Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/pagemap.h>
10#include "locking.h"
11#include "fs.h"
12#include "accessors.h"
13
14struct btrfs_trans_handle;
15struct btrfs_transaction;
16struct btrfs_pending_snapshot;
17struct btrfs_delayed_ref_root;
18struct btrfs_space_info;
19struct btrfs_block_group;
20struct btrfs_ordered_sum;
21struct btrfs_ref;
22struct btrfs_bio;
23struct btrfs_ioctl_encoded_io_args;
24struct btrfs_device;
25struct btrfs_fs_devices;
26struct btrfs_balance_control;
27struct btrfs_delayed_root;
28struct reloc_control;
29
30/* Read ahead values for struct btrfs_path.reada */
31enum {
32 READA_NONE,
33 READA_BACK,
34 READA_FORWARD,
35 /*
36 * Similar to READA_FORWARD but unlike it:
37 *
38 * 1) It will trigger readahead even for leaves that are not close to
39 * each other on disk;
40 * 2) It also triggers readahead for nodes;
41 * 3) During a search, even when a node or leaf is already in memory, it
42 * will still trigger readahead for other nodes and leaves that follow
43 * it.
44 *
45 * This is meant to be used only when we know we are iterating over the
46 * entire tree or a very large part of it.
47 */
48 READA_FORWARD_ALWAYS,
49};
50
51/*
52 * btrfs_paths remember the path taken from the root down to the leaf.
53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54 * to any other levels that are present.
55 *
56 * The slots array records the index of the item or block pointer
57 * used while walking the tree.
58 */
59struct btrfs_path {
60 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
61 int slots[BTRFS_MAX_LEVEL];
62 /* if there is real range locking, this locks field will change */
63 u8 locks[BTRFS_MAX_LEVEL];
64 u8 reada;
65 /* keep some upper locks as we walk down */
66 u8 lowest_level;
67
68 /*
69 * set by btrfs_split_item, tells search_slot to keep all locks
70 * and to force calls to keep space in the nodes
71 */
72 unsigned int search_for_split:1;
73 unsigned int keep_locks:1;
74 unsigned int skip_locking:1;
75 unsigned int search_commit_root:1;
76 unsigned int need_commit_sem:1;
77 unsigned int skip_release_on_error:1;
78 /*
79 * Indicate that new item (btrfs_search_slot) is extending already
80 * existing item and ins_len contains only the data size and not item
81 * header (ie. sizeof(struct btrfs_item) is not included).
82 */
83 unsigned int search_for_extension:1;
84 /* Stop search if any locks need to be taken (for read) */
85 unsigned int nowait:1;
86};
87
88/*
89 * The state of btrfs root
90 */
91enum {
92 /*
93 * btrfs_record_root_in_trans is a multi-step process, and it can race
94 * with the balancing code. But the race is very small, and only the
95 * first time the root is added to each transaction. So IN_TRANS_SETUP
96 * is used to tell us when more checks are required
97 */
98 BTRFS_ROOT_IN_TRANS_SETUP,
99
100 /*
101 * Set if tree blocks of this root can be shared by other roots.
102 * Only subvolume trees and their reloc trees have this bit set.
103 * Conflicts with TRACK_DIRTY bit.
104 *
105 * This affects two things:
106 *
107 * - How balance works
108 * For shareable roots, we need to use reloc tree and do path
109 * replacement for balance, and need various pre/post hooks for
110 * snapshot creation to handle them.
111 *
112 * While for non-shareable trees, we just simply do a tree search
113 * with COW.
114 *
115 * - How dirty roots are tracked
116 * For shareable roots, btrfs_record_root_in_trans() is needed to
117 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
118 * don't need to set this manually.
119 */
120 BTRFS_ROOT_SHAREABLE,
121 BTRFS_ROOT_TRACK_DIRTY,
122 BTRFS_ROOT_IN_RADIX,
123 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124 BTRFS_ROOT_DEFRAG_RUNNING,
125 BTRFS_ROOT_FORCE_COW,
126 BTRFS_ROOT_MULTI_LOG_TASKS,
127 BTRFS_ROOT_DIRTY,
128 BTRFS_ROOT_DELETING,
129
130 /*
131 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
132 *
133 * Set for the subvolume tree owning the reloc tree.
134 */
135 BTRFS_ROOT_DEAD_RELOC_TREE,
136 /* Mark dead root stored on device whose cleanup needs to be resumed */
137 BTRFS_ROOT_DEAD_TREE,
138 /* The root has a log tree. Used for subvolume roots and the tree root. */
139 BTRFS_ROOT_HAS_LOG_TREE,
140 /* Qgroup flushing is in progress */
141 BTRFS_ROOT_QGROUP_FLUSHING,
142 /* We started the orphan cleanup for this root. */
143 BTRFS_ROOT_ORPHAN_CLEANUP,
144 /* This root has a drop operation that was started previously. */
145 BTRFS_ROOT_UNFINISHED_DROP,
146 /* This reloc root needs to have its buffers lockdep class reset. */
147 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
153 */
154struct btrfs_qgroup_swapped_blocks {
155 spinlock_t lock;
156 /* RM_EMPTY_ROOT() of above blocks[] */
157 bool swapped;
158 struct rb_root blocks[BTRFS_MAX_LEVEL];
159};
160
161/*
162 * in ram representation of the tree. extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166 struct rb_node rb_node;
167
168 struct extent_buffer *node;
169
170 struct extent_buffer *commit_root;
171 struct btrfs_root *log_root;
172 struct btrfs_root *reloc_root;
173
174 unsigned long state;
175 struct btrfs_root_item root_item;
176 struct btrfs_key root_key;
177 struct btrfs_fs_info *fs_info;
178 struct extent_io_tree dirty_log_pages;
179
180 struct mutex objectid_mutex;
181
182 spinlock_t accounting_lock;
183 struct btrfs_block_rsv *block_rsv;
184
185 struct mutex log_mutex;
186 wait_queue_head_t log_writer_wait;
187 wait_queue_head_t log_commit_wait[2];
188 struct list_head log_ctxs[2];
189 /* Used only for log trees of subvolumes, not for the log root tree */
190 atomic_t log_writers;
191 atomic_t log_commit[2];
192 /* Used only for log trees of subvolumes, not for the log root tree */
193 atomic_t log_batch;
194 /*
195 * Protected by the 'log_mutex' lock but can be read without holding
196 * that lock to avoid unnecessary lock contention, in which case it
197 * should be read using btrfs_get_root_log_transid() except if it's a
198 * log tree in which case it can be directly accessed. Updates to this
199 * field should always use btrfs_set_root_log_transid(), except for log
200 * trees where the field can be updated directly.
201 */
202 int log_transid;
203 /* No matter the commit succeeds or not*/
204 int log_transid_committed;
205 /*
206 * Just be updated when the commit succeeds. Use
207 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208 * to access this field.
209 */
210 int last_log_commit;
211 pid_t log_start_pid;
212
213 u64 last_trans;
214
215 u64 free_objectid;
216
217 struct btrfs_key defrag_progress;
218 struct btrfs_key defrag_max;
219
220 /* The dirty list is only used by non-shareable roots */
221 struct list_head dirty_list;
222
223 struct list_head root_list;
224
225 spinlock_t inode_lock;
226 /* red-black tree that keeps track of in-memory inodes */
227 struct rb_root inode_tree;
228
229 /*
230 * Xarray that keeps track of delayed nodes of every inode, protected
231 * by @inode_lock.
232 */
233 struct xarray delayed_nodes;
234 /*
235 * right now this just gets used so that a root has its own devid
236 * for stat. It may be used for more later
237 */
238 dev_t anon_dev;
239
240 spinlock_t root_item_lock;
241 refcount_t refs;
242
243 struct mutex delalloc_mutex;
244 spinlock_t delalloc_lock;
245 /*
246 * all of the inodes that have delalloc bytes. It is possible for
247 * this list to be empty even when there is still dirty data=ordered
248 * extents waiting to finish IO.
249 */
250 struct list_head delalloc_inodes;
251 struct list_head delalloc_root;
252 u64 nr_delalloc_inodes;
253
254 struct mutex ordered_extent_mutex;
255 /*
256 * this is used by the balancing code to wait for all the pending
257 * ordered extents
258 */
259 spinlock_t ordered_extent_lock;
260
261 /*
262 * all of the data=ordered extents pending writeback
263 * these can span multiple transactions and basically include
264 * every dirty data page that isn't from nodatacow
265 */
266 struct list_head ordered_extents;
267 struct list_head ordered_root;
268 u64 nr_ordered_extents;
269
270 /*
271 * Not empty if this subvolume root has gone through tree block swap
272 * (relocation)
273 *
274 * Will be used by reloc_control::dirty_subvol_roots.
275 */
276 struct list_head reloc_dirty_list;
277
278 /*
279 * Number of currently running SEND ioctls to prevent
280 * manipulation with the read-only status via SUBVOL_SETFLAGS
281 */
282 int send_in_progress;
283 /*
284 * Number of currently running deduplication operations that have a
285 * destination inode belonging to this root. Protected by the lock
286 * root_item_lock.
287 */
288 int dedupe_in_progress;
289 /* For exclusion of snapshot creation and nocow writes */
290 struct btrfs_drew_lock snapshot_lock;
291
292 atomic_t snapshot_force_cow;
293
294 /* For qgroup metadata reserved space */
295 spinlock_t qgroup_meta_rsv_lock;
296 u64 qgroup_meta_rsv_pertrans;
297 u64 qgroup_meta_rsv_prealloc;
298 wait_queue_head_t qgroup_flush_wait;
299
300 /* Number of active swapfiles */
301 atomic_t nr_swapfiles;
302
303 /* Record pairs of swapped blocks for qgroup */
304 struct btrfs_qgroup_swapped_blocks swapped_blocks;
305
306 /* Used only by log trees, when logging csum items */
307 struct extent_io_tree log_csum_range;
308
309 /* Used in simple quotas, track root during relocation. */
310 u64 relocation_src_root;
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313 u64 alloc_bytenr;
314#endif
315
316#ifdef CONFIG_BTRFS_DEBUG
317 struct list_head leak_list;
318#endif
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
322{
323 /* Byte-swap the constant at compile time, root_item::flags is LE */
324 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
328{
329 /* Byte-swap the constant at compile time, root_item::flags is LE */
330 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
334{
335 return root->root_key.objectid;
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340 return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
344{
345 WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
349{
350 return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
354{
355 WRITE_ONCE(root->last_log_commit, commit_id);
356}
357
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363 u64 disk_offset;
364 u64 disk_len;
365 u64 data_offset;
366 u64 data_len;
367 u64 file_offset;
368 /* Pointer to a file extent item of type regular or prealloc. */
369 char *extent_buf;
370 /*
371 * Set to true when attempting to replace a file range with a new extent
372 * described by this structure, set to false when attempting to clone an
373 * existing extent into a file range.
374 */
375 bool is_new_extent;
376 /* Indicate if we should update the inode's mtime and ctime. */
377 bool update_times;
378 /* Meaningful only if is_new_extent is true. */
379 int qgroup_reserved;
380 /*
381 * Meaningful only if is_new_extent is true.
382 * Used to track how many extent items we have already inserted in a
383 * subvolume tree that refer to the extent described by this structure,
384 * so that we know when to create a new delayed ref or update an existing
385 * one.
386 */
387 int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392 /* Input parameters */
393
394 /*
395 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396 * If 'replace_extent' is true, this must not be NULL. Also the path
397 * is always released except if 'replace_extent' is true and
398 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399 * the path is kept locked.
400 */
401 struct btrfs_path *path;
402 /* Start offset of the range to drop extents from */
403 u64 start;
404 /* End (exclusive, last byte + 1) of the range to drop extents from */
405 u64 end;
406 /* If true drop all the extent maps in the range */
407 bool drop_cache;
408 /*
409 * If true it means we want to insert a new extent after dropping all
410 * the extents in the range. If this is true, the 'extent_item_size'
411 * parameter must be set as well and the 'extent_inserted' field will
412 * be set to true by btrfs_drop_extents() if it could insert the new
413 * extent.
414 * Note: when this is set to true the path must not be NULL.
415 */
416 bool replace_extent;
417 /*
418 * Used if 'replace_extent' is true. Size of the file extent item to
419 * insert after dropping all existing extents in the range
420 */
421 u32 extent_item_size;
422
423 /* Output parameters */
424
425 /*
426 * Set to the minimum between the input parameter 'end' and the end
427 * (exclusive, last byte + 1) of the last dropped extent. This is always
428 * set even if btrfs_drop_extents() returns an error.
429 */
430 u64 drop_end;
431 /*
432 * The number of allocated bytes found in the range. This can be smaller
433 * than the range's length when there are holes in the range.
434 */
435 u64 bytes_found;
436 /*
437 * Only set if 'replace_extent' is true. Set to true if we were able
438 * to insert a replacement extent after dropping all extents in the
439 * range, otherwise set to false by btrfs_drop_extents().
440 * Also, if btrfs_drop_extents() has set this to true it means it
441 * returned with the path locked, otherwise if it has set this to
442 * false it has returned with the path released.
443 */
444 bool extent_inserted;
445};
446
447struct btrfs_file_private {
448 void *filldir_buf;
449 u64 last_index;
450 struct extent_state *llseek_cached_state;
451};
452
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
454{
455 return info->nodesize - sizeof(struct btrfs_header);
456}
457
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
459{
460 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
464{
465 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
466}
467
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
469{
470 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
471}
472
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474 ((bytes) >> (fs_info)->sectorsize_bits)
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
477{
478 return mapping_gfp_constraint(mapping, ~__GFP_FS);
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482 u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492 const struct btrfs_key *key, int *slot);
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
495
496#ifdef __LITTLE_ENDIAN
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503 const struct btrfs_key *k2)
504{
505 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
506
507 return btrfs_comp_cpu_keys(k1, k2);
508}
509
510#else
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514 const struct btrfs_key *k2)
515{
516 struct btrfs_key k1;
517
518 btrfs_disk_key_to_cpu(&k1, disk);
519
520 return btrfs_comp_cpu_keys(&k1, k2);
521}
522
523#endif
524
525int btrfs_previous_item(struct btrfs_root *root,
526 struct btrfs_path *path, u64 min_objectid,
527 int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529 struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531 struct btrfs_path *path,
532 const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535 struct btrfs_key *key, int lowest_level,
536 u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538 struct btrfs_path *path,
539 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541 int slot);
542
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root, struct extent_buffer *buf,
545 struct extent_buffer *parent, int parent_slot,
546 struct extent_buffer **cow_ret,
547 enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct extent_buffer *buf,
551 struct extent_buffer *parent, int parent_slot,
552 struct extent_buffer **cow_ret,
553 u64 search_start, u64 empty_size,
554 enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556 struct btrfs_root *root,
557 struct extent_buffer *buf,
558 struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560 struct btrfs_root *root,
561 struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563 struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565 struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569 struct btrfs_root *root,
570 struct btrfs_path *path,
571 const struct btrfs_key *new_key,
572 unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root,
575 struct btrfs_path *path,
576 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580 const struct btrfs_key *key, struct btrfs_path *p,
581 int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583 struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585 const struct btrfs_key *key,
586 struct btrfs_path *p, int find_higher,
587 int return_any);
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593 struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595 struct btrfs_root *root,
596 struct btrfs_path *path)
597{
598 return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606 /*
607 * Pointer to an array containing the keys of the items to insert (in
608 * sorted order).
609 */
610 const struct btrfs_key *keys;
611 /* Pointer to an array containing the data size for each item to insert. */
612 const u32 *data_sizes;
613 /*
614 * The sum of data sizes for all items. The caller can compute this while
615 * setting up the data_sizes array, so it ends up being more efficient
616 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617 * doing it, as it would avoid an extra loop over a potentially large
618 * array, and in the case of setup_item_for_insert(), we would be doing
619 * it while holding a write lock on a leaf and often on upper level nodes
620 * too, unnecessarily increasing the size of a critical section.
621 */
622 u32 total_data_size;
623 /* Size of the keys and data_sizes arrays (number of items in the batch). */
624 int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628 struct btrfs_root *root,
629 struct btrfs_path *path,
630 const struct btrfs_key *key,
631 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633 const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635 struct btrfs_root *root,
636 struct btrfs_path *path,
637 const struct btrfs_item_batch *batch);
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640 struct btrfs_root *root,
641 struct btrfs_path *path,
642 const struct btrfs_key *key,
643 u32 data_size)
644{
645 struct btrfs_item_batch batch;
646
647 batch.keys = key;
648 batch.data_sizes = &data_size;
649 batch.total_data_size = data_size;
650 batch.nr = 1;
651
652 return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656 u64 time_seq);
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659 struct btrfs_path *path);
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662 struct btrfs_path *path);
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
666 *
667 * @root: The root node of the tree.
668 * @key: The key we are looking for.
669 * @found_key: Will hold the found item.
670 * @path: Holds the current slot/leaf.
671 * @iter_ret: Contains the value returned from btrfs_search_slot or
672 * btrfs_get_next_valid_item, whichever was executed last.
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
684 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
685 (iter_ret) >= 0 && \
686 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687 (path)->slots[0]++ \
688 )
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
699{
700 return btrfs_next_old_leaf(root, path, 0);
701}
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
704{
705 return btrfs_next_old_item(root, p, 0);
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
708
709static inline int is_fstree(u64 rootid)
710{
711 if (rootid == BTRFS_FS_TREE_OBJECTID ||
712 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713 !btrfs_qgroup_level(rootid)))
714 return 1;
715 return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page) PagePrivate2(page)
736#define SetPageOrdered(page) SetPagePrivate2(page)
737#define ClearPageOrdered(page) ClearPagePrivate2(page)
738#define folio_test_ordered(folio) folio_test_private_2(folio)
739#define folio_set_ordered(folio) folio_set_private_2(folio)
740#define folio_clear_ordered(folio) folio_clear_private_2(folio)
741
742#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <trace/events/btrfs.h>
20#include <asm/unaligned.h>
21#include <linux/pagemap.h>
22#include <linux/btrfs.h>
23#include <linux/btrfs_tree.h>
24#include <linux/workqueue.h>
25#include <linux/security.h>
26#include <linux/sizes.h>
27#include <linux/dynamic_debug.h>
28#include <linux/refcount.h>
29#include <linux/crc32c.h>
30#include <linux/iomap.h>
31#include "extent-io-tree.h"
32#include "extent_io.h"
33#include "extent_map.h"
34#include "async-thread.h"
35#include "block-rsv.h"
36#include "locking.h"
37
38struct btrfs_trans_handle;
39struct btrfs_transaction;
40struct btrfs_pending_snapshot;
41struct btrfs_delayed_ref_root;
42struct btrfs_space_info;
43struct btrfs_block_group;
44extern struct kmem_cache *btrfs_trans_handle_cachep;
45extern struct kmem_cache *btrfs_bit_radix_cachep;
46extern struct kmem_cache *btrfs_path_cachep;
47extern struct kmem_cache *btrfs_free_space_cachep;
48extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49struct btrfs_ordered_sum;
50struct btrfs_ref;
51
52#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
53
54/*
55 * Maximum number of mirrors that can be available for all profiles counting
56 * the target device of dev-replace as one. During an active device replace
57 * procedure, the target device of the copy operation is a mirror for the
58 * filesystem data as well that can be used to read data in order to repair
59 * read errors on other disks.
60 *
61 * Current value is derived from RAID1C4 with 4 copies.
62 */
63#define BTRFS_MAX_MIRRORS (4 + 1)
64
65#define BTRFS_MAX_LEVEL 8
66
67#define BTRFS_OLDEST_GENERATION 0ULL
68
69/*
70 * we can actually store much bigger names, but lets not confuse the rest
71 * of linux
72 */
73#define BTRFS_NAME_LEN 255
74
75/*
76 * Theoretical limit is larger, but we keep this down to a sane
77 * value. That should limit greatly the possibility of collisions on
78 * inode ref items.
79 */
80#define BTRFS_LINK_MAX 65535U
81
82#define BTRFS_EMPTY_DIR_SIZE 0
83
84/* ioprio of readahead is set to idle */
85#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
86
87#define BTRFS_DIRTY_METADATA_THRESH SZ_32M
88
89/*
90 * Use large batch size to reduce overhead of metadata updates. On the reader
91 * side, we only read it when we are close to ENOSPC and the read overhead is
92 * mostly related to the number of CPUs, so it is OK to use arbitrary large
93 * value here.
94 */
95#define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
96
97#define BTRFS_MAX_EXTENT_SIZE SZ_128M
98
99/*
100 * Deltas are an effective way to populate global statistics. Give macro names
101 * to make it clear what we're doing. An example is discard_extents in
102 * btrfs_free_space_ctl.
103 */
104#define BTRFS_STAT_NR_ENTRIES 2
105#define BTRFS_STAT_CURR 0
106#define BTRFS_STAT_PREV 1
107
108/*
109 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
110 */
111static inline u32 count_max_extents(u64 size)
112{
113 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
114}
115
116static inline unsigned long btrfs_chunk_item_size(int num_stripes)
117{
118 BUG_ON(num_stripes == 0);
119 return sizeof(struct btrfs_chunk) +
120 sizeof(struct btrfs_stripe) * (num_stripes - 1);
121}
122
123/*
124 * Runtime (in-memory) states of filesystem
125 */
126enum {
127 /* Global indicator of serious filesystem errors */
128 BTRFS_FS_STATE_ERROR,
129 /*
130 * Filesystem is being remounted, allow to skip some operations, like
131 * defrag
132 */
133 BTRFS_FS_STATE_REMOUNTING,
134 /* Filesystem in RO mode */
135 BTRFS_FS_STATE_RO,
136 /* Track if a transaction abort has been reported on this filesystem */
137 BTRFS_FS_STATE_TRANS_ABORTED,
138 /*
139 * Bio operations should be blocked on this filesystem because a source
140 * or target device is being destroyed as part of a device replace
141 */
142 BTRFS_FS_STATE_DEV_REPLACING,
143 /* The btrfs_fs_info created for self-tests */
144 BTRFS_FS_STATE_DUMMY_FS_INFO,
145};
146
147#define BTRFS_BACKREF_REV_MAX 256
148#define BTRFS_BACKREF_REV_SHIFT 56
149#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
150 BTRFS_BACKREF_REV_SHIFT)
151
152#define BTRFS_OLD_BACKREF_REV 0
153#define BTRFS_MIXED_BACKREF_REV 1
154
155/*
156 * every tree block (leaf or node) starts with this header.
157 */
158struct btrfs_header {
159 /* these first four must match the super block */
160 u8 csum[BTRFS_CSUM_SIZE];
161 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
162 __le64 bytenr; /* which block this node is supposed to live in */
163 __le64 flags;
164
165 /* allowed to be different from the super from here on down */
166 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
167 __le64 generation;
168 __le64 owner;
169 __le32 nritems;
170 u8 level;
171} __attribute__ ((__packed__));
172
173/*
174 * this is a very generous portion of the super block, giving us
175 * room to translate 14 chunks with 3 stripes each.
176 */
177#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
178
179/*
180 * just in case we somehow lose the roots and are not able to mount,
181 * we store an array of the roots from previous transactions
182 * in the super.
183 */
184#define BTRFS_NUM_BACKUP_ROOTS 4
185struct btrfs_root_backup {
186 __le64 tree_root;
187 __le64 tree_root_gen;
188
189 __le64 chunk_root;
190 __le64 chunk_root_gen;
191
192 __le64 extent_root;
193 __le64 extent_root_gen;
194
195 __le64 fs_root;
196 __le64 fs_root_gen;
197
198 __le64 dev_root;
199 __le64 dev_root_gen;
200
201 __le64 csum_root;
202 __le64 csum_root_gen;
203
204 __le64 total_bytes;
205 __le64 bytes_used;
206 __le64 num_devices;
207 /* future */
208 __le64 unused_64[4];
209
210 u8 tree_root_level;
211 u8 chunk_root_level;
212 u8 extent_root_level;
213 u8 fs_root_level;
214 u8 dev_root_level;
215 u8 csum_root_level;
216 /* future and to align */
217 u8 unused_8[10];
218} __attribute__ ((__packed__));
219
220/*
221 * the super block basically lists the main trees of the FS
222 * it currently lacks any block count etc etc
223 */
224struct btrfs_super_block {
225 /* the first 4 fields must match struct btrfs_header */
226 u8 csum[BTRFS_CSUM_SIZE];
227 /* FS specific UUID, visible to user */
228 u8 fsid[BTRFS_FSID_SIZE];
229 __le64 bytenr; /* this block number */
230 __le64 flags;
231
232 /* allowed to be different from the btrfs_header from here own down */
233 __le64 magic;
234 __le64 generation;
235 __le64 root;
236 __le64 chunk_root;
237 __le64 log_root;
238
239 /* this will help find the new super based on the log root */
240 __le64 log_root_transid;
241 __le64 total_bytes;
242 __le64 bytes_used;
243 __le64 root_dir_objectid;
244 __le64 num_devices;
245 __le32 sectorsize;
246 __le32 nodesize;
247 __le32 __unused_leafsize;
248 __le32 stripesize;
249 __le32 sys_chunk_array_size;
250 __le64 chunk_root_generation;
251 __le64 compat_flags;
252 __le64 compat_ro_flags;
253 __le64 incompat_flags;
254 __le16 csum_type;
255 u8 root_level;
256 u8 chunk_root_level;
257 u8 log_root_level;
258 struct btrfs_dev_item dev_item;
259
260 char label[BTRFS_LABEL_SIZE];
261
262 __le64 cache_generation;
263 __le64 uuid_tree_generation;
264
265 /* the UUID written into btree blocks */
266 u8 metadata_uuid[BTRFS_FSID_SIZE];
267
268 /* future expansion */
269 __le64 reserved[28];
270 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
271 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
272} __attribute__ ((__packed__));
273
274/*
275 * Compat flags that we support. If any incompat flags are set other than the
276 * ones specified below then we will fail to mount
277 */
278#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
279#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
280#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
281
282#define BTRFS_FEATURE_COMPAT_RO_SUPP \
283 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
284 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
285
286#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
287#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
288
289#define BTRFS_FEATURE_INCOMPAT_SUPP \
290 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
291 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
292 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
293 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
294 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
295 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
296 BTRFS_FEATURE_INCOMPAT_RAID56 | \
297 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
298 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
299 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
300 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
301 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
302 BTRFS_FEATURE_INCOMPAT_ZONED)
303
304#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
305 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
306#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
307
308/*
309 * A leaf is full of items. offset and size tell us where to find
310 * the item in the leaf (relative to the start of the data area)
311 */
312struct btrfs_item {
313 struct btrfs_disk_key key;
314 __le32 offset;
315 __le32 size;
316} __attribute__ ((__packed__));
317
318/*
319 * leaves have an item area and a data area:
320 * [item0, item1....itemN] [free space] [dataN...data1, data0]
321 *
322 * The data is separate from the items to get the keys closer together
323 * during searches.
324 */
325struct btrfs_leaf {
326 struct btrfs_header header;
327 struct btrfs_item items[];
328} __attribute__ ((__packed__));
329
330/*
331 * all non-leaf blocks are nodes, they hold only keys and pointers to
332 * other blocks
333 */
334struct btrfs_key_ptr {
335 struct btrfs_disk_key key;
336 __le64 blockptr;
337 __le64 generation;
338} __attribute__ ((__packed__));
339
340struct btrfs_node {
341 struct btrfs_header header;
342 struct btrfs_key_ptr ptrs[];
343} __attribute__ ((__packed__));
344
345/* Read ahead values for struct btrfs_path.reada */
346enum {
347 READA_NONE,
348 READA_BACK,
349 READA_FORWARD,
350 /*
351 * Similar to READA_FORWARD but unlike it:
352 *
353 * 1) It will trigger readahead even for leaves that are not close to
354 * each other on disk;
355 * 2) It also triggers readahead for nodes;
356 * 3) During a search, even when a node or leaf is already in memory, it
357 * will still trigger readahead for other nodes and leaves that follow
358 * it.
359 *
360 * This is meant to be used only when we know we are iterating over the
361 * entire tree or a very large part of it.
362 */
363 READA_FORWARD_ALWAYS,
364};
365
366/*
367 * btrfs_paths remember the path taken from the root down to the leaf.
368 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
369 * to any other levels that are present.
370 *
371 * The slots array records the index of the item or block pointer
372 * used while walking the tree.
373 */
374struct btrfs_path {
375 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
376 int slots[BTRFS_MAX_LEVEL];
377 /* if there is real range locking, this locks field will change */
378 u8 locks[BTRFS_MAX_LEVEL];
379 u8 reada;
380 /* keep some upper locks as we walk down */
381 u8 lowest_level;
382
383 /*
384 * set by btrfs_split_item, tells search_slot to keep all locks
385 * and to force calls to keep space in the nodes
386 */
387 unsigned int search_for_split:1;
388 unsigned int keep_locks:1;
389 unsigned int skip_locking:1;
390 unsigned int search_commit_root:1;
391 unsigned int need_commit_sem:1;
392 unsigned int skip_release_on_error:1;
393 /*
394 * Indicate that new item (btrfs_search_slot) is extending already
395 * existing item and ins_len contains only the data size and not item
396 * header (ie. sizeof(struct btrfs_item) is not included).
397 */
398 unsigned int search_for_extension:1;
399};
400#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
401 sizeof(struct btrfs_item))
402struct btrfs_dev_replace {
403 u64 replace_state; /* see #define above */
404 time64_t time_started; /* seconds since 1-Jan-1970 */
405 time64_t time_stopped; /* seconds since 1-Jan-1970 */
406 atomic64_t num_write_errors;
407 atomic64_t num_uncorrectable_read_errors;
408
409 u64 cursor_left;
410 u64 committed_cursor_left;
411 u64 cursor_left_last_write_of_item;
412 u64 cursor_right;
413
414 u64 cont_reading_from_srcdev_mode; /* see #define above */
415
416 int is_valid;
417 int item_needs_writeback;
418 struct btrfs_device *srcdev;
419 struct btrfs_device *tgtdev;
420
421 struct mutex lock_finishing_cancel_unmount;
422 struct rw_semaphore rwsem;
423
424 struct btrfs_scrub_progress scrub_progress;
425
426 struct percpu_counter bio_counter;
427 wait_queue_head_t replace_wait;
428};
429
430/*
431 * free clusters are used to claim free space in relatively large chunks,
432 * allowing us to do less seeky writes. They are used for all metadata
433 * allocations. In ssd_spread mode they are also used for data allocations.
434 */
435struct btrfs_free_cluster {
436 spinlock_t lock;
437 spinlock_t refill_lock;
438 struct rb_root root;
439
440 /* largest extent in this cluster */
441 u64 max_size;
442
443 /* first extent starting offset */
444 u64 window_start;
445
446 /* We did a full search and couldn't create a cluster */
447 bool fragmented;
448
449 struct btrfs_block_group *block_group;
450 /*
451 * when a cluster is allocated from a block group, we put the
452 * cluster onto a list in the block group so that it can
453 * be freed before the block group is freed.
454 */
455 struct list_head block_group_list;
456};
457
458enum btrfs_caching_type {
459 BTRFS_CACHE_NO,
460 BTRFS_CACHE_STARTED,
461 BTRFS_CACHE_FAST,
462 BTRFS_CACHE_FINISHED,
463 BTRFS_CACHE_ERROR,
464};
465
466/*
467 * Tree to record all locked full stripes of a RAID5/6 block group
468 */
469struct btrfs_full_stripe_locks_tree {
470 struct rb_root root;
471 struct mutex lock;
472};
473
474/* Discard control. */
475/*
476 * Async discard uses multiple lists to differentiate the discard filter
477 * parameters. Index 0 is for completely free block groups where we need to
478 * ensure the entire block group is trimmed without being lossy. Indices
479 * afterwards represent monotonically decreasing discard filter sizes to
480 * prioritize what should be discarded next.
481 */
482#define BTRFS_NR_DISCARD_LISTS 3
483#define BTRFS_DISCARD_INDEX_UNUSED 0
484#define BTRFS_DISCARD_INDEX_START 1
485
486struct btrfs_discard_ctl {
487 struct workqueue_struct *discard_workers;
488 struct delayed_work work;
489 spinlock_t lock;
490 struct btrfs_block_group *block_group;
491 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
492 u64 prev_discard;
493 u64 prev_discard_time;
494 atomic_t discardable_extents;
495 atomic64_t discardable_bytes;
496 u64 max_discard_size;
497 u64 delay_ms;
498 u32 iops_limit;
499 u32 kbps_limit;
500 u64 discard_extent_bytes;
501 u64 discard_bitmap_bytes;
502 atomic64_t discard_bytes_saved;
503};
504
505enum btrfs_orphan_cleanup_state {
506 ORPHAN_CLEANUP_STARTED = 1,
507 ORPHAN_CLEANUP_DONE = 2,
508};
509
510void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
511
512/* fs_info */
513struct reloc_control;
514struct btrfs_device;
515struct btrfs_fs_devices;
516struct btrfs_balance_control;
517struct btrfs_delayed_root;
518
519/*
520 * Block group or device which contains an active swapfile. Used for preventing
521 * unsafe operations while a swapfile is active.
522 *
523 * These are sorted on (ptr, inode) (note that a block group or device can
524 * contain more than one swapfile). We compare the pointer values because we
525 * don't actually care what the object is, we just need a quick check whether
526 * the object exists in the rbtree.
527 */
528struct btrfs_swapfile_pin {
529 struct rb_node node;
530 void *ptr;
531 struct inode *inode;
532 /*
533 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
534 * points to a struct btrfs_device.
535 */
536 bool is_block_group;
537 /*
538 * Only used when 'is_block_group' is true and it is the number of
539 * extents used by a swapfile for this block group ('ptr' field).
540 */
541 int bg_extent_count;
542};
543
544bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
545
546enum {
547 BTRFS_FS_BARRIER,
548 BTRFS_FS_CLOSING_START,
549 BTRFS_FS_CLOSING_DONE,
550 BTRFS_FS_LOG_RECOVERING,
551 BTRFS_FS_OPEN,
552 BTRFS_FS_QUOTA_ENABLED,
553 BTRFS_FS_UPDATE_UUID_TREE_GEN,
554 BTRFS_FS_CREATING_FREE_SPACE_TREE,
555 BTRFS_FS_BTREE_ERR,
556 BTRFS_FS_LOG1_ERR,
557 BTRFS_FS_LOG2_ERR,
558 BTRFS_FS_QUOTA_OVERRIDE,
559 /* Used to record internally whether fs has been frozen */
560 BTRFS_FS_FROZEN,
561 /*
562 * Indicate that balance has been set up from the ioctl and is in the
563 * main phase. The fs_info::balance_ctl is initialized.
564 */
565 BTRFS_FS_BALANCE_RUNNING,
566
567 /*
568 * Indicate that relocation of a chunk has started, it's set per chunk
569 * and is toggled between chunks.
570 * Set, tested and cleared while holding fs_info::send_reloc_lock.
571 */
572 BTRFS_FS_RELOC_RUNNING,
573
574 /* Indicate that the cleaner thread is awake and doing something. */
575 BTRFS_FS_CLEANER_RUNNING,
576
577 /*
578 * The checksumming has an optimized version and is considered fast,
579 * so we don't need to offload checksums to workqueues.
580 */
581 BTRFS_FS_CSUM_IMPL_FAST,
582
583 /* Indicate that the discard workqueue can service discards. */
584 BTRFS_FS_DISCARD_RUNNING,
585
586 /* Indicate that we need to cleanup space cache v1 */
587 BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
588
589 /* Indicate that we can't trust the free space tree for caching yet */
590 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
591
592 /* Indicate whether there are any tree modification log users */
593 BTRFS_FS_TREE_MOD_LOG_USERS,
594
595#if BITS_PER_LONG == 32
596 /* Indicate if we have error/warn message printed on 32bit systems */
597 BTRFS_FS_32BIT_ERROR,
598 BTRFS_FS_32BIT_WARN,
599#endif
600};
601
602/*
603 * Exclusive operations (device replace, resize, device add/remove, balance)
604 */
605enum btrfs_exclusive_operation {
606 BTRFS_EXCLOP_NONE,
607 BTRFS_EXCLOP_BALANCE,
608 BTRFS_EXCLOP_DEV_ADD,
609 BTRFS_EXCLOP_DEV_REMOVE,
610 BTRFS_EXCLOP_DEV_REPLACE,
611 BTRFS_EXCLOP_RESIZE,
612 BTRFS_EXCLOP_SWAP_ACTIVATE,
613};
614
615struct btrfs_fs_info {
616 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
617 unsigned long flags;
618 struct btrfs_root *extent_root;
619 struct btrfs_root *tree_root;
620 struct btrfs_root *chunk_root;
621 struct btrfs_root *dev_root;
622 struct btrfs_root *fs_root;
623 struct btrfs_root *csum_root;
624 struct btrfs_root *quota_root;
625 struct btrfs_root *uuid_root;
626 struct btrfs_root *free_space_root;
627 struct btrfs_root *data_reloc_root;
628
629 /* the log root tree is a directory of all the other log roots */
630 struct btrfs_root *log_root_tree;
631
632 spinlock_t fs_roots_radix_lock;
633 struct radix_tree_root fs_roots_radix;
634
635 /* block group cache stuff */
636 spinlock_t block_group_cache_lock;
637 u64 first_logical_byte;
638 struct rb_root block_group_cache_tree;
639
640 /* keep track of unallocated space */
641 atomic64_t free_chunk_space;
642
643 /* Track ranges which are used by log trees blocks/logged data extents */
644 struct extent_io_tree excluded_extents;
645
646 /* logical->physical extent mapping */
647 struct extent_map_tree mapping_tree;
648
649 /*
650 * block reservation for extent, checksum, root tree and
651 * delayed dir index item
652 */
653 struct btrfs_block_rsv global_block_rsv;
654 /* block reservation for metadata operations */
655 struct btrfs_block_rsv trans_block_rsv;
656 /* block reservation for chunk tree */
657 struct btrfs_block_rsv chunk_block_rsv;
658 /* block reservation for delayed operations */
659 struct btrfs_block_rsv delayed_block_rsv;
660 /* block reservation for delayed refs */
661 struct btrfs_block_rsv delayed_refs_rsv;
662
663 struct btrfs_block_rsv empty_block_rsv;
664
665 u64 generation;
666 u64 last_trans_committed;
667 u64 avg_delayed_ref_runtime;
668
669 /*
670 * this is updated to the current trans every time a full commit
671 * is required instead of the faster short fsync log commits
672 */
673 u64 last_trans_log_full_commit;
674 unsigned long mount_opt;
675 /*
676 * Track requests for actions that need to be done during transaction
677 * commit (like for some mount options).
678 */
679 unsigned long pending_changes;
680 unsigned long compress_type:4;
681 unsigned int compress_level;
682 u32 commit_interval;
683 /*
684 * It is a suggestive number, the read side is safe even it gets a
685 * wrong number because we will write out the data into a regular
686 * extent. The write side(mount/remount) is under ->s_umount lock,
687 * so it is also safe.
688 */
689 u64 max_inline;
690
691 struct btrfs_transaction *running_transaction;
692 wait_queue_head_t transaction_throttle;
693 wait_queue_head_t transaction_wait;
694 wait_queue_head_t transaction_blocked_wait;
695 wait_queue_head_t async_submit_wait;
696
697 /*
698 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
699 * when they are updated.
700 *
701 * Because we do not clear the flags for ever, so we needn't use
702 * the lock on the read side.
703 *
704 * We also needn't use the lock when we mount the fs, because
705 * there is no other task which will update the flag.
706 */
707 spinlock_t super_lock;
708 struct btrfs_super_block *super_copy;
709 struct btrfs_super_block *super_for_commit;
710 struct super_block *sb;
711 struct inode *btree_inode;
712 struct mutex tree_log_mutex;
713 struct mutex transaction_kthread_mutex;
714 struct mutex cleaner_mutex;
715 struct mutex chunk_mutex;
716
717 /*
718 * this is taken to make sure we don't set block groups ro after
719 * the free space cache has been allocated on them
720 */
721 struct mutex ro_block_group_mutex;
722
723 /* this is used during read/modify/write to make sure
724 * no two ios are trying to mod the same stripe at the same
725 * time
726 */
727 struct btrfs_stripe_hash_table *stripe_hash_table;
728
729 /*
730 * this protects the ordered operations list only while we are
731 * processing all of the entries on it. This way we make
732 * sure the commit code doesn't find the list temporarily empty
733 * because another function happens to be doing non-waiting preflush
734 * before jumping into the main commit.
735 */
736 struct mutex ordered_operations_mutex;
737
738 struct rw_semaphore commit_root_sem;
739
740 struct rw_semaphore cleanup_work_sem;
741
742 struct rw_semaphore subvol_sem;
743
744 spinlock_t trans_lock;
745 /*
746 * the reloc mutex goes with the trans lock, it is taken
747 * during commit to protect us from the relocation code
748 */
749 struct mutex reloc_mutex;
750
751 struct list_head trans_list;
752 struct list_head dead_roots;
753 struct list_head caching_block_groups;
754
755 spinlock_t delayed_iput_lock;
756 struct list_head delayed_iputs;
757 atomic_t nr_delayed_iputs;
758 wait_queue_head_t delayed_iputs_wait;
759
760 atomic64_t tree_mod_seq;
761
762 /* this protects tree_mod_log and tree_mod_seq_list */
763 rwlock_t tree_mod_log_lock;
764 struct rb_root tree_mod_log;
765 struct list_head tree_mod_seq_list;
766
767 atomic_t async_delalloc_pages;
768
769 /*
770 * this is used to protect the following list -- ordered_roots.
771 */
772 spinlock_t ordered_root_lock;
773
774 /*
775 * all fs/file tree roots in which there are data=ordered extents
776 * pending writeback are added into this list.
777 *
778 * these can span multiple transactions and basically include
779 * every dirty data page that isn't from nodatacow
780 */
781 struct list_head ordered_roots;
782
783 struct mutex delalloc_root_mutex;
784 spinlock_t delalloc_root_lock;
785 /* all fs/file tree roots that have delalloc inodes. */
786 struct list_head delalloc_roots;
787
788 /*
789 * there is a pool of worker threads for checksumming during writes
790 * and a pool for checksumming after reads. This is because readers
791 * can run with FS locks held, and the writers may be waiting for
792 * those locks. We don't want ordering in the pending list to cause
793 * deadlocks, and so the two are serviced separately.
794 *
795 * A third pool does submit_bio to avoid deadlocking with the other
796 * two
797 */
798 struct btrfs_workqueue *workers;
799 struct btrfs_workqueue *delalloc_workers;
800 struct btrfs_workqueue *flush_workers;
801 struct btrfs_workqueue *endio_workers;
802 struct btrfs_workqueue *endio_meta_workers;
803 struct btrfs_workqueue *endio_raid56_workers;
804 struct btrfs_workqueue *rmw_workers;
805 struct btrfs_workqueue *endio_meta_write_workers;
806 struct btrfs_workqueue *endio_write_workers;
807 struct btrfs_workqueue *endio_freespace_worker;
808 struct btrfs_workqueue *caching_workers;
809 struct btrfs_workqueue *readahead_workers;
810
811 /*
812 * fixup workers take dirty pages that didn't properly go through
813 * the cow mechanism and make them safe to write. It happens
814 * for the sys_munmap function call path
815 */
816 struct btrfs_workqueue *fixup_workers;
817 struct btrfs_workqueue *delayed_workers;
818
819 struct task_struct *transaction_kthread;
820 struct task_struct *cleaner_kthread;
821 u32 thread_pool_size;
822
823 struct kobject *space_info_kobj;
824 struct kobject *qgroups_kobj;
825
826 /* used to keep from writing metadata until there is a nice batch */
827 struct percpu_counter dirty_metadata_bytes;
828 struct percpu_counter delalloc_bytes;
829 struct percpu_counter ordered_bytes;
830 s32 dirty_metadata_batch;
831 s32 delalloc_batch;
832
833 struct list_head dirty_cowonly_roots;
834
835 struct btrfs_fs_devices *fs_devices;
836
837 /*
838 * The space_info list is effectively read only after initial
839 * setup. It is populated at mount time and cleaned up after
840 * all block groups are removed. RCU is used to protect it.
841 */
842 struct list_head space_info;
843
844 struct btrfs_space_info *data_sinfo;
845
846 struct reloc_control *reloc_ctl;
847
848 /* data_alloc_cluster is only used in ssd_spread mode */
849 struct btrfs_free_cluster data_alloc_cluster;
850
851 /* all metadata allocations go through this cluster */
852 struct btrfs_free_cluster meta_alloc_cluster;
853
854 /* auto defrag inodes go here */
855 spinlock_t defrag_inodes_lock;
856 struct rb_root defrag_inodes;
857 atomic_t defrag_running;
858
859 /* Used to protect avail_{data, metadata, system}_alloc_bits */
860 seqlock_t profiles_lock;
861 /*
862 * these three are in extended format (availability of single
863 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
864 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
865 */
866 u64 avail_data_alloc_bits;
867 u64 avail_metadata_alloc_bits;
868 u64 avail_system_alloc_bits;
869
870 /* restriper state */
871 spinlock_t balance_lock;
872 struct mutex balance_mutex;
873 atomic_t balance_pause_req;
874 atomic_t balance_cancel_req;
875 struct btrfs_balance_control *balance_ctl;
876 wait_queue_head_t balance_wait_q;
877
878 /* Cancellation requests for chunk relocation */
879 atomic_t reloc_cancel_req;
880
881 u32 data_chunk_allocations;
882 u32 metadata_ratio;
883
884 void *bdev_holder;
885
886 /* private scrub information */
887 struct mutex scrub_lock;
888 atomic_t scrubs_running;
889 atomic_t scrub_pause_req;
890 atomic_t scrubs_paused;
891 atomic_t scrub_cancel_req;
892 wait_queue_head_t scrub_pause_wait;
893 /*
894 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
895 * running.
896 */
897 refcount_t scrub_workers_refcnt;
898 struct btrfs_workqueue *scrub_workers;
899 struct btrfs_workqueue *scrub_wr_completion_workers;
900 struct btrfs_workqueue *scrub_parity_workers;
901
902 struct btrfs_discard_ctl discard_ctl;
903
904#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
905 u32 check_integrity_print_mask;
906#endif
907 /* is qgroup tracking in a consistent state? */
908 u64 qgroup_flags;
909
910 /* holds configuration and tracking. Protected by qgroup_lock */
911 struct rb_root qgroup_tree;
912 spinlock_t qgroup_lock;
913
914 /*
915 * used to avoid frequently calling ulist_alloc()/ulist_free()
916 * when doing qgroup accounting, it must be protected by qgroup_lock.
917 */
918 struct ulist *qgroup_ulist;
919
920 /*
921 * Protect user change for quota operations. If a transaction is needed,
922 * it must be started before locking this lock.
923 */
924 struct mutex qgroup_ioctl_lock;
925
926 /* list of dirty qgroups to be written at next commit */
927 struct list_head dirty_qgroups;
928
929 /* used by qgroup for an efficient tree traversal */
930 u64 qgroup_seq;
931
932 /* qgroup rescan items */
933 struct mutex qgroup_rescan_lock; /* protects the progress item */
934 struct btrfs_key qgroup_rescan_progress;
935 struct btrfs_workqueue *qgroup_rescan_workers;
936 struct completion qgroup_rescan_completion;
937 struct btrfs_work qgroup_rescan_work;
938 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
939
940 /* filesystem state */
941 unsigned long fs_state;
942
943 struct btrfs_delayed_root *delayed_root;
944
945 /* readahead tree */
946 spinlock_t reada_lock;
947 struct radix_tree_root reada_tree;
948
949 /* readahead works cnt */
950 atomic_t reada_works_cnt;
951
952 /* Extent buffer radix tree */
953 spinlock_t buffer_lock;
954 /* Entries are eb->start / sectorsize */
955 struct radix_tree_root buffer_radix;
956
957 /* next backup root to be overwritten */
958 int backup_root_index;
959
960 /* device replace state */
961 struct btrfs_dev_replace dev_replace;
962
963 struct semaphore uuid_tree_rescan_sem;
964
965 /* Used to reclaim the metadata space in the background. */
966 struct work_struct async_reclaim_work;
967 struct work_struct async_data_reclaim_work;
968 struct work_struct preempt_reclaim_work;
969
970 /* Reclaim partially filled block groups in the background */
971 struct work_struct reclaim_bgs_work;
972 struct list_head reclaim_bgs;
973 int bg_reclaim_threshold;
974
975 spinlock_t unused_bgs_lock;
976 struct list_head unused_bgs;
977 struct mutex unused_bg_unpin_mutex;
978 /* Protect block groups that are going to be deleted */
979 struct mutex reclaim_bgs_lock;
980
981 /* Cached block sizes */
982 u32 nodesize;
983 u32 sectorsize;
984 /* ilog2 of sectorsize, use to avoid 64bit division */
985 u32 sectorsize_bits;
986 u32 csum_size;
987 u32 csums_per_leaf;
988 u32 stripesize;
989
990 /* Block groups and devices containing active swapfiles. */
991 spinlock_t swapfile_pins_lock;
992 struct rb_root swapfile_pins;
993
994 struct crypto_shash *csum_shash;
995
996 spinlock_t send_reloc_lock;
997 /*
998 * Number of send operations in progress.
999 * Updated while holding fs_info::send_reloc_lock.
1000 */
1001 int send_in_progress;
1002
1003 /* Type of exclusive operation running, protected by super_lock */
1004 enum btrfs_exclusive_operation exclusive_operation;
1005
1006 /*
1007 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1008 * if the mode is enabled
1009 */
1010 union {
1011 u64 zone_size;
1012 u64 zoned;
1013 };
1014
1015 /* Max size to emit ZONE_APPEND write command */
1016 u64 max_zone_append_size;
1017 struct mutex zoned_meta_io_lock;
1018 spinlock_t treelog_bg_lock;
1019 u64 treelog_bg;
1020
1021#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1022 spinlock_t ref_verify_lock;
1023 struct rb_root block_tree;
1024#endif
1025
1026#ifdef CONFIG_BTRFS_DEBUG
1027 struct kobject *debug_kobj;
1028 struct kobject *discard_debug_kobj;
1029 struct list_head allocated_roots;
1030
1031 spinlock_t eb_leak_lock;
1032 struct list_head allocated_ebs;
1033#endif
1034};
1035
1036static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1037{
1038 return sb->s_fs_info;
1039}
1040
1041/*
1042 * The state of btrfs root
1043 */
1044enum {
1045 /*
1046 * btrfs_record_root_in_trans is a multi-step process, and it can race
1047 * with the balancing code. But the race is very small, and only the
1048 * first time the root is added to each transaction. So IN_TRANS_SETUP
1049 * is used to tell us when more checks are required
1050 */
1051 BTRFS_ROOT_IN_TRANS_SETUP,
1052
1053 /*
1054 * Set if tree blocks of this root can be shared by other roots.
1055 * Only subvolume trees and their reloc trees have this bit set.
1056 * Conflicts with TRACK_DIRTY bit.
1057 *
1058 * This affects two things:
1059 *
1060 * - How balance works
1061 * For shareable roots, we need to use reloc tree and do path
1062 * replacement for balance, and need various pre/post hooks for
1063 * snapshot creation to handle them.
1064 *
1065 * While for non-shareable trees, we just simply do a tree search
1066 * with COW.
1067 *
1068 * - How dirty roots are tracked
1069 * For shareable roots, btrfs_record_root_in_trans() is needed to
1070 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
1071 * don't need to set this manually.
1072 */
1073 BTRFS_ROOT_SHAREABLE,
1074 BTRFS_ROOT_TRACK_DIRTY,
1075 BTRFS_ROOT_IN_RADIX,
1076 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1077 BTRFS_ROOT_DEFRAG_RUNNING,
1078 BTRFS_ROOT_FORCE_COW,
1079 BTRFS_ROOT_MULTI_LOG_TASKS,
1080 BTRFS_ROOT_DIRTY,
1081 BTRFS_ROOT_DELETING,
1082
1083 /*
1084 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1085 *
1086 * Set for the subvolume tree owning the reloc tree.
1087 */
1088 BTRFS_ROOT_DEAD_RELOC_TREE,
1089 /* Mark dead root stored on device whose cleanup needs to be resumed */
1090 BTRFS_ROOT_DEAD_TREE,
1091 /* The root has a log tree. Used for subvolume roots and the tree root. */
1092 BTRFS_ROOT_HAS_LOG_TREE,
1093 /* Qgroup flushing is in progress */
1094 BTRFS_ROOT_QGROUP_FLUSHING,
1095};
1096
1097/*
1098 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1099 * code. For detail check comment in fs/btrfs/qgroup.c.
1100 */
1101struct btrfs_qgroup_swapped_blocks {
1102 spinlock_t lock;
1103 /* RM_EMPTY_ROOT() of above blocks[] */
1104 bool swapped;
1105 struct rb_root blocks[BTRFS_MAX_LEVEL];
1106};
1107
1108/*
1109 * in ram representation of the tree. extent_root is used for all allocations
1110 * and for the extent tree extent_root root.
1111 */
1112struct btrfs_root {
1113 struct extent_buffer *node;
1114
1115 struct extent_buffer *commit_root;
1116 struct btrfs_root *log_root;
1117 struct btrfs_root *reloc_root;
1118
1119 unsigned long state;
1120 struct btrfs_root_item root_item;
1121 struct btrfs_key root_key;
1122 struct btrfs_fs_info *fs_info;
1123 struct extent_io_tree dirty_log_pages;
1124
1125 struct mutex objectid_mutex;
1126
1127 spinlock_t accounting_lock;
1128 struct btrfs_block_rsv *block_rsv;
1129
1130 struct mutex log_mutex;
1131 wait_queue_head_t log_writer_wait;
1132 wait_queue_head_t log_commit_wait[2];
1133 struct list_head log_ctxs[2];
1134 /* Used only for log trees of subvolumes, not for the log root tree */
1135 atomic_t log_writers;
1136 atomic_t log_commit[2];
1137 /* Used only for log trees of subvolumes, not for the log root tree */
1138 atomic_t log_batch;
1139 int log_transid;
1140 /* No matter the commit succeeds or not*/
1141 int log_transid_committed;
1142 /* Just be updated when the commit succeeds. */
1143 int last_log_commit;
1144 pid_t log_start_pid;
1145
1146 u64 last_trans;
1147
1148 u32 type;
1149
1150 u64 free_objectid;
1151
1152 struct btrfs_key defrag_progress;
1153 struct btrfs_key defrag_max;
1154
1155 /* The dirty list is only used by non-shareable roots */
1156 struct list_head dirty_list;
1157
1158 struct list_head root_list;
1159
1160 spinlock_t log_extents_lock[2];
1161 struct list_head logged_list[2];
1162
1163 int orphan_cleanup_state;
1164
1165 spinlock_t inode_lock;
1166 /* red-black tree that keeps track of in-memory inodes */
1167 struct rb_root inode_tree;
1168
1169 /*
1170 * radix tree that keeps track of delayed nodes of every inode,
1171 * protected by inode_lock
1172 */
1173 struct radix_tree_root delayed_nodes_tree;
1174 /*
1175 * right now this just gets used so that a root has its own devid
1176 * for stat. It may be used for more later
1177 */
1178 dev_t anon_dev;
1179
1180 spinlock_t root_item_lock;
1181 refcount_t refs;
1182
1183 struct mutex delalloc_mutex;
1184 spinlock_t delalloc_lock;
1185 /*
1186 * all of the inodes that have delalloc bytes. It is possible for
1187 * this list to be empty even when there is still dirty data=ordered
1188 * extents waiting to finish IO.
1189 */
1190 struct list_head delalloc_inodes;
1191 struct list_head delalloc_root;
1192 u64 nr_delalloc_inodes;
1193
1194 struct mutex ordered_extent_mutex;
1195 /*
1196 * this is used by the balancing code to wait for all the pending
1197 * ordered extents
1198 */
1199 spinlock_t ordered_extent_lock;
1200
1201 /*
1202 * all of the data=ordered extents pending writeback
1203 * these can span multiple transactions and basically include
1204 * every dirty data page that isn't from nodatacow
1205 */
1206 struct list_head ordered_extents;
1207 struct list_head ordered_root;
1208 u64 nr_ordered_extents;
1209
1210 /*
1211 * Not empty if this subvolume root has gone through tree block swap
1212 * (relocation)
1213 *
1214 * Will be used by reloc_control::dirty_subvol_roots.
1215 */
1216 struct list_head reloc_dirty_list;
1217
1218 /*
1219 * Number of currently running SEND ioctls to prevent
1220 * manipulation with the read-only status via SUBVOL_SETFLAGS
1221 */
1222 int send_in_progress;
1223 /*
1224 * Number of currently running deduplication operations that have a
1225 * destination inode belonging to this root. Protected by the lock
1226 * root_item_lock.
1227 */
1228 int dedupe_in_progress;
1229 /* For exclusion of snapshot creation and nocow writes */
1230 struct btrfs_drew_lock snapshot_lock;
1231
1232 atomic_t snapshot_force_cow;
1233
1234 /* For qgroup metadata reserved space */
1235 spinlock_t qgroup_meta_rsv_lock;
1236 u64 qgroup_meta_rsv_pertrans;
1237 u64 qgroup_meta_rsv_prealloc;
1238 wait_queue_head_t qgroup_flush_wait;
1239
1240 /* Number of active swapfiles */
1241 atomic_t nr_swapfiles;
1242
1243 /* Record pairs of swapped blocks for qgroup */
1244 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1245
1246 /* Used only by log trees, when logging csum items */
1247 struct extent_io_tree log_csum_range;
1248
1249#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1250 u64 alloc_bytenr;
1251#endif
1252
1253#ifdef CONFIG_BTRFS_DEBUG
1254 struct list_head leak_list;
1255#endif
1256};
1257
1258/*
1259 * Structure that conveys information about an extent that is going to replace
1260 * all the extents in a file range.
1261 */
1262struct btrfs_replace_extent_info {
1263 u64 disk_offset;
1264 u64 disk_len;
1265 u64 data_offset;
1266 u64 data_len;
1267 u64 file_offset;
1268 /* Pointer to a file extent item of type regular or prealloc. */
1269 char *extent_buf;
1270 /*
1271 * Set to true when attempting to replace a file range with a new extent
1272 * described by this structure, set to false when attempting to clone an
1273 * existing extent into a file range.
1274 */
1275 bool is_new_extent;
1276 /* Meaningful only if is_new_extent is true. */
1277 int qgroup_reserved;
1278 /*
1279 * Meaningful only if is_new_extent is true.
1280 * Used to track how many extent items we have already inserted in a
1281 * subvolume tree that refer to the extent described by this structure,
1282 * so that we know when to create a new delayed ref or update an existing
1283 * one.
1284 */
1285 int insertions;
1286};
1287
1288/* Arguments for btrfs_drop_extents() */
1289struct btrfs_drop_extents_args {
1290 /* Input parameters */
1291
1292 /*
1293 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1294 * If 'replace_extent' is true, this must not be NULL. Also the path
1295 * is always released except if 'replace_extent' is true and
1296 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1297 * the path is kept locked.
1298 */
1299 struct btrfs_path *path;
1300 /* Start offset of the range to drop extents from */
1301 u64 start;
1302 /* End (exclusive, last byte + 1) of the range to drop extents from */
1303 u64 end;
1304 /* If true drop all the extent maps in the range */
1305 bool drop_cache;
1306 /*
1307 * If true it means we want to insert a new extent after dropping all
1308 * the extents in the range. If this is true, the 'extent_item_size'
1309 * parameter must be set as well and the 'extent_inserted' field will
1310 * be set to true by btrfs_drop_extents() if it could insert the new
1311 * extent.
1312 * Note: when this is set to true the path must not be NULL.
1313 */
1314 bool replace_extent;
1315 /*
1316 * Used if 'replace_extent' is true. Size of the file extent item to
1317 * insert after dropping all existing extents in the range
1318 */
1319 u32 extent_item_size;
1320
1321 /* Output parameters */
1322
1323 /*
1324 * Set to the minimum between the input parameter 'end' and the end
1325 * (exclusive, last byte + 1) of the last dropped extent. This is always
1326 * set even if btrfs_drop_extents() returns an error.
1327 */
1328 u64 drop_end;
1329 /*
1330 * The number of allocated bytes found in the range. This can be smaller
1331 * than the range's length when there are holes in the range.
1332 */
1333 u64 bytes_found;
1334 /*
1335 * Only set if 'replace_extent' is true. Set to true if we were able
1336 * to insert a replacement extent after dropping all extents in the
1337 * range, otherwise set to false by btrfs_drop_extents().
1338 * Also, if btrfs_drop_extents() has set this to true it means it
1339 * returned with the path locked, otherwise if it has set this to
1340 * false it has returned with the path released.
1341 */
1342 bool extent_inserted;
1343};
1344
1345struct btrfs_file_private {
1346 void *filldir_buf;
1347};
1348
1349
1350static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1351{
1352
1353 return info->nodesize - sizeof(struct btrfs_header);
1354}
1355
1356#define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1357
1358static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1359{
1360 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1361}
1362
1363static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1364{
1365 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1366}
1367
1368#define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1369 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
1370static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1371{
1372 return BTRFS_MAX_ITEM_SIZE(info) -
1373 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1374}
1375
1376static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1377{
1378 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1379}
1380
1381/*
1382 * Flags for mount options.
1383 *
1384 * Note: don't forget to add new options to btrfs_show_options()
1385 */
1386enum {
1387 BTRFS_MOUNT_NODATASUM = (1UL << 0),
1388 BTRFS_MOUNT_NODATACOW = (1UL << 1),
1389 BTRFS_MOUNT_NOBARRIER = (1UL << 2),
1390 BTRFS_MOUNT_SSD = (1UL << 3),
1391 BTRFS_MOUNT_DEGRADED = (1UL << 4),
1392 BTRFS_MOUNT_COMPRESS = (1UL << 5),
1393 BTRFS_MOUNT_NOTREELOG = (1UL << 6),
1394 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
1395 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
1396 BTRFS_MOUNT_NOSSD = (1UL << 9),
1397 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
1398 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
1399 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
1400 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
1401 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
1402 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
1403 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
1404 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
1405 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
1406 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
1407 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
1408 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
1409 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
1410 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
1411 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
1412 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
1413 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
1414 BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
1415 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
1416 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
1417 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
1418};
1419
1420#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1421#define BTRFS_DEFAULT_MAX_INLINE (2048)
1422
1423#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1424#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1425#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1426#define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1427 BTRFS_MOUNT_##opt)
1428
1429#define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1430do { \
1431 if (!btrfs_test_opt(fs_info, opt)) \
1432 btrfs_info(fs_info, fmt, ##args); \
1433 btrfs_set_opt(fs_info->mount_opt, opt); \
1434} while (0)
1435
1436#define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1437do { \
1438 if (btrfs_test_opt(fs_info, opt)) \
1439 btrfs_info(fs_info, fmt, ##args); \
1440 btrfs_clear_opt(fs_info->mount_opt, opt); \
1441} while (0)
1442
1443/*
1444 * Requests for changes that need to be done during transaction commit.
1445 *
1446 * Internal mount options that are used for special handling of the real
1447 * mount options (eg. cannot be set during remount and have to be set during
1448 * transaction commit)
1449 */
1450
1451#define BTRFS_PENDING_COMMIT (0)
1452
1453#define btrfs_test_pending(info, opt) \
1454 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1455#define btrfs_set_pending(info, opt) \
1456 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1457#define btrfs_clear_pending(info, opt) \
1458 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1459
1460/*
1461 * Helpers for setting pending mount option changes.
1462 *
1463 * Expects corresponding macros
1464 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1465 */
1466#define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1467do { \
1468 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1469 btrfs_info((info), fmt, ##args); \
1470 btrfs_set_pending((info), SET_##opt); \
1471 btrfs_clear_pending((info), CLEAR_##opt); \
1472 } \
1473} while(0)
1474
1475#define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1476do { \
1477 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1478 btrfs_info((info), fmt, ##args); \
1479 btrfs_set_pending((info), CLEAR_##opt); \
1480 btrfs_clear_pending((info), SET_##opt); \
1481 } \
1482} while(0)
1483
1484/*
1485 * Inode flags
1486 */
1487#define BTRFS_INODE_NODATASUM (1 << 0)
1488#define BTRFS_INODE_NODATACOW (1 << 1)
1489#define BTRFS_INODE_READONLY (1 << 2)
1490#define BTRFS_INODE_NOCOMPRESS (1 << 3)
1491#define BTRFS_INODE_PREALLOC (1 << 4)
1492#define BTRFS_INODE_SYNC (1 << 5)
1493#define BTRFS_INODE_IMMUTABLE (1 << 6)
1494#define BTRFS_INODE_APPEND (1 << 7)
1495#define BTRFS_INODE_NODUMP (1 << 8)
1496#define BTRFS_INODE_NOATIME (1 << 9)
1497#define BTRFS_INODE_DIRSYNC (1 << 10)
1498#define BTRFS_INODE_COMPRESS (1 << 11)
1499
1500#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
1501
1502#define BTRFS_INODE_FLAG_MASK \
1503 (BTRFS_INODE_NODATASUM | \
1504 BTRFS_INODE_NODATACOW | \
1505 BTRFS_INODE_READONLY | \
1506 BTRFS_INODE_NOCOMPRESS | \
1507 BTRFS_INODE_PREALLOC | \
1508 BTRFS_INODE_SYNC | \
1509 BTRFS_INODE_IMMUTABLE | \
1510 BTRFS_INODE_APPEND | \
1511 BTRFS_INODE_NODUMP | \
1512 BTRFS_INODE_NOATIME | \
1513 BTRFS_INODE_DIRSYNC | \
1514 BTRFS_INODE_COMPRESS | \
1515 BTRFS_INODE_ROOT_ITEM_INIT)
1516
1517struct btrfs_map_token {
1518 struct extent_buffer *eb;
1519 char *kaddr;
1520 unsigned long offset;
1521};
1522
1523#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1524 ((bytes) >> (fs_info)->sectorsize_bits)
1525
1526static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1527 struct extent_buffer *eb)
1528{
1529 token->eb = eb;
1530 token->kaddr = page_address(eb->pages[0]);
1531 token->offset = 0;
1532}
1533
1534/* some macros to generate set/get functions for the struct fields. This
1535 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1536 * one for u8:
1537 */
1538#define le8_to_cpu(v) (v)
1539#define cpu_to_le8(v) (v)
1540#define __le8 u8
1541
1542static inline u8 get_unaligned_le8(const void *p)
1543{
1544 return *(u8 *)p;
1545}
1546
1547static inline void put_unaligned_le8(u8 val, void *p)
1548{
1549 *(u8 *)p = val;
1550}
1551
1552#define read_eb_member(eb, ptr, type, member, result) (\
1553 read_extent_buffer(eb, (char *)(result), \
1554 ((unsigned long)(ptr)) + \
1555 offsetof(type, member), \
1556 sizeof(((type *)0)->member)))
1557
1558#define write_eb_member(eb, ptr, type, member, result) (\
1559 write_extent_buffer(eb, (char *)(result), \
1560 ((unsigned long)(ptr)) + \
1561 offsetof(type, member), \
1562 sizeof(((type *)0)->member)))
1563
1564#define DECLARE_BTRFS_SETGET_BITS(bits) \
1565u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1566 const void *ptr, unsigned long off); \
1567void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1568 const void *ptr, unsigned long off, \
1569 u##bits val); \
1570u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1571 const void *ptr, unsigned long off); \
1572void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1573 unsigned long off, u##bits val);
1574
1575DECLARE_BTRFS_SETGET_BITS(8)
1576DECLARE_BTRFS_SETGET_BITS(16)
1577DECLARE_BTRFS_SETGET_BITS(32)
1578DECLARE_BTRFS_SETGET_BITS(64)
1579
1580#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1581static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1582 const type *s) \
1583{ \
1584 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1585 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1586} \
1587static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1588 u##bits val) \
1589{ \
1590 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1591 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1592} \
1593static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1594 const type *s) \
1595{ \
1596 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1597 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1598} \
1599static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1600 type *s, u##bits val) \
1601{ \
1602 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1603 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1604}
1605
1606#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1607static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1608{ \
1609 const type *p = page_address(eb->pages[0]) + \
1610 offset_in_page(eb->start); \
1611 return get_unaligned_le##bits(&p->member); \
1612} \
1613static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1614 u##bits val) \
1615{ \
1616 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1617 put_unaligned_le##bits(val, &p->member); \
1618}
1619
1620#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1621static inline u##bits btrfs_##name(const type *s) \
1622{ \
1623 return get_unaligned_le##bits(&s->member); \
1624} \
1625static inline void btrfs_set_##name(type *s, u##bits val) \
1626{ \
1627 put_unaligned_le##bits(val, &s->member); \
1628}
1629
1630static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1631 struct btrfs_dev_item *s)
1632{
1633 BUILD_BUG_ON(sizeof(u64) !=
1634 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1635 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1636 total_bytes));
1637}
1638static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1639 struct btrfs_dev_item *s,
1640 u64 val)
1641{
1642 BUILD_BUG_ON(sizeof(u64) !=
1643 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1644 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1645 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1646}
1647
1648
1649BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1650BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1651BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1652BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1653BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1654 start_offset, 64);
1655BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1656BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1657BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1658BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1659BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1660BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1661
1662BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1663BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1664 total_bytes, 64);
1665BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1666 bytes_used, 64);
1667BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1668 io_align, 32);
1669BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1670 io_width, 32);
1671BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1672 sector_size, 32);
1673BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1674BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1675 dev_group, 32);
1676BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1677 seek_speed, 8);
1678BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1679 bandwidth, 8);
1680BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1681 generation, 64);
1682
1683static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1684{
1685 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1686}
1687
1688static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1689{
1690 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1691}
1692
1693BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1694BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1695BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1696BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1697BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1698BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1699BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1700BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1701BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1702BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1703BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1704
1705static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1706{
1707 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1708}
1709
1710BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1711BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1712BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1713 stripe_len, 64);
1714BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1715 io_align, 32);
1716BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1717 io_width, 32);
1718BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1719 sector_size, 32);
1720BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1721BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1722 num_stripes, 16);
1723BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1724 sub_stripes, 16);
1725BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1726BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1727
1728static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1729 int nr)
1730{
1731 unsigned long offset = (unsigned long)c;
1732 offset += offsetof(struct btrfs_chunk, stripe);
1733 offset += nr * sizeof(struct btrfs_stripe);
1734 return (struct btrfs_stripe *)offset;
1735}
1736
1737static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1738{
1739 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1740}
1741
1742static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1743 struct btrfs_chunk *c, int nr)
1744{
1745 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1746}
1747
1748static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1749 struct btrfs_chunk *c, int nr)
1750{
1751 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1752}
1753
1754/* struct btrfs_block_group_item */
1755BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1756 used, 64);
1757BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1758 used, 64);
1759BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1760 struct btrfs_block_group_item, chunk_objectid, 64);
1761
1762BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1763 struct btrfs_block_group_item, chunk_objectid, 64);
1764BTRFS_SETGET_FUNCS(block_group_flags,
1765 struct btrfs_block_group_item, flags, 64);
1766BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1767 struct btrfs_block_group_item, flags, 64);
1768
1769/* struct btrfs_free_space_info */
1770BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1771 extent_count, 32);
1772BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1773
1774/* struct btrfs_inode_ref */
1775BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1776BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1777
1778/* struct btrfs_inode_extref */
1779BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1780 parent_objectid, 64);
1781BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1782 name_len, 16);
1783BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1784
1785/* struct btrfs_inode_item */
1786BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1787BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1788BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1789BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1790BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1791BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1792BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1793BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1794BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1795BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1796BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1797BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1798BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1799 generation, 64);
1800BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1801 sequence, 64);
1802BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1803 transid, 64);
1804BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1805BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1806 nbytes, 64);
1807BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1808 block_group, 64);
1809BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1810BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1811BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1812BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1813BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1814BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1815BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1816BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1817BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1818BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1819
1820/* struct btrfs_dev_extent */
1821BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1822 chunk_tree, 64);
1823BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1824 chunk_objectid, 64);
1825BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1826 chunk_offset, 64);
1827BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1828BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1829BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1830 generation, 64);
1831BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1832
1833BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1834
1835static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1836 struct btrfs_tree_block_info *item,
1837 struct btrfs_disk_key *key)
1838{
1839 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1840}
1841
1842static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1843 struct btrfs_tree_block_info *item,
1844 struct btrfs_disk_key *key)
1845{
1846 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1847}
1848
1849BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1850 root, 64);
1851BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1852 objectid, 64);
1853BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1854 offset, 64);
1855BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1856 count, 32);
1857
1858BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1859 count, 32);
1860
1861BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1862 type, 8);
1863BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1864 offset, 64);
1865
1866static inline u32 btrfs_extent_inline_ref_size(int type)
1867{
1868 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1869 type == BTRFS_SHARED_BLOCK_REF_KEY)
1870 return sizeof(struct btrfs_extent_inline_ref);
1871 if (type == BTRFS_SHARED_DATA_REF_KEY)
1872 return sizeof(struct btrfs_shared_data_ref) +
1873 sizeof(struct btrfs_extent_inline_ref);
1874 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1875 return sizeof(struct btrfs_extent_data_ref) +
1876 offsetof(struct btrfs_extent_inline_ref, offset);
1877 return 0;
1878}
1879
1880/* struct btrfs_node */
1881BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1882BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1883BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1884 blockptr, 64);
1885BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1886 generation, 64);
1887
1888static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1889{
1890 unsigned long ptr;
1891 ptr = offsetof(struct btrfs_node, ptrs) +
1892 sizeof(struct btrfs_key_ptr) * nr;
1893 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1894}
1895
1896static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1897 int nr, u64 val)
1898{
1899 unsigned long ptr;
1900 ptr = offsetof(struct btrfs_node, ptrs) +
1901 sizeof(struct btrfs_key_ptr) * nr;
1902 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1903}
1904
1905static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1906{
1907 unsigned long ptr;
1908 ptr = offsetof(struct btrfs_node, ptrs) +
1909 sizeof(struct btrfs_key_ptr) * nr;
1910 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1911}
1912
1913static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1914 int nr, u64 val)
1915{
1916 unsigned long ptr;
1917 ptr = offsetof(struct btrfs_node, ptrs) +
1918 sizeof(struct btrfs_key_ptr) * nr;
1919 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1920}
1921
1922static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1923{
1924 return offsetof(struct btrfs_node, ptrs) +
1925 sizeof(struct btrfs_key_ptr) * nr;
1926}
1927
1928void btrfs_node_key(const struct extent_buffer *eb,
1929 struct btrfs_disk_key *disk_key, int nr);
1930
1931static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1932 struct btrfs_disk_key *disk_key, int nr)
1933{
1934 unsigned long ptr;
1935 ptr = btrfs_node_key_ptr_offset(nr);
1936 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1937 struct btrfs_key_ptr, key, disk_key);
1938}
1939
1940/* struct btrfs_item */
1941BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1942BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1943BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1944BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1945
1946static inline unsigned long btrfs_item_nr_offset(int nr)
1947{
1948 return offsetof(struct btrfs_leaf, items) +
1949 sizeof(struct btrfs_item) * nr;
1950}
1951
1952static inline struct btrfs_item *btrfs_item_nr(int nr)
1953{
1954 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1955}
1956
1957static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1958 struct btrfs_item *item)
1959{
1960 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1961}
1962
1963static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1964{
1965 return btrfs_item_end(eb, btrfs_item_nr(nr));
1966}
1967
1968static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1969{
1970 return btrfs_item_offset(eb, btrfs_item_nr(nr));
1971}
1972
1973static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1974{
1975 return btrfs_item_size(eb, btrfs_item_nr(nr));
1976}
1977
1978static inline void btrfs_item_key(const struct extent_buffer *eb,
1979 struct btrfs_disk_key *disk_key, int nr)
1980{
1981 struct btrfs_item *item = btrfs_item_nr(nr);
1982 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1983}
1984
1985static inline void btrfs_set_item_key(struct extent_buffer *eb,
1986 struct btrfs_disk_key *disk_key, int nr)
1987{
1988 struct btrfs_item *item = btrfs_item_nr(nr);
1989 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1990}
1991
1992BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1993
1994/*
1995 * struct btrfs_root_ref
1996 */
1997BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1998BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1999BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2000
2001/* struct btrfs_dir_item */
2002BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2003BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2004BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2005BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2006BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2007BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2008 data_len, 16);
2009BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2010 name_len, 16);
2011BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2012 transid, 64);
2013
2014static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2015 const struct btrfs_dir_item *item,
2016 struct btrfs_disk_key *key)
2017{
2018 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2019}
2020
2021static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2022 struct btrfs_dir_item *item,
2023 const struct btrfs_disk_key *key)
2024{
2025 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2026}
2027
2028BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2029 num_entries, 64);
2030BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2031 num_bitmaps, 64);
2032BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2033 generation, 64);
2034
2035static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2036 const struct btrfs_free_space_header *h,
2037 struct btrfs_disk_key *key)
2038{
2039 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2040}
2041
2042static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2043 struct btrfs_free_space_header *h,
2044 const struct btrfs_disk_key *key)
2045{
2046 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2047}
2048
2049/* struct btrfs_disk_key */
2050BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2051 objectid, 64);
2052BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2053BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2054
2055#ifdef __LITTLE_ENDIAN
2056
2057/*
2058 * Optimized helpers for little-endian architectures where CPU and on-disk
2059 * structures have the same endianness and we can skip conversions.
2060 */
2061
2062static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2063 const struct btrfs_disk_key *disk_key)
2064{
2065 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2066}
2067
2068static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2069 const struct btrfs_key *cpu_key)
2070{
2071 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2072}
2073
2074static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2075 struct btrfs_key *cpu_key, int nr)
2076{
2077 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2078
2079 btrfs_node_key(eb, disk_key, nr);
2080}
2081
2082static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2083 struct btrfs_key *cpu_key, int nr)
2084{
2085 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2086
2087 btrfs_item_key(eb, disk_key, nr);
2088}
2089
2090static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2091 const struct btrfs_dir_item *item,
2092 struct btrfs_key *cpu_key)
2093{
2094 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2095
2096 btrfs_dir_item_key(eb, item, disk_key);
2097}
2098
2099#else
2100
2101static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2102 const struct btrfs_disk_key *disk)
2103{
2104 cpu->offset = le64_to_cpu(disk->offset);
2105 cpu->type = disk->type;
2106 cpu->objectid = le64_to_cpu(disk->objectid);
2107}
2108
2109static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2110 const struct btrfs_key *cpu)
2111{
2112 disk->offset = cpu_to_le64(cpu->offset);
2113 disk->type = cpu->type;
2114 disk->objectid = cpu_to_le64(cpu->objectid);
2115}
2116
2117static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2118 struct btrfs_key *key, int nr)
2119{
2120 struct btrfs_disk_key disk_key;
2121 btrfs_node_key(eb, &disk_key, nr);
2122 btrfs_disk_key_to_cpu(key, &disk_key);
2123}
2124
2125static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2126 struct btrfs_key *key, int nr)
2127{
2128 struct btrfs_disk_key disk_key;
2129 btrfs_item_key(eb, &disk_key, nr);
2130 btrfs_disk_key_to_cpu(key, &disk_key);
2131}
2132
2133static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2134 const struct btrfs_dir_item *item,
2135 struct btrfs_key *key)
2136{
2137 struct btrfs_disk_key disk_key;
2138 btrfs_dir_item_key(eb, item, &disk_key);
2139 btrfs_disk_key_to_cpu(key, &disk_key);
2140}
2141
2142#endif
2143
2144/* struct btrfs_header */
2145BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2146BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2147 generation, 64);
2148BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2149BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2150BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2151BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2152BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2153 generation, 64);
2154BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2155BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2156 nritems, 32);
2157BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2158
2159static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2160{
2161 return (btrfs_header_flags(eb) & flag) == flag;
2162}
2163
2164static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2165{
2166 u64 flags = btrfs_header_flags(eb);
2167 btrfs_set_header_flags(eb, flags | flag);
2168}
2169
2170static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2171{
2172 u64 flags = btrfs_header_flags(eb);
2173 btrfs_set_header_flags(eb, flags & ~flag);
2174}
2175
2176static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2177{
2178 u64 flags = btrfs_header_flags(eb);
2179 return flags >> BTRFS_BACKREF_REV_SHIFT;
2180}
2181
2182static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2183 int rev)
2184{
2185 u64 flags = btrfs_header_flags(eb);
2186 flags &= ~BTRFS_BACKREF_REV_MASK;
2187 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2188 btrfs_set_header_flags(eb, flags);
2189}
2190
2191static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2192{
2193 return btrfs_header_level(eb) == 0;
2194}
2195
2196/* struct btrfs_root_item */
2197BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2198 generation, 64);
2199BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2200BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2201BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2202
2203BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2204 generation, 64);
2205BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2206BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2207BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2208BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2209BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2210BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2211BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2212BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2213BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2214 last_snapshot, 64);
2215BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2216 generation_v2, 64);
2217BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2218 ctransid, 64);
2219BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2220 otransid, 64);
2221BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2222 stransid, 64);
2223BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2224 rtransid, 64);
2225
2226static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2227{
2228 /* Byte-swap the constant at compile time, root_item::flags is LE */
2229 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2230}
2231
2232static inline bool btrfs_root_dead(const struct btrfs_root *root)
2233{
2234 /* Byte-swap the constant at compile time, root_item::flags is LE */
2235 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2236}
2237
2238/* struct btrfs_root_backup */
2239BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2240 tree_root, 64);
2241BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2242 tree_root_gen, 64);
2243BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2244 tree_root_level, 8);
2245
2246BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2247 chunk_root, 64);
2248BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2249 chunk_root_gen, 64);
2250BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2251 chunk_root_level, 8);
2252
2253BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2254 extent_root, 64);
2255BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2256 extent_root_gen, 64);
2257BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2258 extent_root_level, 8);
2259
2260BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2261 fs_root, 64);
2262BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2263 fs_root_gen, 64);
2264BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2265 fs_root_level, 8);
2266
2267BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2268 dev_root, 64);
2269BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2270 dev_root_gen, 64);
2271BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2272 dev_root_level, 8);
2273
2274BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2275 csum_root, 64);
2276BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2277 csum_root_gen, 64);
2278BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2279 csum_root_level, 8);
2280BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2281 total_bytes, 64);
2282BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2283 bytes_used, 64);
2284BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2285 num_devices, 64);
2286
2287/* struct btrfs_balance_item */
2288BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2289
2290static inline void btrfs_balance_data(const struct extent_buffer *eb,
2291 const struct btrfs_balance_item *bi,
2292 struct btrfs_disk_balance_args *ba)
2293{
2294 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2295}
2296
2297static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2298 struct btrfs_balance_item *bi,
2299 const struct btrfs_disk_balance_args *ba)
2300{
2301 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2302}
2303
2304static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2305 const struct btrfs_balance_item *bi,
2306 struct btrfs_disk_balance_args *ba)
2307{
2308 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2309}
2310
2311static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2312 struct btrfs_balance_item *bi,
2313 const struct btrfs_disk_balance_args *ba)
2314{
2315 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2316}
2317
2318static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2319 const struct btrfs_balance_item *bi,
2320 struct btrfs_disk_balance_args *ba)
2321{
2322 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2323}
2324
2325static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2326 struct btrfs_balance_item *bi,
2327 const struct btrfs_disk_balance_args *ba)
2328{
2329 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2330}
2331
2332static inline void
2333btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2334 const struct btrfs_disk_balance_args *disk)
2335{
2336 memset(cpu, 0, sizeof(*cpu));
2337
2338 cpu->profiles = le64_to_cpu(disk->profiles);
2339 cpu->usage = le64_to_cpu(disk->usage);
2340 cpu->devid = le64_to_cpu(disk->devid);
2341 cpu->pstart = le64_to_cpu(disk->pstart);
2342 cpu->pend = le64_to_cpu(disk->pend);
2343 cpu->vstart = le64_to_cpu(disk->vstart);
2344 cpu->vend = le64_to_cpu(disk->vend);
2345 cpu->target = le64_to_cpu(disk->target);
2346 cpu->flags = le64_to_cpu(disk->flags);
2347 cpu->limit = le64_to_cpu(disk->limit);
2348 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2349 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2350}
2351
2352static inline void
2353btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2354 const struct btrfs_balance_args *cpu)
2355{
2356 memset(disk, 0, sizeof(*disk));
2357
2358 disk->profiles = cpu_to_le64(cpu->profiles);
2359 disk->usage = cpu_to_le64(cpu->usage);
2360 disk->devid = cpu_to_le64(cpu->devid);
2361 disk->pstart = cpu_to_le64(cpu->pstart);
2362 disk->pend = cpu_to_le64(cpu->pend);
2363 disk->vstart = cpu_to_le64(cpu->vstart);
2364 disk->vend = cpu_to_le64(cpu->vend);
2365 disk->target = cpu_to_le64(cpu->target);
2366 disk->flags = cpu_to_le64(cpu->flags);
2367 disk->limit = cpu_to_le64(cpu->limit);
2368 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2369 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2370}
2371
2372/* struct btrfs_super_block */
2373BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2374BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2375BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2376 generation, 64);
2377BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2378BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2379 struct btrfs_super_block, sys_chunk_array_size, 32);
2380BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2381 struct btrfs_super_block, chunk_root_generation, 64);
2382BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2383 root_level, 8);
2384BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2385 chunk_root, 64);
2386BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2387 chunk_root_level, 8);
2388BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2389 log_root, 64);
2390BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2391 log_root_transid, 64);
2392BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2393 log_root_level, 8);
2394BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2395 total_bytes, 64);
2396BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2397 bytes_used, 64);
2398BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2399 sectorsize, 32);
2400BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2401 nodesize, 32);
2402BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2403 stripesize, 32);
2404BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2405 root_dir_objectid, 64);
2406BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2407 num_devices, 64);
2408BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2409 compat_flags, 64);
2410BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2411 compat_ro_flags, 64);
2412BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2413 incompat_flags, 64);
2414BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2415 csum_type, 16);
2416BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2417 cache_generation, 64);
2418BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2419BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2420 uuid_tree_generation, 64);
2421
2422int btrfs_super_csum_size(const struct btrfs_super_block *s);
2423const char *btrfs_super_csum_name(u16 csum_type);
2424const char *btrfs_super_csum_driver(u16 csum_type);
2425size_t __attribute_const__ btrfs_get_num_csums(void);
2426
2427
2428/*
2429 * The leaf data grows from end-to-front in the node.
2430 * this returns the address of the start of the last item,
2431 * which is the stop of the leaf data stack
2432 */
2433static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2434{
2435 u32 nr = btrfs_header_nritems(leaf);
2436
2437 if (nr == 0)
2438 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2439 return btrfs_item_offset_nr(leaf, nr - 1);
2440}
2441
2442/* struct btrfs_file_extent_item */
2443BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2444 type, 8);
2445BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2446 struct btrfs_file_extent_item, disk_bytenr, 64);
2447BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2448 struct btrfs_file_extent_item, offset, 64);
2449BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2450 struct btrfs_file_extent_item, generation, 64);
2451BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2452 struct btrfs_file_extent_item, num_bytes, 64);
2453BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2454 struct btrfs_file_extent_item, ram_bytes, 64);
2455BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2456 struct btrfs_file_extent_item, disk_num_bytes, 64);
2457BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2458 struct btrfs_file_extent_item, compression, 8);
2459
2460static inline unsigned long
2461btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2462{
2463 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2464}
2465
2466static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2467{
2468 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2469}
2470
2471BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2472BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2473 disk_bytenr, 64);
2474BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2475 generation, 64);
2476BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2477 disk_num_bytes, 64);
2478BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2479 offset, 64);
2480BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2481 num_bytes, 64);
2482BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2483 ram_bytes, 64);
2484BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2485 compression, 8);
2486BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2487 encryption, 8);
2488BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2489 other_encoding, 16);
2490
2491/*
2492 * this returns the number of bytes used by the item on disk, minus the
2493 * size of any extent headers. If a file is compressed on disk, this is
2494 * the compressed size
2495 */
2496static inline u32 btrfs_file_extent_inline_item_len(
2497 const struct extent_buffer *eb,
2498 struct btrfs_item *e)
2499{
2500 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2501}
2502
2503/* btrfs_qgroup_status_item */
2504BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2505 generation, 64);
2506BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2507 version, 64);
2508BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2509 flags, 64);
2510BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2511 rescan, 64);
2512
2513/* btrfs_qgroup_info_item */
2514BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2515 generation, 64);
2516BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2517BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2518 rfer_cmpr, 64);
2519BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2520BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2521 excl_cmpr, 64);
2522
2523BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2524 struct btrfs_qgroup_info_item, generation, 64);
2525BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2526 rfer, 64);
2527BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2528 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2529BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2530 excl, 64);
2531BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2532 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2533
2534/* btrfs_qgroup_limit_item */
2535BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2536 flags, 64);
2537BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2538 max_rfer, 64);
2539BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2540 max_excl, 64);
2541BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2542 rsv_rfer, 64);
2543BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2544 rsv_excl, 64);
2545
2546/* btrfs_dev_replace_item */
2547BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2548 struct btrfs_dev_replace_item, src_devid, 64);
2549BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2550 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2551 64);
2552BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2553 replace_state, 64);
2554BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2555 time_started, 64);
2556BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2557 time_stopped, 64);
2558BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2559 num_write_errors, 64);
2560BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2561 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2562 64);
2563BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2564 cursor_left, 64);
2565BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2566 cursor_right, 64);
2567
2568BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2569 struct btrfs_dev_replace_item, src_devid, 64);
2570BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2571 struct btrfs_dev_replace_item,
2572 cont_reading_from_srcdev_mode, 64);
2573BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2574 struct btrfs_dev_replace_item, replace_state, 64);
2575BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2576 struct btrfs_dev_replace_item, time_started, 64);
2577BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2578 struct btrfs_dev_replace_item, time_stopped, 64);
2579BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2580 struct btrfs_dev_replace_item, num_write_errors, 64);
2581BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2582 struct btrfs_dev_replace_item,
2583 num_uncorrectable_read_errors, 64);
2584BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2585 struct btrfs_dev_replace_item, cursor_left, 64);
2586BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2587 struct btrfs_dev_replace_item, cursor_right, 64);
2588
2589/* helper function to cast into the data area of the leaf. */
2590#define btrfs_item_ptr(leaf, slot, type) \
2591 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2592 btrfs_item_offset_nr(leaf, slot)))
2593
2594#define btrfs_item_ptr_offset(leaf, slot) \
2595 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2596 btrfs_item_offset_nr(leaf, slot)))
2597
2598static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2599{
2600 return crc32c(crc, address, length);
2601}
2602
2603static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2604{
2605 put_unaligned_le32(~crc, result);
2606}
2607
2608static inline u64 btrfs_name_hash(const char *name, int len)
2609{
2610 return crc32c((u32)~1, name, len);
2611}
2612
2613/*
2614 * Figure the key offset of an extended inode ref
2615 */
2616static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2617 int len)
2618{
2619 return (u64) crc32c(parent_objectid, name, len);
2620}
2621
2622static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2623{
2624 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2625}
2626
2627/* extent-tree.c */
2628
2629enum btrfs_inline_ref_type {
2630 BTRFS_REF_TYPE_INVALID,
2631 BTRFS_REF_TYPE_BLOCK,
2632 BTRFS_REF_TYPE_DATA,
2633 BTRFS_REF_TYPE_ANY,
2634};
2635
2636int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2637 struct btrfs_extent_inline_ref *iref,
2638 enum btrfs_inline_ref_type is_data);
2639u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2640
2641/*
2642 * Take the number of bytes to be checksummmed and figure out how many leaves
2643 * it would require to store the csums for that many bytes.
2644 */
2645static inline u64 btrfs_csum_bytes_to_leaves(
2646 const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2647{
2648 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2649
2650 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2651}
2652
2653/*
2654 * Use this if we would be adding new items, as we could split nodes as we cow
2655 * down the tree.
2656 */
2657static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2658 unsigned num_items)
2659{
2660 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2661}
2662
2663/*
2664 * Doing a truncate or a modification won't result in new nodes or leaves, just
2665 * what we need for COW.
2666 */
2667static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2668 unsigned num_items)
2669{
2670 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2671}
2672
2673int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2674 u64 start, u64 num_bytes);
2675void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2676int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2677 unsigned long count);
2678void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2679 struct btrfs_delayed_ref_root *delayed_refs,
2680 struct btrfs_delayed_ref_head *head);
2681int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2682int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2683 struct btrfs_fs_info *fs_info, u64 bytenr,
2684 u64 offset, int metadata, u64 *refs, u64 *flags);
2685int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2686 int reserved);
2687int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2688 u64 bytenr, u64 num_bytes);
2689int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2690int btrfs_cross_ref_exist(struct btrfs_root *root,
2691 u64 objectid, u64 offset, u64 bytenr, bool strict);
2692struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2693 struct btrfs_root *root,
2694 u64 parent, u64 root_objectid,
2695 const struct btrfs_disk_key *key,
2696 int level, u64 hint,
2697 u64 empty_size,
2698 enum btrfs_lock_nesting nest);
2699void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2700 struct btrfs_root *root,
2701 struct extent_buffer *buf,
2702 u64 parent, int last_ref);
2703int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2704 struct btrfs_root *root, u64 owner,
2705 u64 offset, u64 ram_bytes,
2706 struct btrfs_key *ins);
2707int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2708 u64 root_objectid, u64 owner, u64 offset,
2709 struct btrfs_key *ins);
2710int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2711 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2712 struct btrfs_key *ins, int is_data, int delalloc);
2713int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2714 struct extent_buffer *buf, int full_backref);
2715int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2716 struct extent_buffer *buf, int full_backref);
2717int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2718 struct extent_buffer *eb, u64 flags,
2719 int level, int is_data);
2720int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2721
2722int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2723 u64 start, u64 len, int delalloc);
2724int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2725 u64 len);
2726int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2727int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2728 struct btrfs_ref *generic_ref);
2729
2730void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2731
2732/*
2733 * Different levels for to flush space when doing space reservations.
2734 *
2735 * The higher the level, the more methods we try to reclaim space.
2736 */
2737enum btrfs_reserve_flush_enum {
2738 /* If we are in the transaction, we can't flush anything.*/
2739 BTRFS_RESERVE_NO_FLUSH,
2740
2741 /*
2742 * Flush space by:
2743 * - Running delayed inode items
2744 * - Allocating a new chunk
2745 */
2746 BTRFS_RESERVE_FLUSH_LIMIT,
2747
2748 /*
2749 * Flush space by:
2750 * - Running delayed inode items
2751 * - Running delayed refs
2752 * - Running delalloc and waiting for ordered extents
2753 * - Allocating a new chunk
2754 */
2755 BTRFS_RESERVE_FLUSH_EVICT,
2756
2757 /*
2758 * Flush space by above mentioned methods and by:
2759 * - Running delayed iputs
2760 * - Committing transaction
2761 *
2762 * Can be interrupted by a fatal signal.
2763 */
2764 BTRFS_RESERVE_FLUSH_DATA,
2765 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2766 BTRFS_RESERVE_FLUSH_ALL,
2767
2768 /*
2769 * Pretty much the same as FLUSH_ALL, but can also steal space from
2770 * global rsv.
2771 *
2772 * Can be interrupted by a fatal signal.
2773 */
2774 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2775};
2776
2777enum btrfs_flush_state {
2778 FLUSH_DELAYED_ITEMS_NR = 1,
2779 FLUSH_DELAYED_ITEMS = 2,
2780 FLUSH_DELAYED_REFS_NR = 3,
2781 FLUSH_DELAYED_REFS = 4,
2782 FLUSH_DELALLOC = 5,
2783 FLUSH_DELALLOC_WAIT = 6,
2784 FLUSH_DELALLOC_FULL = 7,
2785 ALLOC_CHUNK = 8,
2786 ALLOC_CHUNK_FORCE = 9,
2787 RUN_DELAYED_IPUTS = 10,
2788 COMMIT_TRANS = 11,
2789};
2790
2791int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2792 struct btrfs_block_rsv *rsv,
2793 int nitems, bool use_global_rsv);
2794void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2795 struct btrfs_block_rsv *rsv);
2796void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2797
2798int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2799u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2800int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2801 u64 start, u64 end);
2802int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2803 u64 num_bytes, u64 *actual_bytes);
2804int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2805
2806int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2807int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2808 struct btrfs_fs_info *fs_info);
2809int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2810void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2811void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2812
2813/* ctree.c */
2814int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2815 int *slot);
2816int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2817int btrfs_previous_item(struct btrfs_root *root,
2818 struct btrfs_path *path, u64 min_objectid,
2819 int type);
2820int btrfs_previous_extent_item(struct btrfs_root *root,
2821 struct btrfs_path *path, u64 min_objectid);
2822void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2823 struct btrfs_path *path,
2824 const struct btrfs_key *new_key);
2825struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2826int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2827 struct btrfs_key *key, int lowest_level,
2828 u64 min_trans);
2829int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2830 struct btrfs_path *path,
2831 u64 min_trans);
2832struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2833 int slot);
2834
2835int btrfs_cow_block(struct btrfs_trans_handle *trans,
2836 struct btrfs_root *root, struct extent_buffer *buf,
2837 struct extent_buffer *parent, int parent_slot,
2838 struct extent_buffer **cow_ret,
2839 enum btrfs_lock_nesting nest);
2840int btrfs_copy_root(struct btrfs_trans_handle *trans,
2841 struct btrfs_root *root,
2842 struct extent_buffer *buf,
2843 struct extent_buffer **cow_ret, u64 new_root_objectid);
2844int btrfs_block_can_be_shared(struct btrfs_root *root,
2845 struct extent_buffer *buf);
2846void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2847void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2848int btrfs_split_item(struct btrfs_trans_handle *trans,
2849 struct btrfs_root *root,
2850 struct btrfs_path *path,
2851 const struct btrfs_key *new_key,
2852 unsigned long split_offset);
2853int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2854 struct btrfs_root *root,
2855 struct btrfs_path *path,
2856 const struct btrfs_key *new_key);
2857int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2858 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2859int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2860 const struct btrfs_key *key, struct btrfs_path *p,
2861 int ins_len, int cow);
2862int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2863 struct btrfs_path *p, u64 time_seq);
2864int btrfs_search_slot_for_read(struct btrfs_root *root,
2865 const struct btrfs_key *key,
2866 struct btrfs_path *p, int find_higher,
2867 int return_any);
2868int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root, struct extent_buffer *parent,
2870 int start_slot, u64 *last_ret,
2871 struct btrfs_key *progress);
2872void btrfs_release_path(struct btrfs_path *p);
2873struct btrfs_path *btrfs_alloc_path(void);
2874void btrfs_free_path(struct btrfs_path *p);
2875
2876int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2877 struct btrfs_path *path, int slot, int nr);
2878static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2879 struct btrfs_root *root,
2880 struct btrfs_path *path)
2881{
2882 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2883}
2884
2885void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2886 const struct btrfs_key *cpu_key, u32 *data_size,
2887 int nr);
2888int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2889 const struct btrfs_key *key, void *data, u32 data_size);
2890int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2891 struct btrfs_root *root,
2892 struct btrfs_path *path,
2893 const struct btrfs_key *cpu_key, u32 *data_size,
2894 int nr);
2895
2896static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2897 struct btrfs_root *root,
2898 struct btrfs_path *path,
2899 const struct btrfs_key *key,
2900 u32 data_size)
2901{
2902 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
2903}
2904
2905int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2906int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2907int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2908 u64 time_seq);
2909static inline int btrfs_next_old_item(struct btrfs_root *root,
2910 struct btrfs_path *p, u64 time_seq)
2911{
2912 ++p->slots[0];
2913 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2914 return btrfs_next_old_leaf(root, p, time_seq);
2915 return 0;
2916}
2917static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2918{
2919 return btrfs_next_old_item(root, p, 0);
2920}
2921int btrfs_leaf_free_space(struct extent_buffer *leaf);
2922int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
2923 int for_reloc);
2924int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root,
2926 struct extent_buffer *node,
2927 struct extent_buffer *parent);
2928static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2929{
2930 /*
2931 * Do it this way so we only ever do one test_bit in the normal case.
2932 */
2933 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2934 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2935 return 2;
2936 return 1;
2937 }
2938 return 0;
2939}
2940
2941/*
2942 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2943 * anything except sleeping. This function is used to check the status of
2944 * the fs.
2945 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
2946 * since setting and checking for SB_RDONLY in the superblock's flags is not
2947 * atomic.
2948 */
2949static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2950{
2951 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
2952 btrfs_fs_closing(fs_info);
2953}
2954
2955static inline void btrfs_set_sb_rdonly(struct super_block *sb)
2956{
2957 sb->s_flags |= SB_RDONLY;
2958 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
2959}
2960
2961static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
2962{
2963 sb->s_flags &= ~SB_RDONLY;
2964 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
2965}
2966
2967/* root-item.c */
2968int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2969 u64 ref_id, u64 dirid, u64 sequence, const char *name,
2970 int name_len);
2971int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2972 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
2973 int name_len);
2974int btrfs_del_root(struct btrfs_trans_handle *trans,
2975 const struct btrfs_key *key);
2976int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2977 const struct btrfs_key *key,
2978 struct btrfs_root_item *item);
2979int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
2980 struct btrfs_root *root,
2981 struct btrfs_key *key,
2982 struct btrfs_root_item *item);
2983int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
2984 struct btrfs_path *path, struct btrfs_root_item *root_item,
2985 struct btrfs_key *root_key);
2986int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
2987void btrfs_set_root_node(struct btrfs_root_item *item,
2988 struct extent_buffer *node);
2989void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2990void btrfs_update_root_times(struct btrfs_trans_handle *trans,
2991 struct btrfs_root *root);
2992
2993/* uuid-tree.c */
2994int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2995 u64 subid);
2996int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2997 u64 subid);
2998int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
2999
3000/* dir-item.c */
3001int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3002 const char *name, int name_len);
3003int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3004 int name_len, struct btrfs_inode *dir,
3005 struct btrfs_key *location, u8 type, u64 index);
3006struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3007 struct btrfs_root *root,
3008 struct btrfs_path *path, u64 dir,
3009 const char *name, int name_len,
3010 int mod);
3011struct btrfs_dir_item *
3012btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3013 struct btrfs_root *root,
3014 struct btrfs_path *path, u64 dir,
3015 u64 objectid, const char *name, int name_len,
3016 int mod);
3017struct btrfs_dir_item *
3018btrfs_search_dir_index_item(struct btrfs_root *root,
3019 struct btrfs_path *path, u64 dirid,
3020 const char *name, int name_len);
3021int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3022 struct btrfs_root *root,
3023 struct btrfs_path *path,
3024 struct btrfs_dir_item *di);
3025int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3026 struct btrfs_root *root,
3027 struct btrfs_path *path, u64 objectid,
3028 const char *name, u16 name_len,
3029 const void *data, u16 data_len);
3030struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3031 struct btrfs_root *root,
3032 struct btrfs_path *path, u64 dir,
3033 const char *name, u16 name_len,
3034 int mod);
3035struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3036 struct btrfs_path *path,
3037 const char *name,
3038 int name_len);
3039
3040/* orphan.c */
3041int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3042 struct btrfs_root *root, u64 offset);
3043int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3044 struct btrfs_root *root, u64 offset);
3045int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3046
3047/* inode-item.c */
3048int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3049 struct btrfs_root *root,
3050 const char *name, int name_len,
3051 u64 inode_objectid, u64 ref_objectid, u64 index);
3052int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3053 struct btrfs_root *root,
3054 const char *name, int name_len,
3055 u64 inode_objectid, u64 ref_objectid, u64 *index);
3056int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3057 struct btrfs_root *root,
3058 struct btrfs_path *path, u64 objectid);
3059int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3060 *root, struct btrfs_path *path,
3061 struct btrfs_key *location, int mod);
3062
3063struct btrfs_inode_extref *
3064btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3065 struct btrfs_root *root,
3066 struct btrfs_path *path,
3067 const char *name, int name_len,
3068 u64 inode_objectid, u64 ref_objectid, int ins_len,
3069 int cow);
3070
3071struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
3072 int slot, const char *name,
3073 int name_len);
3074struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
3075 struct extent_buffer *leaf, int slot, u64 ref_objectid,
3076 const char *name, int name_len);
3077/* file-item.c */
3078struct btrfs_dio_private;
3079int btrfs_del_csums(struct btrfs_trans_handle *trans,
3080 struct btrfs_root *root, u64 bytenr, u64 len);
3081blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3082int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3083 struct btrfs_root *root,
3084 u64 objectid, u64 pos,
3085 u64 disk_offset, u64 disk_num_bytes,
3086 u64 num_bytes, u64 offset, u64 ram_bytes,
3087 u8 compression, u8 encryption, u16 other_encoding);
3088int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3089 struct btrfs_root *root,
3090 struct btrfs_path *path, u64 objectid,
3091 u64 bytenr, int mod);
3092int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3093 struct btrfs_root *root,
3094 struct btrfs_ordered_sum *sums);
3095blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3096 u64 file_start, int contig);
3097int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3098 struct list_head *list, int search_commit);
3099void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3100 const struct btrfs_path *path,
3101 struct btrfs_file_extent_item *fi,
3102 const bool new_inline,
3103 struct extent_map *em);
3104int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3105 u64 len);
3106int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3107 u64 len);
3108void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3109u64 btrfs_file_extent_end(const struct btrfs_path *path);
3110
3111/* inode.c */
3112blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3113 int mirror_num, unsigned long bio_flags);
3114unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3115 struct page *page, u64 start, u64 end);
3116struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3117 u64 start, u64 len);
3118noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3119 u64 *orig_start, u64 *orig_block_len,
3120 u64 *ram_bytes, bool strict);
3121
3122void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3123 struct btrfs_inode *inode);
3124struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3125int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3126int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3127 struct btrfs_root *root,
3128 struct btrfs_inode *dir, struct btrfs_inode *inode,
3129 const char *name, int name_len);
3130int btrfs_add_link(struct btrfs_trans_handle *trans,
3131 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3132 const char *name, int name_len, int add_backref, u64 index);
3133int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3134int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3135 int front);
3136int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3137 struct btrfs_root *root,
3138 struct btrfs_inode *inode, u64 new_size,
3139 u32 min_type, u64 *extents_found);
3140
3141int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3142int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3143 bool in_reclaim_context);
3144int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3145 unsigned int extra_bits,
3146 struct extent_state **cached_state);
3147int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3148 struct btrfs_root *new_root,
3149 struct btrfs_root *parent_root);
3150 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3151 unsigned *bits);
3152void btrfs_clear_delalloc_extent(struct inode *inode,
3153 struct extent_state *state, unsigned *bits);
3154void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3155 struct extent_state *other);
3156void btrfs_split_delalloc_extent(struct inode *inode,
3157 struct extent_state *orig, u64 split);
3158int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
3159 unsigned long bio_flags);
3160void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3161vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3162int btrfs_readpage(struct file *file, struct page *page);
3163void btrfs_evict_inode(struct inode *inode);
3164int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3165struct inode *btrfs_alloc_inode(struct super_block *sb);
3166void btrfs_destroy_inode(struct inode *inode);
3167void btrfs_free_inode(struct inode *inode);
3168int btrfs_drop_inode(struct inode *inode);
3169int __init btrfs_init_cachep(void);
3170void __cold btrfs_destroy_cachep(void);
3171struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3172 struct btrfs_root *root, struct btrfs_path *path);
3173struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3174struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3175 struct page *page, size_t pg_offset,
3176 u64 start, u64 end);
3177int btrfs_update_inode(struct btrfs_trans_handle *trans,
3178 struct btrfs_root *root, struct btrfs_inode *inode);
3179int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3180 struct btrfs_root *root, struct btrfs_inode *inode);
3181int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3182 struct btrfs_inode *inode);
3183int btrfs_orphan_cleanup(struct btrfs_root *root);
3184int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3185void btrfs_add_delayed_iput(struct inode *inode);
3186void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3187int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3188int btrfs_prealloc_file_range(struct inode *inode, int mode,
3189 u64 start, u64 num_bytes, u64 min_size,
3190 loff_t actual_len, u64 *alloc_hint);
3191int btrfs_prealloc_file_range_trans(struct inode *inode,
3192 struct btrfs_trans_handle *trans, int mode,
3193 u64 start, u64 num_bytes, u64 min_size,
3194 loff_t actual_len, u64 *alloc_hint);
3195int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3196 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3197 struct writeback_control *wbc);
3198int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end);
3199void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3200 struct page *page, u64 start,
3201 u64 end, int uptodate);
3202extern const struct dentry_operations btrfs_dentry_operations;
3203extern const struct iomap_ops btrfs_dio_iomap_ops;
3204extern const struct iomap_dio_ops btrfs_dio_ops;
3205
3206/* Inode locking type flags, by default the exclusive lock is taken */
3207#define BTRFS_ILOCK_SHARED (1U << 0)
3208#define BTRFS_ILOCK_TRY (1U << 1)
3209#define BTRFS_ILOCK_MMAP (1U << 2)
3210
3211int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3212void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3213void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3214 const u64 add_bytes,
3215 const u64 del_bytes);
3216
3217/* ioctl.c */
3218long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3219long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3220int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3221int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3222 struct dentry *dentry, struct fileattr *fa);
3223int btrfs_ioctl_get_supported_features(void __user *arg);
3224void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3225int __pure btrfs_is_empty_uuid(u8 *uuid);
3226int btrfs_defrag_file(struct inode *inode, struct file *file,
3227 struct btrfs_ioctl_defrag_range_args *range,
3228 u64 newer_than, unsigned long max_pages);
3229void btrfs_get_block_group_info(struct list_head *groups_list,
3230 struct btrfs_ioctl_space_info *space);
3231void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3232 struct btrfs_ioctl_balance_args *bargs);
3233bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3234 enum btrfs_exclusive_operation type);
3235bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3236 enum btrfs_exclusive_operation type);
3237void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3238void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3239
3240/* file.c */
3241int __init btrfs_auto_defrag_init(void);
3242void __cold btrfs_auto_defrag_exit(void);
3243int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3244 struct btrfs_inode *inode);
3245int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3246void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3247int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3248void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3249 int skip_pinned);
3250extern const struct file_operations btrfs_file_operations;
3251int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3252 struct btrfs_root *root, struct btrfs_inode *inode,
3253 struct btrfs_drop_extents_args *args);
3254int btrfs_replace_file_extents(struct btrfs_inode *inode,
3255 struct btrfs_path *path, const u64 start,
3256 const u64 end,
3257 struct btrfs_replace_extent_info *extent_info,
3258 struct btrfs_trans_handle **trans_out);
3259int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3260 struct btrfs_inode *inode, u64 start, u64 end);
3261int btrfs_release_file(struct inode *inode, struct file *file);
3262int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3263 size_t num_pages, loff_t pos, size_t write_bytes,
3264 struct extent_state **cached, bool noreserve);
3265int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3266int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3267 size_t *write_bytes);
3268void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3269
3270/* tree-defrag.c */
3271int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3272 struct btrfs_root *root);
3273
3274/* super.c */
3275int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3276 unsigned long new_flags);
3277int btrfs_sync_fs(struct super_block *sb, int wait);
3278char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3279 u64 subvol_objectid);
3280
3281static inline __printf(2, 3) __cold
3282void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3283{
3284}
3285
3286#ifdef CONFIG_PRINTK
3287__printf(2, 3)
3288__cold
3289void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3290#else
3291#define btrfs_printk(fs_info, fmt, args...) \
3292 btrfs_no_printk(fs_info, fmt, ##args)
3293#endif
3294
3295#define btrfs_emerg(fs_info, fmt, args...) \
3296 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3297#define btrfs_alert(fs_info, fmt, args...) \
3298 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3299#define btrfs_crit(fs_info, fmt, args...) \
3300 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3301#define btrfs_err(fs_info, fmt, args...) \
3302 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3303#define btrfs_warn(fs_info, fmt, args...) \
3304 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3305#define btrfs_notice(fs_info, fmt, args...) \
3306 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3307#define btrfs_info(fs_info, fmt, args...) \
3308 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3309
3310/*
3311 * Wrappers that use printk_in_rcu
3312 */
3313#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3314 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3315#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3316 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3317#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3318 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3319#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3320 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3321#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3322 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3323#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3324 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3325#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3326 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3327
3328/*
3329 * Wrappers that use a ratelimited printk_in_rcu
3330 */
3331#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3332 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3333#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3334 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3335#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3336 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3337#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3338 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3339#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3340 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3341#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3342 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3343#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3344 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3345
3346/*
3347 * Wrappers that use a ratelimited printk
3348 */
3349#define btrfs_emerg_rl(fs_info, fmt, args...) \
3350 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3351#define btrfs_alert_rl(fs_info, fmt, args...) \
3352 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3353#define btrfs_crit_rl(fs_info, fmt, args...) \
3354 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3355#define btrfs_err_rl(fs_info, fmt, args...) \
3356 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3357#define btrfs_warn_rl(fs_info, fmt, args...) \
3358 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3359#define btrfs_notice_rl(fs_info, fmt, args...) \
3360 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3361#define btrfs_info_rl(fs_info, fmt, args...) \
3362 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3363
3364#if defined(CONFIG_DYNAMIC_DEBUG)
3365#define btrfs_debug(fs_info, fmt, args...) \
3366 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3367 fs_info, KERN_DEBUG fmt, ##args)
3368#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3369 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3370 fs_info, KERN_DEBUG fmt, ##args)
3371#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3372 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3373 fs_info, KERN_DEBUG fmt, ##args)
3374#define btrfs_debug_rl(fs_info, fmt, args...) \
3375 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3376 fs_info, KERN_DEBUG fmt, ##args)
3377#elif defined(DEBUG)
3378#define btrfs_debug(fs_info, fmt, args...) \
3379 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3380#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3381 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3382#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3383 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3384#define btrfs_debug_rl(fs_info, fmt, args...) \
3385 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3386#else
3387#define btrfs_debug(fs_info, fmt, args...) \
3388 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3389#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3390 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3391#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3392 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3393#define btrfs_debug_rl(fs_info, fmt, args...) \
3394 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3395#endif
3396
3397#define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3398do { \
3399 rcu_read_lock(); \
3400 btrfs_printk(fs_info, fmt, ##args); \
3401 rcu_read_unlock(); \
3402} while (0)
3403
3404#define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3405do { \
3406 rcu_read_lock(); \
3407 btrfs_no_printk(fs_info, fmt, ##args); \
3408 rcu_read_unlock(); \
3409} while (0)
3410
3411#define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3412do { \
3413 static DEFINE_RATELIMIT_STATE(_rs, \
3414 DEFAULT_RATELIMIT_INTERVAL, \
3415 DEFAULT_RATELIMIT_BURST); \
3416 if (__ratelimit(&_rs)) \
3417 btrfs_printk(fs_info, fmt, ##args); \
3418} while (0)
3419
3420#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3421do { \
3422 rcu_read_lock(); \
3423 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3424 rcu_read_unlock(); \
3425} while (0)
3426
3427#ifdef CONFIG_BTRFS_ASSERT
3428__cold __noreturn
3429static inline void assertfail(const char *expr, const char *file, int line)
3430{
3431 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3432 BUG();
3433}
3434
3435#define ASSERT(expr) \
3436 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3437
3438#else
3439static inline void assertfail(const char *expr, const char* file, int line) { }
3440#define ASSERT(expr) (void)(expr)
3441#endif
3442
3443#if BITS_PER_LONG == 32
3444#define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3445/*
3446 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3447 * addresses of extents.
3448 *
3449 * For 4K page size it's about 10T, for 64K it's 160T.
3450 */
3451#define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3452void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3453void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3454#endif
3455
3456/*
3457 * Get the correct offset inside the page of extent buffer.
3458 *
3459 * @eb: target extent buffer
3460 * @start: offset inside the extent buffer
3461 *
3462 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3463 */
3464static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3465 unsigned long offset)
3466{
3467 /*
3468 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3469 * to PAGE_SIZE, thus adding it won't cause any difference.
3470 *
3471 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3472 * to the eb, thus we have to take the eb->start into consideration.
3473 */
3474 return offset_in_page(offset + eb->start);
3475}
3476
3477static inline unsigned long get_eb_page_index(unsigned long offset)
3478{
3479 /*
3480 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3481 *
3482 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3483 * and have ensured that all tree blocks are contained in one page,
3484 * thus we always get index == 0.
3485 */
3486 return offset >> PAGE_SHIFT;
3487}
3488
3489/*
3490 * Use that for functions that are conditionally exported for sanity tests but
3491 * otherwise static
3492 */
3493#ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3494#define EXPORT_FOR_TESTS static
3495#else
3496#define EXPORT_FOR_TESTS
3497#endif
3498
3499__cold
3500static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3501{
3502 btrfs_err(fs_info,
3503"Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3504}
3505
3506__printf(5, 6)
3507__cold
3508void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3509 unsigned int line, int errno, const char *fmt, ...);
3510
3511const char * __attribute_const__ btrfs_decode_error(int errno);
3512
3513__cold
3514void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3515 const char *function,
3516 unsigned int line, int errno);
3517
3518/*
3519 * Call btrfs_abort_transaction as early as possible when an error condition is
3520 * detected, that way the exact line number is reported.
3521 */
3522#define btrfs_abort_transaction(trans, errno) \
3523do { \
3524 /* Report first abort since mount */ \
3525 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3526 &((trans)->fs_info->fs_state))) { \
3527 if ((errno) != -EIO && (errno) != -EROFS) { \
3528 WARN(1, KERN_DEBUG \
3529 "BTRFS: Transaction aborted (error %d)\n", \
3530 (errno)); \
3531 } else { \
3532 btrfs_debug((trans)->fs_info, \
3533 "Transaction aborted (error %d)", \
3534 (errno)); \
3535 } \
3536 } \
3537 __btrfs_abort_transaction((trans), __func__, \
3538 __LINE__, (errno)); \
3539} while (0)
3540
3541#define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3542do { \
3543 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3544 (errno), fmt, ##args); \
3545} while (0)
3546
3547__printf(5, 6)
3548__cold
3549void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3550 unsigned int line, int errno, const char *fmt, ...);
3551/*
3552 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3553 * will panic(). Otherwise we BUG() here.
3554 */
3555#define btrfs_panic(fs_info, errno, fmt, args...) \
3556do { \
3557 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3558 BUG(); \
3559} while (0)
3560
3561
3562/* compatibility and incompatibility defines */
3563
3564#define btrfs_set_fs_incompat(__fs_info, opt) \
3565 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3566 #opt)
3567
3568static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3569 u64 flag, const char* name)
3570{
3571 struct btrfs_super_block *disk_super;
3572 u64 features;
3573
3574 disk_super = fs_info->super_copy;
3575 features = btrfs_super_incompat_flags(disk_super);
3576 if (!(features & flag)) {
3577 spin_lock(&fs_info->super_lock);
3578 features = btrfs_super_incompat_flags(disk_super);
3579 if (!(features & flag)) {
3580 features |= flag;
3581 btrfs_set_super_incompat_flags(disk_super, features);
3582 btrfs_info(fs_info,
3583 "setting incompat feature flag for %s (0x%llx)",
3584 name, flag);
3585 }
3586 spin_unlock(&fs_info->super_lock);
3587 }
3588}
3589
3590#define btrfs_clear_fs_incompat(__fs_info, opt) \
3591 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3592 #opt)
3593
3594static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3595 u64 flag, const char* name)
3596{
3597 struct btrfs_super_block *disk_super;
3598 u64 features;
3599
3600 disk_super = fs_info->super_copy;
3601 features = btrfs_super_incompat_flags(disk_super);
3602 if (features & flag) {
3603 spin_lock(&fs_info->super_lock);
3604 features = btrfs_super_incompat_flags(disk_super);
3605 if (features & flag) {
3606 features &= ~flag;
3607 btrfs_set_super_incompat_flags(disk_super, features);
3608 btrfs_info(fs_info,
3609 "clearing incompat feature flag for %s (0x%llx)",
3610 name, flag);
3611 }
3612 spin_unlock(&fs_info->super_lock);
3613 }
3614}
3615
3616#define btrfs_fs_incompat(fs_info, opt) \
3617 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3618
3619static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3620{
3621 struct btrfs_super_block *disk_super;
3622 disk_super = fs_info->super_copy;
3623 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3624}
3625
3626#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3627 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3628 #opt)
3629
3630static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3631 u64 flag, const char *name)
3632{
3633 struct btrfs_super_block *disk_super;
3634 u64 features;
3635
3636 disk_super = fs_info->super_copy;
3637 features = btrfs_super_compat_ro_flags(disk_super);
3638 if (!(features & flag)) {
3639 spin_lock(&fs_info->super_lock);
3640 features = btrfs_super_compat_ro_flags(disk_super);
3641 if (!(features & flag)) {
3642 features |= flag;
3643 btrfs_set_super_compat_ro_flags(disk_super, features);
3644 btrfs_info(fs_info,
3645 "setting compat-ro feature flag for %s (0x%llx)",
3646 name, flag);
3647 }
3648 spin_unlock(&fs_info->super_lock);
3649 }
3650}
3651
3652#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3653 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3654 #opt)
3655
3656static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3657 u64 flag, const char *name)
3658{
3659 struct btrfs_super_block *disk_super;
3660 u64 features;
3661
3662 disk_super = fs_info->super_copy;
3663 features = btrfs_super_compat_ro_flags(disk_super);
3664 if (features & flag) {
3665 spin_lock(&fs_info->super_lock);
3666 features = btrfs_super_compat_ro_flags(disk_super);
3667 if (features & flag) {
3668 features &= ~flag;
3669 btrfs_set_super_compat_ro_flags(disk_super, features);
3670 btrfs_info(fs_info,
3671 "clearing compat-ro feature flag for %s (0x%llx)",
3672 name, flag);
3673 }
3674 spin_unlock(&fs_info->super_lock);
3675 }
3676}
3677
3678#define btrfs_fs_compat_ro(fs_info, opt) \
3679 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3680
3681static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3682{
3683 struct btrfs_super_block *disk_super;
3684 disk_super = fs_info->super_copy;
3685 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3686}
3687
3688/* acl.c */
3689#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3690struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3691int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3692 struct posix_acl *acl, int type);
3693int btrfs_init_acl(struct btrfs_trans_handle *trans,
3694 struct inode *inode, struct inode *dir);
3695#else
3696#define btrfs_get_acl NULL
3697#define btrfs_set_acl NULL
3698static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3699 struct inode *inode, struct inode *dir)
3700{
3701 return 0;
3702}
3703#endif
3704
3705/* relocation.c */
3706int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3707int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3708 struct btrfs_root *root);
3709int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3710 struct btrfs_root *root);
3711int btrfs_recover_relocation(struct btrfs_root *root);
3712int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3713int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3714 struct btrfs_root *root, struct extent_buffer *buf,
3715 struct extent_buffer *cow);
3716void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3717 u64 *bytes_to_reserve);
3718int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3719 struct btrfs_pending_snapshot *pending);
3720int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3721struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3722 u64 bytenr);
3723int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3724
3725/* scrub.c */
3726int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3727 u64 end, struct btrfs_scrub_progress *progress,
3728 int readonly, int is_dev_replace);
3729void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3730void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3731int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3732int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3733int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3734 struct btrfs_scrub_progress *progress);
3735static inline void btrfs_init_full_stripe_locks_tree(
3736 struct btrfs_full_stripe_locks_tree *locks_root)
3737{
3738 locks_root->root = RB_ROOT;
3739 mutex_init(&locks_root->lock);
3740}
3741
3742/* dev-replace.c */
3743void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3744void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3745void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3746
3747static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3748{
3749 btrfs_bio_counter_sub(fs_info, 1);
3750}
3751
3752/* reada.c */
3753struct reada_control {
3754 struct btrfs_fs_info *fs_info; /* tree to prefetch */
3755 struct btrfs_key key_start;
3756 struct btrfs_key key_end; /* exclusive */
3757 atomic_t elems;
3758 struct kref refcnt;
3759 wait_queue_head_t wait;
3760};
3761struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3762 struct btrfs_key *start, struct btrfs_key *end);
3763int btrfs_reada_wait(void *handle);
3764void btrfs_reada_detach(void *handle);
3765int btree_readahead_hook(struct extent_buffer *eb, int err);
3766void btrfs_reada_remove_dev(struct btrfs_device *dev);
3767void btrfs_reada_undo_remove_dev(struct btrfs_device *dev);
3768
3769static inline int is_fstree(u64 rootid)
3770{
3771 if (rootid == BTRFS_FS_TREE_OBJECTID ||
3772 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3773 !btrfs_qgroup_level(rootid)))
3774 return 1;
3775 return 0;
3776}
3777
3778static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3779{
3780 return signal_pending(current);
3781}
3782
3783/* Sanity test specific functions */
3784#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3785void btrfs_test_destroy_inode(struct inode *inode);
3786static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3787{
3788 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3789}
3790#else
3791static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3792{
3793 return 0;
3794}
3795#endif
3796
3797static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3798{
3799 return fs_info->zoned != 0;
3800}
3801
3802/*
3803 * We use page status Private2 to indicate there is an ordered extent with
3804 * unfinished IO.
3805 *
3806 * Rename the Private2 accessors to Ordered, to improve readability.
3807 */
3808#define PageOrdered(page) PagePrivate2(page)
3809#define SetPageOrdered(page) SetPagePrivate2(page)
3810#define ClearPageOrdered(page) ClearPagePrivate2(page)
3811
3812#endif