Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
 
 
 
 
 
 
 
 
 
 
 
 
  9#include <linux/pagemap.h>
 10#include "locking.h"
 11#include "fs.h"
 12#include "accessors.h"
 
 13
 14struct btrfs_trans_handle;
 15struct btrfs_transaction;
 16struct btrfs_pending_snapshot;
 17struct btrfs_delayed_ref_root;
 18struct btrfs_space_info;
 19struct btrfs_block_group;
 
 
 20struct btrfs_ordered_sum;
 21struct btrfs_ref;
 22struct btrfs_bio;
 23struct btrfs_ioctl_encoded_io_args;
 24struct btrfs_device;
 25struct btrfs_fs_devices;
 26struct btrfs_balance_control;
 27struct btrfs_delayed_root;
 28struct reloc_control;
 29
 30/* Read ahead values for struct btrfs_path.reada */
 31enum {
 32	READA_NONE,
 33	READA_BACK,
 34	READA_FORWARD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35	/*
 36	 * Similar to READA_FORWARD but unlike it:
 37	 *
 38	 * 1) It will trigger readahead even for leaves that are not close to
 39	 *    each other on disk;
 40	 * 2) It also triggers readahead for nodes;
 41	 * 3) During a search, even when a node or leaf is already in memory, it
 42	 *    will still trigger readahead for other nodes and leaves that follow
 43	 *    it.
 44	 *
 45	 * This is meant to be used only when we know we are iterating over the
 46	 * entire tree or a very large part of it.
 47	 */
 48	READA_FORWARD_ALWAYS,
 49};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 51/*
 52 * btrfs_paths remember the path taken from the root down to the leaf.
 53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 54 * to any other levels that are present.
 55 *
 56 * The slots array records the index of the item or block pointer
 57 * used while walking the tree.
 58 */
 59struct btrfs_path {
 60	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 61	int slots[BTRFS_MAX_LEVEL];
 62	/* if there is real range locking, this locks field will change */
 63	u8 locks[BTRFS_MAX_LEVEL];
 64	u8 reada;
 65	/* keep some upper locks as we walk down */
 66	u8 lowest_level;
 67
 68	/*
 69	 * set by btrfs_split_item, tells search_slot to keep all locks
 70	 * and to force calls to keep space in the nodes
 71	 */
 72	unsigned int search_for_split:1;
 73	unsigned int keep_locks:1;
 74	unsigned int skip_locking:1;
 
 75	unsigned int search_commit_root:1;
 76	unsigned int need_commit_sem:1;
 77	unsigned int skip_release_on_error:1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78	/*
 79	 * Indicate that new item (btrfs_search_slot) is extending already
 80	 * existing item and ins_len contains only the data size and not item
 81	 * header (ie. sizeof(struct btrfs_item) is not included).
 
 
 
 
 
 
 82	 */
 83	unsigned int search_for_extension:1;
 84	/* Stop search if any locks need to be taken (for read) */
 85	unsigned int nowait:1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86};
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88/*
 89 * The state of btrfs root
 90 */
 91enum {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92	/*
 93	 * btrfs_record_root_in_trans is a multi-step process, and it can race
 94	 * with the balancing code.   But the race is very small, and only the
 95	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
 96	 * is used to tell us when more checks are required
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97	 */
 98	BTRFS_ROOT_IN_TRANS_SETUP,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99
100	/*
101	 * Set if tree blocks of this root can be shared by other roots.
102	 * Only subvolume trees and their reloc trees have this bit set.
103	 * Conflicts with TRACK_DIRTY bit.
 
 
 
 
 
 
 
 
 
 
 
 
 
104	 *
105	 * This affects two things:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106	 *
107	 * - How balance works
108	 *   For shareable roots, we need to use reloc tree and do path
109	 *   replacement for balance, and need various pre/post hooks for
110	 *   snapshot creation to handle them.
111	 *
112	 *   While for non-shareable trees, we just simply do a tree search
113	 *   with COW.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114	 *
115	 * - How dirty roots are tracked
116	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
117	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
118	 *   don't need to set this manually.
119	 */
120	BTRFS_ROOT_SHAREABLE,
121	BTRFS_ROOT_TRACK_DIRTY,
122	BTRFS_ROOT_IN_RADIX,
123	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124	BTRFS_ROOT_DEFRAG_RUNNING,
125	BTRFS_ROOT_FORCE_COW,
126	BTRFS_ROOT_MULTI_LOG_TASKS,
127	BTRFS_ROOT_DIRTY,
128	BTRFS_ROOT_DELETING,
129
130	/*
131	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
 
 
 
 
132	 *
133	 * Set for the subvolume tree owning the reloc tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134	 */
135	BTRFS_ROOT_DEAD_RELOC_TREE,
136	/* Mark dead root stored on device whose cleanup needs to be resumed */
137	BTRFS_ROOT_DEAD_TREE,
138	/* The root has a log tree. Used for subvolume roots and the tree root. */
139	BTRFS_ROOT_HAS_LOG_TREE,
140	/* Qgroup flushing is in progress */
141	BTRFS_ROOT_QGROUP_FLUSHING,
142	/* We started the orphan cleanup for this root. */
143	BTRFS_ROOT_ORPHAN_CLEANUP,
144	/* This root has a drop operation that was started previously. */
145	BTRFS_ROOT_UNFINISHED_DROP,
146	/* This reloc root needs to have its buffers lockdep class reset. */
147	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
153 */
154struct btrfs_qgroup_swapped_blocks {
155	spinlock_t lock;
156	/* RM_EMPTY_ROOT() of above blocks[] */
157	bool swapped;
158	struct rb_root blocks[BTRFS_MAX_LEVEL];
159};
160
161/*
162 * in ram representation of the tree.  extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166	struct rb_node rb_node;
167
168	struct extent_buffer *node;
169
170	struct extent_buffer *commit_root;
171	struct btrfs_root *log_root;
172	struct btrfs_root *reloc_root;
173
174	unsigned long state;
175	struct btrfs_root_item root_item;
176	struct btrfs_key root_key;
177	struct btrfs_fs_info *fs_info;
178	struct extent_io_tree dirty_log_pages;
179
 
 
180	struct mutex objectid_mutex;
181
182	spinlock_t accounting_lock;
183	struct btrfs_block_rsv *block_rsv;
184
 
 
 
 
 
 
 
 
 
185	struct mutex log_mutex;
186	wait_queue_head_t log_writer_wait;
187	wait_queue_head_t log_commit_wait[2];
188	struct list_head log_ctxs[2];
189	/* Used only for log trees of subvolumes, not for the log root tree */
190	atomic_t log_writers;
191	atomic_t log_commit[2];
192	/* Used only for log trees of subvolumes, not for the log root tree */
193	atomic_t log_batch;
194	/*
195	 * Protected by the 'log_mutex' lock but can be read without holding
196	 * that lock to avoid unnecessary lock contention, in which case it
197	 * should be read using btrfs_get_root_log_transid() except if it's a
198	 * log tree in which case it can be directly accessed. Updates to this
199	 * field should always use btrfs_set_root_log_transid(), except for log
200	 * trees where the field can be updated directly.
201	 */
202	int log_transid;
203	/* No matter the commit succeeds or not*/
204	int log_transid_committed;
205	/*
206	 * Just be updated when the commit succeeds. Use
207	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208	 * to access this field.
209	 */
210	int last_log_commit;
211	pid_t log_start_pid;
 
212
 
213	u64 last_trans;
214
215	u64 free_objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217	struct btrfs_key defrag_progress;
218	struct btrfs_key defrag_max;
 
 
219
220	/* The dirty list is only used by non-shareable roots */
221	struct list_head dirty_list;
222
223	struct list_head root_list;
224
 
 
 
 
 
 
 
 
 
225	spinlock_t inode_lock;
226	/* red-black tree that keeps track of in-memory inodes */
227	struct rb_root inode_tree;
228
229	/*
230	 * Xarray that keeps track of delayed nodes of every inode, protected
231	 * by @inode_lock.
232	 */
233	struct xarray delayed_nodes;
234	/*
235	 * right now this just gets used so that a root has its own devid
236	 * for stat.  It may be used for more later
237	 */
238	dev_t anon_dev;
239
 
 
240	spinlock_t root_item_lock;
241	refcount_t refs;
242
243	struct mutex delalloc_mutex;
244	spinlock_t delalloc_lock;
245	/*
246	 * all of the inodes that have delalloc bytes.  It is possible for
247	 * this list to be empty even when there is still dirty data=ordered
248	 * extents waiting to finish IO.
249	 */
250	struct list_head delalloc_inodes;
251	struct list_head delalloc_root;
252	u64 nr_delalloc_inodes;
253
254	struct mutex ordered_extent_mutex;
255	/*
256	 * this is used by the balancing code to wait for all the pending
257	 * ordered extents
258	 */
259	spinlock_t ordered_extent_lock;
260
261	/*
262	 * all of the data=ordered extents pending writeback
263	 * these can span multiple transactions and basically include
264	 * every dirty data page that isn't from nodatacow
265	 */
266	struct list_head ordered_extents;
267	struct list_head ordered_root;
268	u64 nr_ordered_extents;
269
270	/*
271	 * Not empty if this subvolume root has gone through tree block swap
272	 * (relocation)
273	 *
274	 * Will be used by reloc_control::dirty_subvol_roots.
275	 */
276	struct list_head reloc_dirty_list;
277
278	/*
279	 * Number of currently running SEND ioctls to prevent
280	 * manipulation with the read-only status via SUBVOL_SETFLAGS
281	 */
282	int send_in_progress;
 
 
 
 
 
 
 
 
 
 
 
283	/*
284	 * Number of currently running deduplication operations that have a
285	 * destination inode belonging to this root. Protected by the lock
286	 * root_item_lock.
287	 */
288	int dedupe_in_progress;
289	/* For exclusion of snapshot creation and nocow writes */
290	struct btrfs_drew_lock snapshot_lock;
291
292	atomic_t snapshot_force_cow;
 
 
 
 
 
293
294	/* For qgroup metadata reserved space */
295	spinlock_t qgroup_meta_rsv_lock;
296	u64 qgroup_meta_rsv_pertrans;
297	u64 qgroup_meta_rsv_prealloc;
298	wait_queue_head_t qgroup_flush_wait;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
300	/* Number of active swapfiles */
301	atomic_t nr_swapfiles;
 
 
 
 
 
 
 
 
 
 
302
303	/* Record pairs of swapped blocks for qgroup */
304	struct btrfs_qgroup_swapped_blocks swapped_blocks;
 
 
 
305
306	/* Used only by log trees, when logging csum items */
307	struct extent_io_tree log_csum_range;
 
 
 
308
309	/* Used in simple quotas, track root during relocation. */
310	u64 relocation_src_root;
 
 
 
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313	u64 alloc_bytenr;
314#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
316#ifdef CONFIG_BTRFS_DEBUG
317	struct list_head leak_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
322{
323	/* Byte-swap the constant at compile time, root_item::flags is LE */
324	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
328{
329	/* Byte-swap the constant at compile time, root_item::flags is LE */
330	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
 
334{
335	return root->root_key.objectid;
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340	return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
344{
345	WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
349{
350	return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
 
354{
355	WRITE_ONCE(root->last_log_commit, commit_id);
 
356}
357
 
 
 
 
 
 
 
 
 
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363	u64 disk_offset;
364	u64 disk_len;
365	u64 data_offset;
366	u64 data_len;
367	u64 file_offset;
368	/* Pointer to a file extent item of type regular or prealloc. */
369	char *extent_buf;
370	/*
371	 * Set to true when attempting to replace a file range with a new extent
372	 * described by this structure, set to false when attempting to clone an
373	 * existing extent into a file range.
374	 */
375	bool is_new_extent;
376	/* Indicate if we should update the inode's mtime and ctime. */
377	bool update_times;
378	/* Meaningful only if is_new_extent is true. */
379	int qgroup_reserved;
380	/*
381	 * Meaningful only if is_new_extent is true.
382	 * Used to track how many extent items we have already inserted in a
383	 * subvolume tree that refer to the extent described by this structure,
384	 * so that we know when to create a new delayed ref or update an existing
385	 * one.
386	 */
387	int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392	/* Input parameters */
 
 
 
393
394	/*
395	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396	 * If 'replace_extent' is true, this must not be NULL. Also the path
397	 * is always released except if 'replace_extent' is true and
398	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399	 * the path is kept locked.
400	 */
401	struct btrfs_path *path;
402	/* Start offset of the range to drop extents from */
403	u64 start;
404	/* End (exclusive, last byte + 1) of the range to drop extents from */
405	u64 end;
406	/* If true drop all the extent maps in the range */
407	bool drop_cache;
408	/*
409	 * If true it means we want to insert a new extent after dropping all
410	 * the extents in the range. If this is true, the 'extent_item_size'
411	 * parameter must be set as well and the 'extent_inserted' field will
412	 * be set to true by btrfs_drop_extents() if it could insert the new
413	 * extent.
414	 * Note: when this is set to true the path must not be NULL.
415	 */
416	bool replace_extent;
417	/*
418	 * Used if 'replace_extent' is true. Size of the file extent item to
419	 * insert after dropping all existing extents in the range
420	 */
421	u32 extent_item_size;
422
423	/* Output parameters */
 
 
 
 
 
424
425	/*
426	 * Set to the minimum between the input parameter 'end' and the end
427	 * (exclusive, last byte + 1) of the last dropped extent. This is always
428	 * set even if btrfs_drop_extents() returns an error.
429	 */
430	u64 drop_end;
431	/*
432	 * The number of allocated bytes found in the range. This can be smaller
433	 * than the range's length when there are holes in the range.
434	 */
435	u64 bytes_found;
436	/*
437	 * Only set if 'replace_extent' is true. Set to true if we were able
438	 * to insert a replacement extent after dropping all extents in the
439	 * range, otherwise set to false by btrfs_drop_extents().
440	 * Also, if btrfs_drop_extents() has set this to true it means it
441	 * returned with the path locked, otherwise if it has set this to
442	 * false it has returned with the path released.
443	 */
444	bool extent_inserted;
445};
446
447struct btrfs_file_private {
448	void *filldir_buf;
449	u64 last_index;
450	struct extent_state *llseek_cached_state;
451};
 
 
452
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
 
454{
455	return info->nodesize - sizeof(struct btrfs_header);
 
 
456}
457
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
 
459{
460	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
 
 
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
 
464{
465	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
 
 
466}
467
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
 
 
469{
470	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
 
 
471}
472
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474				((bytes) >> (fs_info)->sectorsize_bits)
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
477{
478	return mapping_gfp_constraint(mapping, ~__GFP_FS);
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482				   u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484			 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492		     const struct btrfs_key *key, int *slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
 
 
 
495
496#ifdef __LITTLE_ENDIAN
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
 
 
 
 
 
 
 
 
 
 
 
 
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503				  const struct btrfs_key *k2)
 
504{
505	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
506
507	return btrfs_comp_cpu_keys(k1, k2);
 
 
 
 
 
 
 
 
 
 
 
 
 
508}
509
510#else
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514				  const struct btrfs_key *k2)
 
515{
516	struct btrfs_key k1;
517
518	btrfs_disk_key_to_cpu(&k1, disk);
 
 
 
 
 
519
520	return btrfs_comp_cpu_keys(&k1, k2);
 
 
 
 
 
 
 
521}
522
523#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525int btrfs_previous_item(struct btrfs_root *root,
526			struct btrfs_path *path, u64 min_objectid,
527			int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529			struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531			     struct btrfs_path *path,
532			     const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
 
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535			struct btrfs_key *key, int lowest_level,
536			u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538			 struct btrfs_path *path,
539			 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541					   int slot);
542
 
 
 
 
 
 
 
 
 
 
 
 
 
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544		    struct btrfs_root *root, struct extent_buffer *buf,
545		    struct extent_buffer *parent, int parent_slot,
546		    struct extent_buffer **cow_ret,
547		    enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549			  struct btrfs_root *root,
550			  struct extent_buffer *buf,
551			  struct extent_buffer *parent, int parent_slot,
552			  struct extent_buffer **cow_ret,
553			  u64 search_start, u64 empty_size,
554			  enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556		      struct btrfs_root *root,
557		      struct extent_buffer *buf,
558		      struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560			       struct btrfs_root *root,
561			       struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563		  struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565		       struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567			 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569		     struct btrfs_root *root,
570		     struct btrfs_path *path,
571		     const struct btrfs_key *new_key,
572		     unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574			 struct btrfs_root *root,
575			 struct btrfs_path *path,
576			 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580		      const struct btrfs_key *key, struct btrfs_path *p,
581		      int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583			  struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585			       const struct btrfs_key *key,
586			       struct btrfs_path *p, int find_higher,
587			       int return_any);
 
 
 
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
 
 
 
 
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593		   struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595				 struct btrfs_root *root,
596				 struct btrfs_path *path)
597{
598	return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606	/*
607	 * Pointer to an array containing the keys of the items to insert (in
608	 * sorted order).
609	 */
610	const struct btrfs_key *keys;
611	/* Pointer to an array containing the data size for each item to insert. */
612	const u32 *data_sizes;
613	/*
614	 * The sum of data sizes for all items. The caller can compute this while
615	 * setting up the data_sizes array, so it ends up being more efficient
616	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617	 * doing it, as it would avoid an extra loop over a potentially large
618	 * array, and in the case of setup_item_for_insert(), we would be doing
619	 * it while holding a write lock on a leaf and often on upper level nodes
620	 * too, unnecessarily increasing the size of a critical section.
621	 */
622	u32 total_data_size;
623	/* Size of the keys and data_sizes arrays (number of items in the batch). */
624	int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628				 struct btrfs_root *root,
629				 struct btrfs_path *path,
630				 const struct btrfs_key *key,
631				 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633		      const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635			     struct btrfs_root *root,
636			     struct btrfs_path *path,
637			     const struct btrfs_item_batch *batch);
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640					  struct btrfs_root *root,
641					  struct btrfs_path *path,
642					  const struct btrfs_key *key,
643					  u32 data_size)
644{
645	struct btrfs_item_batch batch;
646
647	batch.keys = key;
648	batch.data_sizes = &data_size;
649	batch.total_data_size = data_size;
650	batch.nr = 1;
651
652	return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
 
 
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656			u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659			   struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662			      struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
666 *
667 * @root:	The root node of the tree.
668 * @key:	The key we are looking for.
669 * @found_key:	Will hold the found item.
670 * @path:	Holds the current slot/leaf.
671 * @iter_ret:	Contains the value returned from btrfs_search_slot or
672 * 		btrfs_get_next_valid_item, whichever was executed last.
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
684	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
685		(iter_ret) >= 0 &&						\
686		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687		(path)->slots[0]++						\
688	)
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699{
700	return btrfs_next_old_leaf(root, path, 0);
701}
 
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
704{
705	return btrfs_next_old_item(root, p, 0);
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708
709static inline int is_fstree(u64 rootid)
710{
711	if (rootid == BTRFS_FS_TREE_OBJECTID ||
712	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713	      !btrfs_qgroup_level(rootid)))
714		return 1;
715	return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page)		PagePrivate2(page)
736#define SetPageOrdered(page)		SetPagePrivate2(page)
737#define ClearPageOrdered(page)		ClearPagePrivate2(page)
738#define folio_test_ordered(folio)	folio_test_private_2(folio)
739#define folio_set_ordered(folio)	folio_set_private_2(folio)
740#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
741
742#endif
v3.15
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#ifndef __BTRFS_CTREE__
  20#define __BTRFS_CTREE__
  21
  22#include <linux/mm.h>
  23#include <linux/highmem.h>
  24#include <linux/fs.h>
  25#include <linux/rwsem.h>
  26#include <linux/semaphore.h>
  27#include <linux/completion.h>
  28#include <linux/backing-dev.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/kobject.h>
  32#include <trace/events/btrfs.h>
  33#include <asm/kmap_types.h>
  34#include <linux/pagemap.h>
  35#include <linux/btrfs.h>
  36#include "extent_io.h"
  37#include "extent_map.h"
  38#include "async-thread.h"
  39
  40struct btrfs_trans_handle;
  41struct btrfs_transaction;
  42struct btrfs_pending_snapshot;
  43extern struct kmem_cache *btrfs_trans_handle_cachep;
  44extern struct kmem_cache *btrfs_transaction_cachep;
  45extern struct kmem_cache *btrfs_bit_radix_cachep;
  46extern struct kmem_cache *btrfs_path_cachep;
  47extern struct kmem_cache *btrfs_free_space_cachep;
  48struct btrfs_ordered_sum;
 
 
 
 
 
 
 
 
  49
  50#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  51#define STATIC noinline
  52#else
  53#define STATIC static noinline
  54#endif
  55
  56#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
  57
  58#define BTRFS_MAX_MIRRORS 3
  59
  60#define BTRFS_MAX_LEVEL 8
  61
  62#define BTRFS_COMPAT_EXTENT_TREE_V0
  63
  64/*
  65 * files bigger than this get some pre-flushing when they are added
  66 * to the ordered operations list.  That way we limit the total
  67 * work done by the commit
  68 */
  69#define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
  70
  71/* holds pointers to all of the tree roots */
  72#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  73
  74/* stores information about which extents are in use, and reference counts */
  75#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  76
  77/*
  78 * chunk tree stores translations from logical -> physical block numbering
  79 * the super block points to the chunk tree
  80 */
  81#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  82
  83/*
  84 * stores information about which areas of a given device are in use.
  85 * one per device.  The tree of tree roots points to the device tree
  86 */
  87#define BTRFS_DEV_TREE_OBJECTID 4ULL
  88
  89/* one per subvolume, storing files and directories */
  90#define BTRFS_FS_TREE_OBJECTID 5ULL
  91
  92/* directory objectid inside the root tree */
  93#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  94
  95/* holds checksums of all the data extents */
  96#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  97
  98/* holds quota configuration and tracking */
  99#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
 100
 101/* for storing items that use the BTRFS_UUID_KEY* types */
 102#define BTRFS_UUID_TREE_OBJECTID 9ULL
 103
 104/* for storing balance parameters in the root tree */
 105#define BTRFS_BALANCE_OBJECTID -4ULL
 106
 107/* orhpan objectid for tracking unlinked/truncated files */
 108#define BTRFS_ORPHAN_OBJECTID -5ULL
 109
 110/* does write ahead logging to speed up fsyncs */
 111#define BTRFS_TREE_LOG_OBJECTID -6ULL
 112#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
 113
 114/* for space balancing */
 115#define BTRFS_TREE_RELOC_OBJECTID -8ULL
 116#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
 117
 118/*
 119 * extent checksums all have this objectid
 120 * this allows them to share the logging tree
 121 * for fsyncs
 122 */
 123#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
 124
 125/* For storing free space cache */
 126#define BTRFS_FREE_SPACE_OBJECTID -11ULL
 127
 128/*
 129 * The inode number assigned to the special inode for storing
 130 * free ino cache
 131 */
 132#define BTRFS_FREE_INO_OBJECTID -12ULL
 133
 134/* dummy objectid represents multiple objectids */
 135#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
 136
 137/*
 138 * All files have objectids in this range.
 139 */
 140#define BTRFS_FIRST_FREE_OBJECTID 256ULL
 141#define BTRFS_LAST_FREE_OBJECTID -256ULL
 142#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
 143
 144
 145/*
 146 * the device items go into the chunk tree.  The key is in the form
 147 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 148 */
 149#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 150
 151#define BTRFS_BTREE_INODE_OBJECTID 1
 152
 153#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 154
 155#define BTRFS_DEV_REPLACE_DEVID 0ULL
 156
 157/*
 158 * the max metadata block size.  This limit is somewhat artificial,
 159 * but the memmove costs go through the roof for larger blocks.
 160 */
 161#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
 162
 163/*
 164 * we can actually store much bigger names, but lets not confuse the rest
 165 * of linux
 166 */
 167#define BTRFS_NAME_LEN 255
 168
 169/*
 170 * Theoretical limit is larger, but we keep this down to a sane
 171 * value. That should limit greatly the possibility of collisions on
 172 * inode ref items.
 173 */
 174#define BTRFS_LINK_MAX 65535U
 175
 176/* 32 bytes in various csum fields */
 177#define BTRFS_CSUM_SIZE 32
 178
 179/* csum types */
 180#define BTRFS_CSUM_TYPE_CRC32	0
 181
 182static int btrfs_csum_sizes[] = { 4, 0 };
 183
 184/* four bytes for CRC32 */
 185#define BTRFS_EMPTY_DIR_SIZE 0
 186
 187/* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
 188#define REQ_GET_READ_MIRRORS	(1 << 30)
 189
 190#define BTRFS_FT_UNKNOWN	0
 191#define BTRFS_FT_REG_FILE	1
 192#define BTRFS_FT_DIR		2
 193#define BTRFS_FT_CHRDEV		3
 194#define BTRFS_FT_BLKDEV		4
 195#define BTRFS_FT_FIFO		5
 196#define BTRFS_FT_SOCK		6
 197#define BTRFS_FT_SYMLINK	7
 198#define BTRFS_FT_XATTR		8
 199#define BTRFS_FT_MAX		9
 200
 201/* ioprio of readahead is set to idle */
 202#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
 203
 204#define BTRFS_DIRTY_METADATA_THRESH	(32 * 1024 * 1024)
 205
 206/*
 207 * The key defines the order in the tree, and so it also defines (optimal)
 208 * block layout.
 209 *
 210 * objectid corresponds to the inode number.
 211 *
 212 * type tells us things about the object, and is a kind of stream selector.
 213 * so for a given inode, keys with type of 1 might refer to the inode data,
 214 * type of 2 may point to file data in the btree and type == 3 may point to
 215 * extents.
 216 *
 217 * offset is the starting byte offset for this key in the stream.
 218 *
 219 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 220 * in cpu native order.  Otherwise they are identical and their sizes
 221 * should be the same (ie both packed)
 222 */
 223struct btrfs_disk_key {
 224	__le64 objectid;
 225	u8 type;
 226	__le64 offset;
 227} __attribute__ ((__packed__));
 228
 229struct btrfs_key {
 230	u64 objectid;
 231	u8 type;
 232	u64 offset;
 233} __attribute__ ((__packed__));
 234
 235struct btrfs_mapping_tree {
 236	struct extent_map_tree map_tree;
 237};
 238
 239struct btrfs_dev_item {
 240	/* the internal btrfs device id */
 241	__le64 devid;
 242
 243	/* size of the device */
 244	__le64 total_bytes;
 245
 246	/* bytes used */
 247	__le64 bytes_used;
 248
 249	/* optimal io alignment for this device */
 250	__le32 io_align;
 251
 252	/* optimal io width for this device */
 253	__le32 io_width;
 254
 255	/* minimal io size for this device */
 256	__le32 sector_size;
 257
 258	/* type and info about this device */
 259	__le64 type;
 260
 261	/* expected generation for this device */
 262	__le64 generation;
 263
 264	/*
 265	 * starting byte of this partition on the device,
 266	 * to allow for stripe alignment in the future
 
 
 
 
 
 
 
 
 
 267	 */
 268	__le64 start_offset;
 269
 270	/* grouping information for allocation decisions */
 271	__le32 dev_group;
 272
 273	/* seek speed 0-100 where 100 is fastest */
 274	u8 seek_speed;
 275
 276	/* bandwidth 0-100 where 100 is fastest */
 277	u8 bandwidth;
 278
 279	/* btrfs generated uuid for this device */
 280	u8 uuid[BTRFS_UUID_SIZE];
 281
 282	/* uuid of FS who owns this device */
 283	u8 fsid[BTRFS_UUID_SIZE];
 284} __attribute__ ((__packed__));
 285
 286struct btrfs_stripe {
 287	__le64 devid;
 288	__le64 offset;
 289	u8 dev_uuid[BTRFS_UUID_SIZE];
 290} __attribute__ ((__packed__));
 291
 292struct btrfs_chunk {
 293	/* size of this chunk in bytes */
 294	__le64 length;
 295
 296	/* objectid of the root referencing this chunk */
 297	__le64 owner;
 298
 299	__le64 stripe_len;
 300	__le64 type;
 301
 302	/* optimal io alignment for this chunk */
 303	__le32 io_align;
 304
 305	/* optimal io width for this chunk */
 306	__le32 io_width;
 307
 308	/* minimal io size for this chunk */
 309	__le32 sector_size;
 310
 311	/* 2^16 stripes is quite a lot, a second limit is the size of a single
 312	 * item in the btree
 313	 */
 314	__le16 num_stripes;
 315
 316	/* sub stripes only matter for raid10 */
 317	__le16 sub_stripes;
 318	struct btrfs_stripe stripe;
 319	/* additional stripes go here */
 320} __attribute__ ((__packed__));
 321
 322#define BTRFS_FREE_SPACE_EXTENT	1
 323#define BTRFS_FREE_SPACE_BITMAP	2
 324
 325struct btrfs_free_space_entry {
 326	__le64 offset;
 327	__le64 bytes;
 328	u8 type;
 329} __attribute__ ((__packed__));
 330
 331struct btrfs_free_space_header {
 332	struct btrfs_disk_key location;
 333	__le64 generation;
 334	__le64 num_entries;
 335	__le64 num_bitmaps;
 336} __attribute__ ((__packed__));
 337
 338static inline unsigned long btrfs_chunk_item_size(int num_stripes)
 339{
 340	BUG_ON(num_stripes == 0);
 341	return sizeof(struct btrfs_chunk) +
 342		sizeof(struct btrfs_stripe) * (num_stripes - 1);
 343}
 344
 345#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
 346#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
 347
 348/*
 349 * File system states
 350 */
 351#define BTRFS_FS_STATE_ERROR		0
 352#define BTRFS_FS_STATE_REMOUNTING	1
 353#define BTRFS_FS_STATE_TRANS_ABORTED	2
 354#define BTRFS_FS_STATE_DEV_REPLACING	3
 355
 356/* Super block flags */
 357/* Errors detected */
 358#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
 359
 360#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
 361#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
 362
 363#define BTRFS_BACKREF_REV_MAX		256
 364#define BTRFS_BACKREF_REV_SHIFT		56
 365#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
 366					 BTRFS_BACKREF_REV_SHIFT)
 367
 368#define BTRFS_OLD_BACKREF_REV		0
 369#define BTRFS_MIXED_BACKREF_REV		1
 370
 371/*
 372 * every tree block (leaf or node) starts with this header.
 373 */
 374struct btrfs_header {
 375	/* these first four must match the super block */
 376	u8 csum[BTRFS_CSUM_SIZE];
 377	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
 378	__le64 bytenr; /* which block this node is supposed to live in */
 379	__le64 flags;
 380
 381	/* allowed to be different from the super from here on down */
 382	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 383	__le64 generation;
 384	__le64 owner;
 385	__le32 nritems;
 386	u8 level;
 387} __attribute__ ((__packed__));
 388
 389#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
 390				      sizeof(struct btrfs_header)) / \
 391				     sizeof(struct btrfs_key_ptr))
 392#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
 393#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
 394#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
 395					sizeof(struct btrfs_item) - \
 396					sizeof(struct btrfs_file_extent_item))
 397#define BTRFS_MAX_XATTR_SIZE(r)	(BTRFS_LEAF_DATA_SIZE(r) - \
 398				 sizeof(struct btrfs_item) -\
 399				 sizeof(struct btrfs_dir_item))
 400
 401
 402/*
 403 * this is a very generous portion of the super block, giving us
 404 * room to translate 14 chunks with 3 stripes each.
 405 */
 406#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
 407#define BTRFS_LABEL_SIZE 256
 408
 409/*
 410 * just in case we somehow lose the roots and are not able to mount,
 411 * we store an array of the roots from previous transactions
 412 * in the super.
 413 */
 414#define BTRFS_NUM_BACKUP_ROOTS 4
 415struct btrfs_root_backup {
 416	__le64 tree_root;
 417	__le64 tree_root_gen;
 418
 419	__le64 chunk_root;
 420	__le64 chunk_root_gen;
 421
 422	__le64 extent_root;
 423	__le64 extent_root_gen;
 424
 425	__le64 fs_root;
 426	__le64 fs_root_gen;
 427
 428	__le64 dev_root;
 429	__le64 dev_root_gen;
 430
 431	__le64 csum_root;
 432	__le64 csum_root_gen;
 433
 434	__le64 total_bytes;
 435	__le64 bytes_used;
 436	__le64 num_devices;
 437	/* future */
 438	__le64 unused_64[4];
 439
 440	u8 tree_root_level;
 441	u8 chunk_root_level;
 442	u8 extent_root_level;
 443	u8 fs_root_level;
 444	u8 dev_root_level;
 445	u8 csum_root_level;
 446	/* future and to align */
 447	u8 unused_8[10];
 448} __attribute__ ((__packed__));
 449
 450/*
 451 * the super block basically lists the main trees of the FS
 452 * it currently lacks any block count etc etc
 453 */
 454struct btrfs_super_block {
 455	u8 csum[BTRFS_CSUM_SIZE];
 456	/* the first 4 fields must match struct btrfs_header */
 457	u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
 458	__le64 bytenr; /* this block number */
 459	__le64 flags;
 460
 461	/* allowed to be different from the btrfs_header from here own down */
 462	__le64 magic;
 463	__le64 generation;
 464	__le64 root;
 465	__le64 chunk_root;
 466	__le64 log_root;
 467
 468	/* this will help find the new super based on the log root */
 469	__le64 log_root_transid;
 470	__le64 total_bytes;
 471	__le64 bytes_used;
 472	__le64 root_dir_objectid;
 473	__le64 num_devices;
 474	__le32 sectorsize;
 475	__le32 nodesize;
 476	__le32 leafsize;
 477	__le32 stripesize;
 478	__le32 sys_chunk_array_size;
 479	__le64 chunk_root_generation;
 480	__le64 compat_flags;
 481	__le64 compat_ro_flags;
 482	__le64 incompat_flags;
 483	__le16 csum_type;
 484	u8 root_level;
 485	u8 chunk_root_level;
 486	u8 log_root_level;
 487	struct btrfs_dev_item dev_item;
 488
 489	char label[BTRFS_LABEL_SIZE];
 490
 491	__le64 cache_generation;
 492	__le64 uuid_tree_generation;
 493
 494	/* future expansion */
 495	__le64 reserved[30];
 496	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
 497	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
 498} __attribute__ ((__packed__));
 499
 500/*
 501 * Compat flags that we support.  If any incompat flags are set other than the
 502 * ones specified below then we will fail to mount
 503 */
 504#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF	(1ULL << 0)
 505#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL	(1ULL << 1)
 506#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS	(1ULL << 2)
 507#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO	(1ULL << 3)
 508/*
 509 * some patches floated around with a second compression method
 510 * lets save that incompat here for when they do get in
 511 * Note we don't actually support it, we're just reserving the
 512 * number
 513 */
 514#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2	(1ULL << 4)
 515
 516/*
 517 * older kernels tried to do bigger metadata blocks, but the
 518 * code was pretty buggy.  Lets not let them try anymore.
 519 */
 520#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA	(1ULL << 5)
 521
 522#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF	(1ULL << 6)
 523#define BTRFS_FEATURE_INCOMPAT_RAID56		(1ULL << 7)
 524#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA	(1ULL << 8)
 525#define BTRFS_FEATURE_INCOMPAT_NO_HOLES		(1ULL << 9)
 526
 527#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
 528#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
 529#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
 530#define BTRFS_FEATURE_COMPAT_RO_SUPP		0ULL
 531#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
 532#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
 533
 534#define BTRFS_FEATURE_INCOMPAT_SUPP			\
 535	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
 536	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
 537	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
 538	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
 539	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
 540	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
 541	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
 542	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
 543	 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
 544
 545#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
 546	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
 547#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
 548
 549/*
 550 * A leaf is full of items. offset and size tell us where to find
 551 * the item in the leaf (relative to the start of the data area)
 552 */
 553struct btrfs_item {
 554	struct btrfs_disk_key key;
 555	__le32 offset;
 556	__le32 size;
 557} __attribute__ ((__packed__));
 558
 559/*
 560 * leaves have an item area and a data area:
 561 * [item0, item1....itemN] [free space] [dataN...data1, data0]
 562 *
 563 * The data is separate from the items to get the keys closer together
 564 * during searches.
 565 */
 566struct btrfs_leaf {
 567	struct btrfs_header header;
 568	struct btrfs_item items[];
 569} __attribute__ ((__packed__));
 570
 571/*
 572 * all non-leaf blocks are nodes, they hold only keys and pointers to
 573 * other blocks
 574 */
 575struct btrfs_key_ptr {
 576	struct btrfs_disk_key key;
 577	__le64 blockptr;
 578	__le64 generation;
 579} __attribute__ ((__packed__));
 580
 581struct btrfs_node {
 582	struct btrfs_header header;
 583	struct btrfs_key_ptr ptrs[];
 584} __attribute__ ((__packed__));
 585
 586/*
 587 * btrfs_paths remember the path taken from the root down to the leaf.
 588 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 589 * to any other levels that are present.
 590 *
 591 * The slots array records the index of the item or block pointer
 592 * used while walking the tree.
 593 */
 594struct btrfs_path {
 595	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 596	int slots[BTRFS_MAX_LEVEL];
 597	/* if there is real range locking, this locks field will change */
 598	int locks[BTRFS_MAX_LEVEL];
 599	int reada;
 600	/* keep some upper locks as we walk down */
 601	int lowest_level;
 602
 603	/*
 604	 * set by btrfs_split_item, tells search_slot to keep all locks
 605	 * and to force calls to keep space in the nodes
 606	 */
 607	unsigned int search_for_split:1;
 608	unsigned int keep_locks:1;
 609	unsigned int skip_locking:1;
 610	unsigned int leave_spinning:1;
 611	unsigned int search_commit_root:1;
 612	unsigned int need_commit_sem:1;
 613};
 614
 615/*
 616 * items in the extent btree are used to record the objectid of the
 617 * owner of the block and the number of references
 618 */
 619
 620struct btrfs_extent_item {
 621	__le64 refs;
 622	__le64 generation;
 623	__le64 flags;
 624} __attribute__ ((__packed__));
 625
 626struct btrfs_extent_item_v0 {
 627	__le32 refs;
 628} __attribute__ ((__packed__));
 629
 630#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
 631					sizeof(struct btrfs_item))
 632
 633#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
 634#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
 635
 636/* following flags only apply to tree blocks */
 637
 638/* use full backrefs for extent pointers in the block */
 639#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
 640
 641/*
 642 * this flag is only used internally by scrub and may be changed at any time
 643 * it is only declared here to avoid collisions
 644 */
 645#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
 646
 647struct btrfs_tree_block_info {
 648	struct btrfs_disk_key key;
 649	u8 level;
 650} __attribute__ ((__packed__));
 651
 652struct btrfs_extent_data_ref {
 653	__le64 root;
 654	__le64 objectid;
 655	__le64 offset;
 656	__le32 count;
 657} __attribute__ ((__packed__));
 658
 659struct btrfs_shared_data_ref {
 660	__le32 count;
 661} __attribute__ ((__packed__));
 662
 663struct btrfs_extent_inline_ref {
 664	u8 type;
 665	__le64 offset;
 666} __attribute__ ((__packed__));
 667
 668/* old style backrefs item */
 669struct btrfs_extent_ref_v0 {
 670	__le64 root;
 671	__le64 generation;
 672	__le64 objectid;
 673	__le32 count;
 674} __attribute__ ((__packed__));
 675
 676
 677/* dev extents record free space on individual devices.  The owner
 678 * field points back to the chunk allocation mapping tree that allocated
 679 * the extent.  The chunk tree uuid field is a way to double check the owner
 680 */
 681struct btrfs_dev_extent {
 682	__le64 chunk_tree;
 683	__le64 chunk_objectid;
 684	__le64 chunk_offset;
 685	__le64 length;
 686	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 687} __attribute__ ((__packed__));
 688
 689struct btrfs_inode_ref {
 690	__le64 index;
 691	__le16 name_len;
 692	/* name goes here */
 693} __attribute__ ((__packed__));
 694
 695struct btrfs_inode_extref {
 696	__le64 parent_objectid;
 697	__le64 index;
 698	__le16 name_len;
 699	__u8   name[0];
 700	/* name goes here */
 701} __attribute__ ((__packed__));
 702
 703struct btrfs_timespec {
 704	__le64 sec;
 705	__le32 nsec;
 706} __attribute__ ((__packed__));
 707
 708enum btrfs_compression_type {
 709	BTRFS_COMPRESS_NONE  = 0,
 710	BTRFS_COMPRESS_ZLIB  = 1,
 711	BTRFS_COMPRESS_LZO   = 2,
 712	BTRFS_COMPRESS_TYPES = 2,
 713	BTRFS_COMPRESS_LAST  = 3,
 714};
 715
 716struct btrfs_inode_item {
 717	/* nfs style generation number */
 718	__le64 generation;
 719	/* transid that last touched this inode */
 720	__le64 transid;
 721	__le64 size;
 722	__le64 nbytes;
 723	__le64 block_group;
 724	__le32 nlink;
 725	__le32 uid;
 726	__le32 gid;
 727	__le32 mode;
 728	__le64 rdev;
 729	__le64 flags;
 730
 731	/* modification sequence number for NFS */
 732	__le64 sequence;
 733
 734	/*
 735	 * a little future expansion, for more than this we can
 736	 * just grow the inode item and version it
 737	 */
 738	__le64 reserved[4];
 739	struct btrfs_timespec atime;
 740	struct btrfs_timespec ctime;
 741	struct btrfs_timespec mtime;
 742	struct btrfs_timespec otime;
 743} __attribute__ ((__packed__));
 744
 745struct btrfs_dir_log_item {
 746	__le64 end;
 747} __attribute__ ((__packed__));
 748
 749struct btrfs_dir_item {
 750	struct btrfs_disk_key location;
 751	__le64 transid;
 752	__le16 data_len;
 753	__le16 name_len;
 754	u8 type;
 755} __attribute__ ((__packed__));
 756
 757#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
 758
 759struct btrfs_root_item {
 760	struct btrfs_inode_item inode;
 761	__le64 generation;
 762	__le64 root_dirid;
 763	__le64 bytenr;
 764	__le64 byte_limit;
 765	__le64 bytes_used;
 766	__le64 last_snapshot;
 767	__le64 flags;
 768	__le32 refs;
 769	struct btrfs_disk_key drop_progress;
 770	u8 drop_level;
 771	u8 level;
 772
 773	/*
 774	 * The following fields appear after subvol_uuids+subvol_times
 775	 * were introduced.
 776	 */
 777
 778	/*
 779	 * This generation number is used to test if the new fields are valid
 780	 * and up to date while reading the root item. Everytime the root item
 781	 * is written out, the "generation" field is copied into this field. If
 782	 * anyone ever mounted the fs with an older kernel, we will have
 783	 * mismatching generation values here and thus must invalidate the
 784	 * new fields. See btrfs_update_root and btrfs_find_last_root for
 785	 * details.
 786	 * the offset of generation_v2 is also used as the start for the memset
 787	 * when invalidating the fields.
 788	 */
 789	__le64 generation_v2;
 790	u8 uuid[BTRFS_UUID_SIZE];
 791	u8 parent_uuid[BTRFS_UUID_SIZE];
 792	u8 received_uuid[BTRFS_UUID_SIZE];
 793	__le64 ctransid; /* updated when an inode changes */
 794	__le64 otransid; /* trans when created */
 795	__le64 stransid; /* trans when sent. non-zero for received subvol */
 796	__le64 rtransid; /* trans when received. non-zero for received subvol */
 797	struct btrfs_timespec ctime;
 798	struct btrfs_timespec otime;
 799	struct btrfs_timespec stime;
 800	struct btrfs_timespec rtime;
 801	__le64 reserved[8]; /* for future */
 802} __attribute__ ((__packed__));
 803
 804/*
 805 * this is used for both forward and backward root refs
 806 */
 807struct btrfs_root_ref {
 808	__le64 dirid;
 809	__le64 sequence;
 810	__le16 name_len;
 811} __attribute__ ((__packed__));
 812
 813struct btrfs_disk_balance_args {
 814	/*
 815	 * profiles to operate on, single is denoted by
 816	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 817	 */
 818	__le64 profiles;
 819
 820	/* usage filter */
 821	__le64 usage;
 822
 823	/* devid filter */
 824	__le64 devid;
 825
 826	/* devid subset filter [pstart..pend) */
 827	__le64 pstart;
 828	__le64 pend;
 829
 830	/* btrfs virtual address space subset filter [vstart..vend) */
 831	__le64 vstart;
 832	__le64 vend;
 833
 834	/*
 835	 * profile to convert to, single is denoted by
 836	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 837	 */
 838	__le64 target;
 839
 840	/* BTRFS_BALANCE_ARGS_* */
 841	__le64 flags;
 842
 843	__le64 unused[8];
 844} __attribute__ ((__packed__));
 845
 846/*
 847 * store balance parameters to disk so that balance can be properly
 848 * resumed after crash or unmount
 849 */
 850struct btrfs_balance_item {
 851	/* BTRFS_BALANCE_* */
 852	__le64 flags;
 853
 854	struct btrfs_disk_balance_args data;
 855	struct btrfs_disk_balance_args meta;
 856	struct btrfs_disk_balance_args sys;
 857
 858	__le64 unused[4];
 859} __attribute__ ((__packed__));
 860
 861#define BTRFS_FILE_EXTENT_INLINE 0
 862#define BTRFS_FILE_EXTENT_REG 1
 863#define BTRFS_FILE_EXTENT_PREALLOC 2
 864
 865struct btrfs_file_extent_item {
 866	/*
 867	 * transaction id that created this extent
 868	 */
 869	__le64 generation;
 870	/*
 871	 * max number of bytes to hold this extent in ram
 872	 * when we split a compressed extent we can't know how big
 873	 * each of the resulting pieces will be.  So, this is
 874	 * an upper limit on the size of the extent in ram instead of
 875	 * an exact limit.
 876	 */
 877	__le64 ram_bytes;
 878
 879	/*
 880	 * 32 bits for the various ways we might encode the data,
 881	 * including compression and encryption.  If any of these
 882	 * are set to something a given disk format doesn't understand
 883	 * it is treated like an incompat flag for reading and writing,
 884	 * but not for stat.
 885	 */
 886	u8 compression;
 887	u8 encryption;
 888	__le16 other_encoding; /* spare for later use */
 889
 890	/* are we inline data or a real extent? */
 891	u8 type;
 892
 893	/*
 894	 * disk space consumed by the extent, checksum blocks are included
 895	 * in these numbers
 896	 */
 897	__le64 disk_bytenr;
 898	__le64 disk_num_bytes;
 899	/*
 900	 * the logical offset in file blocks (no csums)
 901	 * this extent record is for.  This allows a file extent to point
 902	 * into the middle of an existing extent on disk, sharing it
 903	 * between two snapshots (useful if some bytes in the middle of the
 904	 * extent have changed
 905	 */
 906	__le64 offset;
 907	/*
 908	 * the logical number of file blocks (no csums included).  This
 909	 * always reflects the size uncompressed and without encoding.
 910	 */
 911	__le64 num_bytes;
 912
 913} __attribute__ ((__packed__));
 914
 915struct btrfs_csum_item {
 916	u8 csum;
 917} __attribute__ ((__packed__));
 918
 919struct btrfs_dev_stats_item {
 920	/*
 921	 * grow this item struct at the end for future enhancements and keep
 922	 * the existing values unchanged
 923	 */
 924	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 925} __attribute__ ((__packed__));
 926
 927#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
 928#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
 929#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED	0
 930#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED		1
 931#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED		2
 932#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED		3
 933#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED		4
 934
 935struct btrfs_dev_replace {
 936	u64 replace_state;	/* see #define above */
 937	u64 time_started;	/* seconds since 1-Jan-1970 */
 938	u64 time_stopped;	/* seconds since 1-Jan-1970 */
 939	atomic64_t num_write_errors;
 940	atomic64_t num_uncorrectable_read_errors;
 941
 942	u64 cursor_left;
 943	u64 committed_cursor_left;
 944	u64 cursor_left_last_write_of_item;
 945	u64 cursor_right;
 946
 947	u64 cont_reading_from_srcdev_mode;	/* see #define above */
 948
 949	int is_valid;
 950	int item_needs_writeback;
 951	struct btrfs_device *srcdev;
 952	struct btrfs_device *tgtdev;
 953
 954	pid_t lock_owner;
 955	atomic_t nesting_level;
 956	struct mutex lock_finishing_cancel_unmount;
 957	struct mutex lock_management_lock;
 958	struct mutex lock;
 959
 960	struct btrfs_scrub_progress scrub_progress;
 961};
 962
 963struct btrfs_dev_replace_item {
 964	/*
 965	 * grow this item struct at the end for future enhancements and keep
 966	 * the existing values unchanged
 967	 */
 968	__le64 src_devid;
 969	__le64 cursor_left;
 970	__le64 cursor_right;
 971	__le64 cont_reading_from_srcdev_mode;
 972
 973	__le64 replace_state;
 974	__le64 time_started;
 975	__le64 time_stopped;
 976	__le64 num_write_errors;
 977	__le64 num_uncorrectable_read_errors;
 978} __attribute__ ((__packed__));
 979
 980/* different types of block groups (and chunks) */
 981#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
 982#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
 983#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
 984#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
 985#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
 986#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
 987#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
 988#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 989#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 990#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 991					 BTRFS_SPACE_INFO_GLOBAL_RSV)
 992
 993enum btrfs_raid_types {
 994	BTRFS_RAID_RAID10,
 995	BTRFS_RAID_RAID1,
 996	BTRFS_RAID_DUP,
 997	BTRFS_RAID_RAID0,
 998	BTRFS_RAID_SINGLE,
 999	BTRFS_RAID_RAID5,
1000	BTRFS_RAID_RAID6,
1001	BTRFS_NR_RAID_TYPES
1002};
1003
1004#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
1005					 BTRFS_BLOCK_GROUP_SYSTEM |  \
1006					 BTRFS_BLOCK_GROUP_METADATA)
1007
1008#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
1009					 BTRFS_BLOCK_GROUP_RAID1 |   \
1010					 BTRFS_BLOCK_GROUP_RAID5 |   \
1011					 BTRFS_BLOCK_GROUP_RAID6 |   \
1012					 BTRFS_BLOCK_GROUP_DUP |     \
1013					 BTRFS_BLOCK_GROUP_RAID10)
1014/*
1015 * We need a bit for restriper to be able to tell when chunks of type
1016 * SINGLE are available.  This "extended" profile format is used in
1017 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1018 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
1019 * to avoid remappings between two formats in future.
1020 */
1021#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
1022
1023/*
1024 * A fake block group type that is used to communicate global block reserve
1025 * size to userspace via the SPACE_INFO ioctl.
1026 */
1027#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
1028
1029#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1030					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1031
1032static inline u64 chunk_to_extended(u64 flags)
1033{
1034	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1035		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1036
1037	return flags;
1038}
1039static inline u64 extended_to_chunk(u64 flags)
1040{
1041	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1042}
1043
1044struct btrfs_block_group_item {
1045	__le64 used;
1046	__le64 chunk_objectid;
1047	__le64 flags;
1048} __attribute__ ((__packed__));
1049
1050/*
1051 * is subvolume quota turned on?
1052 */
1053#define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
1054/*
1055 * RESCAN is set during the initialization phase
1056 */
1057#define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
1058/*
1059 * Some qgroup entries are known to be out of date,
1060 * either because the configuration has changed in a way that
1061 * makes a rescan necessary, or because the fs has been mounted
1062 * with a non-qgroup-aware version.
1063 * Turning qouta off and on again makes it inconsistent, too.
1064 */
1065#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
1066
1067#define BTRFS_QGROUP_STATUS_VERSION        1
1068
1069struct btrfs_qgroup_status_item {
1070	__le64 version;
1071	/*
1072	 * the generation is updated during every commit. As older
1073	 * versions of btrfs are not aware of qgroups, it will be
1074	 * possible to detect inconsistencies by checking the
1075	 * generation on mount time
1076	 */
1077	__le64 generation;
1078
1079	/* flag definitions see above */
1080	__le64 flags;
1081
1082	/*
1083	 * only used during scanning to record the progress
1084	 * of the scan. It contains a logical address
1085	 */
1086	__le64 rescan;
1087} __attribute__ ((__packed__));
1088
1089struct btrfs_qgroup_info_item {
1090	__le64 generation;
1091	__le64 rfer;
1092	__le64 rfer_cmpr;
1093	__le64 excl;
1094	__le64 excl_cmpr;
1095} __attribute__ ((__packed__));
1096
1097/* flags definition for qgroup limits */
1098#define BTRFS_QGROUP_LIMIT_MAX_RFER	(1ULL << 0)
1099#define BTRFS_QGROUP_LIMIT_MAX_EXCL	(1ULL << 1)
1100#define BTRFS_QGROUP_LIMIT_RSV_RFER	(1ULL << 2)
1101#define BTRFS_QGROUP_LIMIT_RSV_EXCL	(1ULL << 3)
1102#define BTRFS_QGROUP_LIMIT_RFER_CMPR	(1ULL << 4)
1103#define BTRFS_QGROUP_LIMIT_EXCL_CMPR	(1ULL << 5)
1104
1105struct btrfs_qgroup_limit_item {
1106	/*
1107	 * only updated when any of the other values change
1108	 */
1109	__le64 flags;
1110	__le64 max_rfer;
1111	__le64 max_excl;
1112	__le64 rsv_rfer;
1113	__le64 rsv_excl;
1114} __attribute__ ((__packed__));
1115
1116struct btrfs_space_info {
1117	spinlock_t lock;
1118
1119	u64 total_bytes;	/* total bytes in the space,
1120				   this doesn't take mirrors into account */
1121	u64 bytes_used;		/* total bytes used,
1122				   this doesn't take mirrors into account */
1123	u64 bytes_pinned;	/* total bytes pinned, will be freed when the
1124				   transaction finishes */
1125	u64 bytes_reserved;	/* total bytes the allocator has reserved for
1126				   current allocations */
1127	u64 bytes_may_use;	/* number of bytes that may be used for
1128				   delalloc/allocations */
1129	u64 bytes_readonly;	/* total bytes that are read only */
1130
1131	unsigned int full:1;	/* indicates that we cannot allocate any more
1132				   chunks for this space */
1133	unsigned int chunk_alloc:1;	/* set if we are allocating a chunk */
1134
1135	unsigned int flush:1;		/* set if we are trying to make space */
1136
1137	unsigned int force_alloc;	/* set if we need to force a chunk
1138					   alloc for this space */
1139
1140	u64 disk_used;		/* total bytes used on disk */
1141	u64 disk_total;		/* total bytes on disk, takes mirrors into
1142				   account */
1143
1144	u64 flags;
1145
1146	/*
1147	 * bytes_pinned is kept in line with what is actually pinned, as in
1148	 * we've called update_block_group and dropped the bytes_used counter
1149	 * and increased the bytes_pinned counter.  However this means that
1150	 * bytes_pinned does not reflect the bytes that will be pinned once the
1151	 * delayed refs are flushed, so this counter is inc'ed everytime we call
1152	 * btrfs_free_extent so it is a realtime count of what will be freed
1153	 * once the transaction is committed.  It will be zero'ed everytime the
1154	 * transaction commits.
1155	 */
1156	struct percpu_counter total_bytes_pinned;
1157
1158	struct list_head list;
1159
1160	struct rw_semaphore groups_sem;
1161	/* for block groups in our same type */
1162	struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1163	wait_queue_head_t wait;
1164
1165	struct kobject kobj;
1166	struct kobject block_group_kobjs[BTRFS_NR_RAID_TYPES];
1167};
1168
1169#define	BTRFS_BLOCK_RSV_GLOBAL		1
1170#define	BTRFS_BLOCK_RSV_DELALLOC	2
1171#define	BTRFS_BLOCK_RSV_TRANS		3
1172#define	BTRFS_BLOCK_RSV_CHUNK		4
1173#define	BTRFS_BLOCK_RSV_DELOPS		5
1174#define	BTRFS_BLOCK_RSV_EMPTY		6
1175#define	BTRFS_BLOCK_RSV_TEMP		7
1176
1177struct btrfs_block_rsv {
1178	u64 size;
1179	u64 reserved;
1180	struct btrfs_space_info *space_info;
1181	spinlock_t lock;
1182	unsigned short full;
1183	unsigned short type;
1184	unsigned short failfast;
1185};
1186
1187/*
1188 * free clusters are used to claim free space in relatively large chunks,
1189 * allowing us to do less seeky writes.  They are used for all metadata
1190 * allocations and data allocations in ssd mode.
1191 */
1192struct btrfs_free_cluster {
1193	spinlock_t lock;
1194	spinlock_t refill_lock;
1195	struct rb_root root;
1196
1197	/* largest extent in this cluster */
1198	u64 max_size;
1199
1200	/* first extent starting offset */
1201	u64 window_start;
1202
1203	struct btrfs_block_group_cache *block_group;
1204	/*
1205	 * when a cluster is allocated from a block group, we put the
1206	 * cluster onto a list in the block group so that it can
1207	 * be freed before the block group is freed.
1208	 */
1209	struct list_head block_group_list;
1210};
1211
1212enum btrfs_caching_type {
1213	BTRFS_CACHE_NO		= 0,
1214	BTRFS_CACHE_STARTED	= 1,
1215	BTRFS_CACHE_FAST	= 2,
1216	BTRFS_CACHE_FINISHED	= 3,
1217	BTRFS_CACHE_ERROR	= 4,
1218};
1219
1220enum btrfs_disk_cache_state {
1221	BTRFS_DC_WRITTEN	= 0,
1222	BTRFS_DC_ERROR		= 1,
1223	BTRFS_DC_CLEAR		= 2,
1224	BTRFS_DC_SETUP		= 3,
1225	BTRFS_DC_NEED_WRITE	= 4,
1226};
1227
1228struct btrfs_caching_control {
1229	struct list_head list;
1230	struct mutex mutex;
1231	wait_queue_head_t wait;
1232	struct btrfs_work work;
1233	struct btrfs_block_group_cache *block_group;
1234	u64 progress;
1235	atomic_t count;
1236};
1237
1238struct btrfs_block_group_cache {
1239	struct btrfs_key key;
1240	struct btrfs_block_group_item item;
1241	struct btrfs_fs_info *fs_info;
1242	struct inode *inode;
1243	spinlock_t lock;
1244	u64 pinned;
1245	u64 reserved;
1246	u64 bytes_super;
1247	u64 flags;
1248	u64 sectorsize;
1249	u64 cache_generation;
1250
1251	/* for raid56, this is a full stripe, without parity */
1252	unsigned long full_stripe_len;
1253
1254	unsigned int ro:1;
1255	unsigned int dirty:1;
1256	unsigned int iref:1;
1257
1258	int disk_cache_state;
1259
1260	/* cache tracking stuff */
1261	int cached;
1262	struct btrfs_caching_control *caching_ctl;
1263	u64 last_byte_to_unpin;
1264
1265	struct btrfs_space_info *space_info;
1266
1267	/* free space cache stuff */
1268	struct btrfs_free_space_ctl *free_space_ctl;
1269
1270	/* block group cache stuff */
1271	struct rb_node cache_node;
1272
1273	/* for block groups in the same raid type */
1274	struct list_head list;
1275
1276	/* usage count */
1277	atomic_t count;
1278
1279	/* List of struct btrfs_free_clusters for this block group.
1280	 * Today it will only have one thing on it, but that may change
1281	 */
1282	struct list_head cluster_list;
1283
1284	/* For delayed block group creation */
1285	struct list_head new_bg_list;
1286};
1287
1288/* delayed seq elem */
1289struct seq_list {
1290	struct list_head list;
1291	u64 seq;
1292};
1293
1294enum btrfs_orphan_cleanup_state {
1295	ORPHAN_CLEANUP_STARTED	= 1,
1296	ORPHAN_CLEANUP_DONE	= 2,
1297};
1298
1299/* used by the raid56 code to lock stripes for read/modify/write */
1300struct btrfs_stripe_hash {
1301	struct list_head hash_list;
1302	wait_queue_head_t wait;
1303	spinlock_t lock;
1304};
1305
1306/* used by the raid56 code to lock stripes for read/modify/write */
1307struct btrfs_stripe_hash_table {
1308	struct list_head stripe_cache;
1309	spinlock_t cache_lock;
1310	int cache_size;
1311	struct btrfs_stripe_hash table[];
1312};
1313
1314#define BTRFS_STRIPE_HASH_TABLE_BITS 11
1315
1316/* fs_info */
1317struct reloc_control;
1318struct btrfs_device;
1319struct btrfs_fs_devices;
1320struct btrfs_balance_control;
1321struct btrfs_delayed_root;
1322struct btrfs_fs_info {
1323	u8 fsid[BTRFS_FSID_SIZE];
1324	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1325	struct btrfs_root *extent_root;
1326	struct btrfs_root *tree_root;
1327	struct btrfs_root *chunk_root;
1328	struct btrfs_root *dev_root;
1329	struct btrfs_root *fs_root;
1330	struct btrfs_root *csum_root;
1331	struct btrfs_root *quota_root;
1332	struct btrfs_root *uuid_root;
1333
1334	/* the log root tree is a directory of all the other log roots */
1335	struct btrfs_root *log_root_tree;
1336
1337	spinlock_t fs_roots_radix_lock;
1338	struct radix_tree_root fs_roots_radix;
1339
1340	/* block group cache stuff */
1341	spinlock_t block_group_cache_lock;
1342	u64 first_logical_byte;
1343	struct rb_root block_group_cache_tree;
1344
1345	/* keep track of unallocated space */
1346	spinlock_t free_chunk_lock;
1347	u64 free_chunk_space;
1348
1349	struct extent_io_tree freed_extents[2];
1350	struct extent_io_tree *pinned_extents;
1351
1352	/* logical->physical extent mapping */
1353	struct btrfs_mapping_tree mapping_tree;
1354
1355	/*
1356	 * block reservation for extent, checksum, root tree and
1357	 * delayed dir index item
1358	 */
1359	struct btrfs_block_rsv global_block_rsv;
1360	/* block reservation for delay allocation */
1361	struct btrfs_block_rsv delalloc_block_rsv;
1362	/* block reservation for metadata operations */
1363	struct btrfs_block_rsv trans_block_rsv;
1364	/* block reservation for chunk tree */
1365	struct btrfs_block_rsv chunk_block_rsv;
1366	/* block reservation for delayed operations */
1367	struct btrfs_block_rsv delayed_block_rsv;
1368
1369	struct btrfs_block_rsv empty_block_rsv;
1370
1371	u64 generation;
1372	u64 last_trans_committed;
1373	u64 avg_delayed_ref_runtime;
1374
1375	/*
1376	 * this is updated to the current trans every time a full commit
1377	 * is required instead of the faster short fsync log commits
1378	 */
1379	u64 last_trans_log_full_commit;
1380	unsigned long mount_opt;
1381	unsigned long compress_type:4;
1382	int commit_interval;
1383	/*
1384	 * It is a suggestive number, the read side is safe even it gets a
1385	 * wrong number because we will write out the data into a regular
1386	 * extent. The write side(mount/remount) is under ->s_umount lock,
1387	 * so it is also safe.
1388	 */
1389	u64 max_inline;
1390	/*
1391	 * Protected by ->chunk_mutex and sb->s_umount.
1392	 *
1393	 * The reason that we use two lock to protect it is because only
1394	 * remount and mount operations can change it and these two operations
1395	 * are under sb->s_umount, but the read side (chunk allocation) can not
1396	 * acquire sb->s_umount or the deadlock would happen. So we use two
1397	 * locks to protect it. On the write side, we must acquire two locks,
1398	 * and on the read side, we just need acquire one of them.
1399	 */
1400	u64 alloc_start;
1401	struct btrfs_transaction *running_transaction;
1402	wait_queue_head_t transaction_throttle;
1403	wait_queue_head_t transaction_wait;
1404	wait_queue_head_t transaction_blocked_wait;
1405	wait_queue_head_t async_submit_wait;
1406
1407	/*
1408	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1409	 * when they are updated.
1410	 *
1411	 * Because we do not clear the flags for ever, so we needn't use
1412	 * the lock on the read side.
 
 
1413	 *
1414	 * We also needn't use the lock when we mount the fs, because
1415	 * there is no other task which will update the flag.
1416	 */
1417	spinlock_t super_lock;
1418	struct btrfs_super_block *super_copy;
1419	struct btrfs_super_block *super_for_commit;
1420	struct block_device *__bdev;
1421	struct super_block *sb;
1422	struct inode *btree_inode;
1423	struct backing_dev_info bdi;
1424	struct mutex tree_log_mutex;
1425	struct mutex transaction_kthread_mutex;
1426	struct mutex cleaner_mutex;
1427	struct mutex chunk_mutex;
1428	struct mutex volume_mutex;
1429
1430	/* this is used during read/modify/write to make sure
1431	 * no two ios are trying to mod the same stripe at the same
1432	 * time
1433	 */
1434	struct btrfs_stripe_hash_table *stripe_hash_table;
1435
1436	/*
1437	 * this protects the ordered operations list only while we are
1438	 * processing all of the entries on it.  This way we make
1439	 * sure the commit code doesn't find the list temporarily empty
1440	 * because another function happens to be doing non-waiting preflush
1441	 * before jumping into the main commit.
1442	 */
1443	struct mutex ordered_operations_mutex;
1444
1445	/*
1446	 * Same as ordered_operations_mutex except this is for ordered extents
1447	 * and not the operations.
1448	 */
1449	struct mutex ordered_extent_flush_mutex;
1450
1451	struct rw_semaphore commit_root_sem;
1452
1453	struct rw_semaphore cleanup_work_sem;
1454
1455	struct rw_semaphore subvol_sem;
1456	struct srcu_struct subvol_srcu;
1457
1458	spinlock_t trans_lock;
1459	/*
1460	 * the reloc mutex goes with the trans lock, it is taken
1461	 * during commit to protect us from the relocation code
1462	 */
1463	struct mutex reloc_mutex;
1464
1465	struct list_head trans_list;
1466	struct list_head dead_roots;
1467	struct list_head caching_block_groups;
1468
1469	spinlock_t delayed_iput_lock;
1470	struct list_head delayed_iputs;
1471
1472	/* this protects tree_mod_seq_list */
1473	spinlock_t tree_mod_seq_lock;
1474	atomic64_t tree_mod_seq;
1475	struct list_head tree_mod_seq_list;
1476
1477	/* this protects tree_mod_log */
1478	rwlock_t tree_mod_log_lock;
1479	struct rb_root tree_mod_log;
1480
1481	atomic_t nr_async_submits;
1482	atomic_t async_submit_draining;
1483	atomic_t nr_async_bios;
1484	atomic_t async_delalloc_pages;
1485	atomic_t open_ioctl_trans;
1486
1487	/*
1488	 * this is used to protect the following list -- ordered_roots.
1489	 */
1490	spinlock_t ordered_root_lock;
1491
1492	/*
1493	 * all fs/file tree roots in which there are data=ordered extents
1494	 * pending writeback are added into this list.
1495	 *
1496	 * these can span multiple transactions and basically include
1497	 * every dirty data page that isn't from nodatacow
1498	 */
1499	struct list_head ordered_roots;
1500
1501	struct mutex delalloc_root_mutex;
1502	spinlock_t delalloc_root_lock;
1503	/* all fs/file tree roots that have delalloc inodes. */
1504	struct list_head delalloc_roots;
 
 
 
 
 
1505
1506	/*
1507	 * there is a pool of worker threads for checksumming during writes
1508	 * and a pool for checksumming after reads.  This is because readers
1509	 * can run with FS locks held, and the writers may be waiting for
1510	 * those locks.  We don't want ordering in the pending list to cause
1511	 * deadlocks, and so the two are serviced separately.
1512	 *
1513	 * A third pool does submit_bio to avoid deadlocking with the other
1514	 * two
1515	 */
1516	struct btrfs_workqueue *workers;
1517	struct btrfs_workqueue *delalloc_workers;
1518	struct btrfs_workqueue *flush_workers;
1519	struct btrfs_workqueue *endio_workers;
1520	struct btrfs_workqueue *endio_meta_workers;
1521	struct btrfs_workqueue *endio_raid56_workers;
1522	struct btrfs_workqueue *rmw_workers;
1523	struct btrfs_workqueue *endio_meta_write_workers;
1524	struct btrfs_workqueue *endio_write_workers;
1525	struct btrfs_workqueue *endio_freespace_worker;
1526	struct btrfs_workqueue *submit_workers;
1527	struct btrfs_workqueue *caching_workers;
1528	struct btrfs_workqueue *readahead_workers;
1529
1530	/*
1531	 * fixup workers take dirty pages that didn't properly go through
1532	 * the cow mechanism and make them safe to write.  It happens
1533	 * for the sys_munmap function call path
1534	 */
1535	struct btrfs_workqueue *fixup_workers;
1536	struct btrfs_workqueue *delayed_workers;
1537	struct task_struct *transaction_kthread;
1538	struct task_struct *cleaner_kthread;
1539	int thread_pool_size;
1540
1541	struct kobject super_kobj;
1542	struct kobject *space_info_kobj;
1543	struct kobject *device_dir_kobj;
1544	struct completion kobj_unregister;
1545	int do_barriers;
1546	int closing;
1547	int log_root_recovering;
1548
1549	u64 total_pinned;
1550
1551	/* used to keep from writing metadata until there is a nice batch */
1552	struct percpu_counter dirty_metadata_bytes;
1553	struct percpu_counter delalloc_bytes;
1554	s32 dirty_metadata_batch;
1555	s32 delalloc_batch;
1556
1557	struct list_head dirty_cowonly_roots;
1558
1559	struct btrfs_fs_devices *fs_devices;
1560
1561	/*
1562	 * the space_info list is almost entirely read only.  It only changes
1563	 * when we add a new raid type to the FS, and that happens
1564	 * very rarely.  RCU is used to protect it.
1565	 */
1566	struct list_head space_info;
1567
1568	struct btrfs_space_info *data_sinfo;
1569
1570	struct reloc_control *reloc_ctl;
1571
1572	/* data_alloc_cluster is only used in ssd mode */
1573	struct btrfs_free_cluster data_alloc_cluster;
1574
1575	/* all metadata allocations go through this cluster */
1576	struct btrfs_free_cluster meta_alloc_cluster;
1577
1578	/* auto defrag inodes go here */
1579	spinlock_t defrag_inodes_lock;
1580	struct rb_root defrag_inodes;
1581	atomic_t defrag_running;
1582
1583	/* Used to protect avail_{data, metadata, system}_alloc_bits */
1584	seqlock_t profiles_lock;
1585	/*
1586	 * these three are in extended format (availability of single
1587	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1588	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1589	 */
1590	u64 avail_data_alloc_bits;
1591	u64 avail_metadata_alloc_bits;
1592	u64 avail_system_alloc_bits;
1593
1594	/* restriper state */
1595	spinlock_t balance_lock;
1596	struct mutex balance_mutex;
1597	atomic_t balance_running;
1598	atomic_t balance_pause_req;
1599	atomic_t balance_cancel_req;
1600	struct btrfs_balance_control *balance_ctl;
1601	wait_queue_head_t balance_wait_q;
1602
1603	unsigned data_chunk_allocations;
1604	unsigned metadata_ratio;
1605
1606	void *bdev_holder;
1607
1608	/* private scrub information */
1609	struct mutex scrub_lock;
1610	atomic_t scrubs_running;
1611	atomic_t scrub_pause_req;
1612	atomic_t scrubs_paused;
1613	atomic_t scrub_cancel_req;
1614	wait_queue_head_t scrub_pause_wait;
1615	int scrub_workers_refcnt;
1616	struct btrfs_workqueue *scrub_workers;
1617	struct btrfs_workqueue *scrub_wr_completion_workers;
1618	struct btrfs_workqueue *scrub_nocow_workers;
1619
1620#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1621	u32 check_integrity_print_mask;
1622#endif
1623	/*
1624	 * quota information
1625	 */
1626	unsigned int quota_enabled:1;
1627
1628	/*
1629	 * quota_enabled only changes state after a commit. This holds the
1630	 * next state.
1631	 */
1632	unsigned int pending_quota_state:1;
1633
1634	/* is qgroup tracking in a consistent state? */
1635	u64 qgroup_flags;
1636
1637	/* holds configuration and tracking. Protected by qgroup_lock */
1638	struct rb_root qgroup_tree;
1639	spinlock_t qgroup_lock;
1640
1641	/*
1642	 * used to avoid frequently calling ulist_alloc()/ulist_free()
1643	 * when doing qgroup accounting, it must be protected by qgroup_lock.
1644	 */
1645	struct ulist *qgroup_ulist;
1646
1647	/* protect user change for quota operations */
1648	struct mutex qgroup_ioctl_lock;
1649
1650	/* list of dirty qgroups to be written at next commit */
1651	struct list_head dirty_qgroups;
1652
1653	/* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1654	u64 qgroup_seq;
1655
1656	/* qgroup rescan items */
1657	struct mutex qgroup_rescan_lock; /* protects the progress item */
1658	struct btrfs_key qgroup_rescan_progress;
1659	struct btrfs_workqueue *qgroup_rescan_workers;
1660	struct completion qgroup_rescan_completion;
1661	struct btrfs_work qgroup_rescan_work;
1662
1663	/* filesystem state */
1664	unsigned long fs_state;
1665
1666	struct btrfs_delayed_root *delayed_root;
1667
1668	/* readahead tree */
1669	spinlock_t reada_lock;
1670	struct radix_tree_root reada_tree;
1671
1672	/* Extent buffer radix tree */
1673	spinlock_t buffer_lock;
1674	struct radix_tree_root buffer_radix;
1675
1676	/* next backup root to be overwritten */
1677	int backup_root_index;
1678
1679	int num_tolerated_disk_barrier_failures;
1680
1681	/* device replace state */
1682	struct btrfs_dev_replace dev_replace;
1683
1684	atomic_t mutually_exclusive_operation_running;
1685
1686	struct percpu_counter bio_counter;
1687	wait_queue_head_t replace_wait;
1688
1689	struct semaphore uuid_tree_rescan_sem;
1690	unsigned int update_uuid_tree_gen:1;
1691};
1692
1693struct btrfs_subvolume_writers {
1694	struct percpu_counter	counter;
1695	wait_queue_head_t	wait;
 
 
 
 
 
 
1696};
1697
1698/*
1699 * in ram representation of the tree.  extent_root is used for all allocations
1700 * and for the extent tree extent_root root.
1701 */
1702struct btrfs_root {
 
 
1703	struct extent_buffer *node;
1704
1705	struct extent_buffer *commit_root;
1706	struct btrfs_root *log_root;
1707	struct btrfs_root *reloc_root;
1708
 
1709	struct btrfs_root_item root_item;
1710	struct btrfs_key root_key;
1711	struct btrfs_fs_info *fs_info;
1712	struct extent_io_tree dirty_log_pages;
1713
1714	struct kobject root_kobj;
1715	struct completion kobj_unregister;
1716	struct mutex objectid_mutex;
1717
1718	spinlock_t accounting_lock;
1719	struct btrfs_block_rsv *block_rsv;
1720
1721	/* free ino cache stuff */
1722	struct btrfs_free_space_ctl *free_ino_ctl;
1723	enum btrfs_caching_type cached;
1724	spinlock_t cache_lock;
1725	wait_queue_head_t cache_wait;
1726	struct btrfs_free_space_ctl *free_ino_pinned;
1727	u64 cache_progress;
1728	struct inode *cache_inode;
1729
1730	struct mutex log_mutex;
1731	wait_queue_head_t log_writer_wait;
1732	wait_queue_head_t log_commit_wait[2];
1733	struct list_head log_ctxs[2];
 
1734	atomic_t log_writers;
1735	atomic_t log_commit[2];
 
1736	atomic_t log_batch;
 
 
 
 
 
 
 
 
1737	int log_transid;
1738	/* No matter the commit succeeds or not*/
1739	int log_transid_committed;
1740	/* Just be updated when the commit succeeds. */
 
 
 
 
1741	int last_log_commit;
1742	pid_t log_start_pid;
1743	bool log_multiple_pids;
1744
1745	u64 objectid;
1746	u64 last_trans;
1747
1748	/* data allocations are done in sectorsize units */
1749	u32 sectorsize;
1750
1751	/* node allocations are done in nodesize units */
1752	u32 nodesize;
1753
1754	/* leaf allocations are done in leafsize units */
1755	u32 leafsize;
1756
1757	u32 stripesize;
1758
1759	u32 type;
1760
1761	u64 highest_objectid;
1762
1763	/* btrfs_record_root_in_trans is a multi-step process,
1764	 * and it can race with the balancing code.   But the
1765	 * race is very small, and only the first time the root
1766	 * is added to each transaction.  So in_trans_setup
1767	 * is used to tell us when more checks are required
1768	 */
1769	unsigned long in_trans_setup;
1770	int ref_cows;
1771	int track_dirty;
1772	int in_radix;
1773#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1774	int dummy_root;
1775#endif
1776	u64 defrag_trans_start;
1777	struct btrfs_key defrag_progress;
1778	struct btrfs_key defrag_max;
1779	int defrag_running;
1780	char *name;
1781
1782	/* the dirty list is only used by non-reference counted roots */
1783	struct list_head dirty_list;
1784
1785	struct list_head root_list;
1786
1787	spinlock_t log_extents_lock[2];
1788	struct list_head logged_list[2];
1789
1790	spinlock_t orphan_lock;
1791	atomic_t orphan_inodes;
1792	struct btrfs_block_rsv *orphan_block_rsv;
1793	int orphan_item_inserted;
1794	int orphan_cleanup_state;
1795
1796	spinlock_t inode_lock;
1797	/* red-black tree that keeps track of in-memory inodes */
1798	struct rb_root inode_tree;
1799
1800	/*
1801	 * radix tree that keeps track of delayed nodes of every inode,
1802	 * protected by inode_lock
1803	 */
1804	struct radix_tree_root delayed_nodes_tree;
1805	/*
1806	 * right now this just gets used so that a root has its own devid
1807	 * for stat.  It may be used for more later
1808	 */
1809	dev_t anon_dev;
1810
1811	int force_cow;
1812
1813	spinlock_t root_item_lock;
1814	atomic_t refs;
1815
1816	struct mutex delalloc_mutex;
1817	spinlock_t delalloc_lock;
1818	/*
1819	 * all of the inodes that have delalloc bytes.  It is possible for
1820	 * this list to be empty even when there is still dirty data=ordered
1821	 * extents waiting to finish IO.
1822	 */
1823	struct list_head delalloc_inodes;
1824	struct list_head delalloc_root;
1825	u64 nr_delalloc_inodes;
1826
1827	struct mutex ordered_extent_mutex;
1828	/*
1829	 * this is used by the balancing code to wait for all the pending
1830	 * ordered extents
1831	 */
1832	spinlock_t ordered_extent_lock;
1833
1834	/*
1835	 * all of the data=ordered extents pending writeback
1836	 * these can span multiple transactions and basically include
1837	 * every dirty data page that isn't from nodatacow
1838	 */
1839	struct list_head ordered_extents;
1840	struct list_head ordered_root;
1841	u64 nr_ordered_extents;
1842
1843	/*
 
 
 
 
 
 
 
 
1844	 * Number of currently running SEND ioctls to prevent
1845	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1846	 */
1847	int send_in_progress;
1848	struct btrfs_subvolume_writers *subv_writers;
1849	atomic_t will_be_snapshoted;
1850};
1851
1852struct btrfs_ioctl_defrag_range_args {
1853	/* start of the defrag operation */
1854	__u64 start;
1855
1856	/* number of bytes to defrag, use (u64)-1 to say all */
1857	__u64 len;
1858
1859	/*
1860	 * flags for the operation, which can include turning
1861	 * on compression for this one defrag
 
1862	 */
1863	__u64 flags;
 
 
1864
1865	/*
1866	 * any extent bigger than this will be considered
1867	 * already defragged.  Use 0 to take the kernel default
1868	 * Use 1 to say every single extent must be rewritten
1869	 */
1870	__u32 extent_thresh;
1871
1872	/*
1873	 * which compression method to use if turning on compression
1874	 * for this defrag operation.  If unspecified, zlib will
1875	 * be used
1876	 */
1877	__u32 compress_type;
1878
1879	/* spare for later */
1880	__u32 unused[4];
1881};
1882
1883
1884/*
1885 * inode items have the data typically returned from stat and store other
1886 * info about object characteristics.  There is one for every file and dir in
1887 * the FS
1888 */
1889#define BTRFS_INODE_ITEM_KEY		1
1890#define BTRFS_INODE_REF_KEY		12
1891#define BTRFS_INODE_EXTREF_KEY		13
1892#define BTRFS_XATTR_ITEM_KEY		24
1893#define BTRFS_ORPHAN_ITEM_KEY		48
1894/* reserve 2-15 close to the inode for later flexibility */
1895
1896/*
1897 * dir items are the name -> inode pointers in a directory.  There is one
1898 * for every name in a directory.
1899 */
1900#define BTRFS_DIR_LOG_ITEM_KEY  60
1901#define BTRFS_DIR_LOG_INDEX_KEY 72
1902#define BTRFS_DIR_ITEM_KEY	84
1903#define BTRFS_DIR_INDEX_KEY	96
1904/*
1905 * extent data is for file data
1906 */
1907#define BTRFS_EXTENT_DATA_KEY	108
1908
1909/*
1910 * extent csums are stored in a separate tree and hold csums for
1911 * an entire extent on disk.
1912 */
1913#define BTRFS_EXTENT_CSUM_KEY	128
1914
1915/*
1916 * root items point to tree roots.  They are typically in the root
1917 * tree used by the super block to find all the other trees
1918 */
1919#define BTRFS_ROOT_ITEM_KEY	132
1920
1921/*
1922 * root backrefs tie subvols and snapshots to the directory entries that
1923 * reference them
1924 */
1925#define BTRFS_ROOT_BACKREF_KEY	144
1926
1927/*
1928 * root refs make a fast index for listing all of the snapshots and
1929 * subvolumes referenced by a given root.  They point directly to the
1930 * directory item in the root that references the subvol
1931 */
1932#define BTRFS_ROOT_REF_KEY	156
1933
1934/*
1935 * extent items are in the extent map tree.  These record which blocks
1936 * are used, and how many references there are to each block
1937 */
1938#define BTRFS_EXTENT_ITEM_KEY	168
1939
1940/*
1941 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
1942 * the length, so we save the level in key->offset instead of the length.
1943 */
1944#define BTRFS_METADATA_ITEM_KEY	169
1945
1946#define BTRFS_TREE_BLOCK_REF_KEY	176
1947
1948#define BTRFS_EXTENT_DATA_REF_KEY	178
1949
1950#define BTRFS_EXTENT_REF_V0_KEY		180
1951
1952#define BTRFS_SHARED_BLOCK_REF_KEY	182
1953
1954#define BTRFS_SHARED_DATA_REF_KEY	184
1955
1956/*
1957 * block groups give us hints into the extent allocation trees.  Which
1958 * blocks are free etc etc
1959 */
1960#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1961
1962#define BTRFS_DEV_EXTENT_KEY	204
1963#define BTRFS_DEV_ITEM_KEY	216
1964#define BTRFS_CHUNK_ITEM_KEY	228
1965
1966/*
1967 * Records the overall state of the qgroups.
1968 * There's only one instance of this key present,
1969 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
1970 */
1971#define BTRFS_QGROUP_STATUS_KEY         240
1972/*
1973 * Records the currently used space of the qgroup.
1974 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
1975 */
1976#define BTRFS_QGROUP_INFO_KEY           242
1977/*
1978 * Contains the user configured limits for the qgroup.
1979 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
1980 */
1981#define BTRFS_QGROUP_LIMIT_KEY          244
1982/*
1983 * Records the child-parent relationship of qgroups. For
1984 * each relation, 2 keys are present:
1985 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
1986 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
1987 */
1988#define BTRFS_QGROUP_RELATION_KEY       246
1989
1990#define BTRFS_BALANCE_ITEM_KEY	248
1991
1992/*
1993 * Persistantly stores the io stats in the device tree.
1994 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
1995 */
1996#define BTRFS_DEV_STATS_KEY	249
1997
1998/*
1999 * Persistantly stores the device replace state in the device tree.
2000 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2001 */
2002#define BTRFS_DEV_REPLACE_KEY	250
2003
2004/*
2005 * Stores items that allow to quickly map UUIDs to something else.
2006 * These items are part of the filesystem UUID tree.
2007 * The key is built like this:
2008 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2009 */
2010#if BTRFS_UUID_SIZE != 16
2011#error "UUID items require BTRFS_UUID_SIZE == 16!"
2012#endif
2013#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
2014#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
2015						 * received subvols */
2016
2017/*
2018 * string items are for debugging.  They just store a short string of
2019 * data in the FS
2020 */
2021#define BTRFS_STRING_ITEM_KEY	253
2022
2023/*
2024 * Flags for mount options.
2025 *
2026 * Note: don't forget to add new options to btrfs_show_options()
2027 */
2028#define BTRFS_MOUNT_NODATASUM		(1 << 0)
2029#define BTRFS_MOUNT_NODATACOW		(1 << 1)
2030#define BTRFS_MOUNT_NOBARRIER		(1 << 2)
2031#define BTRFS_MOUNT_SSD			(1 << 3)
2032#define BTRFS_MOUNT_DEGRADED		(1 << 4)
2033#define BTRFS_MOUNT_COMPRESS		(1 << 5)
2034#define BTRFS_MOUNT_NOTREELOG           (1 << 6)
2035#define BTRFS_MOUNT_FLUSHONCOMMIT       (1 << 7)
2036#define BTRFS_MOUNT_SSD_SPREAD		(1 << 8)
2037#define BTRFS_MOUNT_NOSSD		(1 << 9)
2038#define BTRFS_MOUNT_DISCARD		(1 << 10)
2039#define BTRFS_MOUNT_FORCE_COMPRESS      (1 << 11)
2040#define BTRFS_MOUNT_SPACE_CACHE		(1 << 12)
2041#define BTRFS_MOUNT_CLEAR_CACHE		(1 << 13)
2042#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2043#define BTRFS_MOUNT_ENOSPC_DEBUG	 (1 << 15)
2044#define BTRFS_MOUNT_AUTO_DEFRAG		(1 << 16)
2045#define BTRFS_MOUNT_INODE_MAP_CACHE	(1 << 17)
2046#define BTRFS_MOUNT_RECOVERY		(1 << 18)
2047#define BTRFS_MOUNT_SKIP_BALANCE	(1 << 19)
2048#define BTRFS_MOUNT_CHECK_INTEGRITY	(1 << 20)
2049#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2050#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	(1 << 22)
2051#define BTRFS_MOUNT_RESCAN_UUID_TREE	(1 << 23)
2052#define	BTRFS_MOUNT_CHANGE_INODE_CACHE	(1 << 24)
2053
2054#define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
2055
2056#define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
2057#define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
2058#define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
2059#define btrfs_test_opt(root, opt)	((root)->fs_info->mount_opt & \
2060					 BTRFS_MOUNT_##opt)
2061#define btrfs_set_and_info(root, opt, fmt, args...)			\
2062{									\
2063	if (!btrfs_test_opt(root, opt))					\
2064		btrfs_info(root->fs_info, fmt, ##args);			\
2065	btrfs_set_opt(root->fs_info->mount_opt, opt);			\
2066}
2067
2068#define btrfs_clear_and_info(root, opt, fmt, args...)			\
2069{									\
2070	if (btrfs_test_opt(root, opt))					\
2071		btrfs_info(root->fs_info, fmt, ##args);			\
2072	btrfs_clear_opt(root->fs_info->mount_opt, opt);			\
2073}
2074
2075/*
2076 * Inode flags
2077 */
2078#define BTRFS_INODE_NODATASUM		(1 << 0)
2079#define BTRFS_INODE_NODATACOW		(1 << 1)
2080#define BTRFS_INODE_READONLY		(1 << 2)
2081#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
2082#define BTRFS_INODE_PREALLOC		(1 << 4)
2083#define BTRFS_INODE_SYNC		(1 << 5)
2084#define BTRFS_INODE_IMMUTABLE		(1 << 6)
2085#define BTRFS_INODE_APPEND		(1 << 7)
2086#define BTRFS_INODE_NODUMP		(1 << 8)
2087#define BTRFS_INODE_NOATIME		(1 << 9)
2088#define BTRFS_INODE_DIRSYNC		(1 << 10)
2089#define BTRFS_INODE_COMPRESS		(1 << 11)
2090
2091#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
2092
2093struct btrfs_map_token {
2094	struct extent_buffer *eb;
2095	char *kaddr;
2096	unsigned long offset;
2097};
2098
2099static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2100{
2101	token->kaddr = NULL;
2102}
2103
2104/* some macros to generate set/get funcs for the struct fields.  This
2105 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2106 * one for u8:
2107 */
2108#define le8_to_cpu(v) (v)
2109#define cpu_to_le8(v) (v)
2110#define __le8 u8
2111
2112#define read_eb_member(eb, ptr, type, member, result) (			\
2113	read_extent_buffer(eb, (char *)(result),			\
2114			   ((unsigned long)(ptr)) +			\
2115			    offsetof(type, member),			\
2116			   sizeof(((type *)0)->member)))
2117
2118#define write_eb_member(eb, ptr, type, member, result) (		\
2119	write_extent_buffer(eb, (char *)(result),			\
2120			   ((unsigned long)(ptr)) +			\
2121			    offsetof(type, member),			\
2122			   sizeof(((type *)0)->member)))
2123
2124#define DECLARE_BTRFS_SETGET_BITS(bits)					\
2125u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr,	\
2126			       unsigned long off,			\
2127                              struct btrfs_map_token *token);		\
2128void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr,	\
2129			    unsigned long off, u##bits val,		\
2130			    struct btrfs_map_token *token);		\
2131static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2132				       unsigned long off)		\
2133{									\
2134	return btrfs_get_token_##bits(eb, ptr, off, NULL);		\
2135}									\
2136static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2137				    unsigned long off, u##bits val)	\
2138{									\
2139       btrfs_set_token_##bits(eb, ptr, off, val, NULL);			\
2140}
2141
2142DECLARE_BTRFS_SETGET_BITS(8)
2143DECLARE_BTRFS_SETGET_BITS(16)
2144DECLARE_BTRFS_SETGET_BITS(32)
2145DECLARE_BTRFS_SETGET_BITS(64)
2146
2147#define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
2148static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s)	\
2149{									\
2150	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2151	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
2152}									\
2153static inline void btrfs_set_##name(struct extent_buffer *eb, type *s,	\
2154				    u##bits val)			\
2155{									\
2156	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2157	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
2158}									\
2159static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2160					 struct btrfs_map_token *token)	\
2161{									\
2162	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2163	return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2164}									\
2165static inline void btrfs_set_token_##name(struct extent_buffer *eb,	\
2166					  type *s, u##bits val,		\
2167                                         struct btrfs_map_token *token)	\
2168{									\
2169	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2170	btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2171}
2172
2173#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
2174static inline u##bits btrfs_##name(struct extent_buffer *eb)		\
2175{									\
2176	type *p = page_address(eb->pages[0]);				\
2177	u##bits res = le##bits##_to_cpu(p->member);			\
2178	return res;							\
2179}									\
2180static inline void btrfs_set_##name(struct extent_buffer *eb,		\
2181				    u##bits val)			\
2182{									\
2183	type *p = page_address(eb->pages[0]);				\
2184	p->member = cpu_to_le##bits(val);				\
2185}
2186
2187#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
2188static inline u##bits btrfs_##name(type *s)				\
2189{									\
2190	return le##bits##_to_cpu(s->member);				\
2191}									\
2192static inline void btrfs_set_##name(type *s, u##bits val)		\
2193{									\
2194	s->member = cpu_to_le##bits(val);				\
2195}
2196
2197BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2198BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2199BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2200BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2201BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2202BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2203		   start_offset, 64);
2204BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2205BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2206BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2207BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2208BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2209BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2210
2211BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2212BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2213			 total_bytes, 64);
2214BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2215			 bytes_used, 64);
2216BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2217			 io_align, 32);
2218BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2219			 io_width, 32);
2220BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2221			 sector_size, 32);
2222BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2223BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2224			 dev_group, 32);
2225BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2226			 seek_speed, 8);
2227BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2228			 bandwidth, 8);
2229BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2230			 generation, 64);
2231
2232static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2233{
2234	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2235}
2236
2237static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2238{
2239	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2240}
2241
2242BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2243BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2244BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2245BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2246BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2247BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2248BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2249BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2250BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2251BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2252BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2253
2254static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2255{
2256	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2257}
2258
2259BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2260BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2261BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2262			 stripe_len, 64);
2263BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2264			 io_align, 32);
2265BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2266			 io_width, 32);
2267BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2268			 sector_size, 32);
2269BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2270BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2271			 num_stripes, 16);
2272BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2273			 sub_stripes, 16);
2274BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2275BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2276
2277static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2278						   int nr)
2279{
2280	unsigned long offset = (unsigned long)c;
2281	offset += offsetof(struct btrfs_chunk, stripe);
2282	offset += nr * sizeof(struct btrfs_stripe);
2283	return (struct btrfs_stripe *)offset;
2284}
2285
2286static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2287{
2288	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2289}
2290
2291static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2292					 struct btrfs_chunk *c, int nr)
2293{
2294	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2295}
2296
2297static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2298					 struct btrfs_chunk *c, int nr)
2299{
2300	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2301}
2302
2303/* struct btrfs_block_group_item */
2304BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2305			 used, 64);
2306BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2307			 used, 64);
2308BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2309			struct btrfs_block_group_item, chunk_objectid, 64);
2310
2311BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2312		   struct btrfs_block_group_item, chunk_objectid, 64);
2313BTRFS_SETGET_FUNCS(disk_block_group_flags,
2314		   struct btrfs_block_group_item, flags, 64);
2315BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2316			struct btrfs_block_group_item, flags, 64);
2317
2318/* struct btrfs_inode_ref */
2319BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2320BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2321
2322/* struct btrfs_inode_extref */
2323BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2324		   parent_objectid, 64);
2325BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2326		   name_len, 16);
2327BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2328
2329/* struct btrfs_inode_item */
2330BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2331BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2332BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2333BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2334BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2335BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2336BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2337BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2338BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2339BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2340BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2341BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2342BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2343			 generation, 64);
2344BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2345			 sequence, 64);
2346BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2347			 transid, 64);
2348BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2349BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2350			 nbytes, 64);
2351BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2352			 block_group, 64);
2353BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2354BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2355BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2356BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2357BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2358BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2359
2360static inline struct btrfs_timespec *
2361btrfs_inode_atime(struct btrfs_inode_item *inode_item)
2362{
2363	unsigned long ptr = (unsigned long)inode_item;
2364	ptr += offsetof(struct btrfs_inode_item, atime);
2365	return (struct btrfs_timespec *)ptr;
2366}
2367
2368static inline struct btrfs_timespec *
2369btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
2370{
2371	unsigned long ptr = (unsigned long)inode_item;
2372	ptr += offsetof(struct btrfs_inode_item, mtime);
2373	return (struct btrfs_timespec *)ptr;
2374}
2375
2376static inline struct btrfs_timespec *
2377btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
2378{
2379	unsigned long ptr = (unsigned long)inode_item;
2380	ptr += offsetof(struct btrfs_inode_item, ctime);
2381	return (struct btrfs_timespec *)ptr;
2382}
2383
2384BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2385BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2386BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2387BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2388
2389/* struct btrfs_dev_extent */
2390BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2391		   chunk_tree, 64);
2392BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2393		   chunk_objectid, 64);
2394BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2395		   chunk_offset, 64);
2396BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2397
2398static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2399{
2400	unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2401	return (unsigned long)dev + ptr;
2402}
2403
2404BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2405BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2406		   generation, 64);
2407BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2408
2409BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2410
2411
2412BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2413
2414static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2415					struct btrfs_tree_block_info *item,
2416					struct btrfs_disk_key *key)
2417{
2418	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2419}
2420
2421static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2422					    struct btrfs_tree_block_info *item,
2423					    struct btrfs_disk_key *key)
2424{
2425	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2426}
2427
2428BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2429		   root, 64);
2430BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2431		   objectid, 64);
2432BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2433		   offset, 64);
2434BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2435		   count, 32);
2436
2437BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2438		   count, 32);
2439
2440BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2441		   type, 8);
2442BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2443		   offset, 64);
2444
2445static inline u32 btrfs_extent_inline_ref_size(int type)
2446{
2447	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2448	    type == BTRFS_SHARED_BLOCK_REF_KEY)
2449		return sizeof(struct btrfs_extent_inline_ref);
2450	if (type == BTRFS_SHARED_DATA_REF_KEY)
2451		return sizeof(struct btrfs_shared_data_ref) +
2452		       sizeof(struct btrfs_extent_inline_ref);
2453	if (type == BTRFS_EXTENT_DATA_REF_KEY)
2454		return sizeof(struct btrfs_extent_data_ref) +
2455		       offsetof(struct btrfs_extent_inline_ref, offset);
2456	BUG();
2457	return 0;
2458}
2459
2460BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2461BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2462		   generation, 64);
2463BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2464BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2465
2466/* struct btrfs_node */
2467BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2468BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2469BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2470			 blockptr, 64);
2471BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2472			 generation, 64);
2473
2474static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2475{
2476	unsigned long ptr;
2477	ptr = offsetof(struct btrfs_node, ptrs) +
2478		sizeof(struct btrfs_key_ptr) * nr;
2479	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2480}
2481
2482static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2483					   int nr, u64 val)
2484{
2485	unsigned long ptr;
2486	ptr = offsetof(struct btrfs_node, ptrs) +
2487		sizeof(struct btrfs_key_ptr) * nr;
2488	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2489}
2490
2491static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2492{
2493	unsigned long ptr;
2494	ptr = offsetof(struct btrfs_node, ptrs) +
2495		sizeof(struct btrfs_key_ptr) * nr;
2496	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2497}
2498
2499static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2500						 int nr, u64 val)
2501{
2502	unsigned long ptr;
2503	ptr = offsetof(struct btrfs_node, ptrs) +
2504		sizeof(struct btrfs_key_ptr) * nr;
2505	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2506}
2507
2508static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2509{
2510	return offsetof(struct btrfs_node, ptrs) +
2511		sizeof(struct btrfs_key_ptr) * nr;
2512}
2513
2514void btrfs_node_key(struct extent_buffer *eb,
2515		    struct btrfs_disk_key *disk_key, int nr);
2516
2517static inline void btrfs_set_node_key(struct extent_buffer *eb,
2518				      struct btrfs_disk_key *disk_key, int nr)
2519{
2520	unsigned long ptr;
2521	ptr = btrfs_node_key_ptr_offset(nr);
2522	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2523		       struct btrfs_key_ptr, key, disk_key);
2524}
2525
2526/* struct btrfs_item */
2527BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2528BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2529BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2530BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2531
2532static inline unsigned long btrfs_item_nr_offset(int nr)
2533{
2534	return offsetof(struct btrfs_leaf, items) +
2535		sizeof(struct btrfs_item) * nr;
2536}
2537
2538static inline struct btrfs_item *btrfs_item_nr(int nr)
2539{
2540	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
 
2541}
2542
2543static inline u32 btrfs_item_end(struct extent_buffer *eb,
2544				 struct btrfs_item *item)
2545{
2546	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2547}
2548
2549static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2550{
2551	return btrfs_item_end(eb, btrfs_item_nr(nr));
2552}
2553
2554static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2555{
2556	return btrfs_item_offset(eb, btrfs_item_nr(nr));
2557}
2558
2559static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2560{
2561	return btrfs_item_size(eb, btrfs_item_nr(nr));
2562}
2563
2564static inline void btrfs_item_key(struct extent_buffer *eb,
2565			   struct btrfs_disk_key *disk_key, int nr)
2566{
2567	struct btrfs_item *item = btrfs_item_nr(nr);
2568	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2569}
2570
2571static inline void btrfs_set_item_key(struct extent_buffer *eb,
2572			       struct btrfs_disk_key *disk_key, int nr)
2573{
2574	struct btrfs_item *item = btrfs_item_nr(nr);
2575	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2576}
2577
2578BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2579
2580/*
2581 * struct btrfs_root_ref
 
2582 */
2583BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2584BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2585BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2586
2587/* struct btrfs_dir_item */
2588BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2589BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2590BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2591BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2592BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2593BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2594			 data_len, 16);
2595BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2596			 name_len, 16);
2597BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2598			 transid, 64);
2599
2600static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2601				      struct btrfs_dir_item *item,
2602				      struct btrfs_disk_key *key)
2603{
2604	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2605}
 
 
 
 
2606
2607static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2608					  struct btrfs_dir_item *item,
2609					  struct btrfs_disk_key *key)
2610{
2611	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2612}
2613
2614BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2615		   num_entries, 64);
2616BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2617		   num_bitmaps, 64);
2618BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2619		   generation, 64);
2620
2621static inline void btrfs_free_space_key(struct extent_buffer *eb,
2622					struct btrfs_free_space_header *h,
2623					struct btrfs_disk_key *key)
2624{
2625	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2626}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627
2628static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2629					    struct btrfs_free_space_header *h,
2630					    struct btrfs_disk_key *key)
2631{
2632	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2633}
2634
2635/* struct btrfs_disk_key */
2636BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2637			 objectid, 64);
2638BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2639BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2640
2641static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2642					 struct btrfs_disk_key *disk)
2643{
2644	cpu->offset = le64_to_cpu(disk->offset);
2645	cpu->type = disk->type;
2646	cpu->objectid = le64_to_cpu(disk->objectid);
2647}
2648
2649static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2650					 struct btrfs_key *cpu)
2651{
2652	disk->offset = cpu_to_le64(cpu->offset);
2653	disk->type = cpu->type;
2654	disk->objectid = cpu_to_le64(cpu->objectid);
2655}
2656
2657static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2658				  struct btrfs_key *key, int nr)
2659{
2660	struct btrfs_disk_key disk_key;
2661	btrfs_node_key(eb, &disk_key, nr);
2662	btrfs_disk_key_to_cpu(key, &disk_key);
2663}
2664
2665static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2666				  struct btrfs_key *key, int nr)
2667{
2668	struct btrfs_disk_key disk_key;
2669	btrfs_item_key(eb, &disk_key, nr);
2670	btrfs_disk_key_to_cpu(key, &disk_key);
2671}
2672
2673static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2674				      struct btrfs_dir_item *item,
2675				      struct btrfs_key *key)
2676{
2677	struct btrfs_disk_key disk_key;
2678	btrfs_dir_item_key(eb, item, &disk_key);
2679	btrfs_disk_key_to_cpu(key, &disk_key);
2680}
2681
 
 
2682
2683static inline u8 btrfs_key_type(struct btrfs_key *key)
2684{
2685	return key->type;
2686}
2687
2688static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2689{
2690	key->type = val;
2691}
 
2692
2693/* struct btrfs_header */
2694BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2695BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2696			  generation, 64);
2697BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2698BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2699BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2700BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2701BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2702			 generation, 64);
2703BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2704BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2705			 nritems, 32);
2706BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2707
2708static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2709{
2710	return (btrfs_header_flags(eb) & flag) == flag;
2711}
2712
2713static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2714{
2715	u64 flags = btrfs_header_flags(eb);
2716	btrfs_set_header_flags(eb, flags | flag);
2717	return (flags & flag) == flag;
2718}
2719
2720static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2721{
2722	u64 flags = btrfs_header_flags(eb);
2723	btrfs_set_header_flags(eb, flags & ~flag);
2724	return (flags & flag) == flag;
2725}
2726
2727static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2728{
2729	u64 flags = btrfs_header_flags(eb);
2730	return flags >> BTRFS_BACKREF_REV_SHIFT;
2731}
2732
2733static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2734						int rev)
2735{
2736	u64 flags = btrfs_header_flags(eb);
2737	flags &= ~BTRFS_BACKREF_REV_MASK;
2738	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2739	btrfs_set_header_flags(eb, flags);
2740}
2741
2742static inline unsigned long btrfs_header_fsid(void)
2743{
2744	return offsetof(struct btrfs_header, fsid);
2745}
2746
2747static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2748{
2749	return offsetof(struct btrfs_header, chunk_tree_uuid);
2750}
2751
2752static inline int btrfs_is_leaf(struct extent_buffer *eb)
2753{
2754	return btrfs_header_level(eb) == 0;
2755}
2756
2757/* struct btrfs_root_item */
2758BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2759		   generation, 64);
2760BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2761BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2762BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2763
2764BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2765			 generation, 64);
2766BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2767BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2768BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2769BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2770BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2771BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2772BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2773BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2774			 last_snapshot, 64);
2775BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2776			 generation_v2, 64);
2777BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2778			 ctransid, 64);
2779BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2780			 otransid, 64);
2781BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2782			 stransid, 64);
2783BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2784			 rtransid, 64);
2785
2786static inline bool btrfs_root_readonly(struct btrfs_root *root)
2787{
2788	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2789}
2790
2791/* struct btrfs_root_backup */
2792BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2793		   tree_root, 64);
2794BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2795		   tree_root_gen, 64);
2796BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2797		   tree_root_level, 8);
2798
2799BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2800		   chunk_root, 64);
2801BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2802		   chunk_root_gen, 64);
2803BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2804		   chunk_root_level, 8);
2805
2806BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2807		   extent_root, 64);
2808BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2809		   extent_root_gen, 64);
2810BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2811		   extent_root_level, 8);
2812
2813BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2814		   fs_root, 64);
2815BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2816		   fs_root_gen, 64);
2817BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2818		   fs_root_level, 8);
2819
2820BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2821		   dev_root, 64);
2822BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2823		   dev_root_gen, 64);
2824BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2825		   dev_root_level, 8);
2826
2827BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2828		   csum_root, 64);
2829BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2830		   csum_root_gen, 64);
2831BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2832		   csum_root_level, 8);
2833BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2834		   total_bytes, 64);
2835BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2836		   bytes_used, 64);
2837BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2838		   num_devices, 64);
2839
2840/* struct btrfs_balance_item */
2841BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2842
2843static inline void btrfs_balance_data(struct extent_buffer *eb,
2844				      struct btrfs_balance_item *bi,
2845				      struct btrfs_disk_balance_args *ba)
2846{
2847	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2848}
2849
2850static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2851					  struct btrfs_balance_item *bi,
2852					  struct btrfs_disk_balance_args *ba)
2853{
2854	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2855}
2856
2857static inline void btrfs_balance_meta(struct extent_buffer *eb,
2858				      struct btrfs_balance_item *bi,
2859				      struct btrfs_disk_balance_args *ba)
2860{
2861	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2862}
2863
2864static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2865					  struct btrfs_balance_item *bi,
2866					  struct btrfs_disk_balance_args *ba)
2867{
2868	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2869}
2870
2871static inline void btrfs_balance_sys(struct extent_buffer *eb,
2872				     struct btrfs_balance_item *bi,
2873				     struct btrfs_disk_balance_args *ba)
2874{
2875	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2876}
2877
2878static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2879					 struct btrfs_balance_item *bi,
2880					 struct btrfs_disk_balance_args *ba)
2881{
2882	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2883}
2884
2885static inline void
2886btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2887			       struct btrfs_disk_balance_args *disk)
2888{
2889	memset(cpu, 0, sizeof(*cpu));
2890
2891	cpu->profiles = le64_to_cpu(disk->profiles);
2892	cpu->usage = le64_to_cpu(disk->usage);
2893	cpu->devid = le64_to_cpu(disk->devid);
2894	cpu->pstart = le64_to_cpu(disk->pstart);
2895	cpu->pend = le64_to_cpu(disk->pend);
2896	cpu->vstart = le64_to_cpu(disk->vstart);
2897	cpu->vend = le64_to_cpu(disk->vend);
2898	cpu->target = le64_to_cpu(disk->target);
2899	cpu->flags = le64_to_cpu(disk->flags);
2900}
2901
2902static inline void
2903btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2904			       struct btrfs_balance_args *cpu)
2905{
2906	memset(disk, 0, sizeof(*disk));
2907
2908	disk->profiles = cpu_to_le64(cpu->profiles);
2909	disk->usage = cpu_to_le64(cpu->usage);
2910	disk->devid = cpu_to_le64(cpu->devid);
2911	disk->pstart = cpu_to_le64(cpu->pstart);
2912	disk->pend = cpu_to_le64(cpu->pend);
2913	disk->vstart = cpu_to_le64(cpu->vstart);
2914	disk->vend = cpu_to_le64(cpu->vend);
2915	disk->target = cpu_to_le64(cpu->target);
2916	disk->flags = cpu_to_le64(cpu->flags);
2917}
2918
2919/* struct btrfs_super_block */
2920BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2921BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2922BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2923			 generation, 64);
2924BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2925BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2926			 struct btrfs_super_block, sys_chunk_array_size, 32);
2927BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2928			 struct btrfs_super_block, chunk_root_generation, 64);
2929BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2930			 root_level, 8);
2931BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2932			 chunk_root, 64);
2933BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2934			 chunk_root_level, 8);
2935BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2936			 log_root, 64);
2937BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2938			 log_root_transid, 64);
2939BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2940			 log_root_level, 8);
2941BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2942			 total_bytes, 64);
2943BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2944			 bytes_used, 64);
2945BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2946			 sectorsize, 32);
2947BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2948			 nodesize, 32);
2949BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
2950			 leafsize, 32);
2951BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2952			 stripesize, 32);
2953BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2954			 root_dir_objectid, 64);
2955BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2956			 num_devices, 64);
2957BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2958			 compat_flags, 64);
2959BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2960			 compat_ro_flags, 64);
2961BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2962			 incompat_flags, 64);
2963BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2964			 csum_type, 16);
2965BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2966			 cache_generation, 64);
2967BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2968BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2969			 uuid_tree_generation, 64);
2970
2971static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2972{
2973	u16 t = btrfs_super_csum_type(s);
2974	/*
2975	 * csum type is validated at mount time
2976	 */
2977	return btrfs_csum_sizes[t];
2978}
2979
2980static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2981{
2982	return offsetof(struct btrfs_leaf, items);
2983}
2984
2985/* struct btrfs_file_extent_item */
2986BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2987BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2988			 struct btrfs_file_extent_item, disk_bytenr, 64);
2989BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2990			 struct btrfs_file_extent_item, offset, 64);
2991BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2992			 struct btrfs_file_extent_item, generation, 64);
2993BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2994			 struct btrfs_file_extent_item, num_bytes, 64);
2995BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2996			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2997BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2998			 struct btrfs_file_extent_item, compression, 8);
2999
3000static inline unsigned long
3001btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3002{
3003	unsigned long offset = (unsigned long)e;
3004	offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
3005	return offset;
3006}
3007
3008static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3009{
3010	return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
3011}
3012
3013BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3014		   disk_bytenr, 64);
3015BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3016		   generation, 64);
3017BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3018		   disk_num_bytes, 64);
3019BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3020		  offset, 64);
3021BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3022		   num_bytes, 64);
3023BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3024		   ram_bytes, 64);
3025BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3026		   compression, 8);
3027BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3028		   encryption, 8);
3029BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3030		   other_encoding, 16);
3031
3032/*
3033 * this returns the number of bytes used by the item on disk, minus the
3034 * size of any extent headers.  If a file is compressed on disk, this is
3035 * the compressed size
3036 */
3037static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3038						    struct btrfs_item *e)
3039{
3040	unsigned long offset;
3041	offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
3042	return btrfs_item_size(eb, e) - offset;
3043}
3044
3045/* this returns the number of file bytes represented by the inline item.
3046 * If an item is compressed, this is the uncompressed size
3047 */
3048static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3049					       int slot,
3050					       struct btrfs_file_extent_item *fi)
3051{
3052	struct btrfs_map_token token;
3053
3054	btrfs_init_map_token(&token);
3055	/*
3056	 * return the space used on disk if this item isn't
3057	 * compressed or encoded
3058	 */
3059	if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3060	    btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3061	    btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3062		return btrfs_file_extent_inline_item_len(eb,
3063							 btrfs_item_nr(slot));
3064	}
3065
3066	/* otherwise use the ram bytes field */
3067	return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3068}
3069
 
3070
3071/* btrfs_dev_stats_item */
3072static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3073					struct btrfs_dev_stats_item *ptr,
3074					int index)
3075{
3076	u64 val;
3077
3078	read_extent_buffer(eb, &val,
3079			   offsetof(struct btrfs_dev_stats_item, values) +
3080			    ((unsigned long)ptr) + (index * sizeof(u64)),
3081			   sizeof(val));
3082	return val;
3083}
3084
3085static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3086					     struct btrfs_dev_stats_item *ptr,
3087					     int index, u64 val)
3088{
3089	write_extent_buffer(eb, &val,
3090			    offsetof(struct btrfs_dev_stats_item, values) +
3091			     ((unsigned long)ptr) + (index * sizeof(u64)),
3092			    sizeof(val));
3093}
3094
3095/* btrfs_qgroup_status_item */
3096BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3097		   generation, 64);
3098BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3099		   version, 64);
3100BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3101		   flags, 64);
3102BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3103		   rescan, 64);
3104
3105/* btrfs_qgroup_info_item */
3106BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3107		   generation, 64);
3108BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3109BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3110		   rfer_cmpr, 64);
3111BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3112BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3113		   excl_cmpr, 64);
3114
3115BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3116			 struct btrfs_qgroup_info_item, generation, 64);
3117BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3118			 rfer, 64);
3119BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3120			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3121BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3122			 excl, 64);
3123BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3124			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3125
3126/* btrfs_qgroup_limit_item */
3127BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3128		   flags, 64);
3129BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3130		   max_rfer, 64);
3131BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3132		   max_excl, 64);
3133BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3134		   rsv_rfer, 64);
3135BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3136		   rsv_excl, 64);
3137
3138/* btrfs_dev_replace_item */
3139BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3140		   struct btrfs_dev_replace_item, src_devid, 64);
3141BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3142		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3143		   64);
3144BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3145		   replace_state, 64);
3146BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3147		   time_started, 64);
3148BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3149		   time_stopped, 64);
3150BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3151		   num_write_errors, 64);
3152BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3153		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3154		   64);
3155BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3156		   cursor_left, 64);
3157BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3158		   cursor_right, 64);
3159
3160BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3161			 struct btrfs_dev_replace_item, src_devid, 64);
3162BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3163			 struct btrfs_dev_replace_item,
3164			 cont_reading_from_srcdev_mode, 64);
3165BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3166			 struct btrfs_dev_replace_item, replace_state, 64);
3167BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3168			 struct btrfs_dev_replace_item, time_started, 64);
3169BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3170			 struct btrfs_dev_replace_item, time_stopped, 64);
3171BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3172			 struct btrfs_dev_replace_item, num_write_errors, 64);
3173BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3174			 struct btrfs_dev_replace_item,
3175			 num_uncorrectable_read_errors, 64);
3176BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3177			 struct btrfs_dev_replace_item, cursor_left, 64);
3178BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3179			 struct btrfs_dev_replace_item, cursor_right, 64);
3180
3181static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3182{
3183	return sb->s_fs_info;
3184}
3185
3186static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
3187{
3188	if (level == 0)
3189		return root->leafsize;
3190	return root->nodesize;
3191}
3192
3193/* helper function to cast into the data area of the leaf. */
3194#define btrfs_item_ptr(leaf, slot, type) \
3195	((type *)(btrfs_leaf_data(leaf) + \
3196	btrfs_item_offset_nr(leaf, slot)))
3197
3198#define btrfs_item_ptr_offset(leaf, slot) \
3199	((unsigned long)(btrfs_leaf_data(leaf) + \
3200	btrfs_item_offset_nr(leaf, slot)))
3201
3202static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3203{
3204	return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3205		(space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3206}
3207
3208static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3209{
3210	return mapping_gfp_mask(mapping) & ~__GFP_FS;
3211}
3212
3213/* extent-tree.c */
3214static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3215						 unsigned num_items)
3216{
3217	return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3218		2 * num_items;
3219}
3220
3221/*
3222 * Doing a truncate won't result in new nodes or leaves, just what we need for
3223 * COW.
3224 */
3225static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3226						 unsigned num_items)
3227{
3228	return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3229		num_items;
3230}
3231
3232int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3233				       struct btrfs_root *root);
3234int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3235				       struct btrfs_root *root);
3236void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3237int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3238			   struct btrfs_root *root, unsigned long count);
3239int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
3240int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3241			     struct btrfs_root *root, u64 bytenr,
3242			     u64 offset, int metadata, u64 *refs, u64 *flags);
3243int btrfs_pin_extent(struct btrfs_root *root,
3244		     u64 bytenr, u64 num, int reserved);
3245int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3246				    u64 bytenr, u64 num_bytes);
3247int btrfs_exclude_logged_extents(struct btrfs_root *root,
3248				 struct extent_buffer *eb);
3249int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3250			  struct btrfs_root *root,
3251			  u64 objectid, u64 offset, u64 bytenr);
3252struct btrfs_block_group_cache *btrfs_lookup_block_group(
3253						 struct btrfs_fs_info *info,
3254						 u64 bytenr);
3255void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3256int get_block_group_index(struct btrfs_block_group_cache *cache);
3257struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3258					struct btrfs_root *root, u32 blocksize,
3259					u64 parent, u64 root_objectid,
3260					struct btrfs_disk_key *key, int level,
3261					u64 hint, u64 empty_size);
3262void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3263			   struct btrfs_root *root,
3264			   struct extent_buffer *buf,
3265			   u64 parent, int last_ref);
3266int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3267				     struct btrfs_root *root,
3268				     u64 root_objectid, u64 owner,
3269				     u64 offset, struct btrfs_key *ins);
3270int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3271				   struct btrfs_root *root,
3272				   u64 root_objectid, u64 owner, u64 offset,
3273				   struct btrfs_key *ins);
3274int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3275			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3276			 struct btrfs_key *ins, int is_data);
3277int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3278		  struct extent_buffer *buf, int full_backref, int for_cow);
3279int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3280		  struct extent_buffer *buf, int full_backref, int for_cow);
3281int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3282				struct btrfs_root *root,
3283				u64 bytenr, u64 num_bytes, u64 flags,
3284				int level, int is_data);
3285int btrfs_free_extent(struct btrfs_trans_handle *trans,
3286		      struct btrfs_root *root,
3287		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3288		      u64 owner, u64 offset, int for_cow);
3289
3290int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
3291int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3292				       u64 start, u64 len);
3293void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3294				 struct btrfs_root *root);
3295int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3296			       struct btrfs_root *root);
3297int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3298			 struct btrfs_root *root,
3299			 u64 bytenr, u64 num_bytes, u64 parent,
3300			 u64 root_objectid, u64 owner, u64 offset, int for_cow);
3301
3302int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3303				    struct btrfs_root *root);
3304int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3305int btrfs_free_block_groups(struct btrfs_fs_info *info);
3306int btrfs_read_block_groups(struct btrfs_root *root);
3307int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3308int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3309			   struct btrfs_root *root, u64 bytes_used,
3310			   u64 type, u64 chunk_objectid, u64 chunk_offset,
3311			   u64 size);
3312int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3313			     struct btrfs_root *root, u64 group_start);
3314void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3315				       struct btrfs_root *root);
3316u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3317void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3318
3319enum btrfs_reserve_flush_enum {
3320	/* If we are in the transaction, we can't flush anything.*/
3321	BTRFS_RESERVE_NO_FLUSH,
3322	/*
3323	 * Flushing delalloc may cause deadlock somewhere, in this
3324	 * case, use FLUSH LIMIT
3325	 */
3326	BTRFS_RESERVE_FLUSH_LIMIT,
3327	BTRFS_RESERVE_FLUSH_ALL,
3328};
3329
3330int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3331void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3332void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3333				struct btrfs_root *root);
3334int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3335				  struct inode *inode);
3336void btrfs_orphan_release_metadata(struct inode *inode);
3337int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3338				     struct btrfs_block_rsv *rsv,
3339				     int nitems,
3340				     u64 *qgroup_reserved, bool use_global_rsv);
3341void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3342				      struct btrfs_block_rsv *rsv,
3343				      u64 qgroup_reserved);
3344int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3345void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3346int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3347void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3348void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3349struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3350					      unsigned short type);
3351void btrfs_free_block_rsv(struct btrfs_root *root,
3352			  struct btrfs_block_rsv *rsv);
3353int btrfs_block_rsv_add(struct btrfs_root *root,
3354			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3355			enum btrfs_reserve_flush_enum flush);
3356int btrfs_block_rsv_check(struct btrfs_root *root,
3357			  struct btrfs_block_rsv *block_rsv, int min_factor);
3358int btrfs_block_rsv_refill(struct btrfs_root *root,
3359			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3360			   enum btrfs_reserve_flush_enum flush);
3361int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3362			    struct btrfs_block_rsv *dst_rsv,
3363			    u64 num_bytes);
3364int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3365			     struct btrfs_block_rsv *dest, u64 num_bytes,
3366			     int min_factor);
3367void btrfs_block_rsv_release(struct btrfs_root *root,
3368			     struct btrfs_block_rsv *block_rsv,
3369			     u64 num_bytes);
3370int btrfs_set_block_group_ro(struct btrfs_root *root,
3371			     struct btrfs_block_group_cache *cache);
3372void btrfs_set_block_group_rw(struct btrfs_root *root,
3373			      struct btrfs_block_group_cache *cache);
3374void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3375u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3376int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3377				   u64 start, u64 end);
3378int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
3379			       u64 num_bytes, u64 *actual_bytes);
3380int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3381			    struct btrfs_root *root, u64 type);
3382int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3383
3384int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3385int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3386					 struct btrfs_fs_info *fs_info);
3387int __get_raid_index(u64 flags);
3388
3389int btrfs_start_nocow_write(struct btrfs_root *root);
3390void btrfs_end_nocow_write(struct btrfs_root *root);
3391/* ctree.c */
3392int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3393		     int level, int *slot);
3394int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3395int btrfs_previous_item(struct btrfs_root *root,
3396			struct btrfs_path *path, u64 min_objectid,
3397			int type);
3398int btrfs_previous_extent_item(struct btrfs_root *root,
3399			struct btrfs_path *path, u64 min_objectid);
3400void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3401			     struct btrfs_key *new_key);
 
3402struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3403struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3404int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3405			struct btrfs_key *key, int lowest_level,
3406			u64 min_trans);
3407int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3408			 struct btrfs_path *path,
3409			 u64 min_trans);
3410enum btrfs_compare_tree_result {
3411	BTRFS_COMPARE_TREE_NEW,
3412	BTRFS_COMPARE_TREE_DELETED,
3413	BTRFS_COMPARE_TREE_CHANGED,
3414	BTRFS_COMPARE_TREE_SAME,
3415};
3416typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3417				  struct btrfs_root *right_root,
3418				  struct btrfs_path *left_path,
3419				  struct btrfs_path *right_path,
3420				  struct btrfs_key *key,
3421				  enum btrfs_compare_tree_result result,
3422				  void *ctx);
3423int btrfs_compare_trees(struct btrfs_root *left_root,
3424			struct btrfs_root *right_root,
3425			btrfs_changed_cb_t cb, void *ctx);
3426int btrfs_cow_block(struct btrfs_trans_handle *trans,
3427		    struct btrfs_root *root, struct extent_buffer *buf,
3428		    struct extent_buffer *parent, int parent_slot,
3429		    struct extent_buffer **cow_ret);
 
 
 
 
 
 
 
 
3430int btrfs_copy_root(struct btrfs_trans_handle *trans,
3431		      struct btrfs_root *root,
3432		      struct extent_buffer *buf,
3433		      struct extent_buffer **cow_ret, u64 new_root_objectid);
3434int btrfs_block_can_be_shared(struct btrfs_root *root,
3435			      struct extent_buffer *buf);
3436void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3437		       u32 data_size);
3438void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3439			 u32 new_size, int from_end);
 
 
 
3440int btrfs_split_item(struct btrfs_trans_handle *trans,
3441		     struct btrfs_root *root,
3442		     struct btrfs_path *path,
3443		     struct btrfs_key *new_key,
3444		     unsigned long split_offset);
3445int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3446			 struct btrfs_root *root,
3447			 struct btrfs_path *path,
3448			 struct btrfs_key *new_key);
3449int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3450		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3451int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3452		      *root, struct btrfs_key *key, struct btrfs_path *p, int
3453		      ins_len, int cow);
3454int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3455			  struct btrfs_path *p, u64 time_seq);
3456int btrfs_search_slot_for_read(struct btrfs_root *root,
3457			       struct btrfs_key *key, struct btrfs_path *p,
3458			       int find_higher, int return_any);
3459int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3460		       struct btrfs_root *root, struct extent_buffer *parent,
3461		       int start_slot, u64 *last_ret,
3462		       struct btrfs_key *progress);
3463void btrfs_release_path(struct btrfs_path *p);
3464struct btrfs_path *btrfs_alloc_path(void);
3465void btrfs_free_path(struct btrfs_path *p);
3466void btrfs_set_path_blocking(struct btrfs_path *p);
3467void btrfs_clear_path_blocking(struct btrfs_path *p,
3468			       struct extent_buffer *held, int held_rw);
3469void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3470
3471int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3472		   struct btrfs_path *path, int slot, int nr);
3473static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3474				 struct btrfs_root *root,
3475				 struct btrfs_path *path)
3476{
3477	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3478}
3479
3480void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3481			    struct btrfs_key *cpu_key, u32 *data_size,
3482			    u32 total_data, u32 total_size, int nr);
3483int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3484		      *root, struct btrfs_key *key, void *data, u32 data_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3485int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3486			     struct btrfs_root *root,
3487			     struct btrfs_path *path,
3488			     struct btrfs_key *cpu_key, u32 *data_size, int nr);
3489
3490static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3491					  struct btrfs_root *root,
3492					  struct btrfs_path *path,
3493					  struct btrfs_key *key,
3494					  u32 data_size)
3495{
3496	return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
 
 
 
 
 
 
 
3497}
3498
3499int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3500int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3501int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3502			u64 time_seq);
3503static inline int btrfs_next_old_item(struct btrfs_root *root,
3504				      struct btrfs_path *p, u64 time_seq)
3505{
3506	++p->slots[0];
3507	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3508		return btrfs_next_old_leaf(root, p, time_seq);
3509	return 0;
3510}
3511static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3512{
3513	return btrfs_next_old_item(root, p, 0);
3514}
3515int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3516int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3517				     struct btrfs_block_rsv *block_rsv,
3518				     int update_ref, int for_reloc);
3519int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3520			struct btrfs_root *root,
3521			struct extent_buffer *node,
3522			struct extent_buffer *parent);
3523static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3524{
3525	/*
3526	 * Get synced with close_ctree()
3527	 */
3528	smp_mb();
3529	return fs_info->closing;
3530}
3531
3532/*
3533 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3534 * anything except sleeping. This function is used to check the status of
3535 * the fs.
3536 */
3537static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3538{
3539	return (root->fs_info->sb->s_flags & MS_RDONLY ||
3540		btrfs_fs_closing(root->fs_info));
3541}
3542
3543static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3544{
3545	kfree(fs_info->balance_ctl);
3546	kfree(fs_info->delayed_root);
3547	kfree(fs_info->extent_root);
3548	kfree(fs_info->tree_root);
3549	kfree(fs_info->chunk_root);
3550	kfree(fs_info->dev_root);
3551	kfree(fs_info->csum_root);
3552	kfree(fs_info->quota_root);
3553	kfree(fs_info->uuid_root);
3554	kfree(fs_info->super_copy);
3555	kfree(fs_info->super_for_commit);
3556	kfree(fs_info);
3557}
3558
3559/* tree mod log functions from ctree.c */
3560u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3561			   struct seq_list *elem);
3562void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3563			    struct seq_list *elem);
3564u64 btrfs_tree_mod_seq_prev(u64 seq);
3565int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3566
3567/* root-item.c */
3568int btrfs_find_root_ref(struct btrfs_root *tree_root,
3569			struct btrfs_path *path,
3570			u64 root_id, u64 ref_id);
3571int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3572		       struct btrfs_root *tree_root,
3573		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3574		       const char *name, int name_len);
3575int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3576		       struct btrfs_root *tree_root,
3577		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3578		       const char *name, int name_len);
3579int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3580		   struct btrfs_key *key);
3581int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3582		      *root, struct btrfs_key *key, struct btrfs_root_item
3583		      *item);
3584int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3585				   struct btrfs_root *root,
3586				   struct btrfs_key *key,
3587				   struct btrfs_root_item *item);
3588int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3589		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3590		    struct btrfs_key *root_key);
3591int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3592void btrfs_set_root_node(struct btrfs_root_item *item,
3593			 struct extent_buffer *node);
3594void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3595void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3596			     struct btrfs_root *root);
3597
3598/* uuid-tree.c */
3599int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3600			struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3601			u64 subid);
3602int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3603			struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3604			u64 subid);
3605int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3606			    int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3607					      u64));
3608
3609/* dir-item.c */
3610int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3611			  const char *name, int name_len);
3612int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3613			  struct btrfs_root *root, const char *name,
3614			  int name_len, struct inode *dir,
3615			  struct btrfs_key *location, u8 type, u64 index);
3616struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3617					     struct btrfs_root *root,
3618					     struct btrfs_path *path, u64 dir,
3619					     const char *name, int name_len,
3620					     int mod);
3621struct btrfs_dir_item *
3622btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3623			    struct btrfs_root *root,
3624			    struct btrfs_path *path, u64 dir,
3625			    u64 objectid, const char *name, int name_len,
3626			    int mod);
3627struct btrfs_dir_item *
3628btrfs_search_dir_index_item(struct btrfs_root *root,
3629			    struct btrfs_path *path, u64 dirid,
3630			    const char *name, int name_len);
3631int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3632			      struct btrfs_root *root,
3633			      struct btrfs_path *path,
3634			      struct btrfs_dir_item *di);
3635int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3636			    struct btrfs_root *root,
3637			    struct btrfs_path *path, u64 objectid,
3638			    const char *name, u16 name_len,
3639			    const void *data, u16 data_len);
3640struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3641					  struct btrfs_root *root,
3642					  struct btrfs_path *path, u64 dir,
3643					  const char *name, u16 name_len,
3644					  int mod);
3645int verify_dir_item(struct btrfs_root *root,
3646		    struct extent_buffer *leaf,
3647		    struct btrfs_dir_item *dir_item);
3648
3649/* orphan.c */
3650int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3651			     struct btrfs_root *root, u64 offset);
3652int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3653			  struct btrfs_root *root, u64 offset);
3654int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3655
3656/* inode-item.c */
3657int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3658			   struct btrfs_root *root,
3659			   const char *name, int name_len,
3660			   u64 inode_objectid, u64 ref_objectid, u64 index);
3661int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3662			   struct btrfs_root *root,
3663			   const char *name, int name_len,
3664			   u64 inode_objectid, u64 ref_objectid, u64 *index);
3665int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3666			     struct btrfs_root *root,
3667			     struct btrfs_path *path, u64 objectid);
3668int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3669		       *root, struct btrfs_path *path,
3670		       struct btrfs_key *location, int mod);
3671
3672struct btrfs_inode_extref *
3673btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3674			  struct btrfs_root *root,
3675			  struct btrfs_path *path,
3676			  const char *name, int name_len,
3677			  u64 inode_objectid, u64 ref_objectid, int ins_len,
3678			  int cow);
3679
3680int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3681				   u64 ref_objectid, const char *name,
3682				   int name_len,
3683				   struct btrfs_inode_extref **extref_ret);
3684
3685/* file-item.c */
3686struct btrfs_dio_private;
3687int btrfs_del_csums(struct btrfs_trans_handle *trans,
3688		    struct btrfs_root *root, u64 bytenr, u64 len);
3689int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3690			  struct bio *bio, u32 *dst);
3691int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3692			      struct btrfs_dio_private *dip, struct bio *bio,
3693			      u64 logical_offset);
3694int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3695			     struct btrfs_root *root,
3696			     u64 objectid, u64 pos,
3697			     u64 disk_offset, u64 disk_num_bytes,
3698			     u64 num_bytes, u64 offset, u64 ram_bytes,
3699			     u8 compression, u8 encryption, u16 other_encoding);
3700int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3701			     struct btrfs_root *root,
3702			     struct btrfs_path *path, u64 objectid,
3703			     u64 bytenr, int mod);
3704int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3705			   struct btrfs_root *root,
3706			   struct btrfs_ordered_sum *sums);
3707int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3708		       struct bio *bio, u64 file_start, int contig);
3709int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3710			     struct list_head *list, int search_commit);
3711/* inode.c */
3712struct btrfs_delalloc_work {
3713	struct inode *inode;
3714	int wait;
3715	int delay_iput;
3716	struct completion completion;
3717	struct list_head list;
3718	struct btrfs_work work;
3719};
3720
3721struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3722						    int wait, int delay_iput);
3723void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3724
3725struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3726					   size_t pg_offset, u64 start, u64 len,
3727					   int create);
3728noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3729			      u64 *orig_start, u64 *orig_block_len,
3730			      u64 *ram_bytes);
3731
3732/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3733#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3734#define ClearPageChecked ClearPageFsMisc
3735#define SetPageChecked SetPageFsMisc
3736#define PageChecked PageFsMisc
3737#endif
3738
3739/* This forces readahead on a given range of bytes in an inode */
3740static inline void btrfs_force_ra(struct address_space *mapping,
3741				  struct file_ra_state *ra, struct file *file,
3742				  pgoff_t offset, unsigned long req_size)
3743{
3744	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3745}
3746
3747struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3748int btrfs_set_inode_index(struct inode *dir, u64 *index);
3749int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3750		       struct btrfs_root *root,
3751		       struct inode *dir, struct inode *inode,
3752		       const char *name, int name_len);
3753int btrfs_add_link(struct btrfs_trans_handle *trans,
3754		   struct inode *parent_inode, struct inode *inode,
3755		   const char *name, int name_len, int add_backref, u64 index);
3756int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3757			struct btrfs_root *root,
3758			struct inode *dir, u64 objectid,
3759			const char *name, int name_len);
3760int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3761			int front);
3762int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3763			       struct btrfs_root *root,
3764			       struct inode *inode, u64 new_size,
3765			       u32 min_type);
3766
3767int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3768int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3769			       int nr);
3770int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3771			      struct extent_state **cached_state);
3772int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3773			     struct btrfs_root *new_root,
3774			     struct btrfs_root *parent_root,
3775			     u64 new_dirid);
3776int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3777			 size_t size, struct bio *bio,
3778			 unsigned long bio_flags);
3779int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3780int btrfs_readpage(struct file *file, struct page *page);
3781void btrfs_evict_inode(struct inode *inode);
3782int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3783struct inode *btrfs_alloc_inode(struct super_block *sb);
3784void btrfs_destroy_inode(struct inode *inode);
3785int btrfs_drop_inode(struct inode *inode);
3786int btrfs_init_cachep(void);
3787void btrfs_destroy_cachep(void);
3788long btrfs_ioctl_trans_end(struct file *file);
3789struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3790			 struct btrfs_root *root, int *was_new);
3791struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3792				    size_t pg_offset, u64 start, u64 end,
3793				    int create);
3794int btrfs_update_inode(struct btrfs_trans_handle *trans,
3795			      struct btrfs_root *root,
3796			      struct inode *inode);
3797int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3798				struct btrfs_root *root, struct inode *inode);
3799int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3800int btrfs_orphan_cleanup(struct btrfs_root *root);
3801void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3802			      struct btrfs_root *root);
3803int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3804void btrfs_invalidate_inodes(struct btrfs_root *root);
3805void btrfs_add_delayed_iput(struct inode *inode);
3806void btrfs_run_delayed_iputs(struct btrfs_root *root);
3807int btrfs_prealloc_file_range(struct inode *inode, int mode,
3808			      u64 start, u64 num_bytes, u64 min_size,
3809			      loff_t actual_len, u64 *alloc_hint);
3810int btrfs_prealloc_file_range_trans(struct inode *inode,
3811				    struct btrfs_trans_handle *trans, int mode,
3812				    u64 start, u64 num_bytes, u64 min_size,
3813				    loff_t actual_len, u64 *alloc_hint);
3814extern const struct dentry_operations btrfs_dentry_operations;
3815
3816/* ioctl.c */
3817long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3818void btrfs_update_iflags(struct inode *inode);
3819void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3820int btrfs_is_empty_uuid(u8 *uuid);
3821int btrfs_defrag_file(struct inode *inode, struct file *file,
3822		      struct btrfs_ioctl_defrag_range_args *range,
3823		      u64 newer_than, unsigned long max_pages);
3824void btrfs_get_block_group_info(struct list_head *groups_list,
3825				struct btrfs_ioctl_space_info *space);
3826void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3827			       struct btrfs_ioctl_balance_args *bargs);
3828
3829
3830/* file.c */
3831int btrfs_auto_defrag_init(void);
3832void btrfs_auto_defrag_exit(void);
3833int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3834			   struct inode *inode);
3835int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3836void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3837int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3838void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3839			     int skip_pinned);
3840extern const struct file_operations btrfs_file_operations;
3841int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3842			 struct btrfs_root *root, struct inode *inode,
3843			 struct btrfs_path *path, u64 start, u64 end,
3844			 u64 *drop_end, int drop_cache,
3845			 int replace_extent,
3846			 u32 extent_item_size,
3847			 int *key_inserted);
3848int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3849		       struct btrfs_root *root, struct inode *inode, u64 start,
3850		       u64 end, int drop_cache);
3851int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3852			      struct inode *inode, u64 start, u64 end);
3853int btrfs_release_file(struct inode *inode, struct file *file);
3854int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3855		      struct page **pages, size_t num_pages,
3856		      loff_t pos, size_t write_bytes,
3857		      struct extent_state **cached);
3858
3859/* tree-defrag.c */
3860int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3861			struct btrfs_root *root);
3862
3863/* sysfs.c */
3864int btrfs_init_sysfs(void);
3865void btrfs_exit_sysfs(void);
3866int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
3867void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
3868
3869/* xattr.c */
3870ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3871
3872/* super.c */
3873int btrfs_parse_options(struct btrfs_root *root, char *options);
3874int btrfs_sync_fs(struct super_block *sb, int wait);
3875
3876#ifdef CONFIG_PRINTK
3877__printf(2, 3)
3878void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3879#else
3880static inline __printf(2, 3)
3881void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3882{
3883}
3884#endif
3885
3886#define btrfs_emerg(fs_info, fmt, args...) \
3887	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3888#define btrfs_alert(fs_info, fmt, args...) \
3889	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3890#define btrfs_crit(fs_info, fmt, args...) \
3891	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3892#define btrfs_err(fs_info, fmt, args...) \
3893	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3894#define btrfs_warn(fs_info, fmt, args...) \
3895	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3896#define btrfs_notice(fs_info, fmt, args...) \
3897	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3898#define btrfs_info(fs_info, fmt, args...) \
3899	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3900
3901#ifdef DEBUG
3902#define btrfs_debug(fs_info, fmt, args...) \
3903	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3904#else
3905#define btrfs_debug(fs_info, fmt, args...) \
3906    no_printk(KERN_DEBUG fmt, ##args)
3907#endif
3908
3909#ifdef CONFIG_BTRFS_ASSERT
3910
3911static inline void assfail(char *expr, char *file, int line)
3912{
3913	pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
3914	       expr, file, line);
3915	BUG();
3916}
3917
3918#define ASSERT(expr)	\
3919	(likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3920#else
3921#define ASSERT(expr)	((void)0)
3922#endif
3923
3924#define btrfs_assert()
3925__printf(5, 6)
3926void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3927		     unsigned int line, int errno, const char *fmt, ...);
3928
3929
3930void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3931			       struct btrfs_root *root, const char *function,
3932			       unsigned int line, int errno);
3933
3934#define btrfs_set_fs_incompat(__fs_info, opt) \
3935	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3936
3937static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3938					   u64 flag)
3939{
3940	struct btrfs_super_block *disk_super;
3941	u64 features;
3942
3943	disk_super = fs_info->super_copy;
3944	features = btrfs_super_incompat_flags(disk_super);
3945	if (!(features & flag)) {
3946		spin_lock(&fs_info->super_lock);
3947		features = btrfs_super_incompat_flags(disk_super);
3948		if (!(features & flag)) {
3949			features |= flag;
3950			btrfs_set_super_incompat_flags(disk_super, features);
3951			btrfs_info(fs_info, "setting %llu feature flag",
3952					 flag);
3953		}
3954		spin_unlock(&fs_info->super_lock);
3955	}
3956}
3957
3958#define btrfs_fs_incompat(fs_info, opt) \
3959	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3960
3961static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3962{
3963	struct btrfs_super_block *disk_super;
3964	disk_super = fs_info->super_copy;
3965	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3966}
3967
3968/*
3969 * Call btrfs_abort_transaction as early as possible when an error condition is
3970 * detected, that way the exact line number is reported.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3971 */
 
 
 
 
 
 
3972
3973#define btrfs_abort_transaction(trans, root, errno)		\
3974do {								\
3975	__btrfs_abort_transaction(trans, root, __func__,	\
3976				  __LINE__, errno);		\
3977} while (0)
3978
3979#define btrfs_std_error(fs_info, errno)				\
3980do {								\
3981	if ((errno))						\
3982		__btrfs_std_error((fs_info), __func__,		\
3983				   __LINE__, (errno), NULL);	\
3984} while (0)
3985
3986#define btrfs_error(fs_info, errno, fmt, args...)		\
3987do {								\
3988	__btrfs_std_error((fs_info), __func__, __LINE__,	\
3989			  (errno), fmt, ##args);		\
3990} while (0)
3991
3992__printf(5, 6)
3993void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3994		   unsigned int line, int errno, const char *fmt, ...);
3995
3996/*
3997 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3998 * will panic().  Otherwise we BUG() here.
 
 
3999 */
4000#define btrfs_panic(fs_info, errno, fmt, args...)			\
4001do {									\
4002	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
4003	BUG();								\
4004} while (0)
4005
4006/* acl.c */
4007#ifdef CONFIG_BTRFS_FS_POSIX_ACL
4008struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4009int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4010int btrfs_init_acl(struct btrfs_trans_handle *trans,
4011		   struct inode *inode, struct inode *dir);
4012#else
4013#define btrfs_get_acl NULL
4014#define btrfs_set_acl NULL
4015static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4016				 struct inode *inode, struct inode *dir)
4017{
4018	return 0;
4019}
4020#endif
4021
4022/* relocation.c */
4023int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4024int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4025			  struct btrfs_root *root);
4026int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4027			    struct btrfs_root *root);
4028int btrfs_recover_relocation(struct btrfs_root *root);
4029int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4030int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4031			  struct btrfs_root *root, struct extent_buffer *buf,
4032			  struct extent_buffer *cow);
4033void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4034			      struct btrfs_pending_snapshot *pending,
4035			      u64 *bytes_to_reserve);
4036int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4037			      struct btrfs_pending_snapshot *pending);
4038
4039/* scrub.c */
4040int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4041		    u64 end, struct btrfs_scrub_progress *progress,
4042		    int readonly, int is_dev_replace);
4043void btrfs_scrub_pause(struct btrfs_root *root);
4044void btrfs_scrub_continue(struct btrfs_root *root);
4045int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4046int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4047			   struct btrfs_device *dev);
4048int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4049			 struct btrfs_scrub_progress *progress);
4050
4051/* dev-replace.c */
4052void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4053void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4054void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info);
4055
4056/* reada.c */
4057struct reada_control {
4058	struct btrfs_root	*root;		/* tree to prefetch */
4059	struct btrfs_key	key_start;
4060	struct btrfs_key	key_end;	/* exclusive */
4061	atomic_t		elems;
4062	struct kref		refcnt;
4063	wait_queue_head_t	wait;
4064};
4065struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4066			      struct btrfs_key *start, struct btrfs_key *end);
4067int btrfs_reada_wait(void *handle);
4068void btrfs_reada_detach(void *handle);
4069int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4070			 u64 start, int err);
4071
4072/* qgroup.c */
4073struct qgroup_update {
4074	struct list_head list;
4075	struct btrfs_delayed_ref_node *node;
4076	struct btrfs_delayed_extent_op *extent_op;
4077};
4078
4079int btrfs_quota_enable(struct btrfs_trans_handle *trans,
4080		       struct btrfs_fs_info *fs_info);
4081int btrfs_quota_disable(struct btrfs_trans_handle *trans,
4082			struct btrfs_fs_info *fs_info);
4083int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info);
4084void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info);
4085int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info);
4086int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans,
4087			      struct btrfs_fs_info *fs_info, u64 src, u64 dst);
4088int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans,
4089			      struct btrfs_fs_info *fs_info, u64 src, u64 dst);
4090int btrfs_create_qgroup(struct btrfs_trans_handle *trans,
4091			struct btrfs_fs_info *fs_info, u64 qgroupid,
4092			char *name);
4093int btrfs_remove_qgroup(struct btrfs_trans_handle *trans,
4094			      struct btrfs_fs_info *fs_info, u64 qgroupid);
4095int btrfs_limit_qgroup(struct btrfs_trans_handle *trans,
4096		       struct btrfs_fs_info *fs_info, u64 qgroupid,
4097		       struct btrfs_qgroup_limit *limit);
4098int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info);
4099void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info);
4100struct btrfs_delayed_extent_op;
4101int btrfs_qgroup_record_ref(struct btrfs_trans_handle *trans,
4102			    struct btrfs_delayed_ref_node *node,
4103			    struct btrfs_delayed_extent_op *extent_op);
4104int btrfs_qgroup_account_ref(struct btrfs_trans_handle *trans,
4105			     struct btrfs_fs_info *fs_info,
4106			     struct btrfs_delayed_ref_node *node,
4107			     struct btrfs_delayed_extent_op *extent_op);
4108int btrfs_run_qgroups(struct btrfs_trans_handle *trans,
4109		      struct btrfs_fs_info *fs_info);
4110int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans,
4111			 struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid,
4112			 struct btrfs_qgroup_inherit *inherit);
4113int btrfs_qgroup_reserve(struct btrfs_root *root, u64 num_bytes);
4114void btrfs_qgroup_free(struct btrfs_root *root, u64 num_bytes);
4115
4116void assert_qgroups_uptodate(struct btrfs_trans_handle *trans);
4117
4118static inline int is_fstree(u64 rootid)
4119{
4120	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4121	    (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
 
4122		return 1;
4123	return 0;
4124}
4125
4126static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4127{
4128	return signal_pending(current);
4129}
4130
4131/* Sanity test specific functions */
4132#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4133void btrfs_test_destroy_inode(struct inode *inode);
4134#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4135
4136#endif