Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
  9#include <linux/pagemap.h>
 10#include "locking.h"
 11#include "fs.h"
 12#include "accessors.h"
 
 
 
 
 
 
 
 
 
 
 
 13
 14struct btrfs_trans_handle;
 15struct btrfs_transaction;
 16struct btrfs_pending_snapshot;
 17struct btrfs_delayed_ref_root;
 18struct btrfs_space_info;
 19struct btrfs_block_group;
 
 
 20struct btrfs_ordered_sum;
 21struct btrfs_ref;
 22struct btrfs_bio;
 23struct btrfs_ioctl_encoded_io_args;
 24struct btrfs_device;
 25struct btrfs_fs_devices;
 26struct btrfs_balance_control;
 27struct btrfs_delayed_root;
 28struct reloc_control;
 29
 30/* Read ahead values for struct btrfs_path.reada */
 31enum {
 32	READA_NONE,
 33	READA_BACK,
 34	READA_FORWARD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35	/*
 36	 * Similar to READA_FORWARD but unlike it:
 37	 *
 38	 * 1) It will trigger readahead even for leaves that are not close to
 39	 *    each other on disk;
 40	 * 2) It also triggers readahead for nodes;
 41	 * 3) During a search, even when a node or leaf is already in memory, it
 42	 *    will still trigger readahead for other nodes and leaves that follow
 43	 *    it.
 44	 *
 45	 * This is meant to be used only when we know we are iterating over the
 46	 * entire tree or a very large part of it.
 47	 */
 48	READA_FORWARD_ALWAYS,
 49};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 51/*
 52 * btrfs_paths remember the path taken from the root down to the leaf.
 53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 54 * to any other levels that are present.
 55 *
 56 * The slots array records the index of the item or block pointer
 57 * used while walking the tree.
 58 */
 59struct btrfs_path {
 60	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 61	int slots[BTRFS_MAX_LEVEL];
 62	/* if there is real range locking, this locks field will change */
 63	u8 locks[BTRFS_MAX_LEVEL];
 64	u8 reada;
 65	/* keep some upper locks as we walk down */
 66	u8 lowest_level;
 67
 68	/*
 69	 * set by btrfs_split_item, tells search_slot to keep all locks
 70	 * and to force calls to keep space in the nodes
 71	 */
 72	unsigned int search_for_split:1;
 73	unsigned int keep_locks:1;
 74	unsigned int skip_locking:1;
 
 75	unsigned int search_commit_root:1;
 76	unsigned int need_commit_sem:1;
 77	unsigned int skip_release_on_error:1;
 78	/*
 79	 * Indicate that new item (btrfs_search_slot) is extending already
 80	 * existing item and ins_len contains only the data size and not item
 81	 * header (ie. sizeof(struct btrfs_item) is not included).
 82	 */
 83	unsigned int search_for_extension:1;
 84	/* Stop search if any locks need to be taken (for read) */
 85	unsigned int nowait:1;
 86};
 87
 88/*
 89 * The state of btrfs root
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90 */
 91enum {
 
 
 
 
 
 
 
 
 
 
 92	/*
 93	 * btrfs_record_root_in_trans is a multi-step process, and it can race
 94	 * with the balancing code.   But the race is very small, and only the
 95	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
 96	 * is used to tell us when more checks are required
 97	 */
 98	BTRFS_ROOT_IN_TRANS_SETUP,
 
 
 
 
 
 
 
 
 99
100	/*
101	 * Set if tree blocks of this root can be shared by other roots.
102	 * Only subvolume trees and their reloc trees have this bit set.
103	 * Conflicts with TRACK_DIRTY bit.
104	 *
105	 * This affects two things:
106	 *
107	 * - How balance works
108	 *   For shareable roots, we need to use reloc tree and do path
109	 *   replacement for balance, and need various pre/post hooks for
110	 *   snapshot creation to handle them.
111	 *
112	 *   While for non-shareable trees, we just simply do a tree search
113	 *   with COW.
114	 *
115	 * - How dirty roots are tracked
116	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
117	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
118	 *   don't need to set this manually.
119	 */
120	BTRFS_ROOT_SHAREABLE,
121	BTRFS_ROOT_TRACK_DIRTY,
122	BTRFS_ROOT_IN_RADIX,
123	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124	BTRFS_ROOT_DEFRAG_RUNNING,
125	BTRFS_ROOT_FORCE_COW,
126	BTRFS_ROOT_MULTI_LOG_TASKS,
127	BTRFS_ROOT_DIRTY,
128	BTRFS_ROOT_DELETING,
129
130	/*
131	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
132	 *
133	 * Set for the subvolume tree owning the reloc tree.
134	 */
135	BTRFS_ROOT_DEAD_RELOC_TREE,
136	/* Mark dead root stored on device whose cleanup needs to be resumed */
137	BTRFS_ROOT_DEAD_TREE,
138	/* The root has a log tree. Used for subvolume roots and the tree root. */
139	BTRFS_ROOT_HAS_LOG_TREE,
140	/* Qgroup flushing is in progress */
141	BTRFS_ROOT_QGROUP_FLUSHING,
142	/* We started the orphan cleanup for this root. */
143	BTRFS_ROOT_ORPHAN_CLEANUP,
144	/* This root has a drop operation that was started previously. */
145	BTRFS_ROOT_UNFINISHED_DROP,
146	/* This reloc root needs to have its buffers lockdep class reset. */
147	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
 
153 */
154struct btrfs_qgroup_swapped_blocks {
155	spinlock_t lock;
156	/* RM_EMPTY_ROOT() of above blocks[] */
157	bool swapped;
158	struct rb_root blocks[BTRFS_MAX_LEVEL];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159};
160
161/*
162 * in ram representation of the tree.  extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166	struct rb_node rb_node;
167
168	struct extent_buffer *node;
169
170	struct extent_buffer *commit_root;
171	struct btrfs_root *log_root;
172	struct btrfs_root *reloc_root;
173
174	unsigned long state;
175	struct btrfs_root_item root_item;
176	struct btrfs_key root_key;
177	struct btrfs_fs_info *fs_info;
178	struct extent_io_tree dirty_log_pages;
179
 
 
180	struct mutex objectid_mutex;
181
182	spinlock_t accounting_lock;
183	struct btrfs_block_rsv *block_rsv;
184
 
 
 
 
 
 
 
 
 
 
185	struct mutex log_mutex;
186	wait_queue_head_t log_writer_wait;
187	wait_queue_head_t log_commit_wait[2];
188	struct list_head log_ctxs[2];
189	/* Used only for log trees of subvolumes, not for the log root tree */
190	atomic_t log_writers;
191	atomic_t log_commit[2];
192	/* Used only for log trees of subvolumes, not for the log root tree */
193	atomic_t log_batch;
194	/*
195	 * Protected by the 'log_mutex' lock but can be read without holding
196	 * that lock to avoid unnecessary lock contention, in which case it
197	 * should be read using btrfs_get_root_log_transid() except if it's a
198	 * log tree in which case it can be directly accessed. Updates to this
199	 * field should always use btrfs_set_root_log_transid(), except for log
200	 * trees where the field can be updated directly.
201	 */
202	int log_transid;
203	/* No matter the commit succeeds or not*/
204	int log_transid_committed;
205	/*
206	 * Just be updated when the commit succeeds. Use
207	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208	 * to access this field.
209	 */
210	int last_log_commit;
211	pid_t log_start_pid;
 
212
 
213	u64 last_trans;
214
215	u64 free_objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
 
 
 
 
 
 
 
 
 
 
 
217	struct btrfs_key defrag_progress;
218	struct btrfs_key defrag_max;
 
 
219
220	/* The dirty list is only used by non-shareable roots */
221	struct list_head dirty_list;
222
223	struct list_head root_list;
224
 
 
 
 
 
 
225	spinlock_t inode_lock;
226	/* red-black tree that keeps track of in-memory inodes */
227	struct rb_root inode_tree;
228
229	/*
230	 * Xarray that keeps track of delayed nodes of every inode, protected
231	 * by @inode_lock.
232	 */
233	struct xarray delayed_nodes;
234	/*
235	 * right now this just gets used so that a root has its own devid
236	 * for stat.  It may be used for more later
237	 */
238	dev_t anon_dev;
 
239
240	spinlock_t root_item_lock;
241	refcount_t refs;
 
242
243	struct mutex delalloc_mutex;
244	spinlock_t delalloc_lock;
245	/*
246	 * all of the inodes that have delalloc bytes.  It is possible for
247	 * this list to be empty even when there is still dirty data=ordered
248	 * extents waiting to finish IO.
249	 */
250	struct list_head delalloc_inodes;
251	struct list_head delalloc_root;
252	u64 nr_delalloc_inodes;
253
254	struct mutex ordered_extent_mutex;
255	/*
256	 * this is used by the balancing code to wait for all the pending
257	 * ordered extents
258	 */
259	spinlock_t ordered_extent_lock;
260
261	/*
262	 * all of the data=ordered extents pending writeback
263	 * these can span multiple transactions and basically include
264	 * every dirty data page that isn't from nodatacow
265	 */
266	struct list_head ordered_extents;
267	struct list_head ordered_root;
268	u64 nr_ordered_extents;
269
270	/*
271	 * Not empty if this subvolume root has gone through tree block swap
272	 * (relocation)
273	 *
274	 * Will be used by reloc_control::dirty_subvol_roots.
275	 */
276	struct list_head reloc_dirty_list;
277
278	/*
279	 * Number of currently running SEND ioctls to prevent
280	 * manipulation with the read-only status via SUBVOL_SETFLAGS
281	 */
282	int send_in_progress;
283	/*
284	 * Number of currently running deduplication operations that have a
285	 * destination inode belonging to this root. Protected by the lock
286	 * root_item_lock.
287	 */
288	int dedupe_in_progress;
289	/* For exclusion of snapshot creation and nocow writes */
290	struct btrfs_drew_lock snapshot_lock;
291
292	atomic_t snapshot_force_cow;
293
294	/* For qgroup metadata reserved space */
295	spinlock_t qgroup_meta_rsv_lock;
296	u64 qgroup_meta_rsv_pertrans;
297	u64 qgroup_meta_rsv_prealloc;
298	wait_queue_head_t qgroup_flush_wait;
 
 
 
 
 
299
300	/* Number of active swapfiles */
301	atomic_t nr_swapfiles;
 
 
 
 
 
 
 
 
 
 
302
303	/* Record pairs of swapped blocks for qgroup */
304	struct btrfs_qgroup_swapped_blocks swapped_blocks;
 
 
 
305
306	/* Used only by log trees, when logging csum items */
307	struct extent_io_tree log_csum_range;
 
 
 
308
309	/* Used in simple quotas, track root during relocation. */
310	u64 relocation_src_root;
 
 
 
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313	u64 alloc_bytenr;
314#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
316#ifdef CONFIG_BTRFS_DEBUG
317	struct list_head leak_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318#endif
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322{
323	/* Byte-swap the constant at compile time, root_item::flags is LE */
324	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
328{
329	/* Byte-swap the constant at compile time, root_item::flags is LE */
330	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334{
335	return root->root_key.objectid;
 
 
 
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340	return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
 
344{
345	WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
 
349{
350	return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354{
355	WRITE_ONCE(root->last_log_commit, commit_id);
 
 
356}
357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363	u64 disk_offset;
364	u64 disk_len;
365	u64 data_offset;
366	u64 data_len;
367	u64 file_offset;
368	/* Pointer to a file extent item of type regular or prealloc. */
369	char *extent_buf;
370	/*
371	 * Set to true when attempting to replace a file range with a new extent
372	 * described by this structure, set to false when attempting to clone an
373	 * existing extent into a file range.
374	 */
375	bool is_new_extent;
376	/* Indicate if we should update the inode's mtime and ctime. */
377	bool update_times;
378	/* Meaningful only if is_new_extent is true. */
379	int qgroup_reserved;
380	/*
381	 * Meaningful only if is_new_extent is true.
382	 * Used to track how many extent items we have already inserted in a
383	 * subvolume tree that refer to the extent described by this structure,
384	 * so that we know when to create a new delayed ref or update an existing
385	 * one.
386	 */
387	int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392	/* Input parameters */
 
 
 
 
 
 
 
 
 
 
393
394	/*
395	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396	 * If 'replace_extent' is true, this must not be NULL. Also the path
397	 * is always released except if 'replace_extent' is true and
398	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399	 * the path is kept locked.
400	 */
401	struct btrfs_path *path;
402	/* Start offset of the range to drop extents from */
403	u64 start;
404	/* End (exclusive, last byte + 1) of the range to drop extents from */
405	u64 end;
406	/* If true drop all the extent maps in the range */
407	bool drop_cache;
408	/*
409	 * If true it means we want to insert a new extent after dropping all
410	 * the extents in the range. If this is true, the 'extent_item_size'
411	 * parameter must be set as well and the 'extent_inserted' field will
412	 * be set to true by btrfs_drop_extents() if it could insert the new
413	 * extent.
414	 * Note: when this is set to true the path must not be NULL.
415	 */
416	bool replace_extent;
417	/*
418	 * Used if 'replace_extent' is true. Size of the file extent item to
419	 * insert after dropping all existing extents in the range
420	 */
421	u32 extent_item_size;
422
423	/* Output parameters */
 
 
 
 
424
425	/*
426	 * Set to the minimum between the input parameter 'end' and the end
427	 * (exclusive, last byte + 1) of the last dropped extent. This is always
428	 * set even if btrfs_drop_extents() returns an error.
429	 */
430	u64 drop_end;
431	/*
432	 * The number of allocated bytes found in the range. This can be smaller
433	 * than the range's length when there are holes in the range.
434	 */
435	u64 bytes_found;
436	/*
437	 * Only set if 'replace_extent' is true. Set to true if we were able
438	 * to insert a replacement extent after dropping all extents in the
439	 * range, otherwise set to false by btrfs_drop_extents().
440	 * Also, if btrfs_drop_extents() has set this to true it means it
441	 * returned with the path locked, otherwise if it has set this to
442	 * false it has returned with the path released.
443	 */
444	bool extent_inserted;
445};
446
447struct btrfs_file_private {
448	void *filldir_buf;
449	u64 last_index;
450	struct extent_state *llseek_cached_state;
451};
 
 
452
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
 
454{
455	return info->nodesize - sizeof(struct btrfs_header);
 
 
456}
457
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
 
459{
460	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
 
 
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
 
 
 
 
 
 
 
 
 
 
464{
465	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
466}
467
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
469{
470	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
471}
472
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474				((bytes) >> (fs_info)->sectorsize_bits)
 
 
 
 
 
 
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
477{
478	return mapping_gfp_constraint(mapping, ~__GFP_FS);
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482				   u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484			 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
 
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
 
 
 
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492		     const struct btrfs_key *key, int *slot);
 
 
 
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496#ifdef __LITTLE_ENDIAN
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
 
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503				  const struct btrfs_key *k2)
504{
505	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 
 
 
506
507	return btrfs_comp_cpu_keys(k1, k2);
 
 
508}
509
510#else
 
 
 
 
 
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514				  const struct btrfs_key *k2)
 
 
 
 
 
 
 
515{
516	struct btrfs_key k1;
 
517
518	btrfs_disk_key_to_cpu(&k1, disk);
 
 
 
 
519
520	return btrfs_comp_cpu_keys(&k1, k2);
 
 
 
 
 
521}
522
523#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524
 
 
 
 
 
525int btrfs_previous_item(struct btrfs_root *root,
526			struct btrfs_path *path, u64 min_objectid,
527			int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529			struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531			     struct btrfs_path *path,
532			     const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
 
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535			struct btrfs_key *key, int lowest_level,
536			u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538			 struct btrfs_path *path,
 
539			 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541					   int slot);
542
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544		    struct btrfs_root *root, struct extent_buffer *buf,
545		    struct extent_buffer *parent, int parent_slot,
546		    struct extent_buffer **cow_ret,
547		    enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549			  struct btrfs_root *root,
550			  struct extent_buffer *buf,
551			  struct extent_buffer *parent, int parent_slot,
552			  struct extent_buffer **cow_ret,
553			  u64 search_start, u64 empty_size,
554			  enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556		      struct btrfs_root *root,
557		      struct extent_buffer *buf,
558		      struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560			       struct btrfs_root *root,
561			       struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563		  struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565		       struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567			 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569		     struct btrfs_root *root,
570		     struct btrfs_path *path,
571		     const struct btrfs_key *new_key,
572		     unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574			 struct btrfs_root *root,
575			 struct btrfs_path *path,
576			 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580		      const struct btrfs_key *key, struct btrfs_path *p,
581		      int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583			  struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585			       const struct btrfs_key *key,
586			       struct btrfs_path *p, int find_higher,
587			       int return_any);
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
 
 
 
 
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593		   struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595				 struct btrfs_root *root,
596				 struct btrfs_path *path)
597{
598	return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606	/*
607	 * Pointer to an array containing the keys of the items to insert (in
608	 * sorted order).
609	 */
610	const struct btrfs_key *keys;
611	/* Pointer to an array containing the data size for each item to insert. */
612	const u32 *data_sizes;
613	/*
614	 * The sum of data sizes for all items. The caller can compute this while
615	 * setting up the data_sizes array, so it ends up being more efficient
616	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617	 * doing it, as it would avoid an extra loop over a potentially large
618	 * array, and in the case of setup_item_for_insert(), we would be doing
619	 * it while holding a write lock on a leaf and often on upper level nodes
620	 * too, unnecessarily increasing the size of a critical section.
621	 */
622	u32 total_data_size;
623	/* Size of the keys and data_sizes arrays (number of items in the batch). */
624	int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628				 struct btrfs_root *root,
629				 struct btrfs_path *path,
630				 const struct btrfs_key *key,
631				 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633		      const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635			     struct btrfs_root *root,
636			     struct btrfs_path *path,
637			     const struct btrfs_item_batch *batch);
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640					  struct btrfs_root *root,
641					  struct btrfs_path *path,
642					  const struct btrfs_key *key,
643					  u32 data_size)
644{
645	struct btrfs_item_batch batch;
646
647	batch.keys = key;
648	batch.data_sizes = &data_size;
649	batch.total_data_size = data_size;
650	batch.nr = 1;
651
652	return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656			u64 time_seq);
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659			   struct btrfs_path *path);
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662			      struct btrfs_path *path);
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
666 *
667 * @root:	The root node of the tree.
668 * @key:	The key we are looking for.
669 * @found_key:	Will hold the found item.
670 * @path:	Holds the current slot/leaf.
671 * @iter_ret:	Contains the value returned from btrfs_search_slot or
672 * 		btrfs_get_next_valid_item, whichever was executed last.
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
684	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
685		(iter_ret) >= 0 &&						\
686		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687		(path)->slots[0]++						\
688	)
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
699{
700	return btrfs_next_old_leaf(root, path, 0);
 
 
 
 
701}
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704{
705	return btrfs_next_old_item(root, p, 0);
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
708
709static inline int is_fstree(u64 rootid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710{
711	if (rootid == BTRFS_FS_TREE_OBJECTID ||
712	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713	      !btrfs_qgroup_level(rootid)))
714		return 1;
715	return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
 
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page)		PagePrivate2(page)
736#define SetPageOrdered(page)		SetPagePrivate2(page)
737#define ClearPageOrdered(page)		ClearPagePrivate2(page)
738#define folio_test_ordered(folio)	folio_test_private_2(folio)
739#define folio_set_ordered(folio)	folio_set_private_2(folio)
740#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
 
 
 
 
 
 
 
 
 
 
 
741
742#endif
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#ifndef __BTRFS_CTREE__
  20#define __BTRFS_CTREE__
  21
  22#include <linux/mm.h>
  23#include <linux/highmem.h>
  24#include <linux/fs.h>
  25#include <linux/rwsem.h>
  26#include <linux/completion.h>
  27#include <linux/backing-dev.h>
  28#include <linux/wait.h>
  29#include <linux/slab.h>
  30#include <linux/kobject.h>
  31#include <trace/events/btrfs.h>
  32#include <asm/kmap_types.h>
  33#include "extent_io.h"
  34#include "extent_map.h"
  35#include "async-thread.h"
  36#include "ioctl.h"
  37
  38struct btrfs_trans_handle;
  39struct btrfs_transaction;
  40struct btrfs_pending_snapshot;
  41extern struct kmem_cache *btrfs_trans_handle_cachep;
  42extern struct kmem_cache *btrfs_transaction_cachep;
  43extern struct kmem_cache *btrfs_bit_radix_cachep;
  44extern struct kmem_cache *btrfs_path_cachep;
  45extern struct kmem_cache *btrfs_free_space_cachep;
  46struct btrfs_ordered_sum;
 
 
 
 
 
 
 
 
  47
  48#define BTRFS_MAGIC "_BHRfS_M"
  49
  50#define BTRFS_MAX_LEVEL 8
  51
  52#define BTRFS_COMPAT_EXTENT_TREE_V0
  53
  54/*
  55 * files bigger than this get some pre-flushing when they are added
  56 * to the ordered operations list.  That way we limit the total
  57 * work done by the commit
  58 */
  59#define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
  60
  61/* holds pointers to all of the tree roots */
  62#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  63
  64/* stores information about which extents are in use, and reference counts */
  65#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  66
  67/*
  68 * chunk tree stores translations from logical -> physical block numbering
  69 * the super block points to the chunk tree
  70 */
  71#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  72
  73/*
  74 * stores information about which areas of a given device are in use.
  75 * one per device.  The tree of tree roots points to the device tree
  76 */
  77#define BTRFS_DEV_TREE_OBJECTID 4ULL
  78
  79/* one per subvolume, storing files and directories */
  80#define BTRFS_FS_TREE_OBJECTID 5ULL
  81
  82/* directory objectid inside the root tree */
  83#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  84
  85/* holds checksums of all the data extents */
  86#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  87
  88/* orhpan objectid for tracking unlinked/truncated files */
  89#define BTRFS_ORPHAN_OBJECTID -5ULL
  90
  91/* does write ahead logging to speed up fsyncs */
  92#define BTRFS_TREE_LOG_OBJECTID -6ULL
  93#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  94
  95/* for space balancing */
  96#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  97#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  98
  99/*
 100 * extent checksums all have this objectid
 101 * this allows them to share the logging tree
 102 * for fsyncs
 103 */
 104#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
 105
 106/* For storing free space cache */
 107#define BTRFS_FREE_SPACE_OBJECTID -11ULL
 108
 109/*
 110 * The inode number assigned to the special inode for sotring
 111 * free ino cache
 112 */
 113#define BTRFS_FREE_INO_OBJECTID -12ULL
 114
 115/* dummy objectid represents multiple objectids */
 116#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
 117
 118/*
 119 * All files have objectids in this range.
 120 */
 121#define BTRFS_FIRST_FREE_OBJECTID 256ULL
 122#define BTRFS_LAST_FREE_OBJECTID -256ULL
 123#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
 124
 125
 126/*
 127 * the device items go into the chunk tree.  The key is in the form
 128 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 129 */
 130#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 131
 132#define BTRFS_BTREE_INODE_OBJECTID 1
 133
 134#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 135
 136/*
 137 * we can actually store much bigger names, but lets not confuse the rest
 138 * of linux
 139 */
 140#define BTRFS_NAME_LEN 255
 141
 142/* 32 bytes in various csum fields */
 143#define BTRFS_CSUM_SIZE 32
 144
 145/* csum types */
 146#define BTRFS_CSUM_TYPE_CRC32	0
 147
 148static int btrfs_csum_sizes[] = { 4, 0 };
 149
 150/* four bytes for CRC32 */
 151#define BTRFS_EMPTY_DIR_SIZE 0
 152
 153#define BTRFS_FT_UNKNOWN	0
 154#define BTRFS_FT_REG_FILE	1
 155#define BTRFS_FT_DIR		2
 156#define BTRFS_FT_CHRDEV		3
 157#define BTRFS_FT_BLKDEV		4
 158#define BTRFS_FT_FIFO		5
 159#define BTRFS_FT_SOCK		6
 160#define BTRFS_FT_SYMLINK	7
 161#define BTRFS_FT_XATTR		8
 162#define BTRFS_FT_MAX		9
 163
 164/*
 165 * The key defines the order in the tree, and so it also defines (optimal)
 166 * block layout.
 167 *
 168 * objectid corresponds to the inode number.
 169 *
 170 * type tells us things about the object, and is a kind of stream selector.
 171 * so for a given inode, keys with type of 1 might refer to the inode data,
 172 * type of 2 may point to file data in the btree and type == 3 may point to
 173 * extents.
 174 *
 175 * offset is the starting byte offset for this key in the stream.
 176 *
 177 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 178 * in cpu native order.  Otherwise they are identical and their sizes
 179 * should be the same (ie both packed)
 180 */
 181struct btrfs_disk_key {
 182	__le64 objectid;
 183	u8 type;
 184	__le64 offset;
 185} __attribute__ ((__packed__));
 186
 187struct btrfs_key {
 188	u64 objectid;
 189	u8 type;
 190	u64 offset;
 191} __attribute__ ((__packed__));
 192
 193struct btrfs_mapping_tree {
 194	struct extent_map_tree map_tree;
 195};
 196
 197struct btrfs_dev_item {
 198	/* the internal btrfs device id */
 199	__le64 devid;
 200
 201	/* size of the device */
 202	__le64 total_bytes;
 203
 204	/* bytes used */
 205	__le64 bytes_used;
 206
 207	/* optimal io alignment for this device */
 208	__le32 io_align;
 209
 210	/* optimal io width for this device */
 211	__le32 io_width;
 212
 213	/* minimal io size for this device */
 214	__le32 sector_size;
 215
 216	/* type and info about this device */
 217	__le64 type;
 218
 219	/* expected generation for this device */
 220	__le64 generation;
 221
 222	/*
 223	 * starting byte of this partition on the device,
 224	 * to allow for stripe alignment in the future
 
 
 
 
 
 
 
 
 
 225	 */
 226	__le64 start_offset;
 227
 228	/* grouping information for allocation decisions */
 229	__le32 dev_group;
 230
 231	/* seek speed 0-100 where 100 is fastest */
 232	u8 seek_speed;
 233
 234	/* bandwidth 0-100 where 100 is fastest */
 235	u8 bandwidth;
 236
 237	/* btrfs generated uuid for this device */
 238	u8 uuid[BTRFS_UUID_SIZE];
 239
 240	/* uuid of FS who owns this device */
 241	u8 fsid[BTRFS_UUID_SIZE];
 242} __attribute__ ((__packed__));
 243
 244struct btrfs_stripe {
 245	__le64 devid;
 246	__le64 offset;
 247	u8 dev_uuid[BTRFS_UUID_SIZE];
 248} __attribute__ ((__packed__));
 249
 250struct btrfs_chunk {
 251	/* size of this chunk in bytes */
 252	__le64 length;
 253
 254	/* objectid of the root referencing this chunk */
 255	__le64 owner;
 256
 257	__le64 stripe_len;
 258	__le64 type;
 259
 260	/* optimal io alignment for this chunk */
 261	__le32 io_align;
 262
 263	/* optimal io width for this chunk */
 264	__le32 io_width;
 265
 266	/* minimal io size for this chunk */
 267	__le32 sector_size;
 268
 269	/* 2^16 stripes is quite a lot, a second limit is the size of a single
 270	 * item in the btree
 271	 */
 272	__le16 num_stripes;
 273
 274	/* sub stripes only matter for raid10 */
 275	__le16 sub_stripes;
 276	struct btrfs_stripe stripe;
 277	/* additional stripes go here */
 278} __attribute__ ((__packed__));
 279
 280#define BTRFS_FREE_SPACE_EXTENT	1
 281#define BTRFS_FREE_SPACE_BITMAP	2
 282
 283struct btrfs_free_space_entry {
 284	__le64 offset;
 285	__le64 bytes;
 286	u8 type;
 287} __attribute__ ((__packed__));
 288
 289struct btrfs_free_space_header {
 290	struct btrfs_disk_key location;
 291	__le64 generation;
 292	__le64 num_entries;
 293	__le64 num_bitmaps;
 294} __attribute__ ((__packed__));
 295
 296static inline unsigned long btrfs_chunk_item_size(int num_stripes)
 297{
 298	BUG_ON(num_stripes == 0);
 299	return sizeof(struct btrfs_chunk) +
 300		sizeof(struct btrfs_stripe) * (num_stripes - 1);
 301}
 302
 303#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
 304#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
 305
 306/*
 307 * File system states
 308 */
 309
 310/* Errors detected */
 311#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
 312
 313#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
 314#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
 315
 316#define BTRFS_BACKREF_REV_MAX		256
 317#define BTRFS_BACKREF_REV_SHIFT		56
 318#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
 319					 BTRFS_BACKREF_REV_SHIFT)
 320
 321#define BTRFS_OLD_BACKREF_REV		0
 322#define BTRFS_MIXED_BACKREF_REV		1
 323
 324/*
 325 * every tree block (leaf or node) starts with this header.
 326 */
 327struct btrfs_header {
 328	/* these first four must match the super block */
 329	u8 csum[BTRFS_CSUM_SIZE];
 330	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
 331	__le64 bytenr; /* which block this node is supposed to live in */
 332	__le64 flags;
 333
 334	/* allowed to be different from the super from here on down */
 335	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 336	__le64 generation;
 337	__le64 owner;
 338	__le32 nritems;
 339	u8 level;
 340} __attribute__ ((__packed__));
 341
 342#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
 343				      sizeof(struct btrfs_header)) / \
 344				     sizeof(struct btrfs_key_ptr))
 345#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
 346#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
 347#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
 348					sizeof(struct btrfs_item) - \
 349					sizeof(struct btrfs_file_extent_item))
 350#define BTRFS_MAX_XATTR_SIZE(r)	(BTRFS_LEAF_DATA_SIZE(r) - \
 351				 sizeof(struct btrfs_item) -\
 352				 sizeof(struct btrfs_dir_item))
 353
 354
 355/*
 356 * this is a very generous portion of the super block, giving us
 357 * room to translate 14 chunks with 3 stripes each.
 358 */
 359#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
 360#define BTRFS_LABEL_SIZE 256
 361
 362/*
 363 * the super block basically lists the main trees of the FS
 364 * it currently lacks any block count etc etc
 365 */
 366struct btrfs_super_block {
 367	u8 csum[BTRFS_CSUM_SIZE];
 368	/* the first 4 fields must match struct btrfs_header */
 369	u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
 370	__le64 bytenr; /* this block number */
 371	__le64 flags;
 372
 373	/* allowed to be different from the btrfs_header from here own down */
 374	__le64 magic;
 375	__le64 generation;
 376	__le64 root;
 377	__le64 chunk_root;
 378	__le64 log_root;
 379
 380	/* this will help find the new super based on the log root */
 381	__le64 log_root_transid;
 382	__le64 total_bytes;
 383	__le64 bytes_used;
 384	__le64 root_dir_objectid;
 385	__le64 num_devices;
 386	__le32 sectorsize;
 387	__le32 nodesize;
 388	__le32 leafsize;
 389	__le32 stripesize;
 390	__le32 sys_chunk_array_size;
 391	__le64 chunk_root_generation;
 392	__le64 compat_flags;
 393	__le64 compat_ro_flags;
 394	__le64 incompat_flags;
 395	__le16 csum_type;
 396	u8 root_level;
 397	u8 chunk_root_level;
 398	u8 log_root_level;
 399	struct btrfs_dev_item dev_item;
 400
 401	char label[BTRFS_LABEL_SIZE];
 402
 403	__le64 cache_generation;
 404
 405	/* future expansion */
 406	__le64 reserved[31];
 407	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
 408} __attribute__ ((__packed__));
 409
 410/*
 411 * Compat flags that we support.  If any incompat flags are set other than the
 412 * ones specified below then we will fail to mount
 413 */
 414#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF	(1ULL << 0)
 415#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL	(1ULL << 1)
 416#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS	(1ULL << 2)
 417#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO	(1ULL << 3)
 418
 419#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
 420#define BTRFS_FEATURE_COMPAT_RO_SUPP		0ULL
 421#define BTRFS_FEATURE_INCOMPAT_SUPP			\
 422	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
 423	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
 424	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
 425	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO)
 426
 427/*
 428 * A leaf is full of items. offset and size tell us where to find
 429 * the item in the leaf (relative to the start of the data area)
 430 */
 431struct btrfs_item {
 432	struct btrfs_disk_key key;
 433	__le32 offset;
 434	__le32 size;
 435} __attribute__ ((__packed__));
 436
 437/*
 438 * leaves have an item area and a data area:
 439 * [item0, item1....itemN] [free space] [dataN...data1, data0]
 440 *
 441 * The data is separate from the items to get the keys closer together
 442 * during searches.
 443 */
 444struct btrfs_leaf {
 445	struct btrfs_header header;
 446	struct btrfs_item items[];
 447} __attribute__ ((__packed__));
 448
 449/*
 450 * all non-leaf blocks are nodes, they hold only keys and pointers to
 451 * other blocks
 452 */
 453struct btrfs_key_ptr {
 454	struct btrfs_disk_key key;
 455	__le64 blockptr;
 456	__le64 generation;
 457} __attribute__ ((__packed__));
 458
 459struct btrfs_node {
 460	struct btrfs_header header;
 461	struct btrfs_key_ptr ptrs[];
 462} __attribute__ ((__packed__));
 463
 464/*
 465 * btrfs_paths remember the path taken from the root down to the leaf.
 466 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 467 * to any other levels that are present.
 468 *
 469 * The slots array records the index of the item or block pointer
 470 * used while walking the tree.
 471 */
 472struct btrfs_path {
 473	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 474	int slots[BTRFS_MAX_LEVEL];
 475	/* if there is real range locking, this locks field will change */
 476	int locks[BTRFS_MAX_LEVEL];
 477	int reada;
 478	/* keep some upper locks as we walk down */
 479	int lowest_level;
 480
 481	/*
 482	 * set by btrfs_split_item, tells search_slot to keep all locks
 483	 * and to force calls to keep space in the nodes
 484	 */
 485	unsigned int search_for_split:1;
 486	unsigned int keep_locks:1;
 487	unsigned int skip_locking:1;
 488	unsigned int leave_spinning:1;
 489	unsigned int search_commit_root:1;
 
 
 
 
 
 
 
 
 
 
 490};
 491
 492/*
 493 * items in the extent btree are used to record the objectid of the
 494 * owner of the block and the number of references
 495 */
 496
 497struct btrfs_extent_item {
 498	__le64 refs;
 499	__le64 generation;
 500	__le64 flags;
 501} __attribute__ ((__packed__));
 502
 503struct btrfs_extent_item_v0 {
 504	__le32 refs;
 505} __attribute__ ((__packed__));
 506
 507#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
 508					sizeof(struct btrfs_item))
 509
 510#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
 511#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
 512
 513/* following flags only apply to tree blocks */
 514
 515/* use full backrefs for extent pointers in the block */
 516#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
 517
 518/*
 519 * this flag is only used internally by scrub and may be changed at any time
 520 * it is only declared here to avoid collisions
 521 */
 522#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
 523
 524struct btrfs_tree_block_info {
 525	struct btrfs_disk_key key;
 526	u8 level;
 527} __attribute__ ((__packed__));
 528
 529struct btrfs_extent_data_ref {
 530	__le64 root;
 531	__le64 objectid;
 532	__le64 offset;
 533	__le32 count;
 534} __attribute__ ((__packed__));
 535
 536struct btrfs_shared_data_ref {
 537	__le32 count;
 538} __attribute__ ((__packed__));
 539
 540struct btrfs_extent_inline_ref {
 541	u8 type;
 542	__le64 offset;
 543} __attribute__ ((__packed__));
 544
 545/* old style backrefs item */
 546struct btrfs_extent_ref_v0 {
 547	__le64 root;
 548	__le64 generation;
 549	__le64 objectid;
 550	__le32 count;
 551} __attribute__ ((__packed__));
 552
 553
 554/* dev extents record free space on individual devices.  The owner
 555 * field points back to the chunk allocation mapping tree that allocated
 556 * the extent.  The chunk tree uuid field is a way to double check the owner
 557 */
 558struct btrfs_dev_extent {
 559	__le64 chunk_tree;
 560	__le64 chunk_objectid;
 561	__le64 chunk_offset;
 562	__le64 length;
 563	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 564} __attribute__ ((__packed__));
 565
 566struct btrfs_inode_ref {
 567	__le64 index;
 568	__le16 name_len;
 569	/* name goes here */
 570} __attribute__ ((__packed__));
 571
 572struct btrfs_timespec {
 573	__le64 sec;
 574	__le32 nsec;
 575} __attribute__ ((__packed__));
 576
 577enum btrfs_compression_type {
 578	BTRFS_COMPRESS_NONE  = 0,
 579	BTRFS_COMPRESS_ZLIB  = 1,
 580	BTRFS_COMPRESS_LZO   = 2,
 581	BTRFS_COMPRESS_TYPES = 2,
 582	BTRFS_COMPRESS_LAST  = 3,
 583};
 584
 585struct btrfs_inode_item {
 586	/* nfs style generation number */
 587	__le64 generation;
 588	/* transid that last touched this inode */
 589	__le64 transid;
 590	__le64 size;
 591	__le64 nbytes;
 592	__le64 block_group;
 593	__le32 nlink;
 594	__le32 uid;
 595	__le32 gid;
 596	__le32 mode;
 597	__le64 rdev;
 598	__le64 flags;
 599
 600	/* modification sequence number for NFS */
 601	__le64 sequence;
 602
 603	/*
 604	 * a little future expansion, for more than this we can
 605	 * just grow the inode item and version it
 606	 */
 607	__le64 reserved[4];
 608	struct btrfs_timespec atime;
 609	struct btrfs_timespec ctime;
 610	struct btrfs_timespec mtime;
 611	struct btrfs_timespec otime;
 612} __attribute__ ((__packed__));
 613
 614struct btrfs_dir_log_item {
 615	__le64 end;
 616} __attribute__ ((__packed__));
 617
 618struct btrfs_dir_item {
 619	struct btrfs_disk_key location;
 620	__le64 transid;
 621	__le16 data_len;
 622	__le16 name_len;
 623	u8 type;
 624} __attribute__ ((__packed__));
 625
 626#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
 627
 628struct btrfs_root_item {
 629	struct btrfs_inode_item inode;
 630	__le64 generation;
 631	__le64 root_dirid;
 632	__le64 bytenr;
 633	__le64 byte_limit;
 634	__le64 bytes_used;
 635	__le64 last_snapshot;
 636	__le64 flags;
 637	__le32 refs;
 638	struct btrfs_disk_key drop_progress;
 639	u8 drop_level;
 640	u8 level;
 641} __attribute__ ((__packed__));
 642
 643/*
 644 * this is used for both forward and backward root refs
 645 */
 646struct btrfs_root_ref {
 647	__le64 dirid;
 648	__le64 sequence;
 649	__le16 name_len;
 650} __attribute__ ((__packed__));
 651
 652#define BTRFS_FILE_EXTENT_INLINE 0
 653#define BTRFS_FILE_EXTENT_REG 1
 654#define BTRFS_FILE_EXTENT_PREALLOC 2
 655
 656struct btrfs_file_extent_item {
 657	/*
 658	 * transaction id that created this extent
 
 
 
 659	 */
 660	__le64 generation;
 661	/*
 662	 * max number of bytes to hold this extent in ram
 663	 * when we split a compressed extent we can't know how big
 664	 * each of the resulting pieces will be.  So, this is
 665	 * an upper limit on the size of the extent in ram instead of
 666	 * an exact limit.
 667	 */
 668	__le64 ram_bytes;
 669
 670	/*
 671	 * 32 bits for the various ways we might encode the data,
 672	 * including compression and encryption.  If any of these
 673	 * are set to something a given disk format doesn't understand
 674	 * it is treated like an incompat flag for reading and writing,
 675	 * but not for stat.
 676	 */
 677	u8 compression;
 678	u8 encryption;
 679	__le16 other_encoding; /* spare for later use */
 680
 681	/* are we inline data or a real extent? */
 682	u8 type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684	/*
 685	 * disk space consumed by the extent, checksum blocks are included
 686	 * in these numbers
 
 687	 */
 688	__le64 disk_bytenr;
 689	__le64 disk_num_bytes;
 690	/*
 691	 * the logical offset in file blocks (no csums)
 692	 * this extent record is for.  This allows a file extent to point
 693	 * into the middle of an existing extent on disk, sharing it
 694	 * between two snapshots (useful if some bytes in the middle of the
 695	 * extent have changed
 696	 */
 697	__le64 offset;
 698	/*
 699	 * the logical number of file blocks (no csums included).  This
 700	 * always reflects the size uncompressed and without encoding.
 701	 */
 702	__le64 num_bytes;
 703
 704} __attribute__ ((__packed__));
 705
 706struct btrfs_csum_item {
 707	u8 csum;
 708} __attribute__ ((__packed__));
 709
 710/* different types of block groups (and chunks) */
 711#define BTRFS_BLOCK_GROUP_DATA     (1 << 0)
 712#define BTRFS_BLOCK_GROUP_SYSTEM   (1 << 1)
 713#define BTRFS_BLOCK_GROUP_METADATA (1 << 2)
 714#define BTRFS_BLOCK_GROUP_RAID0    (1 << 3)
 715#define BTRFS_BLOCK_GROUP_RAID1    (1 << 4)
 716#define BTRFS_BLOCK_GROUP_DUP	   (1 << 5)
 717#define BTRFS_BLOCK_GROUP_RAID10   (1 << 6)
 718#define BTRFS_NR_RAID_TYPES	   5
 719
 720struct btrfs_block_group_item {
 721	__le64 used;
 722	__le64 chunk_objectid;
 723	__le64 flags;
 724} __attribute__ ((__packed__));
 725
 726struct btrfs_space_info {
 727	u64 flags;
 728
 729	u64 total_bytes;	/* total bytes in the space,
 730				   this doesn't take mirrors into account */
 731	u64 bytes_used;		/* total bytes used,
 732				   this doesn't take mirrors into account */
 733	u64 bytes_pinned;	/* total bytes pinned, will be freed when the
 734				   transaction finishes */
 735	u64 bytes_reserved;	/* total bytes the allocator has reserved for
 736				   current allocations */
 737	u64 bytes_readonly;	/* total bytes that are read only */
 738
 739	u64 bytes_may_use;	/* number of bytes that may be used for
 740				   delalloc/allocations */
 741	u64 disk_used;		/* total bytes used on disk */
 742	u64 disk_total;		/* total bytes on disk, takes mirrors into
 743				   account */
 744
 745	/*
 746	 * we bump reservation progress every time we decrement
 747	 * bytes_reserved.  This way people waiting for reservations
 748	 * know something good has happened and they can check
 749	 * for progress.  The number here isn't to be trusted, it
 750	 * just shows reclaim activity
 751	 */
 752	unsigned long reservation_progress;
 753
 754	unsigned int full:1;	/* indicates that we cannot allocate any more
 755				   chunks for this space */
 756	unsigned int chunk_alloc:1;	/* set if we are allocating a chunk */
 757
 758	unsigned int flush:1;		/* set if we are trying to make space */
 759
 760	unsigned int force_alloc;	/* set if we need to force a chunk
 761					   alloc for this space */
 762
 763	struct list_head list;
 764
 765	/* for block groups in our same type */
 766	struct list_head block_groups[BTRFS_NR_RAID_TYPES];
 767	spinlock_t lock;
 768	struct rw_semaphore groups_sem;
 769	wait_queue_head_t wait;
 770};
 771
 772struct btrfs_block_rsv {
 773	u64 size;
 774	u64 reserved;
 775	u64 freed[2];
 776	struct btrfs_space_info *space_info;
 777	struct list_head list;
 778	spinlock_t lock;
 779	atomic_t usage;
 780	unsigned int priority:8;
 781	unsigned int durable:1;
 782	unsigned int refill_used:1;
 783	unsigned int full:1;
 784};
 785
 786/*
 787 * free clusters are used to claim free space in relatively large chunks,
 788 * allowing us to do less seeky writes.  They are used for all metadata
 789 * allocations and data allocations in ssd mode.
 790 */
 791struct btrfs_free_cluster {
 792	spinlock_t lock;
 793	spinlock_t refill_lock;
 794	struct rb_root root;
 795
 796	/* largest extent in this cluster */
 797	u64 max_size;
 798
 799	/* first extent starting offset */
 800	u64 window_start;
 801
 802	struct btrfs_block_group_cache *block_group;
 803	/*
 804	 * when a cluster is allocated from a block group, we put the
 805	 * cluster onto a list in the block group so that it can
 806	 * be freed before the block group is freed.
 807	 */
 808	struct list_head block_group_list;
 809};
 810
 811enum btrfs_caching_type {
 812	BTRFS_CACHE_NO		= 0,
 813	BTRFS_CACHE_STARTED	= 1,
 814	BTRFS_CACHE_FINISHED	= 2,
 815};
 816
 817enum btrfs_disk_cache_state {
 818	BTRFS_DC_WRITTEN	= 0,
 819	BTRFS_DC_ERROR		= 1,
 820	BTRFS_DC_CLEAR		= 2,
 821	BTRFS_DC_SETUP		= 3,
 822	BTRFS_DC_NEED_WRITE	= 4,
 823};
 824
 825struct btrfs_caching_control {
 826	struct list_head list;
 827	struct mutex mutex;
 828	wait_queue_head_t wait;
 829	struct btrfs_work work;
 830	struct btrfs_block_group_cache *block_group;
 831	u64 progress;
 832	atomic_t count;
 833};
 834
 835struct btrfs_block_group_cache {
 836	struct btrfs_key key;
 837	struct btrfs_block_group_item item;
 838	struct btrfs_fs_info *fs_info;
 839	struct inode *inode;
 840	spinlock_t lock;
 841	u64 pinned;
 842	u64 reserved;
 843	u64 reserved_pinned;
 844	u64 bytes_super;
 845	u64 flags;
 846	u64 sectorsize;
 847	unsigned int ro:1;
 848	unsigned int dirty:1;
 849	unsigned int iref:1;
 850
 851	int disk_cache_state;
 852
 853	/* cache tracking stuff */
 854	int cached;
 855	struct btrfs_caching_control *caching_ctl;
 856	u64 last_byte_to_unpin;
 857
 858	struct btrfs_space_info *space_info;
 859
 860	/* free space cache stuff */
 861	struct btrfs_free_space_ctl *free_space_ctl;
 862
 863	/* block group cache stuff */
 864	struct rb_node cache_node;
 865
 866	/* for block groups in the same raid type */
 867	struct list_head list;
 868
 869	/* usage count */
 870	atomic_t count;
 871
 872	/* List of struct btrfs_free_clusters for this block group.
 873	 * Today it will only have one thing on it, but that may change
 874	 */
 875	struct list_head cluster_list;
 876};
 877
 878struct reloc_control;
 879struct btrfs_device;
 880struct btrfs_fs_devices;
 881struct btrfs_delayed_root;
 882struct btrfs_fs_info {
 883	u8 fsid[BTRFS_FSID_SIZE];
 884	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 885	struct btrfs_root *extent_root;
 886	struct btrfs_root *tree_root;
 887	struct btrfs_root *chunk_root;
 888	struct btrfs_root *dev_root;
 889	struct btrfs_root *fs_root;
 890	struct btrfs_root *csum_root;
 891
 892	/* the log root tree is a directory of all the other log roots */
 893	struct btrfs_root *log_root_tree;
 894
 895	spinlock_t fs_roots_radix_lock;
 896	struct radix_tree_root fs_roots_radix;
 897
 898	/* block group cache stuff */
 899	spinlock_t block_group_cache_lock;
 900	struct rb_root block_group_cache_tree;
 901
 902	struct extent_io_tree freed_extents[2];
 903	struct extent_io_tree *pinned_extents;
 904
 905	/* logical->physical extent mapping */
 906	struct btrfs_mapping_tree mapping_tree;
 907
 908	/*
 909	 * block reservation for extent, checksum, root tree and
 910	 * delayed dir index item
 911	 */
 912	struct btrfs_block_rsv global_block_rsv;
 913	/* block reservation for delay allocation */
 914	struct btrfs_block_rsv delalloc_block_rsv;
 915	/* block reservation for metadata operations */
 916	struct btrfs_block_rsv trans_block_rsv;
 917	/* block reservation for chunk tree */
 918	struct btrfs_block_rsv chunk_block_rsv;
 919
 920	struct btrfs_block_rsv empty_block_rsv;
 921
 922	/* list of block reservations that cross multiple transactions */
 923	struct list_head durable_block_rsv_list;
 924
 925	struct mutex durable_block_rsv_mutex;
 926
 927	u64 generation;
 928	u64 last_trans_committed;
 929
 930	/*
 931	 * this is updated to the current trans every time a full commit
 932	 * is required instead of the faster short fsync log commits
 933	 */
 934	u64 last_trans_log_full_commit;
 935	unsigned long mount_opt:20;
 936	unsigned long compress_type:4;
 937	u64 max_inline;
 938	u64 alloc_start;
 939	struct btrfs_transaction *running_transaction;
 940	wait_queue_head_t transaction_throttle;
 941	wait_queue_head_t transaction_wait;
 942	wait_queue_head_t transaction_blocked_wait;
 943	wait_queue_head_t async_submit_wait;
 944
 945	struct btrfs_super_block super_copy;
 946	struct btrfs_super_block super_for_commit;
 947	struct block_device *__bdev;
 948	struct super_block *sb;
 949	struct inode *btree_inode;
 950	struct backing_dev_info bdi;
 951	struct mutex tree_log_mutex;
 952	struct mutex transaction_kthread_mutex;
 953	struct mutex cleaner_mutex;
 954	struct mutex chunk_mutex;
 955	struct mutex volume_mutex;
 956	/*
 957	 * this protects the ordered operations list only while we are
 958	 * processing all of the entries on it.  This way we make
 959	 * sure the commit code doesn't find the list temporarily empty
 960	 * because another function happens to be doing non-waiting preflush
 961	 * before jumping into the main commit.
 962	 */
 963	struct mutex ordered_operations_mutex;
 964	struct rw_semaphore extent_commit_sem;
 965
 966	struct rw_semaphore cleanup_work_sem;
 967
 968	struct rw_semaphore subvol_sem;
 969	struct srcu_struct subvol_srcu;
 970
 971	spinlock_t trans_lock;
 972	/*
 973	 * the reloc mutex goes with the trans lock, it is taken
 974	 * during commit to protect us from the relocation code
 975	 */
 976	struct mutex reloc_mutex;
 977
 978	struct list_head trans_list;
 979	struct list_head hashers;
 980	struct list_head dead_roots;
 981	struct list_head caching_block_groups;
 982
 983	spinlock_t delayed_iput_lock;
 984	struct list_head delayed_iputs;
 985
 986	atomic_t nr_async_submits;
 987	atomic_t async_submit_draining;
 988	atomic_t nr_async_bios;
 989	atomic_t async_delalloc_pages;
 990	atomic_t open_ioctl_trans;
 991
 992	/*
 993	 * this is used by the balancing code to wait for all the pending
 994	 * ordered extents
 995	 */
 996	spinlock_t ordered_extent_lock;
 997
 998	/*
 999	 * all of the data=ordered extents pending writeback
1000	 * these can span multiple transactions and basically include
1001	 * every dirty data page that isn't from nodatacow
1002	 */
1003	struct list_head ordered_extents;
1004
1005	/*
1006	 * all of the inodes that have delalloc bytes.  It is possible for
1007	 * this list to be empty even when there is still dirty data=ordered
1008	 * extents waiting to finish IO.
1009	 */
1010	struct list_head delalloc_inodes;
1011
1012	/*
1013	 * special rename and truncate targets that must be on disk before
1014	 * we're allowed to commit.  This is basically the ext3 style
1015	 * data=ordered list.
1016	 */
1017	struct list_head ordered_operations;
1018
1019	/*
1020	 * there is a pool of worker threads for checksumming during writes
1021	 * and a pool for checksumming after reads.  This is because readers
1022	 * can run with FS locks held, and the writers may be waiting for
1023	 * those locks.  We don't want ordering in the pending list to cause
1024	 * deadlocks, and so the two are serviced separately.
1025	 *
1026	 * A third pool does submit_bio to avoid deadlocking with the other
1027	 * two
1028	 */
1029	struct btrfs_workers generic_worker;
1030	struct btrfs_workers workers;
1031	struct btrfs_workers delalloc_workers;
1032	struct btrfs_workers endio_workers;
1033	struct btrfs_workers endio_meta_workers;
1034	struct btrfs_workers endio_meta_write_workers;
1035	struct btrfs_workers endio_write_workers;
1036	struct btrfs_workers endio_freespace_worker;
1037	struct btrfs_workers submit_workers;
1038	struct btrfs_workers caching_workers;
1039
1040	/*
1041	 * fixup workers take dirty pages that didn't properly go through
1042	 * the cow mechanism and make them safe to write.  It happens
1043	 * for the sys_munmap function call path
1044	 */
1045	struct btrfs_workers fixup_workers;
1046	struct btrfs_workers delayed_workers;
1047	struct task_struct *transaction_kthread;
1048	struct task_struct *cleaner_kthread;
1049	int thread_pool_size;
1050
1051	struct kobject super_kobj;
1052	struct completion kobj_unregister;
1053	int do_barriers;
1054	int closing;
1055	int log_root_recovering;
1056	int enospc_unlink;
1057	int trans_no_join;
1058
1059	u64 total_pinned;
1060
1061	/* protected by the delalloc lock, used to keep from writing
1062	 * metadata until there is a nice batch
1063	 */
1064	u64 dirty_metadata_bytes;
1065	struct list_head dirty_cowonly_roots;
1066
1067	struct btrfs_fs_devices *fs_devices;
1068
1069	/*
1070	 * the space_info list is almost entirely read only.  It only changes
1071	 * when we add a new raid type to the FS, and that happens
1072	 * very rarely.  RCU is used to protect it.
1073	 */
1074	struct list_head space_info;
1075
1076	struct reloc_control *reloc_ctl;
1077
1078	spinlock_t delalloc_lock;
1079	u64 delalloc_bytes;
1080
1081	/* data_alloc_cluster is only used in ssd mode */
1082	struct btrfs_free_cluster data_alloc_cluster;
1083
1084	/* all metadata allocations go through this cluster */
1085	struct btrfs_free_cluster meta_alloc_cluster;
1086
1087	/* auto defrag inodes go here */
1088	spinlock_t defrag_inodes_lock;
1089	struct rb_root defrag_inodes;
1090	atomic_t defrag_running;
1091
1092	spinlock_t ref_cache_lock;
1093	u64 total_ref_cache_size;
1094
1095	u64 avail_data_alloc_bits;
1096	u64 avail_metadata_alloc_bits;
1097	u64 avail_system_alloc_bits;
1098	u64 data_alloc_profile;
1099	u64 metadata_alloc_profile;
1100	u64 system_alloc_profile;
1101
1102	unsigned data_chunk_allocations;
1103	unsigned metadata_ratio;
1104
1105	void *bdev_holder;
1106
1107	/* private scrub information */
1108	struct mutex scrub_lock;
1109	atomic_t scrubs_running;
1110	atomic_t scrub_pause_req;
1111	atomic_t scrubs_paused;
1112	atomic_t scrub_cancel_req;
1113	wait_queue_head_t scrub_pause_wait;
1114	struct rw_semaphore scrub_super_lock;
1115	int scrub_workers_refcnt;
1116	struct btrfs_workers scrub_workers;
1117
1118	/* filesystem state */
1119	u64 fs_state;
1120
1121	struct btrfs_delayed_root *delayed_root;
1122};
1123
1124/*
1125 * in ram representation of the tree.  extent_root is used for all allocations
1126 * and for the extent tree extent_root root.
1127 */
1128struct btrfs_root {
 
 
1129	struct extent_buffer *node;
1130
1131	struct extent_buffer *commit_root;
1132	struct btrfs_root *log_root;
1133	struct btrfs_root *reloc_root;
1134
 
1135	struct btrfs_root_item root_item;
1136	struct btrfs_key root_key;
1137	struct btrfs_fs_info *fs_info;
1138	struct extent_io_tree dirty_log_pages;
1139
1140	struct kobject root_kobj;
1141	struct completion kobj_unregister;
1142	struct mutex objectid_mutex;
1143
1144	spinlock_t accounting_lock;
1145	struct btrfs_block_rsv *block_rsv;
1146
1147	/* free ino cache stuff */
1148	struct mutex fs_commit_mutex;
1149	struct btrfs_free_space_ctl *free_ino_ctl;
1150	enum btrfs_caching_type cached;
1151	spinlock_t cache_lock;
1152	wait_queue_head_t cache_wait;
1153	struct btrfs_free_space_ctl *free_ino_pinned;
1154	u64 cache_progress;
1155	struct inode *cache_inode;
1156
1157	struct mutex log_mutex;
1158	wait_queue_head_t log_writer_wait;
1159	wait_queue_head_t log_commit_wait[2];
 
 
1160	atomic_t log_writers;
1161	atomic_t log_commit[2];
1162	unsigned long log_transid;
1163	unsigned long last_log_commit;
1164	unsigned long log_batch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165	pid_t log_start_pid;
1166	bool log_multiple_pids;
1167
1168	u64 objectid;
1169	u64 last_trans;
1170
1171	/* data allocations are done in sectorsize units */
1172	u32 sectorsize;
1173
1174	/* node allocations are done in nodesize units */
1175	u32 nodesize;
1176
1177	/* leaf allocations are done in leafsize units */
1178	u32 leafsize;
1179
1180	u32 stripesize;
1181
1182	u32 type;
1183
1184	u64 highest_objectid;
1185
1186	/* btrfs_record_root_in_trans is a multi-step process,
1187	 * and it can race with the balancing code.   But the
1188	 * race is very small, and only the first time the root
1189	 * is added to each transaction.  So in_trans_setup
1190	 * is used to tell us when more checks are required
1191	 */
1192	unsigned long in_trans_setup;
1193	int ref_cows;
1194	int track_dirty;
1195	int in_radix;
1196
1197	u64 defrag_trans_start;
1198	struct btrfs_key defrag_progress;
1199	struct btrfs_key defrag_max;
1200	int defrag_running;
1201	char *name;
1202
1203	/* the dirty list is only used by non-reference counted roots */
1204	struct list_head dirty_list;
1205
1206	struct list_head root_list;
1207
1208	spinlock_t orphan_lock;
1209	struct list_head orphan_list;
1210	struct btrfs_block_rsv *orphan_block_rsv;
1211	int orphan_item_inserted;
1212	int orphan_cleanup_state;
1213
1214	spinlock_t inode_lock;
1215	/* red-black tree that keeps track of in-memory inodes */
1216	struct rb_root inode_tree;
1217
1218	/*
1219	 * radix tree that keeps track of delayed nodes of every inode,
1220	 * protected by inode_lock
1221	 */
1222	struct radix_tree_root delayed_nodes_tree;
1223	/*
1224	 * right now this just gets used so that a root has its own devid
1225	 * for stat.  It may be used for more later
1226	 */
1227	dev_t anon_dev;
1228};
1229
1230struct btrfs_ioctl_defrag_range_args {
1231	/* start of the defrag operation */
1232	__u64 start;
1233
1234	/* number of bytes to defrag, use (u64)-1 to say all */
1235	__u64 len;
 
 
 
 
 
 
 
 
1236
 
1237	/*
1238	 * flags for the operation, which can include turning
1239	 * on compression for this one defrag
1240	 */
1241	__u64 flags;
1242
1243	/*
1244	 * any extent bigger than this will be considered
1245	 * already defragged.  Use 0 to take the kernel default
1246	 * Use 1 to say every single extent must be rewritten
1247	 */
1248	__u32 extent_thresh;
 
 
1249
1250	/*
1251	 * which compression method to use if turning on compression
1252	 * for this defrag operation.  If unspecified, zlib will
1253	 * be used
 
1254	 */
1255	__u32 compress_type;
1256
1257	/* spare for later */
1258	__u32 unused[4];
1259};
 
 
 
 
 
 
 
 
 
 
1260
 
1261
1262/*
1263 * inode items have the data typically returned from stat and store other
1264 * info about object characteristics.  There is one for every file and dir in
1265 * the FS
1266 */
1267#define BTRFS_INODE_ITEM_KEY		1
1268#define BTRFS_INODE_REF_KEY		12
1269#define BTRFS_XATTR_ITEM_KEY		24
1270#define BTRFS_ORPHAN_ITEM_KEY		48
1271/* reserve 2-15 close to the inode for later flexibility */
1272
1273/*
1274 * dir items are the name -> inode pointers in a directory.  There is one
1275 * for every name in a directory.
1276 */
1277#define BTRFS_DIR_LOG_ITEM_KEY  60
1278#define BTRFS_DIR_LOG_INDEX_KEY 72
1279#define BTRFS_DIR_ITEM_KEY	84
1280#define BTRFS_DIR_INDEX_KEY	96
1281/*
1282 * extent data is for file data
1283 */
1284#define BTRFS_EXTENT_DATA_KEY	108
1285
1286/*
1287 * extent csums are stored in a separate tree and hold csums for
1288 * an entire extent on disk.
1289 */
1290#define BTRFS_EXTENT_CSUM_KEY	128
1291
1292/*
1293 * root items point to tree roots.  They are typically in the root
1294 * tree used by the super block to find all the other trees
1295 */
1296#define BTRFS_ROOT_ITEM_KEY	132
1297
1298/*
1299 * root backrefs tie subvols and snapshots to the directory entries that
1300 * reference them
1301 */
1302#define BTRFS_ROOT_BACKREF_KEY	144
1303
1304/*
1305 * root refs make a fast index for listing all of the snapshots and
1306 * subvolumes referenced by a given root.  They point directly to the
1307 * directory item in the root that references the subvol
1308 */
1309#define BTRFS_ROOT_REF_KEY	156
1310
1311/*
1312 * extent items are in the extent map tree.  These record which blocks
1313 * are used, and how many references there are to each block
1314 */
1315#define BTRFS_EXTENT_ITEM_KEY	168
1316
1317#define BTRFS_TREE_BLOCK_REF_KEY	176
1318
1319#define BTRFS_EXTENT_DATA_REF_KEY	178
1320
1321#define BTRFS_EXTENT_REF_V0_KEY		180
1322
1323#define BTRFS_SHARED_BLOCK_REF_KEY	182
1324
1325#define BTRFS_SHARED_DATA_REF_KEY	184
1326
1327/*
1328 * block groups give us hints into the extent allocation trees.  Which
1329 * blocks are free etc etc
1330 */
1331#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1332
1333#define BTRFS_DEV_EXTENT_KEY	204
1334#define BTRFS_DEV_ITEM_KEY	216
1335#define BTRFS_CHUNK_ITEM_KEY	228
1336
1337/*
1338 * string items are for debugging.  They just store a short string of
1339 * data in the FS
1340 */
1341#define BTRFS_STRING_ITEM_KEY	253
1342
1343/*
1344 * Flags for mount options.
1345 *
1346 * Note: don't forget to add new options to btrfs_show_options()
1347 */
1348#define BTRFS_MOUNT_NODATASUM		(1 << 0)
1349#define BTRFS_MOUNT_NODATACOW		(1 << 1)
1350#define BTRFS_MOUNT_NOBARRIER		(1 << 2)
1351#define BTRFS_MOUNT_SSD			(1 << 3)
1352#define BTRFS_MOUNT_DEGRADED		(1 << 4)
1353#define BTRFS_MOUNT_COMPRESS		(1 << 5)
1354#define BTRFS_MOUNT_NOTREELOG           (1 << 6)
1355#define BTRFS_MOUNT_FLUSHONCOMMIT       (1 << 7)
1356#define BTRFS_MOUNT_SSD_SPREAD		(1 << 8)
1357#define BTRFS_MOUNT_NOSSD		(1 << 9)
1358#define BTRFS_MOUNT_DISCARD		(1 << 10)
1359#define BTRFS_MOUNT_FORCE_COMPRESS      (1 << 11)
1360#define BTRFS_MOUNT_SPACE_CACHE		(1 << 12)
1361#define BTRFS_MOUNT_CLEAR_CACHE		(1 << 13)
1362#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
1363#define BTRFS_MOUNT_ENOSPC_DEBUG	 (1 << 15)
1364#define BTRFS_MOUNT_AUTO_DEFRAG		(1 << 16)
1365#define BTRFS_MOUNT_INODE_MAP_CACHE	(1 << 17)
1366
1367#define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1368#define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1369#define btrfs_test_opt(root, opt)	((root)->fs_info->mount_opt & \
1370					 BTRFS_MOUNT_##opt)
1371/*
1372 * Inode flags
1373 */
1374#define BTRFS_INODE_NODATASUM		(1 << 0)
1375#define BTRFS_INODE_NODATACOW		(1 << 1)
1376#define BTRFS_INODE_READONLY		(1 << 2)
1377#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
1378#define BTRFS_INODE_PREALLOC		(1 << 4)
1379#define BTRFS_INODE_SYNC		(1 << 5)
1380#define BTRFS_INODE_IMMUTABLE		(1 << 6)
1381#define BTRFS_INODE_APPEND		(1 << 7)
1382#define BTRFS_INODE_NODUMP		(1 << 8)
1383#define BTRFS_INODE_NOATIME		(1 << 9)
1384#define BTRFS_INODE_DIRSYNC		(1 << 10)
1385#define BTRFS_INODE_COMPRESS		(1 << 11)
1386
1387#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
1388
1389/* some macros to generate set/get funcs for the struct fields.  This
1390 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1391 * one for u8:
1392 */
1393#define le8_to_cpu(v) (v)
1394#define cpu_to_le8(v) (v)
1395#define __le8 u8
1396
1397#define read_eb_member(eb, ptr, type, member, result) (			\
1398	read_extent_buffer(eb, (char *)(result),			\
1399			   ((unsigned long)(ptr)) +			\
1400			    offsetof(type, member),			\
1401			   sizeof(((type *)0)->member)))
1402
1403#define write_eb_member(eb, ptr, type, member, result) (		\
1404	write_extent_buffer(eb, (char *)(result),			\
1405			   ((unsigned long)(ptr)) +			\
1406			    offsetof(type, member),			\
1407			   sizeof(((type *)0)->member)))
1408
1409#ifndef BTRFS_SETGET_FUNCS
1410#define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1411u##bits btrfs_##name(struct extent_buffer *eb, type *s);		\
1412void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val);
1413#endif
 
1414
1415#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1416static inline u##bits btrfs_##name(struct extent_buffer *eb)		\
1417{									\
1418	type *p = page_address(eb->first_page);				\
1419	u##bits res = le##bits##_to_cpu(p->member);			\
1420	return res;							\
1421}									\
1422static inline void btrfs_set_##name(struct extent_buffer *eb,		\
1423				    u##bits val)			\
1424{									\
1425	type *p = page_address(eb->first_page);				\
1426	p->member = cpu_to_le##bits(val);				\
1427}
1428
1429#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1430static inline u##bits btrfs_##name(type *s)				\
1431{									\
1432	return le##bits##_to_cpu(s->member);				\
1433}									\
1434static inline void btrfs_set_##name(type *s, u##bits val)		\
1435{									\
1436	s->member = cpu_to_le##bits(val);				\
1437}
1438
1439BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1440BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
1441BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1442BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1443BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1444BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1445		   start_offset, 64);
1446BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1447BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1448BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1449BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1450BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1451BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1452
1453BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1454BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1455			 total_bytes, 64);
1456BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1457			 bytes_used, 64);
1458BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1459			 io_align, 32);
1460BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1461			 io_width, 32);
1462BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1463			 sector_size, 32);
1464BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1465BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1466			 dev_group, 32);
1467BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1468			 seek_speed, 8);
1469BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1470			 bandwidth, 8);
1471BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1472			 generation, 64);
1473
1474static inline char *btrfs_device_uuid(struct btrfs_dev_item *d)
1475{
1476	return (char *)d + offsetof(struct btrfs_dev_item, uuid);
1477}
1478
1479static inline char *btrfs_device_fsid(struct btrfs_dev_item *d)
1480{
1481	return (char *)d + offsetof(struct btrfs_dev_item, fsid);
 
1482}
1483
1484BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1485BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1486BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1487BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1488BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1489BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1490BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1491BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1492BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1493BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1494BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1495
1496static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1497{
1498	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
 
1499}
1500
1501BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1502BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1503BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1504			 stripe_len, 64);
1505BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1506			 io_align, 32);
1507BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1508			 io_width, 32);
1509BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1510			 sector_size, 32);
1511BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1512BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1513			 num_stripes, 16);
1514BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1515			 sub_stripes, 16);
1516BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1517BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1518
1519static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1520						   int nr)
1521{
1522	unsigned long offset = (unsigned long)c;
1523	offset += offsetof(struct btrfs_chunk, stripe);
1524	offset += nr * sizeof(struct btrfs_stripe);
1525	return (struct btrfs_stripe *)offset;
1526}
1527
1528static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1529{
1530	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1531}
1532
1533static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
1534					 struct btrfs_chunk *c, int nr)
1535{
1536	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1537}
1538
1539static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
1540					 struct btrfs_chunk *c, int nr)
1541{
1542	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1543}
1544
1545/* struct btrfs_block_group_item */
1546BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
1547			 used, 64);
1548BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
1549			 used, 64);
1550BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
1551			struct btrfs_block_group_item, chunk_objectid, 64);
1552
1553BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
1554		   struct btrfs_block_group_item, chunk_objectid, 64);
1555BTRFS_SETGET_FUNCS(disk_block_group_flags,
1556		   struct btrfs_block_group_item, flags, 64);
1557BTRFS_SETGET_STACK_FUNCS(block_group_flags,
1558			struct btrfs_block_group_item, flags, 64);
1559
1560/* struct btrfs_inode_ref */
1561BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1562BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1563
1564/* struct btrfs_inode_item */
1565BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1566BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1567BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1568BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1569BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1570BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1571BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1572BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1573BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1574BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1575BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1576BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1577
1578static inline struct btrfs_timespec *
1579btrfs_inode_atime(struct btrfs_inode_item *inode_item)
1580{
1581	unsigned long ptr = (unsigned long)inode_item;
1582	ptr += offsetof(struct btrfs_inode_item, atime);
1583	return (struct btrfs_timespec *)ptr;
1584}
1585
1586static inline struct btrfs_timespec *
1587btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
1588{
1589	unsigned long ptr = (unsigned long)inode_item;
1590	ptr += offsetof(struct btrfs_inode_item, mtime);
1591	return (struct btrfs_timespec *)ptr;
1592}
1593
1594static inline struct btrfs_timespec *
1595btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
1596{
1597	unsigned long ptr = (unsigned long)inode_item;
1598	ptr += offsetof(struct btrfs_inode_item, ctime);
1599	return (struct btrfs_timespec *)ptr;
1600}
1601
1602BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1603BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1604
1605/* struct btrfs_dev_extent */
1606BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1607		   chunk_tree, 64);
1608BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1609		   chunk_objectid, 64);
1610BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1611		   chunk_offset, 64);
1612BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1613
1614static inline u8 *btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
1615{
1616	unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
1617	return (u8 *)((unsigned long)dev + ptr);
1618}
1619
1620BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1621BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1622		   generation, 64);
1623BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1624
1625BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
1626
1627
1628BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1629
1630static inline void btrfs_tree_block_key(struct extent_buffer *eb,
1631					struct btrfs_tree_block_info *item,
1632					struct btrfs_disk_key *key)
1633{
1634	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1635}
1636
1637static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
1638					    struct btrfs_tree_block_info *item,
1639					    struct btrfs_disk_key *key)
1640{
1641	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1642}
1643
1644BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1645		   root, 64);
1646BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1647		   objectid, 64);
1648BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1649		   offset, 64);
1650BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1651		   count, 32);
1652
1653BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1654		   count, 32);
1655
1656BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1657		   type, 8);
1658BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1659		   offset, 64);
1660
1661static inline u32 btrfs_extent_inline_ref_size(int type)
1662{
1663	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1664	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1665		return sizeof(struct btrfs_extent_inline_ref);
1666	if (type == BTRFS_SHARED_DATA_REF_KEY)
1667		return sizeof(struct btrfs_shared_data_ref) +
1668		       sizeof(struct btrfs_extent_inline_ref);
1669	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1670		return sizeof(struct btrfs_extent_data_ref) +
1671		       offsetof(struct btrfs_extent_inline_ref, offset);
1672	BUG();
1673	return 0;
1674}
1675
1676BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
1677BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
1678		   generation, 64);
1679BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
1680BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
1681
1682/* struct btrfs_node */
1683BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1684BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1685
1686static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
1687{
1688	unsigned long ptr;
1689	ptr = offsetof(struct btrfs_node, ptrs) +
1690		sizeof(struct btrfs_key_ptr) * nr;
1691	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1692}
1693
1694static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
1695					   int nr, u64 val)
1696{
1697	unsigned long ptr;
1698	ptr = offsetof(struct btrfs_node, ptrs) +
1699		sizeof(struct btrfs_key_ptr) * nr;
1700	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1701}
1702
1703static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
1704{
1705	unsigned long ptr;
1706	ptr = offsetof(struct btrfs_node, ptrs) +
1707		sizeof(struct btrfs_key_ptr) * nr;
1708	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1709}
1710
1711static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
1712						 int nr, u64 val)
1713{
1714	unsigned long ptr;
1715	ptr = offsetof(struct btrfs_node, ptrs) +
1716		sizeof(struct btrfs_key_ptr) * nr;
1717	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1718}
1719
1720static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1721{
1722	return offsetof(struct btrfs_node, ptrs) +
1723		sizeof(struct btrfs_key_ptr) * nr;
1724}
1725
1726void btrfs_node_key(struct extent_buffer *eb,
1727		    struct btrfs_disk_key *disk_key, int nr);
1728
1729static inline void btrfs_set_node_key(struct extent_buffer *eb,
1730				      struct btrfs_disk_key *disk_key, int nr)
1731{
1732	unsigned long ptr;
1733	ptr = btrfs_node_key_ptr_offset(nr);
1734	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1735		       struct btrfs_key_ptr, key, disk_key);
1736}
1737
1738/* struct btrfs_item */
1739BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1740BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1741
1742static inline unsigned long btrfs_item_nr_offset(int nr)
1743{
1744	return offsetof(struct btrfs_leaf, items) +
1745		sizeof(struct btrfs_item) * nr;
1746}
1747
1748static inline struct btrfs_item *btrfs_item_nr(struct extent_buffer *eb,
1749					       int nr)
1750{
1751	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1752}
1753
1754static inline u32 btrfs_item_end(struct extent_buffer *eb,
1755				 struct btrfs_item *item)
1756{
1757	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1758}
1759
1760static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
1761{
1762	return btrfs_item_end(eb, btrfs_item_nr(eb, nr));
1763}
1764
1765static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
1766{
1767	return btrfs_item_offset(eb, btrfs_item_nr(eb, nr));
1768}
1769
1770static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
1771{
1772	return btrfs_item_size(eb, btrfs_item_nr(eb, nr));
1773}
1774
1775static inline void btrfs_item_key(struct extent_buffer *eb,
1776			   struct btrfs_disk_key *disk_key, int nr)
1777{
1778	struct btrfs_item *item = btrfs_item_nr(eb, nr);
1779	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1780}
1781
1782static inline void btrfs_set_item_key(struct extent_buffer *eb,
1783			       struct btrfs_disk_key *disk_key, int nr)
1784{
1785	struct btrfs_item *item = btrfs_item_nr(eb, nr);
1786	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1787}
1788
1789BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1790
1791/*
1792 * struct btrfs_root_ref
 
1793 */
1794BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1795BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1796BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
1797
1798/* struct btrfs_dir_item */
1799BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
1800BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
1801BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
1802BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
1803
1804static inline void btrfs_dir_item_key(struct extent_buffer *eb,
1805				      struct btrfs_dir_item *item,
1806				      struct btrfs_disk_key *key)
1807{
1808	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
1809}
1810
1811static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
1812					  struct btrfs_dir_item *item,
1813					  struct btrfs_disk_key *key)
1814{
1815	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
1816}
 
 
 
 
1817
1818BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
1819		   num_entries, 64);
1820BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
1821		   num_bitmaps, 64);
1822BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
1823		   generation, 64);
1824
1825static inline void btrfs_free_space_key(struct extent_buffer *eb,
1826					struct btrfs_free_space_header *h,
1827					struct btrfs_disk_key *key)
1828{
1829	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1830}
1831
1832static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
1833					    struct btrfs_free_space_header *h,
1834					    struct btrfs_disk_key *key)
1835{
1836	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1837}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838
1839/* struct btrfs_disk_key */
1840BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
1841			 objectid, 64);
1842BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
1843BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
1844
1845static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
1846					 struct btrfs_disk_key *disk)
1847{
1848	cpu->offset = le64_to_cpu(disk->offset);
1849	cpu->type = disk->type;
1850	cpu->objectid = le64_to_cpu(disk->objectid);
1851}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
1854					 struct btrfs_key *cpu)
1855{
1856	disk->offset = cpu_to_le64(cpu->offset);
1857	disk->type = cpu->type;
1858	disk->objectid = cpu_to_le64(cpu->objectid);
1859}
1860
1861static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
1862				  struct btrfs_key *key, int nr)
1863{
1864	struct btrfs_disk_key disk_key;
1865	btrfs_node_key(eb, &disk_key, nr);
1866	btrfs_disk_key_to_cpu(key, &disk_key);
1867}
1868
1869static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
1870				  struct btrfs_key *key, int nr)
1871{
1872	struct btrfs_disk_key disk_key;
1873	btrfs_item_key(eb, &disk_key, nr);
1874	btrfs_disk_key_to_cpu(key, &disk_key);
1875}
1876
1877static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
1878				      struct btrfs_dir_item *item,
1879				      struct btrfs_key *key)
1880{
1881	struct btrfs_disk_key disk_key;
1882	btrfs_dir_item_key(eb, item, &disk_key);
1883	btrfs_disk_key_to_cpu(key, &disk_key);
1884}
1885
1886
1887static inline u8 btrfs_key_type(struct btrfs_key *key)
1888{
1889	return key->type;
1890}
1891
1892static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
1893{
1894	key->type = val;
1895}
1896
1897/* struct btrfs_header */
1898BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
1899BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
1900			  generation, 64);
1901BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
1902BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
1903BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
1904BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
1905
1906static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
1907{
1908	return (btrfs_header_flags(eb) & flag) == flag;
1909}
1910
1911static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
1912{
1913	u64 flags = btrfs_header_flags(eb);
1914	btrfs_set_header_flags(eb, flags | flag);
1915	return (flags & flag) == flag;
1916}
1917
1918static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
1919{
1920	u64 flags = btrfs_header_flags(eb);
1921	btrfs_set_header_flags(eb, flags & ~flag);
1922	return (flags & flag) == flag;
1923}
1924
1925static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
1926{
1927	u64 flags = btrfs_header_flags(eb);
1928	return flags >> BTRFS_BACKREF_REV_SHIFT;
1929}
1930
1931static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
1932						int rev)
1933{
1934	u64 flags = btrfs_header_flags(eb);
1935	flags &= ~BTRFS_BACKREF_REV_MASK;
1936	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
1937	btrfs_set_header_flags(eb, flags);
1938}
1939
1940static inline u8 *btrfs_header_fsid(struct extent_buffer *eb)
1941{
1942	unsigned long ptr = offsetof(struct btrfs_header, fsid);
1943	return (u8 *)ptr;
1944}
1945
1946static inline u8 *btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
1947{
1948	unsigned long ptr = offsetof(struct btrfs_header, chunk_tree_uuid);
1949	return (u8 *)ptr;
1950}
1951
1952static inline int btrfs_is_leaf(struct extent_buffer *eb)
1953{
1954	return btrfs_header_level(eb) == 0;
1955}
1956
1957/* struct btrfs_root_item */
1958BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
1959		   generation, 64);
1960BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
1961BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
1962BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
1963
1964BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
1965			 generation, 64);
1966BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
1967BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
1968BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
1969BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
1970BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
1971BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
1972BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
1973BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
1974			 last_snapshot, 64);
1975
1976static inline bool btrfs_root_readonly(struct btrfs_root *root)
1977{
1978	return root->root_item.flags & BTRFS_ROOT_SUBVOL_RDONLY;
1979}
1980
1981/* struct btrfs_super_block */
1982
1983BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
1984BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
1985BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
1986			 generation, 64);
1987BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
1988BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
1989			 struct btrfs_super_block, sys_chunk_array_size, 32);
1990BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
1991			 struct btrfs_super_block, chunk_root_generation, 64);
1992BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
1993			 root_level, 8);
1994BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
1995			 chunk_root, 64);
1996BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
1997			 chunk_root_level, 8);
1998BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
1999			 log_root, 64);
2000BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2001			 log_root_transid, 64);
2002BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2003			 log_root_level, 8);
2004BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2005			 total_bytes, 64);
2006BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2007			 bytes_used, 64);
2008BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2009			 sectorsize, 32);
2010BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2011			 nodesize, 32);
2012BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
2013			 leafsize, 32);
2014BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2015			 stripesize, 32);
2016BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2017			 root_dir_objectid, 64);
2018BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2019			 num_devices, 64);
2020BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2021			 compat_flags, 64);
2022BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2023			 compat_ro_flags, 64);
2024BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2025			 incompat_flags, 64);
2026BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2027			 csum_type, 16);
2028BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2029			 cache_generation, 64);
2030
2031static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2032{
2033	int t = btrfs_super_csum_type(s);
2034	BUG_ON(t >= ARRAY_SIZE(btrfs_csum_sizes));
2035	return btrfs_csum_sizes[t];
2036}
2037
2038static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2039{
2040	return offsetof(struct btrfs_leaf, items);
2041}
2042
2043/* struct btrfs_file_extent_item */
2044BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2045
2046static inline unsigned long
2047btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
2048{
2049	unsigned long offset = (unsigned long)e;
2050	offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
2051	return offset;
2052}
2053
2054static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2055{
2056	return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
2057}
2058
2059BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2060		   disk_bytenr, 64);
2061BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2062		   generation, 64);
2063BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2064		   disk_num_bytes, 64);
2065BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2066		  offset, 64);
2067BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2068		   num_bytes, 64);
2069BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2070		   ram_bytes, 64);
2071BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2072		   compression, 8);
2073BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2074		   encryption, 8);
2075BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2076		   other_encoding, 16);
2077
2078/* this returns the number of file bytes represented by the inline item.
2079 * If an item is compressed, this is the uncompressed size
2080 */
2081static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
2082					       struct btrfs_file_extent_item *e)
2083{
2084	return btrfs_file_extent_ram_bytes(eb, e);
2085}
2086
2087/*
2088 * this returns the number of bytes used by the item on disk, minus the
2089 * size of any extent headers.  If a file is compressed on disk, this is
2090 * the compressed size
2091 */
2092static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
2093						    struct btrfs_item *e)
2094{
2095	unsigned long offset;
2096	offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
2097	return btrfs_item_size(eb, e) - offset;
2098}
2099
2100static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
2101{
2102	return sb->s_fs_info;
2103}
2104
2105static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
2106{
2107	if (level == 0)
2108		return root->leafsize;
2109	return root->nodesize;
2110}
2111
2112/* helper function to cast into the data area of the leaf. */
2113#define btrfs_item_ptr(leaf, slot, type) \
2114	((type *)(btrfs_leaf_data(leaf) + \
2115	btrfs_item_offset_nr(leaf, slot)))
2116
2117#define btrfs_item_ptr_offset(leaf, slot) \
2118	((unsigned long)(btrfs_leaf_data(leaf) + \
2119	btrfs_item_offset_nr(leaf, slot)))
2120
2121static inline struct dentry *fdentry(struct file *file)
2122{
2123	return file->f_path.dentry;
2124}
2125
2126static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
2127{
2128	return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2129		(space_info->flags & BTRFS_BLOCK_GROUP_DATA));
2130}
2131
2132/* extent-tree.c */
2133static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
2134						 unsigned num_items)
2135{
2136	return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
2137		3 * num_items;
2138}
2139
2140void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2141int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2142			   struct btrfs_root *root, unsigned long count);
2143int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
2144int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2145			     struct btrfs_root *root, u64 bytenr,
2146			     u64 num_bytes, u64 *refs, u64 *flags);
2147int btrfs_pin_extent(struct btrfs_root *root,
2148		     u64 bytenr, u64 num, int reserved);
2149int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2150			  struct btrfs_root *root,
2151			  u64 objectid, u64 offset, u64 bytenr);
2152struct btrfs_block_group_cache *btrfs_lookup_block_group(
2153						 struct btrfs_fs_info *info,
2154						 u64 bytenr);
2155void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2156u64 btrfs_find_block_group(struct btrfs_root *root,
2157			   u64 search_start, u64 search_hint, int owner);
2158struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
2159					struct btrfs_root *root, u32 blocksize,
2160					u64 parent, u64 root_objectid,
2161					struct btrfs_disk_key *key, int level,
2162					u64 hint, u64 empty_size);
2163void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2164			   struct btrfs_root *root,
2165			   struct extent_buffer *buf,
2166			   u64 parent, int last_ref);
2167struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
2168					    struct btrfs_root *root,
2169					    u64 bytenr, u32 blocksize,
2170					    int level);
2171int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2172				     struct btrfs_root *root,
2173				     u64 root_objectid, u64 owner,
2174				     u64 offset, struct btrfs_key *ins);
2175int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2176				   struct btrfs_root *root,
2177				   u64 root_objectid, u64 owner, u64 offset,
2178				   struct btrfs_key *ins);
2179int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
2180				  struct btrfs_root *root,
2181				  u64 num_bytes, u64 min_alloc_size,
2182				  u64 empty_size, u64 hint_byte,
2183				  u64 search_end, struct btrfs_key *ins,
2184				  u64 data);
2185int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2186		  struct extent_buffer *buf, int full_backref);
2187int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2188		  struct extent_buffer *buf, int full_backref);
2189int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2190				struct btrfs_root *root,
2191				u64 bytenr, u64 num_bytes, u64 flags,
2192				int is_data);
2193int btrfs_free_extent(struct btrfs_trans_handle *trans,
2194		      struct btrfs_root *root,
2195		      u64 bytenr, u64 num_bytes, u64 parent,
2196		      u64 root_objectid, u64 owner, u64 offset);
2197
2198int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
2199int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
2200				u64 num_bytes, int reserve, int sinfo);
2201int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
2202				struct btrfs_root *root);
2203int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2204			       struct btrfs_root *root);
2205int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2206			 struct btrfs_root *root,
2207			 u64 bytenr, u64 num_bytes, u64 parent,
2208			 u64 root_objectid, u64 owner, u64 offset);
2209
2210int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2211				    struct btrfs_root *root);
2212int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
2213int btrfs_free_block_groups(struct btrfs_fs_info *info);
2214int btrfs_read_block_groups(struct btrfs_root *root);
2215int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
2216int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2217			   struct btrfs_root *root, u64 bytes_used,
2218			   u64 type, u64 chunk_objectid, u64 chunk_offset,
2219			   u64 size);
2220int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
2221			     struct btrfs_root *root, u64 group_start);
2222u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags);
2223u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
2224void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *ionde);
2225void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2226int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
2227void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
2228void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2229				struct btrfs_root *root);
2230int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
2231				  struct inode *inode);
2232void btrfs_orphan_release_metadata(struct inode *inode);
2233int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
2234				struct btrfs_pending_snapshot *pending);
2235int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
2236void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
2237int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
2238void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
2239void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv);
2240struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root);
2241void btrfs_free_block_rsv(struct btrfs_root *root,
2242			  struct btrfs_block_rsv *rsv);
2243void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
2244				 struct btrfs_block_rsv *rsv);
2245int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
2246			struct btrfs_root *root,
2247			struct btrfs_block_rsv *block_rsv,
2248			u64 num_bytes);
2249int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
2250			  struct btrfs_root *root,
2251			  struct btrfs_block_rsv *block_rsv,
2252			  u64 min_reserved, int min_factor);
2253int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
2254			    struct btrfs_block_rsv *dst_rsv,
2255			    u64 num_bytes);
2256void btrfs_block_rsv_release(struct btrfs_root *root,
2257			     struct btrfs_block_rsv *block_rsv,
2258			     u64 num_bytes);
2259int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
2260				    struct btrfs_root *root,
2261				    struct btrfs_block_rsv *rsv);
2262int btrfs_set_block_group_ro(struct btrfs_root *root,
2263			     struct btrfs_block_group_cache *cache);
2264int btrfs_set_block_group_rw(struct btrfs_root *root,
2265			     struct btrfs_block_group_cache *cache);
2266void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
2267u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2268int btrfs_error_unpin_extent_range(struct btrfs_root *root,
2269				   u64 start, u64 end);
2270int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
2271			       u64 num_bytes, u64 *actual_bytes);
2272int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2273			    struct btrfs_root *root, u64 type);
2274int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
2275
2276int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2277/* ctree.c */
2278int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
2279		     int level, int *slot);
2280int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
2281int btrfs_previous_item(struct btrfs_root *root,
2282			struct btrfs_path *path, u64 min_objectid,
2283			int type);
2284int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2285			    struct btrfs_root *root, struct btrfs_path *path,
2286			    struct btrfs_key *new_key);
 
 
2287struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2288struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
2289int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2290			struct btrfs_key *key, int lowest_level,
2291			int cache_only, u64 min_trans);
2292int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2293			 struct btrfs_key *max_key,
2294			 struct btrfs_path *path, int cache_only,
2295			 u64 min_trans);
 
 
 
2296int btrfs_cow_block(struct btrfs_trans_handle *trans,
2297		    struct btrfs_root *root, struct extent_buffer *buf,
2298		    struct extent_buffer *parent, int parent_slot,
2299		    struct extent_buffer **cow_ret);
 
 
 
 
 
 
 
 
2300int btrfs_copy_root(struct btrfs_trans_handle *trans,
2301		      struct btrfs_root *root,
2302		      struct extent_buffer *buf,
2303		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2304int btrfs_block_can_be_shared(struct btrfs_root *root,
2305			      struct extent_buffer *buf);
2306int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
2307		      *root, struct btrfs_path *path, u32 data_size);
2308int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2309			struct btrfs_root *root,
2310			struct btrfs_path *path,
2311			u32 new_size, int from_end);
 
2312int btrfs_split_item(struct btrfs_trans_handle *trans,
2313		     struct btrfs_root *root,
2314		     struct btrfs_path *path,
2315		     struct btrfs_key *new_key,
2316		     unsigned long split_offset);
2317int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2318			 struct btrfs_root *root,
2319			 struct btrfs_path *path,
2320			 struct btrfs_key *new_key);
2321int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2322		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2323		      ins_len, int cow);
2324int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2325		       struct btrfs_root *root, struct extent_buffer *parent,
2326		       int start_slot, int cache_only, u64 *last_ret,
2327		       struct btrfs_key *progress);
 
 
 
 
2328void btrfs_release_path(struct btrfs_path *p);
2329struct btrfs_path *btrfs_alloc_path(void);
2330void btrfs_free_path(struct btrfs_path *p);
2331void btrfs_set_path_blocking(struct btrfs_path *p);
2332void btrfs_clear_path_blocking(struct btrfs_path *p,
2333			       struct extent_buffer *held, int held_rw);
2334void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
2335
2336int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2337		   struct btrfs_path *path, int slot, int nr);
2338static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2339				 struct btrfs_root *root,
2340				 struct btrfs_path *path)
2341{
2342	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2343}
2344
2345int setup_items_for_insert(struct btrfs_trans_handle *trans,
2346			   struct btrfs_root *root, struct btrfs_path *path,
2347			   struct btrfs_key *cpu_key, u32 *data_size,
2348			   u32 total_data, u32 total_size, int nr);
2349int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2350		      *root, struct btrfs_key *key, void *data, u32 data_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2352			     struct btrfs_root *root,
2353			     struct btrfs_path *path,
2354			     struct btrfs_key *cpu_key, u32 *data_size, int nr);
2355
2356static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2357					  struct btrfs_root *root,
2358					  struct btrfs_path *path,
2359					  struct btrfs_key *key,
2360					  u32 data_size)
2361{
2362	return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
 
 
 
 
 
 
 
2363}
2364
2365int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2366int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2367int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
2368void btrfs_drop_snapshot(struct btrfs_root *root,
2369			 struct btrfs_block_rsv *block_rsv, int update_ref);
2370int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2371			struct btrfs_root *root,
2372			struct extent_buffer *node,
2373			struct extent_buffer *parent);
2374static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2375{
2376	/*
2377	 * Get synced with close_ctree()
2378	 */
2379	smp_mb();
2380	return fs_info->closing;
2381}
2382
2383/* root-item.c */
2384int btrfs_find_root_ref(struct btrfs_root *tree_root,
2385			struct btrfs_path *path,
2386			u64 root_id, u64 ref_id);
2387int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
2388		       struct btrfs_root *tree_root,
2389		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
2390		       const char *name, int name_len);
2391int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
2392		       struct btrfs_root *tree_root,
2393		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
2394		       const char *name, int name_len);
2395int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2396		   struct btrfs_key *key);
2397int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
2398		      *root, struct btrfs_key *key, struct btrfs_root_item
2399		      *item);
2400int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
2401		      *root, struct btrfs_key *key, struct btrfs_root_item
2402		      *item);
2403int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
2404			 btrfs_root_item *item, struct btrfs_key *key);
2405int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid);
2406int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
2407void btrfs_set_root_node(struct btrfs_root_item *item,
2408			 struct extent_buffer *node);
2409void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2410
2411/* dir-item.c */
2412int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
2413			  struct btrfs_root *root, const char *name,
2414			  int name_len, struct inode *dir,
2415			  struct btrfs_key *location, u8 type, u64 index);
2416struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
2417					     struct btrfs_root *root,
2418					     struct btrfs_path *path, u64 dir,
2419					     const char *name, int name_len,
2420					     int mod);
2421struct btrfs_dir_item *
2422btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
2423			    struct btrfs_root *root,
2424			    struct btrfs_path *path, u64 dir,
2425			    u64 objectid, const char *name, int name_len,
2426			    int mod);
2427struct btrfs_dir_item *
2428btrfs_search_dir_index_item(struct btrfs_root *root,
2429			    struct btrfs_path *path, u64 dirid,
2430			    const char *name, int name_len);
2431struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
2432			      struct btrfs_path *path,
2433			      const char *name, int name_len);
2434int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
2435			      struct btrfs_root *root,
2436			      struct btrfs_path *path,
2437			      struct btrfs_dir_item *di);
2438int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
2439			    struct btrfs_root *root,
2440			    struct btrfs_path *path, u64 objectid,
2441			    const char *name, u16 name_len,
2442			    const void *data, u16 data_len);
2443struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
2444					  struct btrfs_root *root,
2445					  struct btrfs_path *path, u64 dir,
2446					  const char *name, u16 name_len,
2447					  int mod);
2448int verify_dir_item(struct btrfs_root *root,
2449		    struct extent_buffer *leaf,
2450		    struct btrfs_dir_item *dir_item);
2451
2452/* orphan.c */
2453int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
2454			     struct btrfs_root *root, u64 offset);
2455int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
2456			  struct btrfs_root *root, u64 offset);
2457int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
2458
2459/* inode-item.c */
2460int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
2461			   struct btrfs_root *root,
2462			   const char *name, int name_len,
2463			   u64 inode_objectid, u64 ref_objectid, u64 index);
2464int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
2465			   struct btrfs_root *root,
2466			   const char *name, int name_len,
2467			   u64 inode_objectid, u64 ref_objectid, u64 *index);
2468struct btrfs_inode_ref *
2469btrfs_lookup_inode_ref(struct btrfs_trans_handle *trans,
2470			struct btrfs_root *root,
2471			struct btrfs_path *path,
2472			const char *name, int name_len,
2473			u64 inode_objectid, u64 ref_objectid, int mod);
2474int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
2475			     struct btrfs_root *root,
2476			     struct btrfs_path *path, u64 objectid);
2477int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
2478		       *root, struct btrfs_path *path,
2479		       struct btrfs_key *location, int mod);
2480
2481/* file-item.c */
2482int btrfs_del_csums(struct btrfs_trans_handle *trans,
2483		    struct btrfs_root *root, u64 bytenr, u64 len);
2484int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
2485			  struct bio *bio, u32 *dst);
2486int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
2487			      struct bio *bio, u64 logical_offset, u32 *dst);
2488int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
2489			     struct btrfs_root *root,
2490			     u64 objectid, u64 pos,
2491			     u64 disk_offset, u64 disk_num_bytes,
2492			     u64 num_bytes, u64 offset, u64 ram_bytes,
2493			     u8 compression, u8 encryption, u16 other_encoding);
2494int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
2495			     struct btrfs_root *root,
2496			     struct btrfs_path *path, u64 objectid,
2497			     u64 bytenr, int mod);
2498int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
2499			   struct btrfs_root *root,
2500			   struct btrfs_ordered_sum *sums);
2501int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
2502		       struct bio *bio, u64 file_start, int contig);
2503struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
2504					  struct btrfs_root *root,
2505					  struct btrfs_path *path,
2506					  u64 bytenr, int cow);
2507int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
2508			struct btrfs_root *root, struct btrfs_path *path,
2509			u64 isize);
2510int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
2511			     struct list_head *list, int search_commit);
2512/* inode.c */
2513struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
2514					   size_t pg_offset, u64 start, u64 len,
2515					   int create);
2516
2517/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
2518#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
2519#define ClearPageChecked ClearPageFsMisc
2520#define SetPageChecked SetPageFsMisc
2521#define PageChecked PageFsMisc
2522#endif
2523
2524/* This forces readahead on a given range of bytes in an inode */
2525static inline void btrfs_force_ra(struct address_space *mapping,
2526				  struct file_ra_state *ra, struct file *file,
2527				  pgoff_t offset, unsigned long req_size)
2528{
2529	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
2530}
 
2531
2532struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
2533int btrfs_set_inode_index(struct inode *dir, u64 *index);
2534int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2535		       struct btrfs_root *root,
2536		       struct inode *dir, struct inode *inode,
2537		       const char *name, int name_len);
2538int btrfs_add_link(struct btrfs_trans_handle *trans,
2539		   struct inode *parent_inode, struct inode *inode,
2540		   const char *name, int name_len, int add_backref, u64 index);
2541int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2542			struct btrfs_root *root,
2543			struct inode *dir, u64 objectid,
2544			const char *name, int name_len);
2545int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2546			       struct btrfs_root *root,
2547			       struct inode *inode, u64 new_size,
2548			       u32 min_type);
2549
2550int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
2551int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2552			      struct extent_state **cached_state);
2553int btrfs_writepages(struct address_space *mapping,
2554		     struct writeback_control *wbc);
2555int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
2556			     struct btrfs_root *new_root, u64 new_dirid);
2557int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
2558			 size_t size, struct bio *bio, unsigned long bio_flags);
2559
2560int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2561int btrfs_readpage(struct file *file, struct page *page);
2562void btrfs_evict_inode(struct inode *inode);
2563int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2564void btrfs_dirty_inode(struct inode *inode, int flags);
2565struct inode *btrfs_alloc_inode(struct super_block *sb);
2566void btrfs_destroy_inode(struct inode *inode);
2567int btrfs_drop_inode(struct inode *inode);
2568int btrfs_init_cachep(void);
2569void btrfs_destroy_cachep(void);
2570long btrfs_ioctl_trans_end(struct file *file);
2571struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2572			 struct btrfs_root *root, int *was_new);
2573struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2574				    size_t pg_offset, u64 start, u64 end,
2575				    int create);
2576int btrfs_update_inode(struct btrfs_trans_handle *trans,
2577			      struct btrfs_root *root,
2578			      struct inode *inode);
2579int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
2580int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode);
2581int btrfs_orphan_cleanup(struct btrfs_root *root);
2582void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2583				struct btrfs_pending_snapshot *pending,
2584				u64 *bytes_to_reserve);
2585void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2586				struct btrfs_pending_snapshot *pending);
2587void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2588			      struct btrfs_root *root);
2589int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
2590int btrfs_invalidate_inodes(struct btrfs_root *root);
2591void btrfs_add_delayed_iput(struct inode *inode);
2592void btrfs_run_delayed_iputs(struct btrfs_root *root);
2593int btrfs_prealloc_file_range(struct inode *inode, int mode,
2594			      u64 start, u64 num_bytes, u64 min_size,
2595			      loff_t actual_len, u64 *alloc_hint);
2596int btrfs_prealloc_file_range_trans(struct inode *inode,
2597				    struct btrfs_trans_handle *trans, int mode,
2598				    u64 start, u64 num_bytes, u64 min_size,
2599				    loff_t actual_len, u64 *alloc_hint);
2600extern const struct dentry_operations btrfs_dentry_operations;
2601
2602/* ioctl.c */
2603long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2604void btrfs_update_iflags(struct inode *inode);
2605void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
2606int btrfs_defrag_file(struct inode *inode, struct file *file,
2607		      struct btrfs_ioctl_defrag_range_args *range,
2608		      u64 newer_than, unsigned long max_pages);
2609/* file.c */
2610int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
2611			   struct inode *inode);
2612int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
2613int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2614int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
2615			    int skip_pinned);
2616extern const struct file_operations btrfs_file_operations;
2617int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
2618		       u64 start, u64 end, u64 *hint_byte, int drop_cache);
2619int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
2620			      struct inode *inode, u64 start, u64 end);
2621int btrfs_release_file(struct inode *inode, struct file *file);
2622void btrfs_drop_pages(struct page **pages, size_t num_pages);
2623int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
2624		      struct page **pages, size_t num_pages,
2625		      loff_t pos, size_t write_bytes,
2626		      struct extent_state **cached);
2627
2628/* tree-defrag.c */
2629int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
2630			struct btrfs_root *root, int cache_only);
2631
2632/* sysfs.c */
2633int btrfs_init_sysfs(void);
2634void btrfs_exit_sysfs(void);
2635
2636/* xattr.c */
2637ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
2638
2639/* super.c */
2640int btrfs_parse_options(struct btrfs_root *root, char *options);
2641int btrfs_sync_fs(struct super_block *sb, int wait);
2642void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
2643		     unsigned int line, int errno);
2644
2645#define btrfs_std_error(fs_info, errno)				\
2646do {								\
2647	if ((errno))						\
2648		__btrfs_std_error((fs_info), __func__, __LINE__, (errno));\
2649} while (0)
2650
2651/* acl.c */
2652#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2653struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
2654int btrfs_init_acl(struct btrfs_trans_handle *trans,
2655		   struct inode *inode, struct inode *dir);
2656int btrfs_acl_chmod(struct inode *inode);
2657#else
2658#define btrfs_get_acl NULL
2659static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
2660				 struct inode *inode, struct inode *dir)
2661{
 
 
 
 
2662	return 0;
2663}
2664static inline int btrfs_acl_chmod(struct inode *inode)
 
2665{
2666	return 0;
2667}
2668#endif
2669
2670/* relocation.c */
2671int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
2672int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
2673			  struct btrfs_root *root);
2674int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
2675			    struct btrfs_root *root);
2676int btrfs_recover_relocation(struct btrfs_root *root);
2677int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
2678void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
2679			   struct btrfs_root *root, struct extent_buffer *buf,
2680			   struct extent_buffer *cow);
2681void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
2682			      struct btrfs_pending_snapshot *pending,
2683			      u64 *bytes_to_reserve);
2684void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
2685			      struct btrfs_pending_snapshot *pending);
2686
2687/* scrub.c */
2688int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2689		    struct btrfs_scrub_progress *progress, int readonly);
2690int btrfs_scrub_pause(struct btrfs_root *root);
2691int btrfs_scrub_pause_super(struct btrfs_root *root);
2692int btrfs_scrub_continue(struct btrfs_root *root);
2693int btrfs_scrub_continue_super(struct btrfs_root *root);
2694int btrfs_scrub_cancel(struct btrfs_root *root);
2695int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev);
2696int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid);
2697int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2698			 struct btrfs_scrub_progress *progress);
2699
2700#endif