, NULL, NULL);
1747	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
 
 
 
 
 
1748}
1749
1750static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
 
1751{
1752	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1753	struct scrub_ctx *sctx = sbio->sctx;
1754	int i;
1755
1756	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1757	if (sbio->err) {
1758		struct btrfs_dev_replace *dev_replace =
1759			&sbio->sctx->dev_root->fs_info->dev_replace;
1760
1761		for (i = 0; i < sbio->page_count; i++) {
1762			struct scrub_page *spage = sbio->pagev[i];
 
 
 
 
 
 
 
 
 
1763
1764			spage->io_error = 1;
1765			btrfs_dev_replace_stats_inc(&dev_replace->
1766						    num_write_errors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767		}
1768	}
 
1769
1770	for (i = 0; i < sbio->page_count; i++)
1771		scrub_page_put(sbio->pagev[i]);
1772
1773	bio_put(sbio->bio);
1774	kfree(sbio);
1775	scrub_pending_bio_dec(sctx);
 
 
 
 
 
1776}
1777
1778static int scrub_checksum(struct scrub_block *sblock)
1779{
1780	u64 flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	int ret;
1782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783	/*
1784	 * No need to initialize these stats currently,
1785	 * because this function only use return value
1786	 * instead of these stats value.
1787	 *
1788	 * Todo:
1789	 * always use stats
1790	 */
1791	sblock->header_error = 0;
1792	sblock->generation_error = 0;
1793	sblock->checksum_error = 0;
1794
1795	WARN_ON(sblock->page_count < 1);
1796	flags = sblock->pagev[0]->flags;
1797	ret = 0;
1798	if (flags & BTRFS_EXTENT_FLAG_DATA)
1799		ret = scrub_checksum_data(sblock);
1800	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1801		ret = scrub_checksum_tree_block(sblock);
1802	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1803		(void)scrub_checksum_super(sblock);
1804	else
1805		WARN_ON(1);
1806	if (ret)
1807		scrub_handle_errored_block(sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
 
 
 
 
 
 
 
1809	return ret;
1810}
1811
1812static int scrub_checksum_data(struct scrub_block *sblock)
1813{
1814	struct scrub_ctx *sctx = sblock->sctx;
1815	u8 csum[BTRFS_CSUM_SIZE];
1816	u8 *on_disk_csum;
1817	struct page *page;
1818	void *buffer;
1819	u32 crc = ~(u32)0;
1820	u64 len;
1821	int index;
1822
1823	BUG_ON(sblock->page_count < 1);
1824	if (!sblock->pagev[0]->have_csum)
1825		return 0;
1826
1827	on_disk_csum = sblock->pagev[0]->csum;
1828	page = sblock->pagev[0]->page;
1829	buffer = kmap_atomic(page);
1830
1831	len = sctx->sectorsize;
1832	index = 0;
1833	for (;;) {
1834		u64 l = min_t(u64, len, PAGE_SIZE);
1835
1836		crc = btrfs_csum_data(buffer, crc, l);
1837		kunmap_atomic(buffer);
1838		len -= l;
1839		if (len == 0)
1840			break;
1841		index++;
1842		BUG_ON(index >= sblock->page_count);
1843		BUG_ON(!sblock->pagev[index]->page);
1844		page = sblock->pagev[index]->page;
1845		buffer = kmap_atomic(page);
1846	}
1847
1848	btrfs_csum_final(crc, csum);
1849	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1850		sblock->checksum_error = 1;
1851
1852	return sblock->checksum_error;
1853}
1854
1855static int scrub_checksum_tree_block(struct scrub_block *sblock)
 
1856{
1857	struct scrub_ctx *sctx = sblock->sctx;
1858	struct btrfs_header *h;
1859	struct btrfs_root *root = sctx->dev_root;
1860	struct btrfs_fs_info *fs_info = root->fs_info;
1861	u8 calculated_csum[BTRFS_CSUM_SIZE];
1862	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863	struct page *page;
1864	void *mapped_buffer;
1865	u64 mapped_size;
1866	void *p;
1867	u32 crc = ~(u32)0;
1868	u64 len;
1869	int index;
1870
1871	BUG_ON(sblock->page_count < 1);
1872	page = sblock->pagev[0]->page;
1873	mapped_buffer = kmap_atomic(page);
1874	h = (struct btrfs_header *)mapped_buffer;
1875	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876
1877	/*
1878	 * we don't use the getter functions here, as we
1879	 * a) don't have an extent buffer and
1880	 * b) the page is already kmapped
1881	 */
1882	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883		sblock->header_error = 1;
1884
1885	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886		sblock->header_error = 1;
1887		sblock->generation_error = 1;
1888	}
1889
1890	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891		sblock->header_error = 1;
1892
1893	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894		   BTRFS_UUID_SIZE))
1895		sblock->header_error = 1;
1896
1897	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900	index = 0;
1901	for (;;) {
1902		u64 l = min_t(u64, len, mapped_size);
1903
1904		crc = btrfs_csum_data(p, crc, l);
1905		kunmap_atomic(mapped_buffer);
1906		len -= l;
1907		if (len == 0)
1908			break;
1909		index++;
1910		BUG_ON(index >= sblock->page_count);
1911		BUG_ON(!sblock->pagev[index]->page);
1912		page = sblock->pagev[index]->page;
1913		mapped_buffer = kmap_atomic(page);
1914		mapped_size = PAGE_SIZE;
1915		p = mapped_buffer;
1916	}
1917
1918	btrfs_csum_final(crc, calculated_csum);
1919	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920		sblock->checksum_error = 1;
1921
1922	return sblock->header_error || sblock->checksum_error;
1923}
1924
1925static int scrub_checksum_super(struct scrub_block *sblock)
1926{
1927	struct btrfs_super_block *s;
1928	struct scrub_ctx *sctx = sblock->sctx;
1929	u8 calculated_csum[BTRFS_CSUM_SIZE];
1930	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931	struct page *page;
1932	void *mapped_buffer;
1933	u64 mapped_size;
1934	void *p;
1935	u32 crc = ~(u32)0;
1936	int fail_gen = 0;
1937	int fail_cor = 0;
1938	u64 len;
1939	int index;
 
 
 
 
 
 
 
 
 
 
 
1940
1941	BUG_ON(sblock->page_count < 1);
1942	page = sblock->pagev[0]->page;
1943	mapped_buffer = kmap_atomic(page);
1944	s = (struct btrfs_super_block *)mapped_buffer;
1945	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946
1947	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948		++fail_cor;
1949
1950	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951		++fail_gen;
1952
1953	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954		++fail_cor;
1955
1956	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959	index = 0;
1960	for (;;) {
1961		u64 l = min_t(u64, len, mapped_size);
1962
1963		crc = btrfs_csum_data(p, crc, l);
1964		kunmap_atomic(mapped_buffer);
1965		len -= l;
1966		if (len == 0)
1967			break;
1968		index++;
1969		BUG_ON(index >= sblock->page_count);
1970		BUG_ON(!sblock->pagev[index]->page);
1971		page = sblock->pagev[index]->page;
1972		mapped_buffer = kmap_atomic(page);
1973		mapped_size = PAGE_SIZE;
1974		p = mapped_buffer;
1975	}
1976
1977	btrfs_csum_final(crc, calculated_csum);
1978	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979		++fail_cor;
1980
1981	if (fail_cor + fail_gen) {
1982		/*
1983		 * if we find an error in a super block, we just report it.
1984		 * They will get written with the next transaction commit
1985		 * anyway
1986		 */
1987		spin_lock(&sctx->stat_lock);
1988		++sctx->stat.super_errors;
1989		spin_unlock(&sctx->stat_lock);
1990		if (fail_cor)
1991			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993		else
1994			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995				BTRFS_DEV_STAT_GENERATION_ERRS);
1996	}
1997
1998	return fail_cor + fail_gen;
1999}
2000
2001static void scrub_block_get(struct scrub_block *sblock)
2002{
2003	atomic_inc(&sblock->refs);
2004}
2005
2006static void scrub_block_put(struct scrub_block *sblock)
2007{
2008	if (atomic_dec_and_test(&sblock->refs)) {
2009		int i;
2010
2011		if (sblock->sparity)
2012			scrub_parity_put(sblock->sparity);
2013
2014		for (i = 0; i < sblock->page_count; i++)
2015			scrub_page_put(sblock->pagev[i]);
2016		kfree(sblock);
2017	}
2018}
2019
2020static void scrub_page_get(struct scrub_page *spage)
 
2021{
2022	atomic_inc(&spage->refs);
2023}
 
 
 
 
 
 
 
 
2024
2025static void scrub_page_put(struct scrub_page *spage)
2026{
2027	if (atomic_dec_and_test(&spage->refs)) {
2028		if (spage->page)
2029			__free_page(spage->page);
2030		kfree(spage);
2031	}
2032}
2033
2034static void scrub_submit(struct scrub_ctx *sctx)
2035{
2036	struct scrub_bio *sbio;
2037
2038	if (sctx->curr == -1)
2039		return;
 
 
 
 
2040
2041	sbio = sctx->bios[sctx->curr];
2042	sctx->curr = -1;
2043	scrub_pending_bio_inc(sctx);
2044	btrfsic_submit_bio(READ, sbio->bio);
2045}
2046
2047static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048				    struct scrub_page *spage)
2049{
2050	struct scrub_block *sblock = spage->sblock;
2051	struct scrub_bio *sbio;
2052	int ret;
2053
2054again:
2055	/*
2056	 * grab a fresh bio or wait for one to become available
 
2057	 */
2058	while (sctx->curr == -1) {
2059		spin_lock(&sctx->list_lock);
2060		sctx->curr = sctx->first_free;
2061		if (sctx->curr != -1) {
2062			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063			sctx->bios[sctx->curr]->next_free = -1;
2064			sctx->bios[sctx->curr]->page_count = 0;
2065			spin_unlock(&sctx->list_lock);
2066		} else {
2067			spin_unlock(&sctx->list_lock);
2068			wait_event(sctx->list_wait, sctx->first_free != -1);
2069		}
2070	}
2071	sbio = sctx->bios[sctx->curr];
2072	if (sbio->page_count == 0) {
2073		struct bio *bio;
2074
2075		sbio->physical = spage->physical;
2076		sbio->logical = spage->logical;
2077		sbio->dev = spage->dev;
2078		bio = sbio->bio;
2079		if (!bio) {
2080			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081					sctx->pages_per_rd_bio);
2082			if (!bio)
2083				return -ENOMEM;
2084			sbio->bio = bio;
2085		}
2086
2087		bio->bi_private = sbio;
2088		bio->bi_end_io = scrub_bio_end_io;
2089		bio->bi_bdev = sbio->dev->bdev;
2090		bio->bi_iter.bi_sector = sbio->physical >> 9;
2091		sbio->err = 0;
2092	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2093		   spage->physical ||
2094		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2095		   spage->logical ||
2096		   sbio->dev != spage->dev) {
2097		scrub_submit(sctx);
2098		goto again;
2099	}
2100
2101	sbio->pagev[sbio->page_count] = spage;
2102	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2103	if (ret != PAGE_SIZE) {
2104		if (sbio->page_count < 1) {
2105			bio_put(sbio->bio);
2106			sbio->bio = NULL;
2107			return -EIO;
2108		}
2109		scrub_submit(sctx);
2110		goto again;
2111	}
2112
2113	scrub_block_get(sblock); /* one for the page added to the bio */
2114	atomic_inc(&sblock->outstanding_pages);
2115	sbio->page_count++;
2116	if (sbio->page_count == sctx->pages_per_rd_bio)
2117		scrub_submit(sctx);
2118
2119	return 0;
2120}
2121
2122static void scrub_missing_raid56_end_io(struct bio *bio)
2123{
2124	struct scrub_block *sblock = bio->bi_private;
2125	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;
2126
2127	if (bio->bi_error)
2128		sblock->no_io_error_seen = 0;
 
2129
2130	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
 
 
 
 
 
 
 
2131}
2132
2133static void scrub_missing_raid56_worker(struct btrfs_work *work)
 
 
2134{
2135	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2136	struct scrub_ctx *sctx = sblock->sctx;
2137	u64 logical;
2138	struct btrfs_device *dev;
2139
2140	logical = sblock->pagev[0]->logical;
2141	dev = sblock->pagev[0]->dev;
2142
2143	if (sblock->no_io_error_seen)
2144		scrub_recheck_block_checksum(sblock);
 
 
 
2145
2146	if (!sblock->no_io_error_seen) {
2147		spin_lock(&sctx->stat_lock);
2148		sctx->stat.read_errors++;
2149		spin_unlock(&sctx->stat_lock);
2150		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2151			"IO error rebuilding logical %llu for dev %s",
2152			logical, rcu_str_deref(dev->name));
2153	} else if (sblock->header_error || sblock->checksum_error) {
2154		spin_lock(&sctx->stat_lock);
2155		sctx->stat.uncorrectable_errors++;
2156		spin_unlock(&sctx->stat_lock);
2157		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2158			"failed to rebuild valid logical %llu for dev %s",
2159			logical, rcu_str_deref(dev->name));
2160	} else {
2161		scrub_write_block_to_dev_replace(sblock);
2162	}
2163
2164	scrub_block_put(sblock);
2165
2166	if (sctx->is_dev_replace &&
2167	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2168		mutex_lock(&sctx->wr_ctx.wr_lock);
2169		scrub_wr_submit(sctx);
2170		mutex_unlock(&sctx->wr_ctx.wr_lock);
2171	}
2172
2173	scrub_pending_bio_dec(sctx);
2174}
2175
2176static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2177{
2178	struct scrub_ctx *sctx = sblock->sctx;
2179	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2180	u64 length = sblock->page_count * PAGE_SIZE;
2181	u64 logical = sblock->pagev[0]->logical;
2182	struct btrfs_bio *bbio;
2183	struct bio *bio;
2184	struct btrfs_raid_bio *rbio;
2185	int ret;
2186	int i;
2187
2188	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
2189			       &bbio, 0, 1);
2190	if (ret || !bbio || !bbio->raid_map)
2191		goto bbio_out;
2192
2193	if (WARN_ON(!sctx->is_dev_replace ||
2194		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2195		/*
2196		 * We shouldn't be scrubbing a missing device. Even for dev
2197		 * replace, we should only get here for RAID 5/6. We either
2198		 * managed to mount something with no mirrors remaining or
2199		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2200		 */
2201		goto bbio_out;
2202	}
2203
2204	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2205	if (!bio)
2206		goto bbio_out;
2207
2208	bio->bi_iter.bi_sector = logical >> 9;
2209	bio->bi_private = sblock;
2210	bio->bi_end_io = scrub_missing_raid56_end_io;
2211
2212	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
2213	if (!rbio)
2214		goto rbio_out;
2215
2216	for (i = 0; i < sblock->page_count; i++) {
2217		struct scrub_page *spage = sblock->pagev[i];
2218
2219		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2220	}
2221
2222	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2223			scrub_missing_raid56_worker, NULL, NULL);
2224	scrub_block_get(sblock);
2225	scrub_pending_bio_inc(sctx);
2226	raid56_submit_missing_rbio(rbio);
2227	return;
2228
2229rbio_out:
2230	bio_put(bio);
2231bbio_out:
2232	btrfs_put_bbio(bbio);
2233	spin_lock(&sctx->stat_lock);
2234	sctx->stat.malloc_errors++;
2235	spin_unlock(&sctx->stat_lock);
2236}
2237
2238static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2239		       u64 physical, struct btrfs_device *dev, u64 flags,
2240		       u64 gen, int mirror_num, u8 *csum, int force,
2241		       u64 physical_for_dev_replace)
2242{
2243	struct scrub_block *sblock;
2244	int index;
2245
2246	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2247	if (!sblock) {
2248		spin_lock(&sctx->stat_lock);
2249		sctx->stat.malloc_errors++;
2250		spin_unlock(&sctx->stat_lock);
2251		return -ENOMEM;
2252	}
2253
2254	/* one ref inside this function, plus one for each page added to
2255	 * a bio later on */
2256	atomic_set(&sblock->refs, 1);
2257	sblock->sctx = sctx;
2258	sblock->no_io_error_seen = 1;
2259
2260	for (index = 0; len > 0; index++) {
2261		struct scrub_page *spage;
2262		u64 l = min_t(u64, len, PAGE_SIZE);
2263
2264		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2265		if (!spage) {
2266leave_nomem:
2267			spin_lock(&sctx->stat_lock);
2268			sctx->stat.malloc_errors++;
2269			spin_unlock(&sctx->stat_lock);
2270			scrub_block_put(sblock);
2271			return -ENOMEM;
2272		}
2273		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2274		scrub_page_get(spage);
2275		sblock->pagev[index] = spage;
2276		spage->sblock = sblock;
2277		spage->dev = dev;
2278		spage->flags = flags;
2279		spage->generation = gen;
2280		spage->logical = logical;
2281		spage->physical = physical;
2282		spage->physical_for_dev_replace = physical_for_dev_replace;
2283		spage->mirror_num = mirror_num;
2284		if (csum) {
2285			spage->have_csum = 1;
2286			memcpy(spage->csum, csum, sctx->csum_size);
2287		} else {
2288			spage->have_csum = 0;
2289		}
2290		sblock->page_count++;
2291		spage->page = alloc_page(GFP_KERNEL);
2292		if (!spage->page)
2293			goto leave_nomem;
2294		len -= l;
2295		logical += l;
2296		physical += l;
2297		physical_for_dev_replace += l;
2298	}
2299
2300	WARN_ON(sblock->page_count == 0);
2301	if (dev->missing) {
2302		/*
2303		 * This case should only be hit for RAID 5/6 device replace. See
2304		 * the comment in scrub_missing_raid56_pages() for details.
2305		 */
2306		scrub_missing_raid56_pages(sblock);
2307	} else {
2308		for (index = 0; index < sblock->page_count; index++) {
2309			struct scrub_page *spage = sblock->pagev[index];
2310			int ret;
2311
2312			ret = scrub_add_page_to_rd_bio(sctx, spage);
2313			if (ret) {
2314				scrub_block_put(sblock);
2315				return ret;
2316			}
2317		}
 
 
2318
2319		if (force)
2320			scrub_submit(sctx);
2321	}
2322
2323	/* last one frees, either here or in bio completion for last page */
2324	scrub_block_put(sblock);
2325	return 0;
2326}
2327
2328static void scrub_bio_end_io(struct bio *bio)
2329{
2330	struct scrub_bio *sbio = bio->bi_private;
2331	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2332
2333	sbio->err = bio->bi_error;
2334	sbio->bio = bio;
2335
2336	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2337}
2338
2339static void scrub_bio_end_io_worker(struct btrfs_work *work)
2340{
2341	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2342	struct scrub_ctx *sctx = sbio->sctx;
2343	int i;
2344
2345	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2346	if (sbio->err) {
2347		for (i = 0; i < sbio->page_count; i++) {
2348			struct scrub_page *spage = sbio->pagev[i];
2349
2350			spage->io_error = 1;
2351			spage->sblock->no_io_error_seen = 0;
2352		}
2353	}
2354
2355	/* now complete the scrub_block items that have all pages completed */
2356	for (i = 0; i < sbio->page_count; i++) {
2357		struct scrub_page *spage = sbio->pagev[i];
2358		struct scrub_block *sblock = spage->sblock;
2359
2360		if (atomic_dec_and_test(&sblock->outstanding_pages))
2361			scrub_block_complete(sblock);
2362		scrub_block_put(sblock);
2363	}
 
 
 
 
2364
2365	bio_put(sbio->bio);
2366	sbio->bio = NULL;
2367	spin_lock(&sctx->list_lock);
2368	sbio->next_free = sctx->first_free;
2369	sctx->first_free = sbio->index;
2370	spin_unlock(&sctx->list_lock);
2371
2372	if (sctx->is_dev_replace &&
2373	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2374		mutex_lock(&sctx->wr_ctx.wr_lock);
2375		scrub_wr_submit(sctx);
2376		mutex_unlock(&sctx->wr_ctx.wr_lock);
2377	}
2378
2379	scrub_pending_bio_dec(sctx);
2380}
2381
2382static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2383				       unsigned long *bitmap,
2384				       u64 start, u64 len)
 
2385{
2386	u32 offset;
2387	int nsectors;
2388	int sectorsize = sparity->sctx->dev_root->sectorsize;
2389
2390	if (len >= sparity->stripe_len) {
2391		bitmap_set(bitmap, 0, sparity->nsectors);
2392		return;
2393	}
 
2394
2395	start -= sparity->logic_start;
2396	start = div_u64_rem(start, sparity->stripe_len, &offset);
2397	offset /= sectorsize;
2398	nsectors = (int)len / sectorsize;
2399
2400	if (offset + nsectors <= sparity->nsectors) {
2401		bitmap_set(bitmap, offset, nsectors);
2402		return;
2403	}
 
 
 
 
 
 
2404
2405	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2406	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2407}
2408
2409static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2410						   u64 start, u64 len)
2411{
2412	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2413}
2414
2415static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2416						  u64 start, u64 len)
2417{
2418	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2419}
2420
2421static void scrub_block_complete(struct scrub_block *sblock)
 
 
 
 
2422{
2423	int corrupted = 0;
2424
2425	if (!sblock->no_io_error_seen) {
2426		corrupted = 1;
2427		scrub_handle_errored_block(sblock);
2428	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429		/*
2430		 * if has checksum error, write via repair mechanism in
2431		 * dev replace case, otherwise write here in dev replace
2432		 * case.
2433		 */
2434		corrupted = scrub_checksum(sblock);
2435		if (!corrupted && sblock->sctx->is_dev_replace)
2436			scrub_write_block_to_dev_replace(sblock);
 
 
 
 
2437	}
2438
2439	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2440		u64 start = sblock->pagev[0]->logical;
2441		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2442			  PAGE_SIZE;
2443
2444		scrub_parity_mark_sectors_error(sblock->sparity,
2445						start, end - start);
2446	}
2447}
2448
2449static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2450{
2451	struct btrfs_ordered_sum *sum = NULL;
2452	unsigned long index;
2453	unsigned long num_sectors;
2454
2455	while (!list_empty(&sctx->csum_list)) {
2456		sum = list_first_entry(&sctx->csum_list,
2457				       struct btrfs_ordered_sum, list);
2458		if (sum->bytenr > logical)
2459			return 0;
2460		if (sum->bytenr + sum->len > logical)
2461			break;
2462
2463		++sctx->stat.csum_discards;
2464		list_del(&sum->list);
2465		kfree(sum);
2466		sum = NULL;
2467	}
2468	if (!sum)
2469		return 0;
2470
2471	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2472	num_sectors = sum->len / sctx->sectorsize;
2473	memcpy(csum, sum->sums + index, sctx->csum_size);
2474	if (index == num_sectors - 1) {
2475		list_del(&sum->list);
2476		kfree(sum);
2477	}
2478	return 1;
2479}
2480
2481/* scrub extent tries to collect up to 64 kB for each bio */
2482static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2483			u64 physical, struct btrfs_device *dev, u64 flags,
2484			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2485{
2486	int ret;
2487	u8 csum[BTRFS_CSUM_SIZE];
2488	u32 blocksize;
2489
2490	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2491		blocksize = sctx->sectorsize;
2492		spin_lock(&sctx->stat_lock);
2493		sctx->stat.data_extents_scrubbed++;
2494		sctx->stat.data_bytes_scrubbed += len;
2495		spin_unlock(&sctx->stat_lock);
2496	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2497		blocksize = sctx->nodesize;
2498		spin_lock(&sctx->stat_lock);
2499		sctx->stat.tree_extents_scrubbed++;
2500		sctx->stat.tree_bytes_scrubbed += len;
2501		spin_unlock(&sctx->stat_lock);
2502	} else {
2503		blocksize = sctx->sectorsize;
2504		WARN_ON(1);
2505	}
 
 
2506
2507	while (len) {
2508		u64 l = min_t(u64, len, blocksize);
2509		int have_csum = 0;
2510
2511		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2512			/* push csums to sbio */
2513			have_csum = scrub_find_csum(sctx, logical, csum);
2514			if (have_csum == 0)
2515				++sctx->stat.no_csum;
2516			if (sctx->is_dev_replace && !have_csum) {
2517				ret = copy_nocow_pages(sctx, logical, l,
2518						       mirror_num,
2519						      physical_for_dev_replace);
2520				goto behind_scrub_pages;
2521			}
2522		}
2523		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2524				  mirror_num, have_csum ? csum : NULL, 0,
2525				  physical_for_dev_replace);
2526behind_scrub_pages:
2527		if (ret)
2528			return ret;
2529		len -= l;
2530		logical += l;
2531		physical += l;
2532		physical_for_dev_replace += l;
2533	}
2534	return 0;
2535}
2536
2537static int scrub_pages_for_parity(struct scrub_parity *sparity,
2538				  u64 logical, u64 len,
2539				  u64 physical, struct btrfs_device *dev,
2540				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2541{
2542	struct scrub_ctx *sctx = sparity->sctx;
2543	struct scrub_block *sblock;
2544	int index;
 
2545
2546	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2547	if (!sblock) {
2548		spin_lock(&sctx->stat_lock);
2549		sctx->stat.malloc_errors++;
2550		spin_unlock(&sctx->stat_lock);
2551		return -ENOMEM;
2552	}
2553
2554	/* one ref inside this function, plus one for each page added to
2555	 * a bio later on */
2556	atomic_set(&sblock->refs, 1);
2557	sblock->sctx = sctx;
2558	sblock->no_io_error_seen = 1;
2559	sblock->sparity = sparity;
2560	scrub_parity_get(sparity);
2561
2562	for (index = 0; len > 0; index++) {
2563		struct scrub_page *spage;
2564		u64 l = min_t(u64, len, PAGE_SIZE);
2565
2566		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2567		if (!spage) {
2568leave_nomem:
2569			spin_lock(&sctx->stat_lock);
2570			sctx->stat.malloc_errors++;
2571			spin_unlock(&sctx->stat_lock);
2572			scrub_block_put(sblock);
2573			return -ENOMEM;
2574		}
2575		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2576		/* For scrub block */
2577		scrub_page_get(spage);
2578		sblock->pagev[index] = spage;
2579		/* For scrub parity */
2580		scrub_page_get(spage);
2581		list_add_tail(&spage->list, &sparity->spages);
2582		spage->sblock = sblock;
2583		spage->dev = dev;
2584		spage->flags = flags;
2585		spage->generation = gen;
2586		spage->logical = logical;
2587		spage->physical = physical;
2588		spage->mirror_num = mirror_num;
2589		if (csum) {
2590			spage->have_csum = 1;
2591			memcpy(spage->csum, csum, sctx->csum_size);
2592		} else {
2593			spage->have_csum = 0;
2594		}
2595		sblock->page_count++;
2596		spage->page = alloc_page(GFP_KERNEL);
2597		if (!spage->page)
2598			goto leave_nomem;
2599		len -= l;
2600		logical += l;
2601		physical += l;
2602	}
2603
2604	WARN_ON(sblock->page_count == 0);
2605	for (index = 0; index < sblock->page_count; index++) {
2606		struct scrub_page *spage = sblock->pagev[index];
2607		int ret;
2608
2609		ret = scrub_add_page_to_rd_bio(sctx, spage);
2610		if (ret) {
2611			scrub_block_put(sblock);
2612			return ret;
2613		}
 
 
 
2614	}
2615
2616	/* last one frees, either here or in bio completion for last page */
2617	scrub_block_put(sblock);
2618	return 0;
2619}
2620
2621static int scrub_extent_for_parity(struct scrub_parity *sparity,
2622				   u64 logical, u64 len,
2623				   u64 physical, struct btrfs_device *dev,
2624				   u64 flags, u64 gen, int mirror_num)
2625{
2626	struct scrub_ctx *sctx = sparity->sctx;
2627	int ret;
2628	u8 csum[BTRFS_CSUM_SIZE];
2629	u32 blocksize;
2630
2631	if (dev->missing) {
2632		scrub_parity_mark_sectors_error(sparity, logical, len);
2633		return 0;
2634	}
 
 
 
2635
2636	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2637		blocksize = sctx->sectorsize;
2638	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2639		blocksize = sctx->nodesize;
2640	} else {
2641		blocksize = sctx->sectorsize;
2642		WARN_ON(1);
2643	}
 
 
 
 
 
2644
2645	while (len) {
2646		u64 l = min_t(u64, len, blocksize);
2647		int have_csum = 0;
2648
2649		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2650			/* push csums to sbio */
2651			have_csum = scrub_find_csum(sctx, logical, csum);
2652			if (have_csum == 0)
2653				goto skip;
2654		}
2655		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2656					     flags, gen, mirror_num,
2657					     have_csum ? csum : NULL);
2658		if (ret)
2659			return ret;
2660skip:
2661		len -= l;
2662		logical += l;
2663		physical += l;
2664	}
2665	return 0;
2666}
2667
2668/*
2669 * Given a physical address, this will calculate it's
2670 * logical offset. if this is a parity stripe, it will return
2671 * the most left data stripe's logical offset.
2672 *
2673 * return 0 if it is a data stripe, 1 means parity stripe.
 
2674 */
2675static int get_raid56_logic_offset(u64 physical, int num,
2676				   struct map_lookup *map, u64 *offset,
2677				   u64 *stripe_start)
2678{
2679	int i;
2680	int j = 0;
2681	u64 stripe_nr;
2682	u64 last_offset;
2683	u32 stripe_index;
2684	u32 rot;
 
 
 
 
 
 
 
 
 
2685
2686	last_offset = (physical - map->stripes[num].physical) *
2687		      nr_data_stripes(map);
2688	if (stripe_start)
2689		*stripe_start = last_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690
2691	*offset = last_offset;
2692	for (i = 0; i < nr_data_stripes(map); i++) {
2693		*offset = last_offset + i * map->stripe_len;
 
 
 
 
 
 
 
 
2694
2695		stripe_nr = div_u64(*offset, map->stripe_len);
2696		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
 
2697
2698		/* Work out the disk rotation on this stripe-set */
2699		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2700		/* calculate which stripe this data locates */
2701		rot += i;
2702		stripe_index = rot % map->num_stripes;
2703		if (stripe_index == num)
2704			return 0;
2705		if (stripe_index < num)
2706			j++;
2707	}
2708	*offset = last_offset + j * map->stripe_len;
2709	return 1;
2710}
2711
2712static void scrub_free_parity(struct scrub_parity *sparity)
 
2713{
2714	struct scrub_ctx *sctx = sparity->sctx;
2715	struct scrub_page *curr, *next;
2716	int nbits;
2717
2718	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2719	if (nbits) {
2720		spin_lock(&sctx->stat_lock);
2721		sctx->stat.read_errors += nbits;
2722		sctx->stat.uncorrectable_errors += nbits;
2723		spin_unlock(&sctx->stat_lock);
2724	}
2725
2726	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2727		list_del_init(&curr->list);
2728		scrub_page_put(curr);
2729	}
2730
2731	kfree(sparity);
2732}
2733
2734static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
 
 
 
2735{
2736	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2737						    work);
2738	struct scrub_ctx *sctx = sparity->sctx;
2739
2740	scrub_free_parity(sparity);
2741	scrub_pending_bio_dec(sctx);
 
 
 
 
2742}
2743
2744static void scrub_parity_bio_endio(struct bio *bio)
 
2745{
2746	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2747
2748	if (bio->bi_error)
2749		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2750			  sparity->nsectors);
2751
2752	bio_put(bio);
2753
2754	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2755			scrub_parity_bio_endio_worker, NULL, NULL);
2756	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
2757			 &sparity->work);
2758}
2759
2760static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
 
 
 
 
2761{
2762	struct scrub_ctx *sctx = sparity->sctx;
2763	struct bio *bio;
2764	struct btrfs_raid_bio *rbio;
2765	struct scrub_page *spage;
2766	struct btrfs_bio *bbio = NULL;
2767	u64 length;
2768	int ret;
2769
2770	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2771			   sparity->nsectors))
2772		goto out;
2773
2774	length = sparity->logic_end - sparity->logic_start;
2775	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2776			       sparity->logic_start,
2777			       &length, &bbio, 0, 1);
2778	if (ret || !bbio || !bbio->raid_map)
2779		goto bbio_out;
2780
2781	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2782	if (!bio)
2783		goto bbio_out;
2784
2785	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2786	bio->bi_private = sparity;
2787	bio->bi_end_io = scrub_parity_bio_endio;
2788
2789	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2790					      length, sparity->scrub_dev,
2791					      sparity->dbitmap,
2792					      sparity->nsectors);
2793	if (!rbio)
2794		goto rbio_out;
2795
2796	list_for_each_entry(spage, &sparity->spages, list)
2797		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2798
2799	scrub_pending_bio_inc(sctx);
2800	raid56_parity_submit_scrub_rbio(rbio);
2801	return;
2802
2803rbio_out:
2804	bio_put(bio);
2805bbio_out:
2806	btrfs_put_bbio(bbio);
2807	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2808		  sparity->nsectors);
2809	spin_lock(&sctx->stat_lock);
2810	sctx->stat.malloc_errors++;
2811	spin_unlock(&sctx->stat_lock);
2812out:
2813	scrub_free_parity(sparity);
2814}
2815
2816static inline int scrub_calc_parity_bitmap_len(int nsectors)
2817{
2818	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2819}
2820
2821static void scrub_parity_get(struct scrub_parity *sparity)
2822{
2823	atomic_inc(&sparity->refs);
2824}
2825
2826static void scrub_parity_put(struct scrub_parity *sparity)
2827{
2828	if (!atomic_dec_and_test(&sparity->refs))
2829		return;
2830
2831	scrub_parity_check_and_repair(sparity);
2832}
2833
2834static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2835						  struct map_lookup *map,
2836						  struct btrfs_device *sdev,
2837						  struct btrfs_path *path,
2838						  u64 logic_start,
2839						  u64 logic_end)
2840{
2841	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2842	struct btrfs_root *root = fs_info->extent_root;
2843	struct btrfs_root *csum_root = fs_info->csum_root;
2844	struct btrfs_extent_item *extent;
2845	struct btrfs_bio *bbio = NULL;
2846	u64 flags;
2847	int ret;
2848	int slot;
2849	struct extent_buffer *l;
2850	struct btrfs_key key;
2851	u64 generation;
2852	u64 extent_logical;
2853	u64 extent_physical;
2854	u64 extent_len;
2855	u64 mapped_length;
2856	struct btrfs_device *extent_dev;
2857	struct scrub_parity *sparity;
2858	int nsectors;
2859	int bitmap_len;
2860	int extent_mirror_num;
2861	int stop_loop = 0;
2862
2863	nsectors = map->stripe_len / root->sectorsize;
2864	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2865	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2866			  GFP_NOFS);
2867	if (!sparity) {
2868		spin_lock(&sctx->stat_lock);
2869		sctx->stat.malloc_errors++;
2870		spin_unlock(&sctx->stat_lock);
2871		return -ENOMEM;
2872	}
2873
2874	sparity->stripe_len = map->stripe_len;
2875	sparity->nsectors = nsectors;
2876	sparity->sctx = sctx;
2877	sparity->scrub_dev = sdev;
2878	sparity->logic_start = logic_start;
2879	sparity->logic_end = logic_end;
2880	atomic_set(&sparity->refs, 1);
2881	INIT_LIST_HEAD(&sparity->spages);
2882	sparity->dbitmap = sparity->bitmap;
2883	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2884
2885	ret = 0;
2886	while (logic_start < logic_end) {
2887		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2888			key.type = BTRFS_METADATA_ITEM_KEY;
2889		else
2890			key.type = BTRFS_EXTENT_ITEM_KEY;
2891		key.objectid = logic_start;
2892		key.offset = (u64)-1;
2893
2894		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2895		if (ret < 0)
2896			goto out;
2897
2898		if (ret > 0) {
2899			ret = btrfs_previous_extent_item(root, path, 0);
2900			if (ret < 0)
2901				goto out;
2902			if (ret > 0) {
2903				btrfs_release_path(path);
2904				ret = btrfs_search_slot(NULL, root, &key,
2905							path, 0, 0);
2906				if (ret < 0)
2907					goto out;
2908			}
2909		}
2910
2911		stop_loop = 0;
2912		while (1) {
2913			u64 bytes;
2914
2915			l = path->nodes[0];
2916			slot = path->slots[0];
2917			if (slot >= btrfs_header_nritems(l)) {
2918				ret = btrfs_next_leaf(root, path);
2919				if (ret == 0)
2920					continue;
2921				if (ret < 0)
2922					goto out;
2923
2924				stop_loop = 1;
2925				break;
2926			}
2927			btrfs_item_key_to_cpu(l, &key, slot);
2928
2929			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2930			    key.type != BTRFS_METADATA_ITEM_KEY)
2931				goto next;
2932
2933			if (key.type == BTRFS_METADATA_ITEM_KEY)
2934				bytes = root->nodesize;
2935			else
2936				bytes = key.offset;
2937
2938			if (key.objectid + bytes <= logic_start)
2939				goto next;
2940
2941			if (key.objectid >= logic_end) {
2942				stop_loop = 1;
2943				break;
2944			}
2945
2946			while (key.objectid >= logic_start + map->stripe_len)
2947				logic_start += map->stripe_len;
2948
2949			extent = btrfs_item_ptr(l, slot,
2950						struct btrfs_extent_item);
2951			flags = btrfs_extent_flags(l, extent);
2952			generation = btrfs_extent_generation(l, extent);
2953
2954			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2955			    (key.objectid < logic_start ||
2956			     key.objectid + bytes >
2957			     logic_start + map->stripe_len)) {
2958				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2959					  key.objectid, logic_start);
2960				spin_lock(&sctx->stat_lock);
2961				sctx->stat.uncorrectable_errors++;
2962				spin_unlock(&sctx->stat_lock);
2963				goto next;
2964			}
2965again:
2966			extent_logical = key.objectid;
2967			extent_len = bytes;
2968
2969			if (extent_logical < logic_start) {
2970				extent_len -= logic_start - extent_logical;
2971				extent_logical = logic_start;
2972			}
2973
2974			if (extent_logical + extent_len >
2975			    logic_start + map->stripe_len)
2976				extent_len = logic_start + map->stripe_len -
2977					     extent_logical;
2978
2979			scrub_parity_mark_sectors_data(sparity, extent_logical,
2980						       extent_len);
2981
2982			mapped_length = extent_len;
2983			ret = btrfs_map_block(fs_info, READ, extent_logical,
2984					      &mapped_length, &bbio, 0);
2985			if (!ret) {
2986				if (!bbio || mapped_length < extent_len)
2987					ret = -EIO;
2988			}
2989			if (ret) {
2990				btrfs_put_bbio(bbio);
2991				goto out;
2992			}
2993			extent_physical = bbio->stripes[0].physical;
2994			extent_mirror_num = bbio->mirror_num;
2995			extent_dev = bbio->stripes[0].dev;
2996			btrfs_put_bbio(bbio);
2997
2998			ret = btrfs_lookup_csums_range(csum_root,
2999						extent_logical,
3000						extent_logical + extent_len - 1,
3001						&sctx->csum_list, 1);
3002			if (ret)
3003				goto out;
3004
3005			ret = scrub_extent_for_parity(sparity, extent_logical,
3006						      extent_len,
3007						      extent_physical,
3008						      extent_dev, flags,
3009						      generation,
3010						      extent_mirror_num);
3011
3012			scrub_free_csums(sctx);
3013
3014			if (ret)
3015				goto out;
3016
3017			if (extent_logical + extent_len <
3018			    key.objectid + bytes) {
3019				logic_start += map->stripe_len;
3020
3021				if (logic_start >= logic_end) {
3022					stop_loop = 1;
3023					break;
3024				}
3025
3026				if (logic_start < key.objectid + bytes) {
3027					cond_resched();
3028					goto again;
3029				}
3030			}
3031next:
3032			path->slots[0]++;
3033		}
3034
3035		btrfs_release_path(path);
3036
3037		if (stop_loop)
3038			break;
3039
3040		logic_start += map->stripe_len;
3041	}
3042out:
3043	if (ret < 0)
3044		scrub_parity_mark_sectors_error(sparity, logic_start,
3045						logic_end - logic_start);
3046	scrub_parity_put(sparity);
3047	scrub_submit(sctx);
3048	mutex_lock(&sctx->wr_ctx.wr_lock);
3049	scrub_wr_submit(sctx);
3050	mutex_unlock(&sctx->wr_ctx.wr_lock);
3051
3052	btrfs_release_path(path);
3053	return ret < 0 ? ret : 0;
3054}
3055
3056static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3057					   struct map_lookup *map,
 
3058					   struct btrfs_device *scrub_dev,
3059					   int num, u64 base, u64 length,
3060					   int is_dev_replace)
3061{
3062	struct btrfs_path *path, *ppath;
3063	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3064	struct btrfs_root *root = fs_info->extent_root;
3065	struct btrfs_root *csum_root = fs_info->csum_root;
3066	struct btrfs_extent_item *extent;
3067	struct blk_plug plug;
3068	u64 flags;
3069	int ret;
3070	int slot;
3071	u64 nstripes;
3072	struct extent_buffer *l;
3073	struct btrfs_key key;
3074	u64 physical;
3075	u64 logical;
3076	u64 logic_end;
3077	u64 physical_end;
3078	u64 generation;
3079	int mirror_num;
3080	struct reada_control *reada1;
3081	struct reada_control *reada2;
3082	struct btrfs_key key_start;
3083	struct btrfs_key key_end;
3084	u64 increment = map->stripe_len;
3085	u64 offset;
3086	u64 extent_logical;
3087	u64 extent_physical;
3088	u64 extent_len;
3089	u64 stripe_logical;
3090	u64 stripe_end;
3091	struct btrfs_device *extent_dev;
3092	int extent_mirror_num;
3093	int stop_loop = 0;
3094
3095	physical = map->stripes[num].physical;
3096	offset = 0;
3097	nstripes = div_u64(length, map->stripe_len);
3098	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3099		offset = map->stripe_len * num;
3100		increment = map->stripe_len * map->num_stripes;
3101		mirror_num = 1;
3102	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3103		int factor = map->num_stripes / map->sub_stripes;
3104		offset = map->stripe_len * (num / map->sub_stripes);
3105		increment = map->stripe_len * factor;
3106		mirror_num = num % map->sub_stripes + 1;
3107	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3108		increment = map->stripe_len;
3109		mirror_num = num % map->num_stripes + 1;
3110	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3111		increment = map->stripe_len;
3112		mirror_num = num % map->num_stripes + 1;
3113	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3114		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3115		increment = map->stripe_len * nr_data_stripes(map);
3116		mirror_num = 1;
3117	} else {
3118		increment = map->stripe_len;
3119		mirror_num = 1;
3120	}
3121
3122	path = btrfs_alloc_path();
3123	if (!path)
3124		return -ENOMEM;
3125
3126	ppath = btrfs_alloc_path();
3127	if (!ppath) {
3128		btrfs_free_path(path);
3129		return -ENOMEM;
 
3130	}
3131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3132	/*
3133	 * work on commit root. The related disk blocks are static as
3134	 * long as COW is applied. This means, it is save to rewrite
3135	 * them to repair disk errors without any race conditions
 
 
3136	 */
3137	path->search_commit_root = 1;
3138	path->skip_locking = 1;
3139
3140	ppath->search_commit_root = 1;
3141	ppath->skip_locking = 1;
3142	/*
3143	 * trigger the readahead for extent tree csum tree and wait for
3144	 * completion. During readahead, the scrub is officially paused
3145	 * to not hold off transaction commits
3146	 */
3147	logical = base + offset;
3148	physical_end = physical + nstripes * map->stripe_len;
3149	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3150		get_raid56_logic_offset(physical_end, num,
3151					map, &logic_end, NULL);
3152		logic_end += base;
3153	} else {
3154		logic_end = logical + increment * nstripes;
 
 
3155	}
3156	wait_event(sctx->list_wait,
3157		   atomic_read(&sctx->bios_in_flight) == 0);
3158	scrub_blocked_if_needed(fs_info);
3159
3160	/* FIXME it might be better to start readahead at commit root */
3161	key_start.objectid = logical;
3162	key_start.type = BTRFS_EXTENT_ITEM_KEY;
3163	key_start.offset = (u64)0;
3164	key_end.objectid = logic_end;
3165	key_end.type = BTRFS_METADATA_ITEM_KEY;
3166	key_end.offset = (u64)-1;
3167	reada1 = btrfs_reada_add(root, &key_start, &key_end);
3168
3169	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3170	key_start.type = BTRFS_EXTENT_CSUM_KEY;
3171	key_start.offset = logical;
3172	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3173	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3174	key_end.offset = logic_end;
3175	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3176
3177	if (!IS_ERR(reada1))
3178		btrfs_reada_wait(reada1);
3179	if (!IS_ERR(reada2))
3180		btrfs_reada_wait(reada2);
3181
 
 
 
 
 
 
 
 
3182
3183	/*
3184	 * collect all data csums for the stripe to avoid seeking during
3185	 * the scrub. This might currently (crc32) end up to be about 1MB
3186	 */
3187	blk_start_plug(&plug);
3188
3189	/*
3190	 * now find all extents for each stripe and scrub them
3191	 */
3192	ret = 0;
3193	while (physical < physical_end) {
3194		/*
3195		 * canceled?
3196		 */
3197		if (atomic_read(&fs_info->scrub_cancel_req) ||
3198		    atomic_read(&sctx->cancel_req)) {
3199			ret = -ECANCELED;
3200			goto out;
 
 
 
 
3201		}
 
3202		/*
3203		 * check to see if we have to pause
 
 
 
 
 
3204		 */
3205		if (atomic_read(&fs_info->scrub_pause_req)) {
3206			/* push queued extents */
3207			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3208			scrub_submit(sctx);
3209			mutex_lock(&sctx->wr_ctx.wr_lock);
3210			scrub_wr_submit(sctx);
3211			mutex_unlock(&sctx->wr_ctx.wr_lock);
3212			wait_event(sctx->list_wait,
3213				   atomic_read(&sctx->bios_in_flight) == 0);
3214			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3215			scrub_blocked_if_needed(fs_info);
3216		}
3217
3218		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3219			ret = get_raid56_logic_offset(physical, num, map,
3220						      &logical,
3221						      &stripe_logical);
3222			logical += base;
3223			if (ret) {
3224				/* it is parity strip */
3225				stripe_logical += base;
3226				stripe_end = stripe_logical + increment;
3227				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3228							  ppath, stripe_logical,
3229							  stripe_end);
3230				if (ret)
3231					goto out;
3232				goto skip;
3233			}
3234		}
3235
3236		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3237			key.type = BTRFS_METADATA_ITEM_KEY;
3238		else
3239			key.type = BTRFS_EXTENT_ITEM_KEY;
3240		key.objectid = logical;
3241		key.offset = (u64)-1;
3242
3243		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3244		if (ret < 0)
3245			goto out;
3246
3247		if (ret > 0) {
3248			ret = btrfs_previous_extent_item(root, path, 0);
3249			if (ret < 0)
3250				goto out;
3251			if (ret > 0) {
3252				/* there's no smaller item, so stick with the
3253				 * larger one */
3254				btrfs_release_path(path);
3255				ret = btrfs_search_slot(NULL, root, &key,
3256							path, 0, 0);
3257				if (ret < 0)
3258					goto out;
3259			}
3260		}
3261
3262		stop_loop = 0;
3263		while (1) {
3264			u64 bytes;
3265
3266			l = path->nodes[0];
3267			slot = path->slots[0];
3268			if (slot >= btrfs_header_nritems(l)) {
3269				ret = btrfs_next_leaf(root, path);
3270				if (ret == 0)
3271					continue;
3272				if (ret < 0)
3273					goto out;
3274
3275				stop_loop = 1;
3276				break;
3277			}
3278			btrfs_item_key_to_cpu(l, &key, slot);
3279
3280			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3281			    key.type != BTRFS_METADATA_ITEM_KEY)
3282				goto next;
3283
3284			if (key.type == BTRFS_METADATA_ITEM_KEY)
3285				bytes = root->nodesize;
3286			else
3287				bytes = key.offset;
3288
3289			if (key.objectid + bytes <= logical)
3290				goto next;
3291
3292			if (key.objectid >= logical + map->stripe_len) {
3293				/* out of this device extent */
3294				if (key.objectid >= logic_end)
3295					stop_loop = 1;
3296				break;
3297			}
3298
3299			extent = btrfs_item_ptr(l, slot,
3300						struct btrfs_extent_item);
3301			flags = btrfs_extent_flags(l, extent);
3302			generation = btrfs_extent_generation(l, extent);
3303
3304			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3305			    (key.objectid < logical ||
3306			     key.objectid + bytes >
3307			     logical + map->stripe_len)) {
3308				btrfs_err(fs_info,
3309					   "scrub: tree block %llu spanning "
3310					   "stripes, ignored. logical=%llu",
3311				       key.objectid, logical);
3312				spin_lock(&sctx->stat_lock);
3313				sctx->stat.uncorrectable_errors++;
3314				spin_unlock(&sctx->stat_lock);
3315				goto next;
3316			}
3317
3318again:
3319			extent_logical = key.objectid;
3320			extent_len = bytes;
3321
3322			/*
3323			 * trim extent to this stripe
3324			 */
3325			if (extent_logical < logical) {
3326				extent_len -= logical - extent_logical;
3327				extent_logical = logical;
3328			}
3329			if (extent_logical + extent_len >
3330			    logical + map->stripe_len) {
3331				extent_len = logical + map->stripe_len -
3332					     extent_logical;
3333			}
3334
3335			extent_physical = extent_logical - logical + physical;
3336			extent_dev = scrub_dev;
3337			extent_mirror_num = mirror_num;
3338			if (is_dev_replace)
3339				scrub_remap_extent(fs_info, extent_logical,
3340						   extent_len, &extent_physical,
3341						   &extent_dev,
3342						   &extent_mirror_num);
3343
3344			ret = btrfs_lookup_csums_range(csum_root,
3345						       extent_logical,
3346						       extent_logical +
3347						       extent_len - 1,
3348						       &sctx->csum_list, 1);
3349			if (ret)
3350				goto out;
3351
3352			ret = scrub_extent(sctx, extent_logical, extent_len,
3353					   extent_physical, extent_dev, flags,
3354					   generation, extent_mirror_num,
3355					   extent_logical - logical + physical);
3356
3357			scrub_free_csums(sctx);
3358
3359			if (ret)
3360				goto out;
3361
3362			if (extent_logical + extent_len <
3363			    key.objectid + bytes) {
3364				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3365					/*
3366					 * loop until we find next data stripe
3367					 * or we have finished all stripes.
3368					 */
3369loop:
3370					physical += map->stripe_len;
3371					ret = get_raid56_logic_offset(physical,
3372							num, map, &logical,
3373							&stripe_logical);
3374					logical += base;
3375
3376					if (ret && physical < physical_end) {
3377						stripe_logical += base;
3378						stripe_end = stripe_logical +
3379								increment;
3380						ret = scrub_raid56_parity(sctx,
3381							map, scrub_dev, ppath,
3382							stripe_logical,
3383							stripe_end);
3384						if (ret)
3385							goto out;
3386						goto loop;
3387					}
3388				} else {
3389					physical += map->stripe_len;
3390					logical += increment;
3391				}
3392				if (logical < key.objectid + bytes) {
3393					cond_resched();
3394					goto again;
3395				}
3396
3397				if (physical >= physical_end) {
3398					stop_loop = 1;
3399					break;
3400				}
3401			}
3402next:
3403			path->slots[0]++;
3404		}
3405		btrfs_release_path(path);
3406skip:
3407		logical += increment;
3408		physical += map->stripe_len;
3409		spin_lock(&sctx->stat_lock);
3410		if (stop_loop)
3411			sctx->stat.last_physical = map->stripes[num].physical +
3412						   length;
3413		else
3414			sctx->stat.last_physical = physical;
3415		spin_unlock(&sctx->stat_lock);
3416		if (stop_loop)
3417			break;
3418	}
3419out:
3420	/* push queued extents */
3421	scrub_submit(sctx);
3422	mutex_lock(&sctx->wr_ctx.wr_lock);
3423	scrub_wr_submit(sctx);
3424	mutex_unlock(&sctx->wr_ctx.wr_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425
3426	blk_finish_plug(&plug);
3427	btrfs_free_path(path);
3428	btrfs_free_path(ppath);
3429	return ret < 0 ? ret : 0;
3430}
3431
3432static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 
3433					  struct btrfs_device *scrub_dev,
3434					  u64 chunk_offset, u64 length,
3435					  u64 dev_offset,
3436					  struct btrfs_block_group_cache *cache,
3437					  int is_dev_replace)
3438{
3439	struct btrfs_mapping_tree *map_tree =
3440		&sctx->dev_root->fs_info->mapping_tree;
3441	struct map_lookup *map;
3442	struct extent_map *em;
3443	int i;
3444	int ret = 0;
3445
3446	read_lock(&map_tree->map_tree.lock);
3447	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3448	read_unlock(&map_tree->map_tree.lock);
3449
3450	if (!em) {
3451		/*
3452		 * Might have been an unused block group deleted by the cleaner
3453		 * kthread or relocation.
3454		 */
3455		spin_lock(&cache->lock);
3456		if (!cache->removed)
3457			ret = -EINVAL;
3458		spin_unlock(&cache->lock);
3459
3460		return ret;
3461	}
3462
3463	map = em->map_lookup;
3464	if (em->start != chunk_offset)
3465		goto out;
3466
3467	if (em->len < length)
3468		goto out;
3469
3470	for (i = 0; i < map->num_stripes; ++i) {
3471		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3472		    map->stripes[i].physical == dev_offset) {
3473			ret = scrub_stripe(sctx, map, scrub_dev, i,
3474					   chunk_offset, length,
3475					   is_dev_replace);
3476			if (ret)
3477				goto out;
3478		}
3479	}
3480out:
3481	free_extent_map(em);
3482
3483	return ret;
3484}
3485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3486static noinline_for_stack
3487int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3488			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3489			   int is_dev_replace)
3490{
3491	struct btrfs_dev_extent *dev_extent = NULL;
3492	struct btrfs_path *path;
3493	struct btrfs_root *root = sctx->dev_root;
3494	struct btrfs_fs_info *fs_info = root->fs_info;
3495	u64 length;
3496	u64 chunk_offset;
3497	int ret = 0;
3498	int ro_set;
3499	int slot;
3500	struct extent_buffer *l;
3501	struct btrfs_key key;
3502	struct btrfs_key found_key;
3503	struct btrfs_block_group_cache *cache;
3504	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3505
3506	path = btrfs_alloc_path();
3507	if (!path)
3508		return -ENOMEM;
3509
3510	path->reada = READA_FORWARD;
3511	path->search_commit_root = 1;
3512	path->skip_locking = 1;
3513
3514	key.objectid = scrub_dev->devid;
3515	key.offset = 0ull;
3516	key.type = BTRFS_DEV_EXTENT_KEY;
3517
3518	while (1) {
 
 
3519		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3520		if (ret < 0)
3521			break;
3522		if (ret > 0) {
3523			if (path->slots[0] >=
3524			    btrfs_header_nritems(path->nodes[0])) {
3525				ret = btrfs_next_leaf(root, path);
3526				if (ret < 0)
3527					break;
3528				if (ret > 0) {
3529					ret = 0;
3530					break;
3531				}
3532			} else {
3533				ret = 0;
3534			}
3535		}
3536
3537		l = path->nodes[0];
3538		slot = path->slots[0];
3539
3540		btrfs_item_key_to_cpu(l, &found_key, slot);
3541
3542		if (found_key.objectid != scrub_dev->devid)
3543			break;
3544
3545		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3546			break;
3547
3548		if (found_key.offset >= end)
3549			break;
3550
3551		if (found_key.offset < key.offset)
3552			break;
3553
3554		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3555		length = btrfs_dev_extent_length(l, dev_extent);
3556
3557		if (found_key.offset + length <= start)
3558			goto skip;
3559
3560		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3561
3562		/*
3563		 * get a reference on the corresponding block group to prevent
3564		 * the chunk from going away while we scrub it
3565		 */
3566		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3567
3568		/* some chunks are removed but not committed to disk yet,
3569		 * continue scrubbing */
3570		if (!cache)
3571			goto skip;
3572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3573		/*
3574		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3575		 * to avoid deadlock caused by:
3576		 * btrfs_inc_block_group_ro()
3577		 * -> btrfs_wait_for_commit()
3578		 * -> btrfs_commit_transaction()
3579		 * -> btrfs_scrub_pause()
3580		 */
3581		scrub_pause_on(fs_info);
3582		ret = btrfs_inc_block_group_ro(root, cache);
3583		scrub_pause_off(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3584
3585		if (ret == 0) {
3586			ro_set = 1;
3587		} else if (ret == -ENOSPC) {
 
3588			/*
3589			 * btrfs_inc_block_group_ro return -ENOSPC when it
3590			 * failed in creating new chunk for metadata.
3591			 * It is not a problem for scrub/replace, because
3592			 * metadata are always cowed, and our scrub paused
3593			 * commit_transactions.
 
 
 
 
 
 
3594			 */
3595			ro_set = 0;
 
 
 
 
 
 
 
3596		} else {
3597			btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n",
3598				   ret);
 
3599			btrfs_put_block_group(cache);
 
3600			break;
3601		}
3602
3603		dev_replace->cursor_right = found_key.offset + length;
3604		dev_replace->cursor_left = found_key.offset;
3605		dev_replace->item_needs_writeback = 1;
3606		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3607				  found_key.offset, cache, is_dev_replace);
3608
3609		/*
3610		 * flush, submit all pending read and write bios, afterwards
3611		 * wait for them.
3612		 * Note that in the dev replace case, a read request causes
3613		 * write requests that are submitted in the read completion
3614		 * worker. Therefore in the current situation, it is required
3615		 * that all write requests are flushed, so that all read and
3616		 * write requests are really completed when bios_in_flight
3617		 * changes to 0.
3618		 */
3619		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3620		scrub_submit(sctx);
3621		mutex_lock(&sctx->wr_ctx.wr_lock);
3622		scrub_wr_submit(sctx);
3623		mutex_unlock(&sctx->wr_ctx.wr_lock);
3624
3625		wait_event(sctx->list_wait,
3626			   atomic_read(&sctx->bios_in_flight) == 0);
 
 
 
 
3627
3628		scrub_pause_on(fs_info);
 
 
 
 
 
3629
3630		/*
3631		 * must be called before we decrease @scrub_paused.
3632		 * make sure we don't block transaction commit while
3633		 * we are waiting pending workers finished.
3634		 */
3635		wait_event(sctx->list_wait,
3636			   atomic_read(&sctx->workers_pending) == 0);
3637		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3638
3639		scrub_pause_off(fs_info);
3640
3641		if (ro_set)
3642			btrfs_dec_block_group_ro(root, cache);
3643
3644		/*
3645		 * We might have prevented the cleaner kthread from deleting
3646		 * this block group if it was already unused because we raced
3647		 * and set it to RO mode first. So add it back to the unused
3648		 * list, otherwise it might not ever be deleted unless a manual
3649		 * balance is triggered or it becomes used and unused again.
3650		 */
3651		spin_lock(&cache->lock);
3652		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3653		    btrfs_block_group_used(&cache->item) == 0) {
3654			spin_unlock(&cache->lock);
3655			spin_lock(&fs_info->unused_bgs_lock);
3656			if (list_empty(&cache->bg_list)) {
3657				btrfs_get_block_group(cache);
3658				list_add_tail(&cache->bg_list,
3659					      &fs_info->unused_bgs);
3660			}
3661			spin_unlock(&fs_info->unused_bgs_lock);
3662		} else {
3663			spin_unlock(&cache->lock);
3664		}
3665
 
3666		btrfs_put_block_group(cache);
3667		if (ret)
3668			break;
3669		if (is_dev_replace &&
3670		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3671			ret = -EIO;
3672			break;
3673		}
3674		if (sctx->stat.malloc_errors > 0) {
3675			ret = -ENOMEM;
3676			break;
3677		}
3678
3679		dev_replace->cursor_left = dev_replace->cursor_right;
3680		dev_replace->item_needs_writeback = 1;
3681skip:
3682		key.offset = found_key.offset + length;
3683		btrfs_release_path(path);
3684	}
3685
3686	btrfs_free_path(path);
3687
3688	return ret;
3689}
3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3691static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3692					   struct btrfs_device *scrub_dev)
3693{
3694	int	i;
3695	u64	bytenr;
3696	u64	gen;
3697	int	ret;
3698	struct btrfs_root *root = sctx->dev_root;
 
 
 
 
3699
3700	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3701		return -EIO;
 
 
 
 
 
3702
3703	/* Seed devices of a new filesystem has their own generation. */
3704	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3705		gen = scrub_dev->generation;
3706	else
3707		gen = root->fs_info->last_trans_committed;
3708
3709	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3710		bytenr = btrfs_sb_offset(i);
3711		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3712		    scrub_dev->commit_total_bytes)
3713			break;
 
 
3714
3715		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3716				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3717				  NULL, 1, bytenr);
3718		if (ret)
3719			return ret;
 
3720	}
3721	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 
 
3722
3723	return 0;
 
 
 
 
 
 
 
 
 
 
 
3724}
3725
3726/*
3727 * get a reference count on fs_info->scrub_workers. start worker if necessary
3728 */
3729static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3730						int is_dev_replace)
3731{
 
3732	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3733	int max_active = fs_info->thread_pool_size;
 
 
 
 
 
 
 
 
3734
3735	if (fs_info->scrub_workers_refcnt == 0) {
3736		if (is_dev_replace)
3737			fs_info->scrub_workers =
3738				btrfs_alloc_workqueue("scrub", flags,
3739						      1, 4);
3740		else
3741			fs_info->scrub_workers =
3742				btrfs_alloc_workqueue("scrub", flags,
3743						      max_active, 4);
3744		if (!fs_info->scrub_workers)
3745			goto fail_scrub_workers;
3746
3747		fs_info->scrub_wr_completion_workers =
3748			btrfs_alloc_workqueue("scrubwrc", flags,
3749					      max_active, 2);
3750		if (!fs_info->scrub_wr_completion_workers)
3751			goto fail_scrub_wr_completion_workers;
3752
3753		fs_info->scrub_nocow_workers =
3754			btrfs_alloc_workqueue("scrubnc", flags, 1, 0);
3755		if (!fs_info->scrub_nocow_workers)
3756			goto fail_scrub_nocow_workers;
3757		fs_info->scrub_parity_workers =
3758			btrfs_alloc_workqueue("scrubparity", flags,
3759					      max_active, 2);
3760		if (!fs_info->scrub_parity_workers)
3761			goto fail_scrub_parity_workers;
3762	}
3763	++fs_info->scrub_workers_refcnt;
3764	return 0;
 
3765
3766fail_scrub_parity_workers:
3767	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3768fail_scrub_nocow_workers:
3769	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3770fail_scrub_wr_completion_workers:
3771	btrfs_destroy_workqueue(fs_info->scrub_workers);
3772fail_scrub_workers:
3773	return -ENOMEM;
3774}
3775
3776static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3777{
3778	if (--fs_info->scrub_workers_refcnt == 0) {
3779		btrfs_destroy_workqueue(fs_info->scrub_workers);
3780		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3781		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3782		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3783	}
3784	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3785}
3786
3787int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3788		    u64 end, struct btrfs_scrub_progress *progress,
3789		    int readonly, int is_dev_replace)
3790{
 
3791	struct scrub_ctx *sctx;
3792	int ret;
3793	struct btrfs_device *dev;
3794	struct rcu_string *name;
 
3795
3796	if (btrfs_fs_closing(fs_info))
3797		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
3798
3799	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3800		/*
3801		 * in this case scrub is unable to calculate the checksum
3802		 * the way scrub is implemented. Do not handle this
3803		 * situation at all because it won't ever happen.
3804		 */
3805		btrfs_err(fs_info,
3806			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3807		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3808		return -EINVAL;
3809	}
3810
3811	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3812		/* not supported for data w/o checksums */
3813		btrfs_err(fs_info,
3814			   "scrub: size assumption sectorsize != PAGE_SIZE "
3815			   "(%d != %lu) fails",
3816		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
3817		return -EINVAL;
3818	}
3819
3820	if (fs_info->chunk_root->nodesize >
3821	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3822	    fs_info->chunk_root->sectorsize >
3823	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3824		/*
3825		 * would exhaust the array bounds of pagev member in
3826		 * struct scrub_block
3827		 */
3828		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3829			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3830		       fs_info->chunk_root->nodesize,
3831		       SCRUB_MAX_PAGES_PER_BLOCK,
3832		       fs_info->chunk_root->sectorsize,
3833		       SCRUB_MAX_PAGES_PER_BLOCK);
3834		return -EINVAL;
3835	}
3836
 
 
 
3837
3838	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3839	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3840	if (!dev || (dev->missing && !is_dev_replace)) {
 
3841		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3842		return -ENODEV;
 
3843	}
3844
3845	if (!is_dev_replace && !readonly && !dev->writeable) {
 
3846		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3847		rcu_read_lock();
3848		name = rcu_dereference(dev->name);
3849		btrfs_err(fs_info, "scrub: device %s is not writable",
3850			  name->str);
3851		rcu_read_unlock();
3852		return -EROFS;
3853	}
3854
3855	mutex_lock(&fs_info->scrub_lock);
3856	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
 
3857		mutex_unlock(&fs_info->scrub_lock);
3858		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3859		return -EIO;
 
3860	}
3861
3862	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3863	if (dev->scrub_device ||
3864	    (!is_dev_replace &&
3865	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3866		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3867		mutex_unlock(&fs_info->scrub_lock);
3868		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3869		return -EINPROGRESS;
 
3870	}
3871	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3872
3873	ret = scrub_workers_get(fs_info, is_dev_replace);
3874	if (ret) {
3875		mutex_unlock(&fs_info->scrub_lock);
3876		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877		return ret;
3878	}
3879
3880	sctx = scrub_setup_ctx(dev, is_dev_replace);
3881	if (IS_ERR(sctx)) {
3882		mutex_unlock(&fs_info->scrub_lock);
3883		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3884		scrub_workers_put(fs_info);
3885		return PTR_ERR(sctx);
3886	}
3887	sctx->readonly = readonly;
3888	dev->scrub_device = sctx;
3889	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890
3891	/*
3892	 * checking @scrub_pause_req here, we can avoid
3893	 * race between committing transaction and scrubbing.
3894	 */
3895	__scrub_blocked_if_needed(fs_info);
3896	atomic_inc(&fs_info->scrubs_running);
3897	mutex_unlock(&fs_info->scrub_lock);
3898
 
 
 
 
 
 
 
 
 
 
3899	if (!is_dev_replace) {
 
 
 
 
 
 
 
3900		/*
3901		 * by holding device list mutex, we can
3902		 * kick off writing super in log tree sync.
3903		 */
3904		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3905		ret = scrub_supers(sctx, dev);
3906		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
3907	}
3908
3909	if (!ret)
3910		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3911					     is_dev_replace);
3912
3913	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3914	atomic_dec(&fs_info->scrubs_running);
3915	wake_up(&fs_info->scrub_pause_wait);
3916
3917	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3918
3919	if (progress)
3920		memcpy(progress, &sctx->stat, sizeof(*progress));
3921
 
 
 
 
3922	mutex_lock(&fs_info->scrub_lock);
3923	dev->scrub_device = NULL;
3924	scrub_workers_put(fs_info);
3925	mutex_unlock(&fs_info->scrub_lock);
3926
 
3927	scrub_put_ctx(sctx);
3928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3929	return ret;
3930}
3931
3932void btrfs_scrub_pause(struct btrfs_root *root)
3933{
3934	struct btrfs_fs_info *fs_info = root->fs_info;
3935
3936	mutex_lock(&fs_info->scrub_lock);
3937	atomic_inc(&fs_info->scrub_pause_req);
3938	while (atomic_read(&fs_info->scrubs_paused) !=
3939	       atomic_read(&fs_info->scrubs_running)) {
3940		mutex_unlock(&fs_info->scrub_lock);
3941		wait_event(fs_info->scrub_pause_wait,
3942			   atomic_read(&fs_info->scrubs_paused) ==
3943			   atomic_read(&fs_info->scrubs_running));
3944		mutex_lock(&fs_info->scrub_lock);
3945	}
3946	mutex_unlock(&fs_info->scrub_lock);
3947}
3948
3949void btrfs_scrub_continue(struct btrfs_root *root)
3950{
3951	struct btrfs_fs_info *fs_info = root->fs_info;
3952
3953	atomic_dec(&fs_info->scrub_pause_req);
3954	wake_up(&fs_info->scrub_pause_wait);
3955}
3956
3957int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3958{
3959	mutex_lock(&fs_info->scrub_lock);
3960	if (!atomic_read(&fs_info->scrubs_running)) {
3961		mutex_unlock(&fs_info->scrub_lock);
3962		return -ENOTCONN;
3963	}
3964
3965	atomic_inc(&fs_info->scrub_cancel_req);
3966	while (atomic_read(&fs_info->scrubs_running)) {
3967		mutex_unlock(&fs_info->scrub_lock);
3968		wait_event(fs_info->scrub_pause_wait,
3969			   atomic_read(&fs_info->scrubs_running) == 0);
3970		mutex_lock(&fs_info->scrub_lock);
3971	}
3972	atomic_dec(&fs_info->scrub_cancel_req);
3973	mutex_unlock(&fs_info->scrub_lock);
3974
3975	return 0;
3976}
3977
3978int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3979			   struct btrfs_device *dev)
3980{
 
3981	struct scrub_ctx *sctx;
3982
3983	mutex_lock(&fs_info->scrub_lock);
3984	sctx = dev->scrub_device;
3985	if (!sctx) {
3986		mutex_unlock(&fs_info->scrub_lock);
3987		return -ENOTCONN;
3988	}
3989	atomic_inc(&sctx->cancel_req);
3990	while (dev->scrub_device) {
3991		mutex_unlock(&fs_info->scrub_lock);
3992		wait_event(fs_info->scrub_pause_wait,
3993			   dev->scrub_device == NULL);
3994		mutex_lock(&fs_info->scrub_lock);
3995	}
3996	mutex_unlock(&fs_info->scrub_lock);
3997
3998	return 0;
3999}
4000
4001int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4002			 struct btrfs_scrub_progress *progress)
4003{
 
4004	struct btrfs_device *dev;
4005	struct scrub_ctx *sctx = NULL;
4006
4007	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4008	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
4009	if (dev)
4010		sctx = dev->scrub_device;
4011	if (sctx)
4012		memcpy(progress, &sctx->stat, sizeof(*progress));
4013	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
4014
4015	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4016}
4017
4018static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4019			       u64 extent_logical, u64 extent_len,
4020			       u64 *extent_physical,
4021			       struct btrfs_device **extent_dev,
4022			       int *extent_mirror_num)
4023{
4024	u64 mapped_length;
4025	struct btrfs_bio *bbio = NULL;
4026	int ret;
4027
4028	mapped_length = extent_len;
4029	ret = btrfs_map_block(fs_info, READ, extent_logical,
4030			      &mapped_length, &bbio, 0);
4031	if (ret || !bbio || mapped_length < extent_len ||
4032	    !bbio->stripes[0].dev->bdev) {
4033		btrfs_put_bbio(bbio);
4034		return;
4035	}
4036
4037	*extent_physical = bbio->stripes[0].physical;
4038	*extent_mirror_num = bbio->mirror_num;
4039	*extent_dev = bbio->stripes[0].dev;
4040	btrfs_put_bbio(bbio);
4041}
4042
4043static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4044			      struct scrub_wr_ctx *wr_ctx,
4045			      struct btrfs_fs_info *fs_info,
4046			      struct btrfs_device *dev,
4047			      int is_dev_replace)
4048{
4049	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4050
4051	mutex_init(&wr_ctx->wr_lock);
4052	wr_ctx->wr_curr_bio = NULL;
4053	if (!is_dev_replace)
4054		return 0;
4055
4056	WARN_ON(!dev->bdev);
4057	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4058	wr_ctx->tgtdev = dev;
4059	atomic_set(&wr_ctx->flush_all_writes, 0);
4060	return 0;
4061}
4062
4063static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4064{
4065	mutex_lock(&wr_ctx->wr_lock);
4066	kfree(wr_ctx->wr_curr_bio);
4067	wr_ctx->wr_curr_bio = NULL;
4068	mutex_unlock(&wr_ctx->wr_lock);
4069}
4070
4071static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4072			    int mirror_num, u64 physical_for_dev_replace)
4073{
4074	struct scrub_copy_nocow_ctx *nocow_ctx;
4075	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
4076
4077	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4078	if (!nocow_ctx) {
4079		spin_lock(&sctx->stat_lock);
4080		sctx->stat.malloc_errors++;
4081		spin_unlock(&sctx->stat_lock);
4082		return -ENOMEM;
4083	}
4084
4085	scrub_pending_trans_workers_inc(sctx);
4086
4087	nocow_ctx->sctx = sctx;
4088	nocow_ctx->logical = logical;
4089	nocow_ctx->len = len;
4090	nocow_ctx->mirror_num = mirror_num;
4091	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4092	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4093			copy_nocow_pages_worker, NULL, NULL);
4094	INIT_LIST_HEAD(&nocow_ctx->inodes);
4095	btrfs_queue_work(fs_info->scrub_nocow_workers,
4096			 &nocow_ctx->work);
4097
4098	return 0;
4099}
4100
4101static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4102{
4103	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4104	struct scrub_nocow_inode *nocow_inode;
4105
4106	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4107	if (!nocow_inode)
4108		return -ENOMEM;
4109	nocow_inode->inum = inum;
4110	nocow_inode->offset = offset;
4111	nocow_inode->root = root;
4112	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4113	return 0;
4114}
4115
4116#define COPY_COMPLETE 1
4117
4118static void copy_nocow_pages_worker(struct btrfs_work *work)
4119{
4120	struct scrub_copy_nocow_ctx *nocow_ctx =
4121		container_of(work, struct scrub_copy_nocow_ctx, work);
4122	struct scrub_ctx *sctx = nocow_ctx->sctx;
4123	u64 logical = nocow_ctx->logical;
4124	u64 len = nocow_ctx->len;
4125	int mirror_num = nocow_ctx->mirror_num;
4126	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4127	int ret;
4128	struct btrfs_trans_handle *trans = NULL;
4129	struct btrfs_fs_info *fs_info;
4130	struct btrfs_path *path;
4131	struct btrfs_root *root;
4132	int not_written = 0;
4133
4134	fs_info = sctx->dev_root->fs_info;
4135	root = fs_info->extent_root;
4136
4137	path = btrfs_alloc_path();
4138	if (!path) {
4139		spin_lock(&sctx->stat_lock);
4140		sctx->stat.malloc_errors++;
4141		spin_unlock(&sctx->stat_lock);
4142		not_written = 1;
4143		goto out;
4144	}
4145
4146	trans = btrfs_join_transaction(root);
4147	if (IS_ERR(trans)) {
4148		not_written = 1;
4149		goto out;
4150	}
4151
4152	ret = iterate_inodes_from_logical(logical, fs_info, path,
4153					  record_inode_for_nocow, nocow_ctx);
4154	if (ret != 0 && ret != -ENOENT) {
4155		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4156			"phys %llu, len %llu, mir %u, ret %d",
4157			logical, physical_for_dev_replace, len, mirror_num,
4158			ret);
4159		not_written = 1;
4160		goto out;
4161	}
4162
4163	btrfs_end_transaction(trans, root);
4164	trans = NULL;
4165	while (!list_empty(&nocow_ctx->inodes)) {
4166		struct scrub_nocow_inode *entry;
4167		entry = list_first_entry(&nocow_ctx->inodes,
4168					 struct scrub_nocow_inode,
4169					 list);
4170		list_del_init(&entry->list);
4171		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4172						 entry->root, nocow_ctx);
4173		kfree(entry);
4174		if (ret == COPY_COMPLETE) {
4175			ret = 0;
4176			break;
4177		} else if (ret) {
4178			break;
4179		}
4180	}
4181out:
4182	while (!list_empty(&nocow_ctx->inodes)) {
4183		struct scrub_nocow_inode *entry;
4184		entry = list_first_entry(&nocow_ctx->inodes,
4185					 struct scrub_nocow_inode,
4186					 list);
4187		list_del_init(&entry->list);
4188		kfree(entry);
4189	}
4190	if (trans && !IS_ERR(trans))
4191		btrfs_end_transaction(trans, root);
4192	if (not_written)
4193		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4194					    num_uncorrectable_read_errors);
4195
4196	btrfs_free_path(path);
4197	kfree(nocow_ctx);
4198
4199	scrub_pending_trans_workers_dec(sctx);
4200}
4201
4202static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4203				 u64 logical)
4204{
4205	struct extent_state *cached_state = NULL;
4206	struct btrfs_ordered_extent *ordered;
4207	struct extent_io_tree *io_tree;
4208	struct extent_map *em;
4209	u64 lockstart = start, lockend = start + len - 1;
4210	int ret = 0;
4211
4212	io_tree = &BTRFS_I(inode)->io_tree;
4213
4214	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4215	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4216	if (ordered) {
4217		btrfs_put_ordered_extent(ordered);
4218		ret = 1;
4219		goto out_unlock;
4220	}
4221
4222	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4223	if (IS_ERR(em)) {
4224		ret = PTR_ERR(em);
4225		goto out_unlock;
4226	}
4227
4228	/*
4229	 * This extent does not actually cover the logical extent anymore,
4230	 * move on to the next inode.
4231	 */
4232	if (em->block_start > logical ||
4233	    em->block_start + em->block_len < logical + len) {
4234		free_extent_map(em);
4235		ret = 1;
4236		goto out_unlock;
4237	}
4238	free_extent_map(em);
4239
4240out_unlock:
4241	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4242			     GFP_NOFS);
4243	return ret;
4244}
4245
4246static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4247				      struct scrub_copy_nocow_ctx *nocow_ctx)
4248{
4249	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4250	struct btrfs_key key;
4251	struct inode *inode;
4252	struct page *page;
4253	struct btrfs_root *local_root;
4254	struct extent_io_tree *io_tree;
4255	u64 physical_for_dev_replace;
4256	u64 nocow_ctx_logical;
4257	u64 len = nocow_ctx->len;
4258	unsigned long index;
4259	int srcu_index;
4260	int ret = 0;
4261	int err = 0;
4262
4263	key.objectid = root;
4264	key.type = BTRFS_ROOT_ITEM_KEY;
4265	key.offset = (u64)-1;
4266
4267	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4268
4269	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4270	if (IS_ERR(local_root)) {
4271		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4272		return PTR_ERR(local_root);
4273	}
4274
4275	key.type = BTRFS_INODE_ITEM_KEY;
4276	key.objectid = inum;
4277	key.offset = 0;
4278	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4279	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4280	if (IS_ERR(inode))
4281		return PTR_ERR(inode);
4282
4283	/* Avoid truncate/dio/punch hole.. */
4284	inode_lock(inode);
4285	inode_dio_wait(inode);
4286
4287	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4288	io_tree = &BTRFS_I(inode)->io_tree;
4289	nocow_ctx_logical = nocow_ctx->logical;
4290
4291	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4292	if (ret) {
4293		ret = ret > 0 ? 0 : ret;
4294		goto out;
4295	}
4296
4297	while (len >= PAGE_SIZE) {
4298		index = offset >> PAGE_SHIFT;
4299again:
4300		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4301		if (!page) {
4302			btrfs_err(fs_info, "find_or_create_page() failed");
4303			ret = -ENOMEM;
4304			goto out;
4305		}
4306
4307		if (PageUptodate(page)) {
4308			if (PageDirty(page))
4309				goto next_page;
4310		} else {
4311			ClearPageError(page);
4312			err = extent_read_full_page(io_tree, page,
4313							   btrfs_get_extent,
4314							   nocow_ctx->mirror_num);
4315			if (err) {
4316				ret = err;
4317				goto next_page;
4318			}
4319
4320			lock_page(page);
4321			/*
4322			 * If the page has been remove from the page cache,
4323			 * the data on it is meaningless, because it may be
4324			 * old one, the new data may be written into the new
4325			 * page in the page cache.
4326			 */
4327			if (page->mapping != inode->i_mapping) {
4328				unlock_page(page);
4329				put_page(page);
4330				goto again;
4331			}
4332			if (!PageUptodate(page)) {
4333				ret = -EIO;
4334				goto next_page;
4335			}
4336		}
4337
4338		ret = check_extent_to_block(inode, offset, len,
4339					    nocow_ctx_logical);
4340		if (ret) {
4341			ret = ret > 0 ? 0 : ret;
4342			goto next_page;
4343		}
4344
4345		err = write_page_nocow(nocow_ctx->sctx,
4346				       physical_for_dev_replace, page);
4347		if (err)
4348			ret = err;
4349next_page:
4350		unlock_page(page);
4351		put_page(page);
4352
4353		if (ret)
4354			break;
4355
4356		offset += PAGE_SIZE;
4357		physical_for_dev_replace += PAGE_SIZE;
4358		nocow_ctx_logical += PAGE_SIZE;
4359		len -= PAGE_SIZE;
4360	}
4361	ret = COPY_COMPLETE;
4362out:
4363	inode_unlock(inode);
4364	iput(inode);
4365	return ret;
4366}
4367
4368static int write_page_nocow(struct scrub_ctx *sctx,
4369			    u64 physical_for_dev_replace, struct page *page)
4370{
4371	struct bio *bio;
4372	struct btrfs_device *dev;
4373	int ret;
4374
4375	dev = sctx->wr_ctx.tgtdev;
4376	if (!dev)
4377		return -EIO;
4378	if (!dev->bdev) {
4379		btrfs_warn_rl(dev->dev_root->fs_info,
4380			"scrub write_page_nocow(bdev == NULL) is unexpected");
4381		return -EIO;
4382	}
4383	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4384	if (!bio) {
4385		spin_lock(&sctx->stat_lock);
4386		sctx->stat.malloc_errors++;
4387		spin_unlock(&sctx->stat_lock);
4388		return -ENOMEM;
4389	}
4390	bio->bi_iter.bi_size = 0;
4391	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4392	bio->bi_bdev = dev->bdev;
4393	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4394	if (ret != PAGE_SIZE) {
4395leave_with_eio:
4396		bio_put(bio);
4397		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4398		return -EIO;
4399	}
4400
4401	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4402		goto leave_with_eio;
4403
4404	bio_put(bio);
4405	return 0;
4406}