Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/pagemap.h>
10#include "locking.h"
11#include "fs.h"
12#include "accessors.h"
13
14struct btrfs_trans_handle;
15struct btrfs_transaction;
16struct btrfs_pending_snapshot;
17struct btrfs_delayed_ref_root;
18struct btrfs_space_info;
19struct btrfs_block_group;
20struct btrfs_ordered_sum;
21struct btrfs_ref;
22struct btrfs_bio;
23struct btrfs_ioctl_encoded_io_args;
24struct btrfs_device;
25struct btrfs_fs_devices;
26struct btrfs_balance_control;
27struct btrfs_delayed_root;
28struct reloc_control;
29
30/* Read ahead values for struct btrfs_path.reada */
31enum {
32 READA_NONE,
33 READA_BACK,
34 READA_FORWARD,
35 /*
36 * Similar to READA_FORWARD but unlike it:
37 *
38 * 1) It will trigger readahead even for leaves that are not close to
39 * each other on disk;
40 * 2) It also triggers readahead for nodes;
41 * 3) During a search, even when a node or leaf is already in memory, it
42 * will still trigger readahead for other nodes and leaves that follow
43 * it.
44 *
45 * This is meant to be used only when we know we are iterating over the
46 * entire tree or a very large part of it.
47 */
48 READA_FORWARD_ALWAYS,
49};
50
51/*
52 * btrfs_paths remember the path taken from the root down to the leaf.
53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54 * to any other levels that are present.
55 *
56 * The slots array records the index of the item or block pointer
57 * used while walking the tree.
58 */
59struct btrfs_path {
60 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
61 int slots[BTRFS_MAX_LEVEL];
62 /* if there is real range locking, this locks field will change */
63 u8 locks[BTRFS_MAX_LEVEL];
64 u8 reada;
65 /* keep some upper locks as we walk down */
66 u8 lowest_level;
67
68 /*
69 * set by btrfs_split_item, tells search_slot to keep all locks
70 * and to force calls to keep space in the nodes
71 */
72 unsigned int search_for_split:1;
73 unsigned int keep_locks:1;
74 unsigned int skip_locking:1;
75 unsigned int search_commit_root:1;
76 unsigned int need_commit_sem:1;
77 unsigned int skip_release_on_error:1;
78 /*
79 * Indicate that new item (btrfs_search_slot) is extending already
80 * existing item and ins_len contains only the data size and not item
81 * header (ie. sizeof(struct btrfs_item) is not included).
82 */
83 unsigned int search_for_extension:1;
84 /* Stop search if any locks need to be taken (for read) */
85 unsigned int nowait:1;
86};
87
88/*
89 * The state of btrfs root
90 */
91enum {
92 /*
93 * btrfs_record_root_in_trans is a multi-step process, and it can race
94 * with the balancing code. But the race is very small, and only the
95 * first time the root is added to each transaction. So IN_TRANS_SETUP
96 * is used to tell us when more checks are required
97 */
98 BTRFS_ROOT_IN_TRANS_SETUP,
99
100 /*
101 * Set if tree blocks of this root can be shared by other roots.
102 * Only subvolume trees and their reloc trees have this bit set.
103 * Conflicts with TRACK_DIRTY bit.
104 *
105 * This affects two things:
106 *
107 * - How balance works
108 * For shareable roots, we need to use reloc tree and do path
109 * replacement for balance, and need various pre/post hooks for
110 * snapshot creation to handle them.
111 *
112 * While for non-shareable trees, we just simply do a tree search
113 * with COW.
114 *
115 * - How dirty roots are tracked
116 * For shareable roots, btrfs_record_root_in_trans() is needed to
117 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
118 * don't need to set this manually.
119 */
120 BTRFS_ROOT_SHAREABLE,
121 BTRFS_ROOT_TRACK_DIRTY,
122 BTRFS_ROOT_IN_RADIX,
123 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124 BTRFS_ROOT_DEFRAG_RUNNING,
125 BTRFS_ROOT_FORCE_COW,
126 BTRFS_ROOT_MULTI_LOG_TASKS,
127 BTRFS_ROOT_DIRTY,
128 BTRFS_ROOT_DELETING,
129
130 /*
131 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
132 *
133 * Set for the subvolume tree owning the reloc tree.
134 */
135 BTRFS_ROOT_DEAD_RELOC_TREE,
136 /* Mark dead root stored on device whose cleanup needs to be resumed */
137 BTRFS_ROOT_DEAD_TREE,
138 /* The root has a log tree. Used for subvolume roots and the tree root. */
139 BTRFS_ROOT_HAS_LOG_TREE,
140 /* Qgroup flushing is in progress */
141 BTRFS_ROOT_QGROUP_FLUSHING,
142 /* We started the orphan cleanup for this root. */
143 BTRFS_ROOT_ORPHAN_CLEANUP,
144 /* This root has a drop operation that was started previously. */
145 BTRFS_ROOT_UNFINISHED_DROP,
146 /* This reloc root needs to have its buffers lockdep class reset. */
147 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
153 */
154struct btrfs_qgroup_swapped_blocks {
155 spinlock_t lock;
156 /* RM_EMPTY_ROOT() of above blocks[] */
157 bool swapped;
158 struct rb_root blocks[BTRFS_MAX_LEVEL];
159};
160
161/*
162 * in ram representation of the tree. extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166 struct rb_node rb_node;
167
168 struct extent_buffer *node;
169
170 struct extent_buffer *commit_root;
171 struct btrfs_root *log_root;
172 struct btrfs_root *reloc_root;
173
174 unsigned long state;
175 struct btrfs_root_item root_item;
176 struct btrfs_key root_key;
177 struct btrfs_fs_info *fs_info;
178 struct extent_io_tree dirty_log_pages;
179
180 struct mutex objectid_mutex;
181
182 spinlock_t accounting_lock;
183 struct btrfs_block_rsv *block_rsv;
184
185 struct mutex log_mutex;
186 wait_queue_head_t log_writer_wait;
187 wait_queue_head_t log_commit_wait[2];
188 struct list_head log_ctxs[2];
189 /* Used only for log trees of subvolumes, not for the log root tree */
190 atomic_t log_writers;
191 atomic_t log_commit[2];
192 /* Used only for log trees of subvolumes, not for the log root tree */
193 atomic_t log_batch;
194 /*
195 * Protected by the 'log_mutex' lock but can be read without holding
196 * that lock to avoid unnecessary lock contention, in which case it
197 * should be read using btrfs_get_root_log_transid() except if it's a
198 * log tree in which case it can be directly accessed. Updates to this
199 * field should always use btrfs_set_root_log_transid(), except for log
200 * trees where the field can be updated directly.
201 */
202 int log_transid;
203 /* No matter the commit succeeds or not*/
204 int log_transid_committed;
205 /*
206 * Just be updated when the commit succeeds. Use
207 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208 * to access this field.
209 */
210 int last_log_commit;
211 pid_t log_start_pid;
212
213 u64 last_trans;
214
215 u64 free_objectid;
216
217 struct btrfs_key defrag_progress;
218 struct btrfs_key defrag_max;
219
220 /* The dirty list is only used by non-shareable roots */
221 struct list_head dirty_list;
222
223 struct list_head root_list;
224
225 spinlock_t inode_lock;
226 /* red-black tree that keeps track of in-memory inodes */
227 struct rb_root inode_tree;
228
229 /*
230 * Xarray that keeps track of delayed nodes of every inode, protected
231 * by @inode_lock.
232 */
233 struct xarray delayed_nodes;
234 /*
235 * right now this just gets used so that a root has its own devid
236 * for stat. It may be used for more later
237 */
238 dev_t anon_dev;
239
240 spinlock_t root_item_lock;
241 refcount_t refs;
242
243 struct mutex delalloc_mutex;
244 spinlock_t delalloc_lock;
245 /*
246 * all of the inodes that have delalloc bytes. It is possible for
247 * this list to be empty even when there is still dirty data=ordered
248 * extents waiting to finish IO.
249 */
250 struct list_head delalloc_inodes;
251 struct list_head delalloc_root;
252 u64 nr_delalloc_inodes;
253
254 struct mutex ordered_extent_mutex;
255 /*
256 * this is used by the balancing code to wait for all the pending
257 * ordered extents
258 */
259 spinlock_t ordered_extent_lock;
260
261 /*
262 * all of the data=ordered extents pending writeback
263 * these can span multiple transactions and basically include
264 * every dirty data page that isn't from nodatacow
265 */
266 struct list_head ordered_extents;
267 struct list_head ordered_root;
268 u64 nr_ordered_extents;
269
270 /*
271 * Not empty if this subvolume root has gone through tree block swap
272 * (relocation)
273 *
274 * Will be used by reloc_control::dirty_subvol_roots.
275 */
276 struct list_head reloc_dirty_list;
277
278 /*
279 * Number of currently running SEND ioctls to prevent
280 * manipulation with the read-only status via SUBVOL_SETFLAGS
281 */
282 int send_in_progress;
283 /*
284 * Number of currently running deduplication operations that have a
285 * destination inode belonging to this root. Protected by the lock
286 * root_item_lock.
287 */
288 int dedupe_in_progress;
289 /* For exclusion of snapshot creation and nocow writes */
290 struct btrfs_drew_lock snapshot_lock;
291
292 atomic_t snapshot_force_cow;
293
294 /* For qgroup metadata reserved space */
295 spinlock_t qgroup_meta_rsv_lock;
296 u64 qgroup_meta_rsv_pertrans;
297 u64 qgroup_meta_rsv_prealloc;
298 wait_queue_head_t qgroup_flush_wait;
299
300 /* Number of active swapfiles */
301 atomic_t nr_swapfiles;
302
303 /* Record pairs of swapped blocks for qgroup */
304 struct btrfs_qgroup_swapped_blocks swapped_blocks;
305
306 /* Used only by log trees, when logging csum items */
307 struct extent_io_tree log_csum_range;
308
309 /* Used in simple quotas, track root during relocation. */
310 u64 relocation_src_root;
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313 u64 alloc_bytenr;
314#endif
315
316#ifdef CONFIG_BTRFS_DEBUG
317 struct list_head leak_list;
318#endif
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
322{
323 /* Byte-swap the constant at compile time, root_item::flags is LE */
324 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
328{
329 /* Byte-swap the constant at compile time, root_item::flags is LE */
330 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
334{
335 return root->root_key.objectid;
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340 return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
344{
345 WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
349{
350 return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
354{
355 WRITE_ONCE(root->last_log_commit, commit_id);
356}
357
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363 u64 disk_offset;
364 u64 disk_len;
365 u64 data_offset;
366 u64 data_len;
367 u64 file_offset;
368 /* Pointer to a file extent item of type regular or prealloc. */
369 char *extent_buf;
370 /*
371 * Set to true when attempting to replace a file range with a new extent
372 * described by this structure, set to false when attempting to clone an
373 * existing extent into a file range.
374 */
375 bool is_new_extent;
376 /* Indicate if we should update the inode's mtime and ctime. */
377 bool update_times;
378 /* Meaningful only if is_new_extent is true. */
379 int qgroup_reserved;
380 /*
381 * Meaningful only if is_new_extent is true.
382 * Used to track how many extent items we have already inserted in a
383 * subvolume tree that refer to the extent described by this structure,
384 * so that we know when to create a new delayed ref or update an existing
385 * one.
386 */
387 int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392 /* Input parameters */
393
394 /*
395 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396 * If 'replace_extent' is true, this must not be NULL. Also the path
397 * is always released except if 'replace_extent' is true and
398 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399 * the path is kept locked.
400 */
401 struct btrfs_path *path;
402 /* Start offset of the range to drop extents from */
403 u64 start;
404 /* End (exclusive, last byte + 1) of the range to drop extents from */
405 u64 end;
406 /* If true drop all the extent maps in the range */
407 bool drop_cache;
408 /*
409 * If true it means we want to insert a new extent after dropping all
410 * the extents in the range. If this is true, the 'extent_item_size'
411 * parameter must be set as well and the 'extent_inserted' field will
412 * be set to true by btrfs_drop_extents() if it could insert the new
413 * extent.
414 * Note: when this is set to true the path must not be NULL.
415 */
416 bool replace_extent;
417 /*
418 * Used if 'replace_extent' is true. Size of the file extent item to
419 * insert after dropping all existing extents in the range
420 */
421 u32 extent_item_size;
422
423 /* Output parameters */
424
425 /*
426 * Set to the minimum between the input parameter 'end' and the end
427 * (exclusive, last byte + 1) of the last dropped extent. This is always
428 * set even if btrfs_drop_extents() returns an error.
429 */
430 u64 drop_end;
431 /*
432 * The number of allocated bytes found in the range. This can be smaller
433 * than the range's length when there are holes in the range.
434 */
435 u64 bytes_found;
436 /*
437 * Only set if 'replace_extent' is true. Set to true if we were able
438 * to insert a replacement extent after dropping all extents in the
439 * range, otherwise set to false by btrfs_drop_extents().
440 * Also, if btrfs_drop_extents() has set this to true it means it
441 * returned with the path locked, otherwise if it has set this to
442 * false it has returned with the path released.
443 */
444 bool extent_inserted;
445};
446
447struct btrfs_file_private {
448 void *filldir_buf;
449 u64 last_index;
450 struct extent_state *llseek_cached_state;
451};
452
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
454{
455 return info->nodesize - sizeof(struct btrfs_header);
456}
457
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
459{
460 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
464{
465 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
466}
467
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
469{
470 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
471}
472
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474 ((bytes) >> (fs_info)->sectorsize_bits)
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
477{
478 return mapping_gfp_constraint(mapping, ~__GFP_FS);
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482 u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492 const struct btrfs_key *key, int *slot);
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
495
496#ifdef __LITTLE_ENDIAN
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503 const struct btrfs_key *k2)
504{
505 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
506
507 return btrfs_comp_cpu_keys(k1, k2);
508}
509
510#else
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514 const struct btrfs_key *k2)
515{
516 struct btrfs_key k1;
517
518 btrfs_disk_key_to_cpu(&k1, disk);
519
520 return btrfs_comp_cpu_keys(&k1, k2);
521}
522
523#endif
524
525int btrfs_previous_item(struct btrfs_root *root,
526 struct btrfs_path *path, u64 min_objectid,
527 int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529 struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531 struct btrfs_path *path,
532 const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535 struct btrfs_key *key, int lowest_level,
536 u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538 struct btrfs_path *path,
539 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541 int slot);
542
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root, struct extent_buffer *buf,
545 struct extent_buffer *parent, int parent_slot,
546 struct extent_buffer **cow_ret,
547 enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct extent_buffer *buf,
551 struct extent_buffer *parent, int parent_slot,
552 struct extent_buffer **cow_ret,
553 u64 search_start, u64 empty_size,
554 enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556 struct btrfs_root *root,
557 struct extent_buffer *buf,
558 struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560 struct btrfs_root *root,
561 struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563 struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565 struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569 struct btrfs_root *root,
570 struct btrfs_path *path,
571 const struct btrfs_key *new_key,
572 unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root,
575 struct btrfs_path *path,
576 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580 const struct btrfs_key *key, struct btrfs_path *p,
581 int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583 struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585 const struct btrfs_key *key,
586 struct btrfs_path *p, int find_higher,
587 int return_any);
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593 struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595 struct btrfs_root *root,
596 struct btrfs_path *path)
597{
598 return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606 /*
607 * Pointer to an array containing the keys of the items to insert (in
608 * sorted order).
609 */
610 const struct btrfs_key *keys;
611 /* Pointer to an array containing the data size for each item to insert. */
612 const u32 *data_sizes;
613 /*
614 * The sum of data sizes for all items. The caller can compute this while
615 * setting up the data_sizes array, so it ends up being more efficient
616 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617 * doing it, as it would avoid an extra loop over a potentially large
618 * array, and in the case of setup_item_for_insert(), we would be doing
619 * it while holding a write lock on a leaf and often on upper level nodes
620 * too, unnecessarily increasing the size of a critical section.
621 */
622 u32 total_data_size;
623 /* Size of the keys and data_sizes arrays (number of items in the batch). */
624 int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628 struct btrfs_root *root,
629 struct btrfs_path *path,
630 const struct btrfs_key *key,
631 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633 const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635 struct btrfs_root *root,
636 struct btrfs_path *path,
637 const struct btrfs_item_batch *batch);
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640 struct btrfs_root *root,
641 struct btrfs_path *path,
642 const struct btrfs_key *key,
643 u32 data_size)
644{
645 struct btrfs_item_batch batch;
646
647 batch.keys = key;
648 batch.data_sizes = &data_size;
649 batch.total_data_size = data_size;
650 batch.nr = 1;
651
652 return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656 u64 time_seq);
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659 struct btrfs_path *path);
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662 struct btrfs_path *path);
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
666 *
667 * @root: The root node of the tree.
668 * @key: The key we are looking for.
669 * @found_key: Will hold the found item.
670 * @path: Holds the current slot/leaf.
671 * @iter_ret: Contains the value returned from btrfs_search_slot or
672 * btrfs_get_next_valid_item, whichever was executed last.
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
684 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
685 (iter_ret) >= 0 && \
686 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687 (path)->slots[0]++ \
688 )
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
699{
700 return btrfs_next_old_leaf(root, path, 0);
701}
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
704{
705 return btrfs_next_old_item(root, p, 0);
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
708
709static inline int is_fstree(u64 rootid)
710{
711 if (rootid == BTRFS_FS_TREE_OBJECTID ||
712 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713 !btrfs_qgroup_level(rootid)))
714 return 1;
715 return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page) PagePrivate2(page)
736#define SetPageOrdered(page) SetPagePrivate2(page)
737#define ClearPageOrdered(page) ClearPagePrivate2(page)
738#define folio_test_ordered(folio) folio_test_private_2(folio)
739#define folio_set_ordered(folio) folio_set_private_2(folio)
740#define folio_clear_ordered(folio) folio_clear_private_2(folio)
741
742#endif
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#ifndef __BTRFS_CTREE__
20#define __BTRFS_CTREE__
21
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/fs.h>
25#include <linux/rwsem.h>
26#include <linux/semaphore.h>
27#include <linux/completion.h>
28#include <linux/backing-dev.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/kobject.h>
32#include <trace/events/btrfs.h>
33#include <asm/kmap_types.h>
34#include <linux/pagemap.h>
35#include <linux/btrfs.h>
36#include <linux/workqueue.h>
37#include <linux/security.h>
38#include <linux/sizes.h>
39#include "extent_io.h"
40#include "extent_map.h"
41#include "async-thread.h"
42
43struct btrfs_trans_handle;
44struct btrfs_transaction;
45struct btrfs_pending_snapshot;
46extern struct kmem_cache *btrfs_trans_handle_cachep;
47extern struct kmem_cache *btrfs_transaction_cachep;
48extern struct kmem_cache *btrfs_bit_radix_cachep;
49extern struct kmem_cache *btrfs_path_cachep;
50extern struct kmem_cache *btrfs_free_space_cachep;
51struct btrfs_ordered_sum;
52
53#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
54#define STATIC noinline
55#else
56#define STATIC static noinline
57#endif
58
59#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
60
61#define BTRFS_MAX_MIRRORS 3
62
63#define BTRFS_MAX_LEVEL 8
64
65#define BTRFS_COMPAT_EXTENT_TREE_V0
66
67/* holds pointers to all of the tree roots */
68#define BTRFS_ROOT_TREE_OBJECTID 1ULL
69
70/* stores information about which extents are in use, and reference counts */
71#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
72
73/*
74 * chunk tree stores translations from logical -> physical block numbering
75 * the super block points to the chunk tree
76 */
77#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
78
79/*
80 * stores information about which areas of a given device are in use.
81 * one per device. The tree of tree roots points to the device tree
82 */
83#define BTRFS_DEV_TREE_OBJECTID 4ULL
84
85/* one per subvolume, storing files and directories */
86#define BTRFS_FS_TREE_OBJECTID 5ULL
87
88/* directory objectid inside the root tree */
89#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
90
91/* holds checksums of all the data extents */
92#define BTRFS_CSUM_TREE_OBJECTID 7ULL
93
94/* holds quota configuration and tracking */
95#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
96
97/* for storing items that use the BTRFS_UUID_KEY* types */
98#define BTRFS_UUID_TREE_OBJECTID 9ULL
99
100/* tracks free space in block groups. */
101#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
102
103/* device stats in the device tree */
104#define BTRFS_DEV_STATS_OBJECTID 0ULL
105
106/* for storing balance parameters in the root tree */
107#define BTRFS_BALANCE_OBJECTID -4ULL
108
109/* orhpan objectid for tracking unlinked/truncated files */
110#define BTRFS_ORPHAN_OBJECTID -5ULL
111
112/* does write ahead logging to speed up fsyncs */
113#define BTRFS_TREE_LOG_OBJECTID -6ULL
114#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
115
116/* for space balancing */
117#define BTRFS_TREE_RELOC_OBJECTID -8ULL
118#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
119
120/*
121 * extent checksums all have this objectid
122 * this allows them to share the logging tree
123 * for fsyncs
124 */
125#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
126
127/* For storing free space cache */
128#define BTRFS_FREE_SPACE_OBJECTID -11ULL
129
130/*
131 * The inode number assigned to the special inode for storing
132 * free ino cache
133 */
134#define BTRFS_FREE_INO_OBJECTID -12ULL
135
136/* dummy objectid represents multiple objectids */
137#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
138
139/*
140 * All files have objectids in this range.
141 */
142#define BTRFS_FIRST_FREE_OBJECTID 256ULL
143#define BTRFS_LAST_FREE_OBJECTID -256ULL
144#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
145
146
147/*
148 * the device items go into the chunk tree. The key is in the form
149 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
150 */
151#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
152
153#define BTRFS_BTREE_INODE_OBJECTID 1
154
155#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
156
157#define BTRFS_DEV_REPLACE_DEVID 0ULL
158
159/*
160 * the max metadata block size. This limit is somewhat artificial,
161 * but the memmove costs go through the roof for larger blocks.
162 */
163#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
164
165/*
166 * we can actually store much bigger names, but lets not confuse the rest
167 * of linux
168 */
169#define BTRFS_NAME_LEN 255
170
171/*
172 * Theoretical limit is larger, but we keep this down to a sane
173 * value. That should limit greatly the possibility of collisions on
174 * inode ref items.
175 */
176#define BTRFS_LINK_MAX 65535U
177
178/* 32 bytes in various csum fields */
179#define BTRFS_CSUM_SIZE 32
180
181/* csum types */
182#define BTRFS_CSUM_TYPE_CRC32 0
183
184static const int btrfs_csum_sizes[] = { 4 };
185
186/* four bytes for CRC32 */
187#define BTRFS_EMPTY_DIR_SIZE 0
188
189/* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
190#define REQ_GET_READ_MIRRORS (1 << 30)
191
192#define BTRFS_FT_UNKNOWN 0
193#define BTRFS_FT_REG_FILE 1
194#define BTRFS_FT_DIR 2
195#define BTRFS_FT_CHRDEV 3
196#define BTRFS_FT_BLKDEV 4
197#define BTRFS_FT_FIFO 5
198#define BTRFS_FT_SOCK 6
199#define BTRFS_FT_SYMLINK 7
200#define BTRFS_FT_XATTR 8
201#define BTRFS_FT_MAX 9
202
203/* ioprio of readahead is set to idle */
204#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
205
206#define BTRFS_DIRTY_METADATA_THRESH SZ_32M
207
208#define BTRFS_MAX_EXTENT_SIZE SZ_128M
209
210/*
211 * The key defines the order in the tree, and so it also defines (optimal)
212 * block layout.
213 *
214 * objectid corresponds to the inode number.
215 *
216 * type tells us things about the object, and is a kind of stream selector.
217 * so for a given inode, keys with type of 1 might refer to the inode data,
218 * type of 2 may point to file data in the btree and type == 3 may point to
219 * extents.
220 *
221 * offset is the starting byte offset for this key in the stream.
222 *
223 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
224 * in cpu native order. Otherwise they are identical and their sizes
225 * should be the same (ie both packed)
226 */
227struct btrfs_disk_key {
228 __le64 objectid;
229 u8 type;
230 __le64 offset;
231} __attribute__ ((__packed__));
232
233struct btrfs_key {
234 u64 objectid;
235 u8 type;
236 u64 offset;
237} __attribute__ ((__packed__));
238
239struct btrfs_mapping_tree {
240 struct extent_map_tree map_tree;
241};
242
243struct btrfs_dev_item {
244 /* the internal btrfs device id */
245 __le64 devid;
246
247 /* size of the device */
248 __le64 total_bytes;
249
250 /* bytes used */
251 __le64 bytes_used;
252
253 /* optimal io alignment for this device */
254 __le32 io_align;
255
256 /* optimal io width for this device */
257 __le32 io_width;
258
259 /* minimal io size for this device */
260 __le32 sector_size;
261
262 /* type and info about this device */
263 __le64 type;
264
265 /* expected generation for this device */
266 __le64 generation;
267
268 /*
269 * starting byte of this partition on the device,
270 * to allow for stripe alignment in the future
271 */
272 __le64 start_offset;
273
274 /* grouping information for allocation decisions */
275 __le32 dev_group;
276
277 /* seek speed 0-100 where 100 is fastest */
278 u8 seek_speed;
279
280 /* bandwidth 0-100 where 100 is fastest */
281 u8 bandwidth;
282
283 /* btrfs generated uuid for this device */
284 u8 uuid[BTRFS_UUID_SIZE];
285
286 /* uuid of FS who owns this device */
287 u8 fsid[BTRFS_UUID_SIZE];
288} __attribute__ ((__packed__));
289
290struct btrfs_stripe {
291 __le64 devid;
292 __le64 offset;
293 u8 dev_uuid[BTRFS_UUID_SIZE];
294} __attribute__ ((__packed__));
295
296struct btrfs_chunk {
297 /* size of this chunk in bytes */
298 __le64 length;
299
300 /* objectid of the root referencing this chunk */
301 __le64 owner;
302
303 __le64 stripe_len;
304 __le64 type;
305
306 /* optimal io alignment for this chunk */
307 __le32 io_align;
308
309 /* optimal io width for this chunk */
310 __le32 io_width;
311
312 /* minimal io size for this chunk */
313 __le32 sector_size;
314
315 /* 2^16 stripes is quite a lot, a second limit is the size of a single
316 * item in the btree
317 */
318 __le16 num_stripes;
319
320 /* sub stripes only matter for raid10 */
321 __le16 sub_stripes;
322 struct btrfs_stripe stripe;
323 /* additional stripes go here */
324} __attribute__ ((__packed__));
325
326#define BTRFS_FREE_SPACE_EXTENT 1
327#define BTRFS_FREE_SPACE_BITMAP 2
328
329struct btrfs_free_space_entry {
330 __le64 offset;
331 __le64 bytes;
332 u8 type;
333} __attribute__ ((__packed__));
334
335struct btrfs_free_space_header {
336 struct btrfs_disk_key location;
337 __le64 generation;
338 __le64 num_entries;
339 __le64 num_bitmaps;
340} __attribute__ ((__packed__));
341
342static inline unsigned long btrfs_chunk_item_size(int num_stripes)
343{
344 BUG_ON(num_stripes == 0);
345 return sizeof(struct btrfs_chunk) +
346 sizeof(struct btrfs_stripe) * (num_stripes - 1);
347}
348
349#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
350#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
351
352/*
353 * File system states
354 */
355#define BTRFS_FS_STATE_ERROR 0
356#define BTRFS_FS_STATE_REMOUNTING 1
357#define BTRFS_FS_STATE_TRANS_ABORTED 2
358#define BTRFS_FS_STATE_DEV_REPLACING 3
359
360/* Super block flags */
361/* Errors detected */
362#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
363
364#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
365#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
366
367#define BTRFS_BACKREF_REV_MAX 256
368#define BTRFS_BACKREF_REV_SHIFT 56
369#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
370 BTRFS_BACKREF_REV_SHIFT)
371
372#define BTRFS_OLD_BACKREF_REV 0
373#define BTRFS_MIXED_BACKREF_REV 1
374
375/*
376 * every tree block (leaf or node) starts with this header.
377 */
378struct btrfs_header {
379 /* these first four must match the super block */
380 u8 csum[BTRFS_CSUM_SIZE];
381 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
382 __le64 bytenr; /* which block this node is supposed to live in */
383 __le64 flags;
384
385 /* allowed to be different from the super from here on down */
386 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
387 __le64 generation;
388 __le64 owner;
389 __le32 nritems;
390 u8 level;
391} __attribute__ ((__packed__));
392
393#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
394 sizeof(struct btrfs_header)) / \
395 sizeof(struct btrfs_key_ptr))
396#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
397#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
398#define BTRFS_FILE_EXTENT_INLINE_DATA_START \
399 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
400#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
401 sizeof(struct btrfs_item) - \
402 BTRFS_FILE_EXTENT_INLINE_DATA_START)
403#define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
404 sizeof(struct btrfs_item) -\
405 sizeof(struct btrfs_dir_item))
406
407
408/*
409 * this is a very generous portion of the super block, giving us
410 * room to translate 14 chunks with 3 stripes each.
411 */
412#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
413#define BTRFS_LABEL_SIZE 256
414
415/*
416 * just in case we somehow lose the roots and are not able to mount,
417 * we store an array of the roots from previous transactions
418 * in the super.
419 */
420#define BTRFS_NUM_BACKUP_ROOTS 4
421struct btrfs_root_backup {
422 __le64 tree_root;
423 __le64 tree_root_gen;
424
425 __le64 chunk_root;
426 __le64 chunk_root_gen;
427
428 __le64 extent_root;
429 __le64 extent_root_gen;
430
431 __le64 fs_root;
432 __le64 fs_root_gen;
433
434 __le64 dev_root;
435 __le64 dev_root_gen;
436
437 __le64 csum_root;
438 __le64 csum_root_gen;
439
440 __le64 total_bytes;
441 __le64 bytes_used;
442 __le64 num_devices;
443 /* future */
444 __le64 unused_64[4];
445
446 u8 tree_root_level;
447 u8 chunk_root_level;
448 u8 extent_root_level;
449 u8 fs_root_level;
450 u8 dev_root_level;
451 u8 csum_root_level;
452 /* future and to align */
453 u8 unused_8[10];
454} __attribute__ ((__packed__));
455
456/*
457 * the super block basically lists the main trees of the FS
458 * it currently lacks any block count etc etc
459 */
460struct btrfs_super_block {
461 u8 csum[BTRFS_CSUM_SIZE];
462 /* the first 4 fields must match struct btrfs_header */
463 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
464 __le64 bytenr; /* this block number */
465 __le64 flags;
466
467 /* allowed to be different from the btrfs_header from here own down */
468 __le64 magic;
469 __le64 generation;
470 __le64 root;
471 __le64 chunk_root;
472 __le64 log_root;
473
474 /* this will help find the new super based on the log root */
475 __le64 log_root_transid;
476 __le64 total_bytes;
477 __le64 bytes_used;
478 __le64 root_dir_objectid;
479 __le64 num_devices;
480 __le32 sectorsize;
481 __le32 nodesize;
482 __le32 __unused_leafsize;
483 __le32 stripesize;
484 __le32 sys_chunk_array_size;
485 __le64 chunk_root_generation;
486 __le64 compat_flags;
487 __le64 compat_ro_flags;
488 __le64 incompat_flags;
489 __le16 csum_type;
490 u8 root_level;
491 u8 chunk_root_level;
492 u8 log_root_level;
493 struct btrfs_dev_item dev_item;
494
495 char label[BTRFS_LABEL_SIZE];
496
497 __le64 cache_generation;
498 __le64 uuid_tree_generation;
499
500 /* future expansion */
501 __le64 reserved[30];
502 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
503 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
504} __attribute__ ((__packed__));
505
506/*
507 * Compat flags that we support. If any incompat flags are set other than the
508 * ones specified below then we will fail to mount
509 */
510#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE (1ULL << 0)
511
512#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
513#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
514#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
515#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
516/*
517 * some patches floated around with a second compression method
518 * lets save that incompat here for when they do get in
519 * Note we don't actually support it, we're just reserving the
520 * number
521 */
522#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
523
524/*
525 * older kernels tried to do bigger metadata blocks, but the
526 * code was pretty buggy. Lets not let them try anymore.
527 */
528#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
529
530#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
531#define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
532#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
533#define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
534
535#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
536#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
537#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
538
539#define BTRFS_FEATURE_COMPAT_RO_SUPP \
540 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE)
541
542#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
543#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
544
545#define BTRFS_FEATURE_INCOMPAT_SUPP \
546 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
547 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
548 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
549 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
550 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
551 BTRFS_FEATURE_INCOMPAT_RAID56 | \
552 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
553 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
554 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
555
556#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
557 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
558#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
559
560/*
561 * A leaf is full of items. offset and size tell us where to find
562 * the item in the leaf (relative to the start of the data area)
563 */
564struct btrfs_item {
565 struct btrfs_disk_key key;
566 __le32 offset;
567 __le32 size;
568} __attribute__ ((__packed__));
569
570/*
571 * leaves have an item area and a data area:
572 * [item0, item1....itemN] [free space] [dataN...data1, data0]
573 *
574 * The data is separate from the items to get the keys closer together
575 * during searches.
576 */
577struct btrfs_leaf {
578 struct btrfs_header header;
579 struct btrfs_item items[];
580} __attribute__ ((__packed__));
581
582/*
583 * all non-leaf blocks are nodes, they hold only keys and pointers to
584 * other blocks
585 */
586struct btrfs_key_ptr {
587 struct btrfs_disk_key key;
588 __le64 blockptr;
589 __le64 generation;
590} __attribute__ ((__packed__));
591
592struct btrfs_node {
593 struct btrfs_header header;
594 struct btrfs_key_ptr ptrs[];
595} __attribute__ ((__packed__));
596
597/*
598 * btrfs_paths remember the path taken from the root down to the leaf.
599 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
600 * to any other levels that are present.
601 *
602 * The slots array records the index of the item or block pointer
603 * used while walking the tree.
604 */
605enum { READA_NONE = 0, READA_BACK, READA_FORWARD };
606struct btrfs_path {
607 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
608 int slots[BTRFS_MAX_LEVEL];
609 /* if there is real range locking, this locks field will change */
610 u8 locks[BTRFS_MAX_LEVEL];
611 u8 reada;
612 /* keep some upper locks as we walk down */
613 u8 lowest_level;
614
615 /*
616 * set by btrfs_split_item, tells search_slot to keep all locks
617 * and to force calls to keep space in the nodes
618 */
619 unsigned int search_for_split:1;
620 unsigned int keep_locks:1;
621 unsigned int skip_locking:1;
622 unsigned int leave_spinning:1;
623 unsigned int search_commit_root:1;
624 unsigned int need_commit_sem:1;
625 unsigned int skip_release_on_error:1;
626};
627
628/*
629 * items in the extent btree are used to record the objectid of the
630 * owner of the block and the number of references
631 */
632
633struct btrfs_extent_item {
634 __le64 refs;
635 __le64 generation;
636 __le64 flags;
637} __attribute__ ((__packed__));
638
639struct btrfs_extent_item_v0 {
640 __le32 refs;
641} __attribute__ ((__packed__));
642
643#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
644 sizeof(struct btrfs_item))
645
646#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
647#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
648
649/* following flags only apply to tree blocks */
650
651/* use full backrefs for extent pointers in the block */
652#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
653
654/*
655 * this flag is only used internally by scrub and may be changed at any time
656 * it is only declared here to avoid collisions
657 */
658#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
659
660struct btrfs_tree_block_info {
661 struct btrfs_disk_key key;
662 u8 level;
663} __attribute__ ((__packed__));
664
665struct btrfs_extent_data_ref {
666 __le64 root;
667 __le64 objectid;
668 __le64 offset;
669 __le32 count;
670} __attribute__ ((__packed__));
671
672struct btrfs_shared_data_ref {
673 __le32 count;
674} __attribute__ ((__packed__));
675
676struct btrfs_extent_inline_ref {
677 u8 type;
678 __le64 offset;
679} __attribute__ ((__packed__));
680
681/* old style backrefs item */
682struct btrfs_extent_ref_v0 {
683 __le64 root;
684 __le64 generation;
685 __le64 objectid;
686 __le32 count;
687} __attribute__ ((__packed__));
688
689
690/* dev extents record free space on individual devices. The owner
691 * field points back to the chunk allocation mapping tree that allocated
692 * the extent. The chunk tree uuid field is a way to double check the owner
693 */
694struct btrfs_dev_extent {
695 __le64 chunk_tree;
696 __le64 chunk_objectid;
697 __le64 chunk_offset;
698 __le64 length;
699 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
700} __attribute__ ((__packed__));
701
702struct btrfs_inode_ref {
703 __le64 index;
704 __le16 name_len;
705 /* name goes here */
706} __attribute__ ((__packed__));
707
708struct btrfs_inode_extref {
709 __le64 parent_objectid;
710 __le64 index;
711 __le16 name_len;
712 __u8 name[0];
713 /* name goes here */
714} __attribute__ ((__packed__));
715
716struct btrfs_timespec {
717 __le64 sec;
718 __le32 nsec;
719} __attribute__ ((__packed__));
720
721struct btrfs_inode_item {
722 /* nfs style generation number */
723 __le64 generation;
724 /* transid that last touched this inode */
725 __le64 transid;
726 __le64 size;
727 __le64 nbytes;
728 __le64 block_group;
729 __le32 nlink;
730 __le32 uid;
731 __le32 gid;
732 __le32 mode;
733 __le64 rdev;
734 __le64 flags;
735
736 /* modification sequence number for NFS */
737 __le64 sequence;
738
739 /*
740 * a little future expansion, for more than this we can
741 * just grow the inode item and version it
742 */
743 __le64 reserved[4];
744 struct btrfs_timespec atime;
745 struct btrfs_timespec ctime;
746 struct btrfs_timespec mtime;
747 struct btrfs_timespec otime;
748} __attribute__ ((__packed__));
749
750struct btrfs_dir_log_item {
751 __le64 end;
752} __attribute__ ((__packed__));
753
754struct btrfs_dir_item {
755 struct btrfs_disk_key location;
756 __le64 transid;
757 __le16 data_len;
758 __le16 name_len;
759 u8 type;
760} __attribute__ ((__packed__));
761
762#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
763
764/*
765 * Internal in-memory flag that a subvolume has been marked for deletion but
766 * still visible as a directory
767 */
768#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
769
770struct btrfs_root_item {
771 struct btrfs_inode_item inode;
772 __le64 generation;
773 __le64 root_dirid;
774 __le64 bytenr;
775 __le64 byte_limit;
776 __le64 bytes_used;
777 __le64 last_snapshot;
778 __le64 flags;
779 __le32 refs;
780 struct btrfs_disk_key drop_progress;
781 u8 drop_level;
782 u8 level;
783
784 /*
785 * The following fields appear after subvol_uuids+subvol_times
786 * were introduced.
787 */
788
789 /*
790 * This generation number is used to test if the new fields are valid
791 * and up to date while reading the root item. Every time the root item
792 * is written out, the "generation" field is copied into this field. If
793 * anyone ever mounted the fs with an older kernel, we will have
794 * mismatching generation values here and thus must invalidate the
795 * new fields. See btrfs_update_root and btrfs_find_last_root for
796 * details.
797 * the offset of generation_v2 is also used as the start for the memset
798 * when invalidating the fields.
799 */
800 __le64 generation_v2;
801 u8 uuid[BTRFS_UUID_SIZE];
802 u8 parent_uuid[BTRFS_UUID_SIZE];
803 u8 received_uuid[BTRFS_UUID_SIZE];
804 __le64 ctransid; /* updated when an inode changes */
805 __le64 otransid; /* trans when created */
806 __le64 stransid; /* trans when sent. non-zero for received subvol */
807 __le64 rtransid; /* trans when received. non-zero for received subvol */
808 struct btrfs_timespec ctime;
809 struct btrfs_timespec otime;
810 struct btrfs_timespec stime;
811 struct btrfs_timespec rtime;
812 __le64 reserved[8]; /* for future */
813} __attribute__ ((__packed__));
814
815/*
816 * this is used for both forward and backward root refs
817 */
818struct btrfs_root_ref {
819 __le64 dirid;
820 __le64 sequence;
821 __le16 name_len;
822} __attribute__ ((__packed__));
823
824struct btrfs_disk_balance_args {
825 /*
826 * profiles to operate on, single is denoted by
827 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
828 */
829 __le64 profiles;
830
831 /*
832 * usage filter
833 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
834 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
835 */
836 union {
837 __le64 usage;
838 struct {
839 __le32 usage_min;
840 __le32 usage_max;
841 };
842 };
843
844 /* devid filter */
845 __le64 devid;
846
847 /* devid subset filter [pstart..pend) */
848 __le64 pstart;
849 __le64 pend;
850
851 /* btrfs virtual address space subset filter [vstart..vend) */
852 __le64 vstart;
853 __le64 vend;
854
855 /*
856 * profile to convert to, single is denoted by
857 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
858 */
859 __le64 target;
860
861 /* BTRFS_BALANCE_ARGS_* */
862 __le64 flags;
863
864 /*
865 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
866 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
867 * and maximum
868 */
869 union {
870 __le64 limit;
871 struct {
872 __le32 limit_min;
873 __le32 limit_max;
874 };
875 };
876
877 /*
878 * Process chunks that cross stripes_min..stripes_max devices,
879 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
880 */
881 __le32 stripes_min;
882 __le32 stripes_max;
883
884 __le64 unused[6];
885} __attribute__ ((__packed__));
886
887/*
888 * store balance parameters to disk so that balance can be properly
889 * resumed after crash or unmount
890 */
891struct btrfs_balance_item {
892 /* BTRFS_BALANCE_* */
893 __le64 flags;
894
895 struct btrfs_disk_balance_args data;
896 struct btrfs_disk_balance_args meta;
897 struct btrfs_disk_balance_args sys;
898
899 __le64 unused[4];
900} __attribute__ ((__packed__));
901
902#define BTRFS_FILE_EXTENT_INLINE 0
903#define BTRFS_FILE_EXTENT_REG 1
904#define BTRFS_FILE_EXTENT_PREALLOC 2
905
906struct btrfs_file_extent_item {
907 /*
908 * transaction id that created this extent
909 */
910 __le64 generation;
911 /*
912 * max number of bytes to hold this extent in ram
913 * when we split a compressed extent we can't know how big
914 * each of the resulting pieces will be. So, this is
915 * an upper limit on the size of the extent in ram instead of
916 * an exact limit.
917 */
918 __le64 ram_bytes;
919
920 /*
921 * 32 bits for the various ways we might encode the data,
922 * including compression and encryption. If any of these
923 * are set to something a given disk format doesn't understand
924 * it is treated like an incompat flag for reading and writing,
925 * but not for stat.
926 */
927 u8 compression;
928 u8 encryption;
929 __le16 other_encoding; /* spare for later use */
930
931 /* are we inline data or a real extent? */
932 u8 type;
933
934 /*
935 * disk space consumed by the extent, checksum blocks are included
936 * in these numbers
937 *
938 * At this offset in the structure, the inline extent data start.
939 */
940 __le64 disk_bytenr;
941 __le64 disk_num_bytes;
942 /*
943 * the logical offset in file blocks (no csums)
944 * this extent record is for. This allows a file extent to point
945 * into the middle of an existing extent on disk, sharing it
946 * between two snapshots (useful if some bytes in the middle of the
947 * extent have changed
948 */
949 __le64 offset;
950 /*
951 * the logical number of file blocks (no csums included). This
952 * always reflects the size uncompressed and without encoding.
953 */
954 __le64 num_bytes;
955
956} __attribute__ ((__packed__));
957
958struct btrfs_csum_item {
959 u8 csum;
960} __attribute__ ((__packed__));
961
962struct btrfs_dev_stats_item {
963 /*
964 * grow this item struct at the end for future enhancements and keep
965 * the existing values unchanged
966 */
967 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
968} __attribute__ ((__packed__));
969
970#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
971#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
972#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
973#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
974#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
975#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
976#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
977
978struct btrfs_dev_replace {
979 u64 replace_state; /* see #define above */
980 u64 time_started; /* seconds since 1-Jan-1970 */
981 u64 time_stopped; /* seconds since 1-Jan-1970 */
982 atomic64_t num_write_errors;
983 atomic64_t num_uncorrectable_read_errors;
984
985 u64 cursor_left;
986 u64 committed_cursor_left;
987 u64 cursor_left_last_write_of_item;
988 u64 cursor_right;
989
990 u64 cont_reading_from_srcdev_mode; /* see #define above */
991
992 int is_valid;
993 int item_needs_writeback;
994 struct btrfs_device *srcdev;
995 struct btrfs_device *tgtdev;
996
997 pid_t lock_owner;
998 atomic_t nesting_level;
999 struct mutex lock_finishing_cancel_unmount;
1000 rwlock_t lock;
1001 atomic_t read_locks;
1002 atomic_t blocking_readers;
1003 wait_queue_head_t read_lock_wq;
1004
1005 struct btrfs_scrub_progress scrub_progress;
1006};
1007
1008struct btrfs_dev_replace_item {
1009 /*
1010 * grow this item struct at the end for future enhancements and keep
1011 * the existing values unchanged
1012 */
1013 __le64 src_devid;
1014 __le64 cursor_left;
1015 __le64 cursor_right;
1016 __le64 cont_reading_from_srcdev_mode;
1017
1018 __le64 replace_state;
1019 __le64 time_started;
1020 __le64 time_stopped;
1021 __le64 num_write_errors;
1022 __le64 num_uncorrectable_read_errors;
1023} __attribute__ ((__packed__));
1024
1025/* different types of block groups (and chunks) */
1026#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
1027#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
1028#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
1029#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
1030#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
1031#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
1032#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
1033#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
1034#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
1035#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1036 BTRFS_SPACE_INFO_GLOBAL_RSV)
1037
1038enum btrfs_raid_types {
1039 BTRFS_RAID_RAID10,
1040 BTRFS_RAID_RAID1,
1041 BTRFS_RAID_DUP,
1042 BTRFS_RAID_RAID0,
1043 BTRFS_RAID_SINGLE,
1044 BTRFS_RAID_RAID5,
1045 BTRFS_RAID_RAID6,
1046 BTRFS_NR_RAID_TYPES
1047};
1048
1049#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1050 BTRFS_BLOCK_GROUP_SYSTEM | \
1051 BTRFS_BLOCK_GROUP_METADATA)
1052
1053#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1054 BTRFS_BLOCK_GROUP_RAID1 | \
1055 BTRFS_BLOCK_GROUP_RAID5 | \
1056 BTRFS_BLOCK_GROUP_RAID6 | \
1057 BTRFS_BLOCK_GROUP_DUP | \
1058 BTRFS_BLOCK_GROUP_RAID10)
1059#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
1060 BTRFS_BLOCK_GROUP_RAID6)
1061
1062/*
1063 * We need a bit for restriper to be able to tell when chunks of type
1064 * SINGLE are available. This "extended" profile format is used in
1065 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1066 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1067 * to avoid remappings between two formats in future.
1068 */
1069#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1070
1071/*
1072 * A fake block group type that is used to communicate global block reserve
1073 * size to userspace via the SPACE_INFO ioctl.
1074 */
1075#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1076
1077#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1078 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1079
1080static inline u64 chunk_to_extended(u64 flags)
1081{
1082 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1083 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1084
1085 return flags;
1086}
1087static inline u64 extended_to_chunk(u64 flags)
1088{
1089 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1090}
1091
1092struct btrfs_block_group_item {
1093 __le64 used;
1094 __le64 chunk_objectid;
1095 __le64 flags;
1096} __attribute__ ((__packed__));
1097
1098struct btrfs_free_space_info {
1099 __le32 extent_count;
1100 __le32 flags;
1101} __attribute__ ((__packed__));
1102
1103#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1104
1105#define BTRFS_QGROUP_LEVEL_SHIFT 48
1106static inline u64 btrfs_qgroup_level(u64 qgroupid)
1107{
1108 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
1109}
1110
1111/*
1112 * is subvolume quota turned on?
1113 */
1114#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1115/*
1116 * RESCAN is set during the initialization phase
1117 */
1118#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1119/*
1120 * Some qgroup entries are known to be out of date,
1121 * either because the configuration has changed in a way that
1122 * makes a rescan necessary, or because the fs has been mounted
1123 * with a non-qgroup-aware version.
1124 * Turning qouta off and on again makes it inconsistent, too.
1125 */
1126#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1127
1128#define BTRFS_QGROUP_STATUS_VERSION 1
1129
1130struct btrfs_qgroup_status_item {
1131 __le64 version;
1132 /*
1133 * the generation is updated during every commit. As older
1134 * versions of btrfs are not aware of qgroups, it will be
1135 * possible to detect inconsistencies by checking the
1136 * generation on mount time
1137 */
1138 __le64 generation;
1139
1140 /* flag definitions see above */
1141 __le64 flags;
1142
1143 /*
1144 * only used during scanning to record the progress
1145 * of the scan. It contains a logical address
1146 */
1147 __le64 rescan;
1148} __attribute__ ((__packed__));
1149
1150struct btrfs_qgroup_info_item {
1151 __le64 generation;
1152 __le64 rfer;
1153 __le64 rfer_cmpr;
1154 __le64 excl;
1155 __le64 excl_cmpr;
1156} __attribute__ ((__packed__));
1157
1158/* flags definition for qgroup limits */
1159#define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1160#define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1161#define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1162#define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1163#define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1164#define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1165
1166struct btrfs_qgroup_limit_item {
1167 /*
1168 * only updated when any of the other values change
1169 */
1170 __le64 flags;
1171 __le64 max_rfer;
1172 __le64 max_excl;
1173 __le64 rsv_rfer;
1174 __le64 rsv_excl;
1175} __attribute__ ((__packed__));
1176
1177/* For raid type sysfs entries */
1178struct raid_kobject {
1179 int raid_type;
1180 struct kobject kobj;
1181};
1182
1183struct btrfs_space_info {
1184 spinlock_t lock;
1185
1186 u64 total_bytes; /* total bytes in the space,
1187 this doesn't take mirrors into account */
1188 u64 bytes_used; /* total bytes used,
1189 this doesn't take mirrors into account */
1190 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1191 transaction finishes */
1192 u64 bytes_reserved; /* total bytes the allocator has reserved for
1193 current allocations */
1194 u64 bytes_may_use; /* number of bytes that may be used for
1195 delalloc/allocations */
1196 u64 bytes_readonly; /* total bytes that are read only */
1197
1198 u64 max_extent_size; /* This will hold the maximum extent size of
1199 the space info if we had an ENOSPC in the
1200 allocator. */
1201
1202 unsigned int full:1; /* indicates that we cannot allocate any more
1203 chunks for this space */
1204 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1205
1206 unsigned int flush:1; /* set if we are trying to make space */
1207
1208 unsigned int force_alloc; /* set if we need to force a chunk
1209 alloc for this space */
1210
1211 u64 disk_used; /* total bytes used on disk */
1212 u64 disk_total; /* total bytes on disk, takes mirrors into
1213 account */
1214
1215 u64 flags;
1216
1217 /*
1218 * bytes_pinned is kept in line with what is actually pinned, as in
1219 * we've called update_block_group and dropped the bytes_used counter
1220 * and increased the bytes_pinned counter. However this means that
1221 * bytes_pinned does not reflect the bytes that will be pinned once the
1222 * delayed refs are flushed, so this counter is inc'ed every time we
1223 * call btrfs_free_extent so it is a realtime count of what will be
1224 * freed once the transaction is committed. It will be zero'ed every
1225 * time the transaction commits.
1226 */
1227 struct percpu_counter total_bytes_pinned;
1228
1229 struct list_head list;
1230 /* Protected by the spinlock 'lock'. */
1231 struct list_head ro_bgs;
1232
1233 struct rw_semaphore groups_sem;
1234 /* for block groups in our same type */
1235 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1236 wait_queue_head_t wait;
1237
1238 struct kobject kobj;
1239 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1240};
1241
1242#define BTRFS_BLOCK_RSV_GLOBAL 1
1243#define BTRFS_BLOCK_RSV_DELALLOC 2
1244#define BTRFS_BLOCK_RSV_TRANS 3
1245#define BTRFS_BLOCK_RSV_CHUNK 4
1246#define BTRFS_BLOCK_RSV_DELOPS 5
1247#define BTRFS_BLOCK_RSV_EMPTY 6
1248#define BTRFS_BLOCK_RSV_TEMP 7
1249
1250struct btrfs_block_rsv {
1251 u64 size;
1252 u64 reserved;
1253 struct btrfs_space_info *space_info;
1254 spinlock_t lock;
1255 unsigned short full;
1256 unsigned short type;
1257 unsigned short failfast;
1258};
1259
1260/*
1261 * free clusters are used to claim free space in relatively large chunks,
1262 * allowing us to do less seeky writes. They are used for all metadata
1263 * allocations and data allocations in ssd mode.
1264 */
1265struct btrfs_free_cluster {
1266 spinlock_t lock;
1267 spinlock_t refill_lock;
1268 struct rb_root root;
1269
1270 /* largest extent in this cluster */
1271 u64 max_size;
1272
1273 /* first extent starting offset */
1274 u64 window_start;
1275
1276 /* We did a full search and couldn't create a cluster */
1277 bool fragmented;
1278
1279 struct btrfs_block_group_cache *block_group;
1280 /*
1281 * when a cluster is allocated from a block group, we put the
1282 * cluster onto a list in the block group so that it can
1283 * be freed before the block group is freed.
1284 */
1285 struct list_head block_group_list;
1286};
1287
1288enum btrfs_caching_type {
1289 BTRFS_CACHE_NO = 0,
1290 BTRFS_CACHE_STARTED = 1,
1291 BTRFS_CACHE_FAST = 2,
1292 BTRFS_CACHE_FINISHED = 3,
1293 BTRFS_CACHE_ERROR = 4,
1294};
1295
1296enum btrfs_disk_cache_state {
1297 BTRFS_DC_WRITTEN = 0,
1298 BTRFS_DC_ERROR = 1,
1299 BTRFS_DC_CLEAR = 2,
1300 BTRFS_DC_SETUP = 3,
1301};
1302
1303struct btrfs_caching_control {
1304 struct list_head list;
1305 struct mutex mutex;
1306 wait_queue_head_t wait;
1307 struct btrfs_work work;
1308 struct btrfs_block_group_cache *block_group;
1309 u64 progress;
1310 atomic_t count;
1311};
1312
1313/* Once caching_thread() finds this much free space, it will wake up waiters. */
1314#define CACHING_CTL_WAKE_UP (1024 * 1024 * 2)
1315
1316struct btrfs_io_ctl {
1317 void *cur, *orig;
1318 struct page *page;
1319 struct page **pages;
1320 struct btrfs_root *root;
1321 struct inode *inode;
1322 unsigned long size;
1323 int index;
1324 int num_pages;
1325 int entries;
1326 int bitmaps;
1327 unsigned check_crcs:1;
1328};
1329
1330struct btrfs_block_group_cache {
1331 struct btrfs_key key;
1332 struct btrfs_block_group_item item;
1333 struct btrfs_fs_info *fs_info;
1334 struct inode *inode;
1335 spinlock_t lock;
1336 u64 pinned;
1337 u64 reserved;
1338 u64 delalloc_bytes;
1339 u64 bytes_super;
1340 u64 flags;
1341 u64 cache_generation;
1342 u32 sectorsize;
1343
1344 /*
1345 * If the free space extent count exceeds this number, convert the block
1346 * group to bitmaps.
1347 */
1348 u32 bitmap_high_thresh;
1349
1350 /*
1351 * If the free space extent count drops below this number, convert the
1352 * block group back to extents.
1353 */
1354 u32 bitmap_low_thresh;
1355
1356 /*
1357 * It is just used for the delayed data space allocation because
1358 * only the data space allocation and the relative metadata update
1359 * can be done cross the transaction.
1360 */
1361 struct rw_semaphore data_rwsem;
1362
1363 /* for raid56, this is a full stripe, without parity */
1364 unsigned long full_stripe_len;
1365
1366 unsigned int ro;
1367 unsigned int iref:1;
1368 unsigned int has_caching_ctl:1;
1369 unsigned int removed:1;
1370
1371 int disk_cache_state;
1372
1373 /* cache tracking stuff */
1374 int cached;
1375 struct btrfs_caching_control *caching_ctl;
1376 u64 last_byte_to_unpin;
1377
1378 struct btrfs_space_info *space_info;
1379
1380 /* free space cache stuff */
1381 struct btrfs_free_space_ctl *free_space_ctl;
1382
1383 /* block group cache stuff */
1384 struct rb_node cache_node;
1385
1386 /* for block groups in the same raid type */
1387 struct list_head list;
1388
1389 /* usage count */
1390 atomic_t count;
1391
1392 /* List of struct btrfs_free_clusters for this block group.
1393 * Today it will only have one thing on it, but that may change
1394 */
1395 struct list_head cluster_list;
1396
1397 /* For delayed block group creation or deletion of empty block groups */
1398 struct list_head bg_list;
1399
1400 /* For read-only block groups */
1401 struct list_head ro_list;
1402
1403 atomic_t trimming;
1404
1405 /* For dirty block groups */
1406 struct list_head dirty_list;
1407 struct list_head io_list;
1408
1409 struct btrfs_io_ctl io_ctl;
1410
1411 /* Lock for free space tree operations. */
1412 struct mutex free_space_lock;
1413
1414 /*
1415 * Does the block group need to be added to the free space tree?
1416 * Protected by free_space_lock.
1417 */
1418 int needs_free_space;
1419};
1420
1421/* delayed seq elem */
1422struct seq_list {
1423 struct list_head list;
1424 u64 seq;
1425};
1426
1427#define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 }
1428
1429enum btrfs_orphan_cleanup_state {
1430 ORPHAN_CLEANUP_STARTED = 1,
1431 ORPHAN_CLEANUP_DONE = 2,
1432};
1433
1434/* used by the raid56 code to lock stripes for read/modify/write */
1435struct btrfs_stripe_hash {
1436 struct list_head hash_list;
1437 wait_queue_head_t wait;
1438 spinlock_t lock;
1439};
1440
1441/* used by the raid56 code to lock stripes for read/modify/write */
1442struct btrfs_stripe_hash_table {
1443 struct list_head stripe_cache;
1444 spinlock_t cache_lock;
1445 int cache_size;
1446 struct btrfs_stripe_hash table[];
1447};
1448
1449#define BTRFS_STRIPE_HASH_TABLE_BITS 11
1450
1451void btrfs_init_async_reclaim_work(struct work_struct *work);
1452
1453/* fs_info */
1454struct reloc_control;
1455struct btrfs_device;
1456struct btrfs_fs_devices;
1457struct btrfs_balance_control;
1458struct btrfs_delayed_root;
1459struct btrfs_fs_info {
1460 u8 fsid[BTRFS_FSID_SIZE];
1461 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1462 struct btrfs_root *extent_root;
1463 struct btrfs_root *tree_root;
1464 struct btrfs_root *chunk_root;
1465 struct btrfs_root *dev_root;
1466 struct btrfs_root *fs_root;
1467 struct btrfs_root *csum_root;
1468 struct btrfs_root *quota_root;
1469 struct btrfs_root *uuid_root;
1470 struct btrfs_root *free_space_root;
1471
1472 /* the log root tree is a directory of all the other log roots */
1473 struct btrfs_root *log_root_tree;
1474
1475 spinlock_t fs_roots_radix_lock;
1476 struct radix_tree_root fs_roots_radix;
1477
1478 /* block group cache stuff */
1479 spinlock_t block_group_cache_lock;
1480 u64 first_logical_byte;
1481 struct rb_root block_group_cache_tree;
1482
1483 /* keep track of unallocated space */
1484 spinlock_t free_chunk_lock;
1485 u64 free_chunk_space;
1486
1487 struct extent_io_tree freed_extents[2];
1488 struct extent_io_tree *pinned_extents;
1489
1490 /* logical->physical extent mapping */
1491 struct btrfs_mapping_tree mapping_tree;
1492
1493 /*
1494 * block reservation for extent, checksum, root tree and
1495 * delayed dir index item
1496 */
1497 struct btrfs_block_rsv global_block_rsv;
1498 /* block reservation for delay allocation */
1499 struct btrfs_block_rsv delalloc_block_rsv;
1500 /* block reservation for metadata operations */
1501 struct btrfs_block_rsv trans_block_rsv;
1502 /* block reservation for chunk tree */
1503 struct btrfs_block_rsv chunk_block_rsv;
1504 /* block reservation for delayed operations */
1505 struct btrfs_block_rsv delayed_block_rsv;
1506
1507 struct btrfs_block_rsv empty_block_rsv;
1508
1509 u64 generation;
1510 u64 last_trans_committed;
1511 u64 avg_delayed_ref_runtime;
1512
1513 /*
1514 * this is updated to the current trans every time a full commit
1515 * is required instead of the faster short fsync log commits
1516 */
1517 u64 last_trans_log_full_commit;
1518 unsigned long mount_opt;
1519 /*
1520 * Track requests for actions that need to be done during transaction
1521 * commit (like for some mount options).
1522 */
1523 unsigned long pending_changes;
1524 unsigned long compress_type:4;
1525 int commit_interval;
1526 /*
1527 * It is a suggestive number, the read side is safe even it gets a
1528 * wrong number because we will write out the data into a regular
1529 * extent. The write side(mount/remount) is under ->s_umount lock,
1530 * so it is also safe.
1531 */
1532 u64 max_inline;
1533 /*
1534 * Protected by ->chunk_mutex and sb->s_umount.
1535 *
1536 * The reason that we use two lock to protect it is because only
1537 * remount and mount operations can change it and these two operations
1538 * are under sb->s_umount, but the read side (chunk allocation) can not
1539 * acquire sb->s_umount or the deadlock would happen. So we use two
1540 * locks to protect it. On the write side, we must acquire two locks,
1541 * and on the read side, we just need acquire one of them.
1542 */
1543 u64 alloc_start;
1544 struct btrfs_transaction *running_transaction;
1545 wait_queue_head_t transaction_throttle;
1546 wait_queue_head_t transaction_wait;
1547 wait_queue_head_t transaction_blocked_wait;
1548 wait_queue_head_t async_submit_wait;
1549
1550 /*
1551 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1552 * when they are updated.
1553 *
1554 * Because we do not clear the flags for ever, so we needn't use
1555 * the lock on the read side.
1556 *
1557 * We also needn't use the lock when we mount the fs, because
1558 * there is no other task which will update the flag.
1559 */
1560 spinlock_t super_lock;
1561 struct btrfs_super_block *super_copy;
1562 struct btrfs_super_block *super_for_commit;
1563 struct block_device *__bdev;
1564 struct super_block *sb;
1565 struct inode *btree_inode;
1566 struct backing_dev_info bdi;
1567 struct mutex tree_log_mutex;
1568 struct mutex transaction_kthread_mutex;
1569 struct mutex cleaner_mutex;
1570 struct mutex chunk_mutex;
1571 struct mutex volume_mutex;
1572
1573 /*
1574 * this is taken to make sure we don't set block groups ro after
1575 * the free space cache has been allocated on them
1576 */
1577 struct mutex ro_block_group_mutex;
1578
1579 /* this is used during read/modify/write to make sure
1580 * no two ios are trying to mod the same stripe at the same
1581 * time
1582 */
1583 struct btrfs_stripe_hash_table *stripe_hash_table;
1584
1585 /*
1586 * this protects the ordered operations list only while we are
1587 * processing all of the entries on it. This way we make
1588 * sure the commit code doesn't find the list temporarily empty
1589 * because another function happens to be doing non-waiting preflush
1590 * before jumping into the main commit.
1591 */
1592 struct mutex ordered_operations_mutex;
1593
1594 struct rw_semaphore commit_root_sem;
1595
1596 struct rw_semaphore cleanup_work_sem;
1597
1598 struct rw_semaphore subvol_sem;
1599 struct srcu_struct subvol_srcu;
1600
1601 spinlock_t trans_lock;
1602 /*
1603 * the reloc mutex goes with the trans lock, it is taken
1604 * during commit to protect us from the relocation code
1605 */
1606 struct mutex reloc_mutex;
1607
1608 struct list_head trans_list;
1609 struct list_head dead_roots;
1610 struct list_head caching_block_groups;
1611
1612 spinlock_t delayed_iput_lock;
1613 struct list_head delayed_iputs;
1614 struct mutex cleaner_delayed_iput_mutex;
1615
1616 /* this protects tree_mod_seq_list */
1617 spinlock_t tree_mod_seq_lock;
1618 atomic64_t tree_mod_seq;
1619 struct list_head tree_mod_seq_list;
1620
1621 /* this protects tree_mod_log */
1622 rwlock_t tree_mod_log_lock;
1623 struct rb_root tree_mod_log;
1624
1625 atomic_t nr_async_submits;
1626 atomic_t async_submit_draining;
1627 atomic_t nr_async_bios;
1628 atomic_t async_delalloc_pages;
1629 atomic_t open_ioctl_trans;
1630
1631 /*
1632 * this is used to protect the following list -- ordered_roots.
1633 */
1634 spinlock_t ordered_root_lock;
1635
1636 /*
1637 * all fs/file tree roots in which there are data=ordered extents
1638 * pending writeback are added into this list.
1639 *
1640 * these can span multiple transactions and basically include
1641 * every dirty data page that isn't from nodatacow
1642 */
1643 struct list_head ordered_roots;
1644
1645 struct mutex delalloc_root_mutex;
1646 spinlock_t delalloc_root_lock;
1647 /* all fs/file tree roots that have delalloc inodes. */
1648 struct list_head delalloc_roots;
1649
1650 /*
1651 * there is a pool of worker threads for checksumming during writes
1652 * and a pool for checksumming after reads. This is because readers
1653 * can run with FS locks held, and the writers may be waiting for
1654 * those locks. We don't want ordering in the pending list to cause
1655 * deadlocks, and so the two are serviced separately.
1656 *
1657 * A third pool does submit_bio to avoid deadlocking with the other
1658 * two
1659 */
1660 struct btrfs_workqueue *workers;
1661 struct btrfs_workqueue *delalloc_workers;
1662 struct btrfs_workqueue *flush_workers;
1663 struct btrfs_workqueue *endio_workers;
1664 struct btrfs_workqueue *endio_meta_workers;
1665 struct btrfs_workqueue *endio_raid56_workers;
1666 struct btrfs_workqueue *endio_repair_workers;
1667 struct btrfs_workqueue *rmw_workers;
1668 struct btrfs_workqueue *endio_meta_write_workers;
1669 struct btrfs_workqueue *endio_write_workers;
1670 struct btrfs_workqueue *endio_freespace_worker;
1671 struct btrfs_workqueue *submit_workers;
1672 struct btrfs_workqueue *caching_workers;
1673 struct btrfs_workqueue *readahead_workers;
1674
1675 /*
1676 * fixup workers take dirty pages that didn't properly go through
1677 * the cow mechanism and make them safe to write. It happens
1678 * for the sys_munmap function call path
1679 */
1680 struct btrfs_workqueue *fixup_workers;
1681 struct btrfs_workqueue *delayed_workers;
1682
1683 /* the extent workers do delayed refs on the extent allocation tree */
1684 struct btrfs_workqueue *extent_workers;
1685 struct task_struct *transaction_kthread;
1686 struct task_struct *cleaner_kthread;
1687 int thread_pool_size;
1688
1689 struct kobject *space_info_kobj;
1690 int do_barriers;
1691 int closing;
1692 int log_root_recovering;
1693 int open;
1694
1695 u64 total_pinned;
1696
1697 /* used to keep from writing metadata until there is a nice batch */
1698 struct percpu_counter dirty_metadata_bytes;
1699 struct percpu_counter delalloc_bytes;
1700 s32 dirty_metadata_batch;
1701 s32 delalloc_batch;
1702
1703 struct list_head dirty_cowonly_roots;
1704
1705 struct btrfs_fs_devices *fs_devices;
1706
1707 /*
1708 * the space_info list is almost entirely read only. It only changes
1709 * when we add a new raid type to the FS, and that happens
1710 * very rarely. RCU is used to protect it.
1711 */
1712 struct list_head space_info;
1713
1714 struct btrfs_space_info *data_sinfo;
1715
1716 struct reloc_control *reloc_ctl;
1717
1718 /* data_alloc_cluster is only used in ssd mode */
1719 struct btrfs_free_cluster data_alloc_cluster;
1720
1721 /* all metadata allocations go through this cluster */
1722 struct btrfs_free_cluster meta_alloc_cluster;
1723
1724 /* auto defrag inodes go here */
1725 spinlock_t defrag_inodes_lock;
1726 struct rb_root defrag_inodes;
1727 atomic_t defrag_running;
1728
1729 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1730 seqlock_t profiles_lock;
1731 /*
1732 * these three are in extended format (availability of single
1733 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1734 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1735 */
1736 u64 avail_data_alloc_bits;
1737 u64 avail_metadata_alloc_bits;
1738 u64 avail_system_alloc_bits;
1739
1740 /* restriper state */
1741 spinlock_t balance_lock;
1742 struct mutex balance_mutex;
1743 atomic_t balance_running;
1744 atomic_t balance_pause_req;
1745 atomic_t balance_cancel_req;
1746 struct btrfs_balance_control *balance_ctl;
1747 wait_queue_head_t balance_wait_q;
1748
1749 unsigned data_chunk_allocations;
1750 unsigned metadata_ratio;
1751
1752 void *bdev_holder;
1753
1754 /* private scrub information */
1755 struct mutex scrub_lock;
1756 atomic_t scrubs_running;
1757 atomic_t scrub_pause_req;
1758 atomic_t scrubs_paused;
1759 atomic_t scrub_cancel_req;
1760 wait_queue_head_t scrub_pause_wait;
1761 int scrub_workers_refcnt;
1762 struct btrfs_workqueue *scrub_workers;
1763 struct btrfs_workqueue *scrub_wr_completion_workers;
1764 struct btrfs_workqueue *scrub_nocow_workers;
1765 struct btrfs_workqueue *scrub_parity_workers;
1766
1767#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1768 u32 check_integrity_print_mask;
1769#endif
1770 /*
1771 * quota information
1772 */
1773 unsigned int quota_enabled:1;
1774
1775 /*
1776 * quota_enabled only changes state after a commit. This holds the
1777 * next state.
1778 */
1779 unsigned int pending_quota_state:1;
1780
1781 /* is qgroup tracking in a consistent state? */
1782 u64 qgroup_flags;
1783
1784 /* holds configuration and tracking. Protected by qgroup_lock */
1785 struct rb_root qgroup_tree;
1786 struct rb_root qgroup_op_tree;
1787 spinlock_t qgroup_lock;
1788 spinlock_t qgroup_op_lock;
1789 atomic_t qgroup_op_seq;
1790
1791 /*
1792 * used to avoid frequently calling ulist_alloc()/ulist_free()
1793 * when doing qgroup accounting, it must be protected by qgroup_lock.
1794 */
1795 struct ulist *qgroup_ulist;
1796
1797 /* protect user change for quota operations */
1798 struct mutex qgroup_ioctl_lock;
1799
1800 /* list of dirty qgroups to be written at next commit */
1801 struct list_head dirty_qgroups;
1802
1803 /* used by qgroup for an efficient tree traversal */
1804 u64 qgroup_seq;
1805
1806 /* qgroup rescan items */
1807 struct mutex qgroup_rescan_lock; /* protects the progress item */
1808 struct btrfs_key qgroup_rescan_progress;
1809 struct btrfs_workqueue *qgroup_rescan_workers;
1810 struct completion qgroup_rescan_completion;
1811 struct btrfs_work qgroup_rescan_work;
1812
1813 /* filesystem state */
1814 unsigned long fs_state;
1815
1816 struct btrfs_delayed_root *delayed_root;
1817
1818 /* readahead tree */
1819 spinlock_t reada_lock;
1820 struct radix_tree_root reada_tree;
1821
1822 /* readahead works cnt */
1823 atomic_t reada_works_cnt;
1824
1825 /* Extent buffer radix tree */
1826 spinlock_t buffer_lock;
1827 struct radix_tree_root buffer_radix;
1828
1829 /* next backup root to be overwritten */
1830 int backup_root_index;
1831
1832 int num_tolerated_disk_barrier_failures;
1833
1834 /* device replace state */
1835 struct btrfs_dev_replace dev_replace;
1836
1837 atomic_t mutually_exclusive_operation_running;
1838
1839 struct percpu_counter bio_counter;
1840 wait_queue_head_t replace_wait;
1841
1842 struct semaphore uuid_tree_rescan_sem;
1843 unsigned int update_uuid_tree_gen:1;
1844
1845 /* Used to reclaim the metadata space in the background. */
1846 struct work_struct async_reclaim_work;
1847
1848 spinlock_t unused_bgs_lock;
1849 struct list_head unused_bgs;
1850 struct mutex unused_bg_unpin_mutex;
1851 struct mutex delete_unused_bgs_mutex;
1852
1853 /* For btrfs to record security options */
1854 struct security_mnt_opts security_opts;
1855
1856 /*
1857 * Chunks that can't be freed yet (under a trim/discard operation)
1858 * and will be latter freed. Protected by fs_info->chunk_mutex.
1859 */
1860 struct list_head pinned_chunks;
1861
1862 int creating_free_space_tree;
1863};
1864
1865struct btrfs_subvolume_writers {
1866 struct percpu_counter counter;
1867 wait_queue_head_t wait;
1868};
1869
1870/*
1871 * The state of btrfs root
1872 */
1873/*
1874 * btrfs_record_root_in_trans is a multi-step process,
1875 * and it can race with the balancing code. But the
1876 * race is very small, and only the first time the root
1877 * is added to each transaction. So IN_TRANS_SETUP
1878 * is used to tell us when more checks are required
1879 */
1880#define BTRFS_ROOT_IN_TRANS_SETUP 0
1881#define BTRFS_ROOT_REF_COWS 1
1882#define BTRFS_ROOT_TRACK_DIRTY 2
1883#define BTRFS_ROOT_IN_RADIX 3
1884#define BTRFS_ROOT_DUMMY_ROOT 4
1885#define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5
1886#define BTRFS_ROOT_DEFRAG_RUNNING 6
1887#define BTRFS_ROOT_FORCE_COW 7
1888#define BTRFS_ROOT_MULTI_LOG_TASKS 8
1889#define BTRFS_ROOT_DIRTY 9
1890
1891/*
1892 * in ram representation of the tree. extent_root is used for all allocations
1893 * and for the extent tree extent_root root.
1894 */
1895struct btrfs_root {
1896 struct extent_buffer *node;
1897
1898 struct extent_buffer *commit_root;
1899 struct btrfs_root *log_root;
1900 struct btrfs_root *reloc_root;
1901
1902 unsigned long state;
1903 struct btrfs_root_item root_item;
1904 struct btrfs_key root_key;
1905 struct btrfs_fs_info *fs_info;
1906 struct extent_io_tree dirty_log_pages;
1907
1908 struct mutex objectid_mutex;
1909
1910 spinlock_t accounting_lock;
1911 struct btrfs_block_rsv *block_rsv;
1912
1913 /* free ino cache stuff */
1914 struct btrfs_free_space_ctl *free_ino_ctl;
1915 enum btrfs_caching_type ino_cache_state;
1916 spinlock_t ino_cache_lock;
1917 wait_queue_head_t ino_cache_wait;
1918 struct btrfs_free_space_ctl *free_ino_pinned;
1919 u64 ino_cache_progress;
1920 struct inode *ino_cache_inode;
1921
1922 struct mutex log_mutex;
1923 wait_queue_head_t log_writer_wait;
1924 wait_queue_head_t log_commit_wait[2];
1925 struct list_head log_ctxs[2];
1926 atomic_t log_writers;
1927 atomic_t log_commit[2];
1928 atomic_t log_batch;
1929 int log_transid;
1930 /* No matter the commit succeeds or not*/
1931 int log_transid_committed;
1932 /* Just be updated when the commit succeeds. */
1933 int last_log_commit;
1934 pid_t log_start_pid;
1935
1936 u64 objectid;
1937 u64 last_trans;
1938
1939 /* data allocations are done in sectorsize units */
1940 u32 sectorsize;
1941
1942 /* node allocations are done in nodesize units */
1943 u32 nodesize;
1944
1945 u32 stripesize;
1946
1947 u32 type;
1948
1949 u64 highest_objectid;
1950
1951 /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1952 u64 alloc_bytenr;
1953
1954 u64 defrag_trans_start;
1955 struct btrfs_key defrag_progress;
1956 struct btrfs_key defrag_max;
1957 char *name;
1958
1959 /* the dirty list is only used by non-reference counted roots */
1960 struct list_head dirty_list;
1961
1962 struct list_head root_list;
1963
1964 spinlock_t log_extents_lock[2];
1965 struct list_head logged_list[2];
1966
1967 spinlock_t orphan_lock;
1968 atomic_t orphan_inodes;
1969 struct btrfs_block_rsv *orphan_block_rsv;
1970 int orphan_cleanup_state;
1971
1972 spinlock_t inode_lock;
1973 /* red-black tree that keeps track of in-memory inodes */
1974 struct rb_root inode_tree;
1975
1976 /*
1977 * radix tree that keeps track of delayed nodes of every inode,
1978 * protected by inode_lock
1979 */
1980 struct radix_tree_root delayed_nodes_tree;
1981 /*
1982 * right now this just gets used so that a root has its own devid
1983 * for stat. It may be used for more later
1984 */
1985 dev_t anon_dev;
1986
1987 spinlock_t root_item_lock;
1988 atomic_t refs;
1989
1990 struct mutex delalloc_mutex;
1991 spinlock_t delalloc_lock;
1992 /*
1993 * all of the inodes that have delalloc bytes. It is possible for
1994 * this list to be empty even when there is still dirty data=ordered
1995 * extents waiting to finish IO.
1996 */
1997 struct list_head delalloc_inodes;
1998 struct list_head delalloc_root;
1999 u64 nr_delalloc_inodes;
2000
2001 struct mutex ordered_extent_mutex;
2002 /*
2003 * this is used by the balancing code to wait for all the pending
2004 * ordered extents
2005 */
2006 spinlock_t ordered_extent_lock;
2007
2008 /*
2009 * all of the data=ordered extents pending writeback
2010 * these can span multiple transactions and basically include
2011 * every dirty data page that isn't from nodatacow
2012 */
2013 struct list_head ordered_extents;
2014 struct list_head ordered_root;
2015 u64 nr_ordered_extents;
2016
2017 /*
2018 * Number of currently running SEND ioctls to prevent
2019 * manipulation with the read-only status via SUBVOL_SETFLAGS
2020 */
2021 int send_in_progress;
2022 struct btrfs_subvolume_writers *subv_writers;
2023 atomic_t will_be_snapshoted;
2024
2025 /* For qgroup metadata space reserve */
2026 atomic_t qgroup_meta_rsv;
2027};
2028
2029struct btrfs_ioctl_defrag_range_args {
2030 /* start of the defrag operation */
2031 __u64 start;
2032
2033 /* number of bytes to defrag, use (u64)-1 to say all */
2034 __u64 len;
2035
2036 /*
2037 * flags for the operation, which can include turning
2038 * on compression for this one defrag
2039 */
2040 __u64 flags;
2041
2042 /*
2043 * any extent bigger than this will be considered
2044 * already defragged. Use 0 to take the kernel default
2045 * Use 1 to say every single extent must be rewritten
2046 */
2047 __u32 extent_thresh;
2048
2049 /*
2050 * which compression method to use if turning on compression
2051 * for this defrag operation. If unspecified, zlib will
2052 * be used
2053 */
2054 __u32 compress_type;
2055
2056 /* spare for later */
2057 __u32 unused[4];
2058};
2059
2060
2061/*
2062 * inode items have the data typically returned from stat and store other
2063 * info about object characteristics. There is one for every file and dir in
2064 * the FS
2065 */
2066#define BTRFS_INODE_ITEM_KEY 1
2067#define BTRFS_INODE_REF_KEY 12
2068#define BTRFS_INODE_EXTREF_KEY 13
2069#define BTRFS_XATTR_ITEM_KEY 24
2070#define BTRFS_ORPHAN_ITEM_KEY 48
2071/* reserve 2-15 close to the inode for later flexibility */
2072
2073/*
2074 * dir items are the name -> inode pointers in a directory. There is one
2075 * for every name in a directory.
2076 */
2077#define BTRFS_DIR_LOG_ITEM_KEY 60
2078#define BTRFS_DIR_LOG_INDEX_KEY 72
2079#define BTRFS_DIR_ITEM_KEY 84
2080#define BTRFS_DIR_INDEX_KEY 96
2081/*
2082 * extent data is for file data
2083 */
2084#define BTRFS_EXTENT_DATA_KEY 108
2085
2086/*
2087 * extent csums are stored in a separate tree and hold csums for
2088 * an entire extent on disk.
2089 */
2090#define BTRFS_EXTENT_CSUM_KEY 128
2091
2092/*
2093 * root items point to tree roots. They are typically in the root
2094 * tree used by the super block to find all the other trees
2095 */
2096#define BTRFS_ROOT_ITEM_KEY 132
2097
2098/*
2099 * root backrefs tie subvols and snapshots to the directory entries that
2100 * reference them
2101 */
2102#define BTRFS_ROOT_BACKREF_KEY 144
2103
2104/*
2105 * root refs make a fast index for listing all of the snapshots and
2106 * subvolumes referenced by a given root. They point directly to the
2107 * directory item in the root that references the subvol
2108 */
2109#define BTRFS_ROOT_REF_KEY 156
2110
2111/*
2112 * extent items are in the extent map tree. These record which blocks
2113 * are used, and how many references there are to each block
2114 */
2115#define BTRFS_EXTENT_ITEM_KEY 168
2116
2117/*
2118 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
2119 * the length, so we save the level in key->offset instead of the length.
2120 */
2121#define BTRFS_METADATA_ITEM_KEY 169
2122
2123#define BTRFS_TREE_BLOCK_REF_KEY 176
2124
2125#define BTRFS_EXTENT_DATA_REF_KEY 178
2126
2127#define BTRFS_EXTENT_REF_V0_KEY 180
2128
2129#define BTRFS_SHARED_BLOCK_REF_KEY 182
2130
2131#define BTRFS_SHARED_DATA_REF_KEY 184
2132
2133/*
2134 * block groups give us hints into the extent allocation trees. Which
2135 * blocks are free etc etc
2136 */
2137#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
2138
2139/*
2140 * Every block group is represented in the free space tree by a free space info
2141 * item, which stores some accounting information. It is keyed on
2142 * (block_group_start, FREE_SPACE_INFO, block_group_length).
2143 */
2144#define BTRFS_FREE_SPACE_INFO_KEY 198
2145
2146/*
2147 * A free space extent tracks an extent of space that is free in a block group.
2148 * It is keyed on (start, FREE_SPACE_EXTENT, length).
2149 */
2150#define BTRFS_FREE_SPACE_EXTENT_KEY 199
2151
2152/*
2153 * When a block group becomes very fragmented, we convert it to use bitmaps
2154 * instead of extents. A free space bitmap is keyed on
2155 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
2156 * (length / sectorsize) bits.
2157 */
2158#define BTRFS_FREE_SPACE_BITMAP_KEY 200
2159
2160#define BTRFS_DEV_EXTENT_KEY 204
2161#define BTRFS_DEV_ITEM_KEY 216
2162#define BTRFS_CHUNK_ITEM_KEY 228
2163
2164/*
2165 * Records the overall state of the qgroups.
2166 * There's only one instance of this key present,
2167 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2168 */
2169#define BTRFS_QGROUP_STATUS_KEY 240
2170/*
2171 * Records the currently used space of the qgroup.
2172 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2173 */
2174#define BTRFS_QGROUP_INFO_KEY 242
2175/*
2176 * Contains the user configured limits for the qgroup.
2177 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2178 */
2179#define BTRFS_QGROUP_LIMIT_KEY 244
2180/*
2181 * Records the child-parent relationship of qgroups. For
2182 * each relation, 2 keys are present:
2183 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2184 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2185 */
2186#define BTRFS_QGROUP_RELATION_KEY 246
2187
2188/*
2189 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
2190 */
2191#define BTRFS_BALANCE_ITEM_KEY 248
2192
2193/*
2194 * The key type for tree items that are stored persistently, but do not need to
2195 * exist for extended period of time. The items can exist in any tree.
2196 *
2197 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
2198 *
2199 * Existing items:
2200 *
2201 * - balance status item
2202 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
2203 */
2204#define BTRFS_TEMPORARY_ITEM_KEY 248
2205
2206/*
2207 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
2208 */
2209#define BTRFS_DEV_STATS_KEY 249
2210
2211/*
2212 * The key type for tree items that are stored persistently and usually exist
2213 * for a long period, eg. filesystem lifetime. The item kinds can be status
2214 * information, stats or preference values. The item can exist in any tree.
2215 *
2216 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
2217 *
2218 * Existing items:
2219 *
2220 * - device statistics, store IO stats in the device tree, one key for all
2221 * stats
2222 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
2223 */
2224#define BTRFS_PERSISTENT_ITEM_KEY 249
2225
2226/*
2227 * Persistantly stores the device replace state in the device tree.
2228 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2229 */
2230#define BTRFS_DEV_REPLACE_KEY 250
2231
2232/*
2233 * Stores items that allow to quickly map UUIDs to something else.
2234 * These items are part of the filesystem UUID tree.
2235 * The key is built like this:
2236 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2237 */
2238#if BTRFS_UUID_SIZE != 16
2239#error "UUID items require BTRFS_UUID_SIZE == 16!"
2240#endif
2241#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2242#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2243 * received subvols */
2244
2245/*
2246 * string items are for debugging. They just store a short string of
2247 * data in the FS
2248 */
2249#define BTRFS_STRING_ITEM_KEY 253
2250
2251/*
2252 * Flags for mount options.
2253 *
2254 * Note: don't forget to add new options to btrfs_show_options()
2255 */
2256#define BTRFS_MOUNT_NODATASUM (1 << 0)
2257#define BTRFS_MOUNT_NODATACOW (1 << 1)
2258#define BTRFS_MOUNT_NOBARRIER (1 << 2)
2259#define BTRFS_MOUNT_SSD (1 << 3)
2260#define BTRFS_MOUNT_DEGRADED (1 << 4)
2261#define BTRFS_MOUNT_COMPRESS (1 << 5)
2262#define BTRFS_MOUNT_NOTREELOG (1 << 6)
2263#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2264#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2265#define BTRFS_MOUNT_NOSSD (1 << 9)
2266#define BTRFS_MOUNT_DISCARD (1 << 10)
2267#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2268#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2269#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2270#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2271#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2272#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2273#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2274#define BTRFS_MOUNT_USEBACKUPROOT (1 << 18)
2275#define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2276#define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2277#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2278#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2279#define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2280#define BTRFS_MOUNT_FRAGMENT_DATA (1 << 24)
2281#define BTRFS_MOUNT_FRAGMENT_METADATA (1 << 25)
2282#define BTRFS_MOUNT_FREE_SPACE_TREE (1 << 26)
2283#define BTRFS_MOUNT_NOLOGREPLAY (1 << 27)
2284
2285#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2286#define BTRFS_DEFAULT_MAX_INLINE (2048)
2287
2288#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2289#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2290#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2291#define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2292 BTRFS_MOUNT_##opt)
2293
2294#define btrfs_set_and_info(root, opt, fmt, args...) \
2295{ \
2296 if (!btrfs_test_opt(root, opt)) \
2297 btrfs_info(root->fs_info, fmt, ##args); \
2298 btrfs_set_opt(root->fs_info->mount_opt, opt); \
2299}
2300
2301#define btrfs_clear_and_info(root, opt, fmt, args...) \
2302{ \
2303 if (btrfs_test_opt(root, opt)) \
2304 btrfs_info(root->fs_info, fmt, ##args); \
2305 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
2306}
2307
2308#ifdef CONFIG_BTRFS_DEBUG
2309static inline int
2310btrfs_should_fragment_free_space(struct btrfs_root *root,
2311 struct btrfs_block_group_cache *block_group)
2312{
2313 return (btrfs_test_opt(root, FRAGMENT_METADATA) &&
2314 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
2315 (btrfs_test_opt(root, FRAGMENT_DATA) &&
2316 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2317}
2318#endif
2319
2320/*
2321 * Requests for changes that need to be done during transaction commit.
2322 *
2323 * Internal mount options that are used for special handling of the real
2324 * mount options (eg. cannot be set during remount and have to be set during
2325 * transaction commit)
2326 */
2327
2328#define BTRFS_PENDING_SET_INODE_MAP_CACHE (0)
2329#define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE (1)
2330#define BTRFS_PENDING_COMMIT (2)
2331
2332#define btrfs_test_pending(info, opt) \
2333 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2334#define btrfs_set_pending(info, opt) \
2335 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2336#define btrfs_clear_pending(info, opt) \
2337 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2338
2339/*
2340 * Helpers for setting pending mount option changes.
2341 *
2342 * Expects corresponding macros
2343 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
2344 */
2345#define btrfs_set_pending_and_info(info, opt, fmt, args...) \
2346do { \
2347 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
2348 btrfs_info((info), fmt, ##args); \
2349 btrfs_set_pending((info), SET_##opt); \
2350 btrfs_clear_pending((info), CLEAR_##opt); \
2351 } \
2352} while(0)
2353
2354#define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
2355do { \
2356 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
2357 btrfs_info((info), fmt, ##args); \
2358 btrfs_set_pending((info), CLEAR_##opt); \
2359 btrfs_clear_pending((info), SET_##opt); \
2360 } \
2361} while(0)
2362
2363/*
2364 * Inode flags
2365 */
2366#define BTRFS_INODE_NODATASUM (1 << 0)
2367#define BTRFS_INODE_NODATACOW (1 << 1)
2368#define BTRFS_INODE_READONLY (1 << 2)
2369#define BTRFS_INODE_NOCOMPRESS (1 << 3)
2370#define BTRFS_INODE_PREALLOC (1 << 4)
2371#define BTRFS_INODE_SYNC (1 << 5)
2372#define BTRFS_INODE_IMMUTABLE (1 << 6)
2373#define BTRFS_INODE_APPEND (1 << 7)
2374#define BTRFS_INODE_NODUMP (1 << 8)
2375#define BTRFS_INODE_NOATIME (1 << 9)
2376#define BTRFS_INODE_DIRSYNC (1 << 10)
2377#define BTRFS_INODE_COMPRESS (1 << 11)
2378
2379#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2380
2381struct btrfs_map_token {
2382 struct extent_buffer *eb;
2383 char *kaddr;
2384 unsigned long offset;
2385};
2386
2387#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
2388 ((bytes) >> (fs_info)->sb->s_blocksize_bits)
2389
2390static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2391{
2392 token->kaddr = NULL;
2393}
2394
2395/* some macros to generate set/get funcs for the struct fields. This
2396 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2397 * one for u8:
2398 */
2399#define le8_to_cpu(v) (v)
2400#define cpu_to_le8(v) (v)
2401#define __le8 u8
2402
2403#define read_eb_member(eb, ptr, type, member, result) ( \
2404 read_extent_buffer(eb, (char *)(result), \
2405 ((unsigned long)(ptr)) + \
2406 offsetof(type, member), \
2407 sizeof(((type *)0)->member)))
2408
2409#define write_eb_member(eb, ptr, type, member, result) ( \
2410 write_extent_buffer(eb, (char *)(result), \
2411 ((unsigned long)(ptr)) + \
2412 offsetof(type, member), \
2413 sizeof(((type *)0)->member)))
2414
2415#define DECLARE_BTRFS_SETGET_BITS(bits) \
2416u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2417 unsigned long off, \
2418 struct btrfs_map_token *token); \
2419void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2420 unsigned long off, u##bits val, \
2421 struct btrfs_map_token *token); \
2422static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2423 unsigned long off) \
2424{ \
2425 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2426} \
2427static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2428 unsigned long off, u##bits val) \
2429{ \
2430 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2431}
2432
2433DECLARE_BTRFS_SETGET_BITS(8)
2434DECLARE_BTRFS_SETGET_BITS(16)
2435DECLARE_BTRFS_SETGET_BITS(32)
2436DECLARE_BTRFS_SETGET_BITS(64)
2437
2438#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2439static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2440{ \
2441 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2442 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2443} \
2444static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2445 u##bits val) \
2446{ \
2447 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2448 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2449} \
2450static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2451 struct btrfs_map_token *token) \
2452{ \
2453 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2454 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2455} \
2456static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2457 type *s, u##bits val, \
2458 struct btrfs_map_token *token) \
2459{ \
2460 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2461 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2462}
2463
2464#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2465static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2466{ \
2467 type *p = page_address(eb->pages[0]); \
2468 u##bits res = le##bits##_to_cpu(p->member); \
2469 return res; \
2470} \
2471static inline void btrfs_set_##name(struct extent_buffer *eb, \
2472 u##bits val) \
2473{ \
2474 type *p = page_address(eb->pages[0]); \
2475 p->member = cpu_to_le##bits(val); \
2476}
2477
2478#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2479static inline u##bits btrfs_##name(type *s) \
2480{ \
2481 return le##bits##_to_cpu(s->member); \
2482} \
2483static inline void btrfs_set_##name(type *s, u##bits val) \
2484{ \
2485 s->member = cpu_to_le##bits(val); \
2486}
2487
2488BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2489BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2490BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2491BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2492BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2493BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2494 start_offset, 64);
2495BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2496BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2497BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2498BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2499BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2500BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2501
2502BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2503BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2504 total_bytes, 64);
2505BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2506 bytes_used, 64);
2507BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2508 io_align, 32);
2509BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2510 io_width, 32);
2511BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2512 sector_size, 32);
2513BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2514BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2515 dev_group, 32);
2516BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2517 seek_speed, 8);
2518BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2519 bandwidth, 8);
2520BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2521 generation, 64);
2522
2523static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2524{
2525 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2526}
2527
2528static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2529{
2530 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2531}
2532
2533BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2534BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2535BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2536BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2537BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2538BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2539BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2540BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2541BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2542BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2543BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2544
2545static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2546{
2547 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2548}
2549
2550BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2551BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2552BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2553 stripe_len, 64);
2554BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2555 io_align, 32);
2556BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2557 io_width, 32);
2558BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2559 sector_size, 32);
2560BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2561BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2562 num_stripes, 16);
2563BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2564 sub_stripes, 16);
2565BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2566BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2567
2568static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2569 int nr)
2570{
2571 unsigned long offset = (unsigned long)c;
2572 offset += offsetof(struct btrfs_chunk, stripe);
2573 offset += nr * sizeof(struct btrfs_stripe);
2574 return (struct btrfs_stripe *)offset;
2575}
2576
2577static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2578{
2579 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2580}
2581
2582static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2583 struct btrfs_chunk *c, int nr)
2584{
2585 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2586}
2587
2588static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2589 struct btrfs_chunk *c, int nr)
2590{
2591 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2592}
2593
2594/* struct btrfs_block_group_item */
2595BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2596 used, 64);
2597BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2598 used, 64);
2599BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2600 struct btrfs_block_group_item, chunk_objectid, 64);
2601
2602BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2603 struct btrfs_block_group_item, chunk_objectid, 64);
2604BTRFS_SETGET_FUNCS(disk_block_group_flags,
2605 struct btrfs_block_group_item, flags, 64);
2606BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2607 struct btrfs_block_group_item, flags, 64);
2608
2609/* struct btrfs_free_space_info */
2610BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
2611 extent_count, 32);
2612BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
2613
2614/* struct btrfs_inode_ref */
2615BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2616BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2617
2618/* struct btrfs_inode_extref */
2619BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2620 parent_objectid, 64);
2621BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2622 name_len, 16);
2623BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2624
2625/* struct btrfs_inode_item */
2626BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2627BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2628BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2629BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2630BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2631BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2632BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2633BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2634BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2635BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2636BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2637BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2638BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2639 generation, 64);
2640BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2641 sequence, 64);
2642BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2643 transid, 64);
2644BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2645BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2646 nbytes, 64);
2647BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2648 block_group, 64);
2649BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2650BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2651BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2652BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2653BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2654BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2655BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2656BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2657BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2658BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2659
2660/* struct btrfs_dev_extent */
2661BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2662 chunk_tree, 64);
2663BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2664 chunk_objectid, 64);
2665BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2666 chunk_offset, 64);
2667BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2668
2669static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2670{
2671 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2672 return (unsigned long)dev + ptr;
2673}
2674
2675BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2676BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2677 generation, 64);
2678BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2679
2680BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2681
2682
2683BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2684
2685static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2686 struct btrfs_tree_block_info *item,
2687 struct btrfs_disk_key *key)
2688{
2689 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2690}
2691
2692static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2693 struct btrfs_tree_block_info *item,
2694 struct btrfs_disk_key *key)
2695{
2696 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2697}
2698
2699BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2700 root, 64);
2701BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2702 objectid, 64);
2703BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2704 offset, 64);
2705BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2706 count, 32);
2707
2708BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2709 count, 32);
2710
2711BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2712 type, 8);
2713BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2714 offset, 64);
2715
2716static inline u32 btrfs_extent_inline_ref_size(int type)
2717{
2718 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2719 type == BTRFS_SHARED_BLOCK_REF_KEY)
2720 return sizeof(struct btrfs_extent_inline_ref);
2721 if (type == BTRFS_SHARED_DATA_REF_KEY)
2722 return sizeof(struct btrfs_shared_data_ref) +
2723 sizeof(struct btrfs_extent_inline_ref);
2724 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2725 return sizeof(struct btrfs_extent_data_ref) +
2726 offsetof(struct btrfs_extent_inline_ref, offset);
2727 BUG();
2728 return 0;
2729}
2730
2731BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2732BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2733 generation, 64);
2734BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2735BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2736
2737/* struct btrfs_node */
2738BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2739BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2740BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2741 blockptr, 64);
2742BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2743 generation, 64);
2744
2745static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2746{
2747 unsigned long ptr;
2748 ptr = offsetof(struct btrfs_node, ptrs) +
2749 sizeof(struct btrfs_key_ptr) * nr;
2750 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2751}
2752
2753static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2754 int nr, u64 val)
2755{
2756 unsigned long ptr;
2757 ptr = offsetof(struct btrfs_node, ptrs) +
2758 sizeof(struct btrfs_key_ptr) * nr;
2759 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2760}
2761
2762static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2763{
2764 unsigned long ptr;
2765 ptr = offsetof(struct btrfs_node, ptrs) +
2766 sizeof(struct btrfs_key_ptr) * nr;
2767 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2768}
2769
2770static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2771 int nr, u64 val)
2772{
2773 unsigned long ptr;
2774 ptr = offsetof(struct btrfs_node, ptrs) +
2775 sizeof(struct btrfs_key_ptr) * nr;
2776 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2777}
2778
2779static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2780{
2781 return offsetof(struct btrfs_node, ptrs) +
2782 sizeof(struct btrfs_key_ptr) * nr;
2783}
2784
2785void btrfs_node_key(struct extent_buffer *eb,
2786 struct btrfs_disk_key *disk_key, int nr);
2787
2788static inline void btrfs_set_node_key(struct extent_buffer *eb,
2789 struct btrfs_disk_key *disk_key, int nr)
2790{
2791 unsigned long ptr;
2792 ptr = btrfs_node_key_ptr_offset(nr);
2793 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2794 struct btrfs_key_ptr, key, disk_key);
2795}
2796
2797/* struct btrfs_item */
2798BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2799BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2800BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2801BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2802
2803static inline unsigned long btrfs_item_nr_offset(int nr)
2804{
2805 return offsetof(struct btrfs_leaf, items) +
2806 sizeof(struct btrfs_item) * nr;
2807}
2808
2809static inline struct btrfs_item *btrfs_item_nr(int nr)
2810{
2811 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2812}
2813
2814static inline u32 btrfs_item_end(struct extent_buffer *eb,
2815 struct btrfs_item *item)
2816{
2817 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2818}
2819
2820static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2821{
2822 return btrfs_item_end(eb, btrfs_item_nr(nr));
2823}
2824
2825static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2826{
2827 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2828}
2829
2830static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2831{
2832 return btrfs_item_size(eb, btrfs_item_nr(nr));
2833}
2834
2835static inline void btrfs_item_key(struct extent_buffer *eb,
2836 struct btrfs_disk_key *disk_key, int nr)
2837{
2838 struct btrfs_item *item = btrfs_item_nr(nr);
2839 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2840}
2841
2842static inline void btrfs_set_item_key(struct extent_buffer *eb,
2843 struct btrfs_disk_key *disk_key, int nr)
2844{
2845 struct btrfs_item *item = btrfs_item_nr(nr);
2846 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2847}
2848
2849BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2850
2851/*
2852 * struct btrfs_root_ref
2853 */
2854BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2855BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2856BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2857
2858/* struct btrfs_dir_item */
2859BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2860BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2861BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2862BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2863BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2864BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2865 data_len, 16);
2866BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2867 name_len, 16);
2868BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2869 transid, 64);
2870
2871static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2872 struct btrfs_dir_item *item,
2873 struct btrfs_disk_key *key)
2874{
2875 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2876}
2877
2878static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2879 struct btrfs_dir_item *item,
2880 struct btrfs_disk_key *key)
2881{
2882 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2883}
2884
2885BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2886 num_entries, 64);
2887BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2888 num_bitmaps, 64);
2889BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2890 generation, 64);
2891
2892static inline void btrfs_free_space_key(struct extent_buffer *eb,
2893 struct btrfs_free_space_header *h,
2894 struct btrfs_disk_key *key)
2895{
2896 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2897}
2898
2899static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2900 struct btrfs_free_space_header *h,
2901 struct btrfs_disk_key *key)
2902{
2903 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2904}
2905
2906/* struct btrfs_disk_key */
2907BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2908 objectid, 64);
2909BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2910BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2911
2912static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2913 struct btrfs_disk_key *disk)
2914{
2915 cpu->offset = le64_to_cpu(disk->offset);
2916 cpu->type = disk->type;
2917 cpu->objectid = le64_to_cpu(disk->objectid);
2918}
2919
2920static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2921 struct btrfs_key *cpu)
2922{
2923 disk->offset = cpu_to_le64(cpu->offset);
2924 disk->type = cpu->type;
2925 disk->objectid = cpu_to_le64(cpu->objectid);
2926}
2927
2928static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2929 struct btrfs_key *key, int nr)
2930{
2931 struct btrfs_disk_key disk_key;
2932 btrfs_node_key(eb, &disk_key, nr);
2933 btrfs_disk_key_to_cpu(key, &disk_key);
2934}
2935
2936static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2937 struct btrfs_key *key, int nr)
2938{
2939 struct btrfs_disk_key disk_key;
2940 btrfs_item_key(eb, &disk_key, nr);
2941 btrfs_disk_key_to_cpu(key, &disk_key);
2942}
2943
2944static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2945 struct btrfs_dir_item *item,
2946 struct btrfs_key *key)
2947{
2948 struct btrfs_disk_key disk_key;
2949 btrfs_dir_item_key(eb, item, &disk_key);
2950 btrfs_disk_key_to_cpu(key, &disk_key);
2951}
2952
2953
2954static inline u8 btrfs_key_type(struct btrfs_key *key)
2955{
2956 return key->type;
2957}
2958
2959static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2960{
2961 key->type = val;
2962}
2963
2964/* struct btrfs_header */
2965BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2966BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2967 generation, 64);
2968BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2969BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2970BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2971BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2972BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2973 generation, 64);
2974BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2975BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2976 nritems, 32);
2977BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2978
2979static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2980{
2981 return (btrfs_header_flags(eb) & flag) == flag;
2982}
2983
2984static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2985{
2986 u64 flags = btrfs_header_flags(eb);
2987 btrfs_set_header_flags(eb, flags | flag);
2988 return (flags & flag) == flag;
2989}
2990
2991static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2992{
2993 u64 flags = btrfs_header_flags(eb);
2994 btrfs_set_header_flags(eb, flags & ~flag);
2995 return (flags & flag) == flag;
2996}
2997
2998static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2999{
3000 u64 flags = btrfs_header_flags(eb);
3001 return flags >> BTRFS_BACKREF_REV_SHIFT;
3002}
3003
3004static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
3005 int rev)
3006{
3007 u64 flags = btrfs_header_flags(eb);
3008 flags &= ~BTRFS_BACKREF_REV_MASK;
3009 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
3010 btrfs_set_header_flags(eb, flags);
3011}
3012
3013static inline unsigned long btrfs_header_fsid(void)
3014{
3015 return offsetof(struct btrfs_header, fsid);
3016}
3017
3018static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
3019{
3020 return offsetof(struct btrfs_header, chunk_tree_uuid);
3021}
3022
3023static inline int btrfs_is_leaf(struct extent_buffer *eb)
3024{
3025 return btrfs_header_level(eb) == 0;
3026}
3027
3028/* struct btrfs_root_item */
3029BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
3030 generation, 64);
3031BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
3032BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
3033BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
3034
3035BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
3036 generation, 64);
3037BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
3038BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
3039BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
3040BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
3041BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
3042BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
3043BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
3044BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
3045 last_snapshot, 64);
3046BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
3047 generation_v2, 64);
3048BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
3049 ctransid, 64);
3050BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
3051 otransid, 64);
3052BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
3053 stransid, 64);
3054BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
3055 rtransid, 64);
3056
3057static inline bool btrfs_root_readonly(struct btrfs_root *root)
3058{
3059 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
3060}
3061
3062static inline bool btrfs_root_dead(struct btrfs_root *root)
3063{
3064 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
3065}
3066
3067/* struct btrfs_root_backup */
3068BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
3069 tree_root, 64);
3070BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
3071 tree_root_gen, 64);
3072BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
3073 tree_root_level, 8);
3074
3075BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
3076 chunk_root, 64);
3077BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
3078 chunk_root_gen, 64);
3079BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
3080 chunk_root_level, 8);
3081
3082BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
3083 extent_root, 64);
3084BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
3085 extent_root_gen, 64);
3086BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
3087 extent_root_level, 8);
3088
3089BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
3090 fs_root, 64);
3091BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
3092 fs_root_gen, 64);
3093BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
3094 fs_root_level, 8);
3095
3096BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
3097 dev_root, 64);
3098BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
3099 dev_root_gen, 64);
3100BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
3101 dev_root_level, 8);
3102
3103BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
3104 csum_root, 64);
3105BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
3106 csum_root_gen, 64);
3107BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
3108 csum_root_level, 8);
3109BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
3110 total_bytes, 64);
3111BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
3112 bytes_used, 64);
3113BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
3114 num_devices, 64);
3115
3116/* struct btrfs_balance_item */
3117BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
3118
3119static inline void btrfs_balance_data(struct extent_buffer *eb,
3120 struct btrfs_balance_item *bi,
3121 struct btrfs_disk_balance_args *ba)
3122{
3123 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
3124}
3125
3126static inline void btrfs_set_balance_data(struct extent_buffer *eb,
3127 struct btrfs_balance_item *bi,
3128 struct btrfs_disk_balance_args *ba)
3129{
3130 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
3131}
3132
3133static inline void btrfs_balance_meta(struct extent_buffer *eb,
3134 struct btrfs_balance_item *bi,
3135 struct btrfs_disk_balance_args *ba)
3136{
3137 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
3138}
3139
3140static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
3141 struct btrfs_balance_item *bi,
3142 struct btrfs_disk_balance_args *ba)
3143{
3144 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
3145}
3146
3147static inline void btrfs_balance_sys(struct extent_buffer *eb,
3148 struct btrfs_balance_item *bi,
3149 struct btrfs_disk_balance_args *ba)
3150{
3151 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3152}
3153
3154static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
3155 struct btrfs_balance_item *bi,
3156 struct btrfs_disk_balance_args *ba)
3157{
3158 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3159}
3160
3161static inline void
3162btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3163 struct btrfs_disk_balance_args *disk)
3164{
3165 memset(cpu, 0, sizeof(*cpu));
3166
3167 cpu->profiles = le64_to_cpu(disk->profiles);
3168 cpu->usage = le64_to_cpu(disk->usage);
3169 cpu->devid = le64_to_cpu(disk->devid);
3170 cpu->pstart = le64_to_cpu(disk->pstart);
3171 cpu->pend = le64_to_cpu(disk->pend);
3172 cpu->vstart = le64_to_cpu(disk->vstart);
3173 cpu->vend = le64_to_cpu(disk->vend);
3174 cpu->target = le64_to_cpu(disk->target);
3175 cpu->flags = le64_to_cpu(disk->flags);
3176 cpu->limit = le64_to_cpu(disk->limit);
3177}
3178
3179static inline void
3180btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3181 struct btrfs_balance_args *cpu)
3182{
3183 memset(disk, 0, sizeof(*disk));
3184
3185 disk->profiles = cpu_to_le64(cpu->profiles);
3186 disk->usage = cpu_to_le64(cpu->usage);
3187 disk->devid = cpu_to_le64(cpu->devid);
3188 disk->pstart = cpu_to_le64(cpu->pstart);
3189 disk->pend = cpu_to_le64(cpu->pend);
3190 disk->vstart = cpu_to_le64(cpu->vstart);
3191 disk->vend = cpu_to_le64(cpu->vend);
3192 disk->target = cpu_to_le64(cpu->target);
3193 disk->flags = cpu_to_le64(cpu->flags);
3194 disk->limit = cpu_to_le64(cpu->limit);
3195}
3196
3197/* struct btrfs_super_block */
3198BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
3199BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
3200BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
3201 generation, 64);
3202BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
3203BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
3204 struct btrfs_super_block, sys_chunk_array_size, 32);
3205BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
3206 struct btrfs_super_block, chunk_root_generation, 64);
3207BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
3208 root_level, 8);
3209BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
3210 chunk_root, 64);
3211BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
3212 chunk_root_level, 8);
3213BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
3214 log_root, 64);
3215BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
3216 log_root_transid, 64);
3217BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
3218 log_root_level, 8);
3219BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
3220 total_bytes, 64);
3221BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
3222 bytes_used, 64);
3223BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
3224 sectorsize, 32);
3225BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
3226 nodesize, 32);
3227BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
3228 stripesize, 32);
3229BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
3230 root_dir_objectid, 64);
3231BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
3232 num_devices, 64);
3233BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
3234 compat_flags, 64);
3235BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
3236 compat_ro_flags, 64);
3237BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
3238 incompat_flags, 64);
3239BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3240 csum_type, 16);
3241BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3242 cache_generation, 64);
3243BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3244BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3245 uuid_tree_generation, 64);
3246
3247static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3248{
3249 u16 t = btrfs_super_csum_type(s);
3250 /*
3251 * csum type is validated at mount time
3252 */
3253 return btrfs_csum_sizes[t];
3254}
3255
3256static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3257{
3258 return offsetof(struct btrfs_leaf, items);
3259}
3260
3261/* struct btrfs_file_extent_item */
3262BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3263BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3264 struct btrfs_file_extent_item, disk_bytenr, 64);
3265BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3266 struct btrfs_file_extent_item, offset, 64);
3267BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3268 struct btrfs_file_extent_item, generation, 64);
3269BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3270 struct btrfs_file_extent_item, num_bytes, 64);
3271BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3272 struct btrfs_file_extent_item, disk_num_bytes, 64);
3273BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3274 struct btrfs_file_extent_item, compression, 8);
3275
3276static inline unsigned long
3277btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3278{
3279 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
3280}
3281
3282static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3283{
3284 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
3285}
3286
3287BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3288 disk_bytenr, 64);
3289BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3290 generation, 64);
3291BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3292 disk_num_bytes, 64);
3293BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3294 offset, 64);
3295BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3296 num_bytes, 64);
3297BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3298 ram_bytes, 64);
3299BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3300 compression, 8);
3301BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3302 encryption, 8);
3303BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3304 other_encoding, 16);
3305
3306/*
3307 * this returns the number of bytes used by the item on disk, minus the
3308 * size of any extent headers. If a file is compressed on disk, this is
3309 * the compressed size
3310 */
3311static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3312 struct btrfs_item *e)
3313{
3314 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
3315}
3316
3317/* this returns the number of file bytes represented by the inline item.
3318 * If an item is compressed, this is the uncompressed size
3319 */
3320static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3321 int slot,
3322 struct btrfs_file_extent_item *fi)
3323{
3324 struct btrfs_map_token token;
3325
3326 btrfs_init_map_token(&token);
3327 /*
3328 * return the space used on disk if this item isn't
3329 * compressed or encoded
3330 */
3331 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3332 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3333 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3334 return btrfs_file_extent_inline_item_len(eb,
3335 btrfs_item_nr(slot));
3336 }
3337
3338 /* otherwise use the ram bytes field */
3339 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3340}
3341
3342
3343/* btrfs_dev_stats_item */
3344static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3345 struct btrfs_dev_stats_item *ptr,
3346 int index)
3347{
3348 u64 val;
3349
3350 read_extent_buffer(eb, &val,
3351 offsetof(struct btrfs_dev_stats_item, values) +
3352 ((unsigned long)ptr) + (index * sizeof(u64)),
3353 sizeof(val));
3354 return val;
3355}
3356
3357static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3358 struct btrfs_dev_stats_item *ptr,
3359 int index, u64 val)
3360{
3361 write_extent_buffer(eb, &val,
3362 offsetof(struct btrfs_dev_stats_item, values) +
3363 ((unsigned long)ptr) + (index * sizeof(u64)),
3364 sizeof(val));
3365}
3366
3367/* btrfs_qgroup_status_item */
3368BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3369 generation, 64);
3370BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3371 version, 64);
3372BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3373 flags, 64);
3374BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3375 rescan, 64);
3376
3377/* btrfs_qgroup_info_item */
3378BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3379 generation, 64);
3380BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3381BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3382 rfer_cmpr, 64);
3383BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3384BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3385 excl_cmpr, 64);
3386
3387BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3388 struct btrfs_qgroup_info_item, generation, 64);
3389BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3390 rfer, 64);
3391BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3392 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3393BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3394 excl, 64);
3395BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3396 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3397
3398/* btrfs_qgroup_limit_item */
3399BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3400 flags, 64);
3401BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3402 max_rfer, 64);
3403BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3404 max_excl, 64);
3405BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3406 rsv_rfer, 64);
3407BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3408 rsv_excl, 64);
3409
3410/* btrfs_dev_replace_item */
3411BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3412 struct btrfs_dev_replace_item, src_devid, 64);
3413BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3414 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3415 64);
3416BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3417 replace_state, 64);
3418BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3419 time_started, 64);
3420BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3421 time_stopped, 64);
3422BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3423 num_write_errors, 64);
3424BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3425 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3426 64);
3427BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3428 cursor_left, 64);
3429BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3430 cursor_right, 64);
3431
3432BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3433 struct btrfs_dev_replace_item, src_devid, 64);
3434BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3435 struct btrfs_dev_replace_item,
3436 cont_reading_from_srcdev_mode, 64);
3437BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3438 struct btrfs_dev_replace_item, replace_state, 64);
3439BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3440 struct btrfs_dev_replace_item, time_started, 64);
3441BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3442 struct btrfs_dev_replace_item, time_stopped, 64);
3443BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3444 struct btrfs_dev_replace_item, num_write_errors, 64);
3445BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3446 struct btrfs_dev_replace_item,
3447 num_uncorrectable_read_errors, 64);
3448BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3449 struct btrfs_dev_replace_item, cursor_left, 64);
3450BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3451 struct btrfs_dev_replace_item, cursor_right, 64);
3452
3453static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3454{
3455 return sb->s_fs_info;
3456}
3457
3458/* helper function to cast into the data area of the leaf. */
3459#define btrfs_item_ptr(leaf, slot, type) \
3460 ((type *)(btrfs_leaf_data(leaf) + \
3461 btrfs_item_offset_nr(leaf, slot)))
3462
3463#define btrfs_item_ptr_offset(leaf, slot) \
3464 ((unsigned long)(btrfs_leaf_data(leaf) + \
3465 btrfs_item_offset_nr(leaf, slot)))
3466
3467static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3468{
3469 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3470 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3471}
3472
3473static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3474{
3475 return mapping_gfp_constraint(mapping, ~__GFP_FS);
3476}
3477
3478/* extent-tree.c */
3479
3480u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes);
3481
3482static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3483 unsigned num_items)
3484{
3485 return root->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
3486}
3487
3488/*
3489 * Doing a truncate won't result in new nodes or leaves, just what we need for
3490 * COW.
3491 */
3492static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3493 unsigned num_items)
3494{
3495 return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3496}
3497
3498int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *root);
3500int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3501 struct btrfs_root *root);
3502void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3503int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3504 struct btrfs_root *root, unsigned long count);
3505int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3506 unsigned long count, int wait);
3507int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len);
3508int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3509 struct btrfs_root *root, u64 bytenr,
3510 u64 offset, int metadata, u64 *refs, u64 *flags);
3511int btrfs_pin_extent(struct btrfs_root *root,
3512 u64 bytenr, u64 num, int reserved);
3513int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3514 u64 bytenr, u64 num_bytes);
3515int btrfs_exclude_logged_extents(struct btrfs_root *root,
3516 struct extent_buffer *eb);
3517int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3518 struct btrfs_root *root,
3519 u64 objectid, u64 offset, u64 bytenr);
3520struct btrfs_block_group_cache *btrfs_lookup_block_group(
3521 struct btrfs_fs_info *info,
3522 u64 bytenr);
3523void btrfs_get_block_group(struct btrfs_block_group_cache *cache);
3524void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3525int get_block_group_index(struct btrfs_block_group_cache *cache);
3526struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
3527 struct btrfs_root *root, u64 parent,
3528 u64 root_objectid,
3529 struct btrfs_disk_key *key, int level,
3530 u64 hint, u64 empty_size);
3531void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *root,
3533 struct extent_buffer *buf,
3534 u64 parent, int last_ref);
3535int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root,
3537 u64 root_objectid, u64 owner,
3538 u64 offset, u64 ram_bytes,
3539 struct btrfs_key *ins);
3540int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3541 struct btrfs_root *root,
3542 u64 root_objectid, u64 owner, u64 offset,
3543 struct btrfs_key *ins);
3544int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3545 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3546 struct btrfs_key *ins, int is_data, int delalloc);
3547int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3548 struct extent_buffer *buf, int full_backref);
3549int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3550 struct extent_buffer *buf, int full_backref);
3551int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3552 struct btrfs_root *root,
3553 u64 bytenr, u64 num_bytes, u64 flags,
3554 int level, int is_data);
3555int btrfs_free_extent(struct btrfs_trans_handle *trans,
3556 struct btrfs_root *root,
3557 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3558 u64 owner, u64 offset);
3559
3560int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3561 int delalloc);
3562int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3563 u64 start, u64 len);
3564void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3565 struct btrfs_root *root);
3566int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3567 struct btrfs_root *root);
3568int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3569 struct btrfs_root *root,
3570 u64 bytenr, u64 num_bytes, u64 parent,
3571 u64 root_objectid, u64 owner, u64 offset);
3572
3573int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3574 struct btrfs_root *root);
3575int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3576 struct btrfs_root *root);
3577int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3578 struct btrfs_root *root);
3579int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3580int btrfs_free_block_groups(struct btrfs_fs_info *info);
3581int btrfs_read_block_groups(struct btrfs_root *root);
3582int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3583int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3584 struct btrfs_root *root, u64 bytes_used,
3585 u64 type, u64 chunk_objectid, u64 chunk_offset,
3586 u64 size);
3587struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
3588 struct btrfs_fs_info *fs_info,
3589 const u64 chunk_offset);
3590int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3591 struct btrfs_root *root, u64 group_start,
3592 struct extent_map *em);
3593void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
3594void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache);
3595void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *cache);
3596void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *root);
3598u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3599void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3600
3601enum btrfs_reserve_flush_enum {
3602 /* If we are in the transaction, we can't flush anything.*/
3603 BTRFS_RESERVE_NO_FLUSH,
3604 /*
3605 * Flushing delalloc may cause deadlock somewhere, in this
3606 * case, use FLUSH LIMIT
3607 */
3608 BTRFS_RESERVE_FLUSH_LIMIT,
3609 BTRFS_RESERVE_FLUSH_ALL,
3610};
3611
3612int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len);
3613int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes);
3614void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len);
3615void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
3616 u64 len);
3617void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3618 struct btrfs_root *root);
3619void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
3620int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3621 struct inode *inode);
3622void btrfs_orphan_release_metadata(struct inode *inode);
3623int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3624 struct btrfs_block_rsv *rsv,
3625 int nitems,
3626 u64 *qgroup_reserved, bool use_global_rsv);
3627void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3628 struct btrfs_block_rsv *rsv,
3629 u64 qgroup_reserved);
3630int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3631void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3632int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len);
3633void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len);
3634void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3635struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3636 unsigned short type);
3637void btrfs_free_block_rsv(struct btrfs_root *root,
3638 struct btrfs_block_rsv *rsv);
3639void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv);
3640int btrfs_block_rsv_add(struct btrfs_root *root,
3641 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3642 enum btrfs_reserve_flush_enum flush);
3643int btrfs_block_rsv_check(struct btrfs_root *root,
3644 struct btrfs_block_rsv *block_rsv, int min_factor);
3645int btrfs_block_rsv_refill(struct btrfs_root *root,
3646 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3647 enum btrfs_reserve_flush_enum flush);
3648int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3649 struct btrfs_block_rsv *dst_rsv,
3650 u64 num_bytes);
3651int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3652 struct btrfs_block_rsv *dest, u64 num_bytes,
3653 int min_factor);
3654void btrfs_block_rsv_release(struct btrfs_root *root,
3655 struct btrfs_block_rsv *block_rsv,
3656 u64 num_bytes);
3657int btrfs_inc_block_group_ro(struct btrfs_root *root,
3658 struct btrfs_block_group_cache *cache);
3659void btrfs_dec_block_group_ro(struct btrfs_root *root,
3660 struct btrfs_block_group_cache *cache);
3661void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3662u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3663int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3664 u64 start, u64 end);
3665int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
3666 u64 num_bytes, u64 *actual_bytes);
3667int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3668 struct btrfs_root *root, u64 type);
3669int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3670
3671int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3672int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3673 struct btrfs_fs_info *fs_info);
3674int __get_raid_index(u64 flags);
3675int btrfs_start_write_no_snapshoting(struct btrfs_root *root);
3676void btrfs_end_write_no_snapshoting(struct btrfs_root *root);
3677void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
3678void check_system_chunk(struct btrfs_trans_handle *trans,
3679 struct btrfs_root *root,
3680 const u64 type);
3681u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
3682 struct btrfs_fs_info *info, u64 start, u64 end);
3683
3684/* ctree.c */
3685int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3686 int level, int *slot);
3687int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3688int btrfs_previous_item(struct btrfs_root *root,
3689 struct btrfs_path *path, u64 min_objectid,
3690 int type);
3691int btrfs_previous_extent_item(struct btrfs_root *root,
3692 struct btrfs_path *path, u64 min_objectid);
3693void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3694 struct btrfs_path *path,
3695 struct btrfs_key *new_key);
3696struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3697struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3698int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3699 struct btrfs_key *key, int lowest_level,
3700 u64 min_trans);
3701int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3702 struct btrfs_path *path,
3703 u64 min_trans);
3704enum btrfs_compare_tree_result {
3705 BTRFS_COMPARE_TREE_NEW,
3706 BTRFS_COMPARE_TREE_DELETED,
3707 BTRFS_COMPARE_TREE_CHANGED,
3708 BTRFS_COMPARE_TREE_SAME,
3709};
3710typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3711 struct btrfs_root *right_root,
3712 struct btrfs_path *left_path,
3713 struct btrfs_path *right_path,
3714 struct btrfs_key *key,
3715 enum btrfs_compare_tree_result result,
3716 void *ctx);
3717int btrfs_compare_trees(struct btrfs_root *left_root,
3718 struct btrfs_root *right_root,
3719 btrfs_changed_cb_t cb, void *ctx);
3720int btrfs_cow_block(struct btrfs_trans_handle *trans,
3721 struct btrfs_root *root, struct extent_buffer *buf,
3722 struct extent_buffer *parent, int parent_slot,
3723 struct extent_buffer **cow_ret);
3724int btrfs_copy_root(struct btrfs_trans_handle *trans,
3725 struct btrfs_root *root,
3726 struct extent_buffer *buf,
3727 struct extent_buffer **cow_ret, u64 new_root_objectid);
3728int btrfs_block_can_be_shared(struct btrfs_root *root,
3729 struct extent_buffer *buf);
3730void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3731 u32 data_size);
3732void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3733 u32 new_size, int from_end);
3734int btrfs_split_item(struct btrfs_trans_handle *trans,
3735 struct btrfs_root *root,
3736 struct btrfs_path *path,
3737 struct btrfs_key *new_key,
3738 unsigned long split_offset);
3739int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3740 struct btrfs_root *root,
3741 struct btrfs_path *path,
3742 struct btrfs_key *new_key);
3743int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3744 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3745int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3746 *root, struct btrfs_key *key, struct btrfs_path *p, int
3747 ins_len, int cow);
3748int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3749 struct btrfs_path *p, u64 time_seq);
3750int btrfs_search_slot_for_read(struct btrfs_root *root,
3751 struct btrfs_key *key, struct btrfs_path *p,
3752 int find_higher, int return_any);
3753int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3754 struct btrfs_root *root, struct extent_buffer *parent,
3755 int start_slot, u64 *last_ret,
3756 struct btrfs_key *progress);
3757void btrfs_release_path(struct btrfs_path *p);
3758struct btrfs_path *btrfs_alloc_path(void);
3759void btrfs_free_path(struct btrfs_path *p);
3760void btrfs_set_path_blocking(struct btrfs_path *p);
3761void btrfs_clear_path_blocking(struct btrfs_path *p,
3762 struct extent_buffer *held, int held_rw);
3763void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3764
3765int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3766 struct btrfs_path *path, int slot, int nr);
3767static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3768 struct btrfs_root *root,
3769 struct btrfs_path *path)
3770{
3771 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3772}
3773
3774void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3775 struct btrfs_key *cpu_key, u32 *data_size,
3776 u32 total_data, u32 total_size, int nr);
3777int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3778 *root, struct btrfs_key *key, void *data, u32 data_size);
3779int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3780 struct btrfs_root *root,
3781 struct btrfs_path *path,
3782 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3783
3784static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3785 struct btrfs_root *root,
3786 struct btrfs_path *path,
3787 struct btrfs_key *key,
3788 u32 data_size)
3789{
3790 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3791}
3792
3793int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3794int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3795int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3796 u64 time_seq);
3797static inline int btrfs_next_old_item(struct btrfs_root *root,
3798 struct btrfs_path *p, u64 time_seq)
3799{
3800 ++p->slots[0];
3801 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3802 return btrfs_next_old_leaf(root, p, time_seq);
3803 return 0;
3804}
3805static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3806{
3807 return btrfs_next_old_item(root, p, 0);
3808}
3809int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3810int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3811 struct btrfs_block_rsv *block_rsv,
3812 int update_ref, int for_reloc);
3813int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3814 struct btrfs_root *root,
3815 struct extent_buffer *node,
3816 struct extent_buffer *parent);
3817static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3818{
3819 /*
3820 * Get synced with close_ctree()
3821 */
3822 smp_mb();
3823 return fs_info->closing;
3824}
3825
3826/*
3827 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3828 * anything except sleeping. This function is used to check the status of
3829 * the fs.
3830 */
3831static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3832{
3833 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3834 btrfs_fs_closing(root->fs_info));
3835}
3836
3837static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3838{
3839 kfree(fs_info->balance_ctl);
3840 kfree(fs_info->delayed_root);
3841 kfree(fs_info->extent_root);
3842 kfree(fs_info->tree_root);
3843 kfree(fs_info->chunk_root);
3844 kfree(fs_info->dev_root);
3845 kfree(fs_info->csum_root);
3846 kfree(fs_info->quota_root);
3847 kfree(fs_info->uuid_root);
3848 kfree(fs_info->free_space_root);
3849 kfree(fs_info->super_copy);
3850 kfree(fs_info->super_for_commit);
3851 security_free_mnt_opts(&fs_info->security_opts);
3852 kfree(fs_info);
3853}
3854
3855/* tree mod log functions from ctree.c */
3856u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3857 struct seq_list *elem);
3858void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3859 struct seq_list *elem);
3860int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3861
3862/* root-item.c */
3863int btrfs_find_root_ref(struct btrfs_root *tree_root,
3864 struct btrfs_path *path,
3865 u64 root_id, u64 ref_id);
3866int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3867 struct btrfs_root *tree_root,
3868 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3869 const char *name, int name_len);
3870int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3871 struct btrfs_root *tree_root,
3872 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3873 const char *name, int name_len);
3874int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3875 struct btrfs_key *key);
3876int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3877 *root, struct btrfs_key *key, struct btrfs_root_item
3878 *item);
3879int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3880 struct btrfs_root *root,
3881 struct btrfs_key *key,
3882 struct btrfs_root_item *item);
3883int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3884 struct btrfs_path *path, struct btrfs_root_item *root_item,
3885 struct btrfs_key *root_key);
3886int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3887void btrfs_set_root_node(struct btrfs_root_item *item,
3888 struct extent_buffer *node);
3889void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3890void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3891 struct btrfs_root *root);
3892
3893/* uuid-tree.c */
3894int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3895 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3896 u64 subid);
3897int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3898 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3899 u64 subid);
3900int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3901 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3902 u64));
3903
3904/* dir-item.c */
3905int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3906 const char *name, int name_len);
3907int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3908 struct btrfs_root *root, const char *name,
3909 int name_len, struct inode *dir,
3910 struct btrfs_key *location, u8 type, u64 index);
3911struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3912 struct btrfs_root *root,
3913 struct btrfs_path *path, u64 dir,
3914 const char *name, int name_len,
3915 int mod);
3916struct btrfs_dir_item *
3917btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3918 struct btrfs_root *root,
3919 struct btrfs_path *path, u64 dir,
3920 u64 objectid, const char *name, int name_len,
3921 int mod);
3922struct btrfs_dir_item *
3923btrfs_search_dir_index_item(struct btrfs_root *root,
3924 struct btrfs_path *path, u64 dirid,
3925 const char *name, int name_len);
3926int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3927 struct btrfs_root *root,
3928 struct btrfs_path *path,
3929 struct btrfs_dir_item *di);
3930int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3931 struct btrfs_root *root,
3932 struct btrfs_path *path, u64 objectid,
3933 const char *name, u16 name_len,
3934 const void *data, u16 data_len);
3935struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3936 struct btrfs_root *root,
3937 struct btrfs_path *path, u64 dir,
3938 const char *name, u16 name_len,
3939 int mod);
3940int verify_dir_item(struct btrfs_root *root,
3941 struct extent_buffer *leaf,
3942 struct btrfs_dir_item *dir_item);
3943struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
3944 struct btrfs_path *path,
3945 const char *name,
3946 int name_len);
3947
3948/* orphan.c */
3949int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3950 struct btrfs_root *root, u64 offset);
3951int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3952 struct btrfs_root *root, u64 offset);
3953int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3954
3955/* inode-item.c */
3956int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3957 struct btrfs_root *root,
3958 const char *name, int name_len,
3959 u64 inode_objectid, u64 ref_objectid, u64 index);
3960int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3961 struct btrfs_root *root,
3962 const char *name, int name_len,
3963 u64 inode_objectid, u64 ref_objectid, u64 *index);
3964int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3965 struct btrfs_root *root,
3966 struct btrfs_path *path, u64 objectid);
3967int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3968 *root, struct btrfs_path *path,
3969 struct btrfs_key *location, int mod);
3970
3971struct btrfs_inode_extref *
3972btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3973 struct btrfs_root *root,
3974 struct btrfs_path *path,
3975 const char *name, int name_len,
3976 u64 inode_objectid, u64 ref_objectid, int ins_len,
3977 int cow);
3978
3979int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3980 u64 ref_objectid, const char *name,
3981 int name_len,
3982 struct btrfs_inode_extref **extref_ret);
3983
3984/* file-item.c */
3985struct btrfs_dio_private;
3986int btrfs_del_csums(struct btrfs_trans_handle *trans,
3987 struct btrfs_root *root, u64 bytenr, u64 len);
3988int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3989 struct bio *bio, u32 *dst);
3990int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3991 struct bio *bio, u64 logical_offset);
3992int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3993 struct btrfs_root *root,
3994 u64 objectid, u64 pos,
3995 u64 disk_offset, u64 disk_num_bytes,
3996 u64 num_bytes, u64 offset, u64 ram_bytes,
3997 u8 compression, u8 encryption, u16 other_encoding);
3998int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3999 struct btrfs_root *root,
4000 struct btrfs_path *path, u64 objectid,
4001 u64 bytenr, int mod);
4002int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
4003 struct btrfs_root *root,
4004 struct btrfs_ordered_sum *sums);
4005int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
4006 struct bio *bio, u64 file_start, int contig);
4007int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
4008 struct list_head *list, int search_commit);
4009void btrfs_extent_item_to_extent_map(struct inode *inode,
4010 const struct btrfs_path *path,
4011 struct btrfs_file_extent_item *fi,
4012 const bool new_inline,
4013 struct extent_map *em);
4014
4015/* inode.c */
4016struct btrfs_delalloc_work {
4017 struct inode *inode;
4018 int delay_iput;
4019 struct completion completion;
4020 struct list_head list;
4021 struct btrfs_work work;
4022};
4023
4024struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
4025 int delay_iput);
4026void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
4027
4028struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
4029 size_t pg_offset, u64 start, u64 len,
4030 int create);
4031noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
4032 u64 *orig_start, u64 *orig_block_len,
4033 u64 *ram_bytes);
4034
4035/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
4036#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
4037#define ClearPageChecked ClearPageFsMisc
4038#define SetPageChecked SetPageFsMisc
4039#define PageChecked PageFsMisc
4040#endif
4041
4042/* This forces readahead on a given range of bytes in an inode */
4043static inline void btrfs_force_ra(struct address_space *mapping,
4044 struct file_ra_state *ra, struct file *file,
4045 pgoff_t offset, unsigned long req_size)
4046{
4047 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4048}
4049
4050struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
4051int btrfs_set_inode_index(struct inode *dir, u64 *index);
4052int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4053 struct btrfs_root *root,
4054 struct inode *dir, struct inode *inode,
4055 const char *name, int name_len);
4056int btrfs_add_link(struct btrfs_trans_handle *trans,
4057 struct inode *parent_inode, struct inode *inode,
4058 const char *name, int name_len, int add_backref, u64 index);
4059int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4060 struct btrfs_root *root,
4061 struct inode *dir, u64 objectid,
4062 const char *name, int name_len);
4063int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4064 int front);
4065int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4066 struct btrfs_root *root,
4067 struct inode *inode, u64 new_size,
4068 u32 min_type);
4069
4070int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
4071int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
4072 int nr);
4073int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
4074 struct extent_state **cached_state);
4075int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4076 struct btrfs_root *new_root,
4077 struct btrfs_root *parent_root,
4078 u64 new_dirid);
4079int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
4080 size_t size, struct bio *bio,
4081 unsigned long bio_flags);
4082int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
4083int btrfs_readpage(struct file *file, struct page *page);
4084void btrfs_evict_inode(struct inode *inode);
4085int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
4086struct inode *btrfs_alloc_inode(struct super_block *sb);
4087void btrfs_destroy_inode(struct inode *inode);
4088int btrfs_drop_inode(struct inode *inode);
4089int btrfs_init_cachep(void);
4090void btrfs_destroy_cachep(void);
4091long btrfs_ioctl_trans_end(struct file *file);
4092struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4093 struct btrfs_root *root, int *was_new);
4094struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4095 size_t pg_offset, u64 start, u64 end,
4096 int create);
4097int btrfs_update_inode(struct btrfs_trans_handle *trans,
4098 struct btrfs_root *root,
4099 struct inode *inode);
4100int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4101 struct btrfs_root *root, struct inode *inode);
4102int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
4103int btrfs_orphan_cleanup(struct btrfs_root *root);
4104void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
4105 struct btrfs_root *root);
4106int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
4107void btrfs_invalidate_inodes(struct btrfs_root *root);
4108void btrfs_add_delayed_iput(struct inode *inode);
4109void btrfs_run_delayed_iputs(struct btrfs_root *root);
4110int btrfs_prealloc_file_range(struct inode *inode, int mode,
4111 u64 start, u64 num_bytes, u64 min_size,
4112 loff_t actual_len, u64 *alloc_hint);
4113int btrfs_prealloc_file_range_trans(struct inode *inode,
4114 struct btrfs_trans_handle *trans, int mode,
4115 u64 start, u64 num_bytes, u64 min_size,
4116 loff_t actual_len, u64 *alloc_hint);
4117int btrfs_inode_check_errors(struct inode *inode);
4118extern const struct dentry_operations btrfs_dentry_operations;
4119#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4120void btrfs_test_inode_set_ops(struct inode *inode);
4121#endif
4122
4123/* ioctl.c */
4124long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
4125int btrfs_ioctl_get_supported_features(void __user *arg);
4126void btrfs_update_iflags(struct inode *inode);
4127void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
4128int btrfs_is_empty_uuid(u8 *uuid);
4129int btrfs_defrag_file(struct inode *inode, struct file *file,
4130 struct btrfs_ioctl_defrag_range_args *range,
4131 u64 newer_than, unsigned long max_pages);
4132void btrfs_get_block_group_info(struct list_head *groups_list,
4133 struct btrfs_ioctl_space_info *space);
4134void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4135 struct btrfs_ioctl_balance_args *bargs);
4136ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
4137 struct file *dst_file, u64 dst_loff);
4138
4139/* file.c */
4140int btrfs_auto_defrag_init(void);
4141void btrfs_auto_defrag_exit(void);
4142int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
4143 struct inode *inode);
4144int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
4145void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
4146int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
4147void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
4148 int skip_pinned);
4149extern const struct file_operations btrfs_file_operations;
4150int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
4151 struct btrfs_root *root, struct inode *inode,
4152 struct btrfs_path *path, u64 start, u64 end,
4153 u64 *drop_end, int drop_cache,
4154 int replace_extent,
4155 u32 extent_item_size,
4156 int *key_inserted);
4157int btrfs_drop_extents(struct btrfs_trans_handle *trans,
4158 struct btrfs_root *root, struct inode *inode, u64 start,
4159 u64 end, int drop_cache);
4160int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
4161 struct inode *inode, u64 start, u64 end);
4162int btrfs_release_file(struct inode *inode, struct file *file);
4163int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
4164 struct page **pages, size_t num_pages,
4165 loff_t pos, size_t write_bytes,
4166 struct extent_state **cached);
4167int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
4168ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
4169 struct file *file_out, loff_t pos_out,
4170 size_t len, unsigned int flags);
4171int btrfs_clone_file_range(struct file *file_in, loff_t pos_in,
4172 struct file *file_out, loff_t pos_out, u64 len);
4173
4174/* tree-defrag.c */
4175int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
4176 struct btrfs_root *root);
4177
4178/* sysfs.c */
4179int btrfs_init_sysfs(void);
4180void btrfs_exit_sysfs(void);
4181int btrfs_sysfs_add_mounted(struct btrfs_fs_info *fs_info);
4182void btrfs_sysfs_remove_mounted(struct btrfs_fs_info *fs_info);
4183
4184/* xattr.c */
4185ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
4186
4187/* super.c */
4188int btrfs_parse_options(struct btrfs_root *root, char *options,
4189 unsigned long new_flags);
4190int btrfs_sync_fs(struct super_block *sb, int wait);
4191
4192#ifdef CONFIG_PRINTK
4193__printf(2, 3)
4194void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
4195#else
4196static inline __printf(2, 3)
4197void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
4198{
4199}
4200#endif
4201
4202#define btrfs_emerg(fs_info, fmt, args...) \
4203 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
4204#define btrfs_alert(fs_info, fmt, args...) \
4205 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
4206#define btrfs_crit(fs_info, fmt, args...) \
4207 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
4208#define btrfs_err(fs_info, fmt, args...) \
4209 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
4210#define btrfs_warn(fs_info, fmt, args...) \
4211 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
4212#define btrfs_notice(fs_info, fmt, args...) \
4213 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
4214#define btrfs_info(fs_info, fmt, args...) \
4215 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
4216
4217/*
4218 * Wrappers that use printk_in_rcu
4219 */
4220#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
4221 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
4222#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
4223 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
4224#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
4225 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
4226#define btrfs_err_in_rcu(fs_info, fmt, args...) \
4227 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
4228#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
4229 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
4230#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
4231 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
4232#define btrfs_info_in_rcu(fs_info, fmt, args...) \
4233 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
4234
4235/*
4236 * Wrappers that use a ratelimited printk_in_rcu
4237 */
4238#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
4239 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
4240#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
4241 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
4242#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
4243 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
4244#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
4245 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
4246#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
4247 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
4248#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
4249 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
4250#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
4251 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
4252
4253/*
4254 * Wrappers that use a ratelimited printk
4255 */
4256#define btrfs_emerg_rl(fs_info, fmt, args...) \
4257 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
4258#define btrfs_alert_rl(fs_info, fmt, args...) \
4259 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
4260#define btrfs_crit_rl(fs_info, fmt, args...) \
4261 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
4262#define btrfs_err_rl(fs_info, fmt, args...) \
4263 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
4264#define btrfs_warn_rl(fs_info, fmt, args...) \
4265 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
4266#define btrfs_notice_rl(fs_info, fmt, args...) \
4267 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
4268#define btrfs_info_rl(fs_info, fmt, args...) \
4269 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
4270#ifdef DEBUG
4271#define btrfs_debug(fs_info, fmt, args...) \
4272 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
4273#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
4274 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
4275#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
4276 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
4277#define btrfs_debug_rl(fs_info, fmt, args...) \
4278 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
4279#else
4280#define btrfs_debug(fs_info, fmt, args...) \
4281 no_printk(KERN_DEBUG fmt, ##args)
4282#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
4283 no_printk(KERN_DEBUG fmt, ##args)
4284#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
4285 no_printk(KERN_DEBUG fmt, ##args)
4286#define btrfs_debug_rl(fs_info, fmt, args...) \
4287 no_printk(KERN_DEBUG fmt, ##args)
4288#endif
4289
4290#define btrfs_printk_in_rcu(fs_info, fmt, args...) \
4291do { \
4292 rcu_read_lock(); \
4293 btrfs_printk(fs_info, fmt, ##args); \
4294 rcu_read_unlock(); \
4295} while (0)
4296
4297#define btrfs_printk_ratelimited(fs_info, fmt, args...) \
4298do { \
4299 static DEFINE_RATELIMIT_STATE(_rs, \
4300 DEFAULT_RATELIMIT_INTERVAL, \
4301 DEFAULT_RATELIMIT_BURST); \
4302 if (__ratelimit(&_rs)) \
4303 btrfs_printk(fs_info, fmt, ##args); \
4304} while (0)
4305
4306#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
4307do { \
4308 rcu_read_lock(); \
4309 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
4310 rcu_read_unlock(); \
4311} while (0)
4312
4313#ifdef CONFIG_BTRFS_ASSERT
4314
4315__cold
4316static inline void assfail(char *expr, char *file, int line)
4317{
4318 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
4319 expr, file, line);
4320 BUG();
4321}
4322
4323#define ASSERT(expr) \
4324 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
4325#else
4326#define ASSERT(expr) ((void)0)
4327#endif
4328
4329#define btrfs_assert()
4330__printf(5, 6)
4331__cold
4332void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
4333 unsigned int line, int errno, const char *fmt, ...);
4334
4335const char *btrfs_decode_error(int errno);
4336
4337__cold
4338void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
4339 struct btrfs_root *root, const char *function,
4340 unsigned int line, int errno);
4341
4342#define btrfs_set_fs_incompat(__fs_info, opt) \
4343 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4344
4345static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
4346 u64 flag)
4347{
4348 struct btrfs_super_block *disk_super;
4349 u64 features;
4350
4351 disk_super = fs_info->super_copy;
4352 features = btrfs_super_incompat_flags(disk_super);
4353 if (!(features & flag)) {
4354 spin_lock(&fs_info->super_lock);
4355 features = btrfs_super_incompat_flags(disk_super);
4356 if (!(features & flag)) {
4357 features |= flag;
4358 btrfs_set_super_incompat_flags(disk_super, features);
4359 btrfs_info(fs_info, "setting %llu feature flag",
4360 flag);
4361 }
4362 spin_unlock(&fs_info->super_lock);
4363 }
4364}
4365
4366#define btrfs_clear_fs_incompat(__fs_info, opt) \
4367 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4368
4369static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
4370 u64 flag)
4371{
4372 struct btrfs_super_block *disk_super;
4373 u64 features;
4374
4375 disk_super = fs_info->super_copy;
4376 features = btrfs_super_incompat_flags(disk_super);
4377 if (features & flag) {
4378 spin_lock(&fs_info->super_lock);
4379 features = btrfs_super_incompat_flags(disk_super);
4380 if (features & flag) {
4381 features &= ~flag;
4382 btrfs_set_super_incompat_flags(disk_super, features);
4383 btrfs_info(fs_info, "clearing %llu feature flag",
4384 flag);
4385 }
4386 spin_unlock(&fs_info->super_lock);
4387 }
4388}
4389
4390#define btrfs_fs_incompat(fs_info, opt) \
4391 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4392
4393static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
4394{
4395 struct btrfs_super_block *disk_super;
4396 disk_super = fs_info->super_copy;
4397 return !!(btrfs_super_incompat_flags(disk_super) & flag);
4398}
4399
4400#define btrfs_set_fs_compat_ro(__fs_info, opt) \
4401 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4402
4403static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
4404 u64 flag)
4405{
4406 struct btrfs_super_block *disk_super;
4407 u64 features;
4408
4409 disk_super = fs_info->super_copy;
4410 features = btrfs_super_compat_ro_flags(disk_super);
4411 if (!(features & flag)) {
4412 spin_lock(&fs_info->super_lock);
4413 features = btrfs_super_compat_ro_flags(disk_super);
4414 if (!(features & flag)) {
4415 features |= flag;
4416 btrfs_set_super_compat_ro_flags(disk_super, features);
4417 btrfs_info(fs_info, "setting %llu ro feature flag",
4418 flag);
4419 }
4420 spin_unlock(&fs_info->super_lock);
4421 }
4422}
4423
4424#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
4425 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4426
4427static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
4428 u64 flag)
4429{
4430 struct btrfs_super_block *disk_super;
4431 u64 features;
4432
4433 disk_super = fs_info->super_copy;
4434 features = btrfs_super_compat_ro_flags(disk_super);
4435 if (features & flag) {
4436 spin_lock(&fs_info->super_lock);
4437 features = btrfs_super_compat_ro_flags(disk_super);
4438 if (features & flag) {
4439 features &= ~flag;
4440 btrfs_set_super_compat_ro_flags(disk_super, features);
4441 btrfs_info(fs_info, "clearing %llu ro feature flag",
4442 flag);
4443 }
4444 spin_unlock(&fs_info->super_lock);
4445 }
4446}
4447
4448#define btrfs_fs_compat_ro(fs_info, opt) \
4449 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4450
4451static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
4452{
4453 struct btrfs_super_block *disk_super;
4454 disk_super = fs_info->super_copy;
4455 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
4456}
4457
4458/*
4459 * Call btrfs_abort_transaction as early as possible when an error condition is
4460 * detected, that way the exact line number is reported.
4461 */
4462#define btrfs_abort_transaction(trans, root, errno) \
4463do { \
4464 /* Report first abort since mount */ \
4465 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
4466 &((root)->fs_info->fs_state))) { \
4467 WARN(1, KERN_DEBUG \
4468 "BTRFS: Transaction aborted (error %d)\n", \
4469 (errno)); \
4470 } \
4471 __btrfs_abort_transaction((trans), (root), __func__, \
4472 __LINE__, (errno)); \
4473} while (0)
4474
4475#define btrfs_std_error(fs_info, errno, fmt, args...) \
4476do { \
4477 __btrfs_std_error((fs_info), __func__, __LINE__, \
4478 (errno), fmt, ##args); \
4479} while (0)
4480
4481__printf(5, 6)
4482__cold
4483void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4484 unsigned int line, int errno, const char *fmt, ...);
4485
4486/*
4487 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4488 * will panic(). Otherwise we BUG() here.
4489 */
4490#define btrfs_panic(fs_info, errno, fmt, args...) \
4491do { \
4492 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
4493 BUG(); \
4494} while (0)
4495
4496/* acl.c */
4497#ifdef CONFIG_BTRFS_FS_POSIX_ACL
4498struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4499int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4500int btrfs_init_acl(struct btrfs_trans_handle *trans,
4501 struct inode *inode, struct inode *dir);
4502#else
4503#define btrfs_get_acl NULL
4504#define btrfs_set_acl NULL
4505static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4506 struct inode *inode, struct inode *dir)
4507{
4508 return 0;
4509}
4510#endif
4511
4512/* relocation.c */
4513int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4514int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4515 struct btrfs_root *root);
4516int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4517 struct btrfs_root *root);
4518int btrfs_recover_relocation(struct btrfs_root *root);
4519int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4520int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4521 struct btrfs_root *root, struct extent_buffer *buf,
4522 struct extent_buffer *cow);
4523void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4524 u64 *bytes_to_reserve);
4525int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4526 struct btrfs_pending_snapshot *pending);
4527
4528/* scrub.c */
4529int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4530 u64 end, struct btrfs_scrub_progress *progress,
4531 int readonly, int is_dev_replace);
4532void btrfs_scrub_pause(struct btrfs_root *root);
4533void btrfs_scrub_continue(struct btrfs_root *root);
4534int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4535int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4536 struct btrfs_device *dev);
4537int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4538 struct btrfs_scrub_progress *progress);
4539
4540/* dev-replace.c */
4541void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4542void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4543void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4544
4545static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4546{
4547 btrfs_bio_counter_sub(fs_info, 1);
4548}
4549
4550/* reada.c */
4551struct reada_control {
4552 struct btrfs_root *root; /* tree to prefetch */
4553 struct btrfs_key key_start;
4554 struct btrfs_key key_end; /* exclusive */
4555 atomic_t elems;
4556 struct kref refcnt;
4557 wait_queue_head_t wait;
4558};
4559struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4560 struct btrfs_key *start, struct btrfs_key *end);
4561int btrfs_reada_wait(void *handle);
4562void btrfs_reada_detach(void *handle);
4563int btree_readahead_hook(struct btrfs_fs_info *fs_info,
4564 struct extent_buffer *eb, u64 start, int err);
4565
4566static inline int is_fstree(u64 rootid)
4567{
4568 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4569 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4570 !btrfs_qgroup_level(rootid)))
4571 return 1;
4572 return 0;
4573}
4574
4575static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4576{
4577 return signal_pending(current);
4578}
4579
4580/* Sanity test specific functions */
4581#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4582void btrfs_test_destroy_inode(struct inode *inode);
4583#endif
4584
4585static inline int btrfs_test_is_dummy_root(struct btrfs_root *root)
4586{
4587#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4588 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
4589 return 1;
4590#endif
4591 return 0;
4592}
4593
4594#endif