Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/pagemap.h>
10#include "locking.h"
11#include "fs.h"
12#include "accessors.h"
13
14struct btrfs_trans_handle;
15struct btrfs_transaction;
16struct btrfs_pending_snapshot;
17struct btrfs_delayed_ref_root;
18struct btrfs_space_info;
19struct btrfs_block_group;
20struct btrfs_ordered_sum;
21struct btrfs_ref;
22struct btrfs_bio;
23struct btrfs_ioctl_encoded_io_args;
24struct btrfs_device;
25struct btrfs_fs_devices;
26struct btrfs_balance_control;
27struct btrfs_delayed_root;
28struct reloc_control;
29
30/* Read ahead values for struct btrfs_path.reada */
31enum {
32 READA_NONE,
33 READA_BACK,
34 READA_FORWARD,
35 /*
36 * Similar to READA_FORWARD but unlike it:
37 *
38 * 1) It will trigger readahead even for leaves that are not close to
39 * each other on disk;
40 * 2) It also triggers readahead for nodes;
41 * 3) During a search, even when a node or leaf is already in memory, it
42 * will still trigger readahead for other nodes and leaves that follow
43 * it.
44 *
45 * This is meant to be used only when we know we are iterating over the
46 * entire tree or a very large part of it.
47 */
48 READA_FORWARD_ALWAYS,
49};
50
51/*
52 * btrfs_paths remember the path taken from the root down to the leaf.
53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54 * to any other levels that are present.
55 *
56 * The slots array records the index of the item or block pointer
57 * used while walking the tree.
58 */
59struct btrfs_path {
60 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
61 int slots[BTRFS_MAX_LEVEL];
62 /* if there is real range locking, this locks field will change */
63 u8 locks[BTRFS_MAX_LEVEL];
64 u8 reada;
65 /* keep some upper locks as we walk down */
66 u8 lowest_level;
67
68 /*
69 * set by btrfs_split_item, tells search_slot to keep all locks
70 * and to force calls to keep space in the nodes
71 */
72 unsigned int search_for_split:1;
73 unsigned int keep_locks:1;
74 unsigned int skip_locking:1;
75 unsigned int search_commit_root:1;
76 unsigned int need_commit_sem:1;
77 unsigned int skip_release_on_error:1;
78 /*
79 * Indicate that new item (btrfs_search_slot) is extending already
80 * existing item and ins_len contains only the data size and not item
81 * header (ie. sizeof(struct btrfs_item) is not included).
82 */
83 unsigned int search_for_extension:1;
84 /* Stop search if any locks need to be taken (for read) */
85 unsigned int nowait:1;
86};
87
88/*
89 * The state of btrfs root
90 */
91enum {
92 /*
93 * btrfs_record_root_in_trans is a multi-step process, and it can race
94 * with the balancing code. But the race is very small, and only the
95 * first time the root is added to each transaction. So IN_TRANS_SETUP
96 * is used to tell us when more checks are required
97 */
98 BTRFS_ROOT_IN_TRANS_SETUP,
99
100 /*
101 * Set if tree blocks of this root can be shared by other roots.
102 * Only subvolume trees and their reloc trees have this bit set.
103 * Conflicts with TRACK_DIRTY bit.
104 *
105 * This affects two things:
106 *
107 * - How balance works
108 * For shareable roots, we need to use reloc tree and do path
109 * replacement for balance, and need various pre/post hooks for
110 * snapshot creation to handle them.
111 *
112 * While for non-shareable trees, we just simply do a tree search
113 * with COW.
114 *
115 * - How dirty roots are tracked
116 * For shareable roots, btrfs_record_root_in_trans() is needed to
117 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
118 * don't need to set this manually.
119 */
120 BTRFS_ROOT_SHAREABLE,
121 BTRFS_ROOT_TRACK_DIRTY,
122 BTRFS_ROOT_IN_RADIX,
123 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124 BTRFS_ROOT_DEFRAG_RUNNING,
125 BTRFS_ROOT_FORCE_COW,
126 BTRFS_ROOT_MULTI_LOG_TASKS,
127 BTRFS_ROOT_DIRTY,
128 BTRFS_ROOT_DELETING,
129
130 /*
131 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
132 *
133 * Set for the subvolume tree owning the reloc tree.
134 */
135 BTRFS_ROOT_DEAD_RELOC_TREE,
136 /* Mark dead root stored on device whose cleanup needs to be resumed */
137 BTRFS_ROOT_DEAD_TREE,
138 /* The root has a log tree. Used for subvolume roots and the tree root. */
139 BTRFS_ROOT_HAS_LOG_TREE,
140 /* Qgroup flushing is in progress */
141 BTRFS_ROOT_QGROUP_FLUSHING,
142 /* We started the orphan cleanup for this root. */
143 BTRFS_ROOT_ORPHAN_CLEANUP,
144 /* This root has a drop operation that was started previously. */
145 BTRFS_ROOT_UNFINISHED_DROP,
146 /* This reloc root needs to have its buffers lockdep class reset. */
147 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
153 */
154struct btrfs_qgroup_swapped_blocks {
155 spinlock_t lock;
156 /* RM_EMPTY_ROOT() of above blocks[] */
157 bool swapped;
158 struct rb_root blocks[BTRFS_MAX_LEVEL];
159};
160
161/*
162 * in ram representation of the tree. extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166 struct rb_node rb_node;
167
168 struct extent_buffer *node;
169
170 struct extent_buffer *commit_root;
171 struct btrfs_root *log_root;
172 struct btrfs_root *reloc_root;
173
174 unsigned long state;
175 struct btrfs_root_item root_item;
176 struct btrfs_key root_key;
177 struct btrfs_fs_info *fs_info;
178 struct extent_io_tree dirty_log_pages;
179
180 struct mutex objectid_mutex;
181
182 spinlock_t accounting_lock;
183 struct btrfs_block_rsv *block_rsv;
184
185 struct mutex log_mutex;
186 wait_queue_head_t log_writer_wait;
187 wait_queue_head_t log_commit_wait[2];
188 struct list_head log_ctxs[2];
189 /* Used only for log trees of subvolumes, not for the log root tree */
190 atomic_t log_writers;
191 atomic_t log_commit[2];
192 /* Used only for log trees of subvolumes, not for the log root tree */
193 atomic_t log_batch;
194 /*
195 * Protected by the 'log_mutex' lock but can be read without holding
196 * that lock to avoid unnecessary lock contention, in which case it
197 * should be read using btrfs_get_root_log_transid() except if it's a
198 * log tree in which case it can be directly accessed. Updates to this
199 * field should always use btrfs_set_root_log_transid(), except for log
200 * trees where the field can be updated directly.
201 */
202 int log_transid;
203 /* No matter the commit succeeds or not*/
204 int log_transid_committed;
205 /*
206 * Just be updated when the commit succeeds. Use
207 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208 * to access this field.
209 */
210 int last_log_commit;
211 pid_t log_start_pid;
212
213 u64 last_trans;
214
215 u64 free_objectid;
216
217 struct btrfs_key defrag_progress;
218 struct btrfs_key defrag_max;
219
220 /* The dirty list is only used by non-shareable roots */
221 struct list_head dirty_list;
222
223 struct list_head root_list;
224
225 spinlock_t inode_lock;
226 /* red-black tree that keeps track of in-memory inodes */
227 struct rb_root inode_tree;
228
229 /*
230 * Xarray that keeps track of delayed nodes of every inode, protected
231 * by @inode_lock.
232 */
233 struct xarray delayed_nodes;
234 /*
235 * right now this just gets used so that a root has its own devid
236 * for stat. It may be used for more later
237 */
238 dev_t anon_dev;
239
240 spinlock_t root_item_lock;
241 refcount_t refs;
242
243 struct mutex delalloc_mutex;
244 spinlock_t delalloc_lock;
245 /*
246 * all of the inodes that have delalloc bytes. It is possible for
247 * this list to be empty even when there is still dirty data=ordered
248 * extents waiting to finish IO.
249 */
250 struct list_head delalloc_inodes;
251 struct list_head delalloc_root;
252 u64 nr_delalloc_inodes;
253
254 struct mutex ordered_extent_mutex;
255 /*
256 * this is used by the balancing code to wait for all the pending
257 * ordered extents
258 */
259 spinlock_t ordered_extent_lock;
260
261 /*
262 * all of the data=ordered extents pending writeback
263 * these can span multiple transactions and basically include
264 * every dirty data page that isn't from nodatacow
265 */
266 struct list_head ordered_extents;
267 struct list_head ordered_root;
268 u64 nr_ordered_extents;
269
270 /*
271 * Not empty if this subvolume root has gone through tree block swap
272 * (relocation)
273 *
274 * Will be used by reloc_control::dirty_subvol_roots.
275 */
276 struct list_head reloc_dirty_list;
277
278 /*
279 * Number of currently running SEND ioctls to prevent
280 * manipulation with the read-only status via SUBVOL_SETFLAGS
281 */
282 int send_in_progress;
283 /*
284 * Number of currently running deduplication operations that have a
285 * destination inode belonging to this root. Protected by the lock
286 * root_item_lock.
287 */
288 int dedupe_in_progress;
289 /* For exclusion of snapshot creation and nocow writes */
290 struct btrfs_drew_lock snapshot_lock;
291
292 atomic_t snapshot_force_cow;
293
294 /* For qgroup metadata reserved space */
295 spinlock_t qgroup_meta_rsv_lock;
296 u64 qgroup_meta_rsv_pertrans;
297 u64 qgroup_meta_rsv_prealloc;
298 wait_queue_head_t qgroup_flush_wait;
299
300 /* Number of active swapfiles */
301 atomic_t nr_swapfiles;
302
303 /* Record pairs of swapped blocks for qgroup */
304 struct btrfs_qgroup_swapped_blocks swapped_blocks;
305
306 /* Used only by log trees, when logging csum items */
307 struct extent_io_tree log_csum_range;
308
309 /* Used in simple quotas, track root during relocation. */
310 u64 relocation_src_root;
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313 u64 alloc_bytenr;
314#endif
315
316#ifdef CONFIG_BTRFS_DEBUG
317 struct list_head leak_list;
318#endif
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
322{
323 /* Byte-swap the constant at compile time, root_item::flags is LE */
324 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
328{
329 /* Byte-swap the constant at compile time, root_item::flags is LE */
330 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
334{
335 return root->root_key.objectid;
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340 return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
344{
345 WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
349{
350 return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
354{
355 WRITE_ONCE(root->last_log_commit, commit_id);
356}
357
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363 u64 disk_offset;
364 u64 disk_len;
365 u64 data_offset;
366 u64 data_len;
367 u64 file_offset;
368 /* Pointer to a file extent item of type regular or prealloc. */
369 char *extent_buf;
370 /*
371 * Set to true when attempting to replace a file range with a new extent
372 * described by this structure, set to false when attempting to clone an
373 * existing extent into a file range.
374 */
375 bool is_new_extent;
376 /* Indicate if we should update the inode's mtime and ctime. */
377 bool update_times;
378 /* Meaningful only if is_new_extent is true. */
379 int qgroup_reserved;
380 /*
381 * Meaningful only if is_new_extent is true.
382 * Used to track how many extent items we have already inserted in a
383 * subvolume tree that refer to the extent described by this structure,
384 * so that we know when to create a new delayed ref or update an existing
385 * one.
386 */
387 int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392 /* Input parameters */
393
394 /*
395 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396 * If 'replace_extent' is true, this must not be NULL. Also the path
397 * is always released except if 'replace_extent' is true and
398 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399 * the path is kept locked.
400 */
401 struct btrfs_path *path;
402 /* Start offset of the range to drop extents from */
403 u64 start;
404 /* End (exclusive, last byte + 1) of the range to drop extents from */
405 u64 end;
406 /* If true drop all the extent maps in the range */
407 bool drop_cache;
408 /*
409 * If true it means we want to insert a new extent after dropping all
410 * the extents in the range. If this is true, the 'extent_item_size'
411 * parameter must be set as well and the 'extent_inserted' field will
412 * be set to true by btrfs_drop_extents() if it could insert the new
413 * extent.
414 * Note: when this is set to true the path must not be NULL.
415 */
416 bool replace_extent;
417 /*
418 * Used if 'replace_extent' is true. Size of the file extent item to
419 * insert after dropping all existing extents in the range
420 */
421 u32 extent_item_size;
422
423 /* Output parameters */
424
425 /*
426 * Set to the minimum between the input parameter 'end' and the end
427 * (exclusive, last byte + 1) of the last dropped extent. This is always
428 * set even if btrfs_drop_extents() returns an error.
429 */
430 u64 drop_end;
431 /*
432 * The number of allocated bytes found in the range. This can be smaller
433 * than the range's length when there are holes in the range.
434 */
435 u64 bytes_found;
436 /*
437 * Only set if 'replace_extent' is true. Set to true if we were able
438 * to insert a replacement extent after dropping all extents in the
439 * range, otherwise set to false by btrfs_drop_extents().
440 * Also, if btrfs_drop_extents() has set this to true it means it
441 * returned with the path locked, otherwise if it has set this to
442 * false it has returned with the path released.
443 */
444 bool extent_inserted;
445};
446
447struct btrfs_file_private {
448 void *filldir_buf;
449 u64 last_index;
450 struct extent_state *llseek_cached_state;
451};
452
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
454{
455 return info->nodesize - sizeof(struct btrfs_header);
456}
457
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
459{
460 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
464{
465 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
466}
467
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
469{
470 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
471}
472
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474 ((bytes) >> (fs_info)->sectorsize_bits)
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
477{
478 return mapping_gfp_constraint(mapping, ~__GFP_FS);
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482 u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492 const struct btrfs_key *key, int *slot);
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
495
496#ifdef __LITTLE_ENDIAN
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503 const struct btrfs_key *k2)
504{
505 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
506
507 return btrfs_comp_cpu_keys(k1, k2);
508}
509
510#else
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514 const struct btrfs_key *k2)
515{
516 struct btrfs_key k1;
517
518 btrfs_disk_key_to_cpu(&k1, disk);
519
520 return btrfs_comp_cpu_keys(&k1, k2);
521}
522
523#endif
524
525int btrfs_previous_item(struct btrfs_root *root,
526 struct btrfs_path *path, u64 min_objectid,
527 int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529 struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531 struct btrfs_path *path,
532 const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535 struct btrfs_key *key, int lowest_level,
536 u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538 struct btrfs_path *path,
539 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541 int slot);
542
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root, struct extent_buffer *buf,
545 struct extent_buffer *parent, int parent_slot,
546 struct extent_buffer **cow_ret,
547 enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct extent_buffer *buf,
551 struct extent_buffer *parent, int parent_slot,
552 struct extent_buffer **cow_ret,
553 u64 search_start, u64 empty_size,
554 enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556 struct btrfs_root *root,
557 struct extent_buffer *buf,
558 struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560 struct btrfs_root *root,
561 struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563 struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565 struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569 struct btrfs_root *root,
570 struct btrfs_path *path,
571 const struct btrfs_key *new_key,
572 unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root,
575 struct btrfs_path *path,
576 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580 const struct btrfs_key *key, struct btrfs_path *p,
581 int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583 struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585 const struct btrfs_key *key,
586 struct btrfs_path *p, int find_higher,
587 int return_any);
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593 struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595 struct btrfs_root *root,
596 struct btrfs_path *path)
597{
598 return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606 /*
607 * Pointer to an array containing the keys of the items to insert (in
608 * sorted order).
609 */
610 const struct btrfs_key *keys;
611 /* Pointer to an array containing the data size for each item to insert. */
612 const u32 *data_sizes;
613 /*
614 * The sum of data sizes for all items. The caller can compute this while
615 * setting up the data_sizes array, so it ends up being more efficient
616 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617 * doing it, as it would avoid an extra loop over a potentially large
618 * array, and in the case of setup_item_for_insert(), we would be doing
619 * it while holding a write lock on a leaf and often on upper level nodes
620 * too, unnecessarily increasing the size of a critical section.
621 */
622 u32 total_data_size;
623 /* Size of the keys and data_sizes arrays (number of items in the batch). */
624 int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628 struct btrfs_root *root,
629 struct btrfs_path *path,
630 const struct btrfs_key *key,
631 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633 const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635 struct btrfs_root *root,
636 struct btrfs_path *path,
637 const struct btrfs_item_batch *batch);
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640 struct btrfs_root *root,
641 struct btrfs_path *path,
642 const struct btrfs_key *key,
643 u32 data_size)
644{
645 struct btrfs_item_batch batch;
646
647 batch.keys = key;
648 batch.data_sizes = &data_size;
649 batch.total_data_size = data_size;
650 batch.nr = 1;
651
652 return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656 u64 time_seq);
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659 struct btrfs_path *path);
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662 struct btrfs_path *path);
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
666 *
667 * @root: The root node of the tree.
668 * @key: The key we are looking for.
669 * @found_key: Will hold the found item.
670 * @path: Holds the current slot/leaf.
671 * @iter_ret: Contains the value returned from btrfs_search_slot or
672 * btrfs_get_next_valid_item, whichever was executed last.
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
684 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
685 (iter_ret) >= 0 && \
686 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687 (path)->slots[0]++ \
688 )
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
699{
700 return btrfs_next_old_leaf(root, path, 0);
701}
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
704{
705 return btrfs_next_old_item(root, p, 0);
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
708
709static inline int is_fstree(u64 rootid)
710{
711 if (rootid == BTRFS_FS_TREE_OBJECTID ||
712 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713 !btrfs_qgroup_level(rootid)))
714 return 1;
715 return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page) PagePrivate2(page)
736#define SetPageOrdered(page) SetPagePrivate2(page)
737#define ClearPageOrdered(page) ClearPagePrivate2(page)
738#define folio_test_ordered(folio) folio_test_private_2(folio)
739#define folio_set_ordered(folio) folio_set_private_2(folio)
740#define folio_clear_ordered(folio) folio_clear_private_2(folio)
741
742#endif
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#ifndef __BTRFS_CTREE__
20#define __BTRFS_CTREE__
21
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/fs.h>
25#include <linux/rwsem.h>
26#include <linux/completion.h>
27#include <linux/backing-dev.h>
28#include <linux/wait.h>
29#include <linux/slab.h>
30#include <linux/kobject.h>
31#include <trace/events/btrfs.h>
32#include <asm/kmap_types.h>
33#include "extent_io.h"
34#include "extent_map.h"
35#include "async-thread.h"
36#include "ioctl.h"
37
38struct btrfs_trans_handle;
39struct btrfs_transaction;
40struct btrfs_pending_snapshot;
41extern struct kmem_cache *btrfs_trans_handle_cachep;
42extern struct kmem_cache *btrfs_transaction_cachep;
43extern struct kmem_cache *btrfs_bit_radix_cachep;
44extern struct kmem_cache *btrfs_path_cachep;
45extern struct kmem_cache *btrfs_free_space_cachep;
46struct btrfs_ordered_sum;
47
48#define BTRFS_MAGIC "_BHRfS_M"
49
50#define BTRFS_MAX_LEVEL 8
51
52#define BTRFS_COMPAT_EXTENT_TREE_V0
53
54/*
55 * files bigger than this get some pre-flushing when they are added
56 * to the ordered operations list. That way we limit the total
57 * work done by the commit
58 */
59#define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
60
61/* holds pointers to all of the tree roots */
62#define BTRFS_ROOT_TREE_OBJECTID 1ULL
63
64/* stores information about which extents are in use, and reference counts */
65#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
66
67/*
68 * chunk tree stores translations from logical -> physical block numbering
69 * the super block points to the chunk tree
70 */
71#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
72
73/*
74 * stores information about which areas of a given device are in use.
75 * one per device. The tree of tree roots points to the device tree
76 */
77#define BTRFS_DEV_TREE_OBJECTID 4ULL
78
79/* one per subvolume, storing files and directories */
80#define BTRFS_FS_TREE_OBJECTID 5ULL
81
82/* directory objectid inside the root tree */
83#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
84
85/* holds checksums of all the data extents */
86#define BTRFS_CSUM_TREE_OBJECTID 7ULL
87
88/* orhpan objectid for tracking unlinked/truncated files */
89#define BTRFS_ORPHAN_OBJECTID -5ULL
90
91/* does write ahead logging to speed up fsyncs */
92#define BTRFS_TREE_LOG_OBJECTID -6ULL
93#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
94
95/* for space balancing */
96#define BTRFS_TREE_RELOC_OBJECTID -8ULL
97#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
98
99/*
100 * extent checksums all have this objectid
101 * this allows them to share the logging tree
102 * for fsyncs
103 */
104#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
105
106/* For storing free space cache */
107#define BTRFS_FREE_SPACE_OBJECTID -11ULL
108
109/*
110 * The inode number assigned to the special inode for sotring
111 * free ino cache
112 */
113#define BTRFS_FREE_INO_OBJECTID -12ULL
114
115/* dummy objectid represents multiple objectids */
116#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
117
118/*
119 * All files have objectids in this range.
120 */
121#define BTRFS_FIRST_FREE_OBJECTID 256ULL
122#define BTRFS_LAST_FREE_OBJECTID -256ULL
123#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
124
125
126/*
127 * the device items go into the chunk tree. The key is in the form
128 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
129 */
130#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
131
132#define BTRFS_BTREE_INODE_OBJECTID 1
133
134#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
135
136/*
137 * we can actually store much bigger names, but lets not confuse the rest
138 * of linux
139 */
140#define BTRFS_NAME_LEN 255
141
142/* 32 bytes in various csum fields */
143#define BTRFS_CSUM_SIZE 32
144
145/* csum types */
146#define BTRFS_CSUM_TYPE_CRC32 0
147
148static int btrfs_csum_sizes[] = { 4, 0 };
149
150/* four bytes for CRC32 */
151#define BTRFS_EMPTY_DIR_SIZE 0
152
153#define BTRFS_FT_UNKNOWN 0
154#define BTRFS_FT_REG_FILE 1
155#define BTRFS_FT_DIR 2
156#define BTRFS_FT_CHRDEV 3
157#define BTRFS_FT_BLKDEV 4
158#define BTRFS_FT_FIFO 5
159#define BTRFS_FT_SOCK 6
160#define BTRFS_FT_SYMLINK 7
161#define BTRFS_FT_XATTR 8
162#define BTRFS_FT_MAX 9
163
164/*
165 * The key defines the order in the tree, and so it also defines (optimal)
166 * block layout.
167 *
168 * objectid corresponds to the inode number.
169 *
170 * type tells us things about the object, and is a kind of stream selector.
171 * so for a given inode, keys with type of 1 might refer to the inode data,
172 * type of 2 may point to file data in the btree and type == 3 may point to
173 * extents.
174 *
175 * offset is the starting byte offset for this key in the stream.
176 *
177 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
178 * in cpu native order. Otherwise they are identical and their sizes
179 * should be the same (ie both packed)
180 */
181struct btrfs_disk_key {
182 __le64 objectid;
183 u8 type;
184 __le64 offset;
185} __attribute__ ((__packed__));
186
187struct btrfs_key {
188 u64 objectid;
189 u8 type;
190 u64 offset;
191} __attribute__ ((__packed__));
192
193struct btrfs_mapping_tree {
194 struct extent_map_tree map_tree;
195};
196
197struct btrfs_dev_item {
198 /* the internal btrfs device id */
199 __le64 devid;
200
201 /* size of the device */
202 __le64 total_bytes;
203
204 /* bytes used */
205 __le64 bytes_used;
206
207 /* optimal io alignment for this device */
208 __le32 io_align;
209
210 /* optimal io width for this device */
211 __le32 io_width;
212
213 /* minimal io size for this device */
214 __le32 sector_size;
215
216 /* type and info about this device */
217 __le64 type;
218
219 /* expected generation for this device */
220 __le64 generation;
221
222 /*
223 * starting byte of this partition on the device,
224 * to allow for stripe alignment in the future
225 */
226 __le64 start_offset;
227
228 /* grouping information for allocation decisions */
229 __le32 dev_group;
230
231 /* seek speed 0-100 where 100 is fastest */
232 u8 seek_speed;
233
234 /* bandwidth 0-100 where 100 is fastest */
235 u8 bandwidth;
236
237 /* btrfs generated uuid for this device */
238 u8 uuid[BTRFS_UUID_SIZE];
239
240 /* uuid of FS who owns this device */
241 u8 fsid[BTRFS_UUID_SIZE];
242} __attribute__ ((__packed__));
243
244struct btrfs_stripe {
245 __le64 devid;
246 __le64 offset;
247 u8 dev_uuid[BTRFS_UUID_SIZE];
248} __attribute__ ((__packed__));
249
250struct btrfs_chunk {
251 /* size of this chunk in bytes */
252 __le64 length;
253
254 /* objectid of the root referencing this chunk */
255 __le64 owner;
256
257 __le64 stripe_len;
258 __le64 type;
259
260 /* optimal io alignment for this chunk */
261 __le32 io_align;
262
263 /* optimal io width for this chunk */
264 __le32 io_width;
265
266 /* minimal io size for this chunk */
267 __le32 sector_size;
268
269 /* 2^16 stripes is quite a lot, a second limit is the size of a single
270 * item in the btree
271 */
272 __le16 num_stripes;
273
274 /* sub stripes only matter for raid10 */
275 __le16 sub_stripes;
276 struct btrfs_stripe stripe;
277 /* additional stripes go here */
278} __attribute__ ((__packed__));
279
280#define BTRFS_FREE_SPACE_EXTENT 1
281#define BTRFS_FREE_SPACE_BITMAP 2
282
283struct btrfs_free_space_entry {
284 __le64 offset;
285 __le64 bytes;
286 u8 type;
287} __attribute__ ((__packed__));
288
289struct btrfs_free_space_header {
290 struct btrfs_disk_key location;
291 __le64 generation;
292 __le64 num_entries;
293 __le64 num_bitmaps;
294} __attribute__ ((__packed__));
295
296static inline unsigned long btrfs_chunk_item_size(int num_stripes)
297{
298 BUG_ON(num_stripes == 0);
299 return sizeof(struct btrfs_chunk) +
300 sizeof(struct btrfs_stripe) * (num_stripes - 1);
301}
302
303#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
304#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
305
306/*
307 * File system states
308 */
309
310/* Errors detected */
311#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
312
313#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
314#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
315
316#define BTRFS_BACKREF_REV_MAX 256
317#define BTRFS_BACKREF_REV_SHIFT 56
318#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
319 BTRFS_BACKREF_REV_SHIFT)
320
321#define BTRFS_OLD_BACKREF_REV 0
322#define BTRFS_MIXED_BACKREF_REV 1
323
324/*
325 * every tree block (leaf or node) starts with this header.
326 */
327struct btrfs_header {
328 /* these first four must match the super block */
329 u8 csum[BTRFS_CSUM_SIZE];
330 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
331 __le64 bytenr; /* which block this node is supposed to live in */
332 __le64 flags;
333
334 /* allowed to be different from the super from here on down */
335 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
336 __le64 generation;
337 __le64 owner;
338 __le32 nritems;
339 u8 level;
340} __attribute__ ((__packed__));
341
342#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
343 sizeof(struct btrfs_header)) / \
344 sizeof(struct btrfs_key_ptr))
345#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
346#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
347#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
348 sizeof(struct btrfs_item) - \
349 sizeof(struct btrfs_file_extent_item))
350#define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
351 sizeof(struct btrfs_item) -\
352 sizeof(struct btrfs_dir_item))
353
354
355/*
356 * this is a very generous portion of the super block, giving us
357 * room to translate 14 chunks with 3 stripes each.
358 */
359#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
360#define BTRFS_LABEL_SIZE 256
361
362/*
363 * the super block basically lists the main trees of the FS
364 * it currently lacks any block count etc etc
365 */
366struct btrfs_super_block {
367 u8 csum[BTRFS_CSUM_SIZE];
368 /* the first 4 fields must match struct btrfs_header */
369 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
370 __le64 bytenr; /* this block number */
371 __le64 flags;
372
373 /* allowed to be different from the btrfs_header from here own down */
374 __le64 magic;
375 __le64 generation;
376 __le64 root;
377 __le64 chunk_root;
378 __le64 log_root;
379
380 /* this will help find the new super based on the log root */
381 __le64 log_root_transid;
382 __le64 total_bytes;
383 __le64 bytes_used;
384 __le64 root_dir_objectid;
385 __le64 num_devices;
386 __le32 sectorsize;
387 __le32 nodesize;
388 __le32 leafsize;
389 __le32 stripesize;
390 __le32 sys_chunk_array_size;
391 __le64 chunk_root_generation;
392 __le64 compat_flags;
393 __le64 compat_ro_flags;
394 __le64 incompat_flags;
395 __le16 csum_type;
396 u8 root_level;
397 u8 chunk_root_level;
398 u8 log_root_level;
399 struct btrfs_dev_item dev_item;
400
401 char label[BTRFS_LABEL_SIZE];
402
403 __le64 cache_generation;
404
405 /* future expansion */
406 __le64 reserved[31];
407 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
408} __attribute__ ((__packed__));
409
410/*
411 * Compat flags that we support. If any incompat flags are set other than the
412 * ones specified below then we will fail to mount
413 */
414#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
415#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
416#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
417#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
418
419#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
420#define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
421#define BTRFS_FEATURE_INCOMPAT_SUPP \
422 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
423 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
424 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
425 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO)
426
427/*
428 * A leaf is full of items. offset and size tell us where to find
429 * the item in the leaf (relative to the start of the data area)
430 */
431struct btrfs_item {
432 struct btrfs_disk_key key;
433 __le32 offset;
434 __le32 size;
435} __attribute__ ((__packed__));
436
437/*
438 * leaves have an item area and a data area:
439 * [item0, item1....itemN] [free space] [dataN...data1, data0]
440 *
441 * The data is separate from the items to get the keys closer together
442 * during searches.
443 */
444struct btrfs_leaf {
445 struct btrfs_header header;
446 struct btrfs_item items[];
447} __attribute__ ((__packed__));
448
449/*
450 * all non-leaf blocks are nodes, they hold only keys and pointers to
451 * other blocks
452 */
453struct btrfs_key_ptr {
454 struct btrfs_disk_key key;
455 __le64 blockptr;
456 __le64 generation;
457} __attribute__ ((__packed__));
458
459struct btrfs_node {
460 struct btrfs_header header;
461 struct btrfs_key_ptr ptrs[];
462} __attribute__ ((__packed__));
463
464/*
465 * btrfs_paths remember the path taken from the root down to the leaf.
466 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
467 * to any other levels that are present.
468 *
469 * The slots array records the index of the item or block pointer
470 * used while walking the tree.
471 */
472struct btrfs_path {
473 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
474 int slots[BTRFS_MAX_LEVEL];
475 /* if there is real range locking, this locks field will change */
476 int locks[BTRFS_MAX_LEVEL];
477 int reada;
478 /* keep some upper locks as we walk down */
479 int lowest_level;
480
481 /*
482 * set by btrfs_split_item, tells search_slot to keep all locks
483 * and to force calls to keep space in the nodes
484 */
485 unsigned int search_for_split:1;
486 unsigned int keep_locks:1;
487 unsigned int skip_locking:1;
488 unsigned int leave_spinning:1;
489 unsigned int search_commit_root:1;
490};
491
492/*
493 * items in the extent btree are used to record the objectid of the
494 * owner of the block and the number of references
495 */
496
497struct btrfs_extent_item {
498 __le64 refs;
499 __le64 generation;
500 __le64 flags;
501} __attribute__ ((__packed__));
502
503struct btrfs_extent_item_v0 {
504 __le32 refs;
505} __attribute__ ((__packed__));
506
507#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
508 sizeof(struct btrfs_item))
509
510#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
511#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
512
513/* following flags only apply to tree blocks */
514
515/* use full backrefs for extent pointers in the block */
516#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
517
518/*
519 * this flag is only used internally by scrub and may be changed at any time
520 * it is only declared here to avoid collisions
521 */
522#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
523
524struct btrfs_tree_block_info {
525 struct btrfs_disk_key key;
526 u8 level;
527} __attribute__ ((__packed__));
528
529struct btrfs_extent_data_ref {
530 __le64 root;
531 __le64 objectid;
532 __le64 offset;
533 __le32 count;
534} __attribute__ ((__packed__));
535
536struct btrfs_shared_data_ref {
537 __le32 count;
538} __attribute__ ((__packed__));
539
540struct btrfs_extent_inline_ref {
541 u8 type;
542 __le64 offset;
543} __attribute__ ((__packed__));
544
545/* old style backrefs item */
546struct btrfs_extent_ref_v0 {
547 __le64 root;
548 __le64 generation;
549 __le64 objectid;
550 __le32 count;
551} __attribute__ ((__packed__));
552
553
554/* dev extents record free space on individual devices. The owner
555 * field points back to the chunk allocation mapping tree that allocated
556 * the extent. The chunk tree uuid field is a way to double check the owner
557 */
558struct btrfs_dev_extent {
559 __le64 chunk_tree;
560 __le64 chunk_objectid;
561 __le64 chunk_offset;
562 __le64 length;
563 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
564} __attribute__ ((__packed__));
565
566struct btrfs_inode_ref {
567 __le64 index;
568 __le16 name_len;
569 /* name goes here */
570} __attribute__ ((__packed__));
571
572struct btrfs_timespec {
573 __le64 sec;
574 __le32 nsec;
575} __attribute__ ((__packed__));
576
577enum btrfs_compression_type {
578 BTRFS_COMPRESS_NONE = 0,
579 BTRFS_COMPRESS_ZLIB = 1,
580 BTRFS_COMPRESS_LZO = 2,
581 BTRFS_COMPRESS_TYPES = 2,
582 BTRFS_COMPRESS_LAST = 3,
583};
584
585struct btrfs_inode_item {
586 /* nfs style generation number */
587 __le64 generation;
588 /* transid that last touched this inode */
589 __le64 transid;
590 __le64 size;
591 __le64 nbytes;
592 __le64 block_group;
593 __le32 nlink;
594 __le32 uid;
595 __le32 gid;
596 __le32 mode;
597 __le64 rdev;
598 __le64 flags;
599
600 /* modification sequence number for NFS */
601 __le64 sequence;
602
603 /*
604 * a little future expansion, for more than this we can
605 * just grow the inode item and version it
606 */
607 __le64 reserved[4];
608 struct btrfs_timespec atime;
609 struct btrfs_timespec ctime;
610 struct btrfs_timespec mtime;
611 struct btrfs_timespec otime;
612} __attribute__ ((__packed__));
613
614struct btrfs_dir_log_item {
615 __le64 end;
616} __attribute__ ((__packed__));
617
618struct btrfs_dir_item {
619 struct btrfs_disk_key location;
620 __le64 transid;
621 __le16 data_len;
622 __le16 name_len;
623 u8 type;
624} __attribute__ ((__packed__));
625
626#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
627
628struct btrfs_root_item {
629 struct btrfs_inode_item inode;
630 __le64 generation;
631 __le64 root_dirid;
632 __le64 bytenr;
633 __le64 byte_limit;
634 __le64 bytes_used;
635 __le64 last_snapshot;
636 __le64 flags;
637 __le32 refs;
638 struct btrfs_disk_key drop_progress;
639 u8 drop_level;
640 u8 level;
641} __attribute__ ((__packed__));
642
643/*
644 * this is used for both forward and backward root refs
645 */
646struct btrfs_root_ref {
647 __le64 dirid;
648 __le64 sequence;
649 __le16 name_len;
650} __attribute__ ((__packed__));
651
652#define BTRFS_FILE_EXTENT_INLINE 0
653#define BTRFS_FILE_EXTENT_REG 1
654#define BTRFS_FILE_EXTENT_PREALLOC 2
655
656struct btrfs_file_extent_item {
657 /*
658 * transaction id that created this extent
659 */
660 __le64 generation;
661 /*
662 * max number of bytes to hold this extent in ram
663 * when we split a compressed extent we can't know how big
664 * each of the resulting pieces will be. So, this is
665 * an upper limit on the size of the extent in ram instead of
666 * an exact limit.
667 */
668 __le64 ram_bytes;
669
670 /*
671 * 32 bits for the various ways we might encode the data,
672 * including compression and encryption. If any of these
673 * are set to something a given disk format doesn't understand
674 * it is treated like an incompat flag for reading and writing,
675 * but not for stat.
676 */
677 u8 compression;
678 u8 encryption;
679 __le16 other_encoding; /* spare for later use */
680
681 /* are we inline data or a real extent? */
682 u8 type;
683
684 /*
685 * disk space consumed by the extent, checksum blocks are included
686 * in these numbers
687 */
688 __le64 disk_bytenr;
689 __le64 disk_num_bytes;
690 /*
691 * the logical offset in file blocks (no csums)
692 * this extent record is for. This allows a file extent to point
693 * into the middle of an existing extent on disk, sharing it
694 * between two snapshots (useful if some bytes in the middle of the
695 * extent have changed
696 */
697 __le64 offset;
698 /*
699 * the logical number of file blocks (no csums included). This
700 * always reflects the size uncompressed and without encoding.
701 */
702 __le64 num_bytes;
703
704} __attribute__ ((__packed__));
705
706struct btrfs_csum_item {
707 u8 csum;
708} __attribute__ ((__packed__));
709
710/* different types of block groups (and chunks) */
711#define BTRFS_BLOCK_GROUP_DATA (1 << 0)
712#define BTRFS_BLOCK_GROUP_SYSTEM (1 << 1)
713#define BTRFS_BLOCK_GROUP_METADATA (1 << 2)
714#define BTRFS_BLOCK_GROUP_RAID0 (1 << 3)
715#define BTRFS_BLOCK_GROUP_RAID1 (1 << 4)
716#define BTRFS_BLOCK_GROUP_DUP (1 << 5)
717#define BTRFS_BLOCK_GROUP_RAID10 (1 << 6)
718#define BTRFS_NR_RAID_TYPES 5
719
720struct btrfs_block_group_item {
721 __le64 used;
722 __le64 chunk_objectid;
723 __le64 flags;
724} __attribute__ ((__packed__));
725
726struct btrfs_space_info {
727 u64 flags;
728
729 u64 total_bytes; /* total bytes in the space,
730 this doesn't take mirrors into account */
731 u64 bytes_used; /* total bytes used,
732 this doesn't take mirrors into account */
733 u64 bytes_pinned; /* total bytes pinned, will be freed when the
734 transaction finishes */
735 u64 bytes_reserved; /* total bytes the allocator has reserved for
736 current allocations */
737 u64 bytes_readonly; /* total bytes that are read only */
738
739 u64 bytes_may_use; /* number of bytes that may be used for
740 delalloc/allocations */
741 u64 disk_used; /* total bytes used on disk */
742 u64 disk_total; /* total bytes on disk, takes mirrors into
743 account */
744
745 /*
746 * we bump reservation progress every time we decrement
747 * bytes_reserved. This way people waiting for reservations
748 * know something good has happened and they can check
749 * for progress. The number here isn't to be trusted, it
750 * just shows reclaim activity
751 */
752 unsigned long reservation_progress;
753
754 unsigned int full:1; /* indicates that we cannot allocate any more
755 chunks for this space */
756 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
757
758 unsigned int flush:1; /* set if we are trying to make space */
759
760 unsigned int force_alloc; /* set if we need to force a chunk
761 alloc for this space */
762
763 struct list_head list;
764
765 /* for block groups in our same type */
766 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
767 spinlock_t lock;
768 struct rw_semaphore groups_sem;
769 wait_queue_head_t wait;
770};
771
772struct btrfs_block_rsv {
773 u64 size;
774 u64 reserved;
775 u64 freed[2];
776 struct btrfs_space_info *space_info;
777 struct list_head list;
778 spinlock_t lock;
779 atomic_t usage;
780 unsigned int priority:8;
781 unsigned int durable:1;
782 unsigned int refill_used:1;
783 unsigned int full:1;
784};
785
786/*
787 * free clusters are used to claim free space in relatively large chunks,
788 * allowing us to do less seeky writes. They are used for all metadata
789 * allocations and data allocations in ssd mode.
790 */
791struct btrfs_free_cluster {
792 spinlock_t lock;
793 spinlock_t refill_lock;
794 struct rb_root root;
795
796 /* largest extent in this cluster */
797 u64 max_size;
798
799 /* first extent starting offset */
800 u64 window_start;
801
802 struct btrfs_block_group_cache *block_group;
803 /*
804 * when a cluster is allocated from a block group, we put the
805 * cluster onto a list in the block group so that it can
806 * be freed before the block group is freed.
807 */
808 struct list_head block_group_list;
809};
810
811enum btrfs_caching_type {
812 BTRFS_CACHE_NO = 0,
813 BTRFS_CACHE_STARTED = 1,
814 BTRFS_CACHE_FINISHED = 2,
815};
816
817enum btrfs_disk_cache_state {
818 BTRFS_DC_WRITTEN = 0,
819 BTRFS_DC_ERROR = 1,
820 BTRFS_DC_CLEAR = 2,
821 BTRFS_DC_SETUP = 3,
822 BTRFS_DC_NEED_WRITE = 4,
823};
824
825struct btrfs_caching_control {
826 struct list_head list;
827 struct mutex mutex;
828 wait_queue_head_t wait;
829 struct btrfs_work work;
830 struct btrfs_block_group_cache *block_group;
831 u64 progress;
832 atomic_t count;
833};
834
835struct btrfs_block_group_cache {
836 struct btrfs_key key;
837 struct btrfs_block_group_item item;
838 struct btrfs_fs_info *fs_info;
839 struct inode *inode;
840 spinlock_t lock;
841 u64 pinned;
842 u64 reserved;
843 u64 reserved_pinned;
844 u64 bytes_super;
845 u64 flags;
846 u64 sectorsize;
847 unsigned int ro:1;
848 unsigned int dirty:1;
849 unsigned int iref:1;
850
851 int disk_cache_state;
852
853 /* cache tracking stuff */
854 int cached;
855 struct btrfs_caching_control *caching_ctl;
856 u64 last_byte_to_unpin;
857
858 struct btrfs_space_info *space_info;
859
860 /* free space cache stuff */
861 struct btrfs_free_space_ctl *free_space_ctl;
862
863 /* block group cache stuff */
864 struct rb_node cache_node;
865
866 /* for block groups in the same raid type */
867 struct list_head list;
868
869 /* usage count */
870 atomic_t count;
871
872 /* List of struct btrfs_free_clusters for this block group.
873 * Today it will only have one thing on it, but that may change
874 */
875 struct list_head cluster_list;
876};
877
878struct reloc_control;
879struct btrfs_device;
880struct btrfs_fs_devices;
881struct btrfs_delayed_root;
882struct btrfs_fs_info {
883 u8 fsid[BTRFS_FSID_SIZE];
884 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
885 struct btrfs_root *extent_root;
886 struct btrfs_root *tree_root;
887 struct btrfs_root *chunk_root;
888 struct btrfs_root *dev_root;
889 struct btrfs_root *fs_root;
890 struct btrfs_root *csum_root;
891
892 /* the log root tree is a directory of all the other log roots */
893 struct btrfs_root *log_root_tree;
894
895 spinlock_t fs_roots_radix_lock;
896 struct radix_tree_root fs_roots_radix;
897
898 /* block group cache stuff */
899 spinlock_t block_group_cache_lock;
900 struct rb_root block_group_cache_tree;
901
902 struct extent_io_tree freed_extents[2];
903 struct extent_io_tree *pinned_extents;
904
905 /* logical->physical extent mapping */
906 struct btrfs_mapping_tree mapping_tree;
907
908 /*
909 * block reservation for extent, checksum, root tree and
910 * delayed dir index item
911 */
912 struct btrfs_block_rsv global_block_rsv;
913 /* block reservation for delay allocation */
914 struct btrfs_block_rsv delalloc_block_rsv;
915 /* block reservation for metadata operations */
916 struct btrfs_block_rsv trans_block_rsv;
917 /* block reservation for chunk tree */
918 struct btrfs_block_rsv chunk_block_rsv;
919
920 struct btrfs_block_rsv empty_block_rsv;
921
922 /* list of block reservations that cross multiple transactions */
923 struct list_head durable_block_rsv_list;
924
925 struct mutex durable_block_rsv_mutex;
926
927 u64 generation;
928 u64 last_trans_committed;
929
930 /*
931 * this is updated to the current trans every time a full commit
932 * is required instead of the faster short fsync log commits
933 */
934 u64 last_trans_log_full_commit;
935 unsigned long mount_opt:20;
936 unsigned long compress_type:4;
937 u64 max_inline;
938 u64 alloc_start;
939 struct btrfs_transaction *running_transaction;
940 wait_queue_head_t transaction_throttle;
941 wait_queue_head_t transaction_wait;
942 wait_queue_head_t transaction_blocked_wait;
943 wait_queue_head_t async_submit_wait;
944
945 struct btrfs_super_block super_copy;
946 struct btrfs_super_block super_for_commit;
947 struct block_device *__bdev;
948 struct super_block *sb;
949 struct inode *btree_inode;
950 struct backing_dev_info bdi;
951 struct mutex tree_log_mutex;
952 struct mutex transaction_kthread_mutex;
953 struct mutex cleaner_mutex;
954 struct mutex chunk_mutex;
955 struct mutex volume_mutex;
956 /*
957 * this protects the ordered operations list only while we are
958 * processing all of the entries on it. This way we make
959 * sure the commit code doesn't find the list temporarily empty
960 * because another function happens to be doing non-waiting preflush
961 * before jumping into the main commit.
962 */
963 struct mutex ordered_operations_mutex;
964 struct rw_semaphore extent_commit_sem;
965
966 struct rw_semaphore cleanup_work_sem;
967
968 struct rw_semaphore subvol_sem;
969 struct srcu_struct subvol_srcu;
970
971 spinlock_t trans_lock;
972 /*
973 * the reloc mutex goes with the trans lock, it is taken
974 * during commit to protect us from the relocation code
975 */
976 struct mutex reloc_mutex;
977
978 struct list_head trans_list;
979 struct list_head hashers;
980 struct list_head dead_roots;
981 struct list_head caching_block_groups;
982
983 spinlock_t delayed_iput_lock;
984 struct list_head delayed_iputs;
985
986 atomic_t nr_async_submits;
987 atomic_t async_submit_draining;
988 atomic_t nr_async_bios;
989 atomic_t async_delalloc_pages;
990 atomic_t open_ioctl_trans;
991
992 /*
993 * this is used by the balancing code to wait for all the pending
994 * ordered extents
995 */
996 spinlock_t ordered_extent_lock;
997
998 /*
999 * all of the data=ordered extents pending writeback
1000 * these can span multiple transactions and basically include
1001 * every dirty data page that isn't from nodatacow
1002 */
1003 struct list_head ordered_extents;
1004
1005 /*
1006 * all of the inodes that have delalloc bytes. It is possible for
1007 * this list to be empty even when there is still dirty data=ordered
1008 * extents waiting to finish IO.
1009 */
1010 struct list_head delalloc_inodes;
1011
1012 /*
1013 * special rename and truncate targets that must be on disk before
1014 * we're allowed to commit. This is basically the ext3 style
1015 * data=ordered list.
1016 */
1017 struct list_head ordered_operations;
1018
1019 /*
1020 * there is a pool of worker threads for checksumming during writes
1021 * and a pool for checksumming after reads. This is because readers
1022 * can run with FS locks held, and the writers may be waiting for
1023 * those locks. We don't want ordering in the pending list to cause
1024 * deadlocks, and so the two are serviced separately.
1025 *
1026 * A third pool does submit_bio to avoid deadlocking with the other
1027 * two
1028 */
1029 struct btrfs_workers generic_worker;
1030 struct btrfs_workers workers;
1031 struct btrfs_workers delalloc_workers;
1032 struct btrfs_workers endio_workers;
1033 struct btrfs_workers endio_meta_workers;
1034 struct btrfs_workers endio_meta_write_workers;
1035 struct btrfs_workers endio_write_workers;
1036 struct btrfs_workers endio_freespace_worker;
1037 struct btrfs_workers submit_workers;
1038 struct btrfs_workers caching_workers;
1039
1040 /*
1041 * fixup workers take dirty pages that didn't properly go through
1042 * the cow mechanism and make them safe to write. It happens
1043 * for the sys_munmap function call path
1044 */
1045 struct btrfs_workers fixup_workers;
1046 struct btrfs_workers delayed_workers;
1047 struct task_struct *transaction_kthread;
1048 struct task_struct *cleaner_kthread;
1049 int thread_pool_size;
1050
1051 struct kobject super_kobj;
1052 struct completion kobj_unregister;
1053 int do_barriers;
1054 int closing;
1055 int log_root_recovering;
1056 int enospc_unlink;
1057 int trans_no_join;
1058
1059 u64 total_pinned;
1060
1061 /* protected by the delalloc lock, used to keep from writing
1062 * metadata until there is a nice batch
1063 */
1064 u64 dirty_metadata_bytes;
1065 struct list_head dirty_cowonly_roots;
1066
1067 struct btrfs_fs_devices *fs_devices;
1068
1069 /*
1070 * the space_info list is almost entirely read only. It only changes
1071 * when we add a new raid type to the FS, and that happens
1072 * very rarely. RCU is used to protect it.
1073 */
1074 struct list_head space_info;
1075
1076 struct reloc_control *reloc_ctl;
1077
1078 spinlock_t delalloc_lock;
1079 u64 delalloc_bytes;
1080
1081 /* data_alloc_cluster is only used in ssd mode */
1082 struct btrfs_free_cluster data_alloc_cluster;
1083
1084 /* all metadata allocations go through this cluster */
1085 struct btrfs_free_cluster meta_alloc_cluster;
1086
1087 /* auto defrag inodes go here */
1088 spinlock_t defrag_inodes_lock;
1089 struct rb_root defrag_inodes;
1090 atomic_t defrag_running;
1091
1092 spinlock_t ref_cache_lock;
1093 u64 total_ref_cache_size;
1094
1095 u64 avail_data_alloc_bits;
1096 u64 avail_metadata_alloc_bits;
1097 u64 avail_system_alloc_bits;
1098 u64 data_alloc_profile;
1099 u64 metadata_alloc_profile;
1100 u64 system_alloc_profile;
1101
1102 unsigned data_chunk_allocations;
1103 unsigned metadata_ratio;
1104
1105 void *bdev_holder;
1106
1107 /* private scrub information */
1108 struct mutex scrub_lock;
1109 atomic_t scrubs_running;
1110 atomic_t scrub_pause_req;
1111 atomic_t scrubs_paused;
1112 atomic_t scrub_cancel_req;
1113 wait_queue_head_t scrub_pause_wait;
1114 struct rw_semaphore scrub_super_lock;
1115 int scrub_workers_refcnt;
1116 struct btrfs_workers scrub_workers;
1117
1118 /* filesystem state */
1119 u64 fs_state;
1120
1121 struct btrfs_delayed_root *delayed_root;
1122};
1123
1124/*
1125 * in ram representation of the tree. extent_root is used for all allocations
1126 * and for the extent tree extent_root root.
1127 */
1128struct btrfs_root {
1129 struct extent_buffer *node;
1130
1131 struct extent_buffer *commit_root;
1132 struct btrfs_root *log_root;
1133 struct btrfs_root *reloc_root;
1134
1135 struct btrfs_root_item root_item;
1136 struct btrfs_key root_key;
1137 struct btrfs_fs_info *fs_info;
1138 struct extent_io_tree dirty_log_pages;
1139
1140 struct kobject root_kobj;
1141 struct completion kobj_unregister;
1142 struct mutex objectid_mutex;
1143
1144 spinlock_t accounting_lock;
1145 struct btrfs_block_rsv *block_rsv;
1146
1147 /* free ino cache stuff */
1148 struct mutex fs_commit_mutex;
1149 struct btrfs_free_space_ctl *free_ino_ctl;
1150 enum btrfs_caching_type cached;
1151 spinlock_t cache_lock;
1152 wait_queue_head_t cache_wait;
1153 struct btrfs_free_space_ctl *free_ino_pinned;
1154 u64 cache_progress;
1155 struct inode *cache_inode;
1156
1157 struct mutex log_mutex;
1158 wait_queue_head_t log_writer_wait;
1159 wait_queue_head_t log_commit_wait[2];
1160 atomic_t log_writers;
1161 atomic_t log_commit[2];
1162 unsigned long log_transid;
1163 unsigned long last_log_commit;
1164 unsigned long log_batch;
1165 pid_t log_start_pid;
1166 bool log_multiple_pids;
1167
1168 u64 objectid;
1169 u64 last_trans;
1170
1171 /* data allocations are done in sectorsize units */
1172 u32 sectorsize;
1173
1174 /* node allocations are done in nodesize units */
1175 u32 nodesize;
1176
1177 /* leaf allocations are done in leafsize units */
1178 u32 leafsize;
1179
1180 u32 stripesize;
1181
1182 u32 type;
1183
1184 u64 highest_objectid;
1185
1186 /* btrfs_record_root_in_trans is a multi-step process,
1187 * and it can race with the balancing code. But the
1188 * race is very small, and only the first time the root
1189 * is added to each transaction. So in_trans_setup
1190 * is used to tell us when more checks are required
1191 */
1192 unsigned long in_trans_setup;
1193 int ref_cows;
1194 int track_dirty;
1195 int in_radix;
1196
1197 u64 defrag_trans_start;
1198 struct btrfs_key defrag_progress;
1199 struct btrfs_key defrag_max;
1200 int defrag_running;
1201 char *name;
1202
1203 /* the dirty list is only used by non-reference counted roots */
1204 struct list_head dirty_list;
1205
1206 struct list_head root_list;
1207
1208 spinlock_t orphan_lock;
1209 struct list_head orphan_list;
1210 struct btrfs_block_rsv *orphan_block_rsv;
1211 int orphan_item_inserted;
1212 int orphan_cleanup_state;
1213
1214 spinlock_t inode_lock;
1215 /* red-black tree that keeps track of in-memory inodes */
1216 struct rb_root inode_tree;
1217
1218 /*
1219 * radix tree that keeps track of delayed nodes of every inode,
1220 * protected by inode_lock
1221 */
1222 struct radix_tree_root delayed_nodes_tree;
1223 /*
1224 * right now this just gets used so that a root has its own devid
1225 * for stat. It may be used for more later
1226 */
1227 dev_t anon_dev;
1228};
1229
1230struct btrfs_ioctl_defrag_range_args {
1231 /* start of the defrag operation */
1232 __u64 start;
1233
1234 /* number of bytes to defrag, use (u64)-1 to say all */
1235 __u64 len;
1236
1237 /*
1238 * flags for the operation, which can include turning
1239 * on compression for this one defrag
1240 */
1241 __u64 flags;
1242
1243 /*
1244 * any extent bigger than this will be considered
1245 * already defragged. Use 0 to take the kernel default
1246 * Use 1 to say every single extent must be rewritten
1247 */
1248 __u32 extent_thresh;
1249
1250 /*
1251 * which compression method to use if turning on compression
1252 * for this defrag operation. If unspecified, zlib will
1253 * be used
1254 */
1255 __u32 compress_type;
1256
1257 /* spare for later */
1258 __u32 unused[4];
1259};
1260
1261
1262/*
1263 * inode items have the data typically returned from stat and store other
1264 * info about object characteristics. There is one for every file and dir in
1265 * the FS
1266 */
1267#define BTRFS_INODE_ITEM_KEY 1
1268#define BTRFS_INODE_REF_KEY 12
1269#define BTRFS_XATTR_ITEM_KEY 24
1270#define BTRFS_ORPHAN_ITEM_KEY 48
1271/* reserve 2-15 close to the inode for later flexibility */
1272
1273/*
1274 * dir items are the name -> inode pointers in a directory. There is one
1275 * for every name in a directory.
1276 */
1277#define BTRFS_DIR_LOG_ITEM_KEY 60
1278#define BTRFS_DIR_LOG_INDEX_KEY 72
1279#define BTRFS_DIR_ITEM_KEY 84
1280#define BTRFS_DIR_INDEX_KEY 96
1281/*
1282 * extent data is for file data
1283 */
1284#define BTRFS_EXTENT_DATA_KEY 108
1285
1286/*
1287 * extent csums are stored in a separate tree and hold csums for
1288 * an entire extent on disk.
1289 */
1290#define BTRFS_EXTENT_CSUM_KEY 128
1291
1292/*
1293 * root items point to tree roots. They are typically in the root
1294 * tree used by the super block to find all the other trees
1295 */
1296#define BTRFS_ROOT_ITEM_KEY 132
1297
1298/*
1299 * root backrefs tie subvols and snapshots to the directory entries that
1300 * reference them
1301 */
1302#define BTRFS_ROOT_BACKREF_KEY 144
1303
1304/*
1305 * root refs make a fast index for listing all of the snapshots and
1306 * subvolumes referenced by a given root. They point directly to the
1307 * directory item in the root that references the subvol
1308 */
1309#define BTRFS_ROOT_REF_KEY 156
1310
1311/*
1312 * extent items are in the extent map tree. These record which blocks
1313 * are used, and how many references there are to each block
1314 */
1315#define BTRFS_EXTENT_ITEM_KEY 168
1316
1317#define BTRFS_TREE_BLOCK_REF_KEY 176
1318
1319#define BTRFS_EXTENT_DATA_REF_KEY 178
1320
1321#define BTRFS_EXTENT_REF_V0_KEY 180
1322
1323#define BTRFS_SHARED_BLOCK_REF_KEY 182
1324
1325#define BTRFS_SHARED_DATA_REF_KEY 184
1326
1327/*
1328 * block groups give us hints into the extent allocation trees. Which
1329 * blocks are free etc etc
1330 */
1331#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1332
1333#define BTRFS_DEV_EXTENT_KEY 204
1334#define BTRFS_DEV_ITEM_KEY 216
1335#define BTRFS_CHUNK_ITEM_KEY 228
1336
1337/*
1338 * string items are for debugging. They just store a short string of
1339 * data in the FS
1340 */
1341#define BTRFS_STRING_ITEM_KEY 253
1342
1343/*
1344 * Flags for mount options.
1345 *
1346 * Note: don't forget to add new options to btrfs_show_options()
1347 */
1348#define BTRFS_MOUNT_NODATASUM (1 << 0)
1349#define BTRFS_MOUNT_NODATACOW (1 << 1)
1350#define BTRFS_MOUNT_NOBARRIER (1 << 2)
1351#define BTRFS_MOUNT_SSD (1 << 3)
1352#define BTRFS_MOUNT_DEGRADED (1 << 4)
1353#define BTRFS_MOUNT_COMPRESS (1 << 5)
1354#define BTRFS_MOUNT_NOTREELOG (1 << 6)
1355#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
1356#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
1357#define BTRFS_MOUNT_NOSSD (1 << 9)
1358#define BTRFS_MOUNT_DISCARD (1 << 10)
1359#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
1360#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
1361#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
1362#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
1363#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
1364#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
1365#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
1366
1367#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1368#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1369#define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
1370 BTRFS_MOUNT_##opt)
1371/*
1372 * Inode flags
1373 */
1374#define BTRFS_INODE_NODATASUM (1 << 0)
1375#define BTRFS_INODE_NODATACOW (1 << 1)
1376#define BTRFS_INODE_READONLY (1 << 2)
1377#define BTRFS_INODE_NOCOMPRESS (1 << 3)
1378#define BTRFS_INODE_PREALLOC (1 << 4)
1379#define BTRFS_INODE_SYNC (1 << 5)
1380#define BTRFS_INODE_IMMUTABLE (1 << 6)
1381#define BTRFS_INODE_APPEND (1 << 7)
1382#define BTRFS_INODE_NODUMP (1 << 8)
1383#define BTRFS_INODE_NOATIME (1 << 9)
1384#define BTRFS_INODE_DIRSYNC (1 << 10)
1385#define BTRFS_INODE_COMPRESS (1 << 11)
1386
1387#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
1388
1389/* some macros to generate set/get funcs for the struct fields. This
1390 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1391 * one for u8:
1392 */
1393#define le8_to_cpu(v) (v)
1394#define cpu_to_le8(v) (v)
1395#define __le8 u8
1396
1397#define read_eb_member(eb, ptr, type, member, result) ( \
1398 read_extent_buffer(eb, (char *)(result), \
1399 ((unsigned long)(ptr)) + \
1400 offsetof(type, member), \
1401 sizeof(((type *)0)->member)))
1402
1403#define write_eb_member(eb, ptr, type, member, result) ( \
1404 write_extent_buffer(eb, (char *)(result), \
1405 ((unsigned long)(ptr)) + \
1406 offsetof(type, member), \
1407 sizeof(((type *)0)->member)))
1408
1409#ifndef BTRFS_SETGET_FUNCS
1410#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1411u##bits btrfs_##name(struct extent_buffer *eb, type *s); \
1412void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val);
1413#endif
1414
1415#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1416static inline u##bits btrfs_##name(struct extent_buffer *eb) \
1417{ \
1418 type *p = page_address(eb->first_page); \
1419 u##bits res = le##bits##_to_cpu(p->member); \
1420 return res; \
1421} \
1422static inline void btrfs_set_##name(struct extent_buffer *eb, \
1423 u##bits val) \
1424{ \
1425 type *p = page_address(eb->first_page); \
1426 p->member = cpu_to_le##bits(val); \
1427}
1428
1429#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1430static inline u##bits btrfs_##name(type *s) \
1431{ \
1432 return le##bits##_to_cpu(s->member); \
1433} \
1434static inline void btrfs_set_##name(type *s, u##bits val) \
1435{ \
1436 s->member = cpu_to_le##bits(val); \
1437}
1438
1439BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1440BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
1441BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1442BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1443BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1444BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1445 start_offset, 64);
1446BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1447BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1448BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1449BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1450BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1451BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1452
1453BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1454BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1455 total_bytes, 64);
1456BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1457 bytes_used, 64);
1458BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1459 io_align, 32);
1460BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1461 io_width, 32);
1462BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1463 sector_size, 32);
1464BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1465BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1466 dev_group, 32);
1467BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1468 seek_speed, 8);
1469BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1470 bandwidth, 8);
1471BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1472 generation, 64);
1473
1474static inline char *btrfs_device_uuid(struct btrfs_dev_item *d)
1475{
1476 return (char *)d + offsetof(struct btrfs_dev_item, uuid);
1477}
1478
1479static inline char *btrfs_device_fsid(struct btrfs_dev_item *d)
1480{
1481 return (char *)d + offsetof(struct btrfs_dev_item, fsid);
1482}
1483
1484BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1485BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1486BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1487BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1488BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1489BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1490BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1491BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1492BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1493BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1494BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1495
1496static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1497{
1498 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1499}
1500
1501BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1502BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1503BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1504 stripe_len, 64);
1505BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1506 io_align, 32);
1507BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1508 io_width, 32);
1509BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1510 sector_size, 32);
1511BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1512BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1513 num_stripes, 16);
1514BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1515 sub_stripes, 16);
1516BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1517BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1518
1519static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1520 int nr)
1521{
1522 unsigned long offset = (unsigned long)c;
1523 offset += offsetof(struct btrfs_chunk, stripe);
1524 offset += nr * sizeof(struct btrfs_stripe);
1525 return (struct btrfs_stripe *)offset;
1526}
1527
1528static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1529{
1530 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1531}
1532
1533static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
1534 struct btrfs_chunk *c, int nr)
1535{
1536 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1537}
1538
1539static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
1540 struct btrfs_chunk *c, int nr)
1541{
1542 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1543}
1544
1545/* struct btrfs_block_group_item */
1546BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
1547 used, 64);
1548BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
1549 used, 64);
1550BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
1551 struct btrfs_block_group_item, chunk_objectid, 64);
1552
1553BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
1554 struct btrfs_block_group_item, chunk_objectid, 64);
1555BTRFS_SETGET_FUNCS(disk_block_group_flags,
1556 struct btrfs_block_group_item, flags, 64);
1557BTRFS_SETGET_STACK_FUNCS(block_group_flags,
1558 struct btrfs_block_group_item, flags, 64);
1559
1560/* struct btrfs_inode_ref */
1561BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1562BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1563
1564/* struct btrfs_inode_item */
1565BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1566BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1567BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1568BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1569BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1570BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1571BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1572BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1573BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1574BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1575BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1576BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1577
1578static inline struct btrfs_timespec *
1579btrfs_inode_atime(struct btrfs_inode_item *inode_item)
1580{
1581 unsigned long ptr = (unsigned long)inode_item;
1582 ptr += offsetof(struct btrfs_inode_item, atime);
1583 return (struct btrfs_timespec *)ptr;
1584}
1585
1586static inline struct btrfs_timespec *
1587btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
1588{
1589 unsigned long ptr = (unsigned long)inode_item;
1590 ptr += offsetof(struct btrfs_inode_item, mtime);
1591 return (struct btrfs_timespec *)ptr;
1592}
1593
1594static inline struct btrfs_timespec *
1595btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
1596{
1597 unsigned long ptr = (unsigned long)inode_item;
1598 ptr += offsetof(struct btrfs_inode_item, ctime);
1599 return (struct btrfs_timespec *)ptr;
1600}
1601
1602BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1603BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1604
1605/* struct btrfs_dev_extent */
1606BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1607 chunk_tree, 64);
1608BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1609 chunk_objectid, 64);
1610BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1611 chunk_offset, 64);
1612BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1613
1614static inline u8 *btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
1615{
1616 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
1617 return (u8 *)((unsigned long)dev + ptr);
1618}
1619
1620BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1621BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1622 generation, 64);
1623BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1624
1625BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
1626
1627
1628BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1629
1630static inline void btrfs_tree_block_key(struct extent_buffer *eb,
1631 struct btrfs_tree_block_info *item,
1632 struct btrfs_disk_key *key)
1633{
1634 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1635}
1636
1637static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
1638 struct btrfs_tree_block_info *item,
1639 struct btrfs_disk_key *key)
1640{
1641 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1642}
1643
1644BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1645 root, 64);
1646BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1647 objectid, 64);
1648BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1649 offset, 64);
1650BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1651 count, 32);
1652
1653BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1654 count, 32);
1655
1656BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1657 type, 8);
1658BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1659 offset, 64);
1660
1661static inline u32 btrfs_extent_inline_ref_size(int type)
1662{
1663 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1664 type == BTRFS_SHARED_BLOCK_REF_KEY)
1665 return sizeof(struct btrfs_extent_inline_ref);
1666 if (type == BTRFS_SHARED_DATA_REF_KEY)
1667 return sizeof(struct btrfs_shared_data_ref) +
1668 sizeof(struct btrfs_extent_inline_ref);
1669 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1670 return sizeof(struct btrfs_extent_data_ref) +
1671 offsetof(struct btrfs_extent_inline_ref, offset);
1672 BUG();
1673 return 0;
1674}
1675
1676BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
1677BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
1678 generation, 64);
1679BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
1680BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
1681
1682/* struct btrfs_node */
1683BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1684BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1685
1686static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
1687{
1688 unsigned long ptr;
1689 ptr = offsetof(struct btrfs_node, ptrs) +
1690 sizeof(struct btrfs_key_ptr) * nr;
1691 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1692}
1693
1694static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
1695 int nr, u64 val)
1696{
1697 unsigned long ptr;
1698 ptr = offsetof(struct btrfs_node, ptrs) +
1699 sizeof(struct btrfs_key_ptr) * nr;
1700 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1701}
1702
1703static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
1704{
1705 unsigned long ptr;
1706 ptr = offsetof(struct btrfs_node, ptrs) +
1707 sizeof(struct btrfs_key_ptr) * nr;
1708 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1709}
1710
1711static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
1712 int nr, u64 val)
1713{
1714 unsigned long ptr;
1715 ptr = offsetof(struct btrfs_node, ptrs) +
1716 sizeof(struct btrfs_key_ptr) * nr;
1717 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1718}
1719
1720static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1721{
1722 return offsetof(struct btrfs_node, ptrs) +
1723 sizeof(struct btrfs_key_ptr) * nr;
1724}
1725
1726void btrfs_node_key(struct extent_buffer *eb,
1727 struct btrfs_disk_key *disk_key, int nr);
1728
1729static inline void btrfs_set_node_key(struct extent_buffer *eb,
1730 struct btrfs_disk_key *disk_key, int nr)
1731{
1732 unsigned long ptr;
1733 ptr = btrfs_node_key_ptr_offset(nr);
1734 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1735 struct btrfs_key_ptr, key, disk_key);
1736}
1737
1738/* struct btrfs_item */
1739BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1740BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1741
1742static inline unsigned long btrfs_item_nr_offset(int nr)
1743{
1744 return offsetof(struct btrfs_leaf, items) +
1745 sizeof(struct btrfs_item) * nr;
1746}
1747
1748static inline struct btrfs_item *btrfs_item_nr(struct extent_buffer *eb,
1749 int nr)
1750{
1751 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1752}
1753
1754static inline u32 btrfs_item_end(struct extent_buffer *eb,
1755 struct btrfs_item *item)
1756{
1757 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1758}
1759
1760static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
1761{
1762 return btrfs_item_end(eb, btrfs_item_nr(eb, nr));
1763}
1764
1765static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
1766{
1767 return btrfs_item_offset(eb, btrfs_item_nr(eb, nr));
1768}
1769
1770static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
1771{
1772 return btrfs_item_size(eb, btrfs_item_nr(eb, nr));
1773}
1774
1775static inline void btrfs_item_key(struct extent_buffer *eb,
1776 struct btrfs_disk_key *disk_key, int nr)
1777{
1778 struct btrfs_item *item = btrfs_item_nr(eb, nr);
1779 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1780}
1781
1782static inline void btrfs_set_item_key(struct extent_buffer *eb,
1783 struct btrfs_disk_key *disk_key, int nr)
1784{
1785 struct btrfs_item *item = btrfs_item_nr(eb, nr);
1786 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1787}
1788
1789BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1790
1791/*
1792 * struct btrfs_root_ref
1793 */
1794BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1795BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1796BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
1797
1798/* struct btrfs_dir_item */
1799BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
1800BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
1801BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
1802BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
1803
1804static inline void btrfs_dir_item_key(struct extent_buffer *eb,
1805 struct btrfs_dir_item *item,
1806 struct btrfs_disk_key *key)
1807{
1808 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
1809}
1810
1811static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
1812 struct btrfs_dir_item *item,
1813 struct btrfs_disk_key *key)
1814{
1815 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
1816}
1817
1818BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
1819 num_entries, 64);
1820BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
1821 num_bitmaps, 64);
1822BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
1823 generation, 64);
1824
1825static inline void btrfs_free_space_key(struct extent_buffer *eb,
1826 struct btrfs_free_space_header *h,
1827 struct btrfs_disk_key *key)
1828{
1829 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1830}
1831
1832static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
1833 struct btrfs_free_space_header *h,
1834 struct btrfs_disk_key *key)
1835{
1836 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1837}
1838
1839/* struct btrfs_disk_key */
1840BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
1841 objectid, 64);
1842BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
1843BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
1844
1845static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
1846 struct btrfs_disk_key *disk)
1847{
1848 cpu->offset = le64_to_cpu(disk->offset);
1849 cpu->type = disk->type;
1850 cpu->objectid = le64_to_cpu(disk->objectid);
1851}
1852
1853static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
1854 struct btrfs_key *cpu)
1855{
1856 disk->offset = cpu_to_le64(cpu->offset);
1857 disk->type = cpu->type;
1858 disk->objectid = cpu_to_le64(cpu->objectid);
1859}
1860
1861static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
1862 struct btrfs_key *key, int nr)
1863{
1864 struct btrfs_disk_key disk_key;
1865 btrfs_node_key(eb, &disk_key, nr);
1866 btrfs_disk_key_to_cpu(key, &disk_key);
1867}
1868
1869static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
1870 struct btrfs_key *key, int nr)
1871{
1872 struct btrfs_disk_key disk_key;
1873 btrfs_item_key(eb, &disk_key, nr);
1874 btrfs_disk_key_to_cpu(key, &disk_key);
1875}
1876
1877static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
1878 struct btrfs_dir_item *item,
1879 struct btrfs_key *key)
1880{
1881 struct btrfs_disk_key disk_key;
1882 btrfs_dir_item_key(eb, item, &disk_key);
1883 btrfs_disk_key_to_cpu(key, &disk_key);
1884}
1885
1886
1887static inline u8 btrfs_key_type(struct btrfs_key *key)
1888{
1889 return key->type;
1890}
1891
1892static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
1893{
1894 key->type = val;
1895}
1896
1897/* struct btrfs_header */
1898BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
1899BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
1900 generation, 64);
1901BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
1902BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
1903BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
1904BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
1905
1906static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
1907{
1908 return (btrfs_header_flags(eb) & flag) == flag;
1909}
1910
1911static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
1912{
1913 u64 flags = btrfs_header_flags(eb);
1914 btrfs_set_header_flags(eb, flags | flag);
1915 return (flags & flag) == flag;
1916}
1917
1918static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
1919{
1920 u64 flags = btrfs_header_flags(eb);
1921 btrfs_set_header_flags(eb, flags & ~flag);
1922 return (flags & flag) == flag;
1923}
1924
1925static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
1926{
1927 u64 flags = btrfs_header_flags(eb);
1928 return flags >> BTRFS_BACKREF_REV_SHIFT;
1929}
1930
1931static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
1932 int rev)
1933{
1934 u64 flags = btrfs_header_flags(eb);
1935 flags &= ~BTRFS_BACKREF_REV_MASK;
1936 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
1937 btrfs_set_header_flags(eb, flags);
1938}
1939
1940static inline u8 *btrfs_header_fsid(struct extent_buffer *eb)
1941{
1942 unsigned long ptr = offsetof(struct btrfs_header, fsid);
1943 return (u8 *)ptr;
1944}
1945
1946static inline u8 *btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
1947{
1948 unsigned long ptr = offsetof(struct btrfs_header, chunk_tree_uuid);
1949 return (u8 *)ptr;
1950}
1951
1952static inline int btrfs_is_leaf(struct extent_buffer *eb)
1953{
1954 return btrfs_header_level(eb) == 0;
1955}
1956
1957/* struct btrfs_root_item */
1958BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
1959 generation, 64);
1960BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
1961BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
1962BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
1963
1964BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
1965 generation, 64);
1966BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
1967BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
1968BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
1969BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
1970BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
1971BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
1972BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
1973BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
1974 last_snapshot, 64);
1975
1976static inline bool btrfs_root_readonly(struct btrfs_root *root)
1977{
1978 return root->root_item.flags & BTRFS_ROOT_SUBVOL_RDONLY;
1979}
1980
1981/* struct btrfs_super_block */
1982
1983BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
1984BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
1985BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
1986 generation, 64);
1987BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
1988BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
1989 struct btrfs_super_block, sys_chunk_array_size, 32);
1990BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
1991 struct btrfs_super_block, chunk_root_generation, 64);
1992BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
1993 root_level, 8);
1994BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
1995 chunk_root, 64);
1996BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
1997 chunk_root_level, 8);
1998BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
1999 log_root, 64);
2000BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2001 log_root_transid, 64);
2002BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2003 log_root_level, 8);
2004BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2005 total_bytes, 64);
2006BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2007 bytes_used, 64);
2008BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2009 sectorsize, 32);
2010BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2011 nodesize, 32);
2012BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
2013 leafsize, 32);
2014BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2015 stripesize, 32);
2016BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2017 root_dir_objectid, 64);
2018BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2019 num_devices, 64);
2020BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2021 compat_flags, 64);
2022BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2023 compat_ro_flags, 64);
2024BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2025 incompat_flags, 64);
2026BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2027 csum_type, 16);
2028BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2029 cache_generation, 64);
2030
2031static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2032{
2033 int t = btrfs_super_csum_type(s);
2034 BUG_ON(t >= ARRAY_SIZE(btrfs_csum_sizes));
2035 return btrfs_csum_sizes[t];
2036}
2037
2038static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2039{
2040 return offsetof(struct btrfs_leaf, items);
2041}
2042
2043/* struct btrfs_file_extent_item */
2044BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2045
2046static inline unsigned long
2047btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
2048{
2049 unsigned long offset = (unsigned long)e;
2050 offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
2051 return offset;
2052}
2053
2054static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2055{
2056 return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
2057}
2058
2059BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2060 disk_bytenr, 64);
2061BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2062 generation, 64);
2063BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2064 disk_num_bytes, 64);
2065BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2066 offset, 64);
2067BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2068 num_bytes, 64);
2069BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2070 ram_bytes, 64);
2071BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2072 compression, 8);
2073BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2074 encryption, 8);
2075BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2076 other_encoding, 16);
2077
2078/* this returns the number of file bytes represented by the inline item.
2079 * If an item is compressed, this is the uncompressed size
2080 */
2081static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
2082 struct btrfs_file_extent_item *e)
2083{
2084 return btrfs_file_extent_ram_bytes(eb, e);
2085}
2086
2087/*
2088 * this returns the number of bytes used by the item on disk, minus the
2089 * size of any extent headers. If a file is compressed on disk, this is
2090 * the compressed size
2091 */
2092static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
2093 struct btrfs_item *e)
2094{
2095 unsigned long offset;
2096 offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
2097 return btrfs_item_size(eb, e) - offset;
2098}
2099
2100static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
2101{
2102 return sb->s_fs_info;
2103}
2104
2105static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
2106{
2107 if (level == 0)
2108 return root->leafsize;
2109 return root->nodesize;
2110}
2111
2112/* helper function to cast into the data area of the leaf. */
2113#define btrfs_item_ptr(leaf, slot, type) \
2114 ((type *)(btrfs_leaf_data(leaf) + \
2115 btrfs_item_offset_nr(leaf, slot)))
2116
2117#define btrfs_item_ptr_offset(leaf, slot) \
2118 ((unsigned long)(btrfs_leaf_data(leaf) + \
2119 btrfs_item_offset_nr(leaf, slot)))
2120
2121static inline struct dentry *fdentry(struct file *file)
2122{
2123 return file->f_path.dentry;
2124}
2125
2126static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
2127{
2128 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2129 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
2130}
2131
2132/* extent-tree.c */
2133static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
2134 unsigned num_items)
2135{
2136 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
2137 3 * num_items;
2138}
2139
2140void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2141int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2142 struct btrfs_root *root, unsigned long count);
2143int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
2144int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2145 struct btrfs_root *root, u64 bytenr,
2146 u64 num_bytes, u64 *refs, u64 *flags);
2147int btrfs_pin_extent(struct btrfs_root *root,
2148 u64 bytenr, u64 num, int reserved);
2149int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2150 struct btrfs_root *root,
2151 u64 objectid, u64 offset, u64 bytenr);
2152struct btrfs_block_group_cache *btrfs_lookup_block_group(
2153 struct btrfs_fs_info *info,
2154 u64 bytenr);
2155void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2156u64 btrfs_find_block_group(struct btrfs_root *root,
2157 u64 search_start, u64 search_hint, int owner);
2158struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
2159 struct btrfs_root *root, u32 blocksize,
2160 u64 parent, u64 root_objectid,
2161 struct btrfs_disk_key *key, int level,
2162 u64 hint, u64 empty_size);
2163void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2164 struct btrfs_root *root,
2165 struct extent_buffer *buf,
2166 u64 parent, int last_ref);
2167struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 u64 bytenr, u32 blocksize,
2170 int level);
2171int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2172 struct btrfs_root *root,
2173 u64 root_objectid, u64 owner,
2174 u64 offset, struct btrfs_key *ins);
2175int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 u64 root_objectid, u64 owner, u64 offset,
2178 struct btrfs_key *ins);
2179int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 u64 num_bytes, u64 min_alloc_size,
2182 u64 empty_size, u64 hint_byte,
2183 u64 search_end, struct btrfs_key *ins,
2184 u64 data);
2185int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2186 struct extent_buffer *buf, int full_backref);
2187int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2188 struct extent_buffer *buf, int full_backref);
2189int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 u64 bytenr, u64 num_bytes, u64 flags,
2192 int is_data);
2193int btrfs_free_extent(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root,
2195 u64 bytenr, u64 num_bytes, u64 parent,
2196 u64 root_objectid, u64 owner, u64 offset);
2197
2198int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
2199int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
2200 u64 num_bytes, int reserve, int sinfo);
2201int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
2202 struct btrfs_root *root);
2203int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2204 struct btrfs_root *root);
2205int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2206 struct btrfs_root *root,
2207 u64 bytenr, u64 num_bytes, u64 parent,
2208 u64 root_objectid, u64 owner, u64 offset);
2209
2210int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2211 struct btrfs_root *root);
2212int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
2213int btrfs_free_block_groups(struct btrfs_fs_info *info);
2214int btrfs_read_block_groups(struct btrfs_root *root);
2215int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
2216int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2217 struct btrfs_root *root, u64 bytes_used,
2218 u64 type, u64 chunk_objectid, u64 chunk_offset,
2219 u64 size);
2220int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
2221 struct btrfs_root *root, u64 group_start);
2222u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags);
2223u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
2224void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *ionde);
2225void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2226int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
2227void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
2228void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2229 struct btrfs_root *root);
2230int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
2231 struct inode *inode);
2232void btrfs_orphan_release_metadata(struct inode *inode);
2233int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
2234 struct btrfs_pending_snapshot *pending);
2235int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
2236void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
2237int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
2238void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
2239void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv);
2240struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root);
2241void btrfs_free_block_rsv(struct btrfs_root *root,
2242 struct btrfs_block_rsv *rsv);
2243void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
2244 struct btrfs_block_rsv *rsv);
2245int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
2246 struct btrfs_root *root,
2247 struct btrfs_block_rsv *block_rsv,
2248 u64 num_bytes);
2249int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
2250 struct btrfs_root *root,
2251 struct btrfs_block_rsv *block_rsv,
2252 u64 min_reserved, int min_factor);
2253int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
2254 struct btrfs_block_rsv *dst_rsv,
2255 u64 num_bytes);
2256void btrfs_block_rsv_release(struct btrfs_root *root,
2257 struct btrfs_block_rsv *block_rsv,
2258 u64 num_bytes);
2259int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
2260 struct btrfs_root *root,
2261 struct btrfs_block_rsv *rsv);
2262int btrfs_set_block_group_ro(struct btrfs_root *root,
2263 struct btrfs_block_group_cache *cache);
2264int btrfs_set_block_group_rw(struct btrfs_root *root,
2265 struct btrfs_block_group_cache *cache);
2266void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
2267u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2268int btrfs_error_unpin_extent_range(struct btrfs_root *root,
2269 u64 start, u64 end);
2270int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
2271 u64 num_bytes, u64 *actual_bytes);
2272int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *root, u64 type);
2274int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
2275
2276int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2277/* ctree.c */
2278int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
2279 int level, int *slot);
2280int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
2281int btrfs_previous_item(struct btrfs_root *root,
2282 struct btrfs_path *path, u64 min_objectid,
2283 int type);
2284int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2285 struct btrfs_root *root, struct btrfs_path *path,
2286 struct btrfs_key *new_key);
2287struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2288struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
2289int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2290 struct btrfs_key *key, int lowest_level,
2291 int cache_only, u64 min_trans);
2292int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2293 struct btrfs_key *max_key,
2294 struct btrfs_path *path, int cache_only,
2295 u64 min_trans);
2296int btrfs_cow_block(struct btrfs_trans_handle *trans,
2297 struct btrfs_root *root, struct extent_buffer *buf,
2298 struct extent_buffer *parent, int parent_slot,
2299 struct extent_buffer **cow_ret);
2300int btrfs_copy_root(struct btrfs_trans_handle *trans,
2301 struct btrfs_root *root,
2302 struct extent_buffer *buf,
2303 struct extent_buffer **cow_ret, u64 new_root_objectid);
2304int btrfs_block_can_be_shared(struct btrfs_root *root,
2305 struct extent_buffer *buf);
2306int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
2307 *root, struct btrfs_path *path, u32 data_size);
2308int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2309 struct btrfs_root *root,
2310 struct btrfs_path *path,
2311 u32 new_size, int from_end);
2312int btrfs_split_item(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_path *path,
2315 struct btrfs_key *new_key,
2316 unsigned long split_offset);
2317int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2318 struct btrfs_root *root,
2319 struct btrfs_path *path,
2320 struct btrfs_key *new_key);
2321int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2322 *root, struct btrfs_key *key, struct btrfs_path *p, int
2323 ins_len, int cow);
2324int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2325 struct btrfs_root *root, struct extent_buffer *parent,
2326 int start_slot, int cache_only, u64 *last_ret,
2327 struct btrfs_key *progress);
2328void btrfs_release_path(struct btrfs_path *p);
2329struct btrfs_path *btrfs_alloc_path(void);
2330void btrfs_free_path(struct btrfs_path *p);
2331void btrfs_set_path_blocking(struct btrfs_path *p);
2332void btrfs_clear_path_blocking(struct btrfs_path *p,
2333 struct extent_buffer *held, int held_rw);
2334void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
2335
2336int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2337 struct btrfs_path *path, int slot, int nr);
2338static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2339 struct btrfs_root *root,
2340 struct btrfs_path *path)
2341{
2342 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2343}
2344
2345int setup_items_for_insert(struct btrfs_trans_handle *trans,
2346 struct btrfs_root *root, struct btrfs_path *path,
2347 struct btrfs_key *cpu_key, u32 *data_size,
2348 u32 total_data, u32 total_size, int nr);
2349int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2350 *root, struct btrfs_key *key, void *data, u32 data_size);
2351int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2352 struct btrfs_root *root,
2353 struct btrfs_path *path,
2354 struct btrfs_key *cpu_key, u32 *data_size, int nr);
2355
2356static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2357 struct btrfs_root *root,
2358 struct btrfs_path *path,
2359 struct btrfs_key *key,
2360 u32 data_size)
2361{
2362 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
2363}
2364
2365int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2366int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2367int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
2368void btrfs_drop_snapshot(struct btrfs_root *root,
2369 struct btrfs_block_rsv *block_rsv, int update_ref);
2370int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2371 struct btrfs_root *root,
2372 struct extent_buffer *node,
2373 struct extent_buffer *parent);
2374static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2375{
2376 /*
2377 * Get synced with close_ctree()
2378 */
2379 smp_mb();
2380 return fs_info->closing;
2381}
2382
2383/* root-item.c */
2384int btrfs_find_root_ref(struct btrfs_root *tree_root,
2385 struct btrfs_path *path,
2386 u64 root_id, u64 ref_id);
2387int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *tree_root,
2389 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
2390 const char *name, int name_len);
2391int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *tree_root,
2393 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
2394 const char *name, int name_len);
2395int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2396 struct btrfs_key *key);
2397int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
2398 *root, struct btrfs_key *key, struct btrfs_root_item
2399 *item);
2400int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
2401 *root, struct btrfs_key *key, struct btrfs_root_item
2402 *item);
2403int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
2404 btrfs_root_item *item, struct btrfs_key *key);
2405int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid);
2406int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
2407void btrfs_set_root_node(struct btrfs_root_item *item,
2408 struct extent_buffer *node);
2409void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2410
2411/* dir-item.c */
2412int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
2413 struct btrfs_root *root, const char *name,
2414 int name_len, struct inode *dir,
2415 struct btrfs_key *location, u8 type, u64 index);
2416struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
2417 struct btrfs_root *root,
2418 struct btrfs_path *path, u64 dir,
2419 const char *name, int name_len,
2420 int mod);
2421struct btrfs_dir_item *
2422btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
2423 struct btrfs_root *root,
2424 struct btrfs_path *path, u64 dir,
2425 u64 objectid, const char *name, int name_len,
2426 int mod);
2427struct btrfs_dir_item *
2428btrfs_search_dir_index_item(struct btrfs_root *root,
2429 struct btrfs_path *path, u64 dirid,
2430 const char *name, int name_len);
2431struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
2432 struct btrfs_path *path,
2433 const char *name, int name_len);
2434int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
2435 struct btrfs_root *root,
2436 struct btrfs_path *path,
2437 struct btrfs_dir_item *di);
2438int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
2439 struct btrfs_root *root,
2440 struct btrfs_path *path, u64 objectid,
2441 const char *name, u16 name_len,
2442 const void *data, u16 data_len);
2443struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
2444 struct btrfs_root *root,
2445 struct btrfs_path *path, u64 dir,
2446 const char *name, u16 name_len,
2447 int mod);
2448int verify_dir_item(struct btrfs_root *root,
2449 struct extent_buffer *leaf,
2450 struct btrfs_dir_item *dir_item);
2451
2452/* orphan.c */
2453int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
2454 struct btrfs_root *root, u64 offset);
2455int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
2456 struct btrfs_root *root, u64 offset);
2457int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
2458
2459/* inode-item.c */
2460int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
2461 struct btrfs_root *root,
2462 const char *name, int name_len,
2463 u64 inode_objectid, u64 ref_objectid, u64 index);
2464int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
2465 struct btrfs_root *root,
2466 const char *name, int name_len,
2467 u64 inode_objectid, u64 ref_objectid, u64 *index);
2468struct btrfs_inode_ref *
2469btrfs_lookup_inode_ref(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 struct btrfs_path *path,
2472 const char *name, int name_len,
2473 u64 inode_objectid, u64 ref_objectid, int mod);
2474int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
2475 struct btrfs_root *root,
2476 struct btrfs_path *path, u64 objectid);
2477int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
2478 *root, struct btrfs_path *path,
2479 struct btrfs_key *location, int mod);
2480
2481/* file-item.c */
2482int btrfs_del_csums(struct btrfs_trans_handle *trans,
2483 struct btrfs_root *root, u64 bytenr, u64 len);
2484int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
2485 struct bio *bio, u32 *dst);
2486int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
2487 struct bio *bio, u64 logical_offset, u32 *dst);
2488int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
2489 struct btrfs_root *root,
2490 u64 objectid, u64 pos,
2491 u64 disk_offset, u64 disk_num_bytes,
2492 u64 num_bytes, u64 offset, u64 ram_bytes,
2493 u8 compression, u8 encryption, u16 other_encoding);
2494int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
2495 struct btrfs_root *root,
2496 struct btrfs_path *path, u64 objectid,
2497 u64 bytenr, int mod);
2498int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
2499 struct btrfs_root *root,
2500 struct btrfs_ordered_sum *sums);
2501int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
2502 struct bio *bio, u64 file_start, int contig);
2503struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
2504 struct btrfs_root *root,
2505 struct btrfs_path *path,
2506 u64 bytenr, int cow);
2507int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
2508 struct btrfs_root *root, struct btrfs_path *path,
2509 u64 isize);
2510int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
2511 struct list_head *list, int search_commit);
2512/* inode.c */
2513struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
2514 size_t pg_offset, u64 start, u64 len,
2515 int create);
2516
2517/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
2518#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
2519#define ClearPageChecked ClearPageFsMisc
2520#define SetPageChecked SetPageFsMisc
2521#define PageChecked PageFsMisc
2522#endif
2523
2524/* This forces readahead on a given range of bytes in an inode */
2525static inline void btrfs_force_ra(struct address_space *mapping,
2526 struct file_ra_state *ra, struct file *file,
2527 pgoff_t offset, unsigned long req_size)
2528{
2529 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
2530}
2531
2532struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
2533int btrfs_set_inode_index(struct inode *dir, u64 *index);
2534int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2535 struct btrfs_root *root,
2536 struct inode *dir, struct inode *inode,
2537 const char *name, int name_len);
2538int btrfs_add_link(struct btrfs_trans_handle *trans,
2539 struct inode *parent_inode, struct inode *inode,
2540 const char *name, int name_len, int add_backref, u64 index);
2541int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2542 struct btrfs_root *root,
2543 struct inode *dir, u64 objectid,
2544 const char *name, int name_len);
2545int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2546 struct btrfs_root *root,
2547 struct inode *inode, u64 new_size,
2548 u32 min_type);
2549
2550int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
2551int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2552 struct extent_state **cached_state);
2553int btrfs_writepages(struct address_space *mapping,
2554 struct writeback_control *wbc);
2555int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
2556 struct btrfs_root *new_root, u64 new_dirid);
2557int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
2558 size_t size, struct bio *bio, unsigned long bio_flags);
2559
2560int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2561int btrfs_readpage(struct file *file, struct page *page);
2562void btrfs_evict_inode(struct inode *inode);
2563int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2564void btrfs_dirty_inode(struct inode *inode, int flags);
2565struct inode *btrfs_alloc_inode(struct super_block *sb);
2566void btrfs_destroy_inode(struct inode *inode);
2567int btrfs_drop_inode(struct inode *inode);
2568int btrfs_init_cachep(void);
2569void btrfs_destroy_cachep(void);
2570long btrfs_ioctl_trans_end(struct file *file);
2571struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2572 struct btrfs_root *root, int *was_new);
2573struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2574 size_t pg_offset, u64 start, u64 end,
2575 int create);
2576int btrfs_update_inode(struct btrfs_trans_handle *trans,
2577 struct btrfs_root *root,
2578 struct inode *inode);
2579int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
2580int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode);
2581int btrfs_orphan_cleanup(struct btrfs_root *root);
2582void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2583 struct btrfs_pending_snapshot *pending,
2584 u64 *bytes_to_reserve);
2585void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2586 struct btrfs_pending_snapshot *pending);
2587void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2588 struct btrfs_root *root);
2589int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
2590int btrfs_invalidate_inodes(struct btrfs_root *root);
2591void btrfs_add_delayed_iput(struct inode *inode);
2592void btrfs_run_delayed_iputs(struct btrfs_root *root);
2593int btrfs_prealloc_file_range(struct inode *inode, int mode,
2594 u64 start, u64 num_bytes, u64 min_size,
2595 loff_t actual_len, u64 *alloc_hint);
2596int btrfs_prealloc_file_range_trans(struct inode *inode,
2597 struct btrfs_trans_handle *trans, int mode,
2598 u64 start, u64 num_bytes, u64 min_size,
2599 loff_t actual_len, u64 *alloc_hint);
2600extern const struct dentry_operations btrfs_dentry_operations;
2601
2602/* ioctl.c */
2603long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2604void btrfs_update_iflags(struct inode *inode);
2605void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
2606int btrfs_defrag_file(struct inode *inode, struct file *file,
2607 struct btrfs_ioctl_defrag_range_args *range,
2608 u64 newer_than, unsigned long max_pages);
2609/* file.c */
2610int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
2611 struct inode *inode);
2612int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
2613int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2614int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
2615 int skip_pinned);
2616extern const struct file_operations btrfs_file_operations;
2617int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
2618 u64 start, u64 end, u64 *hint_byte, int drop_cache);
2619int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
2620 struct inode *inode, u64 start, u64 end);
2621int btrfs_release_file(struct inode *inode, struct file *file);
2622void btrfs_drop_pages(struct page **pages, size_t num_pages);
2623int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
2624 struct page **pages, size_t num_pages,
2625 loff_t pos, size_t write_bytes,
2626 struct extent_state **cached);
2627
2628/* tree-defrag.c */
2629int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root, int cache_only);
2631
2632/* sysfs.c */
2633int btrfs_init_sysfs(void);
2634void btrfs_exit_sysfs(void);
2635
2636/* xattr.c */
2637ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
2638
2639/* super.c */
2640int btrfs_parse_options(struct btrfs_root *root, char *options);
2641int btrfs_sync_fs(struct super_block *sb, int wait);
2642void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
2643 unsigned int line, int errno);
2644
2645#define btrfs_std_error(fs_info, errno) \
2646do { \
2647 if ((errno)) \
2648 __btrfs_std_error((fs_info), __func__, __LINE__, (errno));\
2649} while (0)
2650
2651/* acl.c */
2652#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2653struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
2654int btrfs_init_acl(struct btrfs_trans_handle *trans,
2655 struct inode *inode, struct inode *dir);
2656int btrfs_acl_chmod(struct inode *inode);
2657#else
2658#define btrfs_get_acl NULL
2659static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
2660 struct inode *inode, struct inode *dir)
2661{
2662 return 0;
2663}
2664static inline int btrfs_acl_chmod(struct inode *inode)
2665{
2666 return 0;
2667}
2668#endif
2669
2670/* relocation.c */
2671int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
2672int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
2673 struct btrfs_root *root);
2674int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
2675 struct btrfs_root *root);
2676int btrfs_recover_relocation(struct btrfs_root *root);
2677int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
2678void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
2679 struct btrfs_root *root, struct extent_buffer *buf,
2680 struct extent_buffer *cow);
2681void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
2682 struct btrfs_pending_snapshot *pending,
2683 u64 *bytes_to_reserve);
2684void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
2685 struct btrfs_pending_snapshot *pending);
2686
2687/* scrub.c */
2688int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2689 struct btrfs_scrub_progress *progress, int readonly);
2690int btrfs_scrub_pause(struct btrfs_root *root);
2691int btrfs_scrub_pause_super(struct btrfs_root *root);
2692int btrfs_scrub_continue(struct btrfs_root *root);
2693int btrfs_scrub_continue_super(struct btrfs_root *root);
2694int btrfs_scrub_cancel(struct btrfs_root *root);
2695int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev);
2696int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid);
2697int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2698 struct btrfs_scrub_progress *progress);
2699
2700#endif