Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/pagemap.h>
10#include "locking.h"
11#include "fs.h"
12#include "accessors.h"
13
14struct btrfs_trans_handle;
15struct btrfs_transaction;
16struct btrfs_pending_snapshot;
17struct btrfs_delayed_ref_root;
18struct btrfs_space_info;
19struct btrfs_block_group;
20struct btrfs_ordered_sum;
21struct btrfs_ref;
22struct btrfs_bio;
23struct btrfs_ioctl_encoded_io_args;
24struct btrfs_device;
25struct btrfs_fs_devices;
26struct btrfs_balance_control;
27struct btrfs_delayed_root;
28struct reloc_control;
29
30/* Read ahead values for struct btrfs_path.reada */
31enum {
32 READA_NONE,
33 READA_BACK,
34 READA_FORWARD,
35 /*
36 * Similar to READA_FORWARD but unlike it:
37 *
38 * 1) It will trigger readahead even for leaves that are not close to
39 * each other on disk;
40 * 2) It also triggers readahead for nodes;
41 * 3) During a search, even when a node or leaf is already in memory, it
42 * will still trigger readahead for other nodes and leaves that follow
43 * it.
44 *
45 * This is meant to be used only when we know we are iterating over the
46 * entire tree or a very large part of it.
47 */
48 READA_FORWARD_ALWAYS,
49};
50
51/*
52 * btrfs_paths remember the path taken from the root down to the leaf.
53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54 * to any other levels that are present.
55 *
56 * The slots array records the index of the item or block pointer
57 * used while walking the tree.
58 */
59struct btrfs_path {
60 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
61 int slots[BTRFS_MAX_LEVEL];
62 /* if there is real range locking, this locks field will change */
63 u8 locks[BTRFS_MAX_LEVEL];
64 u8 reada;
65 /* keep some upper locks as we walk down */
66 u8 lowest_level;
67
68 /*
69 * set by btrfs_split_item, tells search_slot to keep all locks
70 * and to force calls to keep space in the nodes
71 */
72 unsigned int search_for_split:1;
73 unsigned int keep_locks:1;
74 unsigned int skip_locking:1;
75 unsigned int search_commit_root:1;
76 unsigned int need_commit_sem:1;
77 unsigned int skip_release_on_error:1;
78 /*
79 * Indicate that new item (btrfs_search_slot) is extending already
80 * existing item and ins_len contains only the data size and not item
81 * header (ie. sizeof(struct btrfs_item) is not included).
82 */
83 unsigned int search_for_extension:1;
84 /* Stop search if any locks need to be taken (for read) */
85 unsigned int nowait:1;
86};
87
88/*
89 * The state of btrfs root
90 */
91enum {
92 /*
93 * btrfs_record_root_in_trans is a multi-step process, and it can race
94 * with the balancing code. But the race is very small, and only the
95 * first time the root is added to each transaction. So IN_TRANS_SETUP
96 * is used to tell us when more checks are required
97 */
98 BTRFS_ROOT_IN_TRANS_SETUP,
99
100 /*
101 * Set if tree blocks of this root can be shared by other roots.
102 * Only subvolume trees and their reloc trees have this bit set.
103 * Conflicts with TRACK_DIRTY bit.
104 *
105 * This affects two things:
106 *
107 * - How balance works
108 * For shareable roots, we need to use reloc tree and do path
109 * replacement for balance, and need various pre/post hooks for
110 * snapshot creation to handle them.
111 *
112 * While for non-shareable trees, we just simply do a tree search
113 * with COW.
114 *
115 * - How dirty roots are tracked
116 * For shareable roots, btrfs_record_root_in_trans() is needed to
117 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
118 * don't need to set this manually.
119 */
120 BTRFS_ROOT_SHAREABLE,
121 BTRFS_ROOT_TRACK_DIRTY,
122 BTRFS_ROOT_IN_RADIX,
123 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124 BTRFS_ROOT_DEFRAG_RUNNING,
125 BTRFS_ROOT_FORCE_COW,
126 BTRFS_ROOT_MULTI_LOG_TASKS,
127 BTRFS_ROOT_DIRTY,
128 BTRFS_ROOT_DELETING,
129
130 /*
131 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
132 *
133 * Set for the subvolume tree owning the reloc tree.
134 */
135 BTRFS_ROOT_DEAD_RELOC_TREE,
136 /* Mark dead root stored on device whose cleanup needs to be resumed */
137 BTRFS_ROOT_DEAD_TREE,
138 /* The root has a log tree. Used for subvolume roots and the tree root. */
139 BTRFS_ROOT_HAS_LOG_TREE,
140 /* Qgroup flushing is in progress */
141 BTRFS_ROOT_QGROUP_FLUSHING,
142 /* We started the orphan cleanup for this root. */
143 BTRFS_ROOT_ORPHAN_CLEANUP,
144 /* This root has a drop operation that was started previously. */
145 BTRFS_ROOT_UNFINISHED_DROP,
146 /* This reloc root needs to have its buffers lockdep class reset. */
147 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
153 */
154struct btrfs_qgroup_swapped_blocks {
155 spinlock_t lock;
156 /* RM_EMPTY_ROOT() of above blocks[] */
157 bool swapped;
158 struct rb_root blocks[BTRFS_MAX_LEVEL];
159};
160
161/*
162 * in ram representation of the tree. extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166 struct rb_node rb_node;
167
168 struct extent_buffer *node;
169
170 struct extent_buffer *commit_root;
171 struct btrfs_root *log_root;
172 struct btrfs_root *reloc_root;
173
174 unsigned long state;
175 struct btrfs_root_item root_item;
176 struct btrfs_key root_key;
177 struct btrfs_fs_info *fs_info;
178 struct extent_io_tree dirty_log_pages;
179
180 struct mutex objectid_mutex;
181
182 spinlock_t accounting_lock;
183 struct btrfs_block_rsv *block_rsv;
184
185 struct mutex log_mutex;
186 wait_queue_head_t log_writer_wait;
187 wait_queue_head_t log_commit_wait[2];
188 struct list_head log_ctxs[2];
189 /* Used only for log trees of subvolumes, not for the log root tree */
190 atomic_t log_writers;
191 atomic_t log_commit[2];
192 /* Used only for log trees of subvolumes, not for the log root tree */
193 atomic_t log_batch;
194 /*
195 * Protected by the 'log_mutex' lock but can be read without holding
196 * that lock to avoid unnecessary lock contention, in which case it
197 * should be read using btrfs_get_root_log_transid() except if it's a
198 * log tree in which case it can be directly accessed. Updates to this
199 * field should always use btrfs_set_root_log_transid(), except for log
200 * trees where the field can be updated directly.
201 */
202 int log_transid;
203 /* No matter the commit succeeds or not*/
204 int log_transid_committed;
205 /*
206 * Just be updated when the commit succeeds. Use
207 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208 * to access this field.
209 */
210 int last_log_commit;
211 pid_t log_start_pid;
212
213 u64 last_trans;
214
215 u64 free_objectid;
216
217 struct btrfs_key defrag_progress;
218 struct btrfs_key defrag_max;
219
220 /* The dirty list is only used by non-shareable roots */
221 struct list_head dirty_list;
222
223 struct list_head root_list;
224
225 spinlock_t inode_lock;
226 /* red-black tree that keeps track of in-memory inodes */
227 struct rb_root inode_tree;
228
229 /*
230 * Xarray that keeps track of delayed nodes of every inode, protected
231 * by @inode_lock.
232 */
233 struct xarray delayed_nodes;
234 /*
235 * right now this just gets used so that a root has its own devid
236 * for stat. It may be used for more later
237 */
238 dev_t anon_dev;
239
240 spinlock_t root_item_lock;
241 refcount_t refs;
242
243 struct mutex delalloc_mutex;
244 spinlock_t delalloc_lock;
245 /*
246 * all of the inodes that have delalloc bytes. It is possible for
247 * this list to be empty even when there is still dirty data=ordered
248 * extents waiting to finish IO.
249 */
250 struct list_head delalloc_inodes;
251 struct list_head delalloc_root;
252 u64 nr_delalloc_inodes;
253
254 struct mutex ordered_extent_mutex;
255 /*
256 * this is used by the balancing code to wait for all the pending
257 * ordered extents
258 */
259 spinlock_t ordered_extent_lock;
260
261 /*
262 * all of the data=ordered extents pending writeback
263 * these can span multiple transactions and basically include
264 * every dirty data page that isn't from nodatacow
265 */
266 struct list_head ordered_extents;
267 struct list_head ordered_root;
268 u64 nr_ordered_extents;
269
270 /*
271 * Not empty if this subvolume root has gone through tree block swap
272 * (relocation)
273 *
274 * Will be used by reloc_control::dirty_subvol_roots.
275 */
276 struct list_head reloc_dirty_list;
277
278 /*
279 * Number of currently running SEND ioctls to prevent
280 * manipulation with the read-only status via SUBVOL_SETFLAGS
281 */
282 int send_in_progress;
283 /*
284 * Number of currently running deduplication operations that have a
285 * destination inode belonging to this root. Protected by the lock
286 * root_item_lock.
287 */
288 int dedupe_in_progress;
289 /* For exclusion of snapshot creation and nocow writes */
290 struct btrfs_drew_lock snapshot_lock;
291
292 atomic_t snapshot_force_cow;
293
294 /* For qgroup metadata reserved space */
295 spinlock_t qgroup_meta_rsv_lock;
296 u64 qgroup_meta_rsv_pertrans;
297 u64 qgroup_meta_rsv_prealloc;
298 wait_queue_head_t qgroup_flush_wait;
299
300 /* Number of active swapfiles */
301 atomic_t nr_swapfiles;
302
303 /* Record pairs of swapped blocks for qgroup */
304 struct btrfs_qgroup_swapped_blocks swapped_blocks;
305
306 /* Used only by log trees, when logging csum items */
307 struct extent_io_tree log_csum_range;
308
309 /* Used in simple quotas, track root during relocation. */
310 u64 relocation_src_root;
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313 u64 alloc_bytenr;
314#endif
315
316#ifdef CONFIG_BTRFS_DEBUG
317 struct list_head leak_list;
318#endif
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
322{
323 /* Byte-swap the constant at compile time, root_item::flags is LE */
324 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
328{
329 /* Byte-swap the constant at compile time, root_item::flags is LE */
330 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
334{
335 return root->root_key.objectid;
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340 return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
344{
345 WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
349{
350 return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
354{
355 WRITE_ONCE(root->last_log_commit, commit_id);
356}
357
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363 u64 disk_offset;
364 u64 disk_len;
365 u64 data_offset;
366 u64 data_len;
367 u64 file_offset;
368 /* Pointer to a file extent item of type regular or prealloc. */
369 char *extent_buf;
370 /*
371 * Set to true when attempting to replace a file range with a new extent
372 * described by this structure, set to false when attempting to clone an
373 * existing extent into a file range.
374 */
375 bool is_new_extent;
376 /* Indicate if we should update the inode's mtime and ctime. */
377 bool update_times;
378 /* Meaningful only if is_new_extent is true. */
379 int qgroup_reserved;
380 /*
381 * Meaningful only if is_new_extent is true.
382 * Used to track how many extent items we have already inserted in a
383 * subvolume tree that refer to the extent described by this structure,
384 * so that we know when to create a new delayed ref or update an existing
385 * one.
386 */
387 int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392 /* Input parameters */
393
394 /*
395 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396 * If 'replace_extent' is true, this must not be NULL. Also the path
397 * is always released except if 'replace_extent' is true and
398 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399 * the path is kept locked.
400 */
401 struct btrfs_path *path;
402 /* Start offset of the range to drop extents from */
403 u64 start;
404 /* End (exclusive, last byte + 1) of the range to drop extents from */
405 u64 end;
406 /* If true drop all the extent maps in the range */
407 bool drop_cache;
408 /*
409 * If true it means we want to insert a new extent after dropping all
410 * the extents in the range. If this is true, the 'extent_item_size'
411 * parameter must be set as well and the 'extent_inserted' field will
412 * be set to true by btrfs_drop_extents() if it could insert the new
413 * extent.
414 * Note: when this is set to true the path must not be NULL.
415 */
416 bool replace_extent;
417 /*
418 * Used if 'replace_extent' is true. Size of the file extent item to
419 * insert after dropping all existing extents in the range
420 */
421 u32 extent_item_size;
422
423 /* Output parameters */
424
425 /*
426 * Set to the minimum between the input parameter 'end' and the end
427 * (exclusive, last byte + 1) of the last dropped extent. This is always
428 * set even if btrfs_drop_extents() returns an error.
429 */
430 u64 drop_end;
431 /*
432 * The number of allocated bytes found in the range. This can be smaller
433 * than the range's length when there are holes in the range.
434 */
435 u64 bytes_found;
436 /*
437 * Only set if 'replace_extent' is true. Set to true if we were able
438 * to insert a replacement extent after dropping all extents in the
439 * range, otherwise set to false by btrfs_drop_extents().
440 * Also, if btrfs_drop_extents() has set this to true it means it
441 * returned with the path locked, otherwise if it has set this to
442 * false it has returned with the path released.
443 */
444 bool extent_inserted;
445};
446
447struct btrfs_file_private {
448 void *filldir_buf;
449 u64 last_index;
450 struct extent_state *llseek_cached_state;
451};
452
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
454{
455 return info->nodesize - sizeof(struct btrfs_header);
456}
457
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
459{
460 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
464{
465 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
466}
467
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
469{
470 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
471}
472
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474 ((bytes) >> (fs_info)->sectorsize_bits)
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
477{
478 return mapping_gfp_constraint(mapping, ~__GFP_FS);
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482 u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492 const struct btrfs_key *key, int *slot);
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
495
496#ifdef __LITTLE_ENDIAN
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503 const struct btrfs_key *k2)
504{
505 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
506
507 return btrfs_comp_cpu_keys(k1, k2);
508}
509
510#else
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514 const struct btrfs_key *k2)
515{
516 struct btrfs_key k1;
517
518 btrfs_disk_key_to_cpu(&k1, disk);
519
520 return btrfs_comp_cpu_keys(&k1, k2);
521}
522
523#endif
524
525int btrfs_previous_item(struct btrfs_root *root,
526 struct btrfs_path *path, u64 min_objectid,
527 int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529 struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531 struct btrfs_path *path,
532 const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535 struct btrfs_key *key, int lowest_level,
536 u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538 struct btrfs_path *path,
539 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541 int slot);
542
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root, struct extent_buffer *buf,
545 struct extent_buffer *parent, int parent_slot,
546 struct extent_buffer **cow_ret,
547 enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct extent_buffer *buf,
551 struct extent_buffer *parent, int parent_slot,
552 struct extent_buffer **cow_ret,
553 u64 search_start, u64 empty_size,
554 enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556 struct btrfs_root *root,
557 struct extent_buffer *buf,
558 struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560 struct btrfs_root *root,
561 struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563 struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565 struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569 struct btrfs_root *root,
570 struct btrfs_path *path,
571 const struct btrfs_key *new_key,
572 unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root,
575 struct btrfs_path *path,
576 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580 const struct btrfs_key *key, struct btrfs_path *p,
581 int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583 struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585 const struct btrfs_key *key,
586 struct btrfs_path *p, int find_higher,
587 int return_any);
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593 struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595 struct btrfs_root *root,
596 struct btrfs_path *path)
597{
598 return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606 /*
607 * Pointer to an array containing the keys of the items to insert (in
608 * sorted order).
609 */
610 const struct btrfs_key *keys;
611 /* Pointer to an array containing the data size for each item to insert. */
612 const u32 *data_sizes;
613 /*
614 * The sum of data sizes for all items. The caller can compute this while
615 * setting up the data_sizes array, so it ends up being more efficient
616 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617 * doing it, as it would avoid an extra loop over a potentially large
618 * array, and in the case of setup_item_for_insert(), we would be doing
619 * it while holding a write lock on a leaf and often on upper level nodes
620 * too, unnecessarily increasing the size of a critical section.
621 */
622 u32 total_data_size;
623 /* Size of the keys and data_sizes arrays (number of items in the batch). */
624 int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628 struct btrfs_root *root,
629 struct btrfs_path *path,
630 const struct btrfs_key *key,
631 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633 const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635 struct btrfs_root *root,
636 struct btrfs_path *path,
637 const struct btrfs_item_batch *batch);
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640 struct btrfs_root *root,
641 struct btrfs_path *path,
642 const struct btrfs_key *key,
643 u32 data_size)
644{
645 struct btrfs_item_batch batch;
646
647 batch.keys = key;
648 batch.data_sizes = &data_size;
649 batch.total_data_size = data_size;
650 batch.nr = 1;
651
652 return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656 u64 time_seq);
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659 struct btrfs_path *path);
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662 struct btrfs_path *path);
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
666 *
667 * @root: The root node of the tree.
668 * @key: The key we are looking for.
669 * @found_key: Will hold the found item.
670 * @path: Holds the current slot/leaf.
671 * @iter_ret: Contains the value returned from btrfs_search_slot or
672 * btrfs_get_next_valid_item, whichever was executed last.
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
684 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
685 (iter_ret) >= 0 && \
686 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687 (path)->slots[0]++ \
688 )
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
699{
700 return btrfs_next_old_leaf(root, path, 0);
701}
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
704{
705 return btrfs_next_old_item(root, p, 0);
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
708
709static inline int is_fstree(u64 rootid)
710{
711 if (rootid == BTRFS_FS_TREE_OBJECTID ||
712 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713 !btrfs_qgroup_level(rootid)))
714 return 1;
715 return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page) PagePrivate2(page)
736#define SetPageOrdered(page) SetPagePrivate2(page)
737#define ClearPageOrdered(page) ClearPagePrivate2(page)
738#define folio_test_ordered(folio) folio_test_private_2(folio)
739#define folio_set_ordered(folio) folio_set_private_2(folio)
740#define folio_clear_ordered(folio) folio_clear_private_2(folio)
741
742#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <linux/kobject.h>
20#include <trace/events/btrfs.h>
21#include <asm/kmap_types.h>
22#include <linux/pagemap.h>
23#include <linux/btrfs.h>
24#include <linux/btrfs_tree.h>
25#include <linux/workqueue.h>
26#include <linux/security.h>
27#include <linux/sizes.h>
28#include <linux/dynamic_debug.h>
29#include <linux/refcount.h>
30#include <linux/crc32c.h>
31#include "extent_io.h"
32#include "extent_map.h"
33#include "async-thread.h"
34
35struct btrfs_trans_handle;
36struct btrfs_transaction;
37struct btrfs_pending_snapshot;
38extern struct kmem_cache *btrfs_trans_handle_cachep;
39extern struct kmem_cache *btrfs_bit_radix_cachep;
40extern struct kmem_cache *btrfs_path_cachep;
41extern struct kmem_cache *btrfs_free_space_cachep;
42struct btrfs_ordered_sum;
43
44#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
45#define STATIC noinline
46#else
47#define STATIC static noinline
48#endif
49
50#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
51
52#define BTRFS_MAX_MIRRORS 3
53
54#define BTRFS_MAX_LEVEL 8
55
56#define BTRFS_OLDEST_GENERATION 0ULL
57
58#define BTRFS_COMPAT_EXTENT_TREE_V0
59
60/*
61 * the max metadata block size. This limit is somewhat artificial,
62 * but the memmove costs go through the roof for larger blocks.
63 */
64#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
65
66/*
67 * we can actually store much bigger names, but lets not confuse the rest
68 * of linux
69 */
70#define BTRFS_NAME_LEN 255
71
72/*
73 * Theoretical limit is larger, but we keep this down to a sane
74 * value. That should limit greatly the possibility of collisions on
75 * inode ref items.
76 */
77#define BTRFS_LINK_MAX 65535U
78
79/* four bytes for CRC32 */
80static const int btrfs_csum_sizes[] = { 4 };
81
82#define BTRFS_EMPTY_DIR_SIZE 0
83
84/* ioprio of readahead is set to idle */
85#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
86
87#define BTRFS_DIRTY_METADATA_THRESH SZ_32M
88
89#define BTRFS_MAX_EXTENT_SIZE SZ_128M
90
91
92/*
93 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
94 */
95static inline u32 count_max_extents(u64 size)
96{
97 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
98}
99
100struct btrfs_mapping_tree {
101 struct extent_map_tree map_tree;
102};
103
104static inline unsigned long btrfs_chunk_item_size(int num_stripes)
105{
106 BUG_ON(num_stripes == 0);
107 return sizeof(struct btrfs_chunk) +
108 sizeof(struct btrfs_stripe) * (num_stripes - 1);
109}
110
111/*
112 * File system states
113 */
114#define BTRFS_FS_STATE_ERROR 0
115#define BTRFS_FS_STATE_REMOUNTING 1
116#define BTRFS_FS_STATE_TRANS_ABORTED 2
117#define BTRFS_FS_STATE_DEV_REPLACING 3
118#define BTRFS_FS_STATE_DUMMY_FS_INFO 4
119
120#define BTRFS_BACKREF_REV_MAX 256
121#define BTRFS_BACKREF_REV_SHIFT 56
122#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
123 BTRFS_BACKREF_REV_SHIFT)
124
125#define BTRFS_OLD_BACKREF_REV 0
126#define BTRFS_MIXED_BACKREF_REV 1
127
128/*
129 * every tree block (leaf or node) starts with this header.
130 */
131struct btrfs_header {
132 /* these first four must match the super block */
133 u8 csum[BTRFS_CSUM_SIZE];
134 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
135 __le64 bytenr; /* which block this node is supposed to live in */
136 __le64 flags;
137
138 /* allowed to be different from the super from here on down */
139 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
140 __le64 generation;
141 __le64 owner;
142 __le32 nritems;
143 u8 level;
144} __attribute__ ((__packed__));
145
146/*
147 * this is a very generous portion of the super block, giving us
148 * room to translate 14 chunks with 3 stripes each.
149 */
150#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
151
152/*
153 * just in case we somehow lose the roots and are not able to mount,
154 * we store an array of the roots from previous transactions
155 * in the super.
156 */
157#define BTRFS_NUM_BACKUP_ROOTS 4
158struct btrfs_root_backup {
159 __le64 tree_root;
160 __le64 tree_root_gen;
161
162 __le64 chunk_root;
163 __le64 chunk_root_gen;
164
165 __le64 extent_root;
166 __le64 extent_root_gen;
167
168 __le64 fs_root;
169 __le64 fs_root_gen;
170
171 __le64 dev_root;
172 __le64 dev_root_gen;
173
174 __le64 csum_root;
175 __le64 csum_root_gen;
176
177 __le64 total_bytes;
178 __le64 bytes_used;
179 __le64 num_devices;
180 /* future */
181 __le64 unused_64[4];
182
183 u8 tree_root_level;
184 u8 chunk_root_level;
185 u8 extent_root_level;
186 u8 fs_root_level;
187 u8 dev_root_level;
188 u8 csum_root_level;
189 /* future and to align */
190 u8 unused_8[10];
191} __attribute__ ((__packed__));
192
193/*
194 * the super block basically lists the main trees of the FS
195 * it currently lacks any block count etc etc
196 */
197struct btrfs_super_block {
198 u8 csum[BTRFS_CSUM_SIZE];
199 /* the first 4 fields must match struct btrfs_header */
200 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
201 __le64 bytenr; /* this block number */
202 __le64 flags;
203
204 /* allowed to be different from the btrfs_header from here own down */
205 __le64 magic;
206 __le64 generation;
207 __le64 root;
208 __le64 chunk_root;
209 __le64 log_root;
210
211 /* this will help find the new super based on the log root */
212 __le64 log_root_transid;
213 __le64 total_bytes;
214 __le64 bytes_used;
215 __le64 root_dir_objectid;
216 __le64 num_devices;
217 __le32 sectorsize;
218 __le32 nodesize;
219 __le32 __unused_leafsize;
220 __le32 stripesize;
221 __le32 sys_chunk_array_size;
222 __le64 chunk_root_generation;
223 __le64 compat_flags;
224 __le64 compat_ro_flags;
225 __le64 incompat_flags;
226 __le16 csum_type;
227 u8 root_level;
228 u8 chunk_root_level;
229 u8 log_root_level;
230 struct btrfs_dev_item dev_item;
231
232 char label[BTRFS_LABEL_SIZE];
233
234 __le64 cache_generation;
235 __le64 uuid_tree_generation;
236
237 /* future expansion */
238 __le64 reserved[30];
239 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
240 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
241} __attribute__ ((__packed__));
242
243/*
244 * Compat flags that we support. If any incompat flags are set other than the
245 * ones specified below then we will fail to mount
246 */
247#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
248#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
249#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
250
251#define BTRFS_FEATURE_COMPAT_RO_SUPP \
252 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
253 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
254
255#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
256#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
257
258#define BTRFS_FEATURE_INCOMPAT_SUPP \
259 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
260 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
261 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
262 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
263 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
264 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
265 BTRFS_FEATURE_INCOMPAT_RAID56 | \
266 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
267 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
268 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
269
270#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
271 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
272#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
273
274/*
275 * A leaf is full of items. offset and size tell us where to find
276 * the item in the leaf (relative to the start of the data area)
277 */
278struct btrfs_item {
279 struct btrfs_disk_key key;
280 __le32 offset;
281 __le32 size;
282} __attribute__ ((__packed__));
283
284/*
285 * leaves have an item area and a data area:
286 * [item0, item1....itemN] [free space] [dataN...data1, data0]
287 *
288 * The data is separate from the items to get the keys closer together
289 * during searches.
290 */
291struct btrfs_leaf {
292 struct btrfs_header header;
293 struct btrfs_item items[];
294} __attribute__ ((__packed__));
295
296/*
297 * all non-leaf blocks are nodes, they hold only keys and pointers to
298 * other blocks
299 */
300struct btrfs_key_ptr {
301 struct btrfs_disk_key key;
302 __le64 blockptr;
303 __le64 generation;
304} __attribute__ ((__packed__));
305
306struct btrfs_node {
307 struct btrfs_header header;
308 struct btrfs_key_ptr ptrs[];
309} __attribute__ ((__packed__));
310
311/*
312 * btrfs_paths remember the path taken from the root down to the leaf.
313 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
314 * to any other levels that are present.
315 *
316 * The slots array records the index of the item or block pointer
317 * used while walking the tree.
318 */
319enum { READA_NONE = 0, READA_BACK, READA_FORWARD };
320struct btrfs_path {
321 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
322 int slots[BTRFS_MAX_LEVEL];
323 /* if there is real range locking, this locks field will change */
324 u8 locks[BTRFS_MAX_LEVEL];
325 u8 reada;
326 /* keep some upper locks as we walk down */
327 u8 lowest_level;
328
329 /*
330 * set by btrfs_split_item, tells search_slot to keep all locks
331 * and to force calls to keep space in the nodes
332 */
333 unsigned int search_for_split:1;
334 unsigned int keep_locks:1;
335 unsigned int skip_locking:1;
336 unsigned int leave_spinning:1;
337 unsigned int search_commit_root:1;
338 unsigned int need_commit_sem:1;
339 unsigned int skip_release_on_error:1;
340};
341#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
342 sizeof(struct btrfs_item))
343struct btrfs_dev_replace {
344 u64 replace_state; /* see #define above */
345 u64 time_started; /* seconds since 1-Jan-1970 */
346 u64 time_stopped; /* seconds since 1-Jan-1970 */
347 atomic64_t num_write_errors;
348 atomic64_t num_uncorrectable_read_errors;
349
350 u64 cursor_left;
351 u64 committed_cursor_left;
352 u64 cursor_left_last_write_of_item;
353 u64 cursor_right;
354
355 u64 cont_reading_from_srcdev_mode; /* see #define above */
356
357 int is_valid;
358 int item_needs_writeback;
359 struct btrfs_device *srcdev;
360 struct btrfs_device *tgtdev;
361
362 pid_t lock_owner;
363 atomic_t nesting_level;
364 struct mutex lock_finishing_cancel_unmount;
365 rwlock_t lock;
366 atomic_t read_locks;
367 atomic_t blocking_readers;
368 wait_queue_head_t read_lock_wq;
369
370 struct btrfs_scrub_progress scrub_progress;
371};
372
373/* For raid type sysfs entries */
374struct raid_kobject {
375 u64 flags;
376 struct kobject kobj;
377 struct list_head list;
378};
379
380struct btrfs_space_info {
381 spinlock_t lock;
382
383 u64 total_bytes; /* total bytes in the space,
384 this doesn't take mirrors into account */
385 u64 bytes_used; /* total bytes used,
386 this doesn't take mirrors into account */
387 u64 bytes_pinned; /* total bytes pinned, will be freed when the
388 transaction finishes */
389 u64 bytes_reserved; /* total bytes the allocator has reserved for
390 current allocations */
391 u64 bytes_may_use; /* number of bytes that may be used for
392 delalloc/allocations */
393 u64 bytes_readonly; /* total bytes that are read only */
394
395 u64 max_extent_size; /* This will hold the maximum extent size of
396 the space info if we had an ENOSPC in the
397 allocator. */
398
399 unsigned int full:1; /* indicates that we cannot allocate any more
400 chunks for this space */
401 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
402
403 unsigned int flush:1; /* set if we are trying to make space */
404
405 unsigned int force_alloc; /* set if we need to force a chunk
406 alloc for this space */
407
408 u64 disk_used; /* total bytes used on disk */
409 u64 disk_total; /* total bytes on disk, takes mirrors into
410 account */
411
412 u64 flags;
413
414 /*
415 * bytes_pinned is kept in line with what is actually pinned, as in
416 * we've called update_block_group and dropped the bytes_used counter
417 * and increased the bytes_pinned counter. However this means that
418 * bytes_pinned does not reflect the bytes that will be pinned once the
419 * delayed refs are flushed, so this counter is inc'ed every time we
420 * call btrfs_free_extent so it is a realtime count of what will be
421 * freed once the transaction is committed. It will be zeroed every
422 * time the transaction commits.
423 */
424 struct percpu_counter total_bytes_pinned;
425
426 struct list_head list;
427 /* Protected by the spinlock 'lock'. */
428 struct list_head ro_bgs;
429 struct list_head priority_tickets;
430 struct list_head tickets;
431 /*
432 * tickets_id just indicates the next ticket will be handled, so note
433 * it's not stored per ticket.
434 */
435 u64 tickets_id;
436
437 struct rw_semaphore groups_sem;
438 /* for block groups in our same type */
439 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
440 wait_queue_head_t wait;
441
442 struct kobject kobj;
443 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
444};
445
446#define BTRFS_BLOCK_RSV_GLOBAL 1
447#define BTRFS_BLOCK_RSV_DELALLOC 2
448#define BTRFS_BLOCK_RSV_TRANS 3
449#define BTRFS_BLOCK_RSV_CHUNK 4
450#define BTRFS_BLOCK_RSV_DELOPS 5
451#define BTRFS_BLOCK_RSV_EMPTY 6
452#define BTRFS_BLOCK_RSV_TEMP 7
453
454struct btrfs_block_rsv {
455 u64 size;
456 u64 reserved;
457 struct btrfs_space_info *space_info;
458 spinlock_t lock;
459 unsigned short full;
460 unsigned short type;
461 unsigned short failfast;
462
463 /*
464 * Qgroup equivalent for @size @reserved
465 *
466 * Unlike normal @size/@reserved for inode rsv, qgroup doesn't care
467 * about things like csum size nor how many tree blocks it will need to
468 * reserve.
469 *
470 * Qgroup cares more about net change of the extent usage.
471 *
472 * So for one newly inserted file extent, in worst case it will cause
473 * leaf split and level increase, nodesize for each file extent is
474 * already too much.
475 *
476 * In short, qgroup_size/reserved is the upper limit of possible needed
477 * qgroup metadata reservation.
478 */
479 u64 qgroup_rsv_size;
480 u64 qgroup_rsv_reserved;
481};
482
483/*
484 * free clusters are used to claim free space in relatively large chunks,
485 * allowing us to do less seeky writes. They are used for all metadata
486 * allocations. In ssd_spread mode they are also used for data allocations.
487 */
488struct btrfs_free_cluster {
489 spinlock_t lock;
490 spinlock_t refill_lock;
491 struct rb_root root;
492
493 /* largest extent in this cluster */
494 u64 max_size;
495
496 /* first extent starting offset */
497 u64 window_start;
498
499 /* We did a full search and couldn't create a cluster */
500 bool fragmented;
501
502 struct btrfs_block_group_cache *block_group;
503 /*
504 * when a cluster is allocated from a block group, we put the
505 * cluster onto a list in the block group so that it can
506 * be freed before the block group is freed.
507 */
508 struct list_head block_group_list;
509};
510
511enum btrfs_caching_type {
512 BTRFS_CACHE_NO = 0,
513 BTRFS_CACHE_STARTED = 1,
514 BTRFS_CACHE_FAST = 2,
515 BTRFS_CACHE_FINISHED = 3,
516 BTRFS_CACHE_ERROR = 4,
517};
518
519enum btrfs_disk_cache_state {
520 BTRFS_DC_WRITTEN = 0,
521 BTRFS_DC_ERROR = 1,
522 BTRFS_DC_CLEAR = 2,
523 BTRFS_DC_SETUP = 3,
524};
525
526struct btrfs_caching_control {
527 struct list_head list;
528 struct mutex mutex;
529 wait_queue_head_t wait;
530 struct btrfs_work work;
531 struct btrfs_block_group_cache *block_group;
532 u64 progress;
533 refcount_t count;
534};
535
536/* Once caching_thread() finds this much free space, it will wake up waiters. */
537#define CACHING_CTL_WAKE_UP SZ_2M
538
539struct btrfs_io_ctl {
540 void *cur, *orig;
541 struct page *page;
542 struct page **pages;
543 struct btrfs_fs_info *fs_info;
544 struct inode *inode;
545 unsigned long size;
546 int index;
547 int num_pages;
548 int entries;
549 int bitmaps;
550 unsigned check_crcs:1;
551};
552
553/*
554 * Tree to record all locked full stripes of a RAID5/6 block group
555 */
556struct btrfs_full_stripe_locks_tree {
557 struct rb_root root;
558 struct mutex lock;
559};
560
561struct btrfs_block_group_cache {
562 struct btrfs_key key;
563 struct btrfs_block_group_item item;
564 struct btrfs_fs_info *fs_info;
565 struct inode *inode;
566 spinlock_t lock;
567 u64 pinned;
568 u64 reserved;
569 u64 delalloc_bytes;
570 u64 bytes_super;
571 u64 flags;
572 u64 cache_generation;
573
574 /*
575 * If the free space extent count exceeds this number, convert the block
576 * group to bitmaps.
577 */
578 u32 bitmap_high_thresh;
579
580 /*
581 * If the free space extent count drops below this number, convert the
582 * block group back to extents.
583 */
584 u32 bitmap_low_thresh;
585
586 /*
587 * It is just used for the delayed data space allocation because
588 * only the data space allocation and the relative metadata update
589 * can be done cross the transaction.
590 */
591 struct rw_semaphore data_rwsem;
592
593 /* for raid56, this is a full stripe, without parity */
594 unsigned long full_stripe_len;
595
596 unsigned int ro;
597 unsigned int iref:1;
598 unsigned int has_caching_ctl:1;
599 unsigned int removed:1;
600
601 int disk_cache_state;
602
603 /* cache tracking stuff */
604 int cached;
605 struct btrfs_caching_control *caching_ctl;
606 u64 last_byte_to_unpin;
607
608 struct btrfs_space_info *space_info;
609
610 /* free space cache stuff */
611 struct btrfs_free_space_ctl *free_space_ctl;
612
613 /* block group cache stuff */
614 struct rb_node cache_node;
615
616 /* for block groups in the same raid type */
617 struct list_head list;
618
619 /* usage count */
620 atomic_t count;
621
622 /* List of struct btrfs_free_clusters for this block group.
623 * Today it will only have one thing on it, but that may change
624 */
625 struct list_head cluster_list;
626
627 /* For delayed block group creation or deletion of empty block groups */
628 struct list_head bg_list;
629
630 /* For read-only block groups */
631 struct list_head ro_list;
632
633 atomic_t trimming;
634
635 /* For dirty block groups */
636 struct list_head dirty_list;
637 struct list_head io_list;
638
639 struct btrfs_io_ctl io_ctl;
640
641 /*
642 * Incremented when doing extent allocations and holding a read lock
643 * on the space_info's groups_sem semaphore.
644 * Decremented when an ordered extent that represents an IO against this
645 * block group's range is created (after it's added to its inode's
646 * root's list of ordered extents) or immediately after the allocation
647 * if it's a metadata extent or fallocate extent (for these cases we
648 * don't create ordered extents).
649 */
650 atomic_t reservations;
651
652 /*
653 * Incremented while holding the spinlock *lock* by a task checking if
654 * it can perform a nocow write (incremented if the value for the *ro*
655 * field is 0). Decremented by such tasks once they create an ordered
656 * extent or before that if some error happens before reaching that step.
657 * This is to prevent races between block group relocation and nocow
658 * writes through direct IO.
659 */
660 atomic_t nocow_writers;
661
662 /* Lock for free space tree operations. */
663 struct mutex free_space_lock;
664
665 /*
666 * Does the block group need to be added to the free space tree?
667 * Protected by free_space_lock.
668 */
669 int needs_free_space;
670
671 /* Record locked full stripes for RAID5/6 block group */
672 struct btrfs_full_stripe_locks_tree full_stripe_locks_root;
673};
674
675/* delayed seq elem */
676struct seq_list {
677 struct list_head list;
678 u64 seq;
679};
680
681#define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 }
682
683#define SEQ_LAST ((u64)-1)
684
685enum btrfs_orphan_cleanup_state {
686 ORPHAN_CLEANUP_STARTED = 1,
687 ORPHAN_CLEANUP_DONE = 2,
688};
689
690/* used by the raid56 code to lock stripes for read/modify/write */
691struct btrfs_stripe_hash {
692 struct list_head hash_list;
693 spinlock_t lock;
694};
695
696/* used by the raid56 code to lock stripes for read/modify/write */
697struct btrfs_stripe_hash_table {
698 struct list_head stripe_cache;
699 spinlock_t cache_lock;
700 int cache_size;
701 struct btrfs_stripe_hash table[];
702};
703
704#define BTRFS_STRIPE_HASH_TABLE_BITS 11
705
706void btrfs_init_async_reclaim_work(struct work_struct *work);
707
708/* fs_info */
709struct reloc_control;
710struct btrfs_device;
711struct btrfs_fs_devices;
712struct btrfs_balance_control;
713struct btrfs_delayed_root;
714
715#define BTRFS_FS_BARRIER 1
716#define BTRFS_FS_CLOSING_START 2
717#define BTRFS_FS_CLOSING_DONE 3
718#define BTRFS_FS_LOG_RECOVERING 4
719#define BTRFS_FS_OPEN 5
720#define BTRFS_FS_QUOTA_ENABLED 6
721#define BTRFS_FS_UPDATE_UUID_TREE_GEN 9
722#define BTRFS_FS_CREATING_FREE_SPACE_TREE 10
723#define BTRFS_FS_BTREE_ERR 11
724#define BTRFS_FS_LOG1_ERR 12
725#define BTRFS_FS_LOG2_ERR 13
726#define BTRFS_FS_QUOTA_OVERRIDE 14
727/* Used to record internally whether fs has been frozen */
728#define BTRFS_FS_FROZEN 15
729
730/*
731 * Indicate that a whole-filesystem exclusive operation is running
732 * (device replace, resize, device add/delete, balance)
733 */
734#define BTRFS_FS_EXCL_OP 16
735
736/*
737 * To info transaction_kthread we need an immediate commit so it doesn't
738 * need to wait for commit_interval
739 */
740#define BTRFS_FS_NEED_ASYNC_COMMIT 17
741
742struct btrfs_fs_info {
743 u8 fsid[BTRFS_FSID_SIZE];
744 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
745 unsigned long flags;
746 struct btrfs_root *extent_root;
747 struct btrfs_root *tree_root;
748 struct btrfs_root *chunk_root;
749 struct btrfs_root *dev_root;
750 struct btrfs_root *fs_root;
751 struct btrfs_root *csum_root;
752 struct btrfs_root *quota_root;
753 struct btrfs_root *uuid_root;
754 struct btrfs_root *free_space_root;
755
756 /* the log root tree is a directory of all the other log roots */
757 struct btrfs_root *log_root_tree;
758
759 spinlock_t fs_roots_radix_lock;
760 struct radix_tree_root fs_roots_radix;
761
762 /* block group cache stuff */
763 spinlock_t block_group_cache_lock;
764 u64 first_logical_byte;
765 struct rb_root block_group_cache_tree;
766
767 /* keep track of unallocated space */
768 atomic64_t free_chunk_space;
769
770 struct extent_io_tree freed_extents[2];
771 struct extent_io_tree *pinned_extents;
772
773 /* logical->physical extent mapping */
774 struct btrfs_mapping_tree mapping_tree;
775
776 /*
777 * block reservation for extent, checksum, root tree and
778 * delayed dir index item
779 */
780 struct btrfs_block_rsv global_block_rsv;
781 /* block reservation for metadata operations */
782 struct btrfs_block_rsv trans_block_rsv;
783 /* block reservation for chunk tree */
784 struct btrfs_block_rsv chunk_block_rsv;
785 /* block reservation for delayed operations */
786 struct btrfs_block_rsv delayed_block_rsv;
787
788 struct btrfs_block_rsv empty_block_rsv;
789
790 u64 generation;
791 u64 last_trans_committed;
792 u64 avg_delayed_ref_runtime;
793
794 /*
795 * this is updated to the current trans every time a full commit
796 * is required instead of the faster short fsync log commits
797 */
798 u64 last_trans_log_full_commit;
799 unsigned long mount_opt;
800 /*
801 * Track requests for actions that need to be done during transaction
802 * commit (like for some mount options).
803 */
804 unsigned long pending_changes;
805 unsigned long compress_type:4;
806 unsigned int compress_level;
807 u32 commit_interval;
808 /*
809 * It is a suggestive number, the read side is safe even it gets a
810 * wrong number because we will write out the data into a regular
811 * extent. The write side(mount/remount) is under ->s_umount lock,
812 * so it is also safe.
813 */
814 u64 max_inline;
815
816 struct btrfs_transaction *running_transaction;
817 wait_queue_head_t transaction_throttle;
818 wait_queue_head_t transaction_wait;
819 wait_queue_head_t transaction_blocked_wait;
820 wait_queue_head_t async_submit_wait;
821
822 /*
823 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
824 * when they are updated.
825 *
826 * Because we do not clear the flags for ever, so we needn't use
827 * the lock on the read side.
828 *
829 * We also needn't use the lock when we mount the fs, because
830 * there is no other task which will update the flag.
831 */
832 spinlock_t super_lock;
833 struct btrfs_super_block *super_copy;
834 struct btrfs_super_block *super_for_commit;
835 struct super_block *sb;
836 struct inode *btree_inode;
837 struct mutex tree_log_mutex;
838 struct mutex transaction_kthread_mutex;
839 struct mutex cleaner_mutex;
840 struct mutex chunk_mutex;
841 struct mutex volume_mutex;
842
843 /*
844 * this is taken to make sure we don't set block groups ro after
845 * the free space cache has been allocated on them
846 */
847 struct mutex ro_block_group_mutex;
848
849 /* this is used during read/modify/write to make sure
850 * no two ios are trying to mod the same stripe at the same
851 * time
852 */
853 struct btrfs_stripe_hash_table *stripe_hash_table;
854
855 /*
856 * this protects the ordered operations list only while we are
857 * processing all of the entries on it. This way we make
858 * sure the commit code doesn't find the list temporarily empty
859 * because another function happens to be doing non-waiting preflush
860 * before jumping into the main commit.
861 */
862 struct mutex ordered_operations_mutex;
863
864 struct rw_semaphore commit_root_sem;
865
866 struct rw_semaphore cleanup_work_sem;
867
868 struct rw_semaphore subvol_sem;
869 struct srcu_struct subvol_srcu;
870
871 spinlock_t trans_lock;
872 /*
873 * the reloc mutex goes with the trans lock, it is taken
874 * during commit to protect us from the relocation code
875 */
876 struct mutex reloc_mutex;
877
878 struct list_head trans_list;
879 struct list_head dead_roots;
880 struct list_head caching_block_groups;
881
882 spinlock_t delayed_iput_lock;
883 struct list_head delayed_iputs;
884 struct mutex cleaner_delayed_iput_mutex;
885
886 /* this protects tree_mod_seq_list */
887 spinlock_t tree_mod_seq_lock;
888 atomic64_t tree_mod_seq;
889 struct list_head tree_mod_seq_list;
890
891 /* this protects tree_mod_log */
892 rwlock_t tree_mod_log_lock;
893 struct rb_root tree_mod_log;
894
895 atomic_t async_delalloc_pages;
896
897 /*
898 * this is used to protect the following list -- ordered_roots.
899 */
900 spinlock_t ordered_root_lock;
901
902 /*
903 * all fs/file tree roots in which there are data=ordered extents
904 * pending writeback are added into this list.
905 *
906 * these can span multiple transactions and basically include
907 * every dirty data page that isn't from nodatacow
908 */
909 struct list_head ordered_roots;
910
911 struct mutex delalloc_root_mutex;
912 spinlock_t delalloc_root_lock;
913 /* all fs/file tree roots that have delalloc inodes. */
914 struct list_head delalloc_roots;
915
916 /*
917 * there is a pool of worker threads for checksumming during writes
918 * and a pool for checksumming after reads. This is because readers
919 * can run with FS locks held, and the writers may be waiting for
920 * those locks. We don't want ordering in the pending list to cause
921 * deadlocks, and so the two are serviced separately.
922 *
923 * A third pool does submit_bio to avoid deadlocking with the other
924 * two
925 */
926 struct btrfs_workqueue *workers;
927 struct btrfs_workqueue *delalloc_workers;
928 struct btrfs_workqueue *flush_workers;
929 struct btrfs_workqueue *endio_workers;
930 struct btrfs_workqueue *endio_meta_workers;
931 struct btrfs_workqueue *endio_raid56_workers;
932 struct btrfs_workqueue *endio_repair_workers;
933 struct btrfs_workqueue *rmw_workers;
934 struct btrfs_workqueue *endio_meta_write_workers;
935 struct btrfs_workqueue *endio_write_workers;
936 struct btrfs_workqueue *endio_freespace_worker;
937 struct btrfs_workqueue *submit_workers;
938 struct btrfs_workqueue *caching_workers;
939 struct btrfs_workqueue *readahead_workers;
940
941 /*
942 * fixup workers take dirty pages that didn't properly go through
943 * the cow mechanism and make them safe to write. It happens
944 * for the sys_munmap function call path
945 */
946 struct btrfs_workqueue *fixup_workers;
947 struct btrfs_workqueue *delayed_workers;
948
949 /* the extent workers do delayed refs on the extent allocation tree */
950 struct btrfs_workqueue *extent_workers;
951 struct task_struct *transaction_kthread;
952 struct task_struct *cleaner_kthread;
953 u32 thread_pool_size;
954
955 struct kobject *space_info_kobj;
956 struct list_head pending_raid_kobjs;
957 spinlock_t pending_raid_kobjs_lock; /* uncontended */
958
959 u64 total_pinned;
960
961 /* used to keep from writing metadata until there is a nice batch */
962 struct percpu_counter dirty_metadata_bytes;
963 struct percpu_counter delalloc_bytes;
964 s32 dirty_metadata_batch;
965 s32 delalloc_batch;
966
967 struct list_head dirty_cowonly_roots;
968
969 struct btrfs_fs_devices *fs_devices;
970
971 /*
972 * The space_info list is effectively read only after initial
973 * setup. It is populated at mount time and cleaned up after
974 * all block groups are removed. RCU is used to protect it.
975 */
976 struct list_head space_info;
977
978 struct btrfs_space_info *data_sinfo;
979
980 struct reloc_control *reloc_ctl;
981
982 /* data_alloc_cluster is only used in ssd_spread mode */
983 struct btrfs_free_cluster data_alloc_cluster;
984
985 /* all metadata allocations go through this cluster */
986 struct btrfs_free_cluster meta_alloc_cluster;
987
988 /* auto defrag inodes go here */
989 spinlock_t defrag_inodes_lock;
990 struct rb_root defrag_inodes;
991 atomic_t defrag_running;
992
993 /* Used to protect avail_{data, metadata, system}_alloc_bits */
994 seqlock_t profiles_lock;
995 /*
996 * these three are in extended format (availability of single
997 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
998 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
999 */
1000 u64 avail_data_alloc_bits;
1001 u64 avail_metadata_alloc_bits;
1002 u64 avail_system_alloc_bits;
1003
1004 /* restriper state */
1005 spinlock_t balance_lock;
1006 struct mutex balance_mutex;
1007 atomic_t balance_running;
1008 atomic_t balance_pause_req;
1009 atomic_t balance_cancel_req;
1010 struct btrfs_balance_control *balance_ctl;
1011 wait_queue_head_t balance_wait_q;
1012
1013 u32 data_chunk_allocations;
1014 u32 metadata_ratio;
1015
1016 void *bdev_holder;
1017
1018 /* private scrub information */
1019 struct mutex scrub_lock;
1020 atomic_t scrubs_running;
1021 atomic_t scrub_pause_req;
1022 atomic_t scrubs_paused;
1023 atomic_t scrub_cancel_req;
1024 wait_queue_head_t scrub_pause_wait;
1025 int scrub_workers_refcnt;
1026 struct btrfs_workqueue *scrub_workers;
1027 struct btrfs_workqueue *scrub_wr_completion_workers;
1028 struct btrfs_workqueue *scrub_nocow_workers;
1029 struct btrfs_workqueue *scrub_parity_workers;
1030
1031#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1032 u32 check_integrity_print_mask;
1033#endif
1034 /* is qgroup tracking in a consistent state? */
1035 u64 qgroup_flags;
1036
1037 /* holds configuration and tracking. Protected by qgroup_lock */
1038 struct rb_root qgroup_tree;
1039 struct rb_root qgroup_op_tree;
1040 spinlock_t qgroup_lock;
1041 spinlock_t qgroup_op_lock;
1042 atomic_t qgroup_op_seq;
1043
1044 /*
1045 * used to avoid frequently calling ulist_alloc()/ulist_free()
1046 * when doing qgroup accounting, it must be protected by qgroup_lock.
1047 */
1048 struct ulist *qgroup_ulist;
1049
1050 /* protect user change for quota operations */
1051 struct mutex qgroup_ioctl_lock;
1052
1053 /* list of dirty qgroups to be written at next commit */
1054 struct list_head dirty_qgroups;
1055
1056 /* used by qgroup for an efficient tree traversal */
1057 u64 qgroup_seq;
1058
1059 /* qgroup rescan items */
1060 struct mutex qgroup_rescan_lock; /* protects the progress item */
1061 struct btrfs_key qgroup_rescan_progress;
1062 struct btrfs_workqueue *qgroup_rescan_workers;
1063 struct completion qgroup_rescan_completion;
1064 struct btrfs_work qgroup_rescan_work;
1065 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
1066
1067 /* filesystem state */
1068 unsigned long fs_state;
1069
1070 struct btrfs_delayed_root *delayed_root;
1071
1072 /* readahead tree */
1073 spinlock_t reada_lock;
1074 struct radix_tree_root reada_tree;
1075
1076 /* readahead works cnt */
1077 atomic_t reada_works_cnt;
1078
1079 /* Extent buffer radix tree */
1080 spinlock_t buffer_lock;
1081 struct radix_tree_root buffer_radix;
1082
1083 /* next backup root to be overwritten */
1084 int backup_root_index;
1085
1086 /* device replace state */
1087 struct btrfs_dev_replace dev_replace;
1088
1089 struct percpu_counter bio_counter;
1090 wait_queue_head_t replace_wait;
1091
1092 struct semaphore uuid_tree_rescan_sem;
1093
1094 /* Used to reclaim the metadata space in the background. */
1095 struct work_struct async_reclaim_work;
1096
1097 spinlock_t unused_bgs_lock;
1098 struct list_head unused_bgs;
1099 struct mutex unused_bg_unpin_mutex;
1100 struct mutex delete_unused_bgs_mutex;
1101
1102 /* For btrfs to record security options */
1103 struct security_mnt_opts security_opts;
1104
1105 /*
1106 * Chunks that can't be freed yet (under a trim/discard operation)
1107 * and will be latter freed. Protected by fs_info->chunk_mutex.
1108 */
1109 struct list_head pinned_chunks;
1110
1111 /* Cached block sizes */
1112 u32 nodesize;
1113 u32 sectorsize;
1114 u32 stripesize;
1115
1116#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1117 spinlock_t ref_verify_lock;
1118 struct rb_root block_tree;
1119#endif
1120};
1121
1122static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1123{
1124 return sb->s_fs_info;
1125}
1126
1127struct btrfs_subvolume_writers {
1128 struct percpu_counter counter;
1129 wait_queue_head_t wait;
1130};
1131
1132/*
1133 * The state of btrfs root
1134 */
1135/*
1136 * btrfs_record_root_in_trans is a multi-step process,
1137 * and it can race with the balancing code. But the
1138 * race is very small, and only the first time the root
1139 * is added to each transaction. So IN_TRANS_SETUP
1140 * is used to tell us when more checks are required
1141 */
1142#define BTRFS_ROOT_IN_TRANS_SETUP 0
1143#define BTRFS_ROOT_REF_COWS 1
1144#define BTRFS_ROOT_TRACK_DIRTY 2
1145#define BTRFS_ROOT_IN_RADIX 3
1146#define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 4
1147#define BTRFS_ROOT_DEFRAG_RUNNING 5
1148#define BTRFS_ROOT_FORCE_COW 6
1149#define BTRFS_ROOT_MULTI_LOG_TASKS 7
1150#define BTRFS_ROOT_DIRTY 8
1151
1152/*
1153 * in ram representation of the tree. extent_root is used for all allocations
1154 * and for the extent tree extent_root root.
1155 */
1156struct btrfs_root {
1157 struct extent_buffer *node;
1158
1159 struct extent_buffer *commit_root;
1160 struct btrfs_root *log_root;
1161 struct btrfs_root *reloc_root;
1162
1163 unsigned long state;
1164 struct btrfs_root_item root_item;
1165 struct btrfs_key root_key;
1166 struct btrfs_fs_info *fs_info;
1167 struct extent_io_tree dirty_log_pages;
1168
1169 struct mutex objectid_mutex;
1170
1171 spinlock_t accounting_lock;
1172 struct btrfs_block_rsv *block_rsv;
1173
1174 /* free ino cache stuff */
1175 struct btrfs_free_space_ctl *free_ino_ctl;
1176 enum btrfs_caching_type ino_cache_state;
1177 spinlock_t ino_cache_lock;
1178 wait_queue_head_t ino_cache_wait;
1179 struct btrfs_free_space_ctl *free_ino_pinned;
1180 u64 ino_cache_progress;
1181 struct inode *ino_cache_inode;
1182
1183 struct mutex log_mutex;
1184 wait_queue_head_t log_writer_wait;
1185 wait_queue_head_t log_commit_wait[2];
1186 struct list_head log_ctxs[2];
1187 atomic_t log_writers;
1188 atomic_t log_commit[2];
1189 atomic_t log_batch;
1190 int log_transid;
1191 /* No matter the commit succeeds or not*/
1192 int log_transid_committed;
1193 /* Just be updated when the commit succeeds. */
1194 int last_log_commit;
1195 pid_t log_start_pid;
1196
1197 u64 objectid;
1198 u64 last_trans;
1199
1200 u32 type;
1201
1202 u64 highest_objectid;
1203
1204#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1205 /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1206 u64 alloc_bytenr;
1207#endif
1208
1209 u64 defrag_trans_start;
1210 struct btrfs_key defrag_progress;
1211 struct btrfs_key defrag_max;
1212 char *name;
1213
1214 /* the dirty list is only used by non-reference counted roots */
1215 struct list_head dirty_list;
1216
1217 struct list_head root_list;
1218
1219 spinlock_t log_extents_lock[2];
1220 struct list_head logged_list[2];
1221
1222 spinlock_t orphan_lock;
1223 atomic_t orphan_inodes;
1224 struct btrfs_block_rsv *orphan_block_rsv;
1225 int orphan_cleanup_state;
1226
1227 spinlock_t inode_lock;
1228 /* red-black tree that keeps track of in-memory inodes */
1229 struct rb_root inode_tree;
1230
1231 /*
1232 * radix tree that keeps track of delayed nodes of every inode,
1233 * protected by inode_lock
1234 */
1235 struct radix_tree_root delayed_nodes_tree;
1236 /*
1237 * right now this just gets used so that a root has its own devid
1238 * for stat. It may be used for more later
1239 */
1240 dev_t anon_dev;
1241
1242 spinlock_t root_item_lock;
1243 refcount_t refs;
1244
1245 struct mutex delalloc_mutex;
1246 spinlock_t delalloc_lock;
1247 /*
1248 * all of the inodes that have delalloc bytes. It is possible for
1249 * this list to be empty even when there is still dirty data=ordered
1250 * extents waiting to finish IO.
1251 */
1252 struct list_head delalloc_inodes;
1253 struct list_head delalloc_root;
1254 u64 nr_delalloc_inodes;
1255
1256 struct mutex ordered_extent_mutex;
1257 /*
1258 * this is used by the balancing code to wait for all the pending
1259 * ordered extents
1260 */
1261 spinlock_t ordered_extent_lock;
1262
1263 /*
1264 * all of the data=ordered extents pending writeback
1265 * these can span multiple transactions and basically include
1266 * every dirty data page that isn't from nodatacow
1267 */
1268 struct list_head ordered_extents;
1269 struct list_head ordered_root;
1270 u64 nr_ordered_extents;
1271
1272 /*
1273 * Number of currently running SEND ioctls to prevent
1274 * manipulation with the read-only status via SUBVOL_SETFLAGS
1275 */
1276 int send_in_progress;
1277 struct btrfs_subvolume_writers *subv_writers;
1278 atomic_t will_be_snapshotted;
1279
1280 /* For qgroup metadata reserved space */
1281 spinlock_t qgroup_meta_rsv_lock;
1282 u64 qgroup_meta_rsv_pertrans;
1283 u64 qgroup_meta_rsv_prealloc;
1284};
1285
1286struct btrfs_file_private {
1287 void *filldir_buf;
1288};
1289
1290static inline u32 btrfs_inode_sectorsize(const struct inode *inode)
1291{
1292 return btrfs_sb(inode->i_sb)->sectorsize;
1293}
1294
1295static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1296{
1297
1298 return info->nodesize - sizeof(struct btrfs_header);
1299}
1300
1301#define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1302
1303static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1304{
1305 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1306}
1307
1308static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1309{
1310 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1311}
1312
1313#define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1314 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
1315static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1316{
1317 return BTRFS_MAX_ITEM_SIZE(info) -
1318 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1319}
1320
1321static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1322{
1323 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1324}
1325
1326/*
1327 * Flags for mount options.
1328 *
1329 * Note: don't forget to add new options to btrfs_show_options()
1330 */
1331#define BTRFS_MOUNT_NODATASUM (1 << 0)
1332#define BTRFS_MOUNT_NODATACOW (1 << 1)
1333#define BTRFS_MOUNT_NOBARRIER (1 << 2)
1334#define BTRFS_MOUNT_SSD (1 << 3)
1335#define BTRFS_MOUNT_DEGRADED (1 << 4)
1336#define BTRFS_MOUNT_COMPRESS (1 << 5)
1337#define BTRFS_MOUNT_NOTREELOG (1 << 6)
1338#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
1339#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
1340#define BTRFS_MOUNT_NOSSD (1 << 9)
1341#define BTRFS_MOUNT_DISCARD (1 << 10)
1342#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
1343#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
1344#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
1345#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
1346#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
1347#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
1348#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
1349#define BTRFS_MOUNT_USEBACKUPROOT (1 << 18)
1350#define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
1351#define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
1352#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
1353#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
1354#define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
1355#define BTRFS_MOUNT_FRAGMENT_DATA (1 << 24)
1356#define BTRFS_MOUNT_FRAGMENT_METADATA (1 << 25)
1357#define BTRFS_MOUNT_FREE_SPACE_TREE (1 << 26)
1358#define BTRFS_MOUNT_NOLOGREPLAY (1 << 27)
1359#define BTRFS_MOUNT_REF_VERIFY (1 << 28)
1360
1361#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1362#define BTRFS_DEFAULT_MAX_INLINE (2048)
1363
1364#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1365#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1366#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1367#define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1368 BTRFS_MOUNT_##opt)
1369
1370#define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1371{ \
1372 if (!btrfs_test_opt(fs_info, opt)) \
1373 btrfs_info(fs_info, fmt, ##args); \
1374 btrfs_set_opt(fs_info->mount_opt, opt); \
1375}
1376
1377#define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1378{ \
1379 if (btrfs_test_opt(fs_info, opt)) \
1380 btrfs_info(fs_info, fmt, ##args); \
1381 btrfs_clear_opt(fs_info->mount_opt, opt); \
1382}
1383
1384#ifdef CONFIG_BTRFS_DEBUG
1385static inline int
1386btrfs_should_fragment_free_space(struct btrfs_block_group_cache *block_group)
1387{
1388 struct btrfs_fs_info *fs_info = block_group->fs_info;
1389
1390 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
1391 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
1392 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
1393 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
1394}
1395#endif
1396
1397/*
1398 * Requests for changes that need to be done during transaction commit.
1399 *
1400 * Internal mount options that are used for special handling of the real
1401 * mount options (eg. cannot be set during remount and have to be set during
1402 * transaction commit)
1403 */
1404
1405#define BTRFS_PENDING_SET_INODE_MAP_CACHE (0)
1406#define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE (1)
1407#define BTRFS_PENDING_COMMIT (2)
1408
1409#define btrfs_test_pending(info, opt) \
1410 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1411#define btrfs_set_pending(info, opt) \
1412 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1413#define btrfs_clear_pending(info, opt) \
1414 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1415
1416/*
1417 * Helpers for setting pending mount option changes.
1418 *
1419 * Expects corresponding macros
1420 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1421 */
1422#define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1423do { \
1424 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1425 btrfs_info((info), fmt, ##args); \
1426 btrfs_set_pending((info), SET_##opt); \
1427 btrfs_clear_pending((info), CLEAR_##opt); \
1428 } \
1429} while(0)
1430
1431#define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1432do { \
1433 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1434 btrfs_info((info), fmt, ##args); \
1435 btrfs_set_pending((info), CLEAR_##opt); \
1436 btrfs_clear_pending((info), SET_##opt); \
1437 } \
1438} while(0)
1439
1440/*
1441 * Inode flags
1442 */
1443#define BTRFS_INODE_NODATASUM (1 << 0)
1444#define BTRFS_INODE_NODATACOW (1 << 1)
1445#define BTRFS_INODE_READONLY (1 << 2)
1446#define BTRFS_INODE_NOCOMPRESS (1 << 3)
1447#define BTRFS_INODE_PREALLOC (1 << 4)
1448#define BTRFS_INODE_SYNC (1 << 5)
1449#define BTRFS_INODE_IMMUTABLE (1 << 6)
1450#define BTRFS_INODE_APPEND (1 << 7)
1451#define BTRFS_INODE_NODUMP (1 << 8)
1452#define BTRFS_INODE_NOATIME (1 << 9)
1453#define BTRFS_INODE_DIRSYNC (1 << 10)
1454#define BTRFS_INODE_COMPRESS (1 << 11)
1455
1456#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
1457
1458struct btrfs_map_token {
1459 const struct extent_buffer *eb;
1460 char *kaddr;
1461 unsigned long offset;
1462};
1463
1464#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1465 ((bytes) >> (fs_info)->sb->s_blocksize_bits)
1466
1467static inline void btrfs_init_map_token (struct btrfs_map_token *token)
1468{
1469 token->kaddr = NULL;
1470}
1471
1472/* some macros to generate set/get functions for the struct fields. This
1473 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1474 * one for u8:
1475 */
1476#define le8_to_cpu(v) (v)
1477#define cpu_to_le8(v) (v)
1478#define __le8 u8
1479
1480#define read_eb_member(eb, ptr, type, member, result) (\
1481 read_extent_buffer(eb, (char *)(result), \
1482 ((unsigned long)(ptr)) + \
1483 offsetof(type, member), \
1484 sizeof(((type *)0)->member)))
1485
1486#define write_eb_member(eb, ptr, type, member, result) (\
1487 write_extent_buffer(eb, (char *)(result), \
1488 ((unsigned long)(ptr)) + \
1489 offsetof(type, member), \
1490 sizeof(((type *)0)->member)))
1491
1492#define DECLARE_BTRFS_SETGET_BITS(bits) \
1493u##bits btrfs_get_token_##bits(const struct extent_buffer *eb, \
1494 const void *ptr, unsigned long off, \
1495 struct btrfs_map_token *token); \
1496void btrfs_set_token_##bits(struct extent_buffer *eb, const void *ptr, \
1497 unsigned long off, u##bits val, \
1498 struct btrfs_map_token *token); \
1499static inline u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1500 const void *ptr, \
1501 unsigned long off) \
1502{ \
1503 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
1504} \
1505static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr,\
1506 unsigned long off, u##bits val) \
1507{ \
1508 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
1509}
1510
1511DECLARE_BTRFS_SETGET_BITS(8)
1512DECLARE_BTRFS_SETGET_BITS(16)
1513DECLARE_BTRFS_SETGET_BITS(32)
1514DECLARE_BTRFS_SETGET_BITS(64)
1515
1516#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1517static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1518 const type *s) \
1519{ \
1520 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1521 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1522} \
1523static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
1524 u##bits val) \
1525{ \
1526 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1527 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1528} \
1529static inline u##bits btrfs_token_##name(const struct extent_buffer *eb,\
1530 const type *s, \
1531 struct btrfs_map_token *token) \
1532{ \
1533 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1534 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
1535} \
1536static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
1537 type *s, u##bits val, \
1538 struct btrfs_map_token *token) \
1539{ \
1540 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1541 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
1542}
1543
1544#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1545static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1546{ \
1547 const type *p = page_address(eb->pages[0]); \
1548 u##bits res = le##bits##_to_cpu(p->member); \
1549 return res; \
1550} \
1551static inline void btrfs_set_##name(struct extent_buffer *eb, \
1552 u##bits val) \
1553{ \
1554 type *p = page_address(eb->pages[0]); \
1555 p->member = cpu_to_le##bits(val); \
1556}
1557
1558#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1559static inline u##bits btrfs_##name(const type *s) \
1560{ \
1561 return le##bits##_to_cpu(s->member); \
1562} \
1563static inline void btrfs_set_##name(type *s, u##bits val) \
1564{ \
1565 s->member = cpu_to_le##bits(val); \
1566}
1567
1568
1569static inline u64 btrfs_device_total_bytes(struct extent_buffer *eb,
1570 struct btrfs_dev_item *s)
1571{
1572 BUILD_BUG_ON(sizeof(u64) !=
1573 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1574 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1575 total_bytes));
1576}
1577static inline void btrfs_set_device_total_bytes(struct extent_buffer *eb,
1578 struct btrfs_dev_item *s,
1579 u64 val)
1580{
1581 BUILD_BUG_ON(sizeof(u64) !=
1582 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1583 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1584 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1585}
1586
1587
1588BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1589BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1590BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1591BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1592BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1593 start_offset, 64);
1594BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1595BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1596BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1597BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1598BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1599BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1600
1601BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1602BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1603 total_bytes, 64);
1604BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1605 bytes_used, 64);
1606BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1607 io_align, 32);
1608BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1609 io_width, 32);
1610BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1611 sector_size, 32);
1612BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1613BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1614 dev_group, 32);
1615BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1616 seek_speed, 8);
1617BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1618 bandwidth, 8);
1619BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1620 generation, 64);
1621
1622static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1623{
1624 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1625}
1626
1627static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1628{
1629 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1630}
1631
1632BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1633BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1634BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1635BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1636BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1637BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1638BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1639BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1640BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1641BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1642BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1643
1644static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1645{
1646 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1647}
1648
1649BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1650BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1651BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1652 stripe_len, 64);
1653BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1654 io_align, 32);
1655BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1656 io_width, 32);
1657BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1658 sector_size, 32);
1659BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1660BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1661 num_stripes, 16);
1662BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1663 sub_stripes, 16);
1664BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1665BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1666
1667static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1668 int nr)
1669{
1670 unsigned long offset = (unsigned long)c;
1671 offset += offsetof(struct btrfs_chunk, stripe);
1672 offset += nr * sizeof(struct btrfs_stripe);
1673 return (struct btrfs_stripe *)offset;
1674}
1675
1676static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1677{
1678 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1679}
1680
1681static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
1682 struct btrfs_chunk *c, int nr)
1683{
1684 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1685}
1686
1687static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
1688 struct btrfs_chunk *c, int nr)
1689{
1690 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1691}
1692
1693/* struct btrfs_block_group_item */
1694BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
1695 used, 64);
1696BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
1697 used, 64);
1698BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
1699 struct btrfs_block_group_item, chunk_objectid, 64);
1700
1701BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
1702 struct btrfs_block_group_item, chunk_objectid, 64);
1703BTRFS_SETGET_FUNCS(disk_block_group_flags,
1704 struct btrfs_block_group_item, flags, 64);
1705BTRFS_SETGET_STACK_FUNCS(block_group_flags,
1706 struct btrfs_block_group_item, flags, 64);
1707
1708/* struct btrfs_free_space_info */
1709BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1710 extent_count, 32);
1711BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1712
1713/* struct btrfs_inode_ref */
1714BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1715BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1716
1717/* struct btrfs_inode_extref */
1718BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1719 parent_objectid, 64);
1720BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1721 name_len, 16);
1722BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1723
1724/* struct btrfs_inode_item */
1725BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1726BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1727BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1728BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1729BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1730BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1731BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1732BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1733BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1734BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1735BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1736BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1737BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1738 generation, 64);
1739BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1740 sequence, 64);
1741BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1742 transid, 64);
1743BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1744BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1745 nbytes, 64);
1746BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1747 block_group, 64);
1748BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1749BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1750BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1751BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1752BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1753BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1754BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1755BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1756BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1757BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1758
1759/* struct btrfs_dev_extent */
1760BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1761 chunk_tree, 64);
1762BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1763 chunk_objectid, 64);
1764BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1765 chunk_offset, 64);
1766BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1767
1768static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
1769{
1770 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
1771 return (unsigned long)dev + ptr;
1772}
1773
1774BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1775BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1776 generation, 64);
1777BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1778
1779BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
1780
1781
1782BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1783
1784static inline void btrfs_tree_block_key(struct extent_buffer *eb,
1785 struct btrfs_tree_block_info *item,
1786 struct btrfs_disk_key *key)
1787{
1788 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1789}
1790
1791static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
1792 struct btrfs_tree_block_info *item,
1793 struct btrfs_disk_key *key)
1794{
1795 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1796}
1797
1798BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1799 root, 64);
1800BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1801 objectid, 64);
1802BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1803 offset, 64);
1804BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1805 count, 32);
1806
1807BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1808 count, 32);
1809
1810BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1811 type, 8);
1812BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1813 offset, 64);
1814
1815static inline u32 btrfs_extent_inline_ref_size(int type)
1816{
1817 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1818 type == BTRFS_SHARED_BLOCK_REF_KEY)
1819 return sizeof(struct btrfs_extent_inline_ref);
1820 if (type == BTRFS_SHARED_DATA_REF_KEY)
1821 return sizeof(struct btrfs_shared_data_ref) +
1822 sizeof(struct btrfs_extent_inline_ref);
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 return sizeof(struct btrfs_extent_data_ref) +
1825 offsetof(struct btrfs_extent_inline_ref, offset);
1826 return 0;
1827}
1828
1829BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
1830BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
1831 generation, 64);
1832BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
1833BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
1834
1835/* struct btrfs_node */
1836BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1837BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1838BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1839 blockptr, 64);
1840BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1841 generation, 64);
1842
1843static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
1844{
1845 unsigned long ptr;
1846 ptr = offsetof(struct btrfs_node, ptrs) +
1847 sizeof(struct btrfs_key_ptr) * nr;
1848 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1849}
1850
1851static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
1852 int nr, u64 val)
1853{
1854 unsigned long ptr;
1855 ptr = offsetof(struct btrfs_node, ptrs) +
1856 sizeof(struct btrfs_key_ptr) * nr;
1857 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1858}
1859
1860static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
1861{
1862 unsigned long ptr;
1863 ptr = offsetof(struct btrfs_node, ptrs) +
1864 sizeof(struct btrfs_key_ptr) * nr;
1865 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1866}
1867
1868static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
1869 int nr, u64 val)
1870{
1871 unsigned long ptr;
1872 ptr = offsetof(struct btrfs_node, ptrs) +
1873 sizeof(struct btrfs_key_ptr) * nr;
1874 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1875}
1876
1877static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1878{
1879 return offsetof(struct btrfs_node, ptrs) +
1880 sizeof(struct btrfs_key_ptr) * nr;
1881}
1882
1883void btrfs_node_key(const struct extent_buffer *eb,
1884 struct btrfs_disk_key *disk_key, int nr);
1885
1886static inline void btrfs_set_node_key(struct extent_buffer *eb,
1887 struct btrfs_disk_key *disk_key, int nr)
1888{
1889 unsigned long ptr;
1890 ptr = btrfs_node_key_ptr_offset(nr);
1891 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1892 struct btrfs_key_ptr, key, disk_key);
1893}
1894
1895/* struct btrfs_item */
1896BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1897BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1898BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1899BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1900
1901static inline unsigned long btrfs_item_nr_offset(int nr)
1902{
1903 return offsetof(struct btrfs_leaf, items) +
1904 sizeof(struct btrfs_item) * nr;
1905}
1906
1907static inline struct btrfs_item *btrfs_item_nr(int nr)
1908{
1909 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1910}
1911
1912static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1913 struct btrfs_item *item)
1914{
1915 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1916}
1917
1918static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1919{
1920 return btrfs_item_end(eb, btrfs_item_nr(nr));
1921}
1922
1923static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1924{
1925 return btrfs_item_offset(eb, btrfs_item_nr(nr));
1926}
1927
1928static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1929{
1930 return btrfs_item_size(eb, btrfs_item_nr(nr));
1931}
1932
1933static inline void btrfs_item_key(const struct extent_buffer *eb,
1934 struct btrfs_disk_key *disk_key, int nr)
1935{
1936 struct btrfs_item *item = btrfs_item_nr(nr);
1937 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1938}
1939
1940static inline void btrfs_set_item_key(struct extent_buffer *eb,
1941 struct btrfs_disk_key *disk_key, int nr)
1942{
1943 struct btrfs_item *item = btrfs_item_nr(nr);
1944 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1945}
1946
1947BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1948
1949/*
1950 * struct btrfs_root_ref
1951 */
1952BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1953BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1954BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
1955
1956/* struct btrfs_dir_item */
1957BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
1958BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
1959BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
1960BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
1961BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
1962BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
1963 data_len, 16);
1964BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
1965 name_len, 16);
1966BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
1967 transid, 64);
1968
1969static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
1970 const struct btrfs_dir_item *item,
1971 struct btrfs_disk_key *key)
1972{
1973 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
1974}
1975
1976static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
1977 struct btrfs_dir_item *item,
1978 const struct btrfs_disk_key *key)
1979{
1980 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
1981}
1982
1983BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
1984 num_entries, 64);
1985BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
1986 num_bitmaps, 64);
1987BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
1988 generation, 64);
1989
1990static inline void btrfs_free_space_key(const struct extent_buffer *eb,
1991 const struct btrfs_free_space_header *h,
1992 struct btrfs_disk_key *key)
1993{
1994 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1995}
1996
1997static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
1998 struct btrfs_free_space_header *h,
1999 const struct btrfs_disk_key *key)
2000{
2001 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2002}
2003
2004/* struct btrfs_disk_key */
2005BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2006 objectid, 64);
2007BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2008BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2009
2010static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2011 const struct btrfs_disk_key *disk)
2012{
2013 cpu->offset = le64_to_cpu(disk->offset);
2014 cpu->type = disk->type;
2015 cpu->objectid = le64_to_cpu(disk->objectid);
2016}
2017
2018static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2019 const struct btrfs_key *cpu)
2020{
2021 disk->offset = cpu_to_le64(cpu->offset);
2022 disk->type = cpu->type;
2023 disk->objectid = cpu_to_le64(cpu->objectid);
2024}
2025
2026static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2027 struct btrfs_key *key, int nr)
2028{
2029 struct btrfs_disk_key disk_key;
2030 btrfs_node_key(eb, &disk_key, nr);
2031 btrfs_disk_key_to_cpu(key, &disk_key);
2032}
2033
2034static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2035 struct btrfs_key *key, int nr)
2036{
2037 struct btrfs_disk_key disk_key;
2038 btrfs_item_key(eb, &disk_key, nr);
2039 btrfs_disk_key_to_cpu(key, &disk_key);
2040}
2041
2042static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2043 const struct btrfs_dir_item *item,
2044 struct btrfs_key *key)
2045{
2046 struct btrfs_disk_key disk_key;
2047 btrfs_dir_item_key(eb, item, &disk_key);
2048 btrfs_disk_key_to_cpu(key, &disk_key);
2049}
2050
2051static inline u8 btrfs_key_type(const struct btrfs_key *key)
2052{
2053 return key->type;
2054}
2055
2056static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2057{
2058 key->type = val;
2059}
2060
2061/* struct btrfs_header */
2062BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2063BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2064 generation, 64);
2065BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2066BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2067BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2068BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2069BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2070 generation, 64);
2071BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2072BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2073 nritems, 32);
2074BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2075
2076static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2077{
2078 return (btrfs_header_flags(eb) & flag) == flag;
2079}
2080
2081static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2082{
2083 u64 flags = btrfs_header_flags(eb);
2084 btrfs_set_header_flags(eb, flags | flag);
2085 return (flags & flag) == flag;
2086}
2087
2088static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2089{
2090 u64 flags = btrfs_header_flags(eb);
2091 btrfs_set_header_flags(eb, flags & ~flag);
2092 return (flags & flag) == flag;
2093}
2094
2095static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2096{
2097 u64 flags = btrfs_header_flags(eb);
2098 return flags >> BTRFS_BACKREF_REV_SHIFT;
2099}
2100
2101static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2102 int rev)
2103{
2104 u64 flags = btrfs_header_flags(eb);
2105 flags &= ~BTRFS_BACKREF_REV_MASK;
2106 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2107 btrfs_set_header_flags(eb, flags);
2108}
2109
2110static inline unsigned long btrfs_header_fsid(void)
2111{
2112 return offsetof(struct btrfs_header, fsid);
2113}
2114
2115static inline unsigned long btrfs_header_chunk_tree_uuid(const struct extent_buffer *eb)
2116{
2117 return offsetof(struct btrfs_header, chunk_tree_uuid);
2118}
2119
2120static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2121{
2122 return btrfs_header_level(eb) == 0;
2123}
2124
2125/* struct btrfs_root_item */
2126BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2127 generation, 64);
2128BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2129BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2130BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2131
2132BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2133 generation, 64);
2134BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2135BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2136BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2137BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2138BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2139BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2140BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2141BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2142 last_snapshot, 64);
2143BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2144 generation_v2, 64);
2145BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2146 ctransid, 64);
2147BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2148 otransid, 64);
2149BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2150 stransid, 64);
2151BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2152 rtransid, 64);
2153
2154static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2155{
2156 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2157}
2158
2159static inline bool btrfs_root_dead(const struct btrfs_root *root)
2160{
2161 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2162}
2163
2164/* struct btrfs_root_backup */
2165BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2166 tree_root, 64);
2167BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2168 tree_root_gen, 64);
2169BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2170 tree_root_level, 8);
2171
2172BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2173 chunk_root, 64);
2174BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2175 chunk_root_gen, 64);
2176BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2177 chunk_root_level, 8);
2178
2179BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2180 extent_root, 64);
2181BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2182 extent_root_gen, 64);
2183BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2184 extent_root_level, 8);
2185
2186BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2187 fs_root, 64);
2188BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2189 fs_root_gen, 64);
2190BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2191 fs_root_level, 8);
2192
2193BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2194 dev_root, 64);
2195BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2196 dev_root_gen, 64);
2197BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2198 dev_root_level, 8);
2199
2200BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2201 csum_root, 64);
2202BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2203 csum_root_gen, 64);
2204BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2205 csum_root_level, 8);
2206BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2207 total_bytes, 64);
2208BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2209 bytes_used, 64);
2210BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2211 num_devices, 64);
2212
2213/* struct btrfs_balance_item */
2214BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2215
2216static inline void btrfs_balance_data(const struct extent_buffer *eb,
2217 const struct btrfs_balance_item *bi,
2218 struct btrfs_disk_balance_args *ba)
2219{
2220 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2221}
2222
2223static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2224 struct btrfs_balance_item *bi,
2225 const struct btrfs_disk_balance_args *ba)
2226{
2227 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2228}
2229
2230static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2231 const struct btrfs_balance_item *bi,
2232 struct btrfs_disk_balance_args *ba)
2233{
2234 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2235}
2236
2237static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2238 struct btrfs_balance_item *bi,
2239 const struct btrfs_disk_balance_args *ba)
2240{
2241 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2242}
2243
2244static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2245 const struct btrfs_balance_item *bi,
2246 struct btrfs_disk_balance_args *ba)
2247{
2248 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2249}
2250
2251static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2252 struct btrfs_balance_item *bi,
2253 const struct btrfs_disk_balance_args *ba)
2254{
2255 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2256}
2257
2258static inline void
2259btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2260 const struct btrfs_disk_balance_args *disk)
2261{
2262 memset(cpu, 0, sizeof(*cpu));
2263
2264 cpu->profiles = le64_to_cpu(disk->profiles);
2265 cpu->usage = le64_to_cpu(disk->usage);
2266 cpu->devid = le64_to_cpu(disk->devid);
2267 cpu->pstart = le64_to_cpu(disk->pstart);
2268 cpu->pend = le64_to_cpu(disk->pend);
2269 cpu->vstart = le64_to_cpu(disk->vstart);
2270 cpu->vend = le64_to_cpu(disk->vend);
2271 cpu->target = le64_to_cpu(disk->target);
2272 cpu->flags = le64_to_cpu(disk->flags);
2273 cpu->limit = le64_to_cpu(disk->limit);
2274 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2275 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2276}
2277
2278static inline void
2279btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2280 const struct btrfs_balance_args *cpu)
2281{
2282 memset(disk, 0, sizeof(*disk));
2283
2284 disk->profiles = cpu_to_le64(cpu->profiles);
2285 disk->usage = cpu_to_le64(cpu->usage);
2286 disk->devid = cpu_to_le64(cpu->devid);
2287 disk->pstart = cpu_to_le64(cpu->pstart);
2288 disk->pend = cpu_to_le64(cpu->pend);
2289 disk->vstart = cpu_to_le64(cpu->vstart);
2290 disk->vend = cpu_to_le64(cpu->vend);
2291 disk->target = cpu_to_le64(cpu->target);
2292 disk->flags = cpu_to_le64(cpu->flags);
2293 disk->limit = cpu_to_le64(cpu->limit);
2294 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2295 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2296}
2297
2298/* struct btrfs_super_block */
2299BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2300BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2301BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2302 generation, 64);
2303BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2304BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2305 struct btrfs_super_block, sys_chunk_array_size, 32);
2306BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2307 struct btrfs_super_block, chunk_root_generation, 64);
2308BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2309 root_level, 8);
2310BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2311 chunk_root, 64);
2312BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2313 chunk_root_level, 8);
2314BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2315 log_root, 64);
2316BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2317 log_root_transid, 64);
2318BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2319 log_root_level, 8);
2320BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2321 total_bytes, 64);
2322BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2323 bytes_used, 64);
2324BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2325 sectorsize, 32);
2326BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2327 nodesize, 32);
2328BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2329 stripesize, 32);
2330BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2331 root_dir_objectid, 64);
2332BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2333 num_devices, 64);
2334BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2335 compat_flags, 64);
2336BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2337 compat_ro_flags, 64);
2338BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2339 incompat_flags, 64);
2340BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2341 csum_type, 16);
2342BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2343 cache_generation, 64);
2344BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2345BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2346 uuid_tree_generation, 64);
2347
2348static inline int btrfs_super_csum_size(const struct btrfs_super_block *s)
2349{
2350 u16 t = btrfs_super_csum_type(s);
2351 /*
2352 * csum type is validated at mount time
2353 */
2354 return btrfs_csum_sizes[t];
2355}
2356
2357
2358/*
2359 * The leaf data grows from end-to-front in the node.
2360 * this returns the address of the start of the last item,
2361 * which is the stop of the leaf data stack
2362 */
2363static inline unsigned int leaf_data_end(const struct btrfs_fs_info *fs_info,
2364 const struct extent_buffer *leaf)
2365{
2366 u32 nr = btrfs_header_nritems(leaf);
2367
2368 if (nr == 0)
2369 return BTRFS_LEAF_DATA_SIZE(fs_info);
2370 return btrfs_item_offset_nr(leaf, nr - 1);
2371}
2372
2373/* struct btrfs_file_extent_item */
2374BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2375BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2376 struct btrfs_file_extent_item, disk_bytenr, 64);
2377BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2378 struct btrfs_file_extent_item, offset, 64);
2379BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2380 struct btrfs_file_extent_item, generation, 64);
2381BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2382 struct btrfs_file_extent_item, num_bytes, 64);
2383BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2384 struct btrfs_file_extent_item, disk_num_bytes, 64);
2385BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2386 struct btrfs_file_extent_item, compression, 8);
2387
2388static inline unsigned long
2389btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2390{
2391 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2392}
2393
2394static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2395{
2396 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2397}
2398
2399BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2400 disk_bytenr, 64);
2401BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2402 generation, 64);
2403BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2404 disk_num_bytes, 64);
2405BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2406 offset, 64);
2407BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2408 num_bytes, 64);
2409BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2410 ram_bytes, 64);
2411BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2412 compression, 8);
2413BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2414 encryption, 8);
2415BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2416 other_encoding, 16);
2417
2418/*
2419 * this returns the number of bytes used by the item on disk, minus the
2420 * size of any extent headers. If a file is compressed on disk, this is
2421 * the compressed size
2422 */
2423static inline u32 btrfs_file_extent_inline_item_len(
2424 const struct extent_buffer *eb,
2425 struct btrfs_item *e)
2426{
2427 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2428}
2429
2430/* this returns the number of file bytes represented by the inline item.
2431 * If an item is compressed, this is the uncompressed size
2432 */
2433static inline u32 btrfs_file_extent_inline_len(const struct extent_buffer *eb,
2434 int slot,
2435 const struct btrfs_file_extent_item *fi)
2436{
2437 struct btrfs_map_token token;
2438
2439 btrfs_init_map_token(&token);
2440 /*
2441 * return the space used on disk if this item isn't
2442 * compressed or encoded
2443 */
2444 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
2445 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
2446 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
2447 return btrfs_file_extent_inline_item_len(eb,
2448 btrfs_item_nr(slot));
2449 }
2450
2451 /* otherwise use the ram bytes field */
2452 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
2453}
2454
2455
2456/* btrfs_dev_stats_item */
2457static inline u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
2458 const struct btrfs_dev_stats_item *ptr,
2459 int index)
2460{
2461 u64 val;
2462
2463 read_extent_buffer(eb, &val,
2464 offsetof(struct btrfs_dev_stats_item, values) +
2465 ((unsigned long)ptr) + (index * sizeof(u64)),
2466 sizeof(val));
2467 return val;
2468}
2469
2470static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
2471 struct btrfs_dev_stats_item *ptr,
2472 int index, u64 val)
2473{
2474 write_extent_buffer(eb, &val,
2475 offsetof(struct btrfs_dev_stats_item, values) +
2476 ((unsigned long)ptr) + (index * sizeof(u64)),
2477 sizeof(val));
2478}
2479
2480/* btrfs_qgroup_status_item */
2481BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2482 generation, 64);
2483BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2484 version, 64);
2485BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2486 flags, 64);
2487BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2488 rescan, 64);
2489
2490/* btrfs_qgroup_info_item */
2491BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2492 generation, 64);
2493BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2494BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2495 rfer_cmpr, 64);
2496BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2497BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2498 excl_cmpr, 64);
2499
2500BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2501 struct btrfs_qgroup_info_item, generation, 64);
2502BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2503 rfer, 64);
2504BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2505 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2506BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2507 excl, 64);
2508BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2509 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2510
2511/* btrfs_qgroup_limit_item */
2512BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2513 flags, 64);
2514BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2515 max_rfer, 64);
2516BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2517 max_excl, 64);
2518BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2519 rsv_rfer, 64);
2520BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2521 rsv_excl, 64);
2522
2523/* btrfs_dev_replace_item */
2524BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2525 struct btrfs_dev_replace_item, src_devid, 64);
2526BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2527 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2528 64);
2529BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2530 replace_state, 64);
2531BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2532 time_started, 64);
2533BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2534 time_stopped, 64);
2535BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2536 num_write_errors, 64);
2537BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2538 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2539 64);
2540BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2541 cursor_left, 64);
2542BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2543 cursor_right, 64);
2544
2545BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2546 struct btrfs_dev_replace_item, src_devid, 64);
2547BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2548 struct btrfs_dev_replace_item,
2549 cont_reading_from_srcdev_mode, 64);
2550BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2551 struct btrfs_dev_replace_item, replace_state, 64);
2552BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2553 struct btrfs_dev_replace_item, time_started, 64);
2554BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2555 struct btrfs_dev_replace_item, time_stopped, 64);
2556BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2557 struct btrfs_dev_replace_item, num_write_errors, 64);
2558BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2559 struct btrfs_dev_replace_item,
2560 num_uncorrectable_read_errors, 64);
2561BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2562 struct btrfs_dev_replace_item, cursor_left, 64);
2563BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2564 struct btrfs_dev_replace_item, cursor_right, 64);
2565
2566/* helper function to cast into the data area of the leaf. */
2567#define btrfs_item_ptr(leaf, slot, type) \
2568 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2569 btrfs_item_offset_nr(leaf, slot)))
2570
2571#define btrfs_item_ptr_offset(leaf, slot) \
2572 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2573 btrfs_item_offset_nr(leaf, slot)))
2574
2575static inline u64 btrfs_name_hash(const char *name, int len)
2576{
2577 return crc32c((u32)~1, name, len);
2578}
2579
2580/*
2581 * Figure the key offset of an extended inode ref
2582 */
2583static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2584 int len)
2585{
2586 return (u64) crc32c(parent_objectid, name, len);
2587}
2588
2589static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
2590{
2591 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2592 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
2593}
2594
2595static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2596{
2597 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2598}
2599
2600/* extent-tree.c */
2601
2602enum btrfs_inline_ref_type {
2603 BTRFS_REF_TYPE_INVALID = 0,
2604 BTRFS_REF_TYPE_BLOCK = 1,
2605 BTRFS_REF_TYPE_DATA = 2,
2606 BTRFS_REF_TYPE_ANY = 3,
2607};
2608
2609int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2610 struct btrfs_extent_inline_ref *iref,
2611 enum btrfs_inline_ref_type is_data);
2612
2613u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes);
2614
2615static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_fs_info *fs_info,
2616 unsigned num_items)
2617{
2618 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2619}
2620
2621/*
2622 * Doing a truncate won't result in new nodes or leaves, just what we need for
2623 * COW.
2624 */
2625static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_fs_info *fs_info,
2626 unsigned num_items)
2627{
2628 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2629}
2630
2631int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2632 struct btrfs_fs_info *fs_info);
2633int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2634 struct btrfs_fs_info *fs_info);
2635void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
2636 const u64 start);
2637void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg);
2638bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
2639void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
2640void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg);
2641void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2642int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2643 unsigned long count);
2644int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2645 unsigned long count, u64 transid, int wait);
2646int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2647int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2648 struct btrfs_fs_info *fs_info, u64 bytenr,
2649 u64 offset, int metadata, u64 *refs, u64 *flags);
2650int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2651 u64 bytenr, u64 num, int reserved);
2652int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2653 u64 bytenr, u64 num_bytes);
2654int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
2655 struct extent_buffer *eb);
2656int btrfs_cross_ref_exist(struct btrfs_root *root,
2657 u64 objectid, u64 offset, u64 bytenr);
2658struct btrfs_block_group_cache *btrfs_lookup_block_group(
2659 struct btrfs_fs_info *info,
2660 u64 bytenr);
2661void btrfs_get_block_group(struct btrfs_block_group_cache *cache);
2662void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2663struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2664 struct btrfs_root *root,
2665 u64 parent, u64 root_objectid,
2666 const struct btrfs_disk_key *key,
2667 int level, u64 hint,
2668 u64 empty_size);
2669void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2670 struct btrfs_root *root,
2671 struct extent_buffer *buf,
2672 u64 parent, int last_ref);
2673int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2674 struct btrfs_root *root, u64 owner,
2675 u64 offset, u64 ram_bytes,
2676 struct btrfs_key *ins);
2677int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2678 struct btrfs_fs_info *fs_info,
2679 u64 root_objectid, u64 owner, u64 offset,
2680 struct btrfs_key *ins);
2681int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2682 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2683 struct btrfs_key *ins, int is_data, int delalloc);
2684int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2685 struct extent_buffer *buf, int full_backref);
2686int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2687 struct extent_buffer *buf, int full_backref);
2688int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2689 struct btrfs_fs_info *fs_info,
2690 u64 bytenr, u64 num_bytes, u64 flags,
2691 int level, int is_data);
2692int btrfs_free_extent(struct btrfs_trans_handle *trans,
2693 struct btrfs_root *root,
2694 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
2695 u64 owner, u64 offset);
2696
2697int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2698 u64 start, u64 len, int delalloc);
2699int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
2700 u64 start, u64 len);
2701void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info);
2702int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2703int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2704 struct btrfs_root *root,
2705 u64 bytenr, u64 num_bytes, u64 parent,
2706 u64 root_objectid, u64 owner, u64 offset);
2707
2708int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
2709int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2710 struct btrfs_fs_info *fs_info);
2711int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2712 struct btrfs_fs_info *fs_info);
2713int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr);
2714int btrfs_free_block_groups(struct btrfs_fs_info *info);
2715int btrfs_read_block_groups(struct btrfs_fs_info *info);
2716int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr);
2717int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2718 struct btrfs_fs_info *fs_info, u64 bytes_used,
2719 u64 type, u64 chunk_offset, u64 size);
2720void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info);
2721struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
2722 struct btrfs_fs_info *fs_info,
2723 const u64 chunk_offset);
2724int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
2725 struct btrfs_fs_info *fs_info, u64 group_start,
2726 struct extent_map *em);
2727void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
2728void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache);
2729void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *cache);
2730void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
2731u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info);
2732u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info);
2733u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info);
2734void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2735
2736enum btrfs_reserve_flush_enum {
2737 /* If we are in the transaction, we can't flush anything.*/
2738 BTRFS_RESERVE_NO_FLUSH,
2739 /*
2740 * Flushing delalloc may cause deadlock somewhere, in this
2741 * case, use FLUSH LIMIT
2742 */
2743 BTRFS_RESERVE_FLUSH_LIMIT,
2744 BTRFS_RESERVE_FLUSH_ALL,
2745};
2746
2747enum btrfs_flush_state {
2748 FLUSH_DELAYED_ITEMS_NR = 1,
2749 FLUSH_DELAYED_ITEMS = 2,
2750 FLUSH_DELALLOC = 3,
2751 FLUSH_DELALLOC_WAIT = 4,
2752 ALLOC_CHUNK = 5,
2753 COMMIT_TRANS = 6,
2754};
2755
2756int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes);
2757int btrfs_check_data_free_space(struct inode *inode,
2758 struct extent_changeset **reserved, u64 start, u64 len);
2759void btrfs_free_reserved_data_space(struct inode *inode,
2760 struct extent_changeset *reserved, u64 start, u64 len);
2761void btrfs_delalloc_release_space(struct inode *inode,
2762 struct extent_changeset *reserved,
2763 u64 start, u64 len, bool qgroup_free);
2764void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
2765 u64 len);
2766void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
2767int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
2768 struct btrfs_inode *inode);
2769void btrfs_orphan_release_metadata(struct btrfs_inode *inode);
2770int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2771 struct btrfs_block_rsv *rsv,
2772 int nitems,
2773 u64 *qgroup_reserved, bool use_global_rsv);
2774void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
2775 struct btrfs_block_rsv *rsv);
2776void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
2777 bool qgroup_free);
2778
2779int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2780void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
2781 bool qgroup_free);
2782int btrfs_delalloc_reserve_space(struct inode *inode,
2783 struct extent_changeset **reserved, u64 start, u64 len);
2784void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
2785struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
2786 unsigned short type);
2787void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
2788 struct btrfs_block_rsv *rsv,
2789 unsigned short type);
2790void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
2791 struct btrfs_block_rsv *rsv);
2792void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv);
2793int btrfs_block_rsv_add(struct btrfs_root *root,
2794 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
2795 enum btrfs_reserve_flush_enum flush);
2796int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor);
2797int btrfs_block_rsv_refill(struct btrfs_root *root,
2798 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
2799 enum btrfs_reserve_flush_enum flush);
2800int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
2801 struct btrfs_block_rsv *dst_rsv, u64 num_bytes,
2802 int update_size);
2803int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
2804 struct btrfs_block_rsv *dest, u64 num_bytes,
2805 int min_factor);
2806void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
2807 struct btrfs_block_rsv *block_rsv,
2808 u64 num_bytes);
2809int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
2810 struct btrfs_block_group_cache *cache);
2811void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache);
2812void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
2813u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2814int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2815 u64 start, u64 end);
2816int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2817 u64 num_bytes, u64 *actual_bytes);
2818int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2819 struct btrfs_fs_info *fs_info, u64 type);
2820int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2821
2822int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2823int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2824 struct btrfs_fs_info *fs_info);
2825int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2826void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2827void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2828void check_system_chunk(struct btrfs_trans_handle *trans,
2829 struct btrfs_fs_info *fs_info, const u64 type);
2830u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
2831 struct btrfs_fs_info *info, u64 start, u64 end);
2832
2833/* ctree.c */
2834int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2835 int level, int *slot);
2836int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2837int btrfs_previous_item(struct btrfs_root *root,
2838 struct btrfs_path *path, u64 min_objectid,
2839 int type);
2840int btrfs_previous_extent_item(struct btrfs_root *root,
2841 struct btrfs_path *path, u64 min_objectid);
2842void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2843 struct btrfs_path *path,
2844 const struct btrfs_key *new_key);
2845struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2846struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
2847struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root);
2848int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2849 struct btrfs_key *key, int lowest_level,
2850 u64 min_trans);
2851int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2852 struct btrfs_path *path,
2853 u64 min_trans);
2854enum btrfs_compare_tree_result {
2855 BTRFS_COMPARE_TREE_NEW,
2856 BTRFS_COMPARE_TREE_DELETED,
2857 BTRFS_COMPARE_TREE_CHANGED,
2858 BTRFS_COMPARE_TREE_SAME,
2859};
2860typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
2861 struct btrfs_path *right_path,
2862 struct btrfs_key *key,
2863 enum btrfs_compare_tree_result result,
2864 void *ctx);
2865int btrfs_compare_trees(struct btrfs_root *left_root,
2866 struct btrfs_root *right_root,
2867 btrfs_changed_cb_t cb, void *ctx);
2868int btrfs_cow_block(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root, struct extent_buffer *buf,
2870 struct extent_buffer *parent, int parent_slot,
2871 struct extent_buffer **cow_ret);
2872int btrfs_copy_root(struct btrfs_trans_handle *trans,
2873 struct btrfs_root *root,
2874 struct extent_buffer *buf,
2875 struct extent_buffer **cow_ret, u64 new_root_objectid);
2876int btrfs_block_can_be_shared(struct btrfs_root *root,
2877 struct extent_buffer *buf);
2878void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
2879 u32 data_size);
2880void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
2881 struct btrfs_path *path, u32 new_size, int from_end);
2882int btrfs_split_item(struct btrfs_trans_handle *trans,
2883 struct btrfs_root *root,
2884 struct btrfs_path *path,
2885 const struct btrfs_key *new_key,
2886 unsigned long split_offset);
2887int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2888 struct btrfs_root *root,
2889 struct btrfs_path *path,
2890 const struct btrfs_key *new_key);
2891int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2892 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2893int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2894 const struct btrfs_key *key, struct btrfs_path *p,
2895 int ins_len, int cow);
2896int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2897 struct btrfs_path *p, u64 time_seq);
2898int btrfs_search_slot_for_read(struct btrfs_root *root,
2899 const struct btrfs_key *key,
2900 struct btrfs_path *p, int find_higher,
2901 int return_any);
2902int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root, struct extent_buffer *parent,
2904 int start_slot, u64 *last_ret,
2905 struct btrfs_key *progress);
2906void btrfs_release_path(struct btrfs_path *p);
2907struct btrfs_path *btrfs_alloc_path(void);
2908void btrfs_free_path(struct btrfs_path *p);
2909void btrfs_set_path_blocking(struct btrfs_path *p);
2910void btrfs_clear_path_blocking(struct btrfs_path *p,
2911 struct extent_buffer *held, int held_rw);
2912void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
2913
2914int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2915 struct btrfs_path *path, int slot, int nr);
2916static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2917 struct btrfs_root *root,
2918 struct btrfs_path *path)
2919{
2920 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2921}
2922
2923void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2924 const struct btrfs_key *cpu_key, u32 *data_size,
2925 u32 total_data, u32 total_size, int nr);
2926int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2927 const struct btrfs_key *key, void *data, u32 data_size);
2928int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2929 struct btrfs_root *root,
2930 struct btrfs_path *path,
2931 const struct btrfs_key *cpu_key, u32 *data_size,
2932 int nr);
2933
2934static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root,
2936 struct btrfs_path *path,
2937 const struct btrfs_key *key,
2938 u32 data_size)
2939{
2940 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
2941}
2942
2943int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2944int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2945int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2946 u64 time_seq);
2947static inline int btrfs_next_old_item(struct btrfs_root *root,
2948 struct btrfs_path *p, u64 time_seq)
2949{
2950 ++p->slots[0];
2951 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2952 return btrfs_next_old_leaf(root, p, time_seq);
2953 return 0;
2954}
2955static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2956{
2957 return btrfs_next_old_item(root, p, 0);
2958}
2959int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
2960 struct extent_buffer *leaf);
2961int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
2962 struct btrfs_block_rsv *block_rsv,
2963 int update_ref, int for_reloc);
2964int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root,
2966 struct extent_buffer *node,
2967 struct extent_buffer *parent);
2968static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2969{
2970 /*
2971 * Do it this way so we only ever do one test_bit in the normal case.
2972 */
2973 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2974 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2975 return 2;
2976 return 1;
2977 }
2978 return 0;
2979}
2980
2981/*
2982 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2983 * anything except sleeping. This function is used to check the status of
2984 * the fs.
2985 */
2986static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2987{
2988 return fs_info->sb->s_flags & SB_RDONLY || btrfs_fs_closing(fs_info);
2989}
2990
2991static inline void free_fs_info(struct btrfs_fs_info *fs_info)
2992{
2993 kfree(fs_info->balance_ctl);
2994 kfree(fs_info->delayed_root);
2995 kfree(fs_info->extent_root);
2996 kfree(fs_info->tree_root);
2997 kfree(fs_info->chunk_root);
2998 kfree(fs_info->dev_root);
2999 kfree(fs_info->csum_root);
3000 kfree(fs_info->quota_root);
3001 kfree(fs_info->uuid_root);
3002 kfree(fs_info->free_space_root);
3003 kfree(fs_info->super_copy);
3004 kfree(fs_info->super_for_commit);
3005 security_free_mnt_opts(&fs_info->security_opts);
3006 kvfree(fs_info);
3007}
3008
3009/* tree mod log functions from ctree.c */
3010u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3011 struct seq_list *elem);
3012void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3013 struct seq_list *elem);
3014int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3015
3016/* root-item.c */
3017int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3018 struct btrfs_fs_info *fs_info,
3019 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3020 const char *name, int name_len);
3021int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3022 struct btrfs_fs_info *fs_info,
3023 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3024 const char *name, int name_len);
3025int btrfs_del_root(struct btrfs_trans_handle *trans,
3026 struct btrfs_fs_info *fs_info, const struct btrfs_key *key);
3027int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3028 const struct btrfs_key *key,
3029 struct btrfs_root_item *item);
3030int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3031 struct btrfs_root *root,
3032 struct btrfs_key *key,
3033 struct btrfs_root_item *item);
3034int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3035 struct btrfs_path *path, struct btrfs_root_item *root_item,
3036 struct btrfs_key *root_key);
3037int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3038void btrfs_set_root_node(struct btrfs_root_item *item,
3039 struct extent_buffer *node);
3040void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3041void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3042 struct btrfs_root *root);
3043
3044/* uuid-tree.c */
3045int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3046 struct btrfs_fs_info *fs_info, u8 *uuid, u8 type,
3047 u64 subid);
3048int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3049 struct btrfs_fs_info *fs_info, u8 *uuid, u8 type,
3050 u64 subid);
3051int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3052 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3053 u64));
3054
3055/* dir-item.c */
3056int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3057 const char *name, int name_len);
3058int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root, const char *name,
3060 int name_len, struct btrfs_inode *dir,
3061 struct btrfs_key *location, u8 type, u64 index);
3062struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3063 struct btrfs_root *root,
3064 struct btrfs_path *path, u64 dir,
3065 const char *name, int name_len,
3066 int mod);
3067struct btrfs_dir_item *
3068btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3069 struct btrfs_root *root,
3070 struct btrfs_path *path, u64 dir,
3071 u64 objectid, const char *name, int name_len,
3072 int mod);
3073struct btrfs_dir_item *
3074btrfs_search_dir_index_item(struct btrfs_root *root,
3075 struct btrfs_path *path, u64 dirid,
3076 const char *name, int name_len);
3077int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3078 struct btrfs_root *root,
3079 struct btrfs_path *path,
3080 struct btrfs_dir_item *di);
3081int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3082 struct btrfs_root *root,
3083 struct btrfs_path *path, u64 objectid,
3084 const char *name, u16 name_len,
3085 const void *data, u16 data_len);
3086struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root,
3088 struct btrfs_path *path, u64 dir,
3089 const char *name, u16 name_len,
3090 int mod);
3091struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3092 struct btrfs_path *path,
3093 const char *name,
3094 int name_len);
3095
3096/* orphan.c */
3097int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3098 struct btrfs_root *root, u64 offset);
3099int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3100 struct btrfs_root *root, u64 offset);
3101int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3102
3103/* inode-item.c */
3104int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3105 struct btrfs_root *root,
3106 const char *name, int name_len,
3107 u64 inode_objectid, u64 ref_objectid, u64 index);
3108int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3109 struct btrfs_root *root,
3110 const char *name, int name_len,
3111 u64 inode_objectid, u64 ref_objectid, u64 *index);
3112int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3113 struct btrfs_root *root,
3114 struct btrfs_path *path, u64 objectid);
3115int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3116 *root, struct btrfs_path *path,
3117 struct btrfs_key *location, int mod);
3118
3119struct btrfs_inode_extref *
3120btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3121 struct btrfs_root *root,
3122 struct btrfs_path *path,
3123 const char *name, int name_len,
3124 u64 inode_objectid, u64 ref_objectid, int ins_len,
3125 int cow);
3126
3127int btrfs_find_name_in_backref(struct extent_buffer *leaf, int slot,
3128 const char *name,
3129 int name_len, struct btrfs_inode_ref **ref_ret);
3130int btrfs_find_name_in_ext_backref(struct extent_buffer *leaf, int slot,
3131 u64 ref_objectid, const char *name,
3132 int name_len,
3133 struct btrfs_inode_extref **extref_ret);
3134
3135/* file-item.c */
3136struct btrfs_dio_private;
3137int btrfs_del_csums(struct btrfs_trans_handle *trans,
3138 struct btrfs_fs_info *fs_info, u64 bytenr, u64 len);
3139blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u32 *dst);
3140blk_status_t btrfs_lookup_bio_sums_dio(struct inode *inode, struct bio *bio,
3141 u64 logical_offset);
3142int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3143 struct btrfs_root *root,
3144 u64 objectid, u64 pos,
3145 u64 disk_offset, u64 disk_num_bytes,
3146 u64 num_bytes, u64 offset, u64 ram_bytes,
3147 u8 compression, u8 encryption, u16 other_encoding);
3148int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3149 struct btrfs_root *root,
3150 struct btrfs_path *path, u64 objectid,
3151 u64 bytenr, int mod);
3152int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3153 struct btrfs_root *root,
3154 struct btrfs_ordered_sum *sums);
3155blk_status_t btrfs_csum_one_bio(struct inode *inode, struct bio *bio,
3156 u64 file_start, int contig);
3157int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3158 struct list_head *list, int search_commit);
3159void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3160 const struct btrfs_path *path,
3161 struct btrfs_file_extent_item *fi,
3162 const bool new_inline,
3163 struct extent_map *em);
3164
3165/* inode.c */
3166struct btrfs_delalloc_work {
3167 struct inode *inode;
3168 int delay_iput;
3169 struct completion completion;
3170 struct list_head list;
3171 struct btrfs_work work;
3172};
3173
3174struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3175 int delay_iput);
3176void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3177
3178struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3179 struct page *page, size_t pg_offset, u64 start,
3180 u64 len, int create);
3181noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3182 u64 *orig_start, u64 *orig_block_len,
3183 u64 *ram_bytes);
3184
3185void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3186 struct btrfs_inode *inode);
3187struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3188int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3189int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3190 struct btrfs_root *root,
3191 struct btrfs_inode *dir, struct btrfs_inode *inode,
3192 const char *name, int name_len);
3193int btrfs_add_link(struct btrfs_trans_handle *trans,
3194 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3195 const char *name, int name_len, int add_backref, u64 index);
3196int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3197 struct btrfs_root *root,
3198 struct inode *dir, u64 objectid,
3199 const char *name, int name_len);
3200int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
3201 int front);
3202int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3203 struct btrfs_root *root,
3204 struct inode *inode, u64 new_size,
3205 u32 min_type);
3206
3207int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3208int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3209 int nr);
3210int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3211 unsigned int extra_bits,
3212 struct extent_state **cached_state, int dedupe);
3213int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3214 struct btrfs_root *new_root,
3215 struct btrfs_root *parent_root,
3216 u64 new_dirid);
3217int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
3218 size_t size, struct bio *bio,
3219 unsigned long bio_flags);
3220void btrfs_set_range_writeback(void *private_data, u64 start, u64 end);
3221int btrfs_page_mkwrite(struct vm_fault *vmf);
3222int btrfs_readpage(struct file *file, struct page *page);
3223void btrfs_evict_inode(struct inode *inode);
3224int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3225struct inode *btrfs_alloc_inode(struct super_block *sb);
3226void btrfs_destroy_inode(struct inode *inode);
3227int btrfs_drop_inode(struct inode *inode);
3228int __init btrfs_init_cachep(void);
3229void __cold btrfs_destroy_cachep(void);
3230struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3231 struct btrfs_root *root, int *was_new);
3232struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3233 struct page *page, size_t pg_offset,
3234 u64 start, u64 end, int create);
3235int btrfs_update_inode(struct btrfs_trans_handle *trans,
3236 struct btrfs_root *root,
3237 struct inode *inode);
3238int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3239 struct btrfs_root *root, struct inode *inode);
3240int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3241 struct btrfs_inode *inode);
3242int btrfs_orphan_cleanup(struct btrfs_root *root);
3243void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *root);
3245int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3246void btrfs_invalidate_inodes(struct btrfs_root *root);
3247void btrfs_add_delayed_iput(struct inode *inode);
3248void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3249int btrfs_prealloc_file_range(struct inode *inode, int mode,
3250 u64 start, u64 num_bytes, u64 min_size,
3251 loff_t actual_len, u64 *alloc_hint);
3252int btrfs_prealloc_file_range_trans(struct inode *inode,
3253 struct btrfs_trans_handle *trans, int mode,
3254 u64 start, u64 num_bytes, u64 min_size,
3255 loff_t actual_len, u64 *alloc_hint);
3256extern const struct dentry_operations btrfs_dentry_operations;
3257#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3258void btrfs_test_inode_set_ops(struct inode *inode);
3259#endif
3260
3261/* ioctl.c */
3262long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3263long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3264int btrfs_ioctl_get_supported_features(void __user *arg);
3265void btrfs_update_iflags(struct inode *inode);
3266int btrfs_is_empty_uuid(u8 *uuid);
3267int btrfs_defrag_file(struct inode *inode, struct file *file,
3268 struct btrfs_ioctl_defrag_range_args *range,
3269 u64 newer_than, unsigned long max_pages);
3270void btrfs_get_block_group_info(struct list_head *groups_list,
3271 struct btrfs_ioctl_space_info *space);
3272void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3273 struct btrfs_ioctl_balance_args *bargs);
3274ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3275 struct file *dst_file, u64 dst_loff);
3276
3277/* file.c */
3278int __init btrfs_auto_defrag_init(void);
3279void __cold btrfs_auto_defrag_exit(void);
3280int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3281 struct btrfs_inode *inode);
3282int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3283void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3284int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3285void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3286 int skip_pinned);
3287extern const struct file_operations btrfs_file_operations;
3288int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3289 struct btrfs_root *root, struct inode *inode,
3290 struct btrfs_path *path, u64 start, u64 end,
3291 u64 *drop_end, int drop_cache,
3292 int replace_extent,
3293 u32 extent_item_size,
3294 int *key_inserted);
3295int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3296 struct btrfs_root *root, struct inode *inode, u64 start,
3297 u64 end, int drop_cache);
3298int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3299 struct btrfs_inode *inode, u64 start, u64 end);
3300int btrfs_release_file(struct inode *inode, struct file *file);
3301int btrfs_dirty_pages(struct inode *inode, struct page **pages,
3302 size_t num_pages, loff_t pos, size_t write_bytes,
3303 struct extent_state **cached);
3304int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3305int btrfs_clone_file_range(struct file *file_in, loff_t pos_in,
3306 struct file *file_out, loff_t pos_out, u64 len);
3307
3308/* tree-defrag.c */
3309int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3310 struct btrfs_root *root);
3311
3312/* sysfs.c */
3313int __init btrfs_init_sysfs(void);
3314void __cold btrfs_exit_sysfs(void);
3315int btrfs_sysfs_add_mounted(struct btrfs_fs_info *fs_info);
3316void btrfs_sysfs_remove_mounted(struct btrfs_fs_info *fs_info);
3317
3318/* super.c */
3319int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3320 unsigned long new_flags);
3321int btrfs_sync_fs(struct super_block *sb, int wait);
3322
3323static inline __printf(2, 3) __cold
3324void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3325{
3326}
3327
3328#ifdef CONFIG_PRINTK
3329__printf(2, 3)
3330__cold
3331void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3332#else
3333#define btrfs_printk(fs_info, fmt, args...) \
3334 btrfs_no_printk(fs_info, fmt, ##args)
3335#endif
3336
3337#define btrfs_emerg(fs_info, fmt, args...) \
3338 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3339#define btrfs_alert(fs_info, fmt, args...) \
3340 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3341#define btrfs_crit(fs_info, fmt, args...) \
3342 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3343#define btrfs_err(fs_info, fmt, args...) \
3344 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3345#define btrfs_warn(fs_info, fmt, args...) \
3346 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3347#define btrfs_notice(fs_info, fmt, args...) \
3348 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3349#define btrfs_info(fs_info, fmt, args...) \
3350 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3351
3352/*
3353 * Wrappers that use printk_in_rcu
3354 */
3355#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3356 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3357#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3358 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3359#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3360 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3361#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3362 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3363#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3364 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3365#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3366 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3367#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3368 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3369
3370/*
3371 * Wrappers that use a ratelimited printk_in_rcu
3372 */
3373#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3374 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3375#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3376 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3377#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3378 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3379#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3380 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3381#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3382 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3383#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3384 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3385#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3386 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3387
3388/*
3389 * Wrappers that use a ratelimited printk
3390 */
3391#define btrfs_emerg_rl(fs_info, fmt, args...) \
3392 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3393#define btrfs_alert_rl(fs_info, fmt, args...) \
3394 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3395#define btrfs_crit_rl(fs_info, fmt, args...) \
3396 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3397#define btrfs_err_rl(fs_info, fmt, args...) \
3398 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3399#define btrfs_warn_rl(fs_info, fmt, args...) \
3400 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3401#define btrfs_notice_rl(fs_info, fmt, args...) \
3402 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3403#define btrfs_info_rl(fs_info, fmt, args...) \
3404 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3405
3406#if defined(CONFIG_DYNAMIC_DEBUG)
3407#define btrfs_debug(fs_info, fmt, args...) \
3408do { \
3409 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
3410 if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT)) \
3411 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args); \
3412} while (0)
3413#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3414do { \
3415 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
3416 if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT)) \
3417 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args); \
3418} while (0)
3419#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3420do { \
3421 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
3422 if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT)) \
3423 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, \
3424 ##args);\
3425} while (0)
3426#define btrfs_debug_rl(fs_info, fmt, args...) \
3427do { \
3428 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
3429 if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT)) \
3430 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, \
3431 ##args); \
3432} while (0)
3433#elif defined(DEBUG)
3434#define btrfs_debug(fs_info, fmt, args...) \
3435 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3436#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3437 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3438#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3439 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3440#define btrfs_debug_rl(fs_info, fmt, args...) \
3441 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3442#else
3443#define btrfs_debug(fs_info, fmt, args...) \
3444 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3445#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3446 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3447#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3448 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3449#define btrfs_debug_rl(fs_info, fmt, args...) \
3450 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3451#endif
3452
3453#define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3454do { \
3455 rcu_read_lock(); \
3456 btrfs_printk(fs_info, fmt, ##args); \
3457 rcu_read_unlock(); \
3458} while (0)
3459
3460#define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3461do { \
3462 static DEFINE_RATELIMIT_STATE(_rs, \
3463 DEFAULT_RATELIMIT_INTERVAL, \
3464 DEFAULT_RATELIMIT_BURST); \
3465 if (__ratelimit(&_rs)) \
3466 btrfs_printk(fs_info, fmt, ##args); \
3467} while (0)
3468
3469#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3470do { \
3471 rcu_read_lock(); \
3472 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3473 rcu_read_unlock(); \
3474} while (0)
3475
3476#ifdef CONFIG_BTRFS_ASSERT
3477
3478__cold
3479static inline void assfail(char *expr, char *file, int line)
3480{
3481 pr_err("assertion failed: %s, file: %s, line: %d\n",
3482 expr, file, line);
3483 BUG();
3484}
3485
3486#define ASSERT(expr) \
3487 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3488#else
3489#define ASSERT(expr) ((void)0)
3490#endif
3491
3492__printf(5, 6)
3493__cold
3494void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3495 unsigned int line, int errno, const char *fmt, ...);
3496
3497const char *btrfs_decode_error(int errno);
3498
3499__cold
3500void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3501 const char *function,
3502 unsigned int line, int errno);
3503
3504/*
3505 * Call btrfs_abort_transaction as early as possible when an error condition is
3506 * detected, that way the exact line number is reported.
3507 */
3508#define btrfs_abort_transaction(trans, errno) \
3509do { \
3510 /* Report first abort since mount */ \
3511 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3512 &((trans)->fs_info->fs_state))) { \
3513 if ((errno) != -EIO) { \
3514 WARN(1, KERN_DEBUG \
3515 "BTRFS: Transaction aborted (error %d)\n", \
3516 (errno)); \
3517 } else { \
3518 btrfs_debug((trans)->fs_info, \
3519 "Transaction aborted (error %d)", \
3520 (errno)); \
3521 } \
3522 } \
3523 __btrfs_abort_transaction((trans), __func__, \
3524 __LINE__, (errno)); \
3525} while (0)
3526
3527#define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3528do { \
3529 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3530 (errno), fmt, ##args); \
3531} while (0)
3532
3533__printf(5, 6)
3534__cold
3535void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3536 unsigned int line, int errno, const char *fmt, ...);
3537/*
3538 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3539 * will panic(). Otherwise we BUG() here.
3540 */
3541#define btrfs_panic(fs_info, errno, fmt, args...) \
3542do { \
3543 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3544 BUG(); \
3545} while (0)
3546
3547
3548/* compatibility and incompatibility defines */
3549
3550#define btrfs_set_fs_incompat(__fs_info, opt) \
3551 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3552
3553static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3554 u64 flag)
3555{
3556 struct btrfs_super_block *disk_super;
3557 u64 features;
3558
3559 disk_super = fs_info->super_copy;
3560 features = btrfs_super_incompat_flags(disk_super);
3561 if (!(features & flag)) {
3562 spin_lock(&fs_info->super_lock);
3563 features = btrfs_super_incompat_flags(disk_super);
3564 if (!(features & flag)) {
3565 features |= flag;
3566 btrfs_set_super_incompat_flags(disk_super, features);
3567 btrfs_info(fs_info, "setting %llu feature flag",
3568 flag);
3569 }
3570 spin_unlock(&fs_info->super_lock);
3571 }
3572}
3573
3574#define btrfs_clear_fs_incompat(__fs_info, opt) \
3575 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3576
3577static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3578 u64 flag)
3579{
3580 struct btrfs_super_block *disk_super;
3581 u64 features;
3582
3583 disk_super = fs_info->super_copy;
3584 features = btrfs_super_incompat_flags(disk_super);
3585 if (features & flag) {
3586 spin_lock(&fs_info->super_lock);
3587 features = btrfs_super_incompat_flags(disk_super);
3588 if (features & flag) {
3589 features &= ~flag;
3590 btrfs_set_super_incompat_flags(disk_super, features);
3591 btrfs_info(fs_info, "clearing %llu feature flag",
3592 flag);
3593 }
3594 spin_unlock(&fs_info->super_lock);
3595 }
3596}
3597
3598#define btrfs_fs_incompat(fs_info, opt) \
3599 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3600
3601static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3602{
3603 struct btrfs_super_block *disk_super;
3604 disk_super = fs_info->super_copy;
3605 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3606}
3607
3608#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3609 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3610
3611static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3612 u64 flag)
3613{
3614 struct btrfs_super_block *disk_super;
3615 u64 features;
3616
3617 disk_super = fs_info->super_copy;
3618 features = btrfs_super_compat_ro_flags(disk_super);
3619 if (!(features & flag)) {
3620 spin_lock(&fs_info->super_lock);
3621 features = btrfs_super_compat_ro_flags(disk_super);
3622 if (!(features & flag)) {
3623 features |= flag;
3624 btrfs_set_super_compat_ro_flags(disk_super, features);
3625 btrfs_info(fs_info, "setting %llu ro feature flag",
3626 flag);
3627 }
3628 spin_unlock(&fs_info->super_lock);
3629 }
3630}
3631
3632#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3633 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3634
3635static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3636 u64 flag)
3637{
3638 struct btrfs_super_block *disk_super;
3639 u64 features;
3640
3641 disk_super = fs_info->super_copy;
3642 features = btrfs_super_compat_ro_flags(disk_super);
3643 if (features & flag) {
3644 spin_lock(&fs_info->super_lock);
3645 features = btrfs_super_compat_ro_flags(disk_super);
3646 if (features & flag) {
3647 features &= ~flag;
3648 btrfs_set_super_compat_ro_flags(disk_super, features);
3649 btrfs_info(fs_info, "clearing %llu ro feature flag",
3650 flag);
3651 }
3652 spin_unlock(&fs_info->super_lock);
3653 }
3654}
3655
3656#define btrfs_fs_compat_ro(fs_info, opt) \
3657 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3658
3659static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3660{
3661 struct btrfs_super_block *disk_super;
3662 disk_super = fs_info->super_copy;
3663 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3664}
3665
3666/* acl.c */
3667#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3668struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3669int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
3670int btrfs_init_acl(struct btrfs_trans_handle *trans,
3671 struct inode *inode, struct inode *dir);
3672#else
3673#define btrfs_get_acl NULL
3674#define btrfs_set_acl NULL
3675static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3676 struct inode *inode, struct inode *dir)
3677{
3678 return 0;
3679}
3680#endif
3681
3682/* relocation.c */
3683int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3684int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3685 struct btrfs_root *root);
3686int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3687 struct btrfs_root *root);
3688int btrfs_recover_relocation(struct btrfs_root *root);
3689int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
3690int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3691 struct btrfs_root *root, struct extent_buffer *buf,
3692 struct extent_buffer *cow);
3693void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3694 u64 *bytes_to_reserve);
3695int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3696 struct btrfs_pending_snapshot *pending);
3697
3698/* scrub.c */
3699int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3700 u64 end, struct btrfs_scrub_progress *progress,
3701 int readonly, int is_dev_replace);
3702void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3703void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3704int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3705int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
3706 struct btrfs_device *dev);
3707int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3708 struct btrfs_scrub_progress *progress);
3709static inline void btrfs_init_full_stripe_locks_tree(
3710 struct btrfs_full_stripe_locks_tree *locks_root)
3711{
3712 locks_root->root = RB_ROOT;
3713 mutex_init(&locks_root->lock);
3714}
3715
3716/* dev-replace.c */
3717void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3718void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3719void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3720
3721static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3722{
3723 btrfs_bio_counter_sub(fs_info, 1);
3724}
3725
3726/* reada.c */
3727struct reada_control {
3728 struct btrfs_fs_info *fs_info; /* tree to prefetch */
3729 struct btrfs_key key_start;
3730 struct btrfs_key key_end; /* exclusive */
3731 atomic_t elems;
3732 struct kref refcnt;
3733 wait_queue_head_t wait;
3734};
3735struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3736 struct btrfs_key *start, struct btrfs_key *end);
3737int btrfs_reada_wait(void *handle);
3738void btrfs_reada_detach(void *handle);
3739int btree_readahead_hook(struct extent_buffer *eb, int err);
3740
3741static inline int is_fstree(u64 rootid)
3742{
3743 if (rootid == BTRFS_FS_TREE_OBJECTID ||
3744 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3745 !btrfs_qgroup_level(rootid)))
3746 return 1;
3747 return 0;
3748}
3749
3750static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3751{
3752 return signal_pending(current);
3753}
3754
3755/* Sanity test specific functions */
3756#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3757void btrfs_test_destroy_inode(struct inode *inode);
3758#endif
3759
3760static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3761{
3762#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3763 if (unlikely(test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO,
3764 &fs_info->fs_state)))
3765 return 1;
3766#endif
3767 return 0;
3768}
3769
3770#endif