Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
 
 
 
 
 
 
 
 
 
 
 
 
  9#include <linux/pagemap.h>
 10#include "locking.h"
 11#include "fs.h"
 12#include "accessors.h"
 
 
 
 
 13
 14struct btrfs_trans_handle;
 15struct btrfs_transaction;
 16struct btrfs_pending_snapshot;
 17struct btrfs_delayed_ref_root;
 18struct btrfs_space_info;
 19struct btrfs_block_group;
 
 
 20struct btrfs_ordered_sum;
 21struct btrfs_ref;
 22struct btrfs_bio;
 23struct btrfs_ioctl_encoded_io_args;
 24struct btrfs_device;
 25struct btrfs_fs_devices;
 26struct btrfs_balance_control;
 27struct btrfs_delayed_root;
 28struct reloc_control;
 29
 30/* Read ahead values for struct btrfs_path.reada */
 31enum {
 32	READA_NONE,
 33	READA_BACK,
 34	READA_FORWARD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35	/*
 36	 * Similar to READA_FORWARD but unlike it:
 37	 *
 38	 * 1) It will trigger readahead even for leaves that are not close to
 39	 *    each other on disk;
 40	 * 2) It also triggers readahead for nodes;
 41	 * 3) During a search, even when a node or leaf is already in memory, it
 42	 *    will still trigger readahead for other nodes and leaves that follow
 43	 *    it.
 44	 *
 45	 * This is meant to be used only when we know we are iterating over the
 46	 * entire tree or a very large part of it.
 47	 */
 48	READA_FORWARD_ALWAYS,
 49};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 51/*
 52 * btrfs_paths remember the path taken from the root down to the leaf.
 53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 54 * to any other levels that are present.
 55 *
 56 * The slots array records the index of the item or block pointer
 57 * used while walking the tree.
 58 */
 
 59struct btrfs_path {
 60	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 61	int slots[BTRFS_MAX_LEVEL];
 62	/* if there is real range locking, this locks field will change */
 63	u8 locks[BTRFS_MAX_LEVEL];
 64	u8 reada;
 65	/* keep some upper locks as we walk down */
 66	u8 lowest_level;
 67
 68	/*
 69	 * set by btrfs_split_item, tells search_slot to keep all locks
 70	 * and to force calls to keep space in the nodes
 71	 */
 72	unsigned int search_for_split:1;
 73	unsigned int keep_locks:1;
 74	unsigned int skip_locking:1;
 
 75	unsigned int search_commit_root:1;
 76	unsigned int need_commit_sem:1;
 77	unsigned int skip_release_on_error:1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78	/*
 79	 * Indicate that new item (btrfs_search_slot) is extending already
 80	 * existing item and ins_len contains only the data size and not item
 81	 * header (ie. sizeof(struct btrfs_item) is not included).
 82	 */
 83	unsigned int search_for_extension:1;
 84	/* Stop search if any locks need to be taken (for read) */
 85	unsigned int nowait:1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86};
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88/*
 89 * The state of btrfs root
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90 */
 91enum {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92	/*
 93	 * btrfs_record_root_in_trans is a multi-step process, and it can race
 94	 * with the balancing code.   But the race is very small, and only the
 95	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
 96	 * is used to tell us when more checks are required
 97	 */
 98	BTRFS_ROOT_IN_TRANS_SETUP,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100	/*
101	 * Set if tree blocks of this root can be shared by other roots.
102	 * Only subvolume trees and their reloc trees have this bit set.
103	 * Conflicts with TRACK_DIRTY bit.
104	 *
105	 * This affects two things:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106	 *
107	 * - How balance works
108	 *   For shareable roots, we need to use reloc tree and do path
109	 *   replacement for balance, and need various pre/post hooks for
110	 *   snapshot creation to handle them.
111	 *
112	 *   While for non-shareable trees, we just simply do a tree search
113	 *   with COW.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114	 *
115	 * - How dirty roots are tracked
116	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
117	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
118	 *   don't need to set this manually.
119	 */
120	BTRFS_ROOT_SHAREABLE,
121	BTRFS_ROOT_TRACK_DIRTY,
122	BTRFS_ROOT_IN_RADIX,
123	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124	BTRFS_ROOT_DEFRAG_RUNNING,
125	BTRFS_ROOT_FORCE_COW,
126	BTRFS_ROOT_MULTI_LOG_TASKS,
127	BTRFS_ROOT_DIRTY,
128	BTRFS_ROOT_DELETING,
129
130	/*
131	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
 
 
 
 
132	 *
133	 * Set for the subvolume tree owning the reloc tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134	 */
135	BTRFS_ROOT_DEAD_RELOC_TREE,
136	/* Mark dead root stored on device whose cleanup needs to be resumed */
137	BTRFS_ROOT_DEAD_TREE,
138	/* The root has a log tree. Used for subvolume roots and the tree root. */
139	BTRFS_ROOT_HAS_LOG_TREE,
140	/* Qgroup flushing is in progress */
141	BTRFS_ROOT_QGROUP_FLUSHING,
142	/* We started the orphan cleanup for this root. */
143	BTRFS_ROOT_ORPHAN_CLEANUP,
144	/* This root has a drop operation that was started previously. */
145	BTRFS_ROOT_UNFINISHED_DROP,
146	/* This reloc root needs to have its buffers lockdep class reset. */
147	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
153 */
154struct btrfs_qgroup_swapped_blocks {
155	spinlock_t lock;
156	/* RM_EMPTY_ROOT() of above blocks[] */
157	bool swapped;
158	struct rb_root blocks[BTRFS_MAX_LEVEL];
159};
 
 
 
 
 
 
 
 
 
 
 
160
161/*
162 * in ram representation of the tree.  extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166	struct rb_node rb_node;
167
168	struct extent_buffer *node;
169
170	struct extent_buffer *commit_root;
171	struct btrfs_root *log_root;
172	struct btrfs_root *reloc_root;
173
174	unsigned long state;
175	struct btrfs_root_item root_item;
176	struct btrfs_key root_key;
177	struct btrfs_fs_info *fs_info;
178	struct extent_io_tree dirty_log_pages;
179
180	struct mutex objectid_mutex;
181
182	spinlock_t accounting_lock;
183	struct btrfs_block_rsv *block_rsv;
184
 
 
 
 
 
 
 
 
 
185	struct mutex log_mutex;
186	wait_queue_head_t log_writer_wait;
187	wait_queue_head_t log_commit_wait[2];
188	struct list_head log_ctxs[2];
189	/* Used only for log trees of subvolumes, not for the log root tree */
190	atomic_t log_writers;
191	atomic_t log_commit[2];
192	/* Used only for log trees of subvolumes, not for the log root tree */
193	atomic_t log_batch;
194	/*
195	 * Protected by the 'log_mutex' lock but can be read without holding
196	 * that lock to avoid unnecessary lock contention, in which case it
197	 * should be read using btrfs_get_root_log_transid() except if it's a
198	 * log tree in which case it can be directly accessed. Updates to this
199	 * field should always use btrfs_set_root_log_transid(), except for log
200	 * trees where the field can be updated directly.
201	 */
202	int log_transid;
203	/* No matter the commit succeeds or not*/
204	int log_transid_committed;
205	/*
206	 * Just be updated when the commit succeeds. Use
207	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208	 * to access this field.
209	 */
210	int last_log_commit;
211	pid_t log_start_pid;
212
 
213	u64 last_trans;
214
215	u64 free_objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
217	struct btrfs_key defrag_progress;
218	struct btrfs_key defrag_max;
 
219
220	/* The dirty list is only used by non-shareable roots */
221	struct list_head dirty_list;
222
223	struct list_head root_list;
224
 
 
 
 
 
 
 
 
225	spinlock_t inode_lock;
226	/* red-black tree that keeps track of in-memory inodes */
227	struct rb_root inode_tree;
228
229	/*
230	 * Xarray that keeps track of delayed nodes of every inode, protected
231	 * by @inode_lock.
232	 */
233	struct xarray delayed_nodes;
234	/*
235	 * right now this just gets used so that a root has its own devid
236	 * for stat.  It may be used for more later
237	 */
238	dev_t anon_dev;
239
240	spinlock_t root_item_lock;
241	refcount_t refs;
242
243	struct mutex delalloc_mutex;
244	spinlock_t delalloc_lock;
245	/*
246	 * all of the inodes that have delalloc bytes.  It is possible for
247	 * this list to be empty even when there is still dirty data=ordered
248	 * extents waiting to finish IO.
249	 */
250	struct list_head delalloc_inodes;
251	struct list_head delalloc_root;
252	u64 nr_delalloc_inodes;
253
254	struct mutex ordered_extent_mutex;
255	/*
256	 * this is used by the balancing code to wait for all the pending
257	 * ordered extents
258	 */
259	spinlock_t ordered_extent_lock;
260
261	/*
262	 * all of the data=ordered extents pending writeback
263	 * these can span multiple transactions and basically include
264	 * every dirty data page that isn't from nodatacow
265	 */
266	struct list_head ordered_extents;
267	struct list_head ordered_root;
268	u64 nr_ordered_extents;
269
270	/*
271	 * Not empty if this subvolume root has gone through tree block swap
272	 * (relocation)
273	 *
274	 * Will be used by reloc_control::dirty_subvol_roots.
275	 */
276	struct list_head reloc_dirty_list;
277
278	/*
279	 * Number of currently running SEND ioctls to prevent
280	 * manipulation with the read-only status via SUBVOL_SETFLAGS
281	 */
282	int send_in_progress;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283	/*
284	 * Number of currently running deduplication operations that have a
285	 * destination inode belonging to this root. Protected by the lock
286	 * root_item_lock.
287	 */
288	int dedupe_in_progress;
289	/* For exclusion of snapshot creation and nocow writes */
290	struct btrfs_drew_lock snapshot_lock;
291
292	atomic_t snapshot_force_cow;
 
 
 
 
 
293
294	/* For qgroup metadata reserved space */
295	spinlock_t qgroup_meta_rsv_lock;
296	u64 qgroup_meta_rsv_pertrans;
297	u64 qgroup_meta_rsv_prealloc;
298	wait_queue_head_t qgroup_flush_wait;
299
300	/* Number of active swapfiles */
301	atomic_t nr_swapfiles;
302
303	/* Record pairs of swapped blocks for qgroup */
304	struct btrfs_qgroup_swapped_blocks swapped_blocks;
 
 
 
 
 
 
 
 
 
305
306	/* Used only by log trees, when logging csum items */
307	struct extent_io_tree log_csum_range;
 
 
 
 
 
 
 
 
 
 
308
309	/* Used in simple quotas, track root during relocation. */
310	u64 relocation_src_root;
 
 
 
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313	u64 alloc_bytenr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
316#ifdef CONFIG_BTRFS_DEBUG
317	struct list_head leak_list;
 
 
 
 
 
 
 
 
318#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
 
 
 
322{
323	/* Byte-swap the constant at compile time, root_item::flags is LE */
324	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328{
329	/* Byte-swap the constant at compile time, root_item::flags is LE */
330	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334{
335	return root->root_key.objectid;
 
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340	return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
 
344{
345	WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
349{
350	return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
354{
355	WRITE_ONCE(root->last_log_commit, commit_id);
356}
357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363	u64 disk_offset;
364	u64 disk_len;
365	u64 data_offset;
366	u64 data_len;
367	u64 file_offset;
368	/* Pointer to a file extent item of type regular or prealloc. */
369	char *extent_buf;
370	/*
371	 * Set to true when attempting to replace a file range with a new extent
372	 * described by this structure, set to false when attempting to clone an
373	 * existing extent into a file range.
374	 */
375	bool is_new_extent;
376	/* Indicate if we should update the inode's mtime and ctime. */
377	bool update_times;
378	/* Meaningful only if is_new_extent is true. */
379	int qgroup_reserved;
380	/*
381	 * Meaningful only if is_new_extent is true.
382	 * Used to track how many extent items we have already inserted in a
383	 * subvolume tree that refer to the extent described by this structure,
384	 * so that we know when to create a new delayed ref or update an existing
385	 * one.
386	 */
387	int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392	/* Input parameters */
 
 
 
393
394	/*
395	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396	 * If 'replace_extent' is true, this must not be NULL. Also the path
397	 * is always released except if 'replace_extent' is true and
398	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399	 * the path is kept locked.
400	 */
401	struct btrfs_path *path;
402	/* Start offset of the range to drop extents from */
403	u64 start;
404	/* End (exclusive, last byte + 1) of the range to drop extents from */
405	u64 end;
406	/* If true drop all the extent maps in the range */
407	bool drop_cache;
408	/*
409	 * If true it means we want to insert a new extent after dropping all
410	 * the extents in the range. If this is true, the 'extent_item_size'
411	 * parameter must be set as well and the 'extent_inserted' field will
412	 * be set to true by btrfs_drop_extents() if it could insert the new
413	 * extent.
414	 * Note: when this is set to true the path must not be NULL.
415	 */
416	bool replace_extent;
417	/*
418	 * Used if 'replace_extent' is true. Size of the file extent item to
419	 * insert after dropping all existing extents in the range
420	 */
421	u32 extent_item_size;
422
423	/* Output parameters */
 
 
 
 
424
425	/*
426	 * Set to the minimum between the input parameter 'end' and the end
427	 * (exclusive, last byte + 1) of the last dropped extent. This is always
428	 * set even if btrfs_drop_extents() returns an error.
429	 */
430	u64 drop_end;
431	/*
432	 * The number of allocated bytes found in the range. This can be smaller
433	 * than the range's length when there are holes in the range.
434	 */
435	u64 bytes_found;
436	/*
437	 * Only set if 'replace_extent' is true. Set to true if we were able
438	 * to insert a replacement extent after dropping all extents in the
439	 * range, otherwise set to false by btrfs_drop_extents().
440	 * Also, if btrfs_drop_extents() has set this to true it means it
441	 * returned with the path locked, otherwise if it has set this to
442	 * false it has returned with the path released.
443	 */
444	bool extent_inserted;
445};
446
447struct btrfs_file_private {
448	void *filldir_buf;
449	u64 last_index;
450	struct extent_state *llseek_cached_state;
451};
 
 
452
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
 
454{
455	return info->nodesize - sizeof(struct btrfs_header);
 
 
456}
457
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
 
459{
460	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
 
 
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
 
 
464{
465	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
 
 
466}
467
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
 
469{
470	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
471}
472
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474				((bytes) >> (fs_info)->sectorsize_bits)
 
 
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477{
478	return mapping_gfp_constraint(mapping, ~__GFP_FS);
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482				   u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484			 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
 
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492		     const struct btrfs_key *key, int *slot);
 
 
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496#ifdef __LITTLE_ENDIAN
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
 
 
 
 
 
 
 
 
 
 
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503				  const struct btrfs_key *k2)
 
504{
505	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
506
507	return btrfs_comp_cpu_keys(k1, k2);
 
 
 
 
 
 
 
 
 
 
 
 
 
508}
509
510#else
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514				  const struct btrfs_key *k2)
 
515{
516	struct btrfs_key k1;
517
518	btrfs_disk_key_to_cpu(&k1, disk);
 
 
 
 
 
519
520	return btrfs_comp_cpu_keys(&k1, k2);
 
 
 
 
 
 
 
521}
522
523#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525int btrfs_previous_item(struct btrfs_root *root,
526			struct btrfs_path *path, u64 min_objectid,
527			int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529			struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531			     struct btrfs_path *path,
532			     const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
 
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535			struct btrfs_key *key, int lowest_level,
536			u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538			 struct btrfs_path *path,
539			 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541					   int slot);
542
 
 
 
 
 
 
 
 
 
 
 
 
 
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544		    struct btrfs_root *root, struct extent_buffer *buf,
545		    struct extent_buffer *parent, int parent_slot,
546		    struct extent_buffer **cow_ret,
547		    enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549			  struct btrfs_root *root,
550			  struct extent_buffer *buf,
551			  struct extent_buffer *parent, int parent_slot,
552			  struct extent_buffer **cow_ret,
553			  u64 search_start, u64 empty_size,
554			  enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556		      struct btrfs_root *root,
557		      struct extent_buffer *buf,
558		      struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560			       struct btrfs_root *root,
561			       struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563		  struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565		       struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567			 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569		     struct btrfs_root *root,
570		     struct btrfs_path *path,
571		     const struct btrfs_key *new_key,
572		     unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574			 struct btrfs_root *root,
575			 struct btrfs_path *path,
576			 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580		      const struct btrfs_key *key, struct btrfs_path *p,
581		      int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583			  struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585			       const struct btrfs_key *key,
586			       struct btrfs_path *p, int find_higher,
587			       int return_any);
 
 
 
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
 
 
 
 
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593		   struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595				 struct btrfs_root *root,
596				 struct btrfs_path *path)
597{
598	return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606	/*
607	 * Pointer to an array containing the keys of the items to insert (in
608	 * sorted order).
609	 */
610	const struct btrfs_key *keys;
611	/* Pointer to an array containing the data size for each item to insert. */
612	const u32 *data_sizes;
613	/*
614	 * The sum of data sizes for all items. The caller can compute this while
615	 * setting up the data_sizes array, so it ends up being more efficient
616	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617	 * doing it, as it would avoid an extra loop over a potentially large
618	 * array, and in the case of setup_item_for_insert(), we would be doing
619	 * it while holding a write lock on a leaf and often on upper level nodes
620	 * too, unnecessarily increasing the size of a critical section.
621	 */
622	u32 total_data_size;
623	/* Size of the keys and data_sizes arrays (number of items in the batch). */
624	int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628				 struct btrfs_root *root,
629				 struct btrfs_path *path,
630				 const struct btrfs_key *key,
631				 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633		      const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635			     struct btrfs_root *root,
636			     struct btrfs_path *path,
637			     const struct btrfs_item_batch *batch);
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640					  struct btrfs_root *root,
641					  struct btrfs_path *path,
642					  const struct btrfs_key *key,
643					  u32 data_size)
644{
645	struct btrfs_item_batch batch;
646
647	batch.keys = key;
648	batch.data_sizes = &data_size;
649	batch.total_data_size = data_size;
650	batch.nr = 1;
651
652	return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
 
 
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656			u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659			   struct btrfs_path *path);
 
 
 
 
 
 
 
 
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662			      struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
666 *
667 * @root:	The root node of the tree.
668 * @key:	The key we are looking for.
669 * @found_key:	Will hold the found item.
670 * @path:	Holds the current slot/leaf.
671 * @iter_ret:	Contains the value returned from btrfs_search_slot or
672 * 		btrfs_get_next_valid_item, whichever was executed last.
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
684	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
685		(iter_ret) >= 0 &&						\
686		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687		(path)->slots[0]++						\
688	)
 
 
 
 
 
 
 
 
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699{
700	return btrfs_next_old_leaf(root, path, 0);
 
 
701}
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704{
705	return btrfs_next_old_item(root, p, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708
709static inline int is_fstree(u64 rootid)
710{
711	if (rootid == BTRFS_FS_TREE_OBJECTID ||
712	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713	      !btrfs_qgroup_level(rootid)))
714		return 1;
715	return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page)		PagePrivate2(page)
736#define SetPageOrdered(page)		SetPagePrivate2(page)
737#define ClearPageOrdered(page)		ClearPagePrivate2(page)
738#define folio_test_ordered(folio)	folio_test_private_2(folio)
739#define folio_set_ordered(folio)	folio_set_private_2(folio)
740#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
741
742#endif
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#ifndef __BTRFS_CTREE__
  20#define __BTRFS_CTREE__
  21
  22#include <linux/mm.h>
  23#include <linux/highmem.h>
  24#include <linux/fs.h>
  25#include <linux/rwsem.h>
  26#include <linux/semaphore.h>
  27#include <linux/completion.h>
  28#include <linux/backing-dev.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/kobject.h>
  32#include <trace/events/btrfs.h>
  33#include <asm/kmap_types.h>
  34#include <linux/pagemap.h>
  35#include <linux/btrfs.h>
  36#include <linux/workqueue.h>
  37#include <linux/security.h>
  38#include <linux/sizes.h>
  39#include "extent_io.h"
  40#include "extent_map.h"
  41#include "async-thread.h"
  42
  43struct btrfs_trans_handle;
  44struct btrfs_transaction;
  45struct btrfs_pending_snapshot;
  46extern struct kmem_cache *btrfs_trans_handle_cachep;
  47extern struct kmem_cache *btrfs_transaction_cachep;
  48extern struct kmem_cache *btrfs_bit_radix_cachep;
  49extern struct kmem_cache *btrfs_path_cachep;
  50extern struct kmem_cache *btrfs_free_space_cachep;
  51struct btrfs_ordered_sum;
 
 
 
 
 
 
 
 
  52
  53#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  54#define STATIC noinline
  55#else
  56#define STATIC static noinline
  57#endif
  58
  59#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
  60
  61#define BTRFS_MAX_MIRRORS 3
  62
  63#define BTRFS_MAX_LEVEL 8
  64
  65#define BTRFS_COMPAT_EXTENT_TREE_V0
  66
  67/* holds pointers to all of the tree roots */
  68#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  69
  70/* stores information about which extents are in use, and reference counts */
  71#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  72
  73/*
  74 * chunk tree stores translations from logical -> physical block numbering
  75 * the super block points to the chunk tree
  76 */
  77#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  78
  79/*
  80 * stores information about which areas of a given device are in use.
  81 * one per device.  The tree of tree roots points to the device tree
  82 */
  83#define BTRFS_DEV_TREE_OBJECTID 4ULL
  84
  85/* one per subvolume, storing files and directories */
  86#define BTRFS_FS_TREE_OBJECTID 5ULL
  87
  88/* directory objectid inside the root tree */
  89#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  90
  91/* holds checksums of all the data extents */
  92#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  93
  94/* holds quota configuration and tracking */
  95#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  96
  97/* for storing items that use the BTRFS_UUID_KEY* types */
  98#define BTRFS_UUID_TREE_OBJECTID 9ULL
  99
 100/* tracks free space in block groups. */
 101#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
 102
 103/* device stats in the device tree */
 104#define BTRFS_DEV_STATS_OBJECTID 0ULL
 105
 106/* for storing balance parameters in the root tree */
 107#define BTRFS_BALANCE_OBJECTID -4ULL
 108
 109/* orhpan objectid for tracking unlinked/truncated files */
 110#define BTRFS_ORPHAN_OBJECTID -5ULL
 111
 112/* does write ahead logging to speed up fsyncs */
 113#define BTRFS_TREE_LOG_OBJECTID -6ULL
 114#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
 115
 116/* for space balancing */
 117#define BTRFS_TREE_RELOC_OBJECTID -8ULL
 118#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
 119
 120/*
 121 * extent checksums all have this objectid
 122 * this allows them to share the logging tree
 123 * for fsyncs
 124 */
 125#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
 126
 127/* For storing free space cache */
 128#define BTRFS_FREE_SPACE_OBJECTID -11ULL
 129
 130/*
 131 * The inode number assigned to the special inode for storing
 132 * free ino cache
 133 */
 134#define BTRFS_FREE_INO_OBJECTID -12ULL
 135
 136/* dummy objectid represents multiple objectids */
 137#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
 138
 139/*
 140 * All files have objectids in this range.
 141 */
 142#define BTRFS_FIRST_FREE_OBJECTID 256ULL
 143#define BTRFS_LAST_FREE_OBJECTID -256ULL
 144#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
 145
 146
 147/*
 148 * the device items go into the chunk tree.  The key is in the form
 149 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 150 */
 151#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 152
 153#define BTRFS_BTREE_INODE_OBJECTID 1
 154
 155#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 156
 157#define BTRFS_DEV_REPLACE_DEVID 0ULL
 158
 159/*
 160 * the max metadata block size.  This limit is somewhat artificial,
 161 * but the memmove costs go through the roof for larger blocks.
 162 */
 163#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
 164
 165/*
 166 * we can actually store much bigger names, but lets not confuse the rest
 167 * of linux
 168 */
 169#define BTRFS_NAME_LEN 255
 170
 171/*
 172 * Theoretical limit is larger, but we keep this down to a sane
 173 * value. That should limit greatly the possibility of collisions on
 174 * inode ref items.
 175 */
 176#define BTRFS_LINK_MAX 65535U
 177
 178/* 32 bytes in various csum fields */
 179#define BTRFS_CSUM_SIZE 32
 180
 181/* csum types */
 182#define BTRFS_CSUM_TYPE_CRC32	0
 183
 184static const int btrfs_csum_sizes[] = { 4 };
 185
 186/* four bytes for CRC32 */
 187#define BTRFS_EMPTY_DIR_SIZE 0
 188
 189/* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
 190#define REQ_GET_READ_MIRRORS	(1 << 30)
 191
 192#define BTRFS_FT_UNKNOWN	0
 193#define BTRFS_FT_REG_FILE	1
 194#define BTRFS_FT_DIR		2
 195#define BTRFS_FT_CHRDEV		3
 196#define BTRFS_FT_BLKDEV		4
 197#define BTRFS_FT_FIFO		5
 198#define BTRFS_FT_SOCK		6
 199#define BTRFS_FT_SYMLINK	7
 200#define BTRFS_FT_XATTR		8
 201#define BTRFS_FT_MAX		9
 202
 203/* ioprio of readahead is set to idle */
 204#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
 205
 206#define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
 207
 208#define BTRFS_MAX_EXTENT_SIZE SZ_128M
 209
 210/*
 211 * The key defines the order in the tree, and so it also defines (optimal)
 212 * block layout.
 213 *
 214 * objectid corresponds to the inode number.
 215 *
 216 * type tells us things about the object, and is a kind of stream selector.
 217 * so for a given inode, keys with type of 1 might refer to the inode data,
 218 * type of 2 may point to file data in the btree and type == 3 may point to
 219 * extents.
 220 *
 221 * offset is the starting byte offset for this key in the stream.
 222 *
 223 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 224 * in cpu native order.  Otherwise they are identical and their sizes
 225 * should be the same (ie both packed)
 226 */
 227struct btrfs_disk_key {
 228	__le64 objectid;
 229	u8 type;
 230	__le64 offset;
 231} __attribute__ ((__packed__));
 232
 233struct btrfs_key {
 234	u64 objectid;
 235	u8 type;
 236	u64 offset;
 237} __attribute__ ((__packed__));
 238
 239struct btrfs_mapping_tree {
 240	struct extent_map_tree map_tree;
 241};
 242
 243struct btrfs_dev_item {
 244	/* the internal btrfs device id */
 245	__le64 devid;
 246
 247	/* size of the device */
 248	__le64 total_bytes;
 249
 250	/* bytes used */
 251	__le64 bytes_used;
 252
 253	/* optimal io alignment for this device */
 254	__le32 io_align;
 255
 256	/* optimal io width for this device */
 257	__le32 io_width;
 258
 259	/* minimal io size for this device */
 260	__le32 sector_size;
 261
 262	/* type and info about this device */
 263	__le64 type;
 264
 265	/* expected generation for this device */
 266	__le64 generation;
 267
 268	/*
 269	 * starting byte of this partition on the device,
 270	 * to allow for stripe alignment in the future
 
 
 
 
 
 
 
 
 
 271	 */
 272	__le64 start_offset;
 273
 274	/* grouping information for allocation decisions */
 275	__le32 dev_group;
 276
 277	/* seek speed 0-100 where 100 is fastest */
 278	u8 seek_speed;
 279
 280	/* bandwidth 0-100 where 100 is fastest */
 281	u8 bandwidth;
 282
 283	/* btrfs generated uuid for this device */
 284	u8 uuid[BTRFS_UUID_SIZE];
 285
 286	/* uuid of FS who owns this device */
 287	u8 fsid[BTRFS_UUID_SIZE];
 288} __attribute__ ((__packed__));
 289
 290struct btrfs_stripe {
 291	__le64 devid;
 292	__le64 offset;
 293	u8 dev_uuid[BTRFS_UUID_SIZE];
 294} __attribute__ ((__packed__));
 295
 296struct btrfs_chunk {
 297	/* size of this chunk in bytes */
 298	__le64 length;
 299
 300	/* objectid of the root referencing this chunk */
 301	__le64 owner;
 302
 303	__le64 stripe_len;
 304	__le64 type;
 305
 306	/* optimal io alignment for this chunk */
 307	__le32 io_align;
 308
 309	/* optimal io width for this chunk */
 310	__le32 io_width;
 311
 312	/* minimal io size for this chunk */
 313	__le32 sector_size;
 314
 315	/* 2^16 stripes is quite a lot, a second limit is the size of a single
 316	 * item in the btree
 317	 */
 318	__le16 num_stripes;
 319
 320	/* sub stripes only matter for raid10 */
 321	__le16 sub_stripes;
 322	struct btrfs_stripe stripe;
 323	/* additional stripes go here */
 324} __attribute__ ((__packed__));
 325
 326#define BTRFS_FREE_SPACE_EXTENT	1
 327#define BTRFS_FREE_SPACE_BITMAP	2
 328
 329struct btrfs_free_space_entry {
 330	__le64 offset;
 331	__le64 bytes;
 332	u8 type;
 333} __attribute__ ((__packed__));
 334
 335struct btrfs_free_space_header {
 336	struct btrfs_disk_key location;
 337	__le64 generation;
 338	__le64 num_entries;
 339	__le64 num_bitmaps;
 340} __attribute__ ((__packed__));
 341
 342static inline unsigned long btrfs_chunk_item_size(int num_stripes)
 343{
 344	BUG_ON(num_stripes == 0);
 345	return sizeof(struct btrfs_chunk) +
 346		sizeof(struct btrfs_stripe) * (num_stripes - 1);
 347}
 348
 349#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
 350#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
 351
 352/*
 353 * File system states
 354 */
 355#define BTRFS_FS_STATE_ERROR		0
 356#define BTRFS_FS_STATE_REMOUNTING	1
 357#define BTRFS_FS_STATE_TRANS_ABORTED	2
 358#define BTRFS_FS_STATE_DEV_REPLACING	3
 359
 360/* Super block flags */
 361/* Errors detected */
 362#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
 363
 364#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
 365#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
 366
 367#define BTRFS_BACKREF_REV_MAX		256
 368#define BTRFS_BACKREF_REV_SHIFT		56
 369#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
 370					 BTRFS_BACKREF_REV_SHIFT)
 371
 372#define BTRFS_OLD_BACKREF_REV		0
 373#define BTRFS_MIXED_BACKREF_REV		1
 374
 375/*
 376 * every tree block (leaf or node) starts with this header.
 377 */
 378struct btrfs_header {
 379	/* these first four must match the super block */
 380	u8 csum[BTRFS_CSUM_SIZE];
 381	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
 382	__le64 bytenr; /* which block this node is supposed to live in */
 383	__le64 flags;
 384
 385	/* allowed to be different from the super from here on down */
 386	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 387	__le64 generation;
 388	__le64 owner;
 389	__le32 nritems;
 390	u8 level;
 391} __attribute__ ((__packed__));
 392
 393#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
 394				      sizeof(struct btrfs_header)) / \
 395				     sizeof(struct btrfs_key_ptr))
 396#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
 397#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
 398#define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
 399		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
 400#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
 401					sizeof(struct btrfs_item) - \
 402					BTRFS_FILE_EXTENT_INLINE_DATA_START)
 403#define BTRFS_MAX_XATTR_SIZE(r)	(BTRFS_LEAF_DATA_SIZE(r) - \
 404				 sizeof(struct btrfs_item) -\
 405				 sizeof(struct btrfs_dir_item))
 406
 407
 408/*
 409 * this is a very generous portion of the super block, giving us
 410 * room to translate 14 chunks with 3 stripes each.
 411 */
 412#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
 413#define BTRFS_LABEL_SIZE 256
 414
 415/*
 416 * just in case we somehow lose the roots and are not able to mount,
 417 * we store an array of the roots from previous transactions
 418 * in the super.
 419 */
 420#define BTRFS_NUM_BACKUP_ROOTS 4
 421struct btrfs_root_backup {
 422	__le64 tree_root;
 423	__le64 tree_root_gen;
 424
 425	__le64 chunk_root;
 426	__le64 chunk_root_gen;
 427
 428	__le64 extent_root;
 429	__le64 extent_root_gen;
 430
 431	__le64 fs_root;
 432	__le64 fs_root_gen;
 433
 434	__le64 dev_root;
 435	__le64 dev_root_gen;
 436
 437	__le64 csum_root;
 438	__le64 csum_root_gen;
 439
 440	__le64 total_bytes;
 441	__le64 bytes_used;
 442	__le64 num_devices;
 443	/* future */
 444	__le64 unused_64[4];
 445
 446	u8 tree_root_level;
 447	u8 chunk_root_level;
 448	u8 extent_root_level;
 449	u8 fs_root_level;
 450	u8 dev_root_level;
 451	u8 csum_root_level;
 452	/* future and to align */
 453	u8 unused_8[10];
 454} __attribute__ ((__packed__));
 455
 456/*
 457 * the super block basically lists the main trees of the FS
 458 * it currently lacks any block count etc etc
 459 */
 460struct btrfs_super_block {
 461	u8 csum[BTRFS_CSUM_SIZE];
 462	/* the first 4 fields must match struct btrfs_header */
 463	u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
 464	__le64 bytenr; /* this block number */
 465	__le64 flags;
 466
 467	/* allowed to be different from the btrfs_header from here own down */
 468	__le64 magic;
 469	__le64 generation;
 470	__le64 root;
 471	__le64 chunk_root;
 472	__le64 log_root;
 473
 474	/* this will help find the new super based on the log root */
 475	__le64 log_root_transid;
 476	__le64 total_bytes;
 477	__le64 bytes_used;
 478	__le64 root_dir_objectid;
 479	__le64 num_devices;
 480	__le32 sectorsize;
 481	__le32 nodesize;
 482	__le32 __unused_leafsize;
 483	__le32 stripesize;
 484	__le32 sys_chunk_array_size;
 485	__le64 chunk_root_generation;
 486	__le64 compat_flags;
 487	__le64 compat_ro_flags;
 488	__le64 incompat_flags;
 489	__le16 csum_type;
 490	u8 root_level;
 491	u8 chunk_root_level;
 492	u8 log_root_level;
 493	struct btrfs_dev_item dev_item;
 494
 495	char label[BTRFS_LABEL_SIZE];
 496
 497	__le64 cache_generation;
 498	__le64 uuid_tree_generation;
 499
 500	/* future expansion */
 501	__le64 reserved[30];
 502	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
 503	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
 504} __attribute__ ((__packed__));
 505
 506/*
 507 * Compat flags that we support.  If any incompat flags are set other than the
 508 * ones specified below then we will fail to mount
 509 */
 510#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE	(1ULL << 0)
 511
 512#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF	(1ULL << 0)
 513#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL	(1ULL << 1)
 514#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS	(1ULL << 2)
 515#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO	(1ULL << 3)
 516/*
 517 * some patches floated around with a second compression method
 518 * lets save that incompat here for when they do get in
 519 * Note we don't actually support it, we're just reserving the
 520 * number
 521 */
 522#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2	(1ULL << 4)
 523
 524/*
 525 * older kernels tried to do bigger metadata blocks, but the
 526 * code was pretty buggy.  Lets not let them try anymore.
 527 */
 528#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA	(1ULL << 5)
 529
 530#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF	(1ULL << 6)
 531#define BTRFS_FEATURE_INCOMPAT_RAID56		(1ULL << 7)
 532#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA	(1ULL << 8)
 533#define BTRFS_FEATURE_INCOMPAT_NO_HOLES		(1ULL << 9)
 534
 535#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
 536#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
 537#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
 538
 539#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
 540	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE)
 541
 542#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
 543#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
 544
 545#define BTRFS_FEATURE_INCOMPAT_SUPP			\
 546	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
 547	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
 548	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
 549	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
 550	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
 551	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
 552	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
 553	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
 554	 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
 555
 556#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
 557	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
 558#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
 559
 560/*
 561 * A leaf is full of items. offset and size tell us where to find
 562 * the item in the leaf (relative to the start of the data area)
 563 */
 564struct btrfs_item {
 565	struct btrfs_disk_key key;
 566	__le32 offset;
 567	__le32 size;
 568} __attribute__ ((__packed__));
 569
 570/*
 571 * leaves have an item area and a data area:
 572 * [item0, item1....itemN] [free space] [dataN...data1, data0]
 573 *
 574 * The data is separate from the items to get the keys closer together
 575 * during searches.
 576 */
 577struct btrfs_leaf {
 578	struct btrfs_header header;
 579	struct btrfs_item items[];
 580} __attribute__ ((__packed__));
 581
 582/*
 583 * all non-leaf blocks are nodes, they hold only keys and pointers to
 584 * other blocks
 585 */
 586struct btrfs_key_ptr {
 587	struct btrfs_disk_key key;
 588	__le64 blockptr;
 589	__le64 generation;
 590} __attribute__ ((__packed__));
 591
 592struct btrfs_node {
 593	struct btrfs_header header;
 594	struct btrfs_key_ptr ptrs[];
 595} __attribute__ ((__packed__));
 596
 597/*
 598 * btrfs_paths remember the path taken from the root down to the leaf.
 599 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 600 * to any other levels that are present.
 601 *
 602 * The slots array records the index of the item or block pointer
 603 * used while walking the tree.
 604 */
 605enum { READA_NONE = 0, READA_BACK, READA_FORWARD };
 606struct btrfs_path {
 607	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 608	int slots[BTRFS_MAX_LEVEL];
 609	/* if there is real range locking, this locks field will change */
 610	u8 locks[BTRFS_MAX_LEVEL];
 611	u8 reada;
 612	/* keep some upper locks as we walk down */
 613	u8 lowest_level;
 614
 615	/*
 616	 * set by btrfs_split_item, tells search_slot to keep all locks
 617	 * and to force calls to keep space in the nodes
 618	 */
 619	unsigned int search_for_split:1;
 620	unsigned int keep_locks:1;
 621	unsigned int skip_locking:1;
 622	unsigned int leave_spinning:1;
 623	unsigned int search_commit_root:1;
 624	unsigned int need_commit_sem:1;
 625	unsigned int skip_release_on_error:1;
 626};
 627
 628/*
 629 * items in the extent btree are used to record the objectid of the
 630 * owner of the block and the number of references
 631 */
 632
 633struct btrfs_extent_item {
 634	__le64 refs;
 635	__le64 generation;
 636	__le64 flags;
 637} __attribute__ ((__packed__));
 638
 639struct btrfs_extent_item_v0 {
 640	__le32 refs;
 641} __attribute__ ((__packed__));
 642
 643#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
 644					sizeof(struct btrfs_item))
 645
 646#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
 647#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
 648
 649/* following flags only apply to tree blocks */
 650
 651/* use full backrefs for extent pointers in the block */
 652#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
 653
 654/*
 655 * this flag is only used internally by scrub and may be changed at any time
 656 * it is only declared here to avoid collisions
 657 */
 658#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
 659
 660struct btrfs_tree_block_info {
 661	struct btrfs_disk_key key;
 662	u8 level;
 663} __attribute__ ((__packed__));
 664
 665struct btrfs_extent_data_ref {
 666	__le64 root;
 667	__le64 objectid;
 668	__le64 offset;
 669	__le32 count;
 670} __attribute__ ((__packed__));
 671
 672struct btrfs_shared_data_ref {
 673	__le32 count;
 674} __attribute__ ((__packed__));
 675
 676struct btrfs_extent_inline_ref {
 677	u8 type;
 678	__le64 offset;
 679} __attribute__ ((__packed__));
 680
 681/* old style backrefs item */
 682struct btrfs_extent_ref_v0 {
 683	__le64 root;
 684	__le64 generation;
 685	__le64 objectid;
 686	__le32 count;
 687} __attribute__ ((__packed__));
 688
 689
 690/* dev extents record free space on individual devices.  The owner
 691 * field points back to the chunk allocation mapping tree that allocated
 692 * the extent.  The chunk tree uuid field is a way to double check the owner
 693 */
 694struct btrfs_dev_extent {
 695	__le64 chunk_tree;
 696	__le64 chunk_objectid;
 697	__le64 chunk_offset;
 698	__le64 length;
 699	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 700} __attribute__ ((__packed__));
 701
 702struct btrfs_inode_ref {
 703	__le64 index;
 704	__le16 name_len;
 705	/* name goes here */
 706} __attribute__ ((__packed__));
 707
 708struct btrfs_inode_extref {
 709	__le64 parent_objectid;
 710	__le64 index;
 711	__le16 name_len;
 712	__u8   name[0];
 713	/* name goes here */
 714} __attribute__ ((__packed__));
 715
 716struct btrfs_timespec {
 717	__le64 sec;
 718	__le32 nsec;
 719} __attribute__ ((__packed__));
 720
 721struct btrfs_inode_item {
 722	/* nfs style generation number */
 723	__le64 generation;
 724	/* transid that last touched this inode */
 725	__le64 transid;
 726	__le64 size;
 727	__le64 nbytes;
 728	__le64 block_group;
 729	__le32 nlink;
 730	__le32 uid;
 731	__le32 gid;
 732	__le32 mode;
 733	__le64 rdev;
 734	__le64 flags;
 735
 736	/* modification sequence number for NFS */
 737	__le64 sequence;
 738
 739	/*
 740	 * a little future expansion, for more than this we can
 741	 * just grow the inode item and version it
 742	 */
 743	__le64 reserved[4];
 744	struct btrfs_timespec atime;
 745	struct btrfs_timespec ctime;
 746	struct btrfs_timespec mtime;
 747	struct btrfs_timespec otime;
 748} __attribute__ ((__packed__));
 749
 750struct btrfs_dir_log_item {
 751	__le64 end;
 752} __attribute__ ((__packed__));
 753
 754struct btrfs_dir_item {
 755	struct btrfs_disk_key location;
 756	__le64 transid;
 757	__le16 data_len;
 758	__le16 name_len;
 759	u8 type;
 760} __attribute__ ((__packed__));
 761
 762#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
 763
 764/*
 765 * Internal in-memory flag that a subvolume has been marked for deletion but
 766 * still visible as a directory
 767 */
 768#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
 769
 770struct btrfs_root_item {
 771	struct btrfs_inode_item inode;
 772	__le64 generation;
 773	__le64 root_dirid;
 774	__le64 bytenr;
 775	__le64 byte_limit;
 776	__le64 bytes_used;
 777	__le64 last_snapshot;
 778	__le64 flags;
 779	__le32 refs;
 780	struct btrfs_disk_key drop_progress;
 781	u8 drop_level;
 782	u8 level;
 783
 784	/*
 785	 * The following fields appear after subvol_uuids+subvol_times
 786	 * were introduced.
 787	 */
 788
 789	/*
 790	 * This generation number is used to test if the new fields are valid
 791	 * and up to date while reading the root item. Every time the root item
 792	 * is written out, the "generation" field is copied into this field. If
 793	 * anyone ever mounted the fs with an older kernel, we will have
 794	 * mismatching generation values here and thus must invalidate the
 795	 * new fields. See btrfs_update_root and btrfs_find_last_root for
 796	 * details.
 797	 * the offset of generation_v2 is also used as the start for the memset
 798	 * when invalidating the fields.
 799	 */
 800	__le64 generation_v2;
 801	u8 uuid[BTRFS_UUID_SIZE];
 802	u8 parent_uuid[BTRFS_UUID_SIZE];
 803	u8 received_uuid[BTRFS_UUID_SIZE];
 804	__le64 ctransid; /* updated when an inode changes */
 805	__le64 otransid; /* trans when created */
 806	__le64 stransid; /* trans when sent. non-zero for received subvol */
 807	__le64 rtransid; /* trans when received. non-zero for received subvol */
 808	struct btrfs_timespec ctime;
 809	struct btrfs_timespec otime;
 810	struct btrfs_timespec stime;
 811	struct btrfs_timespec rtime;
 812	__le64 reserved[8]; /* for future */
 813} __attribute__ ((__packed__));
 814
 815/*
 816 * this is used for both forward and backward root refs
 817 */
 818struct btrfs_root_ref {
 819	__le64 dirid;
 820	__le64 sequence;
 821	__le16 name_len;
 822} __attribute__ ((__packed__));
 823
 824struct btrfs_disk_balance_args {
 825	/*
 826	 * profiles to operate on, single is denoted by
 827	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 828	 */
 829	__le64 profiles;
 830
 831	/*
 832	 * usage filter
 833	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
 834	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
 835	 */
 836	union {
 837		__le64 usage;
 838		struct {
 839			__le32 usage_min;
 840			__le32 usage_max;
 841		};
 842	};
 843
 844	/* devid filter */
 845	__le64 devid;
 846
 847	/* devid subset filter [pstart..pend) */
 848	__le64 pstart;
 849	__le64 pend;
 850
 851	/* btrfs virtual address space subset filter [vstart..vend) */
 852	__le64 vstart;
 853	__le64 vend;
 854
 855	/*
 856	 * profile to convert to, single is denoted by
 857	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 858	 */
 859	__le64 target;
 860
 861	/* BTRFS_BALANCE_ARGS_* */
 862	__le64 flags;
 863
 864	/*
 865	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
 866	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
 867	 * and maximum
 868	 */
 869	union {
 870		__le64 limit;
 871		struct {
 872			__le32 limit_min;
 873			__le32 limit_max;
 874		};
 875	};
 876
 877	/*
 878	 * Process chunks that cross stripes_min..stripes_max devices,
 879	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
 880	 */
 881	__le32 stripes_min;
 882	__le32 stripes_max;
 883
 884	__le64 unused[6];
 885} __attribute__ ((__packed__));
 886
 887/*
 888 * store balance parameters to disk so that balance can be properly
 889 * resumed after crash or unmount
 890 */
 891struct btrfs_balance_item {
 892	/* BTRFS_BALANCE_* */
 893	__le64 flags;
 894
 895	struct btrfs_disk_balance_args data;
 896	struct btrfs_disk_balance_args meta;
 897	struct btrfs_disk_balance_args sys;
 898
 899	__le64 unused[4];
 900} __attribute__ ((__packed__));
 901
 902#define BTRFS_FILE_EXTENT_INLINE 0
 903#define BTRFS_FILE_EXTENT_REG 1
 904#define BTRFS_FILE_EXTENT_PREALLOC 2
 905
 906struct btrfs_file_extent_item {
 907	/*
 908	 * transaction id that created this extent
 909	 */
 910	__le64 generation;
 911	/*
 912	 * max number of bytes to hold this extent in ram
 913	 * when we split a compressed extent we can't know how big
 914	 * each of the resulting pieces will be.  So, this is
 915	 * an upper limit on the size of the extent in ram instead of
 916	 * an exact limit.
 917	 */
 918	__le64 ram_bytes;
 919
 920	/*
 921	 * 32 bits for the various ways we might encode the data,
 922	 * including compression and encryption.  If any of these
 923	 * are set to something a given disk format doesn't understand
 924	 * it is treated like an incompat flag for reading and writing,
 925	 * but not for stat.
 926	 */
 927	u8 compression;
 928	u8 encryption;
 929	__le16 other_encoding; /* spare for later use */
 930
 931	/* are we inline data or a real extent? */
 932	u8 type;
 933
 934	/*
 935	 * disk space consumed by the extent, checksum blocks are included
 936	 * in these numbers
 937	 *
 938	 * At this offset in the structure, the inline extent data start.
 939	 */
 940	__le64 disk_bytenr;
 941	__le64 disk_num_bytes;
 942	/*
 943	 * the logical offset in file blocks (no csums)
 944	 * this extent record is for.  This allows a file extent to point
 945	 * into the middle of an existing extent on disk, sharing it
 946	 * between two snapshots (useful if some bytes in the middle of the
 947	 * extent have changed
 948	 */
 949	__le64 offset;
 950	/*
 951	 * the logical number of file blocks (no csums included).  This
 952	 * always reflects the size uncompressed and without encoding.
 953	 */
 954	__le64 num_bytes;
 955
 956} __attribute__ ((__packed__));
 957
 958struct btrfs_csum_item {
 959	u8 csum;
 960} __attribute__ ((__packed__));
 961
 962struct btrfs_dev_stats_item {
 963	/*
 964	 * grow this item struct at the end for future enhancements and keep
 965	 * the existing values unchanged
 966	 */
 967	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 968} __attribute__ ((__packed__));
 969
 970#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
 971#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
 972#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED	0
 973#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED		1
 974#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED		2
 975#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED		3
 976#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED		4
 977
 978struct btrfs_dev_replace {
 979	u64 replace_state;	/* see #define above */
 980	u64 time_started;	/* seconds since 1-Jan-1970 */
 981	u64 time_stopped;	/* seconds since 1-Jan-1970 */
 982	atomic64_t num_write_errors;
 983	atomic64_t num_uncorrectable_read_errors;
 984
 985	u64 cursor_left;
 986	u64 committed_cursor_left;
 987	u64 cursor_left_last_write_of_item;
 988	u64 cursor_right;
 989
 990	u64 cont_reading_from_srcdev_mode;	/* see #define above */
 991
 992	int is_valid;
 993	int item_needs_writeback;
 994	struct btrfs_device *srcdev;
 995	struct btrfs_device *tgtdev;
 996
 997	pid_t lock_owner;
 998	atomic_t nesting_level;
 999	struct mutex lock_finishing_cancel_unmount;
1000	rwlock_t lock;
1001	atomic_t read_locks;
1002	atomic_t blocking_readers;
1003	wait_queue_head_t read_lock_wq;
1004
1005	struct btrfs_scrub_progress scrub_progress;
1006};
1007
1008struct btrfs_dev_replace_item {
1009	/*
1010	 * grow this item struct at the end for future enhancements and keep
1011	 * the existing values unchanged
1012	 */
1013	__le64 src_devid;
1014	__le64 cursor_left;
1015	__le64 cursor_right;
1016	__le64 cont_reading_from_srcdev_mode;
1017
1018	__le64 replace_state;
1019	__le64 time_started;
1020	__le64 time_stopped;
1021	__le64 num_write_errors;
1022	__le64 num_uncorrectable_read_errors;
1023} __attribute__ ((__packed__));
1024
1025/* different types of block groups (and chunks) */
1026#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
1027#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
1028#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
1029#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
1030#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
1031#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
1032#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
1033#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
1034#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
1035#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1036					 BTRFS_SPACE_INFO_GLOBAL_RSV)
1037
1038enum btrfs_raid_types {
1039	BTRFS_RAID_RAID10,
1040	BTRFS_RAID_RAID1,
1041	BTRFS_RAID_DUP,
1042	BTRFS_RAID_RAID0,
1043	BTRFS_RAID_SINGLE,
1044	BTRFS_RAID_RAID5,
1045	BTRFS_RAID_RAID6,
1046	BTRFS_NR_RAID_TYPES
1047};
1048
1049#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
1050					 BTRFS_BLOCK_GROUP_SYSTEM |  \
1051					 BTRFS_BLOCK_GROUP_METADATA)
1052
1053#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
1054					 BTRFS_BLOCK_GROUP_RAID1 |   \
1055					 BTRFS_BLOCK_GROUP_RAID5 |   \
1056					 BTRFS_BLOCK_GROUP_RAID6 |   \
1057					 BTRFS_BLOCK_GROUP_DUP |     \
1058					 BTRFS_BLOCK_GROUP_RAID10)
1059#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
1060					 BTRFS_BLOCK_GROUP_RAID6)
1061
1062/*
1063 * We need a bit for restriper to be able to tell when chunks of type
1064 * SINGLE are available.  This "extended" profile format is used in
1065 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1066 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
1067 * to avoid remappings between two formats in future.
1068 */
1069#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
1070
1071/*
1072 * A fake block group type that is used to communicate global block reserve
1073 * size to userspace via the SPACE_INFO ioctl.
1074 */
1075#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
1076
1077#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1078					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1079
1080static inline u64 chunk_to_extended(u64 flags)
1081{
1082	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1083		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1084
1085	return flags;
1086}
1087static inline u64 extended_to_chunk(u64 flags)
1088{
1089	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1090}
1091
1092struct btrfs_block_group_item {
1093	__le64 used;
1094	__le64 chunk_objectid;
1095	__le64 flags;
1096} __attribute__ ((__packed__));
1097
1098struct btrfs_free_space_info {
1099	__le32 extent_count;
1100	__le32 flags;
1101} __attribute__ ((__packed__));
1102
1103#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1104
1105#define BTRFS_QGROUP_LEVEL_SHIFT		48
1106static inline u64 btrfs_qgroup_level(u64 qgroupid)
1107{
1108	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
1109}
1110
1111/*
1112 * is subvolume quota turned on?
1113 */
1114#define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
1115/*
1116 * RESCAN is set during the initialization phase
1117 */
1118#define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
1119/*
1120 * Some qgroup entries are known to be out of date,
1121 * either because the configuration has changed in a way that
1122 * makes a rescan necessary, or because the fs has been mounted
1123 * with a non-qgroup-aware version.
1124 * Turning qouta off and on again makes it inconsistent, too.
1125 */
1126#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
1127
1128#define BTRFS_QGROUP_STATUS_VERSION        1
1129
1130struct btrfs_qgroup_status_item {
1131	__le64 version;
1132	/*
1133	 * the generation is updated during every commit. As older
1134	 * versions of btrfs are not aware of qgroups, it will be
1135	 * possible to detect inconsistencies by checking the
1136	 * generation on mount time
1137	 */
1138	__le64 generation;
1139
1140	/* flag definitions see above */
1141	__le64 flags;
1142
1143	/*
1144	 * only used during scanning to record the progress
1145	 * of the scan. It contains a logical address
 
 
1146	 */
1147	__le64 rescan;
1148} __attribute__ ((__packed__));
1149
1150struct btrfs_qgroup_info_item {
1151	__le64 generation;
1152	__le64 rfer;
1153	__le64 rfer_cmpr;
1154	__le64 excl;
1155	__le64 excl_cmpr;
1156} __attribute__ ((__packed__));
1157
1158/* flags definition for qgroup limits */
1159#define BTRFS_QGROUP_LIMIT_MAX_RFER	(1ULL << 0)
1160#define BTRFS_QGROUP_LIMIT_MAX_EXCL	(1ULL << 1)
1161#define BTRFS_QGROUP_LIMIT_RSV_RFER	(1ULL << 2)
1162#define BTRFS_QGROUP_LIMIT_RSV_EXCL	(1ULL << 3)
1163#define BTRFS_QGROUP_LIMIT_RFER_CMPR	(1ULL << 4)
1164#define BTRFS_QGROUP_LIMIT_EXCL_CMPR	(1ULL << 5)
1165
1166struct btrfs_qgroup_limit_item {
1167	/*
1168	 * only updated when any of the other values change
1169	 */
1170	__le64 flags;
1171	__le64 max_rfer;
1172	__le64 max_excl;
1173	__le64 rsv_rfer;
1174	__le64 rsv_excl;
1175} __attribute__ ((__packed__));
1176
1177/* For raid type sysfs entries */
1178struct raid_kobject {
1179	int raid_type;
1180	struct kobject kobj;
1181};
1182
1183struct btrfs_space_info {
1184	spinlock_t lock;
1185
1186	u64 total_bytes;	/* total bytes in the space,
1187				   this doesn't take mirrors into account */
1188	u64 bytes_used;		/* total bytes used,
1189				   this doesn't take mirrors into account */
1190	u64 bytes_pinned;	/* total bytes pinned, will be freed when the
1191				   transaction finishes */
1192	u64 bytes_reserved;	/* total bytes the allocator has reserved for
1193				   current allocations */
1194	u64 bytes_may_use;	/* number of bytes that may be used for
1195				   delalloc/allocations */
1196	u64 bytes_readonly;	/* total bytes that are read only */
1197
1198	u64 max_extent_size;	/* This will hold the maximum extent size of
1199				   the space info if we had an ENOSPC in the
1200				   allocator. */
1201
1202	unsigned int full:1;	/* indicates that we cannot allocate any more
1203				   chunks for this space */
1204	unsigned int chunk_alloc:1;	/* set if we are allocating a chunk */
1205
1206	unsigned int flush:1;		/* set if we are trying to make space */
1207
1208	unsigned int force_alloc;	/* set if we need to force a chunk
1209					   alloc for this space */
1210
1211	u64 disk_used;		/* total bytes used on disk */
1212	u64 disk_total;		/* total bytes on disk, takes mirrors into
1213				   account */
1214
1215	u64 flags;
1216
1217	/*
1218	 * bytes_pinned is kept in line with what is actually pinned, as in
1219	 * we've called update_block_group and dropped the bytes_used counter
1220	 * and increased the bytes_pinned counter.  However this means that
1221	 * bytes_pinned does not reflect the bytes that will be pinned once the
1222	 * delayed refs are flushed, so this counter is inc'ed every time we
1223	 * call btrfs_free_extent so it is a realtime count of what will be
1224	 * freed once the transaction is committed.  It will be zero'ed every
1225	 * time the transaction commits.
1226	 */
1227	struct percpu_counter total_bytes_pinned;
1228
1229	struct list_head list;
1230	/* Protected by the spinlock 'lock'. */
1231	struct list_head ro_bgs;
1232
1233	struct rw_semaphore groups_sem;
1234	/* for block groups in our same type */
1235	struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1236	wait_queue_head_t wait;
1237
1238	struct kobject kobj;
1239	struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1240};
1241
1242#define	BTRFS_BLOCK_RSV_GLOBAL		1
1243#define	BTRFS_BLOCK_RSV_DELALLOC	2
1244#define	BTRFS_BLOCK_RSV_TRANS		3
1245#define	BTRFS_BLOCK_RSV_CHUNK		4
1246#define	BTRFS_BLOCK_RSV_DELOPS		5
1247#define	BTRFS_BLOCK_RSV_EMPTY		6
1248#define	BTRFS_BLOCK_RSV_TEMP		7
1249
1250struct btrfs_block_rsv {
1251	u64 size;
1252	u64 reserved;
1253	struct btrfs_space_info *space_info;
1254	spinlock_t lock;
1255	unsigned short full;
1256	unsigned short type;
1257	unsigned short failfast;
1258};
1259
1260/*
1261 * free clusters are used to claim free space in relatively large chunks,
1262 * allowing us to do less seeky writes.  They are used for all metadata
1263 * allocations and data allocations in ssd mode.
1264 */
1265struct btrfs_free_cluster {
1266	spinlock_t lock;
1267	spinlock_t refill_lock;
1268	struct rb_root root;
1269
1270	/* largest extent in this cluster */
1271	u64 max_size;
1272
1273	/* first extent starting offset */
1274	u64 window_start;
1275
1276	/* We did a full search and couldn't create a cluster */
1277	bool fragmented;
1278
1279	struct btrfs_block_group_cache *block_group;
1280	/*
1281	 * when a cluster is allocated from a block group, we put the
1282	 * cluster onto a list in the block group so that it can
1283	 * be freed before the block group is freed.
1284	 */
1285	struct list_head block_group_list;
1286};
1287
1288enum btrfs_caching_type {
1289	BTRFS_CACHE_NO		= 0,
1290	BTRFS_CACHE_STARTED	= 1,
1291	BTRFS_CACHE_FAST	= 2,
1292	BTRFS_CACHE_FINISHED	= 3,
1293	BTRFS_CACHE_ERROR	= 4,
1294};
1295
1296enum btrfs_disk_cache_state {
1297	BTRFS_DC_WRITTEN	= 0,
1298	BTRFS_DC_ERROR		= 1,
1299	BTRFS_DC_CLEAR		= 2,
1300	BTRFS_DC_SETUP		= 3,
1301};
1302
1303struct btrfs_caching_control {
1304	struct list_head list;
1305	struct mutex mutex;
1306	wait_queue_head_t wait;
1307	struct btrfs_work work;
1308	struct btrfs_block_group_cache *block_group;
1309	u64 progress;
1310	atomic_t count;
1311};
1312
1313/* Once caching_thread() finds this much free space, it will wake up waiters. */
1314#define CACHING_CTL_WAKE_UP (1024 * 1024 * 2)
1315
1316struct btrfs_io_ctl {
1317	void *cur, *orig;
1318	struct page *page;
1319	struct page **pages;
1320	struct btrfs_root *root;
1321	struct inode *inode;
1322	unsigned long size;
1323	int index;
1324	int num_pages;
1325	int entries;
1326	int bitmaps;
1327	unsigned check_crcs:1;
1328};
1329
1330struct btrfs_block_group_cache {
1331	struct btrfs_key key;
1332	struct btrfs_block_group_item item;
1333	struct btrfs_fs_info *fs_info;
1334	struct inode *inode;
1335	spinlock_t lock;
1336	u64 pinned;
1337	u64 reserved;
1338	u64 delalloc_bytes;
1339	u64 bytes_super;
1340	u64 flags;
1341	u64 cache_generation;
1342	u32 sectorsize;
1343
1344	/*
1345	 * If the free space extent count exceeds this number, convert the block
1346	 * group to bitmaps.
1347	 */
1348	u32 bitmap_high_thresh;
1349
1350	/*
1351	 * If the free space extent count drops below this number, convert the
1352	 * block group back to extents.
1353	 */
1354	u32 bitmap_low_thresh;
1355
1356	/*
1357	 * It is just used for the delayed data space allocation because
1358	 * only the data space allocation and the relative metadata update
1359	 * can be done cross the transaction.
1360	 */
1361	struct rw_semaphore data_rwsem;
1362
1363	/* for raid56, this is a full stripe, without parity */
1364	unsigned long full_stripe_len;
1365
1366	unsigned int ro;
1367	unsigned int iref:1;
1368	unsigned int has_caching_ctl:1;
1369	unsigned int removed:1;
1370
1371	int disk_cache_state;
1372
1373	/* cache tracking stuff */
1374	int cached;
1375	struct btrfs_caching_control *caching_ctl;
1376	u64 last_byte_to_unpin;
1377
1378	struct btrfs_space_info *space_info;
1379
1380	/* free space cache stuff */
1381	struct btrfs_free_space_ctl *free_space_ctl;
1382
1383	/* block group cache stuff */
1384	struct rb_node cache_node;
1385
1386	/* for block groups in the same raid type */
1387	struct list_head list;
1388
1389	/* usage count */
1390	atomic_t count;
1391
1392	/* List of struct btrfs_free_clusters for this block group.
1393	 * Today it will only have one thing on it, but that may change
1394	 */
1395	struct list_head cluster_list;
1396
1397	/* For delayed block group creation or deletion of empty block groups */
1398	struct list_head bg_list;
1399
1400	/* For read-only block groups */
1401	struct list_head ro_list;
1402
1403	atomic_t trimming;
1404
1405	/* For dirty block groups */
1406	struct list_head dirty_list;
1407	struct list_head io_list;
1408
1409	struct btrfs_io_ctl io_ctl;
1410
1411	/* Lock for free space tree operations. */
1412	struct mutex free_space_lock;
1413
1414	/*
1415	 * Does the block group need to be added to the free space tree?
1416	 * Protected by free_space_lock.
1417	 */
1418	int needs_free_space;
1419};
1420
1421/* delayed seq elem */
1422struct seq_list {
1423	struct list_head list;
1424	u64 seq;
1425};
1426
1427#define SEQ_LIST_INIT(name)	{ .list = LIST_HEAD_INIT((name).list), .seq = 0 }
1428
1429enum btrfs_orphan_cleanup_state {
1430	ORPHAN_CLEANUP_STARTED	= 1,
1431	ORPHAN_CLEANUP_DONE	= 2,
1432};
1433
1434/* used by the raid56 code to lock stripes for read/modify/write */
1435struct btrfs_stripe_hash {
1436	struct list_head hash_list;
1437	wait_queue_head_t wait;
1438	spinlock_t lock;
1439};
1440
1441/* used by the raid56 code to lock stripes for read/modify/write */
1442struct btrfs_stripe_hash_table {
1443	struct list_head stripe_cache;
1444	spinlock_t cache_lock;
1445	int cache_size;
1446	struct btrfs_stripe_hash table[];
1447};
1448
1449#define BTRFS_STRIPE_HASH_TABLE_BITS 11
1450
1451void btrfs_init_async_reclaim_work(struct work_struct *work);
1452
1453/* fs_info */
1454struct reloc_control;
1455struct btrfs_device;
1456struct btrfs_fs_devices;
1457struct btrfs_balance_control;
1458struct btrfs_delayed_root;
1459struct btrfs_fs_info {
1460	u8 fsid[BTRFS_FSID_SIZE];
1461	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1462	struct btrfs_root *extent_root;
1463	struct btrfs_root *tree_root;
1464	struct btrfs_root *chunk_root;
1465	struct btrfs_root *dev_root;
1466	struct btrfs_root *fs_root;
1467	struct btrfs_root *csum_root;
1468	struct btrfs_root *quota_root;
1469	struct btrfs_root *uuid_root;
1470	struct btrfs_root *free_space_root;
1471
1472	/* the log root tree is a directory of all the other log roots */
1473	struct btrfs_root *log_root_tree;
1474
1475	spinlock_t fs_roots_radix_lock;
1476	struct radix_tree_root fs_roots_radix;
1477
1478	/* block group cache stuff */
1479	spinlock_t block_group_cache_lock;
1480	u64 first_logical_byte;
1481	struct rb_root block_group_cache_tree;
1482
1483	/* keep track of unallocated space */
1484	spinlock_t free_chunk_lock;
1485	u64 free_chunk_space;
1486
1487	struct extent_io_tree freed_extents[2];
1488	struct extent_io_tree *pinned_extents;
1489
1490	/* logical->physical extent mapping */
1491	struct btrfs_mapping_tree mapping_tree;
1492
1493	/*
1494	 * block reservation for extent, checksum, root tree and
1495	 * delayed dir index item
1496	 */
1497	struct btrfs_block_rsv global_block_rsv;
1498	/* block reservation for delay allocation */
1499	struct btrfs_block_rsv delalloc_block_rsv;
1500	/* block reservation for metadata operations */
1501	struct btrfs_block_rsv trans_block_rsv;
1502	/* block reservation for chunk tree */
1503	struct btrfs_block_rsv chunk_block_rsv;
1504	/* block reservation for delayed operations */
1505	struct btrfs_block_rsv delayed_block_rsv;
1506
1507	struct btrfs_block_rsv empty_block_rsv;
1508
1509	u64 generation;
1510	u64 last_trans_committed;
1511	u64 avg_delayed_ref_runtime;
1512
1513	/*
1514	 * this is updated to the current trans every time a full commit
1515	 * is required instead of the faster short fsync log commits
1516	 */
1517	u64 last_trans_log_full_commit;
1518	unsigned long mount_opt;
1519	/*
1520	 * Track requests for actions that need to be done during transaction
1521	 * commit (like for some mount options).
1522	 */
1523	unsigned long pending_changes;
1524	unsigned long compress_type:4;
1525	int commit_interval;
1526	/*
1527	 * It is a suggestive number, the read side is safe even it gets a
1528	 * wrong number because we will write out the data into a regular
1529	 * extent. The write side(mount/remount) is under ->s_umount lock,
1530	 * so it is also safe.
1531	 */
1532	u64 max_inline;
1533	/*
1534	 * Protected by ->chunk_mutex and sb->s_umount.
 
 
1535	 *
1536	 * The reason that we use two lock to protect it is because only
1537	 * remount and mount operations can change it and these two operations
1538	 * are under sb->s_umount, but the read side (chunk allocation) can not
1539	 * acquire sb->s_umount or the deadlock would happen. So we use two
1540	 * locks to protect it. On the write side, we must acquire two locks,
1541	 * and on the read side, we just need acquire one of them.
1542	 */
1543	u64 alloc_start;
1544	struct btrfs_transaction *running_transaction;
1545	wait_queue_head_t transaction_throttle;
1546	wait_queue_head_t transaction_wait;
1547	wait_queue_head_t transaction_blocked_wait;
1548	wait_queue_head_t async_submit_wait;
1549
1550	/*
1551	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1552	 * when they are updated.
1553	 *
1554	 * Because we do not clear the flags for ever, so we needn't use
1555	 * the lock on the read side.
 
 
1556	 *
1557	 * We also needn't use the lock when we mount the fs, because
1558	 * there is no other task which will update the flag.
1559	 */
1560	spinlock_t super_lock;
1561	struct btrfs_super_block *super_copy;
1562	struct btrfs_super_block *super_for_commit;
1563	struct block_device *__bdev;
1564	struct super_block *sb;
1565	struct inode *btree_inode;
1566	struct backing_dev_info bdi;
1567	struct mutex tree_log_mutex;
1568	struct mutex transaction_kthread_mutex;
1569	struct mutex cleaner_mutex;
1570	struct mutex chunk_mutex;
1571	struct mutex volume_mutex;
1572
1573	/*
1574	 * this is taken to make sure we don't set block groups ro after
1575	 * the free space cache has been allocated on them
1576	 */
1577	struct mutex ro_block_group_mutex;
1578
1579	/* this is used during read/modify/write to make sure
1580	 * no two ios are trying to mod the same stripe at the same
1581	 * time
1582	 */
1583	struct btrfs_stripe_hash_table *stripe_hash_table;
1584
1585	/*
1586	 * this protects the ordered operations list only while we are
1587	 * processing all of the entries on it.  This way we make
1588	 * sure the commit code doesn't find the list temporarily empty
1589	 * because another function happens to be doing non-waiting preflush
1590	 * before jumping into the main commit.
1591	 */
1592	struct mutex ordered_operations_mutex;
1593
1594	struct rw_semaphore commit_root_sem;
1595
1596	struct rw_semaphore cleanup_work_sem;
1597
1598	struct rw_semaphore subvol_sem;
1599	struct srcu_struct subvol_srcu;
1600
1601	spinlock_t trans_lock;
1602	/*
1603	 * the reloc mutex goes with the trans lock, it is taken
1604	 * during commit to protect us from the relocation code
1605	 */
1606	struct mutex reloc_mutex;
1607
1608	struct list_head trans_list;
1609	struct list_head dead_roots;
1610	struct list_head caching_block_groups;
1611
1612	spinlock_t delayed_iput_lock;
1613	struct list_head delayed_iputs;
1614	struct mutex cleaner_delayed_iput_mutex;
1615
1616	/* this protects tree_mod_seq_list */
1617	spinlock_t tree_mod_seq_lock;
1618	atomic64_t tree_mod_seq;
1619	struct list_head tree_mod_seq_list;
1620
1621	/* this protects tree_mod_log */
1622	rwlock_t tree_mod_log_lock;
1623	struct rb_root tree_mod_log;
1624
1625	atomic_t nr_async_submits;
1626	atomic_t async_submit_draining;
1627	atomic_t nr_async_bios;
1628	atomic_t async_delalloc_pages;
1629	atomic_t open_ioctl_trans;
1630
1631	/*
1632	 * this is used to protect the following list -- ordered_roots.
1633	 */
1634	spinlock_t ordered_root_lock;
1635
1636	/*
1637	 * all fs/file tree roots in which there are data=ordered extents
1638	 * pending writeback are added into this list.
1639	 *
1640	 * these can span multiple transactions and basically include
1641	 * every dirty data page that isn't from nodatacow
1642	 */
1643	struct list_head ordered_roots;
1644
1645	struct mutex delalloc_root_mutex;
1646	spinlock_t delalloc_root_lock;
1647	/* all fs/file tree roots that have delalloc inodes. */
1648	struct list_head delalloc_roots;
 
 
 
 
 
1649
1650	/*
1651	 * there is a pool of worker threads for checksumming during writes
1652	 * and a pool for checksumming after reads.  This is because readers
1653	 * can run with FS locks held, and the writers may be waiting for
1654	 * those locks.  We don't want ordering in the pending list to cause
1655	 * deadlocks, and so the two are serviced separately.
1656	 *
1657	 * A third pool does submit_bio to avoid deadlocking with the other
1658	 * two
1659	 */
1660	struct btrfs_workqueue *workers;
1661	struct btrfs_workqueue *delalloc_workers;
1662	struct btrfs_workqueue *flush_workers;
1663	struct btrfs_workqueue *endio_workers;
1664	struct btrfs_workqueue *endio_meta_workers;
1665	struct btrfs_workqueue *endio_raid56_workers;
1666	struct btrfs_workqueue *endio_repair_workers;
1667	struct btrfs_workqueue *rmw_workers;
1668	struct btrfs_workqueue *endio_meta_write_workers;
1669	struct btrfs_workqueue *endio_write_workers;
1670	struct btrfs_workqueue *endio_freespace_worker;
1671	struct btrfs_workqueue *submit_workers;
1672	struct btrfs_workqueue *caching_workers;
1673	struct btrfs_workqueue *readahead_workers;
1674
1675	/*
1676	 * fixup workers take dirty pages that didn't properly go through
1677	 * the cow mechanism and make them safe to write.  It happens
1678	 * for the sys_munmap function call path
1679	 */
1680	struct btrfs_workqueue *fixup_workers;
1681	struct btrfs_workqueue *delayed_workers;
1682
1683	/* the extent workers do delayed refs on the extent allocation tree */
1684	struct btrfs_workqueue *extent_workers;
1685	struct task_struct *transaction_kthread;
1686	struct task_struct *cleaner_kthread;
1687	int thread_pool_size;
1688
1689	struct kobject *space_info_kobj;
1690	int do_barriers;
1691	int closing;
1692	int log_root_recovering;
1693	int open;
1694
1695	u64 total_pinned;
1696
1697	/* used to keep from writing metadata until there is a nice batch */
1698	struct percpu_counter dirty_metadata_bytes;
1699	struct percpu_counter delalloc_bytes;
1700	s32 dirty_metadata_batch;
1701	s32 delalloc_batch;
1702
1703	struct list_head dirty_cowonly_roots;
1704
1705	struct btrfs_fs_devices *fs_devices;
1706
1707	/*
1708	 * the space_info list is almost entirely read only.  It only changes
1709	 * when we add a new raid type to the FS, and that happens
1710	 * very rarely.  RCU is used to protect it.
1711	 */
1712	struct list_head space_info;
1713
1714	struct btrfs_space_info *data_sinfo;
1715
1716	struct reloc_control *reloc_ctl;
1717
1718	/* data_alloc_cluster is only used in ssd mode */
1719	struct btrfs_free_cluster data_alloc_cluster;
1720
1721	/* all metadata allocations go through this cluster */
1722	struct btrfs_free_cluster meta_alloc_cluster;
1723
1724	/* auto defrag inodes go here */
1725	spinlock_t defrag_inodes_lock;
1726	struct rb_root defrag_inodes;
1727	atomic_t defrag_running;
1728
1729	/* Used to protect avail_{data, metadata, system}_alloc_bits */
1730	seqlock_t profiles_lock;
1731	/*
1732	 * these three are in extended format (availability of single
1733	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1734	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1735	 */
1736	u64 avail_data_alloc_bits;
1737	u64 avail_metadata_alloc_bits;
1738	u64 avail_system_alloc_bits;
1739
1740	/* restriper state */
1741	spinlock_t balance_lock;
1742	struct mutex balance_mutex;
1743	atomic_t balance_running;
1744	atomic_t balance_pause_req;
1745	atomic_t balance_cancel_req;
1746	struct btrfs_balance_control *balance_ctl;
1747	wait_queue_head_t balance_wait_q;
1748
1749	unsigned data_chunk_allocations;
1750	unsigned metadata_ratio;
1751
1752	void *bdev_holder;
1753
1754	/* private scrub information */
1755	struct mutex scrub_lock;
1756	atomic_t scrubs_running;
1757	atomic_t scrub_pause_req;
1758	atomic_t scrubs_paused;
1759	atomic_t scrub_cancel_req;
1760	wait_queue_head_t scrub_pause_wait;
1761	int scrub_workers_refcnt;
1762	struct btrfs_workqueue *scrub_workers;
1763	struct btrfs_workqueue *scrub_wr_completion_workers;
1764	struct btrfs_workqueue *scrub_nocow_workers;
1765	struct btrfs_workqueue *scrub_parity_workers;
1766
1767#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1768	u32 check_integrity_print_mask;
1769#endif
1770	/*
1771	 * quota information
1772	 */
1773	unsigned int quota_enabled:1;
1774
1775	/*
1776	 * quota_enabled only changes state after a commit. This holds the
1777	 * next state.
1778	 */
1779	unsigned int pending_quota_state:1;
1780
1781	/* is qgroup tracking in a consistent state? */
1782	u64 qgroup_flags;
1783
1784	/* holds configuration and tracking. Protected by qgroup_lock */
1785	struct rb_root qgroup_tree;
1786	struct rb_root qgroup_op_tree;
1787	spinlock_t qgroup_lock;
1788	spinlock_t qgroup_op_lock;
1789	atomic_t qgroup_op_seq;
1790
1791	/*
1792	 * used to avoid frequently calling ulist_alloc()/ulist_free()
1793	 * when doing qgroup accounting, it must be protected by qgroup_lock.
1794	 */
1795	struct ulist *qgroup_ulist;
1796
1797	/* protect user change for quota operations */
1798	struct mutex qgroup_ioctl_lock;
1799
1800	/* list of dirty qgroups to be written at next commit */
1801	struct list_head dirty_qgroups;
1802
1803	/* used by qgroup for an efficient tree traversal */
1804	u64 qgroup_seq;
1805
1806	/* qgroup rescan items */
1807	struct mutex qgroup_rescan_lock; /* protects the progress item */
1808	struct btrfs_key qgroup_rescan_progress;
1809	struct btrfs_workqueue *qgroup_rescan_workers;
1810	struct completion qgroup_rescan_completion;
1811	struct btrfs_work qgroup_rescan_work;
1812
1813	/* filesystem state */
1814	unsigned long fs_state;
1815
1816	struct btrfs_delayed_root *delayed_root;
1817
1818	/* readahead tree */
1819	spinlock_t reada_lock;
1820	struct radix_tree_root reada_tree;
1821
1822	/* readahead works cnt */
1823	atomic_t reada_works_cnt;
1824
1825	/* Extent buffer radix tree */
1826	spinlock_t buffer_lock;
1827	struct radix_tree_root buffer_radix;
1828
1829	/* next backup root to be overwritten */
1830	int backup_root_index;
1831
1832	int num_tolerated_disk_barrier_failures;
1833
1834	/* device replace state */
1835	struct btrfs_dev_replace dev_replace;
1836
1837	atomic_t mutually_exclusive_operation_running;
1838
1839	struct percpu_counter bio_counter;
1840	wait_queue_head_t replace_wait;
1841
1842	struct semaphore uuid_tree_rescan_sem;
1843	unsigned int update_uuid_tree_gen:1;
1844
1845	/* Used to reclaim the metadata space in the background. */
1846	struct work_struct async_reclaim_work;
1847
1848	spinlock_t unused_bgs_lock;
1849	struct list_head unused_bgs;
1850	struct mutex unused_bg_unpin_mutex;
1851	struct mutex delete_unused_bgs_mutex;
1852
1853	/* For btrfs to record security options */
1854	struct security_mnt_opts security_opts;
1855
1856	/*
1857	 * Chunks that can't be freed yet (under a trim/discard operation)
1858	 * and will be latter freed. Protected by fs_info->chunk_mutex.
1859	 */
1860	struct list_head pinned_chunks;
1861
1862	int creating_free_space_tree;
1863};
1864
1865struct btrfs_subvolume_writers {
1866	struct percpu_counter	counter;
1867	wait_queue_head_t	wait;
1868};
1869
1870/*
1871 * The state of btrfs root
 
1872 */
1873/*
1874 * btrfs_record_root_in_trans is a multi-step process,
1875 * and it can race with the balancing code.   But the
1876 * race is very small, and only the first time the root
1877 * is added to each transaction.  So IN_TRANS_SETUP
1878 * is used to tell us when more checks are required
1879 */
1880#define BTRFS_ROOT_IN_TRANS_SETUP	0
1881#define BTRFS_ROOT_REF_COWS		1
1882#define BTRFS_ROOT_TRACK_DIRTY		2
1883#define BTRFS_ROOT_IN_RADIX		3
1884#define BTRFS_ROOT_DUMMY_ROOT		4
1885#define BTRFS_ROOT_ORPHAN_ITEM_INSERTED	5
1886#define BTRFS_ROOT_DEFRAG_RUNNING	6
1887#define BTRFS_ROOT_FORCE_COW		7
1888#define BTRFS_ROOT_MULTI_LOG_TASKS	8
1889#define BTRFS_ROOT_DIRTY		9
1890
1891/*
1892 * in ram representation of the tree.  extent_root is used for all allocations
1893 * and for the extent tree extent_root root.
1894 */
1895struct btrfs_root {
 
 
1896	struct extent_buffer *node;
1897
1898	struct extent_buffer *commit_root;
1899	struct btrfs_root *log_root;
1900	struct btrfs_root *reloc_root;
1901
1902	unsigned long state;
1903	struct btrfs_root_item root_item;
1904	struct btrfs_key root_key;
1905	struct btrfs_fs_info *fs_info;
1906	struct extent_io_tree dirty_log_pages;
1907
1908	struct mutex objectid_mutex;
1909
1910	spinlock_t accounting_lock;
1911	struct btrfs_block_rsv *block_rsv;
1912
1913	/* free ino cache stuff */
1914	struct btrfs_free_space_ctl *free_ino_ctl;
1915	enum btrfs_caching_type ino_cache_state;
1916	spinlock_t ino_cache_lock;
1917	wait_queue_head_t ino_cache_wait;
1918	struct btrfs_free_space_ctl *free_ino_pinned;
1919	u64 ino_cache_progress;
1920	struct inode *ino_cache_inode;
1921
1922	struct mutex log_mutex;
1923	wait_queue_head_t log_writer_wait;
1924	wait_queue_head_t log_commit_wait[2];
1925	struct list_head log_ctxs[2];
 
1926	atomic_t log_writers;
1927	atomic_t log_commit[2];
 
1928	atomic_t log_batch;
 
 
 
 
 
 
 
 
1929	int log_transid;
1930	/* No matter the commit succeeds or not*/
1931	int log_transid_committed;
1932	/* Just be updated when the commit succeeds. */
 
 
 
 
1933	int last_log_commit;
1934	pid_t log_start_pid;
1935
1936	u64 objectid;
1937	u64 last_trans;
1938
1939	/* data allocations are done in sectorsize units */
1940	u32 sectorsize;
1941
1942	/* node allocations are done in nodesize units */
1943	u32 nodesize;
1944
1945	u32 stripesize;
1946
1947	u32 type;
1948
1949	u64 highest_objectid;
1950
1951	/* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1952	u64 alloc_bytenr;
1953
1954	u64 defrag_trans_start;
1955	struct btrfs_key defrag_progress;
1956	struct btrfs_key defrag_max;
1957	char *name;
1958
1959	/* the dirty list is only used by non-reference counted roots */
1960	struct list_head dirty_list;
1961
1962	struct list_head root_list;
1963
1964	spinlock_t log_extents_lock[2];
1965	struct list_head logged_list[2];
1966
1967	spinlock_t orphan_lock;
1968	atomic_t orphan_inodes;
1969	struct btrfs_block_rsv *orphan_block_rsv;
1970	int orphan_cleanup_state;
1971
1972	spinlock_t inode_lock;
1973	/* red-black tree that keeps track of in-memory inodes */
1974	struct rb_root inode_tree;
1975
1976	/*
1977	 * radix tree that keeps track of delayed nodes of every inode,
1978	 * protected by inode_lock
1979	 */
1980	struct radix_tree_root delayed_nodes_tree;
1981	/*
1982	 * right now this just gets used so that a root has its own devid
1983	 * for stat.  It may be used for more later
1984	 */
1985	dev_t anon_dev;
1986
1987	spinlock_t root_item_lock;
1988	atomic_t refs;
1989
1990	struct mutex delalloc_mutex;
1991	spinlock_t delalloc_lock;
1992	/*
1993	 * all of the inodes that have delalloc bytes.  It is possible for
1994	 * this list to be empty even when there is still dirty data=ordered
1995	 * extents waiting to finish IO.
1996	 */
1997	struct list_head delalloc_inodes;
1998	struct list_head delalloc_root;
1999	u64 nr_delalloc_inodes;
2000
2001	struct mutex ordered_extent_mutex;
2002	/*
2003	 * this is used by the balancing code to wait for all the pending
2004	 * ordered extents
2005	 */
2006	spinlock_t ordered_extent_lock;
2007
2008	/*
2009	 * all of the data=ordered extents pending writeback
2010	 * these can span multiple transactions and basically include
2011	 * every dirty data page that isn't from nodatacow
2012	 */
2013	struct list_head ordered_extents;
2014	struct list_head ordered_root;
2015	u64 nr_ordered_extents;
2016
2017	/*
 
 
 
 
 
 
 
 
2018	 * Number of currently running SEND ioctls to prevent
2019	 * manipulation with the read-only status via SUBVOL_SETFLAGS
2020	 */
2021	int send_in_progress;
2022	struct btrfs_subvolume_writers *subv_writers;
2023	atomic_t will_be_snapshoted;
2024
2025	/* For qgroup metadata space reserve */
2026	atomic_t qgroup_meta_rsv;
2027};
2028
2029struct btrfs_ioctl_defrag_range_args {
2030	/* start of the defrag operation */
2031	__u64 start;
2032
2033	/* number of bytes to defrag, use (u64)-1 to say all */
2034	__u64 len;
2035
2036	/*
2037	 * flags for the operation, which can include turning
2038	 * on compression for this one defrag
2039	 */
2040	__u64 flags;
2041
2042	/*
2043	 * any extent bigger than this will be considered
2044	 * already defragged.  Use 0 to take the kernel default
2045	 * Use 1 to say every single extent must be rewritten
2046	 */
2047	__u32 extent_thresh;
 
 
2048
2049	/*
2050	 * which compression method to use if turning on compression
2051	 * for this defrag operation.  If unspecified, zlib will
2052	 * be used
2053	 */
2054	__u32 compress_type;
2055
2056	/* spare for later */
2057	__u32 unused[4];
2058};
 
 
2059
 
 
2060
2061/*
2062 * inode items have the data typically returned from stat and store other
2063 * info about object characteristics.  There is one for every file and dir in
2064 * the FS
2065 */
2066#define BTRFS_INODE_ITEM_KEY		1
2067#define BTRFS_INODE_REF_KEY		12
2068#define BTRFS_INODE_EXTREF_KEY		13
2069#define BTRFS_XATTR_ITEM_KEY		24
2070#define BTRFS_ORPHAN_ITEM_KEY		48
2071/* reserve 2-15 close to the inode for later flexibility */
2072
2073/*
2074 * dir items are the name -> inode pointers in a directory.  There is one
2075 * for every name in a directory.
2076 */
2077#define BTRFS_DIR_LOG_ITEM_KEY  60
2078#define BTRFS_DIR_LOG_INDEX_KEY 72
2079#define BTRFS_DIR_ITEM_KEY	84
2080#define BTRFS_DIR_INDEX_KEY	96
2081/*
2082 * extent data is for file data
2083 */
2084#define BTRFS_EXTENT_DATA_KEY	108
2085
2086/*
2087 * extent csums are stored in a separate tree and hold csums for
2088 * an entire extent on disk.
2089 */
2090#define BTRFS_EXTENT_CSUM_KEY	128
2091
2092/*
2093 * root items point to tree roots.  They are typically in the root
2094 * tree used by the super block to find all the other trees
2095 */
2096#define BTRFS_ROOT_ITEM_KEY	132
2097
2098/*
2099 * root backrefs tie subvols and snapshots to the directory entries that
2100 * reference them
2101 */
2102#define BTRFS_ROOT_BACKREF_KEY	144
2103
2104/*
2105 * root refs make a fast index for listing all of the snapshots and
2106 * subvolumes referenced by a given root.  They point directly to the
2107 * directory item in the root that references the subvol
2108 */
2109#define BTRFS_ROOT_REF_KEY	156
2110
2111/*
2112 * extent items are in the extent map tree.  These record which blocks
2113 * are used, and how many references there are to each block
2114 */
2115#define BTRFS_EXTENT_ITEM_KEY	168
2116
2117/*
2118 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
2119 * the length, so we save the level in key->offset instead of the length.
2120 */
2121#define BTRFS_METADATA_ITEM_KEY	169
2122
2123#define BTRFS_TREE_BLOCK_REF_KEY	176
2124
2125#define BTRFS_EXTENT_DATA_REF_KEY	178
2126
2127#define BTRFS_EXTENT_REF_V0_KEY		180
2128
2129#define BTRFS_SHARED_BLOCK_REF_KEY	182
2130
2131#define BTRFS_SHARED_DATA_REF_KEY	184
2132
2133/*
2134 * block groups give us hints into the extent allocation trees.  Which
2135 * blocks are free etc etc
2136 */
2137#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
2138
2139/*
2140 * Every block group is represented in the free space tree by a free space info
2141 * item, which stores some accounting information. It is keyed on
2142 * (block_group_start, FREE_SPACE_INFO, block_group_length).
2143 */
2144#define BTRFS_FREE_SPACE_INFO_KEY 198
2145
2146/*
2147 * A free space extent tracks an extent of space that is free in a block group.
2148 * It is keyed on (start, FREE_SPACE_EXTENT, length).
2149 */
2150#define BTRFS_FREE_SPACE_EXTENT_KEY 199
2151
2152/*
2153 * When a block group becomes very fragmented, we convert it to use bitmaps
2154 * instead of extents. A free space bitmap is keyed on
2155 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
2156 * (length / sectorsize) bits.
2157 */
2158#define BTRFS_FREE_SPACE_BITMAP_KEY 200
2159
2160#define BTRFS_DEV_EXTENT_KEY	204
2161#define BTRFS_DEV_ITEM_KEY	216
2162#define BTRFS_CHUNK_ITEM_KEY	228
2163
2164/*
2165 * Records the overall state of the qgroups.
2166 * There's only one instance of this key present,
2167 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2168 */
2169#define BTRFS_QGROUP_STATUS_KEY         240
2170/*
2171 * Records the currently used space of the qgroup.
2172 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2173 */
2174#define BTRFS_QGROUP_INFO_KEY           242
2175/*
2176 * Contains the user configured limits for the qgroup.
2177 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2178 */
2179#define BTRFS_QGROUP_LIMIT_KEY          244
2180/*
2181 * Records the child-parent relationship of qgroups. For
2182 * each relation, 2 keys are present:
2183 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2184 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2185 */
2186#define BTRFS_QGROUP_RELATION_KEY       246
2187
2188/*
2189 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
2190 */
2191#define BTRFS_BALANCE_ITEM_KEY	248
2192
2193/*
2194 * The key type for tree items that are stored persistently, but do not need to
2195 * exist for extended period of time. The items can exist in any tree.
2196 *
2197 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
2198 *
2199 * Existing items:
2200 *
2201 * - balance status item
2202 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
2203 */
2204#define BTRFS_TEMPORARY_ITEM_KEY	248
2205
2206/*
2207 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
2208 */
2209#define BTRFS_DEV_STATS_KEY		249
2210
2211/*
2212 * The key type for tree items that are stored persistently and usually exist
2213 * for a long period, eg. filesystem lifetime. The item kinds can be status
2214 * information, stats or preference values. The item can exist in any tree.
2215 *
2216 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
2217 *
2218 * Existing items:
2219 *
2220 * - device statistics, store IO stats in the device tree, one key for all
2221 *   stats
2222 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
2223 */
2224#define BTRFS_PERSISTENT_ITEM_KEY	249
2225
2226/*
2227 * Persistantly stores the device replace state in the device tree.
2228 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2229 */
2230#define BTRFS_DEV_REPLACE_KEY	250
2231
2232/*
2233 * Stores items that allow to quickly map UUIDs to something else.
2234 * These items are part of the filesystem UUID tree.
2235 * The key is built like this:
2236 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2237 */
2238#if BTRFS_UUID_SIZE != 16
2239#error "UUID items require BTRFS_UUID_SIZE == 16!"
2240#endif
2241#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
2242#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
2243						 * received subvols */
2244
2245/*
2246 * string items are for debugging.  They just store a short string of
2247 * data in the FS
2248 */
2249#define BTRFS_STRING_ITEM_KEY	253
2250
2251/*
2252 * Flags for mount options.
2253 *
2254 * Note: don't forget to add new options to btrfs_show_options()
2255 */
2256#define BTRFS_MOUNT_NODATASUM		(1 << 0)
2257#define BTRFS_MOUNT_NODATACOW		(1 << 1)
2258#define BTRFS_MOUNT_NOBARRIER		(1 << 2)
2259#define BTRFS_MOUNT_SSD			(1 << 3)
2260#define BTRFS_MOUNT_DEGRADED		(1 << 4)
2261#define BTRFS_MOUNT_COMPRESS		(1 << 5)
2262#define BTRFS_MOUNT_NOTREELOG           (1 << 6)
2263#define BTRFS_MOUNT_FLUSHONCOMMIT       (1 << 7)
2264#define BTRFS_MOUNT_SSD_SPREAD		(1 << 8)
2265#define BTRFS_MOUNT_NOSSD		(1 << 9)
2266#define BTRFS_MOUNT_DISCARD		(1 << 10)
2267#define BTRFS_MOUNT_FORCE_COMPRESS      (1 << 11)
2268#define BTRFS_MOUNT_SPACE_CACHE		(1 << 12)
2269#define BTRFS_MOUNT_CLEAR_CACHE		(1 << 13)
2270#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2271#define BTRFS_MOUNT_ENOSPC_DEBUG	 (1 << 15)
2272#define BTRFS_MOUNT_AUTO_DEFRAG		(1 << 16)
2273#define BTRFS_MOUNT_INODE_MAP_CACHE	(1 << 17)
2274#define BTRFS_MOUNT_USEBACKUPROOT	(1 << 18)
2275#define BTRFS_MOUNT_SKIP_BALANCE	(1 << 19)
2276#define BTRFS_MOUNT_CHECK_INTEGRITY	(1 << 20)
2277#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2278#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	(1 << 22)
2279#define BTRFS_MOUNT_RESCAN_UUID_TREE	(1 << 23)
2280#define BTRFS_MOUNT_FRAGMENT_DATA	(1 << 24)
2281#define BTRFS_MOUNT_FRAGMENT_METADATA	(1 << 25)
2282#define BTRFS_MOUNT_FREE_SPACE_TREE	(1 << 26)
2283#define BTRFS_MOUNT_NOLOGREPLAY		(1 << 27)
2284
2285#define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
2286#define BTRFS_DEFAULT_MAX_INLINE	(2048)
2287
2288#define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
2289#define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
2290#define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
2291#define btrfs_test_opt(root, opt)	((root)->fs_info->mount_opt & \
2292					 BTRFS_MOUNT_##opt)
2293
2294#define btrfs_set_and_info(root, opt, fmt, args...)			\
2295{									\
2296	if (!btrfs_test_opt(root, opt))					\
2297		btrfs_info(root->fs_info, fmt, ##args);			\
2298	btrfs_set_opt(root->fs_info->mount_opt, opt);			\
2299}
2300
2301#define btrfs_clear_and_info(root, opt, fmt, args...)			\
2302{									\
2303	if (btrfs_test_opt(root, opt))					\
2304		btrfs_info(root->fs_info, fmt, ##args);			\
2305	btrfs_clear_opt(root->fs_info->mount_opt, opt);			\
2306}
2307
2308#ifdef CONFIG_BTRFS_DEBUG
2309static inline int
2310btrfs_should_fragment_free_space(struct btrfs_root *root,
2311				 struct btrfs_block_group_cache *block_group)
2312{
2313	return (btrfs_test_opt(root, FRAGMENT_METADATA) &&
2314		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
2315	       (btrfs_test_opt(root, FRAGMENT_DATA) &&
2316		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
2317}
2318#endif
2319
2320/*
2321 * Requests for changes that need to be done during transaction commit.
2322 *
2323 * Internal mount options that are used for special handling of the real
2324 * mount options (eg. cannot be set during remount and have to be set during
2325 * transaction commit)
2326 */
2327
2328#define BTRFS_PENDING_SET_INODE_MAP_CACHE	(0)
2329#define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE	(1)
2330#define BTRFS_PENDING_COMMIT			(2)
2331
2332#define btrfs_test_pending(info, opt)	\
2333	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2334#define btrfs_set_pending(info, opt)	\
2335	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2336#define btrfs_clear_pending(info, opt)	\
2337	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2338
2339/*
2340 * Helpers for setting pending mount option changes.
2341 *
2342 * Expects corresponding macros
2343 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
2344 */
2345#define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
2346do {                                                                   \
2347       if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
2348               btrfs_info((info), fmt, ##args);                        \
2349               btrfs_set_pending((info), SET_##opt);                   \
2350               btrfs_clear_pending((info), CLEAR_##opt);               \
2351       }                                                               \
2352} while(0)
2353
2354#define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
2355do {                                                                   \
2356       if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
2357               btrfs_info((info), fmt, ##args);                        \
2358               btrfs_set_pending((info), CLEAR_##opt);                 \
2359               btrfs_clear_pending((info), SET_##opt);                 \
2360       }                                                               \
2361} while(0)
2362
2363/*
2364 * Inode flags
2365 */
2366#define BTRFS_INODE_NODATASUM		(1 << 0)
2367#define BTRFS_INODE_NODATACOW		(1 << 1)
2368#define BTRFS_INODE_READONLY		(1 << 2)
2369#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
2370#define BTRFS_INODE_PREALLOC		(1 << 4)
2371#define BTRFS_INODE_SYNC		(1 << 5)
2372#define BTRFS_INODE_IMMUTABLE		(1 << 6)
2373#define BTRFS_INODE_APPEND		(1 << 7)
2374#define BTRFS_INODE_NODUMP		(1 << 8)
2375#define BTRFS_INODE_NOATIME		(1 << 9)
2376#define BTRFS_INODE_DIRSYNC		(1 << 10)
2377#define BTRFS_INODE_COMPRESS		(1 << 11)
2378
2379#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
2380
2381struct btrfs_map_token {
2382	struct extent_buffer *eb;
2383	char *kaddr;
2384	unsigned long offset;
2385};
2386
2387#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
2388				((bytes) >> (fs_info)->sb->s_blocksize_bits)
2389
2390static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2391{
2392	token->kaddr = NULL;
2393}
2394
2395/* some macros to generate set/get funcs for the struct fields.  This
2396 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2397 * one for u8:
2398 */
2399#define le8_to_cpu(v) (v)
2400#define cpu_to_le8(v) (v)
2401#define __le8 u8
2402
2403#define read_eb_member(eb, ptr, type, member, result) (			\
2404	read_extent_buffer(eb, (char *)(result),			\
2405			   ((unsigned long)(ptr)) +			\
2406			    offsetof(type, member),			\
2407			   sizeof(((type *)0)->member)))
2408
2409#define write_eb_member(eb, ptr, type, member, result) (		\
2410	write_extent_buffer(eb, (char *)(result),			\
2411			   ((unsigned long)(ptr)) +			\
2412			    offsetof(type, member),			\
2413			   sizeof(((type *)0)->member)))
2414
2415#define DECLARE_BTRFS_SETGET_BITS(bits)					\
2416u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr,	\
2417			       unsigned long off,			\
2418                              struct btrfs_map_token *token);		\
2419void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr,	\
2420			    unsigned long off, u##bits val,		\
2421			    struct btrfs_map_token *token);		\
2422static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2423				       unsigned long off)		\
2424{									\
2425	return btrfs_get_token_##bits(eb, ptr, off, NULL);		\
2426}									\
2427static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2428				    unsigned long off, u##bits val)	\
2429{									\
2430       btrfs_set_token_##bits(eb, ptr, off, val, NULL);			\
2431}
2432
2433DECLARE_BTRFS_SETGET_BITS(8)
2434DECLARE_BTRFS_SETGET_BITS(16)
2435DECLARE_BTRFS_SETGET_BITS(32)
2436DECLARE_BTRFS_SETGET_BITS(64)
2437
2438#define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
2439static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s)	\
2440{									\
2441	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2442	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
2443}									\
2444static inline void btrfs_set_##name(struct extent_buffer *eb, type *s,	\
2445				    u##bits val)			\
2446{									\
2447	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2448	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
2449}									\
2450static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2451					 struct btrfs_map_token *token)	\
2452{									\
2453	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2454	return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2455}									\
2456static inline void btrfs_set_token_##name(struct extent_buffer *eb,	\
2457					  type *s, u##bits val,		\
2458                                         struct btrfs_map_token *token)	\
2459{									\
2460	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2461	btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2462}
2463
2464#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
2465static inline u##bits btrfs_##name(struct extent_buffer *eb)		\
2466{									\
2467	type *p = page_address(eb->pages[0]);				\
2468	u##bits res = le##bits##_to_cpu(p->member);			\
2469	return res;							\
2470}									\
2471static inline void btrfs_set_##name(struct extent_buffer *eb,		\
2472				    u##bits val)			\
2473{									\
2474	type *p = page_address(eb->pages[0]);				\
2475	p->member = cpu_to_le##bits(val);				\
2476}
2477
2478#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
2479static inline u##bits btrfs_##name(type *s)				\
2480{									\
2481	return le##bits##_to_cpu(s->member);				\
2482}									\
2483static inline void btrfs_set_##name(type *s, u##bits val)		\
2484{									\
2485	s->member = cpu_to_le##bits(val);				\
2486}
2487
2488BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2489BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2490BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2491BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2492BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2493BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2494		   start_offset, 64);
2495BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2496BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2497BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2498BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2499BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2500BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2501
2502BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2503BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2504			 total_bytes, 64);
2505BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2506			 bytes_used, 64);
2507BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2508			 io_align, 32);
2509BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2510			 io_width, 32);
2511BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2512			 sector_size, 32);
2513BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2514BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2515			 dev_group, 32);
2516BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2517			 seek_speed, 8);
2518BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2519			 bandwidth, 8);
2520BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2521			 generation, 64);
2522
2523static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2524{
2525	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2526}
2527
2528static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2529{
2530	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2531}
2532
2533BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2534BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2535BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2536BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2537BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2538BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2539BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2540BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2541BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2542BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2543BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2544
2545static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2546{
2547	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2548}
2549
2550BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2551BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2552BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2553			 stripe_len, 64);
2554BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2555			 io_align, 32);
2556BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2557			 io_width, 32);
2558BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2559			 sector_size, 32);
2560BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2561BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2562			 num_stripes, 16);
2563BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2564			 sub_stripes, 16);
2565BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2566BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2567
2568static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2569						   int nr)
2570{
2571	unsigned long offset = (unsigned long)c;
2572	offset += offsetof(struct btrfs_chunk, stripe);
2573	offset += nr * sizeof(struct btrfs_stripe);
2574	return (struct btrfs_stripe *)offset;
2575}
2576
2577static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2578{
2579	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2580}
2581
2582static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2583					 struct btrfs_chunk *c, int nr)
2584{
2585	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2586}
2587
2588static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2589					 struct btrfs_chunk *c, int nr)
2590{
2591	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2592}
2593
2594/* struct btrfs_block_group_item */
2595BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2596			 used, 64);
2597BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2598			 used, 64);
2599BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2600			struct btrfs_block_group_item, chunk_objectid, 64);
2601
2602BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2603		   struct btrfs_block_group_item, chunk_objectid, 64);
2604BTRFS_SETGET_FUNCS(disk_block_group_flags,
2605		   struct btrfs_block_group_item, flags, 64);
2606BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2607			struct btrfs_block_group_item, flags, 64);
2608
2609/* struct btrfs_free_space_info */
2610BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
2611		   extent_count, 32);
2612BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
2613
2614/* struct btrfs_inode_ref */
2615BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2616BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2617
2618/* struct btrfs_inode_extref */
2619BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2620		   parent_objectid, 64);
2621BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2622		   name_len, 16);
2623BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2624
2625/* struct btrfs_inode_item */
2626BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2627BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2628BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2629BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2630BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2631BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2632BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2633BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2634BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2635BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2636BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2637BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2638BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2639			 generation, 64);
2640BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2641			 sequence, 64);
2642BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2643			 transid, 64);
2644BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2645BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2646			 nbytes, 64);
2647BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2648			 block_group, 64);
2649BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2650BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2651BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2652BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2653BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2654BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2655BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2656BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2657BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2658BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2659
2660/* struct btrfs_dev_extent */
2661BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2662		   chunk_tree, 64);
2663BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2664		   chunk_objectid, 64);
2665BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2666		   chunk_offset, 64);
2667BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2668
2669static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2670{
2671	unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2672	return (unsigned long)dev + ptr;
2673}
2674
2675BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2676BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2677		   generation, 64);
2678BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2679
2680BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2681
2682
2683BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2684
2685static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2686					struct btrfs_tree_block_info *item,
2687					struct btrfs_disk_key *key)
2688{
2689	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2690}
2691
2692static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2693					    struct btrfs_tree_block_info *item,
2694					    struct btrfs_disk_key *key)
2695{
2696	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2697}
2698
2699BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2700		   root, 64);
2701BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2702		   objectid, 64);
2703BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2704		   offset, 64);
2705BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2706		   count, 32);
2707
2708BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2709		   count, 32);
2710
2711BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2712		   type, 8);
2713BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2714		   offset, 64);
2715
2716static inline u32 btrfs_extent_inline_ref_size(int type)
2717{
2718	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2719	    type == BTRFS_SHARED_BLOCK_REF_KEY)
2720		return sizeof(struct btrfs_extent_inline_ref);
2721	if (type == BTRFS_SHARED_DATA_REF_KEY)
2722		return sizeof(struct btrfs_shared_data_ref) +
2723		       sizeof(struct btrfs_extent_inline_ref);
2724	if (type == BTRFS_EXTENT_DATA_REF_KEY)
2725		return sizeof(struct btrfs_extent_data_ref) +
2726		       offsetof(struct btrfs_extent_inline_ref, offset);
2727	BUG();
2728	return 0;
2729}
2730
2731BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2732BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2733		   generation, 64);
2734BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2735BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2736
2737/* struct btrfs_node */
2738BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2739BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2740BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2741			 blockptr, 64);
2742BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2743			 generation, 64);
2744
2745static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2746{
2747	unsigned long ptr;
2748	ptr = offsetof(struct btrfs_node, ptrs) +
2749		sizeof(struct btrfs_key_ptr) * nr;
2750	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2751}
2752
2753static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2754					   int nr, u64 val)
2755{
2756	unsigned long ptr;
2757	ptr = offsetof(struct btrfs_node, ptrs) +
2758		sizeof(struct btrfs_key_ptr) * nr;
2759	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2760}
2761
2762static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2763{
2764	unsigned long ptr;
2765	ptr = offsetof(struct btrfs_node, ptrs) +
2766		sizeof(struct btrfs_key_ptr) * nr;
2767	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2768}
2769
2770static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2771						 int nr, u64 val)
2772{
2773	unsigned long ptr;
2774	ptr = offsetof(struct btrfs_node, ptrs) +
2775		sizeof(struct btrfs_key_ptr) * nr;
2776	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2777}
2778
2779static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2780{
2781	return offsetof(struct btrfs_node, ptrs) +
2782		sizeof(struct btrfs_key_ptr) * nr;
2783}
2784
2785void btrfs_node_key(struct extent_buffer *eb,
2786		    struct btrfs_disk_key *disk_key, int nr);
2787
2788static inline void btrfs_set_node_key(struct extent_buffer *eb,
2789				      struct btrfs_disk_key *disk_key, int nr)
2790{
2791	unsigned long ptr;
2792	ptr = btrfs_node_key_ptr_offset(nr);
2793	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2794		       struct btrfs_key_ptr, key, disk_key);
2795}
2796
2797/* struct btrfs_item */
2798BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2799BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2800BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2801BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2802
2803static inline unsigned long btrfs_item_nr_offset(int nr)
2804{
2805	return offsetof(struct btrfs_leaf, items) +
2806		sizeof(struct btrfs_item) * nr;
2807}
2808
2809static inline struct btrfs_item *btrfs_item_nr(int nr)
2810{
2811	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2812}
2813
2814static inline u32 btrfs_item_end(struct extent_buffer *eb,
2815				 struct btrfs_item *item)
2816{
2817	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2818}
2819
2820static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2821{
2822	return btrfs_item_end(eb, btrfs_item_nr(nr));
2823}
2824
2825static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2826{
2827	return btrfs_item_offset(eb, btrfs_item_nr(nr));
2828}
2829
2830static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2831{
2832	return btrfs_item_size(eb, btrfs_item_nr(nr));
2833}
2834
2835static inline void btrfs_item_key(struct extent_buffer *eb,
2836			   struct btrfs_disk_key *disk_key, int nr)
2837{
2838	struct btrfs_item *item = btrfs_item_nr(nr);
2839	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2840}
2841
2842static inline void btrfs_set_item_key(struct extent_buffer *eb,
2843			       struct btrfs_disk_key *disk_key, int nr)
2844{
2845	struct btrfs_item *item = btrfs_item_nr(nr);
2846	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2847}
2848
2849BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2850
2851/*
2852 * struct btrfs_root_ref
 
2853 */
2854BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2855BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2856BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2857
2858/* struct btrfs_dir_item */
2859BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2860BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2861BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2862BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2863BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2864BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2865			 data_len, 16);
2866BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2867			 name_len, 16);
2868BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2869			 transid, 64);
2870
2871static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2872				      struct btrfs_dir_item *item,
2873				      struct btrfs_disk_key *key)
2874{
2875	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2876}
 
 
 
 
2877
2878static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2879					  struct btrfs_dir_item *item,
2880					  struct btrfs_disk_key *key)
2881{
2882	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2883}
2884
2885BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2886		   num_entries, 64);
2887BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2888		   num_bitmaps, 64);
2889BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2890		   generation, 64);
2891
2892static inline void btrfs_free_space_key(struct extent_buffer *eb,
2893					struct btrfs_free_space_header *h,
2894					struct btrfs_disk_key *key)
2895{
2896	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2897}
2898
2899static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2900					    struct btrfs_free_space_header *h,
2901					    struct btrfs_disk_key *key)
2902{
2903	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2904}
 
 
 
 
 
 
 
 
2905
2906/* struct btrfs_disk_key */
2907BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2908			 objectid, 64);
2909BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2910BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2911
2912static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2913					 struct btrfs_disk_key *disk)
2914{
2915	cpu->offset = le64_to_cpu(disk->offset);
2916	cpu->type = disk->type;
2917	cpu->objectid = le64_to_cpu(disk->objectid);
2918}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2919
2920static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2921					 struct btrfs_key *cpu)
2922{
2923	disk->offset = cpu_to_le64(cpu->offset);
2924	disk->type = cpu->type;
2925	disk->objectid = cpu_to_le64(cpu->objectid);
2926}
2927
2928static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2929				  struct btrfs_key *key, int nr)
2930{
2931	struct btrfs_disk_key disk_key;
2932	btrfs_node_key(eb, &disk_key, nr);
2933	btrfs_disk_key_to_cpu(key, &disk_key);
2934}
2935
2936static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2937				  struct btrfs_key *key, int nr)
2938{
2939	struct btrfs_disk_key disk_key;
2940	btrfs_item_key(eb, &disk_key, nr);
2941	btrfs_disk_key_to_cpu(key, &disk_key);
2942}
2943
2944static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2945				      struct btrfs_dir_item *item,
2946				      struct btrfs_key *key)
2947{
2948	struct btrfs_disk_key disk_key;
2949	btrfs_dir_item_key(eb, item, &disk_key);
2950	btrfs_disk_key_to_cpu(key, &disk_key);
2951}
2952
2953
2954static inline u8 btrfs_key_type(struct btrfs_key *key)
2955{
2956	return key->type;
2957}
2958
2959static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2960{
2961	key->type = val;
2962}
2963
2964/* struct btrfs_header */
2965BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2966BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2967			  generation, 64);
2968BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2969BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2970BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2971BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2972BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2973			 generation, 64);
2974BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2975BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2976			 nritems, 32);
2977BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2978
2979static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2980{
2981	return (btrfs_header_flags(eb) & flag) == flag;
2982}
2983
2984static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2985{
2986	u64 flags = btrfs_header_flags(eb);
2987	btrfs_set_header_flags(eb, flags | flag);
2988	return (flags & flag) == flag;
2989}
2990
2991static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2992{
2993	u64 flags = btrfs_header_flags(eb);
2994	btrfs_set_header_flags(eb, flags & ~flag);
2995	return (flags & flag) == flag;
2996}
2997
2998static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2999{
3000	u64 flags = btrfs_header_flags(eb);
3001	return flags >> BTRFS_BACKREF_REV_SHIFT;
3002}
3003
3004static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
3005						int rev)
3006{
3007	u64 flags = btrfs_header_flags(eb);
3008	flags &= ~BTRFS_BACKREF_REV_MASK;
3009	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
3010	btrfs_set_header_flags(eb, flags);
3011}
3012
3013static inline unsigned long btrfs_header_fsid(void)
3014{
3015	return offsetof(struct btrfs_header, fsid);
3016}
3017
3018static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
3019{
3020	return offsetof(struct btrfs_header, chunk_tree_uuid);
3021}
3022
3023static inline int btrfs_is_leaf(struct extent_buffer *eb)
3024{
3025	return btrfs_header_level(eb) == 0;
3026}
3027
3028/* struct btrfs_root_item */
3029BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
3030		   generation, 64);
3031BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
3032BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
3033BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
3034
3035BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
3036			 generation, 64);
3037BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
3038BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
3039BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
3040BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
3041BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
3042BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
3043BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
3044BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
3045			 last_snapshot, 64);
3046BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
3047			 generation_v2, 64);
3048BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
3049			 ctransid, 64);
3050BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
3051			 otransid, 64);
3052BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
3053			 stransid, 64);
3054BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
3055			 rtransid, 64);
3056
3057static inline bool btrfs_root_readonly(struct btrfs_root *root)
3058{
3059	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
3060}
3061
3062static inline bool btrfs_root_dead(struct btrfs_root *root)
3063{
3064	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
3065}
3066
3067/* struct btrfs_root_backup */
3068BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
3069		   tree_root, 64);
3070BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
3071		   tree_root_gen, 64);
3072BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
3073		   tree_root_level, 8);
3074
3075BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
3076		   chunk_root, 64);
3077BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
3078		   chunk_root_gen, 64);
3079BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
3080		   chunk_root_level, 8);
3081
3082BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
3083		   extent_root, 64);
3084BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
3085		   extent_root_gen, 64);
3086BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
3087		   extent_root_level, 8);
3088
3089BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
3090		   fs_root, 64);
3091BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
3092		   fs_root_gen, 64);
3093BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
3094		   fs_root_level, 8);
3095
3096BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
3097		   dev_root, 64);
3098BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
3099		   dev_root_gen, 64);
3100BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
3101		   dev_root_level, 8);
3102
3103BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
3104		   csum_root, 64);
3105BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
3106		   csum_root_gen, 64);
3107BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
3108		   csum_root_level, 8);
3109BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
3110		   total_bytes, 64);
3111BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
3112		   bytes_used, 64);
3113BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
3114		   num_devices, 64);
3115
3116/* struct btrfs_balance_item */
3117BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
3118
3119static inline void btrfs_balance_data(struct extent_buffer *eb,
3120				      struct btrfs_balance_item *bi,
3121				      struct btrfs_disk_balance_args *ba)
3122{
3123	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
3124}
3125
3126static inline void btrfs_set_balance_data(struct extent_buffer *eb,
3127					  struct btrfs_balance_item *bi,
3128					  struct btrfs_disk_balance_args *ba)
3129{
3130	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
3131}
3132
3133static inline void btrfs_balance_meta(struct extent_buffer *eb,
3134				      struct btrfs_balance_item *bi,
3135				      struct btrfs_disk_balance_args *ba)
3136{
3137	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
3138}
3139
3140static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
3141					  struct btrfs_balance_item *bi,
3142					  struct btrfs_disk_balance_args *ba)
3143{
3144	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
3145}
3146
3147static inline void btrfs_balance_sys(struct extent_buffer *eb,
3148				     struct btrfs_balance_item *bi,
3149				     struct btrfs_disk_balance_args *ba)
3150{
3151	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3152}
3153
3154static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
3155					 struct btrfs_balance_item *bi,
3156					 struct btrfs_disk_balance_args *ba)
3157{
3158	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3159}
3160
3161static inline void
3162btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3163			       struct btrfs_disk_balance_args *disk)
3164{
3165	memset(cpu, 0, sizeof(*cpu));
3166
3167	cpu->profiles = le64_to_cpu(disk->profiles);
3168	cpu->usage = le64_to_cpu(disk->usage);
3169	cpu->devid = le64_to_cpu(disk->devid);
3170	cpu->pstart = le64_to_cpu(disk->pstart);
3171	cpu->pend = le64_to_cpu(disk->pend);
3172	cpu->vstart = le64_to_cpu(disk->vstart);
3173	cpu->vend = le64_to_cpu(disk->vend);
3174	cpu->target = le64_to_cpu(disk->target);
3175	cpu->flags = le64_to_cpu(disk->flags);
3176	cpu->limit = le64_to_cpu(disk->limit);
3177}
3178
3179static inline void
3180btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3181			       struct btrfs_balance_args *cpu)
3182{
3183	memset(disk, 0, sizeof(*disk));
3184
3185	disk->profiles = cpu_to_le64(cpu->profiles);
3186	disk->usage = cpu_to_le64(cpu->usage);
3187	disk->devid = cpu_to_le64(cpu->devid);
3188	disk->pstart = cpu_to_le64(cpu->pstart);
3189	disk->pend = cpu_to_le64(cpu->pend);
3190	disk->vstart = cpu_to_le64(cpu->vstart);
3191	disk->vend = cpu_to_le64(cpu->vend);
3192	disk->target = cpu_to_le64(cpu->target);
3193	disk->flags = cpu_to_le64(cpu->flags);
3194	disk->limit = cpu_to_le64(cpu->limit);
3195}
3196
3197/* struct btrfs_super_block */
3198BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
3199BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
3200BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
3201			 generation, 64);
3202BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
3203BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
3204			 struct btrfs_super_block, sys_chunk_array_size, 32);
3205BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
3206			 struct btrfs_super_block, chunk_root_generation, 64);
3207BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
3208			 root_level, 8);
3209BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
3210			 chunk_root, 64);
3211BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
3212			 chunk_root_level, 8);
3213BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
3214			 log_root, 64);
3215BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
3216			 log_root_transid, 64);
3217BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
3218			 log_root_level, 8);
3219BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
3220			 total_bytes, 64);
3221BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
3222			 bytes_used, 64);
3223BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
3224			 sectorsize, 32);
3225BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
3226			 nodesize, 32);
3227BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
3228			 stripesize, 32);
3229BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
3230			 root_dir_objectid, 64);
3231BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
3232			 num_devices, 64);
3233BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
3234			 compat_flags, 64);
3235BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
3236			 compat_ro_flags, 64);
3237BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
3238			 incompat_flags, 64);
3239BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3240			 csum_type, 16);
3241BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3242			 cache_generation, 64);
3243BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3244BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3245			 uuid_tree_generation, 64);
3246
3247static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3248{
3249	u16 t = btrfs_super_csum_type(s);
3250	/*
3251	 * csum type is validated at mount time
3252	 */
3253	return btrfs_csum_sizes[t];
3254}
3255
3256static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3257{
3258	return offsetof(struct btrfs_leaf, items);
3259}
3260
3261/* struct btrfs_file_extent_item */
3262BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3263BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3264			 struct btrfs_file_extent_item, disk_bytenr, 64);
3265BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3266			 struct btrfs_file_extent_item, offset, 64);
3267BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3268			 struct btrfs_file_extent_item, generation, 64);
3269BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3270			 struct btrfs_file_extent_item, num_bytes, 64);
3271BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3272			 struct btrfs_file_extent_item, disk_num_bytes, 64);
3273BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3274			 struct btrfs_file_extent_item, compression, 8);
3275
3276static inline unsigned long
3277btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3278{
3279	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
3280}
3281
3282static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3283{
3284	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
3285}
3286
3287BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3288		   disk_bytenr, 64);
3289BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3290		   generation, 64);
3291BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3292		   disk_num_bytes, 64);
3293BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3294		  offset, 64);
3295BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3296		   num_bytes, 64);
3297BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3298		   ram_bytes, 64);
3299BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3300		   compression, 8);
3301BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3302		   encryption, 8);
3303BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3304		   other_encoding, 16);
3305
3306/*
3307 * this returns the number of bytes used by the item on disk, minus the
3308 * size of any extent headers.  If a file is compressed on disk, this is
3309 * the compressed size
3310 */
3311static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3312						    struct btrfs_item *e)
3313{
3314	return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
3315}
3316
3317/* this returns the number of file bytes represented by the inline item.
3318 * If an item is compressed, this is the uncompressed size
3319 */
3320static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3321					       int slot,
3322					       struct btrfs_file_extent_item *fi)
3323{
3324	struct btrfs_map_token token;
3325
3326	btrfs_init_map_token(&token);
3327	/*
3328	 * return the space used on disk if this item isn't
3329	 * compressed or encoded
3330	 */
3331	if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3332	    btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3333	    btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3334		return btrfs_file_extent_inline_item_len(eb,
3335							 btrfs_item_nr(slot));
3336	}
3337
3338	/* otherwise use the ram bytes field */
3339	return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3340}
3341
 
3342
3343/* btrfs_dev_stats_item */
3344static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3345					struct btrfs_dev_stats_item *ptr,
3346					int index)
3347{
3348	u64 val;
3349
3350	read_extent_buffer(eb, &val,
3351			   offsetof(struct btrfs_dev_stats_item, values) +
3352			    ((unsigned long)ptr) + (index * sizeof(u64)),
3353			   sizeof(val));
3354	return val;
3355}
3356
3357static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3358					     struct btrfs_dev_stats_item *ptr,
3359					     int index, u64 val)
3360{
3361	write_extent_buffer(eb, &val,
3362			    offsetof(struct btrfs_dev_stats_item, values) +
3363			     ((unsigned long)ptr) + (index * sizeof(u64)),
3364			    sizeof(val));
3365}
3366
3367/* btrfs_qgroup_status_item */
3368BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3369		   generation, 64);
3370BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3371		   version, 64);
3372BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3373		   flags, 64);
3374BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3375		   rescan, 64);
3376
3377/* btrfs_qgroup_info_item */
3378BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3379		   generation, 64);
3380BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3381BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3382		   rfer_cmpr, 64);
3383BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3384BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3385		   excl_cmpr, 64);
3386
3387BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3388			 struct btrfs_qgroup_info_item, generation, 64);
3389BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3390			 rfer, 64);
3391BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3392			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3393BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3394			 excl, 64);
3395BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3396			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3397
3398/* btrfs_qgroup_limit_item */
3399BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3400		   flags, 64);
3401BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3402		   max_rfer, 64);
3403BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3404		   max_excl, 64);
3405BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3406		   rsv_rfer, 64);
3407BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3408		   rsv_excl, 64);
3409
3410/* btrfs_dev_replace_item */
3411BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3412		   struct btrfs_dev_replace_item, src_devid, 64);
3413BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3414		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3415		   64);
3416BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3417		   replace_state, 64);
3418BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3419		   time_started, 64);
3420BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3421		   time_stopped, 64);
3422BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3423		   num_write_errors, 64);
3424BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3425		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3426		   64);
3427BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3428		   cursor_left, 64);
3429BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3430		   cursor_right, 64);
3431
3432BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3433			 struct btrfs_dev_replace_item, src_devid, 64);
3434BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3435			 struct btrfs_dev_replace_item,
3436			 cont_reading_from_srcdev_mode, 64);
3437BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3438			 struct btrfs_dev_replace_item, replace_state, 64);
3439BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3440			 struct btrfs_dev_replace_item, time_started, 64);
3441BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3442			 struct btrfs_dev_replace_item, time_stopped, 64);
3443BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3444			 struct btrfs_dev_replace_item, num_write_errors, 64);
3445BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3446			 struct btrfs_dev_replace_item,
3447			 num_uncorrectable_read_errors, 64);
3448BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3449			 struct btrfs_dev_replace_item, cursor_left, 64);
3450BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3451			 struct btrfs_dev_replace_item, cursor_right, 64);
3452
3453static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3454{
3455	return sb->s_fs_info;
3456}
3457
3458/* helper function to cast into the data area of the leaf. */
3459#define btrfs_item_ptr(leaf, slot, type) \
3460	((type *)(btrfs_leaf_data(leaf) + \
3461	btrfs_item_offset_nr(leaf, slot)))
3462
3463#define btrfs_item_ptr_offset(leaf, slot) \
3464	((unsigned long)(btrfs_leaf_data(leaf) + \
3465	btrfs_item_offset_nr(leaf, slot)))
3466
3467static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3468{
3469	return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3470		(space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3471}
3472
3473static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3474{
3475	return mapping_gfp_constraint(mapping, ~__GFP_FS);
3476}
3477
3478/* extent-tree.c */
3479
3480u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes);
3481
3482static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3483						 unsigned num_items)
3484{
3485	return root->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
3486}
3487
3488/*
3489 * Doing a truncate won't result in new nodes or leaves, just what we need for
3490 * COW.
3491 */
3492static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3493						 unsigned num_items)
3494{
3495	return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3496}
3497
3498int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3499				       struct btrfs_root *root);
3500int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3501				       struct btrfs_root *root);
3502void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3503int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3504			   struct btrfs_root *root, unsigned long count);
3505int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3506				 unsigned long count, int wait);
3507int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len);
3508int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3509			     struct btrfs_root *root, u64 bytenr,
3510			     u64 offset, int metadata, u64 *refs, u64 *flags);
3511int btrfs_pin_extent(struct btrfs_root *root,
3512		     u64 bytenr, u64 num, int reserved);
3513int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3514				    u64 bytenr, u64 num_bytes);
3515int btrfs_exclude_logged_extents(struct btrfs_root *root,
3516				 struct extent_buffer *eb);
3517int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3518			  struct btrfs_root *root,
3519			  u64 objectid, u64 offset, u64 bytenr);
3520struct btrfs_block_group_cache *btrfs_lookup_block_group(
3521						 struct btrfs_fs_info *info,
3522						 u64 bytenr);
3523void btrfs_get_block_group(struct btrfs_block_group_cache *cache);
3524void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3525int get_block_group_index(struct btrfs_block_group_cache *cache);
3526struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
3527					struct btrfs_root *root, u64 parent,
3528					u64 root_objectid,
3529					struct btrfs_disk_key *key, int level,
3530					u64 hint, u64 empty_size);
3531void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3532			   struct btrfs_root *root,
3533			   struct extent_buffer *buf,
3534			   u64 parent, int last_ref);
3535int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3536				     struct btrfs_root *root,
3537				     u64 root_objectid, u64 owner,
3538				     u64 offset, u64 ram_bytes,
3539				     struct btrfs_key *ins);
3540int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3541				   struct btrfs_root *root,
3542				   u64 root_objectid, u64 owner, u64 offset,
3543				   struct btrfs_key *ins);
3544int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3545			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3546			 struct btrfs_key *ins, int is_data, int delalloc);
3547int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3548		  struct extent_buffer *buf, int full_backref);
3549int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3550		  struct extent_buffer *buf, int full_backref);
3551int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3552				struct btrfs_root *root,
3553				u64 bytenr, u64 num_bytes, u64 flags,
3554				int level, int is_data);
3555int btrfs_free_extent(struct btrfs_trans_handle *trans,
3556		      struct btrfs_root *root,
3557		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3558		      u64 owner, u64 offset);
3559
3560int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3561			       int delalloc);
3562int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3563				       u64 start, u64 len);
3564void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3565				 struct btrfs_root *root);
3566int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3567			       struct btrfs_root *root);
3568int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3569			 struct btrfs_root *root,
3570			 u64 bytenr, u64 num_bytes, u64 parent,
3571			 u64 root_objectid, u64 owner, u64 offset);
3572
3573int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3574				   struct btrfs_root *root);
3575int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3576				    struct btrfs_root *root);
3577int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3578			    struct btrfs_root *root);
3579int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3580int btrfs_free_block_groups(struct btrfs_fs_info *info);
3581int btrfs_read_block_groups(struct btrfs_root *root);
3582int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3583int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3584			   struct btrfs_root *root, u64 bytes_used,
3585			   u64 type, u64 chunk_objectid, u64 chunk_offset,
3586			   u64 size);
3587struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
3588				struct btrfs_fs_info *fs_info,
3589				const u64 chunk_offset);
3590int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3591			     struct btrfs_root *root, u64 group_start,
3592			     struct extent_map *em);
3593void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
3594void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache);
3595void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *cache);
3596void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3597				       struct btrfs_root *root);
3598u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3599void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3600
3601enum btrfs_reserve_flush_enum {
3602	/* If we are in the transaction, we can't flush anything.*/
3603	BTRFS_RESERVE_NO_FLUSH,
3604	/*
3605	 * Flushing delalloc may cause deadlock somewhere, in this
3606	 * case, use FLUSH LIMIT
3607	 */
3608	BTRFS_RESERVE_FLUSH_LIMIT,
3609	BTRFS_RESERVE_FLUSH_ALL,
3610};
3611
3612int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len);
3613int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes);
3614void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len);
3615void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
3616					    u64 len);
3617void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3618				struct btrfs_root *root);
3619void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
3620int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3621				  struct inode *inode);
3622void btrfs_orphan_release_metadata(struct inode *inode);
3623int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3624				     struct btrfs_block_rsv *rsv,
3625				     int nitems,
3626				     u64 *qgroup_reserved, bool use_global_rsv);
3627void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3628				      struct btrfs_block_rsv *rsv,
3629				      u64 qgroup_reserved);
3630int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3631void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3632int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len);
3633void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len);
3634void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3635struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3636					      unsigned short type);
3637void btrfs_free_block_rsv(struct btrfs_root *root,
3638			  struct btrfs_block_rsv *rsv);
3639void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv);
3640int btrfs_block_rsv_add(struct btrfs_root *root,
3641			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3642			enum btrfs_reserve_flush_enum flush);
3643int btrfs_block_rsv_check(struct btrfs_root *root,
3644			  struct btrfs_block_rsv *block_rsv, int min_factor);
3645int btrfs_block_rsv_refill(struct btrfs_root *root,
3646			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3647			   enum btrfs_reserve_flush_enum flush);
3648int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3649			    struct btrfs_block_rsv *dst_rsv,
3650			    u64 num_bytes);
3651int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3652			     struct btrfs_block_rsv *dest, u64 num_bytes,
3653			     int min_factor);
3654void btrfs_block_rsv_release(struct btrfs_root *root,
3655			     struct btrfs_block_rsv *block_rsv,
3656			     u64 num_bytes);
3657int btrfs_inc_block_group_ro(struct btrfs_root *root,
3658			     struct btrfs_block_group_cache *cache);
3659void btrfs_dec_block_group_ro(struct btrfs_root *root,
3660			      struct btrfs_block_group_cache *cache);
3661void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3662u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3663int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3664				   u64 start, u64 end);
3665int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
3666			 u64 num_bytes, u64 *actual_bytes);
3667int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3668			    struct btrfs_root *root, u64 type);
3669int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3670
3671int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3672int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3673					 struct btrfs_fs_info *fs_info);
3674int __get_raid_index(u64 flags);
3675int btrfs_start_write_no_snapshoting(struct btrfs_root *root);
3676void btrfs_end_write_no_snapshoting(struct btrfs_root *root);
3677void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
3678void check_system_chunk(struct btrfs_trans_handle *trans,
3679			struct btrfs_root *root,
3680			const u64 type);
3681u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
3682		       struct btrfs_fs_info *info, u64 start, u64 end);
3683
3684/* ctree.c */
3685int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3686		     int level, int *slot);
3687int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3688int btrfs_previous_item(struct btrfs_root *root,
3689			struct btrfs_path *path, u64 min_objectid,
3690			int type);
3691int btrfs_previous_extent_item(struct btrfs_root *root,
3692			struct btrfs_path *path, u64 min_objectid);
3693void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3694			     struct btrfs_path *path,
3695			     struct btrfs_key *new_key);
3696struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3697struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3698int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3699			struct btrfs_key *key, int lowest_level,
3700			u64 min_trans);
3701int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3702			 struct btrfs_path *path,
3703			 u64 min_trans);
3704enum btrfs_compare_tree_result {
3705	BTRFS_COMPARE_TREE_NEW,
3706	BTRFS_COMPARE_TREE_DELETED,
3707	BTRFS_COMPARE_TREE_CHANGED,
3708	BTRFS_COMPARE_TREE_SAME,
3709};
3710typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3711				  struct btrfs_root *right_root,
3712				  struct btrfs_path *left_path,
3713				  struct btrfs_path *right_path,
3714				  struct btrfs_key *key,
3715				  enum btrfs_compare_tree_result result,
3716				  void *ctx);
3717int btrfs_compare_trees(struct btrfs_root *left_root,
3718			struct btrfs_root *right_root,
3719			btrfs_changed_cb_t cb, void *ctx);
3720int btrfs_cow_block(struct btrfs_trans_handle *trans,
3721		    struct btrfs_root *root, struct extent_buffer *buf,
3722		    struct extent_buffer *parent, int parent_slot,
3723		    struct extent_buffer **cow_ret);
 
 
 
 
 
 
 
 
3724int btrfs_copy_root(struct btrfs_trans_handle *trans,
3725		      struct btrfs_root *root,
3726		      struct extent_buffer *buf,
3727		      struct extent_buffer **cow_ret, u64 new_root_objectid);
3728int btrfs_block_can_be_shared(struct btrfs_root *root,
3729			      struct extent_buffer *buf);
3730void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3731		       u32 data_size);
3732void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3733			 u32 new_size, int from_end);
 
 
 
3734int btrfs_split_item(struct btrfs_trans_handle *trans,
3735		     struct btrfs_root *root,
3736		     struct btrfs_path *path,
3737		     struct btrfs_key *new_key,
3738		     unsigned long split_offset);
3739int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3740			 struct btrfs_root *root,
3741			 struct btrfs_path *path,
3742			 struct btrfs_key *new_key);
3743int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3744		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3745int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3746		      *root, struct btrfs_key *key, struct btrfs_path *p, int
3747		      ins_len, int cow);
3748int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3749			  struct btrfs_path *p, u64 time_seq);
3750int btrfs_search_slot_for_read(struct btrfs_root *root,
3751			       struct btrfs_key *key, struct btrfs_path *p,
3752			       int find_higher, int return_any);
3753int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3754		       struct btrfs_root *root, struct extent_buffer *parent,
3755		       int start_slot, u64 *last_ret,
3756		       struct btrfs_key *progress);
3757void btrfs_release_path(struct btrfs_path *p);
3758struct btrfs_path *btrfs_alloc_path(void);
3759void btrfs_free_path(struct btrfs_path *p);
3760void btrfs_set_path_blocking(struct btrfs_path *p);
3761void btrfs_clear_path_blocking(struct btrfs_path *p,
3762			       struct extent_buffer *held, int held_rw);
3763void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3764
3765int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3766		   struct btrfs_path *path, int slot, int nr);
3767static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3768				 struct btrfs_root *root,
3769				 struct btrfs_path *path)
3770{
3771	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3772}
3773
3774void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3775			    struct btrfs_key *cpu_key, u32 *data_size,
3776			    u32 total_data, u32 total_size, int nr);
3777int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3778		      *root, struct btrfs_key *key, void *data, u32 data_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3779int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3780			     struct btrfs_root *root,
3781			     struct btrfs_path *path,
3782			     struct btrfs_key *cpu_key, u32 *data_size, int nr);
3783
3784static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3785					  struct btrfs_root *root,
3786					  struct btrfs_path *path,
3787					  struct btrfs_key *key,
3788					  u32 data_size)
3789{
3790	return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
 
 
 
 
 
 
 
3791}
3792
3793int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3794int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3795int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3796			u64 time_seq);
3797static inline int btrfs_next_old_item(struct btrfs_root *root,
3798				      struct btrfs_path *p, u64 time_seq)
3799{
3800	++p->slots[0];
3801	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3802		return btrfs_next_old_leaf(root, p, time_seq);
3803	return 0;
3804}
3805static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3806{
3807	return btrfs_next_old_item(root, p, 0);
3808}
3809int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3810int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3811				     struct btrfs_block_rsv *block_rsv,
3812				     int update_ref, int for_reloc);
3813int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3814			struct btrfs_root *root,
3815			struct extent_buffer *node,
3816			struct extent_buffer *parent);
3817static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3818{
3819	/*
3820	 * Get synced with close_ctree()
3821	 */
3822	smp_mb();
3823	return fs_info->closing;
3824}
3825
3826/*
3827 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3828 * anything except sleeping. This function is used to check the status of
3829 * the fs.
3830 */
3831static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3832{
3833	return (root->fs_info->sb->s_flags & MS_RDONLY ||
3834		btrfs_fs_closing(root->fs_info));
3835}
3836
3837static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3838{
3839	kfree(fs_info->balance_ctl);
3840	kfree(fs_info->delayed_root);
3841	kfree(fs_info->extent_root);
3842	kfree(fs_info->tree_root);
3843	kfree(fs_info->chunk_root);
3844	kfree(fs_info->dev_root);
3845	kfree(fs_info->csum_root);
3846	kfree(fs_info->quota_root);
3847	kfree(fs_info->uuid_root);
3848	kfree(fs_info->free_space_root);
3849	kfree(fs_info->super_copy);
3850	kfree(fs_info->super_for_commit);
3851	security_free_mnt_opts(&fs_info->security_opts);
3852	kfree(fs_info);
3853}
3854
3855/* tree mod log functions from ctree.c */
3856u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3857			   struct seq_list *elem);
3858void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3859			    struct seq_list *elem);
3860int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3861
3862/* root-item.c */
3863int btrfs_find_root_ref(struct btrfs_root *tree_root,
3864			struct btrfs_path *path,
3865			u64 root_id, u64 ref_id);
3866int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3867		       struct btrfs_root *tree_root,
3868		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3869		       const char *name, int name_len);
3870int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3871		       struct btrfs_root *tree_root,
3872		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3873		       const char *name, int name_len);
3874int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3875		   struct btrfs_key *key);
3876int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3877		      *root, struct btrfs_key *key, struct btrfs_root_item
3878		      *item);
3879int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3880				   struct btrfs_root *root,
3881				   struct btrfs_key *key,
3882				   struct btrfs_root_item *item);
3883int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3884		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3885		    struct btrfs_key *root_key);
3886int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3887void btrfs_set_root_node(struct btrfs_root_item *item,
3888			 struct extent_buffer *node);
3889void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3890void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3891			     struct btrfs_root *root);
3892
3893/* uuid-tree.c */
3894int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3895			struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3896			u64 subid);
3897int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3898			struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3899			u64 subid);
3900int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3901			    int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3902					      u64));
3903
3904/* dir-item.c */
3905int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3906			  const char *name, int name_len);
3907int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3908			  struct btrfs_root *root, const char *name,
3909			  int name_len, struct inode *dir,
3910			  struct btrfs_key *location, u8 type, u64 index);
3911struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3912					     struct btrfs_root *root,
3913					     struct btrfs_path *path, u64 dir,
3914					     const char *name, int name_len,
3915					     int mod);
3916struct btrfs_dir_item *
3917btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3918			    struct btrfs_root *root,
3919			    struct btrfs_path *path, u64 dir,
3920			    u64 objectid, const char *name, int name_len,
3921			    int mod);
3922struct btrfs_dir_item *
3923btrfs_search_dir_index_item(struct btrfs_root *root,
3924			    struct btrfs_path *path, u64 dirid,
3925			    const char *name, int name_len);
3926int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3927			      struct btrfs_root *root,
3928			      struct btrfs_path *path,
3929			      struct btrfs_dir_item *di);
3930int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3931			    struct btrfs_root *root,
3932			    struct btrfs_path *path, u64 objectid,
3933			    const char *name, u16 name_len,
3934			    const void *data, u16 data_len);
3935struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3936					  struct btrfs_root *root,
3937					  struct btrfs_path *path, u64 dir,
3938					  const char *name, u16 name_len,
3939					  int mod);
3940int verify_dir_item(struct btrfs_root *root,
3941		    struct extent_buffer *leaf,
3942		    struct btrfs_dir_item *dir_item);
3943struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
3944						 struct btrfs_path *path,
3945						 const char *name,
3946						 int name_len);
3947
3948/* orphan.c */
3949int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3950			     struct btrfs_root *root, u64 offset);
3951int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3952			  struct btrfs_root *root, u64 offset);
3953int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3954
3955/* inode-item.c */
3956int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3957			   struct btrfs_root *root,
3958			   const char *name, int name_len,
3959			   u64 inode_objectid, u64 ref_objectid, u64 index);
3960int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3961			   struct btrfs_root *root,
3962			   const char *name, int name_len,
3963			   u64 inode_objectid, u64 ref_objectid, u64 *index);
3964int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3965			     struct btrfs_root *root,
3966			     struct btrfs_path *path, u64 objectid);
3967int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3968		       *root, struct btrfs_path *path,
3969		       struct btrfs_key *location, int mod);
3970
3971struct btrfs_inode_extref *
3972btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3973			  struct btrfs_root *root,
3974			  struct btrfs_path *path,
3975			  const char *name, int name_len,
3976			  u64 inode_objectid, u64 ref_objectid, int ins_len,
3977			  int cow);
3978
3979int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3980				   u64 ref_objectid, const char *name,
3981				   int name_len,
3982				   struct btrfs_inode_extref **extref_ret);
3983
3984/* file-item.c */
3985struct btrfs_dio_private;
3986int btrfs_del_csums(struct btrfs_trans_handle *trans,
3987		    struct btrfs_root *root, u64 bytenr, u64 len);
3988int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3989			  struct bio *bio, u32 *dst);
3990int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3991			      struct bio *bio, u64 logical_offset);
3992int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3993			     struct btrfs_root *root,
3994			     u64 objectid, u64 pos,
3995			     u64 disk_offset, u64 disk_num_bytes,
3996			     u64 num_bytes, u64 offset, u64 ram_bytes,
3997			     u8 compression, u8 encryption, u16 other_encoding);
3998int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3999			     struct btrfs_root *root,
4000			     struct btrfs_path *path, u64 objectid,
4001			     u64 bytenr, int mod);
4002int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
4003			   struct btrfs_root *root,
4004			   struct btrfs_ordered_sum *sums);
4005int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
4006		       struct bio *bio, u64 file_start, int contig);
4007int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
4008			     struct list_head *list, int search_commit);
4009void btrfs_extent_item_to_extent_map(struct inode *inode,
4010				     const struct btrfs_path *path,
4011				     struct btrfs_file_extent_item *fi,
4012				     const bool new_inline,
4013				     struct extent_map *em);
4014
4015/* inode.c */
4016struct btrfs_delalloc_work {
4017	struct inode *inode;
4018	int delay_iput;
4019	struct completion completion;
4020	struct list_head list;
4021	struct btrfs_work work;
4022};
4023
4024struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
4025						    int delay_iput);
4026void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
4027
4028struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
4029					   size_t pg_offset, u64 start, u64 len,
4030					   int create);
4031noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
4032			      u64 *orig_start, u64 *orig_block_len,
4033			      u64 *ram_bytes);
4034
4035/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
4036#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
4037#define ClearPageChecked ClearPageFsMisc
4038#define SetPageChecked SetPageFsMisc
4039#define PageChecked PageFsMisc
4040#endif
4041
4042/* This forces readahead on a given range of bytes in an inode */
4043static inline void btrfs_force_ra(struct address_space *mapping,
4044				  struct file_ra_state *ra, struct file *file,
4045				  pgoff_t offset, unsigned long req_size)
4046{
4047	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4048}
4049
4050struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
4051int btrfs_set_inode_index(struct inode *dir, u64 *index);
4052int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4053		       struct btrfs_root *root,
4054		       struct inode *dir, struct inode *inode,
4055		       const char *name, int name_len);
4056int btrfs_add_link(struct btrfs_trans_handle *trans,
4057		   struct inode *parent_inode, struct inode *inode,
4058		   const char *name, int name_len, int add_backref, u64 index);
4059int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4060			struct btrfs_root *root,
4061			struct inode *dir, u64 objectid,
4062			const char *name, int name_len);
4063int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4064			int front);
4065int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4066			       struct btrfs_root *root,
4067			       struct inode *inode, u64 new_size,
4068			       u32 min_type);
4069
4070int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
4071int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
4072			       int nr);
4073int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
4074			      struct extent_state **cached_state);
4075int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4076			     struct btrfs_root *new_root,
4077			     struct btrfs_root *parent_root,
4078			     u64 new_dirid);
4079int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
4080			 size_t size, struct bio *bio,
4081			 unsigned long bio_flags);
4082int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
4083int btrfs_readpage(struct file *file, struct page *page);
4084void btrfs_evict_inode(struct inode *inode);
4085int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
4086struct inode *btrfs_alloc_inode(struct super_block *sb);
4087void btrfs_destroy_inode(struct inode *inode);
4088int btrfs_drop_inode(struct inode *inode);
4089int btrfs_init_cachep(void);
4090void btrfs_destroy_cachep(void);
4091long btrfs_ioctl_trans_end(struct file *file);
4092struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4093			 struct btrfs_root *root, int *was_new);
4094struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4095				    size_t pg_offset, u64 start, u64 end,
4096				    int create);
4097int btrfs_update_inode(struct btrfs_trans_handle *trans,
4098			      struct btrfs_root *root,
4099			      struct inode *inode);
4100int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4101				struct btrfs_root *root, struct inode *inode);
4102int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
4103int btrfs_orphan_cleanup(struct btrfs_root *root);
4104void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
4105			      struct btrfs_root *root);
4106int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
4107void btrfs_invalidate_inodes(struct btrfs_root *root);
4108void btrfs_add_delayed_iput(struct inode *inode);
4109void btrfs_run_delayed_iputs(struct btrfs_root *root);
4110int btrfs_prealloc_file_range(struct inode *inode, int mode,
4111			      u64 start, u64 num_bytes, u64 min_size,
4112			      loff_t actual_len, u64 *alloc_hint);
4113int btrfs_prealloc_file_range_trans(struct inode *inode,
4114				    struct btrfs_trans_handle *trans, int mode,
4115				    u64 start, u64 num_bytes, u64 min_size,
4116				    loff_t actual_len, u64 *alloc_hint);
4117int btrfs_inode_check_errors(struct inode *inode);
4118extern const struct dentry_operations btrfs_dentry_operations;
4119#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4120void btrfs_test_inode_set_ops(struct inode *inode);
4121#endif
4122
4123/* ioctl.c */
4124long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
4125int btrfs_ioctl_get_supported_features(void __user *arg);
4126void btrfs_update_iflags(struct inode *inode);
4127void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
4128int btrfs_is_empty_uuid(u8 *uuid);
4129int btrfs_defrag_file(struct inode *inode, struct file *file,
4130		      struct btrfs_ioctl_defrag_range_args *range,
4131		      u64 newer_than, unsigned long max_pages);
4132void btrfs_get_block_group_info(struct list_head *groups_list,
4133				struct btrfs_ioctl_space_info *space);
4134void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4135			       struct btrfs_ioctl_balance_args *bargs);
4136ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
4137			   struct file *dst_file, u64 dst_loff);
4138
4139/* file.c */
4140int btrfs_auto_defrag_init(void);
4141void btrfs_auto_defrag_exit(void);
4142int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
4143			   struct inode *inode);
4144int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
4145void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
4146int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
4147void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
4148			     int skip_pinned);
4149extern const struct file_operations btrfs_file_operations;
4150int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
4151			 struct btrfs_root *root, struct inode *inode,
4152			 struct btrfs_path *path, u64 start, u64 end,
4153			 u64 *drop_end, int drop_cache,
4154			 int replace_extent,
4155			 u32 extent_item_size,
4156			 int *key_inserted);
4157int btrfs_drop_extents(struct btrfs_trans_handle *trans,
4158		       struct btrfs_root *root, struct inode *inode, u64 start,
4159		       u64 end, int drop_cache);
4160int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
4161			      struct inode *inode, u64 start, u64 end);
4162int btrfs_release_file(struct inode *inode, struct file *file);
4163int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
4164		      struct page **pages, size_t num_pages,
4165		      loff_t pos, size_t write_bytes,
4166		      struct extent_state **cached);
4167int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
4168ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
4169			      struct file *file_out, loff_t pos_out,
4170			      size_t len, unsigned int flags);
4171int btrfs_clone_file_range(struct file *file_in, loff_t pos_in,
4172			   struct file *file_out, loff_t pos_out, u64 len);
4173
4174/* tree-defrag.c */
4175int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
4176			struct btrfs_root *root);
4177
4178/* sysfs.c */
4179int btrfs_init_sysfs(void);
4180void btrfs_exit_sysfs(void);
4181int btrfs_sysfs_add_mounted(struct btrfs_fs_info *fs_info);
4182void btrfs_sysfs_remove_mounted(struct btrfs_fs_info *fs_info);
4183
4184/* xattr.c */
4185ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
4186
4187/* super.c */
4188int btrfs_parse_options(struct btrfs_root *root, char *options,
4189			unsigned long new_flags);
4190int btrfs_sync_fs(struct super_block *sb, int wait);
4191
4192#ifdef CONFIG_PRINTK
4193__printf(2, 3)
4194void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
4195#else
4196static inline __printf(2, 3)
4197void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
4198{
4199}
4200#endif
4201
4202#define btrfs_emerg(fs_info, fmt, args...) \
4203	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
4204#define btrfs_alert(fs_info, fmt, args...) \
4205	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
4206#define btrfs_crit(fs_info, fmt, args...) \
4207	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
4208#define btrfs_err(fs_info, fmt, args...) \
4209	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
4210#define btrfs_warn(fs_info, fmt, args...) \
4211	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
4212#define btrfs_notice(fs_info, fmt, args...) \
4213	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
4214#define btrfs_info(fs_info, fmt, args...) \
4215	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
4216
4217/*
4218 * Wrappers that use printk_in_rcu
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4219 */
4220#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
4221	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
4222#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
4223	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
4224#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
4225	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
4226#define btrfs_err_in_rcu(fs_info, fmt, args...) \
4227	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
4228#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
4229	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
4230#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
4231	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
4232#define btrfs_info_in_rcu(fs_info, fmt, args...) \
4233	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
4234
4235/*
4236 * Wrappers that use a ratelimited printk_in_rcu
4237 */
4238#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
4239	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
4240#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
4241	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
4242#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
4243	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
4244#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
4245	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
4246#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
4247	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
4248#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
4249	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
4250#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
4251	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
4252
4253/*
4254 * Wrappers that use a ratelimited printk
 
 
 
4255 */
4256#define btrfs_emerg_rl(fs_info, fmt, args...) \
4257	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
4258#define btrfs_alert_rl(fs_info, fmt, args...) \
4259	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
4260#define btrfs_crit_rl(fs_info, fmt, args...) \
4261	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
4262#define btrfs_err_rl(fs_info, fmt, args...) \
4263	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
4264#define btrfs_warn_rl(fs_info, fmt, args...) \
4265	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
4266#define btrfs_notice_rl(fs_info, fmt, args...) \
4267	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
4268#define btrfs_info_rl(fs_info, fmt, args...) \
4269	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
4270#ifdef DEBUG
4271#define btrfs_debug(fs_info, fmt, args...) \
4272	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
4273#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
4274	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
4275#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
4276	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
4277#define btrfs_debug_rl(fs_info, fmt, args...) \
4278	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
4279#else
4280#define btrfs_debug(fs_info, fmt, args...) \
4281    no_printk(KERN_DEBUG fmt, ##args)
4282#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
4283	no_printk(KERN_DEBUG fmt, ##args)
4284#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
4285	no_printk(KERN_DEBUG fmt, ##args)
4286#define btrfs_debug_rl(fs_info, fmt, args...) \
4287	no_printk(KERN_DEBUG fmt, ##args)
4288#endif
4289
4290#define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
4291do {							\
4292	rcu_read_lock();				\
4293	btrfs_printk(fs_info, fmt, ##args);		\
4294	rcu_read_unlock();				\
4295} while (0)
4296
4297#define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
4298do {								\
4299	static DEFINE_RATELIMIT_STATE(_rs,			\
4300		DEFAULT_RATELIMIT_INTERVAL,			\
4301		DEFAULT_RATELIMIT_BURST);       		\
4302	if (__ratelimit(&_rs))					\
4303		btrfs_printk(fs_info, fmt, ##args);		\
4304} while (0)
4305
4306#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
4307do {								\
4308	rcu_read_lock();					\
4309	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
4310	rcu_read_unlock();					\
4311} while (0)
4312
4313#ifdef CONFIG_BTRFS_ASSERT
4314
4315__cold
4316static inline void assfail(char *expr, char *file, int line)
4317{
4318	pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
4319	       expr, file, line);
4320	BUG();
4321}
4322
4323#define ASSERT(expr)	\
4324	(likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
4325#else
4326#define ASSERT(expr)	((void)0)
4327#endif
4328
4329#define btrfs_assert()
4330__printf(5, 6)
4331__cold
4332void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
4333		     unsigned int line, int errno, const char *fmt, ...);
4334
4335const char *btrfs_decode_error(int errno);
4336
4337__cold
4338void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
4339			       struct btrfs_root *root, const char *function,
4340			       unsigned int line, int errno);
4341
4342#define btrfs_set_fs_incompat(__fs_info, opt) \
4343	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4344
4345static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
4346					   u64 flag)
4347{
4348	struct btrfs_super_block *disk_super;
4349	u64 features;
4350
4351	disk_super = fs_info->super_copy;
4352	features = btrfs_super_incompat_flags(disk_super);
4353	if (!(features & flag)) {
4354		spin_lock(&fs_info->super_lock);
4355		features = btrfs_super_incompat_flags(disk_super);
4356		if (!(features & flag)) {
4357			features |= flag;
4358			btrfs_set_super_incompat_flags(disk_super, features);
4359			btrfs_info(fs_info, "setting %llu feature flag",
4360					 flag);
4361		}
4362		spin_unlock(&fs_info->super_lock);
4363	}
4364}
4365
4366#define btrfs_clear_fs_incompat(__fs_info, opt) \
4367	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4368
4369static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
4370					     u64 flag)
4371{
4372	struct btrfs_super_block *disk_super;
4373	u64 features;
4374
4375	disk_super = fs_info->super_copy;
4376	features = btrfs_super_incompat_flags(disk_super);
4377	if (features & flag) {
4378		spin_lock(&fs_info->super_lock);
4379		features = btrfs_super_incompat_flags(disk_super);
4380		if (features & flag) {
4381			features &= ~flag;
4382			btrfs_set_super_incompat_flags(disk_super, features);
4383			btrfs_info(fs_info, "clearing %llu feature flag",
4384					 flag);
4385		}
4386		spin_unlock(&fs_info->super_lock);
4387	}
4388}
4389
4390#define btrfs_fs_incompat(fs_info, opt) \
4391	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4392
4393static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
4394{
4395	struct btrfs_super_block *disk_super;
4396	disk_super = fs_info->super_copy;
4397	return !!(btrfs_super_incompat_flags(disk_super) & flag);
4398}
4399
4400#define btrfs_set_fs_compat_ro(__fs_info, opt) \
4401	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4402
4403static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
4404					    u64 flag)
4405{
4406	struct btrfs_super_block *disk_super;
4407	u64 features;
4408
4409	disk_super = fs_info->super_copy;
4410	features = btrfs_super_compat_ro_flags(disk_super);
4411	if (!(features & flag)) {
4412		spin_lock(&fs_info->super_lock);
4413		features = btrfs_super_compat_ro_flags(disk_super);
4414		if (!(features & flag)) {
4415			features |= flag;
4416			btrfs_set_super_compat_ro_flags(disk_super, features);
4417			btrfs_info(fs_info, "setting %llu ro feature flag",
4418				   flag);
4419		}
4420		spin_unlock(&fs_info->super_lock);
4421	}
4422}
4423
4424#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
4425	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4426
4427static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
4428					      u64 flag)
4429{
4430	struct btrfs_super_block *disk_super;
4431	u64 features;
4432
4433	disk_super = fs_info->super_copy;
4434	features = btrfs_super_compat_ro_flags(disk_super);
4435	if (features & flag) {
4436		spin_lock(&fs_info->super_lock);
4437		features = btrfs_super_compat_ro_flags(disk_super);
4438		if (features & flag) {
4439			features &= ~flag;
4440			btrfs_set_super_compat_ro_flags(disk_super, features);
4441			btrfs_info(fs_info, "clearing %llu ro feature flag",
4442				   flag);
4443		}
4444		spin_unlock(&fs_info->super_lock);
4445	}
4446}
4447
4448#define btrfs_fs_compat_ro(fs_info, opt) \
4449	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4450
4451static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
4452{
4453	struct btrfs_super_block *disk_super;
4454	disk_super = fs_info->super_copy;
4455	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
4456}
4457
4458/*
4459 * Call btrfs_abort_transaction as early as possible when an error condition is
4460 * detected, that way the exact line number is reported.
4461 */
4462#define btrfs_abort_transaction(trans, root, errno)		\
4463do {								\
4464	/* Report first abort since mount */			\
4465	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
4466			&((root)->fs_info->fs_state))) {	\
4467		WARN(1, KERN_DEBUG				\
4468		"BTRFS: Transaction aborted (error %d)\n",	\
4469		(errno));					\
4470	}							\
4471	__btrfs_abort_transaction((trans), (root), __func__,	\
4472				  __LINE__, (errno));		\
4473} while (0)
4474
4475#define btrfs_std_error(fs_info, errno, fmt, args...)		\
4476do {								\
4477	__btrfs_std_error((fs_info), __func__, __LINE__,	\
4478			  (errno), fmt, ##args);		\
4479} while (0)
4480
4481__printf(5, 6)
4482__cold
4483void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4484		   unsigned int line, int errno, const char *fmt, ...);
4485
4486/*
4487 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4488 * will panic().  Otherwise we BUG() here.
4489 */
4490#define btrfs_panic(fs_info, errno, fmt, args...)			\
4491do {									\
4492	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
4493	BUG();								\
4494} while (0)
4495
4496/* acl.c */
4497#ifdef CONFIG_BTRFS_FS_POSIX_ACL
4498struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4499int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4500int btrfs_init_acl(struct btrfs_trans_handle *trans,
4501		   struct inode *inode, struct inode *dir);
4502#else
4503#define btrfs_get_acl NULL
4504#define btrfs_set_acl NULL
4505static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4506				 struct inode *inode, struct inode *dir)
4507{
4508	return 0;
4509}
4510#endif
4511
4512/* relocation.c */
4513int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4514int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4515			  struct btrfs_root *root);
4516int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4517			    struct btrfs_root *root);
4518int btrfs_recover_relocation(struct btrfs_root *root);
4519int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4520int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4521			  struct btrfs_root *root, struct extent_buffer *buf,
4522			  struct extent_buffer *cow);
4523void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4524			      u64 *bytes_to_reserve);
4525int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4526			      struct btrfs_pending_snapshot *pending);
4527
4528/* scrub.c */
4529int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4530		    u64 end, struct btrfs_scrub_progress *progress,
4531		    int readonly, int is_dev_replace);
4532void btrfs_scrub_pause(struct btrfs_root *root);
4533void btrfs_scrub_continue(struct btrfs_root *root);
4534int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4535int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4536			   struct btrfs_device *dev);
4537int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4538			 struct btrfs_scrub_progress *progress);
4539
4540/* dev-replace.c */
4541void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4542void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4543void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4544
4545static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4546{
4547	btrfs_bio_counter_sub(fs_info, 1);
4548}
4549
4550/* reada.c */
4551struct reada_control {
4552	struct btrfs_root	*root;		/* tree to prefetch */
4553	struct btrfs_key	key_start;
4554	struct btrfs_key	key_end;	/* exclusive */
4555	atomic_t		elems;
4556	struct kref		refcnt;
4557	wait_queue_head_t	wait;
4558};
4559struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4560			      struct btrfs_key *start, struct btrfs_key *end);
4561int btrfs_reada_wait(void *handle);
4562void btrfs_reada_detach(void *handle);
4563int btree_readahead_hook(struct btrfs_fs_info *fs_info,
4564			 struct extent_buffer *eb, u64 start, int err);
4565
4566static inline int is_fstree(u64 rootid)
4567{
4568	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4569	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4570	      !btrfs_qgroup_level(rootid)))
4571		return 1;
4572	return 0;
4573}
4574
4575static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4576{
4577	return signal_pending(current);
4578}
4579
4580/* Sanity test specific functions */
4581#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4582void btrfs_test_destroy_inode(struct inode *inode);
4583#endif
 
4584
4585static inline int btrfs_test_is_dummy_root(struct btrfs_root *root)
4586{
4587#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4588	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
4589		return 1;
4590#endif
4591	return 0;
4592}
 
 
 
 
4593
4594#endif