Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
 
 
 
 
 
 
 
 
 
 
 
 
  9#include <linux/pagemap.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10#include "locking.h"
 11#include "fs.h"
 12#include "accessors.h"
 13
 14struct btrfs_trans_handle;
 15struct btrfs_transaction;
 16struct btrfs_pending_snapshot;
 17struct btrfs_delayed_ref_root;
 18struct btrfs_space_info;
 19struct btrfs_block_group;
 
 
 
 
 
 20struct btrfs_ordered_sum;
 21struct btrfs_ref;
 22struct btrfs_bio;
 23struct btrfs_ioctl_encoded_io_args;
 24struct btrfs_device;
 25struct btrfs_fs_devices;
 26struct btrfs_balance_control;
 27struct btrfs_delayed_root;
 28struct reloc_control;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30/* Read ahead values for struct btrfs_path.reada */
 31enum {
 32	READA_NONE,
 33	READA_BACK,
 34	READA_FORWARD,
 35	/*
 36	 * Similar to READA_FORWARD but unlike it:
 37	 *
 38	 * 1) It will trigger readahead even for leaves that are not close to
 39	 *    each other on disk;
 40	 * 2) It also triggers readahead for nodes;
 41	 * 3) During a search, even when a node or leaf is already in memory, it
 42	 *    will still trigger readahead for other nodes and leaves that follow
 43	 *    it.
 44	 *
 45	 * This is meant to be used only when we know we are iterating over the
 46	 * entire tree or a very large part of it.
 47	 */
 48	READA_FORWARD_ALWAYS,
 49};
 50
 51/*
 52 * btrfs_paths remember the path taken from the root down to the leaf.
 53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 54 * to any other levels that are present.
 55 *
 56 * The slots array records the index of the item or block pointer
 57 * used while walking the tree.
 58 */
 59struct btrfs_path {
 60	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 61	int slots[BTRFS_MAX_LEVEL];
 62	/* if there is real range locking, this locks field will change */
 63	u8 locks[BTRFS_MAX_LEVEL];
 64	u8 reada;
 65	/* keep some upper locks as we walk down */
 66	u8 lowest_level;
 67
 68	/*
 69	 * set by btrfs_split_item, tells search_slot to keep all locks
 70	 * and to force calls to keep space in the nodes
 71	 */
 72	unsigned int search_for_split:1;
 73	unsigned int keep_locks:1;
 74	unsigned int skip_locking:1;
 75	unsigned int search_commit_root:1;
 76	unsigned int need_commit_sem:1;
 77	unsigned int skip_release_on_error:1;
 78	/*
 79	 * Indicate that new item (btrfs_search_slot) is extending already
 80	 * existing item and ins_len contains only the data size and not item
 81	 * header (ie. sizeof(struct btrfs_item) is not included).
 82	 */
 83	unsigned int search_for_extension:1;
 84	/* Stop search if any locks need to be taken (for read) */
 85	unsigned int nowait:1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86};
 87
 88/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89 * The state of btrfs root
 90 */
 91enum {
 92	/*
 93	 * btrfs_record_root_in_trans is a multi-step process, and it can race
 94	 * with the balancing code.   But the race is very small, and only the
 95	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
 96	 * is used to tell us when more checks are required
 97	 */
 98	BTRFS_ROOT_IN_TRANS_SETUP,
 99
100	/*
101	 * Set if tree blocks of this root can be shared by other roots.
102	 * Only subvolume trees and their reloc trees have this bit set.
103	 * Conflicts with TRACK_DIRTY bit.
104	 *
105	 * This affects two things:
106	 *
107	 * - How balance works
108	 *   For shareable roots, we need to use reloc tree and do path
109	 *   replacement for balance, and need various pre/post hooks for
110	 *   snapshot creation to handle them.
111	 *
112	 *   While for non-shareable trees, we just simply do a tree search
113	 *   with COW.
114	 *
115	 * - How dirty roots are tracked
116	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
117	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
118	 *   don't need to set this manually.
119	 */
120	BTRFS_ROOT_SHAREABLE,
121	BTRFS_ROOT_TRACK_DIRTY,
122	BTRFS_ROOT_IN_RADIX,
123	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124	BTRFS_ROOT_DEFRAG_RUNNING,
125	BTRFS_ROOT_FORCE_COW,
126	BTRFS_ROOT_MULTI_LOG_TASKS,
127	BTRFS_ROOT_DIRTY,
128	BTRFS_ROOT_DELETING,
129
130	/*
131	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
132	 *
133	 * Set for the subvolume tree owning the reloc tree.
134	 */
135	BTRFS_ROOT_DEAD_RELOC_TREE,
136	/* Mark dead root stored on device whose cleanup needs to be resumed */
137	BTRFS_ROOT_DEAD_TREE,
138	/* The root has a log tree. Used for subvolume roots and the tree root. */
139	BTRFS_ROOT_HAS_LOG_TREE,
140	/* Qgroup flushing is in progress */
141	BTRFS_ROOT_QGROUP_FLUSHING,
142	/* We started the orphan cleanup for this root. */
143	BTRFS_ROOT_ORPHAN_CLEANUP,
144	/* This root has a drop operation that was started previously. */
145	BTRFS_ROOT_UNFINISHED_DROP,
146	/* This reloc root needs to have its buffers lockdep class reset. */
147	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
153 */
154struct btrfs_qgroup_swapped_blocks {
155	spinlock_t lock;
156	/* RM_EMPTY_ROOT() of above blocks[] */
157	bool swapped;
158	struct rb_root blocks[BTRFS_MAX_LEVEL];
159};
160
161/*
162 * in ram representation of the tree.  extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166	struct rb_node rb_node;
167
168	struct extent_buffer *node;
169
170	struct extent_buffer *commit_root;
171	struct btrfs_root *log_root;
172	struct btrfs_root *reloc_root;
173
174	unsigned long state;
175	struct btrfs_root_item root_item;
176	struct btrfs_key root_key;
177	struct btrfs_fs_info *fs_info;
178	struct extent_io_tree dirty_log_pages;
179
180	struct mutex objectid_mutex;
181
182	spinlock_t accounting_lock;
183	struct btrfs_block_rsv *block_rsv;
184
185	struct mutex log_mutex;
186	wait_queue_head_t log_writer_wait;
187	wait_queue_head_t log_commit_wait[2];
188	struct list_head log_ctxs[2];
189	/* Used only for log trees of subvolumes, not for the log root tree */
190	atomic_t log_writers;
191	atomic_t log_commit[2];
192	/* Used only for log trees of subvolumes, not for the log root tree */
193	atomic_t log_batch;
194	/*
195	 * Protected by the 'log_mutex' lock but can be read without holding
196	 * that lock to avoid unnecessary lock contention, in which case it
197	 * should be read using btrfs_get_root_log_transid() except if it's a
198	 * log tree in which case it can be directly accessed. Updates to this
199	 * field should always use btrfs_set_root_log_transid(), except for log
200	 * trees where the field can be updated directly.
201	 */
202	int log_transid;
203	/* No matter the commit succeeds or not*/
204	int log_transid_committed;
205	/*
206	 * Just be updated when the commit succeeds. Use
207	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208	 * to access this field.
209	 */
210	int last_log_commit;
211	pid_t log_start_pid;
212
213	u64 last_trans;
214
 
 
215	u64 free_objectid;
216
217	struct btrfs_key defrag_progress;
218	struct btrfs_key defrag_max;
219
220	/* The dirty list is only used by non-shareable roots */
221	struct list_head dirty_list;
222
223	struct list_head root_list;
224
 
 
 
 
 
225	spinlock_t inode_lock;
226	/* red-black tree that keeps track of in-memory inodes */
227	struct rb_root inode_tree;
228
229	/*
230	 * Xarray that keeps track of delayed nodes of every inode, protected
231	 * by @inode_lock.
232	 */
233	struct xarray delayed_nodes;
234	/*
235	 * right now this just gets used so that a root has its own devid
236	 * for stat.  It may be used for more later
237	 */
238	dev_t anon_dev;
239
240	spinlock_t root_item_lock;
241	refcount_t refs;
242
243	struct mutex delalloc_mutex;
244	spinlock_t delalloc_lock;
245	/*
246	 * all of the inodes that have delalloc bytes.  It is possible for
247	 * this list to be empty even when there is still dirty data=ordered
248	 * extents waiting to finish IO.
249	 */
250	struct list_head delalloc_inodes;
251	struct list_head delalloc_root;
252	u64 nr_delalloc_inodes;
253
254	struct mutex ordered_extent_mutex;
255	/*
256	 * this is used by the balancing code to wait for all the pending
257	 * ordered extents
258	 */
259	spinlock_t ordered_extent_lock;
260
261	/*
262	 * all of the data=ordered extents pending writeback
263	 * these can span multiple transactions and basically include
264	 * every dirty data page that isn't from nodatacow
265	 */
266	struct list_head ordered_extents;
267	struct list_head ordered_root;
268	u64 nr_ordered_extents;
269
270	/*
271	 * Not empty if this subvolume root has gone through tree block swap
272	 * (relocation)
273	 *
274	 * Will be used by reloc_control::dirty_subvol_roots.
275	 */
276	struct list_head reloc_dirty_list;
277
278	/*
279	 * Number of currently running SEND ioctls to prevent
280	 * manipulation with the read-only status via SUBVOL_SETFLAGS
281	 */
282	int send_in_progress;
283	/*
284	 * Number of currently running deduplication operations that have a
285	 * destination inode belonging to this root. Protected by the lock
286	 * root_item_lock.
287	 */
288	int dedupe_in_progress;
289	/* For exclusion of snapshot creation and nocow writes */
290	struct btrfs_drew_lock snapshot_lock;
291
292	atomic_t snapshot_force_cow;
293
294	/* For qgroup metadata reserved space */
295	spinlock_t qgroup_meta_rsv_lock;
296	u64 qgroup_meta_rsv_pertrans;
297	u64 qgroup_meta_rsv_prealloc;
298	wait_queue_head_t qgroup_flush_wait;
299
300	/* Number of active swapfiles */
301	atomic_t nr_swapfiles;
302
303	/* Record pairs of swapped blocks for qgroup */
304	struct btrfs_qgroup_swapped_blocks swapped_blocks;
305
306	/* Used only by log trees, when logging csum items */
307	struct extent_io_tree log_csum_range;
308
309	/* Used in simple quotas, track root during relocation. */
310	u64 relocation_src_root;
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313	u64 alloc_bytenr;
314#endif
315
316#ifdef CONFIG_BTRFS_DEBUG
317	struct list_head leak_list;
318#endif
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
322{
323	/* Byte-swap the constant at compile time, root_item::flags is LE */
324	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
328{
329	/* Byte-swap the constant at compile time, root_item::flags is LE */
330	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
334{
335	return root->root_key.objectid;
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340	return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
344{
345	WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
349{
350	return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
354{
355	WRITE_ONCE(root->last_log_commit, commit_id);
356}
357
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363	u64 disk_offset;
364	u64 disk_len;
365	u64 data_offset;
366	u64 data_len;
367	u64 file_offset;
368	/* Pointer to a file extent item of type regular or prealloc. */
369	char *extent_buf;
370	/*
371	 * Set to true when attempting to replace a file range with a new extent
372	 * described by this structure, set to false when attempting to clone an
373	 * existing extent into a file range.
374	 */
375	bool is_new_extent;
376	/* Indicate if we should update the inode's mtime and ctime. */
377	bool update_times;
378	/* Meaningful only if is_new_extent is true. */
379	int qgroup_reserved;
380	/*
381	 * Meaningful only if is_new_extent is true.
382	 * Used to track how many extent items we have already inserted in a
383	 * subvolume tree that refer to the extent described by this structure,
384	 * so that we know when to create a new delayed ref or update an existing
385	 * one.
386	 */
387	int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392	/* Input parameters */
393
394	/*
395	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396	 * If 'replace_extent' is true, this must not be NULL. Also the path
397	 * is always released except if 'replace_extent' is true and
398	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399	 * the path is kept locked.
400	 */
401	struct btrfs_path *path;
402	/* Start offset of the range to drop extents from */
403	u64 start;
404	/* End (exclusive, last byte + 1) of the range to drop extents from */
405	u64 end;
406	/* If true drop all the extent maps in the range */
407	bool drop_cache;
408	/*
409	 * If true it means we want to insert a new extent after dropping all
410	 * the extents in the range. If this is true, the 'extent_item_size'
411	 * parameter must be set as well and the 'extent_inserted' field will
412	 * be set to true by btrfs_drop_extents() if it could insert the new
413	 * extent.
414	 * Note: when this is set to true the path must not be NULL.
415	 */
416	bool replace_extent;
417	/*
418	 * Used if 'replace_extent' is true. Size of the file extent item to
419	 * insert after dropping all existing extents in the range
420	 */
421	u32 extent_item_size;
422
423	/* Output parameters */
424
425	/*
426	 * Set to the minimum between the input parameter 'end' and the end
427	 * (exclusive, last byte + 1) of the last dropped extent. This is always
428	 * set even if btrfs_drop_extents() returns an error.
429	 */
430	u64 drop_end;
431	/*
432	 * The number of allocated bytes found in the range. This can be smaller
433	 * than the range's length when there are holes in the range.
434	 */
435	u64 bytes_found;
436	/*
437	 * Only set if 'replace_extent' is true. Set to true if we were able
438	 * to insert a replacement extent after dropping all extents in the
439	 * range, otherwise set to false by btrfs_drop_extents().
440	 * Also, if btrfs_drop_extents() has set this to true it means it
441	 * returned with the path locked, otherwise if it has set this to
442	 * false it has returned with the path released.
443	 */
444	bool extent_inserted;
445};
446
447struct btrfs_file_private {
448	void *filldir_buf;
449	u64 last_index;
450	struct extent_state *llseek_cached_state;
451};
452
 
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
454{
 
455	return info->nodesize - sizeof(struct btrfs_header);
456}
457
 
 
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
459{
460	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
464{
465	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
466}
467
 
 
 
 
 
 
 
 
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
469{
470	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
471}
472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474				((bytes) >> (fs_info)->sectorsize_bits)
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
 
477{
478	return mapping_gfp_constraint(mapping, ~__GFP_FS);
 
 
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482				   u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484			 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
 
 
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
 
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492		     const struct btrfs_key *key, int *slot);
 
 
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496#ifdef __LITTLE_ENDIAN
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503				  const struct btrfs_key *k2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504{
505	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
506
507	return btrfs_comp_cpu_keys(k1, k2);
508}
509
510#else
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514				  const struct btrfs_key *k2)
 
 
 
 
 
 
 
515{
516	struct btrfs_key k1;
 
 
 
 
 
 
 
 
 
 
 
517
518	btrfs_disk_key_to_cpu(&k1, disk);
 
 
 
 
 
 
519
520	return btrfs_comp_cpu_keys(&k1, k2);
 
 
 
 
 
 
521}
522
523#endif
524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525int btrfs_previous_item(struct btrfs_root *root,
526			struct btrfs_path *path, u64 min_objectid,
527			int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529			struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531			     struct btrfs_path *path,
532			     const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535			struct btrfs_key *key, int lowest_level,
536			u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538			 struct btrfs_path *path,
539			 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541					   int slot);
542
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544		    struct btrfs_root *root, struct extent_buffer *buf,
545		    struct extent_buffer *parent, int parent_slot,
546		    struct extent_buffer **cow_ret,
547		    enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549			  struct btrfs_root *root,
550			  struct extent_buffer *buf,
551			  struct extent_buffer *parent, int parent_slot,
552			  struct extent_buffer **cow_ret,
553			  u64 search_start, u64 empty_size,
554			  enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556		      struct btrfs_root *root,
557		      struct extent_buffer *buf,
558		      struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560			       struct btrfs_root *root,
561			       struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563		  struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565		       struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567			 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569		     struct btrfs_root *root,
570		     struct btrfs_path *path,
571		     const struct btrfs_key *new_key,
572		     unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574			 struct btrfs_root *root,
575			 struct btrfs_path *path,
576			 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580		      const struct btrfs_key *key, struct btrfs_path *p,
581		      int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583			  struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585			       const struct btrfs_key *key,
586			       struct btrfs_path *p, int find_higher,
587			       int return_any);
 
 
 
 
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593		   struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595				 struct btrfs_root *root,
596				 struct btrfs_path *path)
597{
598	return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606	/*
607	 * Pointer to an array containing the keys of the items to insert (in
608	 * sorted order).
609	 */
610	const struct btrfs_key *keys;
611	/* Pointer to an array containing the data size for each item to insert. */
612	const u32 *data_sizes;
613	/*
614	 * The sum of data sizes for all items. The caller can compute this while
615	 * setting up the data_sizes array, so it ends up being more efficient
616	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617	 * doing it, as it would avoid an extra loop over a potentially large
618	 * array, and in the case of setup_item_for_insert(), we would be doing
619	 * it while holding a write lock on a leaf and often on upper level nodes
620	 * too, unnecessarily increasing the size of a critical section.
621	 */
622	u32 total_data_size;
623	/* Size of the keys and data_sizes arrays (number of items in the batch). */
624	int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628				 struct btrfs_root *root,
629				 struct btrfs_path *path,
630				 const struct btrfs_key *key,
631				 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633		      const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635			     struct btrfs_root *root,
636			     struct btrfs_path *path,
637			     const struct btrfs_item_batch *batch);
 
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640					  struct btrfs_root *root,
641					  struct btrfs_path *path,
642					  const struct btrfs_key *key,
643					  u32 data_size)
644{
645	struct btrfs_item_batch batch;
646
647	batch.keys = key;
648	batch.data_sizes = &data_size;
649	batch.total_data_size = data_size;
650	batch.nr = 1;
651
652	return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
 
 
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656			u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659			   struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662			      struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
666 *
667 * @root:	The root node of the tree.
668 * @key:	The key we are looking for.
669 * @found_key:	Will hold the found item.
670 * @path:	Holds the current slot/leaf.
671 * @iter_ret:	Contains the value returned from btrfs_search_slot or
672 * 		btrfs_get_next_valid_item, whichever was executed last.
 
 
 
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
684	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
685		(iter_ret) >= 0 &&						\
686		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687		(path)->slots[0]++						\
688	)
 
 
 
 
 
 
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
 
 
 
 
 
 
 
 
 
 
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699{
700	return btrfs_next_old_leaf(root, path, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
701}
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
 
 
 
 
 
704{
705	return btrfs_next_old_item(root, p, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708
709static inline int is_fstree(u64 rootid)
710{
711	if (rootid == BTRFS_FS_TREE_OBJECTID ||
712	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713	      !btrfs_qgroup_level(rootid)))
714		return 1;
715	return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page)		PagePrivate2(page)
736#define SetPageOrdered(page)		SetPagePrivate2(page)
737#define ClearPageOrdered(page)		ClearPagePrivate2(page)
738#define folio_test_ordered(folio)	folio_test_private_2(folio)
739#define folio_set_ordered(folio)	folio_set_private_2(folio)
740#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
741
742#endif
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#ifndef BTRFS_CTREE_H
   7#define BTRFS_CTREE_H
   8
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/highmem.h>
  12#include <linux/fs.h>
  13#include <linux/rwsem.h>
  14#include <linux/semaphore.h>
  15#include <linux/completion.h>
  16#include <linux/backing-dev.h>
  17#include <linux/wait.h>
  18#include <linux/slab.h>
  19#include <trace/events/btrfs.h>
  20#include <asm/unaligned.h>
  21#include <linux/pagemap.h>
  22#include <linux/btrfs.h>
  23#include <linux/btrfs_tree.h>
  24#include <linux/workqueue.h>
  25#include <linux/security.h>
  26#include <linux/sizes.h>
  27#include <linux/dynamic_debug.h>
  28#include <linux/refcount.h>
  29#include <linux/crc32c.h>
  30#include <linux/iomap.h>
  31#include "extent-io-tree.h"
  32#include "extent_io.h"
  33#include "extent_map.h"
  34#include "async-thread.h"
  35#include "block-rsv.h"
  36#include "locking.h"
 
 
  37
  38struct btrfs_trans_handle;
  39struct btrfs_transaction;
  40struct btrfs_pending_snapshot;
  41struct btrfs_delayed_ref_root;
  42struct btrfs_space_info;
  43struct btrfs_block_group;
  44extern struct kmem_cache *btrfs_trans_handle_cachep;
  45extern struct kmem_cache *btrfs_bit_radix_cachep;
  46extern struct kmem_cache *btrfs_path_cachep;
  47extern struct kmem_cache *btrfs_free_space_cachep;
  48extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
  49struct btrfs_ordered_sum;
  50struct btrfs_ref;
  51
  52#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
  53
  54/*
  55 * Maximum number of mirrors that can be available for all profiles counting
  56 * the target device of dev-replace as one. During an active device replace
  57 * procedure, the target device of the copy operation is a mirror for the
  58 * filesystem data as well that can be used to read data in order to repair
  59 * read errors on other disks.
  60 *
  61 * Current value is derived from RAID1C4 with 4 copies.
  62 */
  63#define BTRFS_MAX_MIRRORS (4 + 1)
  64
  65#define BTRFS_MAX_LEVEL 8
  66
  67#define BTRFS_OLDEST_GENERATION	0ULL
  68
  69/*
  70 * we can actually store much bigger names, but lets not confuse the rest
  71 * of linux
  72 */
  73#define BTRFS_NAME_LEN 255
  74
  75/*
  76 * Theoretical limit is larger, but we keep this down to a sane
  77 * value. That should limit greatly the possibility of collisions on
  78 * inode ref items.
  79 */
  80#define BTRFS_LINK_MAX 65535U
  81
  82#define BTRFS_EMPTY_DIR_SIZE 0
  83
  84/* ioprio of readahead is set to idle */
  85#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
  86
  87#define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
  88
  89/*
  90 * Use large batch size to reduce overhead of metadata updates.  On the reader
  91 * side, we only read it when we are close to ENOSPC and the read overhead is
  92 * mostly related to the number of CPUs, so it is OK to use arbitrary large
  93 * value here.
  94 */
  95#define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
  96
  97#define BTRFS_MAX_EXTENT_SIZE SZ_128M
  98
  99/*
 100 * Deltas are an effective way to populate global statistics.  Give macro names
 101 * to make it clear what we're doing.  An example is discard_extents in
 102 * btrfs_free_space_ctl.
 103 */
 104#define BTRFS_STAT_NR_ENTRIES	2
 105#define BTRFS_STAT_CURR		0
 106#define BTRFS_STAT_PREV		1
 107
 108/*
 109 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
 110 */
 111static inline u32 count_max_extents(u64 size)
 112{
 113	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
 114}
 115
 116static inline unsigned long btrfs_chunk_item_size(int num_stripes)
 117{
 118	BUG_ON(num_stripes == 0);
 119	return sizeof(struct btrfs_chunk) +
 120		sizeof(struct btrfs_stripe) * (num_stripes - 1);
 121}
 122
 123/*
 124 * Runtime (in-memory) states of filesystem
 125 */
 126enum {
 127	/* Global indicator of serious filesystem errors */
 128	BTRFS_FS_STATE_ERROR,
 129	/*
 130	 * Filesystem is being remounted, allow to skip some operations, like
 131	 * defrag
 132	 */
 133	BTRFS_FS_STATE_REMOUNTING,
 134	/* Filesystem in RO mode */
 135	BTRFS_FS_STATE_RO,
 136	/* Track if a transaction abort has been reported on this filesystem */
 137	BTRFS_FS_STATE_TRANS_ABORTED,
 138	/*
 139	 * Bio operations should be blocked on this filesystem because a source
 140	 * or target device is being destroyed as part of a device replace
 141	 */
 142	BTRFS_FS_STATE_DEV_REPLACING,
 143	/* The btrfs_fs_info created for self-tests */
 144	BTRFS_FS_STATE_DUMMY_FS_INFO,
 145};
 146
 147#define BTRFS_BACKREF_REV_MAX		256
 148#define BTRFS_BACKREF_REV_SHIFT		56
 149#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
 150					 BTRFS_BACKREF_REV_SHIFT)
 151
 152#define BTRFS_OLD_BACKREF_REV		0
 153#define BTRFS_MIXED_BACKREF_REV		1
 154
 155/*
 156 * every tree block (leaf or node) starts with this header.
 157 */
 158struct btrfs_header {
 159	/* these first four must match the super block */
 160	u8 csum[BTRFS_CSUM_SIZE];
 161	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
 162	__le64 bytenr; /* which block this node is supposed to live in */
 163	__le64 flags;
 164
 165	/* allowed to be different from the super from here on down */
 166	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 167	__le64 generation;
 168	__le64 owner;
 169	__le32 nritems;
 170	u8 level;
 171} __attribute__ ((__packed__));
 172
 173/*
 174 * this is a very generous portion of the super block, giving us
 175 * room to translate 14 chunks with 3 stripes each.
 176 */
 177#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
 178
 179/*
 180 * just in case we somehow lose the roots and are not able to mount,
 181 * we store an array of the roots from previous transactions
 182 * in the super.
 183 */
 184#define BTRFS_NUM_BACKUP_ROOTS 4
 185struct btrfs_root_backup {
 186	__le64 tree_root;
 187	__le64 tree_root_gen;
 188
 189	__le64 chunk_root;
 190	__le64 chunk_root_gen;
 191
 192	__le64 extent_root;
 193	__le64 extent_root_gen;
 194
 195	__le64 fs_root;
 196	__le64 fs_root_gen;
 197
 198	__le64 dev_root;
 199	__le64 dev_root_gen;
 200
 201	__le64 csum_root;
 202	__le64 csum_root_gen;
 203
 204	__le64 total_bytes;
 205	__le64 bytes_used;
 206	__le64 num_devices;
 207	/* future */
 208	__le64 unused_64[4];
 209
 210	u8 tree_root_level;
 211	u8 chunk_root_level;
 212	u8 extent_root_level;
 213	u8 fs_root_level;
 214	u8 dev_root_level;
 215	u8 csum_root_level;
 216	/* future and to align */
 217	u8 unused_8[10];
 218} __attribute__ ((__packed__));
 219
 220/*
 221 * the super block basically lists the main trees of the FS
 222 * it currently lacks any block count etc etc
 223 */
 224struct btrfs_super_block {
 225	/* the first 4 fields must match struct btrfs_header */
 226	u8 csum[BTRFS_CSUM_SIZE];
 227	/* FS specific UUID, visible to user */
 228	u8 fsid[BTRFS_FSID_SIZE];
 229	__le64 bytenr; /* this block number */
 230	__le64 flags;
 231
 232	/* allowed to be different from the btrfs_header from here own down */
 233	__le64 magic;
 234	__le64 generation;
 235	__le64 root;
 236	__le64 chunk_root;
 237	__le64 log_root;
 238
 239	/* this will help find the new super based on the log root */
 240	__le64 log_root_transid;
 241	__le64 total_bytes;
 242	__le64 bytes_used;
 243	__le64 root_dir_objectid;
 244	__le64 num_devices;
 245	__le32 sectorsize;
 246	__le32 nodesize;
 247	__le32 __unused_leafsize;
 248	__le32 stripesize;
 249	__le32 sys_chunk_array_size;
 250	__le64 chunk_root_generation;
 251	__le64 compat_flags;
 252	__le64 compat_ro_flags;
 253	__le64 incompat_flags;
 254	__le16 csum_type;
 255	u8 root_level;
 256	u8 chunk_root_level;
 257	u8 log_root_level;
 258	struct btrfs_dev_item dev_item;
 259
 260	char label[BTRFS_LABEL_SIZE];
 261
 262	__le64 cache_generation;
 263	__le64 uuid_tree_generation;
 264
 265	/* the UUID written into btree blocks */
 266	u8 metadata_uuid[BTRFS_FSID_SIZE];
 267
 268	/* future expansion */
 269	__le64 reserved[28];
 270	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
 271	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
 272} __attribute__ ((__packed__));
 273
 274/*
 275 * Compat flags that we support.  If any incompat flags are set other than the
 276 * ones specified below then we will fail to mount
 277 */
 278#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
 279#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
 280#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
 281
 282#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
 283	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
 284	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
 285
 286#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
 287#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
 288
 289#define BTRFS_FEATURE_INCOMPAT_SUPP			\
 290	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
 291	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
 292	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
 293	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
 294	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
 295	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
 296	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
 297	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
 298	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
 299	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
 300	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
 301	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
 302	 BTRFS_FEATURE_INCOMPAT_ZONED)
 303
 304#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
 305	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
 306#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
 307
 308/*
 309 * A leaf is full of items. offset and size tell us where to find
 310 * the item in the leaf (relative to the start of the data area)
 311 */
 312struct btrfs_item {
 313	struct btrfs_disk_key key;
 314	__le32 offset;
 315	__le32 size;
 316} __attribute__ ((__packed__));
 317
 318/*
 319 * leaves have an item area and a data area:
 320 * [item0, item1....itemN] [free space] [dataN...data1, data0]
 321 *
 322 * The data is separate from the items to get the keys closer together
 323 * during searches.
 324 */
 325struct btrfs_leaf {
 326	struct btrfs_header header;
 327	struct btrfs_item items[];
 328} __attribute__ ((__packed__));
 329
 330/*
 331 * all non-leaf blocks are nodes, they hold only keys and pointers to
 332 * other blocks
 333 */
 334struct btrfs_key_ptr {
 335	struct btrfs_disk_key key;
 336	__le64 blockptr;
 337	__le64 generation;
 338} __attribute__ ((__packed__));
 339
 340struct btrfs_node {
 341	struct btrfs_header header;
 342	struct btrfs_key_ptr ptrs[];
 343} __attribute__ ((__packed__));
 344
 345/* Read ahead values for struct btrfs_path.reada */
 346enum {
 347	READA_NONE,
 348	READA_BACK,
 349	READA_FORWARD,
 350	/*
 351	 * Similar to READA_FORWARD but unlike it:
 352	 *
 353	 * 1) It will trigger readahead even for leaves that are not close to
 354	 *    each other on disk;
 355	 * 2) It also triggers readahead for nodes;
 356	 * 3) During a search, even when a node or leaf is already in memory, it
 357	 *    will still trigger readahead for other nodes and leaves that follow
 358	 *    it.
 359	 *
 360	 * This is meant to be used only when we know we are iterating over the
 361	 * entire tree or a very large part of it.
 362	 */
 363	READA_FORWARD_ALWAYS,
 364};
 365
 366/*
 367 * btrfs_paths remember the path taken from the root down to the leaf.
 368 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 369 * to any other levels that are present.
 370 *
 371 * The slots array records the index of the item or block pointer
 372 * used while walking the tree.
 373 */
 374struct btrfs_path {
 375	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 376	int slots[BTRFS_MAX_LEVEL];
 377	/* if there is real range locking, this locks field will change */
 378	u8 locks[BTRFS_MAX_LEVEL];
 379	u8 reada;
 380	/* keep some upper locks as we walk down */
 381	u8 lowest_level;
 382
 383	/*
 384	 * set by btrfs_split_item, tells search_slot to keep all locks
 385	 * and to force calls to keep space in the nodes
 386	 */
 387	unsigned int search_for_split:1;
 388	unsigned int keep_locks:1;
 389	unsigned int skip_locking:1;
 390	unsigned int search_commit_root:1;
 391	unsigned int need_commit_sem:1;
 392	unsigned int skip_release_on_error:1;
 393	/*
 394	 * Indicate that new item (btrfs_search_slot) is extending already
 395	 * existing item and ins_len contains only the data size and not item
 396	 * header (ie. sizeof(struct btrfs_item) is not included).
 397	 */
 398	unsigned int search_for_extension:1;
 399};
 400#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
 401					sizeof(struct btrfs_item))
 402struct btrfs_dev_replace {
 403	u64 replace_state;	/* see #define above */
 404	time64_t time_started;	/* seconds since 1-Jan-1970 */
 405	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
 406	atomic64_t num_write_errors;
 407	atomic64_t num_uncorrectable_read_errors;
 408
 409	u64 cursor_left;
 410	u64 committed_cursor_left;
 411	u64 cursor_left_last_write_of_item;
 412	u64 cursor_right;
 413
 414	u64 cont_reading_from_srcdev_mode;	/* see #define above */
 415
 416	int is_valid;
 417	int item_needs_writeback;
 418	struct btrfs_device *srcdev;
 419	struct btrfs_device *tgtdev;
 420
 421	struct mutex lock_finishing_cancel_unmount;
 422	struct rw_semaphore rwsem;
 423
 424	struct btrfs_scrub_progress scrub_progress;
 425
 426	struct percpu_counter bio_counter;
 427	wait_queue_head_t replace_wait;
 428};
 429
 430/*
 431 * free clusters are used to claim free space in relatively large chunks,
 432 * allowing us to do less seeky writes. They are used for all metadata
 433 * allocations. In ssd_spread mode they are also used for data allocations.
 434 */
 435struct btrfs_free_cluster {
 436	spinlock_t lock;
 437	spinlock_t refill_lock;
 438	struct rb_root root;
 439
 440	/* largest extent in this cluster */
 441	u64 max_size;
 442
 443	/* first extent starting offset */
 444	u64 window_start;
 445
 446	/* We did a full search and couldn't create a cluster */
 447	bool fragmented;
 448
 449	struct btrfs_block_group *block_group;
 450	/*
 451	 * when a cluster is allocated from a block group, we put the
 452	 * cluster onto a list in the block group so that it can
 453	 * be freed before the block group is freed.
 454	 */
 455	struct list_head block_group_list;
 456};
 457
 458enum btrfs_caching_type {
 459	BTRFS_CACHE_NO,
 460	BTRFS_CACHE_STARTED,
 461	BTRFS_CACHE_FAST,
 462	BTRFS_CACHE_FINISHED,
 463	BTRFS_CACHE_ERROR,
 464};
 465
 466/*
 467 * Tree to record all locked full stripes of a RAID5/6 block group
 468 */
 469struct btrfs_full_stripe_locks_tree {
 470	struct rb_root root;
 471	struct mutex lock;
 472};
 473
 474/* Discard control. */
 475/*
 476 * Async discard uses multiple lists to differentiate the discard filter
 477 * parameters.  Index 0 is for completely free block groups where we need to
 478 * ensure the entire block group is trimmed without being lossy.  Indices
 479 * afterwards represent monotonically decreasing discard filter sizes to
 480 * prioritize what should be discarded next.
 481 */
 482#define BTRFS_NR_DISCARD_LISTS		3
 483#define BTRFS_DISCARD_INDEX_UNUSED	0
 484#define BTRFS_DISCARD_INDEX_START	1
 485
 486struct btrfs_discard_ctl {
 487	struct workqueue_struct *discard_workers;
 488	struct delayed_work work;
 489	spinlock_t lock;
 490	struct btrfs_block_group *block_group;
 491	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
 492	u64 prev_discard;
 493	u64 prev_discard_time;
 494	atomic_t discardable_extents;
 495	atomic64_t discardable_bytes;
 496	u64 max_discard_size;
 497	u64 delay_ms;
 498	u32 iops_limit;
 499	u32 kbps_limit;
 500	u64 discard_extent_bytes;
 501	u64 discard_bitmap_bytes;
 502	atomic64_t discard_bytes_saved;
 503};
 504
 505enum btrfs_orphan_cleanup_state {
 506	ORPHAN_CLEANUP_STARTED	= 1,
 507	ORPHAN_CLEANUP_DONE	= 2,
 508};
 509
 510void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
 511
 512/* fs_info */
 513struct reloc_control;
 514struct btrfs_device;
 515struct btrfs_fs_devices;
 516struct btrfs_balance_control;
 517struct btrfs_delayed_root;
 518
 519/*
 520 * Block group or device which contains an active swapfile. Used for preventing
 521 * unsafe operations while a swapfile is active.
 522 *
 523 * These are sorted on (ptr, inode) (note that a block group or device can
 524 * contain more than one swapfile). We compare the pointer values because we
 525 * don't actually care what the object is, we just need a quick check whether
 526 * the object exists in the rbtree.
 527 */
 528struct btrfs_swapfile_pin {
 529	struct rb_node node;
 530	void *ptr;
 531	struct inode *inode;
 532	/*
 533	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
 534	 * points to a struct btrfs_device.
 535	 */
 536	bool is_block_group;
 537	/*
 538	 * Only used when 'is_block_group' is true and it is the number of
 539	 * extents used by a swapfile for this block group ('ptr' field).
 540	 */
 541	int bg_extent_count;
 542};
 543
 544bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
 545
 546enum {
 547	BTRFS_FS_BARRIER,
 548	BTRFS_FS_CLOSING_START,
 549	BTRFS_FS_CLOSING_DONE,
 550	BTRFS_FS_LOG_RECOVERING,
 551	BTRFS_FS_OPEN,
 552	BTRFS_FS_QUOTA_ENABLED,
 553	BTRFS_FS_UPDATE_UUID_TREE_GEN,
 554	BTRFS_FS_CREATING_FREE_SPACE_TREE,
 555	BTRFS_FS_BTREE_ERR,
 556	BTRFS_FS_LOG1_ERR,
 557	BTRFS_FS_LOG2_ERR,
 558	BTRFS_FS_QUOTA_OVERRIDE,
 559	/* Used to record internally whether fs has been frozen */
 560	BTRFS_FS_FROZEN,
 561	/*
 562	 * Indicate that balance has been set up from the ioctl and is in the
 563	 * main phase. The fs_info::balance_ctl is initialized.
 564	 */
 565	BTRFS_FS_BALANCE_RUNNING,
 566
 567	/*
 568	 * Indicate that relocation of a chunk has started, it's set per chunk
 569	 * and is toggled between chunks.
 570	 * Set, tested and cleared while holding fs_info::send_reloc_lock.
 571	 */
 572	BTRFS_FS_RELOC_RUNNING,
 573
 574	/* Indicate that the cleaner thread is awake and doing something. */
 575	BTRFS_FS_CLEANER_RUNNING,
 576
 577	/*
 578	 * The checksumming has an optimized version and is considered fast,
 579	 * so we don't need to offload checksums to workqueues.
 580	 */
 581	BTRFS_FS_CSUM_IMPL_FAST,
 582
 583	/* Indicate that the discard workqueue can service discards. */
 584	BTRFS_FS_DISCARD_RUNNING,
 585
 586	/* Indicate that we need to cleanup space cache v1 */
 587	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
 588
 589	/* Indicate that we can't trust the free space tree for caching yet */
 590	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
 591
 592	/* Indicate whether there are any tree modification log users */
 593	BTRFS_FS_TREE_MOD_LOG_USERS,
 594
 595#if BITS_PER_LONG == 32
 596	/* Indicate if we have error/warn message printed on 32bit systems */
 597	BTRFS_FS_32BIT_ERROR,
 598	BTRFS_FS_32BIT_WARN,
 599#endif
 600};
 601
 602/*
 603 * Exclusive operations (device replace, resize, device add/remove, balance)
 604 */
 605enum btrfs_exclusive_operation {
 606	BTRFS_EXCLOP_NONE,
 607	BTRFS_EXCLOP_BALANCE,
 608	BTRFS_EXCLOP_DEV_ADD,
 609	BTRFS_EXCLOP_DEV_REMOVE,
 610	BTRFS_EXCLOP_DEV_REPLACE,
 611	BTRFS_EXCLOP_RESIZE,
 612	BTRFS_EXCLOP_SWAP_ACTIVATE,
 613};
 614
 615struct btrfs_fs_info {
 616	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 617	unsigned long flags;
 618	struct btrfs_root *extent_root;
 619	struct btrfs_root *tree_root;
 620	struct btrfs_root *chunk_root;
 621	struct btrfs_root *dev_root;
 622	struct btrfs_root *fs_root;
 623	struct btrfs_root *csum_root;
 624	struct btrfs_root *quota_root;
 625	struct btrfs_root *uuid_root;
 626	struct btrfs_root *free_space_root;
 627	struct btrfs_root *data_reloc_root;
 628
 629	/* the log root tree is a directory of all the other log roots */
 630	struct btrfs_root *log_root_tree;
 631
 632	spinlock_t fs_roots_radix_lock;
 633	struct radix_tree_root fs_roots_radix;
 634
 635	/* block group cache stuff */
 636	spinlock_t block_group_cache_lock;
 637	u64 first_logical_byte;
 638	struct rb_root block_group_cache_tree;
 639
 640	/* keep track of unallocated space */
 641	atomic64_t free_chunk_space;
 642
 643	/* Track ranges which are used by log trees blocks/logged data extents */
 644	struct extent_io_tree excluded_extents;
 645
 646	/* logical->physical extent mapping */
 647	struct extent_map_tree mapping_tree;
 648
 649	/*
 650	 * block reservation for extent, checksum, root tree and
 651	 * delayed dir index item
 652	 */
 653	struct btrfs_block_rsv global_block_rsv;
 654	/* block reservation for metadata operations */
 655	struct btrfs_block_rsv trans_block_rsv;
 656	/* block reservation for chunk tree */
 657	struct btrfs_block_rsv chunk_block_rsv;
 658	/* block reservation for delayed operations */
 659	struct btrfs_block_rsv delayed_block_rsv;
 660	/* block reservation for delayed refs */
 661	struct btrfs_block_rsv delayed_refs_rsv;
 662
 663	struct btrfs_block_rsv empty_block_rsv;
 664
 665	u64 generation;
 666	u64 last_trans_committed;
 667	u64 avg_delayed_ref_runtime;
 668
 669	/*
 670	 * this is updated to the current trans every time a full commit
 671	 * is required instead of the faster short fsync log commits
 672	 */
 673	u64 last_trans_log_full_commit;
 674	unsigned long mount_opt;
 675	/*
 676	 * Track requests for actions that need to be done during transaction
 677	 * commit (like for some mount options).
 678	 */
 679	unsigned long pending_changes;
 680	unsigned long compress_type:4;
 681	unsigned int compress_level;
 682	u32 commit_interval;
 683	/*
 684	 * It is a suggestive number, the read side is safe even it gets a
 685	 * wrong number because we will write out the data into a regular
 686	 * extent. The write side(mount/remount) is under ->s_umount lock,
 687	 * so it is also safe.
 688	 */
 689	u64 max_inline;
 690
 691	struct btrfs_transaction *running_transaction;
 692	wait_queue_head_t transaction_throttle;
 693	wait_queue_head_t transaction_wait;
 694	wait_queue_head_t transaction_blocked_wait;
 695	wait_queue_head_t async_submit_wait;
 696
 697	/*
 698	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
 699	 * when they are updated.
 700	 *
 701	 * Because we do not clear the flags for ever, so we needn't use
 702	 * the lock on the read side.
 703	 *
 704	 * We also needn't use the lock when we mount the fs, because
 705	 * there is no other task which will update the flag.
 706	 */
 707	spinlock_t super_lock;
 708	struct btrfs_super_block *super_copy;
 709	struct btrfs_super_block *super_for_commit;
 710	struct super_block *sb;
 711	struct inode *btree_inode;
 712	struct mutex tree_log_mutex;
 713	struct mutex transaction_kthread_mutex;
 714	struct mutex cleaner_mutex;
 715	struct mutex chunk_mutex;
 716
 717	/*
 718	 * this is taken to make sure we don't set block groups ro after
 719	 * the free space cache has been allocated on them
 720	 */
 721	struct mutex ro_block_group_mutex;
 722
 723	/* this is used during read/modify/write to make sure
 724	 * no two ios are trying to mod the same stripe at the same
 725	 * time
 726	 */
 727	struct btrfs_stripe_hash_table *stripe_hash_table;
 728
 729	/*
 730	 * this protects the ordered operations list only while we are
 731	 * processing all of the entries on it.  This way we make
 732	 * sure the commit code doesn't find the list temporarily empty
 733	 * because another function happens to be doing non-waiting preflush
 734	 * before jumping into the main commit.
 735	 */
 736	struct mutex ordered_operations_mutex;
 737
 738	struct rw_semaphore commit_root_sem;
 739
 740	struct rw_semaphore cleanup_work_sem;
 741
 742	struct rw_semaphore subvol_sem;
 743
 744	spinlock_t trans_lock;
 745	/*
 746	 * the reloc mutex goes with the trans lock, it is taken
 747	 * during commit to protect us from the relocation code
 748	 */
 749	struct mutex reloc_mutex;
 750
 751	struct list_head trans_list;
 752	struct list_head dead_roots;
 753	struct list_head caching_block_groups;
 754
 755	spinlock_t delayed_iput_lock;
 756	struct list_head delayed_iputs;
 757	atomic_t nr_delayed_iputs;
 758	wait_queue_head_t delayed_iputs_wait;
 759
 760	atomic64_t tree_mod_seq;
 761
 762	/* this protects tree_mod_log and tree_mod_seq_list */
 763	rwlock_t tree_mod_log_lock;
 764	struct rb_root tree_mod_log;
 765	struct list_head tree_mod_seq_list;
 766
 767	atomic_t async_delalloc_pages;
 768
 769	/*
 770	 * this is used to protect the following list -- ordered_roots.
 771	 */
 772	spinlock_t ordered_root_lock;
 773
 774	/*
 775	 * all fs/file tree roots in which there are data=ordered extents
 776	 * pending writeback are added into this list.
 777	 *
 778	 * these can span multiple transactions and basically include
 779	 * every dirty data page that isn't from nodatacow
 780	 */
 781	struct list_head ordered_roots;
 782
 783	struct mutex delalloc_root_mutex;
 784	spinlock_t delalloc_root_lock;
 785	/* all fs/file tree roots that have delalloc inodes. */
 786	struct list_head delalloc_roots;
 787
 788	/*
 789	 * there is a pool of worker threads for checksumming during writes
 790	 * and a pool for checksumming after reads.  This is because readers
 791	 * can run with FS locks held, and the writers may be waiting for
 792	 * those locks.  We don't want ordering in the pending list to cause
 793	 * deadlocks, and so the two are serviced separately.
 794	 *
 795	 * A third pool does submit_bio to avoid deadlocking with the other
 796	 * two
 797	 */
 798	struct btrfs_workqueue *workers;
 799	struct btrfs_workqueue *delalloc_workers;
 800	struct btrfs_workqueue *flush_workers;
 801	struct btrfs_workqueue *endio_workers;
 802	struct btrfs_workqueue *endio_meta_workers;
 803	struct btrfs_workqueue *endio_raid56_workers;
 804	struct btrfs_workqueue *rmw_workers;
 805	struct btrfs_workqueue *endio_meta_write_workers;
 806	struct btrfs_workqueue *endio_write_workers;
 807	struct btrfs_workqueue *endio_freespace_worker;
 808	struct btrfs_workqueue *caching_workers;
 809	struct btrfs_workqueue *readahead_workers;
 810
 811	/*
 812	 * fixup workers take dirty pages that didn't properly go through
 813	 * the cow mechanism and make them safe to write.  It happens
 814	 * for the sys_munmap function call path
 815	 */
 816	struct btrfs_workqueue *fixup_workers;
 817	struct btrfs_workqueue *delayed_workers;
 818
 819	struct task_struct *transaction_kthread;
 820	struct task_struct *cleaner_kthread;
 821	u32 thread_pool_size;
 822
 823	struct kobject *space_info_kobj;
 824	struct kobject *qgroups_kobj;
 825
 826	/* used to keep from writing metadata until there is a nice batch */
 827	struct percpu_counter dirty_metadata_bytes;
 828	struct percpu_counter delalloc_bytes;
 829	struct percpu_counter ordered_bytes;
 830	s32 dirty_metadata_batch;
 831	s32 delalloc_batch;
 832
 833	struct list_head dirty_cowonly_roots;
 834
 835	struct btrfs_fs_devices *fs_devices;
 836
 837	/*
 838	 * The space_info list is effectively read only after initial
 839	 * setup.  It is populated at mount time and cleaned up after
 840	 * all block groups are removed.  RCU is used to protect it.
 841	 */
 842	struct list_head space_info;
 843
 844	struct btrfs_space_info *data_sinfo;
 845
 846	struct reloc_control *reloc_ctl;
 847
 848	/* data_alloc_cluster is only used in ssd_spread mode */
 849	struct btrfs_free_cluster data_alloc_cluster;
 850
 851	/* all metadata allocations go through this cluster */
 852	struct btrfs_free_cluster meta_alloc_cluster;
 853
 854	/* auto defrag inodes go here */
 855	spinlock_t defrag_inodes_lock;
 856	struct rb_root defrag_inodes;
 857	atomic_t defrag_running;
 858
 859	/* Used to protect avail_{data, metadata, system}_alloc_bits */
 860	seqlock_t profiles_lock;
 861	/*
 862	 * these three are in extended format (availability of single
 863	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
 864	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
 865	 */
 866	u64 avail_data_alloc_bits;
 867	u64 avail_metadata_alloc_bits;
 868	u64 avail_system_alloc_bits;
 869
 870	/* restriper state */
 871	spinlock_t balance_lock;
 872	struct mutex balance_mutex;
 873	atomic_t balance_pause_req;
 874	atomic_t balance_cancel_req;
 875	struct btrfs_balance_control *balance_ctl;
 876	wait_queue_head_t balance_wait_q;
 877
 878	/* Cancellation requests for chunk relocation */
 879	atomic_t reloc_cancel_req;
 880
 881	u32 data_chunk_allocations;
 882	u32 metadata_ratio;
 883
 884	void *bdev_holder;
 885
 886	/* private scrub information */
 887	struct mutex scrub_lock;
 888	atomic_t scrubs_running;
 889	atomic_t scrub_pause_req;
 890	atomic_t scrubs_paused;
 891	atomic_t scrub_cancel_req;
 892	wait_queue_head_t scrub_pause_wait;
 893	/*
 894	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
 895	 * running.
 896	 */
 897	refcount_t scrub_workers_refcnt;
 898	struct btrfs_workqueue *scrub_workers;
 899	struct btrfs_workqueue *scrub_wr_completion_workers;
 900	struct btrfs_workqueue *scrub_parity_workers;
 901
 902	struct btrfs_discard_ctl discard_ctl;
 903
 904#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 905	u32 check_integrity_print_mask;
 906#endif
 907	/* is qgroup tracking in a consistent state? */
 908	u64 qgroup_flags;
 909
 910	/* holds configuration and tracking. Protected by qgroup_lock */
 911	struct rb_root qgroup_tree;
 912	spinlock_t qgroup_lock;
 913
 914	/*
 915	 * used to avoid frequently calling ulist_alloc()/ulist_free()
 916	 * when doing qgroup accounting, it must be protected by qgroup_lock.
 917	 */
 918	struct ulist *qgroup_ulist;
 919
 920	/*
 921	 * Protect user change for quota operations. If a transaction is needed,
 922	 * it must be started before locking this lock.
 923	 */
 924	struct mutex qgroup_ioctl_lock;
 925
 926	/* list of dirty qgroups to be written at next commit */
 927	struct list_head dirty_qgroups;
 928
 929	/* used by qgroup for an efficient tree traversal */
 930	u64 qgroup_seq;
 931
 932	/* qgroup rescan items */
 933	struct mutex qgroup_rescan_lock; /* protects the progress item */
 934	struct btrfs_key qgroup_rescan_progress;
 935	struct btrfs_workqueue *qgroup_rescan_workers;
 936	struct completion qgroup_rescan_completion;
 937	struct btrfs_work qgroup_rescan_work;
 938	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
 939
 940	/* filesystem state */
 941	unsigned long fs_state;
 942
 943	struct btrfs_delayed_root *delayed_root;
 944
 945	/* readahead tree */
 946	spinlock_t reada_lock;
 947	struct radix_tree_root reada_tree;
 948
 949	/* readahead works cnt */
 950	atomic_t reada_works_cnt;
 951
 952	/* Extent buffer radix tree */
 953	spinlock_t buffer_lock;
 954	/* Entries are eb->start / sectorsize */
 955	struct radix_tree_root buffer_radix;
 956
 957	/* next backup root to be overwritten */
 958	int backup_root_index;
 959
 960	/* device replace state */
 961	struct btrfs_dev_replace dev_replace;
 962
 963	struct semaphore uuid_tree_rescan_sem;
 964
 965	/* Used to reclaim the metadata space in the background. */
 966	struct work_struct async_reclaim_work;
 967	struct work_struct async_data_reclaim_work;
 968	struct work_struct preempt_reclaim_work;
 969
 970	/* Reclaim partially filled block groups in the background */
 971	struct work_struct reclaim_bgs_work;
 972	struct list_head reclaim_bgs;
 973	int bg_reclaim_threshold;
 974
 975	spinlock_t unused_bgs_lock;
 976	struct list_head unused_bgs;
 977	struct mutex unused_bg_unpin_mutex;
 978	/* Protect block groups that are going to be deleted */
 979	struct mutex reclaim_bgs_lock;
 980
 981	/* Cached block sizes */
 982	u32 nodesize;
 983	u32 sectorsize;
 984	/* ilog2 of sectorsize, use to avoid 64bit division */
 985	u32 sectorsize_bits;
 986	u32 csum_size;
 987	u32 csums_per_leaf;
 988	u32 stripesize;
 989
 990	/* Block groups and devices containing active swapfiles. */
 991	spinlock_t swapfile_pins_lock;
 992	struct rb_root swapfile_pins;
 993
 994	struct crypto_shash *csum_shash;
 995
 996	spinlock_t send_reloc_lock;
 997	/*
 998	 * Number of send operations in progress.
 999	 * Updated while holding fs_info::send_reloc_lock.
1000	 */
1001	int send_in_progress;
1002
1003	/* Type of exclusive operation running, protected by super_lock */
1004	enum btrfs_exclusive_operation exclusive_operation;
1005
1006	/*
1007	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1008	 * if the mode is enabled
1009	 */
1010	union {
1011		u64 zone_size;
1012		u64 zoned;
1013	};
1014
1015	/* Max size to emit ZONE_APPEND write command */
1016	u64 max_zone_append_size;
1017	struct mutex zoned_meta_io_lock;
1018	spinlock_t treelog_bg_lock;
1019	u64 treelog_bg;
1020
1021#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1022	spinlock_t ref_verify_lock;
1023	struct rb_root block_tree;
1024#endif
1025
1026#ifdef CONFIG_BTRFS_DEBUG
1027	struct kobject *debug_kobj;
1028	struct kobject *discard_debug_kobj;
1029	struct list_head allocated_roots;
1030
1031	spinlock_t eb_leak_lock;
1032	struct list_head allocated_ebs;
1033#endif
1034};
1035
1036static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1037{
1038	return sb->s_fs_info;
1039}
1040
1041/*
1042 * The state of btrfs root
1043 */
1044enum {
1045	/*
1046	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1047	 * with the balancing code.   But the race is very small, and only the
1048	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1049	 * is used to tell us when more checks are required
1050	 */
1051	BTRFS_ROOT_IN_TRANS_SETUP,
1052
1053	/*
1054	 * Set if tree blocks of this root can be shared by other roots.
1055	 * Only subvolume trees and their reloc trees have this bit set.
1056	 * Conflicts with TRACK_DIRTY bit.
1057	 *
1058	 * This affects two things:
1059	 *
1060	 * - How balance works
1061	 *   For shareable roots, we need to use reloc tree and do path
1062	 *   replacement for balance, and need various pre/post hooks for
1063	 *   snapshot creation to handle them.
1064	 *
1065	 *   While for non-shareable trees, we just simply do a tree search
1066	 *   with COW.
1067	 *
1068	 * - How dirty roots are tracked
1069	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1070	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1071	 *   don't need to set this manually.
1072	 */
1073	BTRFS_ROOT_SHAREABLE,
1074	BTRFS_ROOT_TRACK_DIRTY,
1075	BTRFS_ROOT_IN_RADIX,
1076	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1077	BTRFS_ROOT_DEFRAG_RUNNING,
1078	BTRFS_ROOT_FORCE_COW,
1079	BTRFS_ROOT_MULTI_LOG_TASKS,
1080	BTRFS_ROOT_DIRTY,
1081	BTRFS_ROOT_DELETING,
1082
1083	/*
1084	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1085	 *
1086	 * Set for the subvolume tree owning the reloc tree.
1087	 */
1088	BTRFS_ROOT_DEAD_RELOC_TREE,
1089	/* Mark dead root stored on device whose cleanup needs to be resumed */
1090	BTRFS_ROOT_DEAD_TREE,
1091	/* The root has a log tree. Used for subvolume roots and the tree root. */
1092	BTRFS_ROOT_HAS_LOG_TREE,
1093	/* Qgroup flushing is in progress */
1094	BTRFS_ROOT_QGROUP_FLUSHING,
 
 
 
 
 
 
1095};
1096
1097/*
1098 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1099 * code. For detail check comment in fs/btrfs/qgroup.c.
1100 */
1101struct btrfs_qgroup_swapped_blocks {
1102	spinlock_t lock;
1103	/* RM_EMPTY_ROOT() of above blocks[] */
1104	bool swapped;
1105	struct rb_root blocks[BTRFS_MAX_LEVEL];
1106};
1107
1108/*
1109 * in ram representation of the tree.  extent_root is used for all allocations
1110 * and for the extent tree extent_root root.
1111 */
1112struct btrfs_root {
 
 
1113	struct extent_buffer *node;
1114
1115	struct extent_buffer *commit_root;
1116	struct btrfs_root *log_root;
1117	struct btrfs_root *reloc_root;
1118
1119	unsigned long state;
1120	struct btrfs_root_item root_item;
1121	struct btrfs_key root_key;
1122	struct btrfs_fs_info *fs_info;
1123	struct extent_io_tree dirty_log_pages;
1124
1125	struct mutex objectid_mutex;
1126
1127	spinlock_t accounting_lock;
1128	struct btrfs_block_rsv *block_rsv;
1129
1130	struct mutex log_mutex;
1131	wait_queue_head_t log_writer_wait;
1132	wait_queue_head_t log_commit_wait[2];
1133	struct list_head log_ctxs[2];
1134	/* Used only for log trees of subvolumes, not for the log root tree */
1135	atomic_t log_writers;
1136	atomic_t log_commit[2];
1137	/* Used only for log trees of subvolumes, not for the log root tree */
1138	atomic_t log_batch;
 
 
 
 
 
 
 
 
1139	int log_transid;
1140	/* No matter the commit succeeds or not*/
1141	int log_transid_committed;
1142	/* Just be updated when the commit succeeds. */
 
 
 
 
1143	int last_log_commit;
1144	pid_t log_start_pid;
1145
1146	u64 last_trans;
1147
1148	u32 type;
1149
1150	u64 free_objectid;
1151
1152	struct btrfs_key defrag_progress;
1153	struct btrfs_key defrag_max;
1154
1155	/* The dirty list is only used by non-shareable roots */
1156	struct list_head dirty_list;
1157
1158	struct list_head root_list;
1159
1160	spinlock_t log_extents_lock[2];
1161	struct list_head logged_list[2];
1162
1163	int orphan_cleanup_state;
1164
1165	spinlock_t inode_lock;
1166	/* red-black tree that keeps track of in-memory inodes */
1167	struct rb_root inode_tree;
1168
1169	/*
1170	 * radix tree that keeps track of delayed nodes of every inode,
1171	 * protected by inode_lock
1172	 */
1173	struct radix_tree_root delayed_nodes_tree;
1174	/*
1175	 * right now this just gets used so that a root has its own devid
1176	 * for stat.  It may be used for more later
1177	 */
1178	dev_t anon_dev;
1179
1180	spinlock_t root_item_lock;
1181	refcount_t refs;
1182
1183	struct mutex delalloc_mutex;
1184	spinlock_t delalloc_lock;
1185	/*
1186	 * all of the inodes that have delalloc bytes.  It is possible for
1187	 * this list to be empty even when there is still dirty data=ordered
1188	 * extents waiting to finish IO.
1189	 */
1190	struct list_head delalloc_inodes;
1191	struct list_head delalloc_root;
1192	u64 nr_delalloc_inodes;
1193
1194	struct mutex ordered_extent_mutex;
1195	/*
1196	 * this is used by the balancing code to wait for all the pending
1197	 * ordered extents
1198	 */
1199	spinlock_t ordered_extent_lock;
1200
1201	/*
1202	 * all of the data=ordered extents pending writeback
1203	 * these can span multiple transactions and basically include
1204	 * every dirty data page that isn't from nodatacow
1205	 */
1206	struct list_head ordered_extents;
1207	struct list_head ordered_root;
1208	u64 nr_ordered_extents;
1209
1210	/*
1211	 * Not empty if this subvolume root has gone through tree block swap
1212	 * (relocation)
1213	 *
1214	 * Will be used by reloc_control::dirty_subvol_roots.
1215	 */
1216	struct list_head reloc_dirty_list;
1217
1218	/*
1219	 * Number of currently running SEND ioctls to prevent
1220	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1221	 */
1222	int send_in_progress;
1223	/*
1224	 * Number of currently running deduplication operations that have a
1225	 * destination inode belonging to this root. Protected by the lock
1226	 * root_item_lock.
1227	 */
1228	int dedupe_in_progress;
1229	/* For exclusion of snapshot creation and nocow writes */
1230	struct btrfs_drew_lock snapshot_lock;
1231
1232	atomic_t snapshot_force_cow;
1233
1234	/* For qgroup metadata reserved space */
1235	spinlock_t qgroup_meta_rsv_lock;
1236	u64 qgroup_meta_rsv_pertrans;
1237	u64 qgroup_meta_rsv_prealloc;
1238	wait_queue_head_t qgroup_flush_wait;
1239
1240	/* Number of active swapfiles */
1241	atomic_t nr_swapfiles;
1242
1243	/* Record pairs of swapped blocks for qgroup */
1244	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1245
1246	/* Used only by log trees, when logging csum items */
1247	struct extent_io_tree log_csum_range;
1248
 
 
 
1249#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1250	u64 alloc_bytenr;
1251#endif
1252
1253#ifdef CONFIG_BTRFS_DEBUG
1254	struct list_head leak_list;
1255#endif
1256};
1257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258/*
1259 * Structure that conveys information about an extent that is going to replace
1260 * all the extents in a file range.
1261 */
1262struct btrfs_replace_extent_info {
1263	u64 disk_offset;
1264	u64 disk_len;
1265	u64 data_offset;
1266	u64 data_len;
1267	u64 file_offset;
1268	/* Pointer to a file extent item of type regular or prealloc. */
1269	char *extent_buf;
1270	/*
1271	 * Set to true when attempting to replace a file range with a new extent
1272	 * described by this structure, set to false when attempting to clone an
1273	 * existing extent into a file range.
1274	 */
1275	bool is_new_extent;
 
 
1276	/* Meaningful only if is_new_extent is true. */
1277	int qgroup_reserved;
1278	/*
1279	 * Meaningful only if is_new_extent is true.
1280	 * Used to track how many extent items we have already inserted in a
1281	 * subvolume tree that refer to the extent described by this structure,
1282	 * so that we know when to create a new delayed ref or update an existing
1283	 * one.
1284	 */
1285	int insertions;
1286};
1287
1288/* Arguments for btrfs_drop_extents() */
1289struct btrfs_drop_extents_args {
1290	/* Input parameters */
1291
1292	/*
1293	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1294	 * If 'replace_extent' is true, this must not be NULL. Also the path
1295	 * is always released except if 'replace_extent' is true and
1296	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1297	 * the path is kept locked.
1298	 */
1299	struct btrfs_path *path;
1300	/* Start offset of the range to drop extents from */
1301	u64 start;
1302	/* End (exclusive, last byte + 1) of the range to drop extents from */
1303	u64 end;
1304	/* If true drop all the extent maps in the range */
1305	bool drop_cache;
1306	/*
1307	 * If true it means we want to insert a new extent after dropping all
1308	 * the extents in the range. If this is true, the 'extent_item_size'
1309	 * parameter must be set as well and the 'extent_inserted' field will
1310	 * be set to true by btrfs_drop_extents() if it could insert the new
1311	 * extent.
1312	 * Note: when this is set to true the path must not be NULL.
1313	 */
1314	bool replace_extent;
1315	/*
1316	 * Used if 'replace_extent' is true. Size of the file extent item to
1317	 * insert after dropping all existing extents in the range
1318	 */
1319	u32 extent_item_size;
1320
1321	/* Output parameters */
1322
1323	/*
1324	 * Set to the minimum between the input parameter 'end' and the end
1325	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1326	 * set even if btrfs_drop_extents() returns an error.
1327	 */
1328	u64 drop_end;
1329	/*
1330	 * The number of allocated bytes found in the range. This can be smaller
1331	 * than the range's length when there are holes in the range.
1332	 */
1333	u64 bytes_found;
1334	/*
1335	 * Only set if 'replace_extent' is true. Set to true if we were able
1336	 * to insert a replacement extent after dropping all extents in the
1337	 * range, otherwise set to false by btrfs_drop_extents().
1338	 * Also, if btrfs_drop_extents() has set this to true it means it
1339	 * returned with the path locked, otherwise if it has set this to
1340	 * false it has returned with the path released.
1341	 */
1342	bool extent_inserted;
1343};
1344
1345struct btrfs_file_private {
1346	void *filldir_buf;
 
 
1347};
1348
1349
1350static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1351{
1352
1353	return info->nodesize - sizeof(struct btrfs_header);
1354}
1355
1356#define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1357
1358static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1359{
1360	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1361}
1362
1363static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1364{
1365	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1366}
1367
1368#define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1369		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1370static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1371{
1372	return BTRFS_MAX_ITEM_SIZE(info) -
1373	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1374}
1375
1376static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1377{
1378	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1379}
1380
1381/*
1382 * Flags for mount options.
1383 *
1384 * Note: don't forget to add new options to btrfs_show_options()
1385 */
1386enum {
1387	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1388	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1389	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1390	BTRFS_MOUNT_SSD				= (1UL << 3),
1391	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1392	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1393	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1394	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1395	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1396	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1397	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1398	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1399	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1400	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1401	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1402	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1403	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1404	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1405	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1406	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1407	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1408	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1409	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1410	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1411	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1412	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1413	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1414	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1415	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1416	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1417	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1418};
1419
1420#define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1421#define BTRFS_DEFAULT_MAX_INLINE	(2048)
1422
1423#define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1424#define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1425#define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1426#define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1427					 BTRFS_MOUNT_##opt)
1428
1429#define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1430do {									\
1431	if (!btrfs_test_opt(fs_info, opt))				\
1432		btrfs_info(fs_info, fmt, ##args);			\
1433	btrfs_set_opt(fs_info->mount_opt, opt);				\
1434} while (0)
1435
1436#define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1437do {									\
1438	if (btrfs_test_opt(fs_info, opt))				\
1439		btrfs_info(fs_info, fmt, ##args);			\
1440	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1441} while (0)
1442
1443/*
1444 * Requests for changes that need to be done during transaction commit.
1445 *
1446 * Internal mount options that are used for special handling of the real
1447 * mount options (eg. cannot be set during remount and have to be set during
1448 * transaction commit)
1449 */
1450
1451#define BTRFS_PENDING_COMMIT			(0)
1452
1453#define btrfs_test_pending(info, opt)	\
1454	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1455#define btrfs_set_pending(info, opt)	\
1456	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1457#define btrfs_clear_pending(info, opt)	\
1458	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1459
1460/*
1461 * Helpers for setting pending mount option changes.
1462 *
1463 * Expects corresponding macros
1464 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1465 */
1466#define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1467do {                                                                   \
1468       if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1469               btrfs_info((info), fmt, ##args);                        \
1470               btrfs_set_pending((info), SET_##opt);                   \
1471               btrfs_clear_pending((info), CLEAR_##opt);               \
1472       }                                                               \
1473} while(0)
1474
1475#define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1476do {                                                                   \
1477       if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1478               btrfs_info((info), fmt, ##args);                        \
1479               btrfs_set_pending((info), CLEAR_##opt);                 \
1480               btrfs_clear_pending((info), SET_##opt);                 \
1481       }                                                               \
1482} while(0)
1483
1484/*
1485 * Inode flags
1486 */
1487#define BTRFS_INODE_NODATASUM		(1 << 0)
1488#define BTRFS_INODE_NODATACOW		(1 << 1)
1489#define BTRFS_INODE_READONLY		(1 << 2)
1490#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
1491#define BTRFS_INODE_PREALLOC		(1 << 4)
1492#define BTRFS_INODE_SYNC		(1 << 5)
1493#define BTRFS_INODE_IMMUTABLE		(1 << 6)
1494#define BTRFS_INODE_APPEND		(1 << 7)
1495#define BTRFS_INODE_NODUMP		(1 << 8)
1496#define BTRFS_INODE_NOATIME		(1 << 9)
1497#define BTRFS_INODE_DIRSYNC		(1 << 10)
1498#define BTRFS_INODE_COMPRESS		(1 << 11)
1499
1500#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
1501
1502#define BTRFS_INODE_FLAG_MASK						\
1503	(BTRFS_INODE_NODATASUM |					\
1504	 BTRFS_INODE_NODATACOW |					\
1505	 BTRFS_INODE_READONLY |						\
1506	 BTRFS_INODE_NOCOMPRESS |					\
1507	 BTRFS_INODE_PREALLOC |						\
1508	 BTRFS_INODE_SYNC |						\
1509	 BTRFS_INODE_IMMUTABLE |					\
1510	 BTRFS_INODE_APPEND |						\
1511	 BTRFS_INODE_NODUMP |						\
1512	 BTRFS_INODE_NOATIME |						\
1513	 BTRFS_INODE_DIRSYNC |						\
1514	 BTRFS_INODE_COMPRESS |						\
1515	 BTRFS_INODE_ROOT_ITEM_INIT)
1516
1517struct btrfs_map_token {
1518	struct extent_buffer *eb;
1519	char *kaddr;
1520	unsigned long offset;
1521};
1522
1523#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1524				((bytes) >> (fs_info)->sectorsize_bits)
1525
1526static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1527					struct extent_buffer *eb)
1528{
1529	token->eb = eb;
1530	token->kaddr = page_address(eb->pages[0]);
1531	token->offset = 0;
1532}
1533
1534/* some macros to generate set/get functions for the struct fields.  This
1535 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1536 * one for u8:
1537 */
1538#define le8_to_cpu(v) (v)
1539#define cpu_to_le8(v) (v)
1540#define __le8 u8
1541
1542static inline u8 get_unaligned_le8(const void *p)
1543{
1544       return *(u8 *)p;
1545}
1546
1547static inline void put_unaligned_le8(u8 val, void *p)
1548{
1549       *(u8 *)p = val;
1550}
1551
1552#define read_eb_member(eb, ptr, type, member, result) (\
1553	read_extent_buffer(eb, (char *)(result),			\
1554			   ((unsigned long)(ptr)) +			\
1555			    offsetof(type, member),			\
1556			   sizeof(((type *)0)->member)))
1557
1558#define write_eb_member(eb, ptr, type, member, result) (\
1559	write_extent_buffer(eb, (char *)(result),			\
1560			   ((unsigned long)(ptr)) +			\
1561			    offsetof(type, member),			\
1562			   sizeof(((type *)0)->member)))
1563
1564#define DECLARE_BTRFS_SETGET_BITS(bits)					\
1565u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1566			       const void *ptr, unsigned long off);	\
1567void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1568			    const void *ptr, unsigned long off,		\
1569			    u##bits val);				\
1570u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1571			 const void *ptr, unsigned long off);		\
1572void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1573		      unsigned long off, u##bits val);
1574
1575DECLARE_BTRFS_SETGET_BITS(8)
1576DECLARE_BTRFS_SETGET_BITS(16)
1577DECLARE_BTRFS_SETGET_BITS(32)
1578DECLARE_BTRFS_SETGET_BITS(64)
1579
1580#define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1581static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1582				   const type *s)			\
1583{									\
1584	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1585	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1586}									\
1587static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1588				    u##bits val)			\
1589{									\
1590	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1591	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1592}									\
1593static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1594					 const type *s)			\
1595{									\
1596	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1597	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1598}									\
1599static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1600					  type *s, u##bits val)		\
1601{									\
1602	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1603	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1604}
1605
1606#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1607static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1608{									\
1609	const type *p = page_address(eb->pages[0]) +			\
1610			offset_in_page(eb->start);			\
1611	return get_unaligned_le##bits(&p->member);			\
1612}									\
1613static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1614				    u##bits val)			\
1615{									\
1616	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1617	put_unaligned_le##bits(val, &p->member);			\
1618}
1619
1620#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1621static inline u##bits btrfs_##name(const type *s)			\
1622{									\
1623	return get_unaligned_le##bits(&s->member);			\
1624}									\
1625static inline void btrfs_set_##name(type *s, u##bits val)		\
1626{									\
1627	put_unaligned_le##bits(val, &s->member);			\
1628}
1629
1630static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1631					   struct btrfs_dev_item *s)
1632{
1633	BUILD_BUG_ON(sizeof(u64) !=
1634		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1635	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1636					    total_bytes));
1637}
1638static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1639						struct btrfs_dev_item *s,
1640						u64 val)
1641{
1642	BUILD_BUG_ON(sizeof(u64) !=
1643		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1644	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1645	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1646}
1647
1648
1649BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1650BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1651BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1652BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1653BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1654		   start_offset, 64);
1655BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1656BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1657BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1658BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1659BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1660BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1661
1662BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1663BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1664			 total_bytes, 64);
1665BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1666			 bytes_used, 64);
1667BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1668			 io_align, 32);
1669BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1670			 io_width, 32);
1671BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1672			 sector_size, 32);
1673BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1674BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1675			 dev_group, 32);
1676BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1677			 seek_speed, 8);
1678BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1679			 bandwidth, 8);
1680BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1681			 generation, 64);
1682
1683static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1684{
1685	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1686}
1687
1688static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1689{
1690	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1691}
1692
1693BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1694BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1695BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1696BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1697BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1698BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1699BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1700BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1701BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1702BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1703BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1704
1705static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1706{
1707	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1708}
1709
1710BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1711BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1712BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1713			 stripe_len, 64);
1714BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1715			 io_align, 32);
1716BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1717			 io_width, 32);
1718BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1719			 sector_size, 32);
1720BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1721BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1722			 num_stripes, 16);
1723BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1724			 sub_stripes, 16);
1725BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1726BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1727
1728static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1729						   int nr)
1730{
1731	unsigned long offset = (unsigned long)c;
1732	offset += offsetof(struct btrfs_chunk, stripe);
1733	offset += nr * sizeof(struct btrfs_stripe);
1734	return (struct btrfs_stripe *)offset;
1735}
1736
1737static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1738{
1739	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1740}
1741
1742static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1743					 struct btrfs_chunk *c, int nr)
1744{
1745	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1746}
1747
1748static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1749					 struct btrfs_chunk *c, int nr)
1750{
1751	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1752}
1753
1754/* struct btrfs_block_group_item */
1755BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1756			 used, 64);
1757BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1758			 used, 64);
1759BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1760			struct btrfs_block_group_item, chunk_objectid, 64);
1761
1762BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1763		   struct btrfs_block_group_item, chunk_objectid, 64);
1764BTRFS_SETGET_FUNCS(block_group_flags,
1765		   struct btrfs_block_group_item, flags, 64);
1766BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1767			struct btrfs_block_group_item, flags, 64);
1768
1769/* struct btrfs_free_space_info */
1770BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1771		   extent_count, 32);
1772BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1773
1774/* struct btrfs_inode_ref */
1775BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1776BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1777
1778/* struct btrfs_inode_extref */
1779BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1780		   parent_objectid, 64);
1781BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1782		   name_len, 16);
1783BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1784
1785/* struct btrfs_inode_item */
1786BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1787BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1788BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1789BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1790BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1791BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1792BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1793BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1794BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1795BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1796BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1797BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1798BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1799			 generation, 64);
1800BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1801			 sequence, 64);
1802BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1803			 transid, 64);
1804BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1805BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1806			 nbytes, 64);
1807BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1808			 block_group, 64);
1809BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1810BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1811BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1812BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1813BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1814BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1815BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1816BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1817BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1818BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1819
1820/* struct btrfs_dev_extent */
1821BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1822		   chunk_tree, 64);
1823BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1824		   chunk_objectid, 64);
1825BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1826		   chunk_offset, 64);
1827BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1828BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1829BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1830		   generation, 64);
1831BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1832
1833BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1834
1835static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1836					struct btrfs_tree_block_info *item,
1837					struct btrfs_disk_key *key)
1838{
1839	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1840}
1841
1842static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1843					    struct btrfs_tree_block_info *item,
1844					    struct btrfs_disk_key *key)
1845{
1846	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1847}
1848
1849BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1850		   root, 64);
1851BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1852		   objectid, 64);
1853BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1854		   offset, 64);
1855BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1856		   count, 32);
1857
1858BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1859		   count, 32);
1860
1861BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1862		   type, 8);
1863BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1864		   offset, 64);
1865
1866static inline u32 btrfs_extent_inline_ref_size(int type)
1867{
1868	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1869	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1870		return sizeof(struct btrfs_extent_inline_ref);
1871	if (type == BTRFS_SHARED_DATA_REF_KEY)
1872		return sizeof(struct btrfs_shared_data_ref) +
1873		       sizeof(struct btrfs_extent_inline_ref);
1874	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1875		return sizeof(struct btrfs_extent_data_ref) +
1876		       offsetof(struct btrfs_extent_inline_ref, offset);
1877	return 0;
1878}
1879
1880/* struct btrfs_node */
1881BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1882BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1883BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1884			 blockptr, 64);
1885BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1886			 generation, 64);
1887
1888static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1889{
1890	unsigned long ptr;
1891	ptr = offsetof(struct btrfs_node, ptrs) +
1892		sizeof(struct btrfs_key_ptr) * nr;
1893	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1894}
1895
1896static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1897					   int nr, u64 val)
1898{
1899	unsigned long ptr;
1900	ptr = offsetof(struct btrfs_node, ptrs) +
1901		sizeof(struct btrfs_key_ptr) * nr;
1902	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1903}
1904
1905static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1906{
1907	unsigned long ptr;
1908	ptr = offsetof(struct btrfs_node, ptrs) +
1909		sizeof(struct btrfs_key_ptr) * nr;
1910	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1911}
1912
1913static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1914						 int nr, u64 val)
1915{
1916	unsigned long ptr;
1917	ptr = offsetof(struct btrfs_node, ptrs) +
1918		sizeof(struct btrfs_key_ptr) * nr;
1919	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1920}
1921
1922static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1923{
1924	return offsetof(struct btrfs_node, ptrs) +
1925		sizeof(struct btrfs_key_ptr) * nr;
1926}
1927
1928void btrfs_node_key(const struct extent_buffer *eb,
1929		    struct btrfs_disk_key *disk_key, int nr);
1930
1931static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1932				      struct btrfs_disk_key *disk_key, int nr)
1933{
1934	unsigned long ptr;
1935	ptr = btrfs_node_key_ptr_offset(nr);
1936	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1937		       struct btrfs_key_ptr, key, disk_key);
1938}
1939
1940/* struct btrfs_item */
1941BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1942BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1943BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1944BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1945
1946static inline unsigned long btrfs_item_nr_offset(int nr)
1947{
1948	return offsetof(struct btrfs_leaf, items) +
1949		sizeof(struct btrfs_item) * nr;
1950}
1951
1952static inline struct btrfs_item *btrfs_item_nr(int nr)
1953{
1954	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1955}
1956
1957static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1958				 struct btrfs_item *item)
1959{
1960	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1961}
1962
1963static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1964{
1965	return btrfs_item_end(eb, btrfs_item_nr(nr));
1966}
1967
1968static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1969{
1970	return btrfs_item_offset(eb, btrfs_item_nr(nr));
1971}
1972
1973static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1974{
1975	return btrfs_item_size(eb, btrfs_item_nr(nr));
1976}
1977
1978static inline void btrfs_item_key(const struct extent_buffer *eb,
1979			   struct btrfs_disk_key *disk_key, int nr)
1980{
1981	struct btrfs_item *item = btrfs_item_nr(nr);
1982	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1983}
1984
1985static inline void btrfs_set_item_key(struct extent_buffer *eb,
1986			       struct btrfs_disk_key *disk_key, int nr)
1987{
1988	struct btrfs_item *item = btrfs_item_nr(nr);
1989	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1990}
1991
1992BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1993
1994/*
1995 * struct btrfs_root_ref
1996 */
1997BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1998BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1999BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2000
2001/* struct btrfs_dir_item */
2002BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2003BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2004BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2005BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2006BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2007BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2008			 data_len, 16);
2009BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2010			 name_len, 16);
2011BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2012			 transid, 64);
2013
2014static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2015				      const struct btrfs_dir_item *item,
2016				      struct btrfs_disk_key *key)
2017{
2018	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2019}
2020
2021static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2022					  struct btrfs_dir_item *item,
2023					  const struct btrfs_disk_key *key)
2024{
2025	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2026}
2027
2028BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2029		   num_entries, 64);
2030BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2031		   num_bitmaps, 64);
2032BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2033		   generation, 64);
2034
2035static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2036					const struct btrfs_free_space_header *h,
2037					struct btrfs_disk_key *key)
2038{
2039	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2040}
2041
2042static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2043					    struct btrfs_free_space_header *h,
2044					    const struct btrfs_disk_key *key)
2045{
2046	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2047}
2048
2049/* struct btrfs_disk_key */
2050BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2051			 objectid, 64);
2052BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2053BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2054
2055#ifdef __LITTLE_ENDIAN
2056
2057/*
2058 * Optimized helpers for little-endian architectures where CPU and on-disk
2059 * structures have the same endianness and we can skip conversions.
2060 */
2061
2062static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2063					 const struct btrfs_disk_key *disk_key)
2064{
2065	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2066}
2067
2068static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2069					 const struct btrfs_key *cpu_key)
2070{
2071	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2072}
2073
2074static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2075					 struct btrfs_key *cpu_key, int nr)
2076{
2077	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2078
2079	btrfs_node_key(eb, disk_key, nr);
2080}
2081
2082static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2083					 struct btrfs_key *cpu_key, int nr)
2084{
2085	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2086
2087	btrfs_item_key(eb, disk_key, nr);
2088}
2089
2090static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2091					     const struct btrfs_dir_item *item,
2092					     struct btrfs_key *cpu_key)
2093{
2094	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2095
2096	btrfs_dir_item_key(eb, item, disk_key);
2097}
2098
2099#else
2100
2101static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2102					 const struct btrfs_disk_key *disk)
2103{
2104	cpu->offset = le64_to_cpu(disk->offset);
2105	cpu->type = disk->type;
2106	cpu->objectid = le64_to_cpu(disk->objectid);
2107}
2108
2109static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2110					 const struct btrfs_key *cpu)
2111{
2112	disk->offset = cpu_to_le64(cpu->offset);
2113	disk->type = cpu->type;
2114	disk->objectid = cpu_to_le64(cpu->objectid);
2115}
2116
2117static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2118					 struct btrfs_key *key, int nr)
2119{
2120	struct btrfs_disk_key disk_key;
2121	btrfs_node_key(eb, &disk_key, nr);
2122	btrfs_disk_key_to_cpu(key, &disk_key);
2123}
2124
2125static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2126					 struct btrfs_key *key, int nr)
2127{
2128	struct btrfs_disk_key disk_key;
2129	btrfs_item_key(eb, &disk_key, nr);
2130	btrfs_disk_key_to_cpu(key, &disk_key);
2131}
2132
2133static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2134					     const struct btrfs_dir_item *item,
2135					     struct btrfs_key *key)
2136{
2137	struct btrfs_disk_key disk_key;
2138	btrfs_dir_item_key(eb, item, &disk_key);
2139	btrfs_disk_key_to_cpu(key, &disk_key);
2140}
2141
2142#endif
2143
2144/* struct btrfs_header */
2145BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2146BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2147			  generation, 64);
2148BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2149BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2150BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2151BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2152BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2153			 generation, 64);
2154BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2155BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2156			 nritems, 32);
2157BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2158
2159static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2160{
2161	return (btrfs_header_flags(eb) & flag) == flag;
2162}
2163
2164static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2165{
2166	u64 flags = btrfs_header_flags(eb);
2167	btrfs_set_header_flags(eb, flags | flag);
2168}
2169
2170static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2171{
2172	u64 flags = btrfs_header_flags(eb);
2173	btrfs_set_header_flags(eb, flags & ~flag);
2174}
2175
2176static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2177{
2178	u64 flags = btrfs_header_flags(eb);
2179	return flags >> BTRFS_BACKREF_REV_SHIFT;
2180}
2181
2182static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2183						int rev)
2184{
2185	u64 flags = btrfs_header_flags(eb);
2186	flags &= ~BTRFS_BACKREF_REV_MASK;
2187	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2188	btrfs_set_header_flags(eb, flags);
2189}
2190
2191static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2192{
2193	return btrfs_header_level(eb) == 0;
2194}
2195
2196/* struct btrfs_root_item */
2197BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2198		   generation, 64);
2199BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2200BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2201BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2202
2203BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2204			 generation, 64);
2205BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2206BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2207BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2208BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2209BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2210BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2211BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2212BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2213BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2214			 last_snapshot, 64);
2215BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2216			 generation_v2, 64);
2217BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2218			 ctransid, 64);
2219BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2220			 otransid, 64);
2221BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2222			 stransid, 64);
2223BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2224			 rtransid, 64);
2225
2226static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2227{
2228	/* Byte-swap the constant at compile time, root_item::flags is LE */
2229	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2230}
2231
2232static inline bool btrfs_root_dead(const struct btrfs_root *root)
2233{
2234	/* Byte-swap the constant at compile time, root_item::flags is LE */
2235	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2236}
2237
2238/* struct btrfs_root_backup */
2239BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2240		   tree_root, 64);
2241BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2242		   tree_root_gen, 64);
2243BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2244		   tree_root_level, 8);
2245
2246BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2247		   chunk_root, 64);
2248BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2249		   chunk_root_gen, 64);
2250BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2251		   chunk_root_level, 8);
2252
2253BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2254		   extent_root, 64);
2255BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2256		   extent_root_gen, 64);
2257BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2258		   extent_root_level, 8);
2259
2260BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2261		   fs_root, 64);
2262BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2263		   fs_root_gen, 64);
2264BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2265		   fs_root_level, 8);
2266
2267BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2268		   dev_root, 64);
2269BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2270		   dev_root_gen, 64);
2271BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2272		   dev_root_level, 8);
2273
2274BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2275		   csum_root, 64);
2276BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2277		   csum_root_gen, 64);
2278BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2279		   csum_root_level, 8);
2280BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2281		   total_bytes, 64);
2282BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2283		   bytes_used, 64);
2284BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2285		   num_devices, 64);
2286
2287/* struct btrfs_balance_item */
2288BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2289
2290static inline void btrfs_balance_data(const struct extent_buffer *eb,
2291				      const struct btrfs_balance_item *bi,
2292				      struct btrfs_disk_balance_args *ba)
2293{
2294	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2295}
2296
2297static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2298				  struct btrfs_balance_item *bi,
2299				  const struct btrfs_disk_balance_args *ba)
2300{
2301	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2302}
2303
2304static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2305				      const struct btrfs_balance_item *bi,
2306				      struct btrfs_disk_balance_args *ba)
2307{
2308	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2309}
2310
2311static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2312				  struct btrfs_balance_item *bi,
2313				  const struct btrfs_disk_balance_args *ba)
2314{
2315	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2316}
2317
2318static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2319				     const struct btrfs_balance_item *bi,
2320				     struct btrfs_disk_balance_args *ba)
2321{
2322	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2323}
2324
2325static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2326				 struct btrfs_balance_item *bi,
2327				 const struct btrfs_disk_balance_args *ba)
2328{
2329	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2330}
2331
2332static inline void
2333btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2334			       const struct btrfs_disk_balance_args *disk)
2335{
2336	memset(cpu, 0, sizeof(*cpu));
2337
2338	cpu->profiles = le64_to_cpu(disk->profiles);
2339	cpu->usage = le64_to_cpu(disk->usage);
2340	cpu->devid = le64_to_cpu(disk->devid);
2341	cpu->pstart = le64_to_cpu(disk->pstart);
2342	cpu->pend = le64_to_cpu(disk->pend);
2343	cpu->vstart = le64_to_cpu(disk->vstart);
2344	cpu->vend = le64_to_cpu(disk->vend);
2345	cpu->target = le64_to_cpu(disk->target);
2346	cpu->flags = le64_to_cpu(disk->flags);
2347	cpu->limit = le64_to_cpu(disk->limit);
2348	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2349	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2350}
2351
2352static inline void
2353btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2354			       const struct btrfs_balance_args *cpu)
2355{
2356	memset(disk, 0, sizeof(*disk));
2357
2358	disk->profiles = cpu_to_le64(cpu->profiles);
2359	disk->usage = cpu_to_le64(cpu->usage);
2360	disk->devid = cpu_to_le64(cpu->devid);
2361	disk->pstart = cpu_to_le64(cpu->pstart);
2362	disk->pend = cpu_to_le64(cpu->pend);
2363	disk->vstart = cpu_to_le64(cpu->vstart);
2364	disk->vend = cpu_to_le64(cpu->vend);
2365	disk->target = cpu_to_le64(cpu->target);
2366	disk->flags = cpu_to_le64(cpu->flags);
2367	disk->limit = cpu_to_le64(cpu->limit);
2368	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2369	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2370}
2371
2372/* struct btrfs_super_block */
2373BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2374BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2375BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2376			 generation, 64);
2377BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2378BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2379			 struct btrfs_super_block, sys_chunk_array_size, 32);
2380BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2381			 struct btrfs_super_block, chunk_root_generation, 64);
2382BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2383			 root_level, 8);
2384BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2385			 chunk_root, 64);
2386BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2387			 chunk_root_level, 8);
2388BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2389			 log_root, 64);
2390BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2391			 log_root_transid, 64);
2392BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2393			 log_root_level, 8);
2394BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2395			 total_bytes, 64);
2396BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2397			 bytes_used, 64);
2398BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2399			 sectorsize, 32);
2400BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2401			 nodesize, 32);
2402BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2403			 stripesize, 32);
2404BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2405			 root_dir_objectid, 64);
2406BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2407			 num_devices, 64);
2408BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2409			 compat_flags, 64);
2410BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2411			 compat_ro_flags, 64);
2412BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2413			 incompat_flags, 64);
2414BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2415			 csum_type, 16);
2416BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2417			 cache_generation, 64);
2418BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2419BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2420			 uuid_tree_generation, 64);
2421
2422int btrfs_super_csum_size(const struct btrfs_super_block *s);
2423const char *btrfs_super_csum_name(u16 csum_type);
2424const char *btrfs_super_csum_driver(u16 csum_type);
2425size_t __attribute_const__ btrfs_get_num_csums(void);
2426
2427
2428/*
2429 * The leaf data grows from end-to-front in the node.
2430 * this returns the address of the start of the last item,
2431 * which is the stop of the leaf data stack
2432 */
2433static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2434{
2435	u32 nr = btrfs_header_nritems(leaf);
2436
2437	if (nr == 0)
2438		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2439	return btrfs_item_offset_nr(leaf, nr - 1);
2440}
2441
2442/* struct btrfs_file_extent_item */
2443BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2444			 type, 8);
2445BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2446			 struct btrfs_file_extent_item, disk_bytenr, 64);
2447BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2448			 struct btrfs_file_extent_item, offset, 64);
2449BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2450			 struct btrfs_file_extent_item, generation, 64);
2451BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2452			 struct btrfs_file_extent_item, num_bytes, 64);
2453BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2454			 struct btrfs_file_extent_item, ram_bytes, 64);
2455BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2456			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2457BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2458			 struct btrfs_file_extent_item, compression, 8);
2459
2460static inline unsigned long
2461btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2462{
2463	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2464}
2465
2466static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2467{
2468	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2469}
2470
2471BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2472BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2473		   disk_bytenr, 64);
2474BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2475		   generation, 64);
2476BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2477		   disk_num_bytes, 64);
2478BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2479		  offset, 64);
2480BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2481		   num_bytes, 64);
2482BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2483		   ram_bytes, 64);
2484BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2485		   compression, 8);
2486BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2487		   encryption, 8);
2488BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2489		   other_encoding, 16);
2490
2491/*
2492 * this returns the number of bytes used by the item on disk, minus the
2493 * size of any extent headers.  If a file is compressed on disk, this is
2494 * the compressed size
2495 */
2496static inline u32 btrfs_file_extent_inline_item_len(
2497						const struct extent_buffer *eb,
2498						struct btrfs_item *e)
2499{
2500	return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2501}
2502
2503/* btrfs_qgroup_status_item */
2504BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2505		   generation, 64);
2506BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2507		   version, 64);
2508BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2509		   flags, 64);
2510BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2511		   rescan, 64);
2512
2513/* btrfs_qgroup_info_item */
2514BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2515		   generation, 64);
2516BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2517BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2518		   rfer_cmpr, 64);
2519BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2520BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2521		   excl_cmpr, 64);
2522
2523BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2524			 struct btrfs_qgroup_info_item, generation, 64);
2525BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2526			 rfer, 64);
2527BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2528			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2529BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2530			 excl, 64);
2531BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2532			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2533
2534/* btrfs_qgroup_limit_item */
2535BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2536		   flags, 64);
2537BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2538		   max_rfer, 64);
2539BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2540		   max_excl, 64);
2541BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2542		   rsv_rfer, 64);
2543BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2544		   rsv_excl, 64);
2545
2546/* btrfs_dev_replace_item */
2547BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2548		   struct btrfs_dev_replace_item, src_devid, 64);
2549BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2550		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2551		   64);
2552BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2553		   replace_state, 64);
2554BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2555		   time_started, 64);
2556BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2557		   time_stopped, 64);
2558BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2559		   num_write_errors, 64);
2560BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2561		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2562		   64);
2563BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2564		   cursor_left, 64);
2565BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2566		   cursor_right, 64);
2567
2568BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2569			 struct btrfs_dev_replace_item, src_devid, 64);
2570BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2571			 struct btrfs_dev_replace_item,
2572			 cont_reading_from_srcdev_mode, 64);
2573BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2574			 struct btrfs_dev_replace_item, replace_state, 64);
2575BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2576			 struct btrfs_dev_replace_item, time_started, 64);
2577BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2578			 struct btrfs_dev_replace_item, time_stopped, 64);
2579BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2580			 struct btrfs_dev_replace_item, num_write_errors, 64);
2581BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2582			 struct btrfs_dev_replace_item,
2583			 num_uncorrectable_read_errors, 64);
2584BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2585			 struct btrfs_dev_replace_item, cursor_left, 64);
2586BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2587			 struct btrfs_dev_replace_item, cursor_right, 64);
2588
2589/* helper function to cast into the data area of the leaf. */
2590#define btrfs_item_ptr(leaf, slot, type) \
2591	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2592	btrfs_item_offset_nr(leaf, slot)))
2593
2594#define btrfs_item_ptr_offset(leaf, slot) \
2595	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2596	btrfs_item_offset_nr(leaf, slot)))
2597
2598static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2599{
2600	return crc32c(crc, address, length);
2601}
2602
2603static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2604{
2605	put_unaligned_le32(~crc, result);
2606}
2607
2608static inline u64 btrfs_name_hash(const char *name, int len)
2609{
2610       return crc32c((u32)~1, name, len);
2611}
2612
2613/*
2614 * Figure the key offset of an extended inode ref
2615 */
2616static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2617                                   int len)
2618{
2619       return (u64) crc32c(parent_objectid, name, len);
2620}
2621
2622static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2623{
2624	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2625}
2626
2627/* extent-tree.c */
2628
2629enum btrfs_inline_ref_type {
2630	BTRFS_REF_TYPE_INVALID,
2631	BTRFS_REF_TYPE_BLOCK,
2632	BTRFS_REF_TYPE_DATA,
2633	BTRFS_REF_TYPE_ANY,
2634};
2635
2636int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2637				     struct btrfs_extent_inline_ref *iref,
2638				     enum btrfs_inline_ref_type is_data);
2639u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2640
2641/*
2642 * Take the number of bytes to be checksummmed and figure out how many leaves
2643 * it would require to store the csums for that many bytes.
2644 */
2645static inline u64 btrfs_csum_bytes_to_leaves(
2646			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2647{
2648	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2649
2650	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2651}
2652
2653/*
2654 * Use this if we would be adding new items, as we could split nodes as we cow
2655 * down the tree.
2656 */
2657static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2658						  unsigned num_items)
2659{
2660	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2661}
2662
2663/*
2664 * Doing a truncate or a modification won't result in new nodes or leaves, just
2665 * what we need for COW.
2666 */
2667static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2668						 unsigned num_items)
2669{
2670	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2671}
2672
2673int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2674			      u64 start, u64 num_bytes);
2675void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2676int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2677			   unsigned long count);
2678void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2679				  struct btrfs_delayed_ref_root *delayed_refs,
2680				  struct btrfs_delayed_ref_head *head);
2681int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2682int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2683			     struct btrfs_fs_info *fs_info, u64 bytenr,
2684			     u64 offset, int metadata, u64 *refs, u64 *flags);
2685int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2686		     int reserved);
2687int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2688				    u64 bytenr, u64 num_bytes);
2689int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2690int btrfs_cross_ref_exist(struct btrfs_root *root,
2691			  u64 objectid, u64 offset, u64 bytenr, bool strict);
2692struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2693					     struct btrfs_root *root,
2694					     u64 parent, u64 root_objectid,
2695					     const struct btrfs_disk_key *key,
2696					     int level, u64 hint,
2697					     u64 empty_size,
2698					     enum btrfs_lock_nesting nest);
2699void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2700			   struct btrfs_root *root,
2701			   struct extent_buffer *buf,
2702			   u64 parent, int last_ref);
2703int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2704				     struct btrfs_root *root, u64 owner,
2705				     u64 offset, u64 ram_bytes,
2706				     struct btrfs_key *ins);
2707int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2708				   u64 root_objectid, u64 owner, u64 offset,
2709				   struct btrfs_key *ins);
2710int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2711			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2712			 struct btrfs_key *ins, int is_data, int delalloc);
2713int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2714		  struct extent_buffer *buf, int full_backref);
2715int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2716		  struct extent_buffer *buf, int full_backref);
2717int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2718				struct extent_buffer *eb, u64 flags,
2719				int level, int is_data);
2720int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2721
2722int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2723			       u64 start, u64 len, int delalloc);
2724int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2725			      u64 len);
2726int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2727int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2728			 struct btrfs_ref *generic_ref);
2729
2730void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2731
2732/*
2733 * Different levels for to flush space when doing space reservations.
2734 *
2735 * The higher the level, the more methods we try to reclaim space.
2736 */
2737enum btrfs_reserve_flush_enum {
2738	/* If we are in the transaction, we can't flush anything.*/
2739	BTRFS_RESERVE_NO_FLUSH,
2740
2741	/*
2742	 * Flush space by:
2743	 * - Running delayed inode items
2744	 * - Allocating a new chunk
2745	 */
2746	BTRFS_RESERVE_FLUSH_LIMIT,
2747
2748	/*
2749	 * Flush space by:
2750	 * - Running delayed inode items
2751	 * - Running delayed refs
2752	 * - Running delalloc and waiting for ordered extents
2753	 * - Allocating a new chunk
2754	 */
2755	BTRFS_RESERVE_FLUSH_EVICT,
2756
2757	/*
2758	 * Flush space by above mentioned methods and by:
2759	 * - Running delayed iputs
2760	 * - Committing transaction
2761	 *
2762	 * Can be interrupted by a fatal signal.
2763	 */
2764	BTRFS_RESERVE_FLUSH_DATA,
2765	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2766	BTRFS_RESERVE_FLUSH_ALL,
2767
2768	/*
2769	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2770	 * global rsv.
2771	 *
2772	 * Can be interrupted by a fatal signal.
2773	 */
2774	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2775};
2776
2777enum btrfs_flush_state {
2778	FLUSH_DELAYED_ITEMS_NR	=	1,
2779	FLUSH_DELAYED_ITEMS	=	2,
2780	FLUSH_DELAYED_REFS_NR	=	3,
2781	FLUSH_DELAYED_REFS	=	4,
2782	FLUSH_DELALLOC		=	5,
2783	FLUSH_DELALLOC_WAIT	=	6,
2784	FLUSH_DELALLOC_FULL	=	7,
2785	ALLOC_CHUNK		=	8,
2786	ALLOC_CHUNK_FORCE	=	9,
2787	RUN_DELAYED_IPUTS	=	10,
2788	COMMIT_TRANS		=	11,
2789};
2790
2791int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2792				     struct btrfs_block_rsv *rsv,
2793				     int nitems, bool use_global_rsv);
2794void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2795				      struct btrfs_block_rsv *rsv);
2796void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2797
2798int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2799u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2800int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2801				   u64 start, u64 end);
2802int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2803			 u64 num_bytes, u64 *actual_bytes);
2804int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2805
2806int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2807int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2808					 struct btrfs_fs_info *fs_info);
2809int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2810void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2811void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2812
2813/* ctree.c */
2814int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2815		     int *slot);
2816int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2817int btrfs_previous_item(struct btrfs_root *root,
2818			struct btrfs_path *path, u64 min_objectid,
2819			int type);
2820int btrfs_previous_extent_item(struct btrfs_root *root,
2821			struct btrfs_path *path, u64 min_objectid);
2822void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2823			     struct btrfs_path *path,
2824			     const struct btrfs_key *new_key);
2825struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2826int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2827			struct btrfs_key *key, int lowest_level,
2828			u64 min_trans);
2829int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2830			 struct btrfs_path *path,
2831			 u64 min_trans);
2832struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2833					   int slot);
2834
2835int btrfs_cow_block(struct btrfs_trans_handle *trans,
2836		    struct btrfs_root *root, struct extent_buffer *buf,
2837		    struct extent_buffer *parent, int parent_slot,
2838		    struct extent_buffer **cow_ret,
2839		    enum btrfs_lock_nesting nest);
 
 
 
 
 
 
 
2840int btrfs_copy_root(struct btrfs_trans_handle *trans,
2841		      struct btrfs_root *root,
2842		      struct extent_buffer *buf,
2843		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2844int btrfs_block_can_be_shared(struct btrfs_root *root,
2845			      struct extent_buffer *buf);
2846void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2847void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
 
 
 
 
 
2848int btrfs_split_item(struct btrfs_trans_handle *trans,
2849		     struct btrfs_root *root,
2850		     struct btrfs_path *path,
2851		     const struct btrfs_key *new_key,
2852		     unsigned long split_offset);
2853int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2854			 struct btrfs_root *root,
2855			 struct btrfs_path *path,
2856			 const struct btrfs_key *new_key);
2857int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2858		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2859int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2860		      const struct btrfs_key *key, struct btrfs_path *p,
2861		      int ins_len, int cow);
2862int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2863			  struct btrfs_path *p, u64 time_seq);
2864int btrfs_search_slot_for_read(struct btrfs_root *root,
2865			       const struct btrfs_key *key,
2866			       struct btrfs_path *p, int find_higher,
2867			       int return_any);
2868int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2869		       struct btrfs_root *root, struct extent_buffer *parent,
2870		       int start_slot, u64 *last_ret,
2871		       struct btrfs_key *progress);
2872void btrfs_release_path(struct btrfs_path *p);
2873struct btrfs_path *btrfs_alloc_path(void);
2874void btrfs_free_path(struct btrfs_path *p);
2875
2876int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2877		   struct btrfs_path *path, int slot, int nr);
2878static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2879				 struct btrfs_root *root,
2880				 struct btrfs_path *path)
2881{
2882	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2883}
2884
2885void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2886			    const struct btrfs_key *cpu_key, u32 *data_size,
2887			    int nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2889		      const struct btrfs_key *key, void *data, u32 data_size);
2890int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2891			     struct btrfs_root *root,
2892			     struct btrfs_path *path,
2893			     const struct btrfs_key *cpu_key, u32 *data_size,
2894			     int nr);
2895
2896static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2897					  struct btrfs_root *root,
2898					  struct btrfs_path *path,
2899					  const struct btrfs_key *key,
2900					  u32 data_size)
2901{
2902	return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
 
 
 
 
 
 
 
2903}
2904
2905int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2906int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2907int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2908			u64 time_seq);
2909static inline int btrfs_next_old_item(struct btrfs_root *root,
2910				      struct btrfs_path *p, u64 time_seq)
2911{
2912	++p->slots[0];
2913	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2914		return btrfs_next_old_leaf(root, p, time_seq);
2915	return 0;
2916}
2917static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2918{
2919	return btrfs_next_old_item(root, p, 0);
2920}
2921int btrfs_leaf_free_space(struct extent_buffer *leaf);
2922int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
2923				     int for_reloc);
2924int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2925			struct btrfs_root *root,
2926			struct extent_buffer *node,
2927			struct extent_buffer *parent);
2928static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2929{
2930	/*
2931	 * Do it this way so we only ever do one test_bit in the normal case.
2932	 */
2933	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2934		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2935			return 2;
2936		return 1;
2937	}
2938	return 0;
2939}
2940
2941/*
2942 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2943 * anything except sleeping. This function is used to check the status of
2944 * the fs.
2945 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
2946 * since setting and checking for SB_RDONLY in the superblock's flags is not
2947 * atomic.
2948 */
2949static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2950{
2951	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
2952		btrfs_fs_closing(fs_info);
2953}
2954
2955static inline void btrfs_set_sb_rdonly(struct super_block *sb)
2956{
2957	sb->s_flags |= SB_RDONLY;
2958	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
2959}
2960
2961static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
2962{
2963	sb->s_flags &= ~SB_RDONLY;
2964	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
2965}
2966
2967/* root-item.c */
2968int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2969		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
2970		       int name_len);
2971int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2972		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
2973		       int name_len);
2974int btrfs_del_root(struct btrfs_trans_handle *trans,
2975		   const struct btrfs_key *key);
2976int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2977		      const struct btrfs_key *key,
2978		      struct btrfs_root_item *item);
2979int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
2980				   struct btrfs_root *root,
2981				   struct btrfs_key *key,
2982				   struct btrfs_root_item *item);
2983int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
2984		    struct btrfs_path *path, struct btrfs_root_item *root_item,
2985		    struct btrfs_key *root_key);
2986int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
2987void btrfs_set_root_node(struct btrfs_root_item *item,
2988			 struct extent_buffer *node);
2989void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2990void btrfs_update_root_times(struct btrfs_trans_handle *trans,
2991			     struct btrfs_root *root);
2992
2993/* uuid-tree.c */
2994int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2995			u64 subid);
2996int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2997			u64 subid);
2998int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
2999
3000/* dir-item.c */
3001int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3002			  const char *name, int name_len);
3003int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3004			  int name_len, struct btrfs_inode *dir,
3005			  struct btrfs_key *location, u8 type, u64 index);
3006struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3007					     struct btrfs_root *root,
3008					     struct btrfs_path *path, u64 dir,
3009					     const char *name, int name_len,
3010					     int mod);
3011struct btrfs_dir_item *
3012btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3013			    struct btrfs_root *root,
3014			    struct btrfs_path *path, u64 dir,
3015			    u64 objectid, const char *name, int name_len,
3016			    int mod);
3017struct btrfs_dir_item *
3018btrfs_search_dir_index_item(struct btrfs_root *root,
3019			    struct btrfs_path *path, u64 dirid,
3020			    const char *name, int name_len);
3021int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3022			      struct btrfs_root *root,
3023			      struct btrfs_path *path,
3024			      struct btrfs_dir_item *di);
3025int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3026			    struct btrfs_root *root,
3027			    struct btrfs_path *path, u64 objectid,
3028			    const char *name, u16 name_len,
3029			    const void *data, u16 data_len);
3030struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3031					  struct btrfs_root *root,
3032					  struct btrfs_path *path, u64 dir,
3033					  const char *name, u16 name_len,
3034					  int mod);
3035struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3036						 struct btrfs_path *path,
3037						 const char *name,
3038						 int name_len);
3039
3040/* orphan.c */
3041int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3042			     struct btrfs_root *root, u64 offset);
3043int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3044			  struct btrfs_root *root, u64 offset);
3045int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3046
3047/* inode-item.c */
3048int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3049			   struct btrfs_root *root,
3050			   const char *name, int name_len,
3051			   u64 inode_objectid, u64 ref_objectid, u64 index);
3052int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3053			   struct btrfs_root *root,
3054			   const char *name, int name_len,
3055			   u64 inode_objectid, u64 ref_objectid, u64 *index);
3056int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3057			     struct btrfs_root *root,
3058			     struct btrfs_path *path, u64 objectid);
3059int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3060		       *root, struct btrfs_path *path,
3061		       struct btrfs_key *location, int mod);
3062
3063struct btrfs_inode_extref *
3064btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3065			  struct btrfs_root *root,
3066			  struct btrfs_path *path,
3067			  const char *name, int name_len,
3068			  u64 inode_objectid, u64 ref_objectid, int ins_len,
3069			  int cow);
3070
3071struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
3072						   int slot, const char *name,
3073						   int name_len);
3074struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
3075		struct extent_buffer *leaf, int slot, u64 ref_objectid,
3076		const char *name, int name_len);
3077/* file-item.c */
3078struct btrfs_dio_private;
3079int btrfs_del_csums(struct btrfs_trans_handle *trans,
3080		    struct btrfs_root *root, u64 bytenr, u64 len);
3081blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3082int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3083			     struct btrfs_root *root,
3084			     u64 objectid, u64 pos,
3085			     u64 disk_offset, u64 disk_num_bytes,
3086			     u64 num_bytes, u64 offset, u64 ram_bytes,
3087			     u8 compression, u8 encryption, u16 other_encoding);
3088int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3089			     struct btrfs_root *root,
3090			     struct btrfs_path *path, u64 objectid,
3091			     u64 bytenr, int mod);
3092int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3093			   struct btrfs_root *root,
3094			   struct btrfs_ordered_sum *sums);
3095blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3096				u64 file_start, int contig);
3097int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3098			     struct list_head *list, int search_commit);
3099void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3100				     const struct btrfs_path *path,
3101				     struct btrfs_file_extent_item *fi,
3102				     const bool new_inline,
3103				     struct extent_map *em);
3104int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3105					u64 len);
3106int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3107				      u64 len);
3108void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3109u64 btrfs_file_extent_end(const struct btrfs_path *path);
3110
3111/* inode.c */
3112blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3113				   int mirror_num, unsigned long bio_flags);
3114unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3115				    struct page *page, u64 start, u64 end);
3116struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3117					   u64 start, u64 len);
3118noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3119			      u64 *orig_start, u64 *orig_block_len,
3120			      u64 *ram_bytes, bool strict);
3121
3122void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3123				struct btrfs_inode *inode);
3124struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3125int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3126int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3127		       struct btrfs_root *root,
3128		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3129		       const char *name, int name_len);
3130int btrfs_add_link(struct btrfs_trans_handle *trans,
3131		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3132		   const char *name, int name_len, int add_backref, u64 index);
3133int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3134int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3135			 int front);
3136int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3137			       struct btrfs_root *root,
3138			       struct btrfs_inode *inode, u64 new_size,
3139			       u32 min_type, u64 *extents_found);
3140
3141int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3142int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3143			       bool in_reclaim_context);
3144int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3145			      unsigned int extra_bits,
3146			      struct extent_state **cached_state);
3147int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3148			     struct btrfs_root *new_root,
3149			     struct btrfs_root *parent_root);
3150 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3151			       unsigned *bits);
3152void btrfs_clear_delalloc_extent(struct inode *inode,
3153				 struct extent_state *state, unsigned *bits);
3154void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3155				 struct extent_state *other);
3156void btrfs_split_delalloc_extent(struct inode *inode,
3157				 struct extent_state *orig, u64 split);
3158int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
3159			     unsigned long bio_flags);
3160void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3161vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3162int btrfs_readpage(struct file *file, struct page *page);
3163void btrfs_evict_inode(struct inode *inode);
3164int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3165struct inode *btrfs_alloc_inode(struct super_block *sb);
3166void btrfs_destroy_inode(struct inode *inode);
3167void btrfs_free_inode(struct inode *inode);
3168int btrfs_drop_inode(struct inode *inode);
3169int __init btrfs_init_cachep(void);
3170void __cold btrfs_destroy_cachep(void);
3171struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3172			      struct btrfs_root *root, struct btrfs_path *path);
3173struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3174struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3175				    struct page *page, size_t pg_offset,
3176				    u64 start, u64 end);
3177int btrfs_update_inode(struct btrfs_trans_handle *trans,
3178		       struct btrfs_root *root, struct btrfs_inode *inode);
3179int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3180				struct btrfs_root *root, struct btrfs_inode *inode);
3181int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3182		struct btrfs_inode *inode);
3183int btrfs_orphan_cleanup(struct btrfs_root *root);
3184int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3185void btrfs_add_delayed_iput(struct inode *inode);
3186void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3187int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3188int btrfs_prealloc_file_range(struct inode *inode, int mode,
3189			      u64 start, u64 num_bytes, u64 min_size,
3190			      loff_t actual_len, u64 *alloc_hint);
3191int btrfs_prealloc_file_range_trans(struct inode *inode,
3192				    struct btrfs_trans_handle *trans, int mode,
3193				    u64 start, u64 num_bytes, u64 min_size,
3194				    loff_t actual_len, u64 *alloc_hint);
3195int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3196		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3197		struct writeback_control *wbc);
3198int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end);
3199void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3200					  struct page *page, u64 start,
3201					  u64 end, int uptodate);
3202extern const struct dentry_operations btrfs_dentry_operations;
3203extern const struct iomap_ops btrfs_dio_iomap_ops;
3204extern const struct iomap_dio_ops btrfs_dio_ops;
3205
3206/* Inode locking type flags, by default the exclusive lock is taken */
3207#define BTRFS_ILOCK_SHARED	(1U << 0)
3208#define BTRFS_ILOCK_TRY 	(1U << 1)
3209#define BTRFS_ILOCK_MMAP	(1U << 2)
3210
3211int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3212void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3213void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3214			      const u64 add_bytes,
3215			      const u64 del_bytes);
3216
3217/* ioctl.c */
3218long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3219long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3220int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3221int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3222		       struct dentry *dentry, struct fileattr *fa);
3223int btrfs_ioctl_get_supported_features(void __user *arg);
3224void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3225int __pure btrfs_is_empty_uuid(u8 *uuid);
3226int btrfs_defrag_file(struct inode *inode, struct file *file,
3227		      struct btrfs_ioctl_defrag_range_args *range,
3228		      u64 newer_than, unsigned long max_pages);
3229void btrfs_get_block_group_info(struct list_head *groups_list,
3230				struct btrfs_ioctl_space_info *space);
3231void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3232			       struct btrfs_ioctl_balance_args *bargs);
3233bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3234			enum btrfs_exclusive_operation type);
3235bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3236				 enum btrfs_exclusive_operation type);
3237void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3238void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3239
3240/* file.c */
3241int __init btrfs_auto_defrag_init(void);
3242void __cold btrfs_auto_defrag_exit(void);
3243int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3244			   struct btrfs_inode *inode);
3245int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3246void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3247int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3248void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3249			     int skip_pinned);
3250extern const struct file_operations btrfs_file_operations;
3251int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3252		       struct btrfs_root *root, struct btrfs_inode *inode,
3253		       struct btrfs_drop_extents_args *args);
3254int btrfs_replace_file_extents(struct btrfs_inode *inode,
3255			   struct btrfs_path *path, const u64 start,
3256			   const u64 end,
3257			   struct btrfs_replace_extent_info *extent_info,
3258			   struct btrfs_trans_handle **trans_out);
3259int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3260			      struct btrfs_inode *inode, u64 start, u64 end);
3261int btrfs_release_file(struct inode *inode, struct file *file);
3262int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3263		      size_t num_pages, loff_t pos, size_t write_bytes,
3264		      struct extent_state **cached, bool noreserve);
3265int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3266int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3267			   size_t *write_bytes);
3268void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3269
3270/* tree-defrag.c */
3271int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3272			struct btrfs_root *root);
3273
3274/* super.c */
3275int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3276			unsigned long new_flags);
3277int btrfs_sync_fs(struct super_block *sb, int wait);
3278char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3279					  u64 subvol_objectid);
3280
3281static inline __printf(2, 3) __cold
3282void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3283{
3284}
3285
3286#ifdef CONFIG_PRINTK
3287__printf(2, 3)
3288__cold
3289void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3290#else
3291#define btrfs_printk(fs_info, fmt, args...) \
3292	btrfs_no_printk(fs_info, fmt, ##args)
3293#endif
3294
3295#define btrfs_emerg(fs_info, fmt, args...) \
3296	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3297#define btrfs_alert(fs_info, fmt, args...) \
3298	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3299#define btrfs_crit(fs_info, fmt, args...) \
3300	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3301#define btrfs_err(fs_info, fmt, args...) \
3302	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3303#define btrfs_warn(fs_info, fmt, args...) \
3304	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3305#define btrfs_notice(fs_info, fmt, args...) \
3306	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3307#define btrfs_info(fs_info, fmt, args...) \
3308	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3309
3310/*
3311 * Wrappers that use printk_in_rcu
3312 */
3313#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3314	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3315#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3316	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3317#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3318	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3319#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3320	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3321#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3322	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3323#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3324	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3325#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3326	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3327
3328/*
3329 * Wrappers that use a ratelimited printk_in_rcu
3330 */
3331#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3332	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3333#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3334	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3335#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3336	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3337#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3338	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3339#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3340	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3341#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3342	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3343#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3344	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3345
3346/*
3347 * Wrappers that use a ratelimited printk
3348 */
3349#define btrfs_emerg_rl(fs_info, fmt, args...) \
3350	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3351#define btrfs_alert_rl(fs_info, fmt, args...) \
3352	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3353#define btrfs_crit_rl(fs_info, fmt, args...) \
3354	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3355#define btrfs_err_rl(fs_info, fmt, args...) \
3356	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3357#define btrfs_warn_rl(fs_info, fmt, args...) \
3358	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3359#define btrfs_notice_rl(fs_info, fmt, args...) \
3360	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3361#define btrfs_info_rl(fs_info, fmt, args...) \
3362	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3363
3364#if defined(CONFIG_DYNAMIC_DEBUG)
3365#define btrfs_debug(fs_info, fmt, args...)				\
3366	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3367				   fs_info, KERN_DEBUG fmt, ##args)
3368#define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3369	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3370				   fs_info, KERN_DEBUG fmt, ##args)
3371#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3372	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3373				   fs_info, KERN_DEBUG fmt, ##args)
3374#define btrfs_debug_rl(fs_info, fmt, args...)				\
3375	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3376				   fs_info, KERN_DEBUG fmt, ##args)
3377#elif defined(DEBUG)
3378#define btrfs_debug(fs_info, fmt, args...) \
3379	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3380#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3381	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3382#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3383	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3384#define btrfs_debug_rl(fs_info, fmt, args...) \
3385	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3386#else
3387#define btrfs_debug(fs_info, fmt, args...) \
3388	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3389#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3390	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3391#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3392	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3393#define btrfs_debug_rl(fs_info, fmt, args...) \
3394	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3395#endif
3396
3397#define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3398do {							\
3399	rcu_read_lock();				\
3400	btrfs_printk(fs_info, fmt, ##args);		\
3401	rcu_read_unlock();				\
3402} while (0)
3403
3404#define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3405do {							\
3406	rcu_read_lock();				\
3407	btrfs_no_printk(fs_info, fmt, ##args);		\
3408	rcu_read_unlock();				\
3409} while (0)
3410
3411#define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3412do {								\
3413	static DEFINE_RATELIMIT_STATE(_rs,			\
3414		DEFAULT_RATELIMIT_INTERVAL,			\
3415		DEFAULT_RATELIMIT_BURST);       		\
3416	if (__ratelimit(&_rs))					\
3417		btrfs_printk(fs_info, fmt, ##args);		\
3418} while (0)
3419
3420#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3421do {								\
3422	rcu_read_lock();					\
3423	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3424	rcu_read_unlock();					\
3425} while (0)
3426
3427#ifdef CONFIG_BTRFS_ASSERT
3428__cold __noreturn
3429static inline void assertfail(const char *expr, const char *file, int line)
3430{
3431	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3432	BUG();
3433}
3434
3435#define ASSERT(expr)						\
3436	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3437
3438#else
3439static inline void assertfail(const char *expr, const char* file, int line) { }
3440#define ASSERT(expr)	(void)(expr)
3441#endif
3442
3443#if BITS_PER_LONG == 32
3444#define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3445/*
3446 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3447 * addresses of extents.
3448 *
3449 * For 4K page size it's about 10T, for 64K it's 160T.
3450 */
3451#define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3452void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3453void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3454#endif
3455
3456/*
3457 * Get the correct offset inside the page of extent buffer.
3458 *
3459 * @eb:		target extent buffer
3460 * @start:	offset inside the extent buffer
 
 
3461 *
3462 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3463 */
3464static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3465					   unsigned long offset)
3466{
3467	/*
3468	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3469	 * to PAGE_SIZE, thus adding it won't cause any difference.
3470	 *
3471	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3472	 * to the eb, thus we have to take the eb->start into consideration.
3473	 */
3474	return offset_in_page(offset + eb->start);
3475}
3476
3477static inline unsigned long get_eb_page_index(unsigned long offset)
3478{
3479	/*
3480	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3481	 *
3482	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3483	 * and have ensured that all tree blocks are contained in one page,
3484	 * thus we always get index == 0.
3485	 */
3486	return offset >> PAGE_SHIFT;
3487}
3488
3489/*
3490 * Use that for functions that are conditionally exported for sanity tests but
3491 * otherwise static
3492 */
3493#ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3494#define EXPORT_FOR_TESTS static
3495#else
3496#define EXPORT_FOR_TESTS
3497#endif
3498
3499__cold
3500static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3501{
3502	btrfs_err(fs_info,
3503"Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3504}
3505
3506__printf(5, 6)
3507__cold
3508void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3509		     unsigned int line, int errno, const char *fmt, ...);
3510
3511const char * __attribute_const__ btrfs_decode_error(int errno);
3512
3513__cold
3514void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3515			       const char *function,
3516			       unsigned int line, int errno);
3517
3518/*
3519 * Call btrfs_abort_transaction as early as possible when an error condition is
3520 * detected, that way the exact line number is reported.
 
 
3521 */
3522#define btrfs_abort_transaction(trans, errno)		\
3523do {								\
3524	/* Report first abort since mount */			\
3525	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3526			&((trans)->fs_info->fs_state))) {	\
3527		if ((errno) != -EIO && (errno) != -EROFS) {		\
3528			WARN(1, KERN_DEBUG				\
3529			"BTRFS: Transaction aborted (error %d)\n",	\
3530			(errno));					\
3531		} else {						\
3532			btrfs_debug((trans)->fs_info,			\
3533				    "Transaction aborted (error %d)", \
3534				  (errno));			\
3535		}						\
3536	}							\
3537	__btrfs_abort_transaction((trans), __func__,		\
3538				  __LINE__, (errno));		\
3539} while (0)
3540
3541#define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3542do {								\
3543	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3544			  (errno), fmt, ##args);		\
3545} while (0)
3546
3547__printf(5, 6)
3548__cold
3549void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3550		   unsigned int line, int errno, const char *fmt, ...);
3551/*
3552 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3553 * will panic().  Otherwise we BUG() here.
3554 */
3555#define btrfs_panic(fs_info, errno, fmt, args...)			\
3556do {									\
3557	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3558	BUG();								\
3559} while (0)
3560
3561
3562/* compatibility and incompatibility defines */
3563
3564#define btrfs_set_fs_incompat(__fs_info, opt) \
3565	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3566				#opt)
3567
3568static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3569					   u64 flag, const char* name)
3570{
3571	struct btrfs_super_block *disk_super;
3572	u64 features;
3573
3574	disk_super = fs_info->super_copy;
3575	features = btrfs_super_incompat_flags(disk_super);
3576	if (!(features & flag)) {
3577		spin_lock(&fs_info->super_lock);
3578		features = btrfs_super_incompat_flags(disk_super);
3579		if (!(features & flag)) {
3580			features |= flag;
3581			btrfs_set_super_incompat_flags(disk_super, features);
3582			btrfs_info(fs_info,
3583				"setting incompat feature flag for %s (0x%llx)",
3584				name, flag);
3585		}
3586		spin_unlock(&fs_info->super_lock);
3587	}
3588}
3589
3590#define btrfs_clear_fs_incompat(__fs_info, opt) \
3591	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3592				  #opt)
3593
3594static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3595					     u64 flag, const char* name)
3596{
3597	struct btrfs_super_block *disk_super;
3598	u64 features;
3599
3600	disk_super = fs_info->super_copy;
3601	features = btrfs_super_incompat_flags(disk_super);
3602	if (features & flag) {
3603		spin_lock(&fs_info->super_lock);
3604		features = btrfs_super_incompat_flags(disk_super);
3605		if (features & flag) {
3606			features &= ~flag;
3607			btrfs_set_super_incompat_flags(disk_super, features);
3608			btrfs_info(fs_info,
3609				"clearing incompat feature flag for %s (0x%llx)",
3610				name, flag);
3611		}
3612		spin_unlock(&fs_info->super_lock);
3613	}
3614}
3615
3616#define btrfs_fs_incompat(fs_info, opt) \
3617	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3618
3619static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3620{
3621	struct btrfs_super_block *disk_super;
3622	disk_super = fs_info->super_copy;
3623	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3624}
3625
3626#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3627	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3628				 #opt)
3629
3630static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3631					    u64 flag, const char *name)
3632{
3633	struct btrfs_super_block *disk_super;
3634	u64 features;
3635
3636	disk_super = fs_info->super_copy;
3637	features = btrfs_super_compat_ro_flags(disk_super);
3638	if (!(features & flag)) {
3639		spin_lock(&fs_info->super_lock);
3640		features = btrfs_super_compat_ro_flags(disk_super);
3641		if (!(features & flag)) {
3642			features |= flag;
3643			btrfs_set_super_compat_ro_flags(disk_super, features);
3644			btrfs_info(fs_info,
3645				"setting compat-ro feature flag for %s (0x%llx)",
3646				name, flag);
3647		}
3648		spin_unlock(&fs_info->super_lock);
3649	}
3650}
3651
3652#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3653	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3654				   #opt)
3655
3656static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3657					      u64 flag, const char *name)
3658{
3659	struct btrfs_super_block *disk_super;
3660	u64 features;
3661
3662	disk_super = fs_info->super_copy;
3663	features = btrfs_super_compat_ro_flags(disk_super);
3664	if (features & flag) {
3665		spin_lock(&fs_info->super_lock);
3666		features = btrfs_super_compat_ro_flags(disk_super);
3667		if (features & flag) {
3668			features &= ~flag;
3669			btrfs_set_super_compat_ro_flags(disk_super, features);
3670			btrfs_info(fs_info,
3671				"clearing compat-ro feature flag for %s (0x%llx)",
3672				name, flag);
3673		}
3674		spin_unlock(&fs_info->super_lock);
3675	}
3676}
3677
3678#define btrfs_fs_compat_ro(fs_info, opt) \
3679	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3680
3681static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3682{
3683	struct btrfs_super_block *disk_super;
3684	disk_super = fs_info->super_copy;
3685	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3686}
3687
3688/* acl.c */
3689#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3690struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3691int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3692		  struct posix_acl *acl, int type);
3693int btrfs_init_acl(struct btrfs_trans_handle *trans,
3694		   struct inode *inode, struct inode *dir);
3695#else
3696#define btrfs_get_acl NULL
3697#define btrfs_set_acl NULL
3698static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3699				 struct inode *inode, struct inode *dir)
3700{
3701	return 0;
3702}
3703#endif
3704
3705/* relocation.c */
3706int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3707int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3708			  struct btrfs_root *root);
3709int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3710			    struct btrfs_root *root);
3711int btrfs_recover_relocation(struct btrfs_root *root);
3712int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3713int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3714			  struct btrfs_root *root, struct extent_buffer *buf,
3715			  struct extent_buffer *cow);
3716void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3717			      u64 *bytes_to_reserve);
3718int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3719			      struct btrfs_pending_snapshot *pending);
3720int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3721struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3722				   u64 bytenr);
3723int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3724
3725/* scrub.c */
3726int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3727		    u64 end, struct btrfs_scrub_progress *progress,
3728		    int readonly, int is_dev_replace);
3729void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3730void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3731int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3732int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3733int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3734			 struct btrfs_scrub_progress *progress);
3735static inline void btrfs_init_full_stripe_locks_tree(
3736			struct btrfs_full_stripe_locks_tree *locks_root)
3737{
3738	locks_root->root = RB_ROOT;
3739	mutex_init(&locks_root->lock);
3740}
3741
3742/* dev-replace.c */
3743void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3744void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3745void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3746
3747static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3748{
3749	btrfs_bio_counter_sub(fs_info, 1);
3750}
3751
3752/* reada.c */
3753struct reada_control {
3754	struct btrfs_fs_info	*fs_info;		/* tree to prefetch */
3755	struct btrfs_key	key_start;
3756	struct btrfs_key	key_end;	/* exclusive */
3757	atomic_t		elems;
3758	struct kref		refcnt;
3759	wait_queue_head_t	wait;
3760};
3761struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3762			      struct btrfs_key *start, struct btrfs_key *end);
3763int btrfs_reada_wait(void *handle);
3764void btrfs_reada_detach(void *handle);
3765int btree_readahead_hook(struct extent_buffer *eb, int err);
3766void btrfs_reada_remove_dev(struct btrfs_device *dev);
3767void btrfs_reada_undo_remove_dev(struct btrfs_device *dev);
3768
3769static inline int is_fstree(u64 rootid)
3770{
3771	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3772	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3773	      !btrfs_qgroup_level(rootid)))
3774		return 1;
3775	return 0;
3776}
3777
3778static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3779{
3780	return signal_pending(current);
3781}
3782
3783/* Sanity test specific functions */
3784#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3785void btrfs_test_destroy_inode(struct inode *inode);
3786static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3787{
3788	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3789}
3790#else
3791static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3792{
3793	return 0;
3794}
3795#endif
3796
3797static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3798{
3799	return fs_info->zoned != 0;
3800}
3801
3802/*
3803 * We use page status Private2 to indicate there is an ordered extent with
3804 * unfinished IO.
3805 *
3806 * Rename the Private2 accessors to Ordered, to improve readability.
3807 */
3808#define PageOrdered(page)		PagePrivate2(page)
3809#define SetPageOrdered(page)		SetPagePrivate2(page)
3810#define ClearPageOrdered(page)		ClearPagePrivate2(page)
 
 
 
3811
3812#endif