Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/pagemap.h>
10#include "locking.h"
11#include "fs.h"
12#include "accessors.h"
13
14struct btrfs_trans_handle;
15struct btrfs_transaction;
16struct btrfs_pending_snapshot;
17struct btrfs_delayed_ref_root;
18struct btrfs_space_info;
19struct btrfs_block_group;
20struct btrfs_ordered_sum;
21struct btrfs_ref;
22struct btrfs_bio;
23struct btrfs_ioctl_encoded_io_args;
24struct btrfs_device;
25struct btrfs_fs_devices;
26struct btrfs_balance_control;
27struct btrfs_delayed_root;
28struct reloc_control;
29
30/* Read ahead values for struct btrfs_path.reada */
31enum {
32 READA_NONE,
33 READA_BACK,
34 READA_FORWARD,
35 /*
36 * Similar to READA_FORWARD but unlike it:
37 *
38 * 1) It will trigger readahead even for leaves that are not close to
39 * each other on disk;
40 * 2) It also triggers readahead for nodes;
41 * 3) During a search, even when a node or leaf is already in memory, it
42 * will still trigger readahead for other nodes and leaves that follow
43 * it.
44 *
45 * This is meant to be used only when we know we are iterating over the
46 * entire tree or a very large part of it.
47 */
48 READA_FORWARD_ALWAYS,
49};
50
51/*
52 * btrfs_paths remember the path taken from the root down to the leaf.
53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54 * to any other levels that are present.
55 *
56 * The slots array records the index of the item or block pointer
57 * used while walking the tree.
58 */
59struct btrfs_path {
60 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
61 int slots[BTRFS_MAX_LEVEL];
62 /* if there is real range locking, this locks field will change */
63 u8 locks[BTRFS_MAX_LEVEL];
64 u8 reada;
65 /* keep some upper locks as we walk down */
66 u8 lowest_level;
67
68 /*
69 * set by btrfs_split_item, tells search_slot to keep all locks
70 * and to force calls to keep space in the nodes
71 */
72 unsigned int search_for_split:1;
73 unsigned int keep_locks:1;
74 unsigned int skip_locking:1;
75 unsigned int search_commit_root:1;
76 unsigned int need_commit_sem:1;
77 unsigned int skip_release_on_error:1;
78 /*
79 * Indicate that new item (btrfs_search_slot) is extending already
80 * existing item and ins_len contains only the data size and not item
81 * header (ie. sizeof(struct btrfs_item) is not included).
82 */
83 unsigned int search_for_extension:1;
84 /* Stop search if any locks need to be taken (for read) */
85 unsigned int nowait:1;
86};
87
88/*
89 * The state of btrfs root
90 */
91enum {
92 /*
93 * btrfs_record_root_in_trans is a multi-step process, and it can race
94 * with the balancing code. But the race is very small, and only the
95 * first time the root is added to each transaction. So IN_TRANS_SETUP
96 * is used to tell us when more checks are required
97 */
98 BTRFS_ROOT_IN_TRANS_SETUP,
99
100 /*
101 * Set if tree blocks of this root can be shared by other roots.
102 * Only subvolume trees and their reloc trees have this bit set.
103 * Conflicts with TRACK_DIRTY bit.
104 *
105 * This affects two things:
106 *
107 * - How balance works
108 * For shareable roots, we need to use reloc tree and do path
109 * replacement for balance, and need various pre/post hooks for
110 * snapshot creation to handle them.
111 *
112 * While for non-shareable trees, we just simply do a tree search
113 * with COW.
114 *
115 * - How dirty roots are tracked
116 * For shareable roots, btrfs_record_root_in_trans() is needed to
117 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
118 * don't need to set this manually.
119 */
120 BTRFS_ROOT_SHAREABLE,
121 BTRFS_ROOT_TRACK_DIRTY,
122 BTRFS_ROOT_IN_RADIX,
123 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
124 BTRFS_ROOT_DEFRAG_RUNNING,
125 BTRFS_ROOT_FORCE_COW,
126 BTRFS_ROOT_MULTI_LOG_TASKS,
127 BTRFS_ROOT_DIRTY,
128 BTRFS_ROOT_DELETING,
129
130 /*
131 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
132 *
133 * Set for the subvolume tree owning the reloc tree.
134 */
135 BTRFS_ROOT_DEAD_RELOC_TREE,
136 /* Mark dead root stored on device whose cleanup needs to be resumed */
137 BTRFS_ROOT_DEAD_TREE,
138 /* The root has a log tree. Used for subvolume roots and the tree root. */
139 BTRFS_ROOT_HAS_LOG_TREE,
140 /* Qgroup flushing is in progress */
141 BTRFS_ROOT_QGROUP_FLUSHING,
142 /* We started the orphan cleanup for this root. */
143 BTRFS_ROOT_ORPHAN_CLEANUP,
144 /* This root has a drop operation that was started previously. */
145 BTRFS_ROOT_UNFINISHED_DROP,
146 /* This reloc root needs to have its buffers lockdep class reset. */
147 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
148};
149
150/*
151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
152 * code. For detail check comment in fs/btrfs/qgroup.c.
153 */
154struct btrfs_qgroup_swapped_blocks {
155 spinlock_t lock;
156 /* RM_EMPTY_ROOT() of above blocks[] */
157 bool swapped;
158 struct rb_root blocks[BTRFS_MAX_LEVEL];
159};
160
161/*
162 * in ram representation of the tree. extent_root is used for all allocations
163 * and for the extent tree extent_root root.
164 */
165struct btrfs_root {
166 struct rb_node rb_node;
167
168 struct extent_buffer *node;
169
170 struct extent_buffer *commit_root;
171 struct btrfs_root *log_root;
172 struct btrfs_root *reloc_root;
173
174 unsigned long state;
175 struct btrfs_root_item root_item;
176 struct btrfs_key root_key;
177 struct btrfs_fs_info *fs_info;
178 struct extent_io_tree dirty_log_pages;
179
180 struct mutex objectid_mutex;
181
182 spinlock_t accounting_lock;
183 struct btrfs_block_rsv *block_rsv;
184
185 struct mutex log_mutex;
186 wait_queue_head_t log_writer_wait;
187 wait_queue_head_t log_commit_wait[2];
188 struct list_head log_ctxs[2];
189 /* Used only for log trees of subvolumes, not for the log root tree */
190 atomic_t log_writers;
191 atomic_t log_commit[2];
192 /* Used only for log trees of subvolumes, not for the log root tree */
193 atomic_t log_batch;
194 /*
195 * Protected by the 'log_mutex' lock but can be read without holding
196 * that lock to avoid unnecessary lock contention, in which case it
197 * should be read using btrfs_get_root_log_transid() except if it's a
198 * log tree in which case it can be directly accessed. Updates to this
199 * field should always use btrfs_set_root_log_transid(), except for log
200 * trees where the field can be updated directly.
201 */
202 int log_transid;
203 /* No matter the commit succeeds or not*/
204 int log_transid_committed;
205 /*
206 * Just be updated when the commit succeeds. Use
207 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
208 * to access this field.
209 */
210 int last_log_commit;
211 pid_t log_start_pid;
212
213 u64 last_trans;
214
215 u64 free_objectid;
216
217 struct btrfs_key defrag_progress;
218 struct btrfs_key defrag_max;
219
220 /* The dirty list is only used by non-shareable roots */
221 struct list_head dirty_list;
222
223 struct list_head root_list;
224
225 spinlock_t inode_lock;
226 /* red-black tree that keeps track of in-memory inodes */
227 struct rb_root inode_tree;
228
229 /*
230 * Xarray that keeps track of delayed nodes of every inode, protected
231 * by @inode_lock.
232 */
233 struct xarray delayed_nodes;
234 /*
235 * right now this just gets used so that a root has its own devid
236 * for stat. It may be used for more later
237 */
238 dev_t anon_dev;
239
240 spinlock_t root_item_lock;
241 refcount_t refs;
242
243 struct mutex delalloc_mutex;
244 spinlock_t delalloc_lock;
245 /*
246 * all of the inodes that have delalloc bytes. It is possible for
247 * this list to be empty even when there is still dirty data=ordered
248 * extents waiting to finish IO.
249 */
250 struct list_head delalloc_inodes;
251 struct list_head delalloc_root;
252 u64 nr_delalloc_inodes;
253
254 struct mutex ordered_extent_mutex;
255 /*
256 * this is used by the balancing code to wait for all the pending
257 * ordered extents
258 */
259 spinlock_t ordered_extent_lock;
260
261 /*
262 * all of the data=ordered extents pending writeback
263 * these can span multiple transactions and basically include
264 * every dirty data page that isn't from nodatacow
265 */
266 struct list_head ordered_extents;
267 struct list_head ordered_root;
268 u64 nr_ordered_extents;
269
270 /*
271 * Not empty if this subvolume root has gone through tree block swap
272 * (relocation)
273 *
274 * Will be used by reloc_control::dirty_subvol_roots.
275 */
276 struct list_head reloc_dirty_list;
277
278 /*
279 * Number of currently running SEND ioctls to prevent
280 * manipulation with the read-only status via SUBVOL_SETFLAGS
281 */
282 int send_in_progress;
283 /*
284 * Number of currently running deduplication operations that have a
285 * destination inode belonging to this root. Protected by the lock
286 * root_item_lock.
287 */
288 int dedupe_in_progress;
289 /* For exclusion of snapshot creation and nocow writes */
290 struct btrfs_drew_lock snapshot_lock;
291
292 atomic_t snapshot_force_cow;
293
294 /* For qgroup metadata reserved space */
295 spinlock_t qgroup_meta_rsv_lock;
296 u64 qgroup_meta_rsv_pertrans;
297 u64 qgroup_meta_rsv_prealloc;
298 wait_queue_head_t qgroup_flush_wait;
299
300 /* Number of active swapfiles */
301 atomic_t nr_swapfiles;
302
303 /* Record pairs of swapped blocks for qgroup */
304 struct btrfs_qgroup_swapped_blocks swapped_blocks;
305
306 /* Used only by log trees, when logging csum items */
307 struct extent_io_tree log_csum_range;
308
309 /* Used in simple quotas, track root during relocation. */
310 u64 relocation_src_root;
311
312#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
313 u64 alloc_bytenr;
314#endif
315
316#ifdef CONFIG_BTRFS_DEBUG
317 struct list_head leak_list;
318#endif
319};
320
321static inline bool btrfs_root_readonly(const struct btrfs_root *root)
322{
323 /* Byte-swap the constant at compile time, root_item::flags is LE */
324 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
325}
326
327static inline bool btrfs_root_dead(const struct btrfs_root *root)
328{
329 /* Byte-swap the constant at compile time, root_item::flags is LE */
330 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
331}
332
333static inline u64 btrfs_root_id(const struct btrfs_root *root)
334{
335 return root->root_key.objectid;
336}
337
338static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
339{
340 return READ_ONCE(root->log_transid);
341}
342
343static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
344{
345 WRITE_ONCE(root->log_transid, log_transid);
346}
347
348static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
349{
350 return READ_ONCE(root->last_log_commit);
351}
352
353static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
354{
355 WRITE_ONCE(root->last_log_commit, commit_id);
356}
357
358/*
359 * Structure that conveys information about an extent that is going to replace
360 * all the extents in a file range.
361 */
362struct btrfs_replace_extent_info {
363 u64 disk_offset;
364 u64 disk_len;
365 u64 data_offset;
366 u64 data_len;
367 u64 file_offset;
368 /* Pointer to a file extent item of type regular or prealloc. */
369 char *extent_buf;
370 /*
371 * Set to true when attempting to replace a file range with a new extent
372 * described by this structure, set to false when attempting to clone an
373 * existing extent into a file range.
374 */
375 bool is_new_extent;
376 /* Indicate if we should update the inode's mtime and ctime. */
377 bool update_times;
378 /* Meaningful only if is_new_extent is true. */
379 int qgroup_reserved;
380 /*
381 * Meaningful only if is_new_extent is true.
382 * Used to track how many extent items we have already inserted in a
383 * subvolume tree that refer to the extent described by this structure,
384 * so that we know when to create a new delayed ref or update an existing
385 * one.
386 */
387 int insertions;
388};
389
390/* Arguments for btrfs_drop_extents() */
391struct btrfs_drop_extents_args {
392 /* Input parameters */
393
394 /*
395 * If NULL, btrfs_drop_extents() will allocate and free its own path.
396 * If 'replace_extent' is true, this must not be NULL. Also the path
397 * is always released except if 'replace_extent' is true and
398 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
399 * the path is kept locked.
400 */
401 struct btrfs_path *path;
402 /* Start offset of the range to drop extents from */
403 u64 start;
404 /* End (exclusive, last byte + 1) of the range to drop extents from */
405 u64 end;
406 /* If true drop all the extent maps in the range */
407 bool drop_cache;
408 /*
409 * If true it means we want to insert a new extent after dropping all
410 * the extents in the range. If this is true, the 'extent_item_size'
411 * parameter must be set as well and the 'extent_inserted' field will
412 * be set to true by btrfs_drop_extents() if it could insert the new
413 * extent.
414 * Note: when this is set to true the path must not be NULL.
415 */
416 bool replace_extent;
417 /*
418 * Used if 'replace_extent' is true. Size of the file extent item to
419 * insert after dropping all existing extents in the range
420 */
421 u32 extent_item_size;
422
423 /* Output parameters */
424
425 /*
426 * Set to the minimum between the input parameter 'end' and the end
427 * (exclusive, last byte + 1) of the last dropped extent. This is always
428 * set even if btrfs_drop_extents() returns an error.
429 */
430 u64 drop_end;
431 /*
432 * The number of allocated bytes found in the range. This can be smaller
433 * than the range's length when there are holes in the range.
434 */
435 u64 bytes_found;
436 /*
437 * Only set if 'replace_extent' is true. Set to true if we were able
438 * to insert a replacement extent after dropping all extents in the
439 * range, otherwise set to false by btrfs_drop_extents().
440 * Also, if btrfs_drop_extents() has set this to true it means it
441 * returned with the path locked, otherwise if it has set this to
442 * false it has returned with the path released.
443 */
444 bool extent_inserted;
445};
446
447struct btrfs_file_private {
448 void *filldir_buf;
449 u64 last_index;
450 struct extent_state *llseek_cached_state;
451};
452
453static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
454{
455 return info->nodesize - sizeof(struct btrfs_header);
456}
457
458static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
459{
460 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
461}
462
463static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
464{
465 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
466}
467
468static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
469{
470 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
471}
472
473#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
474 ((bytes) >> (fs_info)->sectorsize_bits)
475
476static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
477{
478 return mapping_gfp_constraint(mapping, ~__GFP_FS);
479}
480
481int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
482 u64 start, u64 end);
483int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
484 u64 num_bytes, u64 *actual_bytes);
485int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
486
487/* ctree.c */
488int __init btrfs_ctree_init(void);
489void __cold btrfs_ctree_exit(void);
490
491int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
492 const struct btrfs_key *key, int *slot);
493
494int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
495
496#ifdef __LITTLE_ENDIAN
497
498/*
499 * Compare two keys, on little-endian the disk order is same as CPU order and
500 * we can avoid the conversion.
501 */
502static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
503 const struct btrfs_key *k2)
504{
505 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
506
507 return btrfs_comp_cpu_keys(k1, k2);
508}
509
510#else
511
512/* Compare two keys in a memcmp fashion. */
513static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
514 const struct btrfs_key *k2)
515{
516 struct btrfs_key k1;
517
518 btrfs_disk_key_to_cpu(&k1, disk);
519
520 return btrfs_comp_cpu_keys(&k1, k2);
521}
522
523#endif
524
525int btrfs_previous_item(struct btrfs_root *root,
526 struct btrfs_path *path, u64 min_objectid,
527 int type);
528int btrfs_previous_extent_item(struct btrfs_root *root,
529 struct btrfs_path *path, u64 min_objectid);
530void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
531 struct btrfs_path *path,
532 const struct btrfs_key *new_key);
533struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
534int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
535 struct btrfs_key *key, int lowest_level,
536 u64 min_trans);
537int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
538 struct btrfs_path *path,
539 u64 min_trans);
540struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
541 int slot);
542
543int btrfs_cow_block(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root, struct extent_buffer *buf,
545 struct extent_buffer *parent, int parent_slot,
546 struct extent_buffer **cow_ret,
547 enum btrfs_lock_nesting nest);
548int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct extent_buffer *buf,
551 struct extent_buffer *parent, int parent_slot,
552 struct extent_buffer **cow_ret,
553 u64 search_start, u64 empty_size,
554 enum btrfs_lock_nesting nest);
555int btrfs_copy_root(struct btrfs_trans_handle *trans,
556 struct btrfs_root *root,
557 struct extent_buffer *buf,
558 struct extent_buffer **cow_ret, u64 new_root_objectid);
559bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
560 struct btrfs_root *root,
561 struct extent_buffer *buf);
562int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563 struct btrfs_path *path, int level, int slot);
564void btrfs_extend_item(struct btrfs_trans_handle *trans,
565 struct btrfs_path *path, u32 data_size);
566void btrfs_truncate_item(struct btrfs_trans_handle *trans,
567 struct btrfs_path *path, u32 new_size, int from_end);
568int btrfs_split_item(struct btrfs_trans_handle *trans,
569 struct btrfs_root *root,
570 struct btrfs_path *path,
571 const struct btrfs_key *new_key,
572 unsigned long split_offset);
573int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root,
575 struct btrfs_path *path,
576 const struct btrfs_key *new_key);
577int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
578 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
579int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
580 const struct btrfs_key *key, struct btrfs_path *p,
581 int ins_len, int cow);
582int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
583 struct btrfs_path *p, u64 time_seq);
584int btrfs_search_slot_for_read(struct btrfs_root *root,
585 const struct btrfs_key *key,
586 struct btrfs_path *p, int find_higher,
587 int return_any);
588void btrfs_release_path(struct btrfs_path *p);
589struct btrfs_path *btrfs_alloc_path(void);
590void btrfs_free_path(struct btrfs_path *p);
591
592int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
593 struct btrfs_path *path, int slot, int nr);
594static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
595 struct btrfs_root *root,
596 struct btrfs_path *path)
597{
598 return btrfs_del_items(trans, root, path, path->slots[0], 1);
599}
600
601/*
602 * Describes a batch of items to insert in a btree. This is used by
603 * btrfs_insert_empty_items().
604 */
605struct btrfs_item_batch {
606 /*
607 * Pointer to an array containing the keys of the items to insert (in
608 * sorted order).
609 */
610 const struct btrfs_key *keys;
611 /* Pointer to an array containing the data size for each item to insert. */
612 const u32 *data_sizes;
613 /*
614 * The sum of data sizes for all items. The caller can compute this while
615 * setting up the data_sizes array, so it ends up being more efficient
616 * than having btrfs_insert_empty_items() or setup_item_for_insert()
617 * doing it, as it would avoid an extra loop over a potentially large
618 * array, and in the case of setup_item_for_insert(), we would be doing
619 * it while holding a write lock on a leaf and often on upper level nodes
620 * too, unnecessarily increasing the size of a critical section.
621 */
622 u32 total_data_size;
623 /* Size of the keys and data_sizes arrays (number of items in the batch). */
624 int nr;
625};
626
627void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
628 struct btrfs_root *root,
629 struct btrfs_path *path,
630 const struct btrfs_key *key,
631 u32 data_size);
632int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
633 const struct btrfs_key *key, void *data, u32 data_size);
634int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
635 struct btrfs_root *root,
636 struct btrfs_path *path,
637 const struct btrfs_item_batch *batch);
638
639static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
640 struct btrfs_root *root,
641 struct btrfs_path *path,
642 const struct btrfs_key *key,
643 u32 data_size)
644{
645 struct btrfs_item_batch batch;
646
647 batch.keys = key;
648 batch.data_sizes = &data_size;
649 batch.total_data_size = data_size;
650 batch.nr = 1;
651
652 return btrfs_insert_empty_items(trans, root, path, &batch);
653}
654
655int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
656 u64 time_seq);
657
658int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
659 struct btrfs_path *path);
660
661int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
662 struct btrfs_path *path);
663
664/*
665 * Search in @root for a given @key, and store the slot found in @found_key.
666 *
667 * @root: The root node of the tree.
668 * @key: The key we are looking for.
669 * @found_key: Will hold the found item.
670 * @path: Holds the current slot/leaf.
671 * @iter_ret: Contains the value returned from btrfs_search_slot or
672 * btrfs_get_next_valid_item, whichever was executed last.
673 *
674 * The @iter_ret is an output variable that will contain the return value of
675 * btrfs_search_slot, if it encountered an error, or the value returned from
676 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
677 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
678 *
679 * It's recommended to use a separate variable for iter_ret and then use it to
680 * set the function return value so there's no confusion of the 0/1/errno
681 * values stemming from btrfs_search_slot.
682 */
683#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
684 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
685 (iter_ret) >= 0 && \
686 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
687 (path)->slots[0]++ \
688 )
689
690int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
691
692/*
693 * Search the tree again to find a leaf with greater keys.
694 *
695 * Returns 0 if it found something or 1 if there are no greater leaves.
696 * Returns < 0 on error.
697 */
698static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
699{
700 return btrfs_next_old_leaf(root, path, 0);
701}
702
703static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
704{
705 return btrfs_next_old_item(root, p, 0);
706}
707int btrfs_leaf_free_space(const struct extent_buffer *leaf);
708
709static inline int is_fstree(u64 rootid)
710{
711 if (rootid == BTRFS_FS_TREE_OBJECTID ||
712 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
713 !btrfs_qgroup_level(rootid)))
714 return 1;
715 return 0;
716}
717
718static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
719{
720 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
721}
722
723u16 btrfs_csum_type_size(u16 type);
724int btrfs_super_csum_size(const struct btrfs_super_block *s);
725const char *btrfs_super_csum_name(u16 csum_type);
726const char *btrfs_super_csum_driver(u16 csum_type);
727size_t __attribute_const__ btrfs_get_num_csums(void);
728
729/*
730 * We use page status Private2 to indicate there is an ordered extent with
731 * unfinished IO.
732 *
733 * Rename the Private2 accessors to Ordered, to improve readability.
734 */
735#define PageOrdered(page) PagePrivate2(page)
736#define SetPageOrdered(page) SetPagePrivate2(page)
737#define ClearPageOrdered(page) ClearPagePrivate2(page)
738#define folio_test_ordered(folio) folio_test_private_2(folio)
739#define folio_set_ordered(folio) folio_set_private_2(folio)
740#define folio_clear_ordered(folio) folio_clear_private_2(folio)
741
742#endif
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#ifndef __BTRFS_CTREE__
20#define __BTRFS_CTREE__
21
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/fs.h>
25#include <linux/rwsem.h>
26#include <linux/semaphore.h>
27#include <linux/completion.h>
28#include <linux/backing-dev.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/kobject.h>
32#include <trace/events/btrfs.h>
33#include <asm/kmap_types.h>
34#include <linux/pagemap.h>
35#include <linux/btrfs.h>
36#include "extent_io.h"
37#include "extent_map.h"
38#include "async-thread.h"
39
40struct btrfs_trans_handle;
41struct btrfs_transaction;
42struct btrfs_pending_snapshot;
43extern struct kmem_cache *btrfs_trans_handle_cachep;
44extern struct kmem_cache *btrfs_transaction_cachep;
45extern struct kmem_cache *btrfs_bit_radix_cachep;
46extern struct kmem_cache *btrfs_path_cachep;
47extern struct kmem_cache *btrfs_free_space_cachep;
48struct btrfs_ordered_sum;
49
50#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
51#define STATIC noinline
52#else
53#define STATIC static noinline
54#endif
55
56#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
57
58#define BTRFS_MAX_MIRRORS 3
59
60#define BTRFS_MAX_LEVEL 8
61
62#define BTRFS_COMPAT_EXTENT_TREE_V0
63
64/*
65 * files bigger than this get some pre-flushing when they are added
66 * to the ordered operations list. That way we limit the total
67 * work done by the commit
68 */
69#define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
70
71/* holds pointers to all of the tree roots */
72#define BTRFS_ROOT_TREE_OBJECTID 1ULL
73
74/* stores information about which extents are in use, and reference counts */
75#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
76
77/*
78 * chunk tree stores translations from logical -> physical block numbering
79 * the super block points to the chunk tree
80 */
81#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
82
83/*
84 * stores information about which areas of a given device are in use.
85 * one per device. The tree of tree roots points to the device tree
86 */
87#define BTRFS_DEV_TREE_OBJECTID 4ULL
88
89/* one per subvolume, storing files and directories */
90#define BTRFS_FS_TREE_OBJECTID 5ULL
91
92/* directory objectid inside the root tree */
93#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
94
95/* holds checksums of all the data extents */
96#define BTRFS_CSUM_TREE_OBJECTID 7ULL
97
98/* holds quota configuration and tracking */
99#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
100
101/* for storing items that use the BTRFS_UUID_KEY* types */
102#define BTRFS_UUID_TREE_OBJECTID 9ULL
103
104/* for storing balance parameters in the root tree */
105#define BTRFS_BALANCE_OBJECTID -4ULL
106
107/* orhpan objectid for tracking unlinked/truncated files */
108#define BTRFS_ORPHAN_OBJECTID -5ULL
109
110/* does write ahead logging to speed up fsyncs */
111#define BTRFS_TREE_LOG_OBJECTID -6ULL
112#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
113
114/* for space balancing */
115#define BTRFS_TREE_RELOC_OBJECTID -8ULL
116#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
117
118/*
119 * extent checksums all have this objectid
120 * this allows them to share the logging tree
121 * for fsyncs
122 */
123#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
124
125/* For storing free space cache */
126#define BTRFS_FREE_SPACE_OBJECTID -11ULL
127
128/*
129 * The inode number assigned to the special inode for storing
130 * free ino cache
131 */
132#define BTRFS_FREE_INO_OBJECTID -12ULL
133
134/* dummy objectid represents multiple objectids */
135#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
136
137/*
138 * All files have objectids in this range.
139 */
140#define BTRFS_FIRST_FREE_OBJECTID 256ULL
141#define BTRFS_LAST_FREE_OBJECTID -256ULL
142#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
143
144
145/*
146 * the device items go into the chunk tree. The key is in the form
147 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
148 */
149#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
150
151#define BTRFS_BTREE_INODE_OBJECTID 1
152
153#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
154
155#define BTRFS_DEV_REPLACE_DEVID 0ULL
156
157/*
158 * the max metadata block size. This limit is somewhat artificial,
159 * but the memmove costs go through the roof for larger blocks.
160 */
161#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
162
163/*
164 * we can actually store much bigger names, but lets not confuse the rest
165 * of linux
166 */
167#define BTRFS_NAME_LEN 255
168
169/*
170 * Theoretical limit is larger, but we keep this down to a sane
171 * value. That should limit greatly the possibility of collisions on
172 * inode ref items.
173 */
174#define BTRFS_LINK_MAX 65535U
175
176/* 32 bytes in various csum fields */
177#define BTRFS_CSUM_SIZE 32
178
179/* csum types */
180#define BTRFS_CSUM_TYPE_CRC32 0
181
182static int btrfs_csum_sizes[] = { 4, 0 };
183
184/* four bytes for CRC32 */
185#define BTRFS_EMPTY_DIR_SIZE 0
186
187/* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
188#define REQ_GET_READ_MIRRORS (1 << 30)
189
190#define BTRFS_FT_UNKNOWN 0
191#define BTRFS_FT_REG_FILE 1
192#define BTRFS_FT_DIR 2
193#define BTRFS_FT_CHRDEV 3
194#define BTRFS_FT_BLKDEV 4
195#define BTRFS_FT_FIFO 5
196#define BTRFS_FT_SOCK 6
197#define BTRFS_FT_SYMLINK 7
198#define BTRFS_FT_XATTR 8
199#define BTRFS_FT_MAX 9
200
201/* ioprio of readahead is set to idle */
202#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
203
204#define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
205
206/*
207 * The key defines the order in the tree, and so it also defines (optimal)
208 * block layout.
209 *
210 * objectid corresponds to the inode number.
211 *
212 * type tells us things about the object, and is a kind of stream selector.
213 * so for a given inode, keys with type of 1 might refer to the inode data,
214 * type of 2 may point to file data in the btree and type == 3 may point to
215 * extents.
216 *
217 * offset is the starting byte offset for this key in the stream.
218 *
219 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
220 * in cpu native order. Otherwise they are identical and their sizes
221 * should be the same (ie both packed)
222 */
223struct btrfs_disk_key {
224 __le64 objectid;
225 u8 type;
226 __le64 offset;
227} __attribute__ ((__packed__));
228
229struct btrfs_key {
230 u64 objectid;
231 u8 type;
232 u64 offset;
233} __attribute__ ((__packed__));
234
235struct btrfs_mapping_tree {
236 struct extent_map_tree map_tree;
237};
238
239struct btrfs_dev_item {
240 /* the internal btrfs device id */
241 __le64 devid;
242
243 /* size of the device */
244 __le64 total_bytes;
245
246 /* bytes used */
247 __le64 bytes_used;
248
249 /* optimal io alignment for this device */
250 __le32 io_align;
251
252 /* optimal io width for this device */
253 __le32 io_width;
254
255 /* minimal io size for this device */
256 __le32 sector_size;
257
258 /* type and info about this device */
259 __le64 type;
260
261 /* expected generation for this device */
262 __le64 generation;
263
264 /*
265 * starting byte of this partition on the device,
266 * to allow for stripe alignment in the future
267 */
268 __le64 start_offset;
269
270 /* grouping information for allocation decisions */
271 __le32 dev_group;
272
273 /* seek speed 0-100 where 100 is fastest */
274 u8 seek_speed;
275
276 /* bandwidth 0-100 where 100 is fastest */
277 u8 bandwidth;
278
279 /* btrfs generated uuid for this device */
280 u8 uuid[BTRFS_UUID_SIZE];
281
282 /* uuid of FS who owns this device */
283 u8 fsid[BTRFS_UUID_SIZE];
284} __attribute__ ((__packed__));
285
286struct btrfs_stripe {
287 __le64 devid;
288 __le64 offset;
289 u8 dev_uuid[BTRFS_UUID_SIZE];
290} __attribute__ ((__packed__));
291
292struct btrfs_chunk {
293 /* size of this chunk in bytes */
294 __le64 length;
295
296 /* objectid of the root referencing this chunk */
297 __le64 owner;
298
299 __le64 stripe_len;
300 __le64 type;
301
302 /* optimal io alignment for this chunk */
303 __le32 io_align;
304
305 /* optimal io width for this chunk */
306 __le32 io_width;
307
308 /* minimal io size for this chunk */
309 __le32 sector_size;
310
311 /* 2^16 stripes is quite a lot, a second limit is the size of a single
312 * item in the btree
313 */
314 __le16 num_stripes;
315
316 /* sub stripes only matter for raid10 */
317 __le16 sub_stripes;
318 struct btrfs_stripe stripe;
319 /* additional stripes go here */
320} __attribute__ ((__packed__));
321
322#define BTRFS_FREE_SPACE_EXTENT 1
323#define BTRFS_FREE_SPACE_BITMAP 2
324
325struct btrfs_free_space_entry {
326 __le64 offset;
327 __le64 bytes;
328 u8 type;
329} __attribute__ ((__packed__));
330
331struct btrfs_free_space_header {
332 struct btrfs_disk_key location;
333 __le64 generation;
334 __le64 num_entries;
335 __le64 num_bitmaps;
336} __attribute__ ((__packed__));
337
338static inline unsigned long btrfs_chunk_item_size(int num_stripes)
339{
340 BUG_ON(num_stripes == 0);
341 return sizeof(struct btrfs_chunk) +
342 sizeof(struct btrfs_stripe) * (num_stripes - 1);
343}
344
345#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
346#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
347
348/*
349 * File system states
350 */
351#define BTRFS_FS_STATE_ERROR 0
352#define BTRFS_FS_STATE_REMOUNTING 1
353#define BTRFS_FS_STATE_TRANS_ABORTED 2
354#define BTRFS_FS_STATE_DEV_REPLACING 3
355
356/* Super block flags */
357/* Errors detected */
358#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
359
360#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
361#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
362
363#define BTRFS_BACKREF_REV_MAX 256
364#define BTRFS_BACKREF_REV_SHIFT 56
365#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
366 BTRFS_BACKREF_REV_SHIFT)
367
368#define BTRFS_OLD_BACKREF_REV 0
369#define BTRFS_MIXED_BACKREF_REV 1
370
371/*
372 * every tree block (leaf or node) starts with this header.
373 */
374struct btrfs_header {
375 /* these first four must match the super block */
376 u8 csum[BTRFS_CSUM_SIZE];
377 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
378 __le64 bytenr; /* which block this node is supposed to live in */
379 __le64 flags;
380
381 /* allowed to be different from the super from here on down */
382 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
383 __le64 generation;
384 __le64 owner;
385 __le32 nritems;
386 u8 level;
387} __attribute__ ((__packed__));
388
389#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
390 sizeof(struct btrfs_header)) / \
391 sizeof(struct btrfs_key_ptr))
392#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
393#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
394#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
395 sizeof(struct btrfs_item) - \
396 sizeof(struct btrfs_file_extent_item))
397#define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
398 sizeof(struct btrfs_item) -\
399 sizeof(struct btrfs_dir_item))
400
401
402/*
403 * this is a very generous portion of the super block, giving us
404 * room to translate 14 chunks with 3 stripes each.
405 */
406#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
407#define BTRFS_LABEL_SIZE 256
408
409/*
410 * just in case we somehow lose the roots and are not able to mount,
411 * we store an array of the roots from previous transactions
412 * in the super.
413 */
414#define BTRFS_NUM_BACKUP_ROOTS 4
415struct btrfs_root_backup {
416 __le64 tree_root;
417 __le64 tree_root_gen;
418
419 __le64 chunk_root;
420 __le64 chunk_root_gen;
421
422 __le64 extent_root;
423 __le64 extent_root_gen;
424
425 __le64 fs_root;
426 __le64 fs_root_gen;
427
428 __le64 dev_root;
429 __le64 dev_root_gen;
430
431 __le64 csum_root;
432 __le64 csum_root_gen;
433
434 __le64 total_bytes;
435 __le64 bytes_used;
436 __le64 num_devices;
437 /* future */
438 __le64 unused_64[4];
439
440 u8 tree_root_level;
441 u8 chunk_root_level;
442 u8 extent_root_level;
443 u8 fs_root_level;
444 u8 dev_root_level;
445 u8 csum_root_level;
446 /* future and to align */
447 u8 unused_8[10];
448} __attribute__ ((__packed__));
449
450/*
451 * the super block basically lists the main trees of the FS
452 * it currently lacks any block count etc etc
453 */
454struct btrfs_super_block {
455 u8 csum[BTRFS_CSUM_SIZE];
456 /* the first 4 fields must match struct btrfs_header */
457 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
458 __le64 bytenr; /* this block number */
459 __le64 flags;
460
461 /* allowed to be different from the btrfs_header from here own down */
462 __le64 magic;
463 __le64 generation;
464 __le64 root;
465 __le64 chunk_root;
466 __le64 log_root;
467
468 /* this will help find the new super based on the log root */
469 __le64 log_root_transid;
470 __le64 total_bytes;
471 __le64 bytes_used;
472 __le64 root_dir_objectid;
473 __le64 num_devices;
474 __le32 sectorsize;
475 __le32 nodesize;
476 __le32 leafsize;
477 __le32 stripesize;
478 __le32 sys_chunk_array_size;
479 __le64 chunk_root_generation;
480 __le64 compat_flags;
481 __le64 compat_ro_flags;
482 __le64 incompat_flags;
483 __le16 csum_type;
484 u8 root_level;
485 u8 chunk_root_level;
486 u8 log_root_level;
487 struct btrfs_dev_item dev_item;
488
489 char label[BTRFS_LABEL_SIZE];
490
491 __le64 cache_generation;
492 __le64 uuid_tree_generation;
493
494 /* future expansion */
495 __le64 reserved[30];
496 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
497 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
498} __attribute__ ((__packed__));
499
500/*
501 * Compat flags that we support. If any incompat flags are set other than the
502 * ones specified below then we will fail to mount
503 */
504#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
505#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
506#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
507#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
508/*
509 * some patches floated around with a second compression method
510 * lets save that incompat here for when they do get in
511 * Note we don't actually support it, we're just reserving the
512 * number
513 */
514#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
515
516/*
517 * older kernels tried to do bigger metadata blocks, but the
518 * code was pretty buggy. Lets not let them try anymore.
519 */
520#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
521
522#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
523#define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
524#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
525#define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
526
527#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
528#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
529#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
530#define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
531#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
532#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
533
534#define BTRFS_FEATURE_INCOMPAT_SUPP \
535 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
536 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
537 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
538 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
539 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
540 BTRFS_FEATURE_INCOMPAT_RAID56 | \
541 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
542 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
543 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
544
545#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
546 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
547#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
548
549/*
550 * A leaf is full of items. offset and size tell us where to find
551 * the item in the leaf (relative to the start of the data area)
552 */
553struct btrfs_item {
554 struct btrfs_disk_key key;
555 __le32 offset;
556 __le32 size;
557} __attribute__ ((__packed__));
558
559/*
560 * leaves have an item area and a data area:
561 * [item0, item1....itemN] [free space] [dataN...data1, data0]
562 *
563 * The data is separate from the items to get the keys closer together
564 * during searches.
565 */
566struct btrfs_leaf {
567 struct btrfs_header header;
568 struct btrfs_item items[];
569} __attribute__ ((__packed__));
570
571/*
572 * all non-leaf blocks are nodes, they hold only keys and pointers to
573 * other blocks
574 */
575struct btrfs_key_ptr {
576 struct btrfs_disk_key key;
577 __le64 blockptr;
578 __le64 generation;
579} __attribute__ ((__packed__));
580
581struct btrfs_node {
582 struct btrfs_header header;
583 struct btrfs_key_ptr ptrs[];
584} __attribute__ ((__packed__));
585
586/*
587 * btrfs_paths remember the path taken from the root down to the leaf.
588 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
589 * to any other levels that are present.
590 *
591 * The slots array records the index of the item or block pointer
592 * used while walking the tree.
593 */
594struct btrfs_path {
595 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
596 int slots[BTRFS_MAX_LEVEL];
597 /* if there is real range locking, this locks field will change */
598 int locks[BTRFS_MAX_LEVEL];
599 int reada;
600 /* keep some upper locks as we walk down */
601 int lowest_level;
602
603 /*
604 * set by btrfs_split_item, tells search_slot to keep all locks
605 * and to force calls to keep space in the nodes
606 */
607 unsigned int search_for_split:1;
608 unsigned int keep_locks:1;
609 unsigned int skip_locking:1;
610 unsigned int leave_spinning:1;
611 unsigned int search_commit_root:1;
612 unsigned int need_commit_sem:1;
613};
614
615/*
616 * items in the extent btree are used to record the objectid of the
617 * owner of the block and the number of references
618 */
619
620struct btrfs_extent_item {
621 __le64 refs;
622 __le64 generation;
623 __le64 flags;
624} __attribute__ ((__packed__));
625
626struct btrfs_extent_item_v0 {
627 __le32 refs;
628} __attribute__ ((__packed__));
629
630#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
631 sizeof(struct btrfs_item))
632
633#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
634#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
635
636/* following flags only apply to tree blocks */
637
638/* use full backrefs for extent pointers in the block */
639#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
640
641/*
642 * this flag is only used internally by scrub and may be changed at any time
643 * it is only declared here to avoid collisions
644 */
645#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
646
647struct btrfs_tree_block_info {
648 struct btrfs_disk_key key;
649 u8 level;
650} __attribute__ ((__packed__));
651
652struct btrfs_extent_data_ref {
653 __le64 root;
654 __le64 objectid;
655 __le64 offset;
656 __le32 count;
657} __attribute__ ((__packed__));
658
659struct btrfs_shared_data_ref {
660 __le32 count;
661} __attribute__ ((__packed__));
662
663struct btrfs_extent_inline_ref {
664 u8 type;
665 __le64 offset;
666} __attribute__ ((__packed__));
667
668/* old style backrefs item */
669struct btrfs_extent_ref_v0 {
670 __le64 root;
671 __le64 generation;
672 __le64 objectid;
673 __le32 count;
674} __attribute__ ((__packed__));
675
676
677/* dev extents record free space on individual devices. The owner
678 * field points back to the chunk allocation mapping tree that allocated
679 * the extent. The chunk tree uuid field is a way to double check the owner
680 */
681struct btrfs_dev_extent {
682 __le64 chunk_tree;
683 __le64 chunk_objectid;
684 __le64 chunk_offset;
685 __le64 length;
686 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
687} __attribute__ ((__packed__));
688
689struct btrfs_inode_ref {
690 __le64 index;
691 __le16 name_len;
692 /* name goes here */
693} __attribute__ ((__packed__));
694
695struct btrfs_inode_extref {
696 __le64 parent_objectid;
697 __le64 index;
698 __le16 name_len;
699 __u8 name[0];
700 /* name goes here */
701} __attribute__ ((__packed__));
702
703struct btrfs_timespec {
704 __le64 sec;
705 __le32 nsec;
706} __attribute__ ((__packed__));
707
708enum btrfs_compression_type {
709 BTRFS_COMPRESS_NONE = 0,
710 BTRFS_COMPRESS_ZLIB = 1,
711 BTRFS_COMPRESS_LZO = 2,
712 BTRFS_COMPRESS_TYPES = 2,
713 BTRFS_COMPRESS_LAST = 3,
714};
715
716struct btrfs_inode_item {
717 /* nfs style generation number */
718 __le64 generation;
719 /* transid that last touched this inode */
720 __le64 transid;
721 __le64 size;
722 __le64 nbytes;
723 __le64 block_group;
724 __le32 nlink;
725 __le32 uid;
726 __le32 gid;
727 __le32 mode;
728 __le64 rdev;
729 __le64 flags;
730
731 /* modification sequence number for NFS */
732 __le64 sequence;
733
734 /*
735 * a little future expansion, for more than this we can
736 * just grow the inode item and version it
737 */
738 __le64 reserved[4];
739 struct btrfs_timespec atime;
740 struct btrfs_timespec ctime;
741 struct btrfs_timespec mtime;
742 struct btrfs_timespec otime;
743} __attribute__ ((__packed__));
744
745struct btrfs_dir_log_item {
746 __le64 end;
747} __attribute__ ((__packed__));
748
749struct btrfs_dir_item {
750 struct btrfs_disk_key location;
751 __le64 transid;
752 __le16 data_len;
753 __le16 name_len;
754 u8 type;
755} __attribute__ ((__packed__));
756
757#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
758
759struct btrfs_root_item {
760 struct btrfs_inode_item inode;
761 __le64 generation;
762 __le64 root_dirid;
763 __le64 bytenr;
764 __le64 byte_limit;
765 __le64 bytes_used;
766 __le64 last_snapshot;
767 __le64 flags;
768 __le32 refs;
769 struct btrfs_disk_key drop_progress;
770 u8 drop_level;
771 u8 level;
772
773 /*
774 * The following fields appear after subvol_uuids+subvol_times
775 * were introduced.
776 */
777
778 /*
779 * This generation number is used to test if the new fields are valid
780 * and up to date while reading the root item. Everytime the root item
781 * is written out, the "generation" field is copied into this field. If
782 * anyone ever mounted the fs with an older kernel, we will have
783 * mismatching generation values here and thus must invalidate the
784 * new fields. See btrfs_update_root and btrfs_find_last_root for
785 * details.
786 * the offset of generation_v2 is also used as the start for the memset
787 * when invalidating the fields.
788 */
789 __le64 generation_v2;
790 u8 uuid[BTRFS_UUID_SIZE];
791 u8 parent_uuid[BTRFS_UUID_SIZE];
792 u8 received_uuid[BTRFS_UUID_SIZE];
793 __le64 ctransid; /* updated when an inode changes */
794 __le64 otransid; /* trans when created */
795 __le64 stransid; /* trans when sent. non-zero for received subvol */
796 __le64 rtransid; /* trans when received. non-zero for received subvol */
797 struct btrfs_timespec ctime;
798 struct btrfs_timespec otime;
799 struct btrfs_timespec stime;
800 struct btrfs_timespec rtime;
801 __le64 reserved[8]; /* for future */
802} __attribute__ ((__packed__));
803
804/*
805 * this is used for both forward and backward root refs
806 */
807struct btrfs_root_ref {
808 __le64 dirid;
809 __le64 sequence;
810 __le16 name_len;
811} __attribute__ ((__packed__));
812
813struct btrfs_disk_balance_args {
814 /*
815 * profiles to operate on, single is denoted by
816 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
817 */
818 __le64 profiles;
819
820 /* usage filter */
821 __le64 usage;
822
823 /* devid filter */
824 __le64 devid;
825
826 /* devid subset filter [pstart..pend) */
827 __le64 pstart;
828 __le64 pend;
829
830 /* btrfs virtual address space subset filter [vstart..vend) */
831 __le64 vstart;
832 __le64 vend;
833
834 /*
835 * profile to convert to, single is denoted by
836 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
837 */
838 __le64 target;
839
840 /* BTRFS_BALANCE_ARGS_* */
841 __le64 flags;
842
843 __le64 unused[8];
844} __attribute__ ((__packed__));
845
846/*
847 * store balance parameters to disk so that balance can be properly
848 * resumed after crash or unmount
849 */
850struct btrfs_balance_item {
851 /* BTRFS_BALANCE_* */
852 __le64 flags;
853
854 struct btrfs_disk_balance_args data;
855 struct btrfs_disk_balance_args meta;
856 struct btrfs_disk_balance_args sys;
857
858 __le64 unused[4];
859} __attribute__ ((__packed__));
860
861#define BTRFS_FILE_EXTENT_INLINE 0
862#define BTRFS_FILE_EXTENT_REG 1
863#define BTRFS_FILE_EXTENT_PREALLOC 2
864
865struct btrfs_file_extent_item {
866 /*
867 * transaction id that created this extent
868 */
869 __le64 generation;
870 /*
871 * max number of bytes to hold this extent in ram
872 * when we split a compressed extent we can't know how big
873 * each of the resulting pieces will be. So, this is
874 * an upper limit on the size of the extent in ram instead of
875 * an exact limit.
876 */
877 __le64 ram_bytes;
878
879 /*
880 * 32 bits for the various ways we might encode the data,
881 * including compression and encryption. If any of these
882 * are set to something a given disk format doesn't understand
883 * it is treated like an incompat flag for reading and writing,
884 * but not for stat.
885 */
886 u8 compression;
887 u8 encryption;
888 __le16 other_encoding; /* spare for later use */
889
890 /* are we inline data or a real extent? */
891 u8 type;
892
893 /*
894 * disk space consumed by the extent, checksum blocks are included
895 * in these numbers
896 */
897 __le64 disk_bytenr;
898 __le64 disk_num_bytes;
899 /*
900 * the logical offset in file blocks (no csums)
901 * this extent record is for. This allows a file extent to point
902 * into the middle of an existing extent on disk, sharing it
903 * between two snapshots (useful if some bytes in the middle of the
904 * extent have changed
905 */
906 __le64 offset;
907 /*
908 * the logical number of file blocks (no csums included). This
909 * always reflects the size uncompressed and without encoding.
910 */
911 __le64 num_bytes;
912
913} __attribute__ ((__packed__));
914
915struct btrfs_csum_item {
916 u8 csum;
917} __attribute__ ((__packed__));
918
919struct btrfs_dev_stats_item {
920 /*
921 * grow this item struct at the end for future enhancements and keep
922 * the existing values unchanged
923 */
924 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
925} __attribute__ ((__packed__));
926
927#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
928#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
929#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
930#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
931#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
932#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
933#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
934
935struct btrfs_dev_replace {
936 u64 replace_state; /* see #define above */
937 u64 time_started; /* seconds since 1-Jan-1970 */
938 u64 time_stopped; /* seconds since 1-Jan-1970 */
939 atomic64_t num_write_errors;
940 atomic64_t num_uncorrectable_read_errors;
941
942 u64 cursor_left;
943 u64 committed_cursor_left;
944 u64 cursor_left_last_write_of_item;
945 u64 cursor_right;
946
947 u64 cont_reading_from_srcdev_mode; /* see #define above */
948
949 int is_valid;
950 int item_needs_writeback;
951 struct btrfs_device *srcdev;
952 struct btrfs_device *tgtdev;
953
954 pid_t lock_owner;
955 atomic_t nesting_level;
956 struct mutex lock_finishing_cancel_unmount;
957 struct mutex lock_management_lock;
958 struct mutex lock;
959
960 struct btrfs_scrub_progress scrub_progress;
961};
962
963struct btrfs_dev_replace_item {
964 /*
965 * grow this item struct at the end for future enhancements and keep
966 * the existing values unchanged
967 */
968 __le64 src_devid;
969 __le64 cursor_left;
970 __le64 cursor_right;
971 __le64 cont_reading_from_srcdev_mode;
972
973 __le64 replace_state;
974 __le64 time_started;
975 __le64 time_stopped;
976 __le64 num_write_errors;
977 __le64 num_uncorrectable_read_errors;
978} __attribute__ ((__packed__));
979
980/* different types of block groups (and chunks) */
981#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
982#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
983#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
984#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
985#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
986#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
987#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
988#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
989#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
990#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
991 BTRFS_SPACE_INFO_GLOBAL_RSV)
992
993enum btrfs_raid_types {
994 BTRFS_RAID_RAID10,
995 BTRFS_RAID_RAID1,
996 BTRFS_RAID_DUP,
997 BTRFS_RAID_RAID0,
998 BTRFS_RAID_SINGLE,
999 BTRFS_RAID_RAID5,
1000 BTRFS_RAID_RAID6,
1001 BTRFS_NR_RAID_TYPES
1002};
1003
1004#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1005 BTRFS_BLOCK_GROUP_SYSTEM | \
1006 BTRFS_BLOCK_GROUP_METADATA)
1007
1008#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1009 BTRFS_BLOCK_GROUP_RAID1 | \
1010 BTRFS_BLOCK_GROUP_RAID5 | \
1011 BTRFS_BLOCK_GROUP_RAID6 | \
1012 BTRFS_BLOCK_GROUP_DUP | \
1013 BTRFS_BLOCK_GROUP_RAID10)
1014/*
1015 * We need a bit for restriper to be able to tell when chunks of type
1016 * SINGLE are available. This "extended" profile format is used in
1017 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1018 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1019 * to avoid remappings between two formats in future.
1020 */
1021#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1022
1023/*
1024 * A fake block group type that is used to communicate global block reserve
1025 * size to userspace via the SPACE_INFO ioctl.
1026 */
1027#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1028
1029#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1030 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1031
1032static inline u64 chunk_to_extended(u64 flags)
1033{
1034 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1035 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1036
1037 return flags;
1038}
1039static inline u64 extended_to_chunk(u64 flags)
1040{
1041 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1042}
1043
1044struct btrfs_block_group_item {
1045 __le64 used;
1046 __le64 chunk_objectid;
1047 __le64 flags;
1048} __attribute__ ((__packed__));
1049
1050/*
1051 * is subvolume quota turned on?
1052 */
1053#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1054/*
1055 * RESCAN is set during the initialization phase
1056 */
1057#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1058/*
1059 * Some qgroup entries are known to be out of date,
1060 * either because the configuration has changed in a way that
1061 * makes a rescan necessary, or because the fs has been mounted
1062 * with a non-qgroup-aware version.
1063 * Turning qouta off and on again makes it inconsistent, too.
1064 */
1065#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1066
1067#define BTRFS_QGROUP_STATUS_VERSION 1
1068
1069struct btrfs_qgroup_status_item {
1070 __le64 version;
1071 /*
1072 * the generation is updated during every commit. As older
1073 * versions of btrfs are not aware of qgroups, it will be
1074 * possible to detect inconsistencies by checking the
1075 * generation on mount time
1076 */
1077 __le64 generation;
1078
1079 /* flag definitions see above */
1080 __le64 flags;
1081
1082 /*
1083 * only used during scanning to record the progress
1084 * of the scan. It contains a logical address
1085 */
1086 __le64 rescan;
1087} __attribute__ ((__packed__));
1088
1089struct btrfs_qgroup_info_item {
1090 __le64 generation;
1091 __le64 rfer;
1092 __le64 rfer_cmpr;
1093 __le64 excl;
1094 __le64 excl_cmpr;
1095} __attribute__ ((__packed__));
1096
1097/* flags definition for qgroup limits */
1098#define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1099#define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1100#define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1101#define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1102#define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1103#define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1104
1105struct btrfs_qgroup_limit_item {
1106 /*
1107 * only updated when any of the other values change
1108 */
1109 __le64 flags;
1110 __le64 max_rfer;
1111 __le64 max_excl;
1112 __le64 rsv_rfer;
1113 __le64 rsv_excl;
1114} __attribute__ ((__packed__));
1115
1116struct btrfs_space_info {
1117 spinlock_t lock;
1118
1119 u64 total_bytes; /* total bytes in the space,
1120 this doesn't take mirrors into account */
1121 u64 bytes_used; /* total bytes used,
1122 this doesn't take mirrors into account */
1123 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1124 transaction finishes */
1125 u64 bytes_reserved; /* total bytes the allocator has reserved for
1126 current allocations */
1127 u64 bytes_may_use; /* number of bytes that may be used for
1128 delalloc/allocations */
1129 u64 bytes_readonly; /* total bytes that are read only */
1130
1131 unsigned int full:1; /* indicates that we cannot allocate any more
1132 chunks for this space */
1133 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1134
1135 unsigned int flush:1; /* set if we are trying to make space */
1136
1137 unsigned int force_alloc; /* set if we need to force a chunk
1138 alloc for this space */
1139
1140 u64 disk_used; /* total bytes used on disk */
1141 u64 disk_total; /* total bytes on disk, takes mirrors into
1142 account */
1143
1144 u64 flags;
1145
1146 /*
1147 * bytes_pinned is kept in line with what is actually pinned, as in
1148 * we've called update_block_group and dropped the bytes_used counter
1149 * and increased the bytes_pinned counter. However this means that
1150 * bytes_pinned does not reflect the bytes that will be pinned once the
1151 * delayed refs are flushed, so this counter is inc'ed everytime we call
1152 * btrfs_free_extent so it is a realtime count of what will be freed
1153 * once the transaction is committed. It will be zero'ed everytime the
1154 * transaction commits.
1155 */
1156 struct percpu_counter total_bytes_pinned;
1157
1158 struct list_head list;
1159
1160 struct rw_semaphore groups_sem;
1161 /* for block groups in our same type */
1162 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1163 wait_queue_head_t wait;
1164
1165 struct kobject kobj;
1166 struct kobject block_group_kobjs[BTRFS_NR_RAID_TYPES];
1167};
1168
1169#define BTRFS_BLOCK_RSV_GLOBAL 1
1170#define BTRFS_BLOCK_RSV_DELALLOC 2
1171#define BTRFS_BLOCK_RSV_TRANS 3
1172#define BTRFS_BLOCK_RSV_CHUNK 4
1173#define BTRFS_BLOCK_RSV_DELOPS 5
1174#define BTRFS_BLOCK_RSV_EMPTY 6
1175#define BTRFS_BLOCK_RSV_TEMP 7
1176
1177struct btrfs_block_rsv {
1178 u64 size;
1179 u64 reserved;
1180 struct btrfs_space_info *space_info;
1181 spinlock_t lock;
1182 unsigned short full;
1183 unsigned short type;
1184 unsigned short failfast;
1185};
1186
1187/*
1188 * free clusters are used to claim free space in relatively large chunks,
1189 * allowing us to do less seeky writes. They are used for all metadata
1190 * allocations and data allocations in ssd mode.
1191 */
1192struct btrfs_free_cluster {
1193 spinlock_t lock;
1194 spinlock_t refill_lock;
1195 struct rb_root root;
1196
1197 /* largest extent in this cluster */
1198 u64 max_size;
1199
1200 /* first extent starting offset */
1201 u64 window_start;
1202
1203 struct btrfs_block_group_cache *block_group;
1204 /*
1205 * when a cluster is allocated from a block group, we put the
1206 * cluster onto a list in the block group so that it can
1207 * be freed before the block group is freed.
1208 */
1209 struct list_head block_group_list;
1210};
1211
1212enum btrfs_caching_type {
1213 BTRFS_CACHE_NO = 0,
1214 BTRFS_CACHE_STARTED = 1,
1215 BTRFS_CACHE_FAST = 2,
1216 BTRFS_CACHE_FINISHED = 3,
1217 BTRFS_CACHE_ERROR = 4,
1218};
1219
1220enum btrfs_disk_cache_state {
1221 BTRFS_DC_WRITTEN = 0,
1222 BTRFS_DC_ERROR = 1,
1223 BTRFS_DC_CLEAR = 2,
1224 BTRFS_DC_SETUP = 3,
1225 BTRFS_DC_NEED_WRITE = 4,
1226};
1227
1228struct btrfs_caching_control {
1229 struct list_head list;
1230 struct mutex mutex;
1231 wait_queue_head_t wait;
1232 struct btrfs_work work;
1233 struct btrfs_block_group_cache *block_group;
1234 u64 progress;
1235 atomic_t count;
1236};
1237
1238struct btrfs_block_group_cache {
1239 struct btrfs_key key;
1240 struct btrfs_block_group_item item;
1241 struct btrfs_fs_info *fs_info;
1242 struct inode *inode;
1243 spinlock_t lock;
1244 u64 pinned;
1245 u64 reserved;
1246 u64 bytes_super;
1247 u64 flags;
1248 u64 sectorsize;
1249 u64 cache_generation;
1250
1251 /* for raid56, this is a full stripe, without parity */
1252 unsigned long full_stripe_len;
1253
1254 unsigned int ro:1;
1255 unsigned int dirty:1;
1256 unsigned int iref:1;
1257
1258 int disk_cache_state;
1259
1260 /* cache tracking stuff */
1261 int cached;
1262 struct btrfs_caching_control *caching_ctl;
1263 u64 last_byte_to_unpin;
1264
1265 struct btrfs_space_info *space_info;
1266
1267 /* free space cache stuff */
1268 struct btrfs_free_space_ctl *free_space_ctl;
1269
1270 /* block group cache stuff */
1271 struct rb_node cache_node;
1272
1273 /* for block groups in the same raid type */
1274 struct list_head list;
1275
1276 /* usage count */
1277 atomic_t count;
1278
1279 /* List of struct btrfs_free_clusters for this block group.
1280 * Today it will only have one thing on it, but that may change
1281 */
1282 struct list_head cluster_list;
1283
1284 /* For delayed block group creation */
1285 struct list_head new_bg_list;
1286};
1287
1288/* delayed seq elem */
1289struct seq_list {
1290 struct list_head list;
1291 u64 seq;
1292};
1293
1294enum btrfs_orphan_cleanup_state {
1295 ORPHAN_CLEANUP_STARTED = 1,
1296 ORPHAN_CLEANUP_DONE = 2,
1297};
1298
1299/* used by the raid56 code to lock stripes for read/modify/write */
1300struct btrfs_stripe_hash {
1301 struct list_head hash_list;
1302 wait_queue_head_t wait;
1303 spinlock_t lock;
1304};
1305
1306/* used by the raid56 code to lock stripes for read/modify/write */
1307struct btrfs_stripe_hash_table {
1308 struct list_head stripe_cache;
1309 spinlock_t cache_lock;
1310 int cache_size;
1311 struct btrfs_stripe_hash table[];
1312};
1313
1314#define BTRFS_STRIPE_HASH_TABLE_BITS 11
1315
1316/* fs_info */
1317struct reloc_control;
1318struct btrfs_device;
1319struct btrfs_fs_devices;
1320struct btrfs_balance_control;
1321struct btrfs_delayed_root;
1322struct btrfs_fs_info {
1323 u8 fsid[BTRFS_FSID_SIZE];
1324 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1325 struct btrfs_root *extent_root;
1326 struct btrfs_root *tree_root;
1327 struct btrfs_root *chunk_root;
1328 struct btrfs_root *dev_root;
1329 struct btrfs_root *fs_root;
1330 struct btrfs_root *csum_root;
1331 struct btrfs_root *quota_root;
1332 struct btrfs_root *uuid_root;
1333
1334 /* the log root tree is a directory of all the other log roots */
1335 struct btrfs_root *log_root_tree;
1336
1337 spinlock_t fs_roots_radix_lock;
1338 struct radix_tree_root fs_roots_radix;
1339
1340 /* block group cache stuff */
1341 spinlock_t block_group_cache_lock;
1342 u64 first_logical_byte;
1343 struct rb_root block_group_cache_tree;
1344
1345 /* keep track of unallocated space */
1346 spinlock_t free_chunk_lock;
1347 u64 free_chunk_space;
1348
1349 struct extent_io_tree freed_extents[2];
1350 struct extent_io_tree *pinned_extents;
1351
1352 /* logical->physical extent mapping */
1353 struct btrfs_mapping_tree mapping_tree;
1354
1355 /*
1356 * block reservation for extent, checksum, root tree and
1357 * delayed dir index item
1358 */
1359 struct btrfs_block_rsv global_block_rsv;
1360 /* block reservation for delay allocation */
1361 struct btrfs_block_rsv delalloc_block_rsv;
1362 /* block reservation for metadata operations */
1363 struct btrfs_block_rsv trans_block_rsv;
1364 /* block reservation for chunk tree */
1365 struct btrfs_block_rsv chunk_block_rsv;
1366 /* block reservation for delayed operations */
1367 struct btrfs_block_rsv delayed_block_rsv;
1368
1369 struct btrfs_block_rsv empty_block_rsv;
1370
1371 u64 generation;
1372 u64 last_trans_committed;
1373 u64 avg_delayed_ref_runtime;
1374
1375 /*
1376 * this is updated to the current trans every time a full commit
1377 * is required instead of the faster short fsync log commits
1378 */
1379 u64 last_trans_log_full_commit;
1380 unsigned long mount_opt;
1381 unsigned long compress_type:4;
1382 int commit_interval;
1383 /*
1384 * It is a suggestive number, the read side is safe even it gets a
1385 * wrong number because we will write out the data into a regular
1386 * extent. The write side(mount/remount) is under ->s_umount lock,
1387 * so it is also safe.
1388 */
1389 u64 max_inline;
1390 /*
1391 * Protected by ->chunk_mutex and sb->s_umount.
1392 *
1393 * The reason that we use two lock to protect it is because only
1394 * remount and mount operations can change it and these two operations
1395 * are under sb->s_umount, but the read side (chunk allocation) can not
1396 * acquire sb->s_umount or the deadlock would happen. So we use two
1397 * locks to protect it. On the write side, we must acquire two locks,
1398 * and on the read side, we just need acquire one of them.
1399 */
1400 u64 alloc_start;
1401 struct btrfs_transaction *running_transaction;
1402 wait_queue_head_t transaction_throttle;
1403 wait_queue_head_t transaction_wait;
1404 wait_queue_head_t transaction_blocked_wait;
1405 wait_queue_head_t async_submit_wait;
1406
1407 /*
1408 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1409 * when they are updated.
1410 *
1411 * Because we do not clear the flags for ever, so we needn't use
1412 * the lock on the read side.
1413 *
1414 * We also needn't use the lock when we mount the fs, because
1415 * there is no other task which will update the flag.
1416 */
1417 spinlock_t super_lock;
1418 struct btrfs_super_block *super_copy;
1419 struct btrfs_super_block *super_for_commit;
1420 struct block_device *__bdev;
1421 struct super_block *sb;
1422 struct inode *btree_inode;
1423 struct backing_dev_info bdi;
1424 struct mutex tree_log_mutex;
1425 struct mutex transaction_kthread_mutex;
1426 struct mutex cleaner_mutex;
1427 struct mutex chunk_mutex;
1428 struct mutex volume_mutex;
1429
1430 /* this is used during read/modify/write to make sure
1431 * no two ios are trying to mod the same stripe at the same
1432 * time
1433 */
1434 struct btrfs_stripe_hash_table *stripe_hash_table;
1435
1436 /*
1437 * this protects the ordered operations list only while we are
1438 * processing all of the entries on it. This way we make
1439 * sure the commit code doesn't find the list temporarily empty
1440 * because another function happens to be doing non-waiting preflush
1441 * before jumping into the main commit.
1442 */
1443 struct mutex ordered_operations_mutex;
1444
1445 /*
1446 * Same as ordered_operations_mutex except this is for ordered extents
1447 * and not the operations.
1448 */
1449 struct mutex ordered_extent_flush_mutex;
1450
1451 struct rw_semaphore commit_root_sem;
1452
1453 struct rw_semaphore cleanup_work_sem;
1454
1455 struct rw_semaphore subvol_sem;
1456 struct srcu_struct subvol_srcu;
1457
1458 spinlock_t trans_lock;
1459 /*
1460 * the reloc mutex goes with the trans lock, it is taken
1461 * during commit to protect us from the relocation code
1462 */
1463 struct mutex reloc_mutex;
1464
1465 struct list_head trans_list;
1466 struct list_head dead_roots;
1467 struct list_head caching_block_groups;
1468
1469 spinlock_t delayed_iput_lock;
1470 struct list_head delayed_iputs;
1471
1472 /* this protects tree_mod_seq_list */
1473 spinlock_t tree_mod_seq_lock;
1474 atomic64_t tree_mod_seq;
1475 struct list_head tree_mod_seq_list;
1476
1477 /* this protects tree_mod_log */
1478 rwlock_t tree_mod_log_lock;
1479 struct rb_root tree_mod_log;
1480
1481 atomic_t nr_async_submits;
1482 atomic_t async_submit_draining;
1483 atomic_t nr_async_bios;
1484 atomic_t async_delalloc_pages;
1485 atomic_t open_ioctl_trans;
1486
1487 /*
1488 * this is used to protect the following list -- ordered_roots.
1489 */
1490 spinlock_t ordered_root_lock;
1491
1492 /*
1493 * all fs/file tree roots in which there are data=ordered extents
1494 * pending writeback are added into this list.
1495 *
1496 * these can span multiple transactions and basically include
1497 * every dirty data page that isn't from nodatacow
1498 */
1499 struct list_head ordered_roots;
1500
1501 struct mutex delalloc_root_mutex;
1502 spinlock_t delalloc_root_lock;
1503 /* all fs/file tree roots that have delalloc inodes. */
1504 struct list_head delalloc_roots;
1505
1506 /*
1507 * there is a pool of worker threads for checksumming during writes
1508 * and a pool for checksumming after reads. This is because readers
1509 * can run with FS locks held, and the writers may be waiting for
1510 * those locks. We don't want ordering in the pending list to cause
1511 * deadlocks, and so the two are serviced separately.
1512 *
1513 * A third pool does submit_bio to avoid deadlocking with the other
1514 * two
1515 */
1516 struct btrfs_workqueue *workers;
1517 struct btrfs_workqueue *delalloc_workers;
1518 struct btrfs_workqueue *flush_workers;
1519 struct btrfs_workqueue *endio_workers;
1520 struct btrfs_workqueue *endio_meta_workers;
1521 struct btrfs_workqueue *endio_raid56_workers;
1522 struct btrfs_workqueue *rmw_workers;
1523 struct btrfs_workqueue *endio_meta_write_workers;
1524 struct btrfs_workqueue *endio_write_workers;
1525 struct btrfs_workqueue *endio_freespace_worker;
1526 struct btrfs_workqueue *submit_workers;
1527 struct btrfs_workqueue *caching_workers;
1528 struct btrfs_workqueue *readahead_workers;
1529
1530 /*
1531 * fixup workers take dirty pages that didn't properly go through
1532 * the cow mechanism and make them safe to write. It happens
1533 * for the sys_munmap function call path
1534 */
1535 struct btrfs_workqueue *fixup_workers;
1536 struct btrfs_workqueue *delayed_workers;
1537 struct task_struct *transaction_kthread;
1538 struct task_struct *cleaner_kthread;
1539 int thread_pool_size;
1540
1541 struct kobject super_kobj;
1542 struct kobject *space_info_kobj;
1543 struct kobject *device_dir_kobj;
1544 struct completion kobj_unregister;
1545 int do_barriers;
1546 int closing;
1547 int log_root_recovering;
1548
1549 u64 total_pinned;
1550
1551 /* used to keep from writing metadata until there is a nice batch */
1552 struct percpu_counter dirty_metadata_bytes;
1553 struct percpu_counter delalloc_bytes;
1554 s32 dirty_metadata_batch;
1555 s32 delalloc_batch;
1556
1557 struct list_head dirty_cowonly_roots;
1558
1559 struct btrfs_fs_devices *fs_devices;
1560
1561 /*
1562 * the space_info list is almost entirely read only. It only changes
1563 * when we add a new raid type to the FS, and that happens
1564 * very rarely. RCU is used to protect it.
1565 */
1566 struct list_head space_info;
1567
1568 struct btrfs_space_info *data_sinfo;
1569
1570 struct reloc_control *reloc_ctl;
1571
1572 /* data_alloc_cluster is only used in ssd mode */
1573 struct btrfs_free_cluster data_alloc_cluster;
1574
1575 /* all metadata allocations go through this cluster */
1576 struct btrfs_free_cluster meta_alloc_cluster;
1577
1578 /* auto defrag inodes go here */
1579 spinlock_t defrag_inodes_lock;
1580 struct rb_root defrag_inodes;
1581 atomic_t defrag_running;
1582
1583 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1584 seqlock_t profiles_lock;
1585 /*
1586 * these three are in extended format (availability of single
1587 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1588 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1589 */
1590 u64 avail_data_alloc_bits;
1591 u64 avail_metadata_alloc_bits;
1592 u64 avail_system_alloc_bits;
1593
1594 /* restriper state */
1595 spinlock_t balance_lock;
1596 struct mutex balance_mutex;
1597 atomic_t balance_running;
1598 atomic_t balance_pause_req;
1599 atomic_t balance_cancel_req;
1600 struct btrfs_balance_control *balance_ctl;
1601 wait_queue_head_t balance_wait_q;
1602
1603 unsigned data_chunk_allocations;
1604 unsigned metadata_ratio;
1605
1606 void *bdev_holder;
1607
1608 /* private scrub information */
1609 struct mutex scrub_lock;
1610 atomic_t scrubs_running;
1611 atomic_t scrub_pause_req;
1612 atomic_t scrubs_paused;
1613 atomic_t scrub_cancel_req;
1614 wait_queue_head_t scrub_pause_wait;
1615 int scrub_workers_refcnt;
1616 struct btrfs_workqueue *scrub_workers;
1617 struct btrfs_workqueue *scrub_wr_completion_workers;
1618 struct btrfs_workqueue *scrub_nocow_workers;
1619
1620#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1621 u32 check_integrity_print_mask;
1622#endif
1623 /*
1624 * quota information
1625 */
1626 unsigned int quota_enabled:1;
1627
1628 /*
1629 * quota_enabled only changes state after a commit. This holds the
1630 * next state.
1631 */
1632 unsigned int pending_quota_state:1;
1633
1634 /* is qgroup tracking in a consistent state? */
1635 u64 qgroup_flags;
1636
1637 /* holds configuration and tracking. Protected by qgroup_lock */
1638 struct rb_root qgroup_tree;
1639 spinlock_t qgroup_lock;
1640
1641 /*
1642 * used to avoid frequently calling ulist_alloc()/ulist_free()
1643 * when doing qgroup accounting, it must be protected by qgroup_lock.
1644 */
1645 struct ulist *qgroup_ulist;
1646
1647 /* protect user change for quota operations */
1648 struct mutex qgroup_ioctl_lock;
1649
1650 /* list of dirty qgroups to be written at next commit */
1651 struct list_head dirty_qgroups;
1652
1653 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1654 u64 qgroup_seq;
1655
1656 /* qgroup rescan items */
1657 struct mutex qgroup_rescan_lock; /* protects the progress item */
1658 struct btrfs_key qgroup_rescan_progress;
1659 struct btrfs_workqueue *qgroup_rescan_workers;
1660 struct completion qgroup_rescan_completion;
1661 struct btrfs_work qgroup_rescan_work;
1662
1663 /* filesystem state */
1664 unsigned long fs_state;
1665
1666 struct btrfs_delayed_root *delayed_root;
1667
1668 /* readahead tree */
1669 spinlock_t reada_lock;
1670 struct radix_tree_root reada_tree;
1671
1672 /* Extent buffer radix tree */
1673 spinlock_t buffer_lock;
1674 struct radix_tree_root buffer_radix;
1675
1676 /* next backup root to be overwritten */
1677 int backup_root_index;
1678
1679 int num_tolerated_disk_barrier_failures;
1680
1681 /* device replace state */
1682 struct btrfs_dev_replace dev_replace;
1683
1684 atomic_t mutually_exclusive_operation_running;
1685
1686 struct percpu_counter bio_counter;
1687 wait_queue_head_t replace_wait;
1688
1689 struct semaphore uuid_tree_rescan_sem;
1690 unsigned int update_uuid_tree_gen:1;
1691};
1692
1693struct btrfs_subvolume_writers {
1694 struct percpu_counter counter;
1695 wait_queue_head_t wait;
1696};
1697
1698/*
1699 * in ram representation of the tree. extent_root is used for all allocations
1700 * and for the extent tree extent_root root.
1701 */
1702struct btrfs_root {
1703 struct extent_buffer *node;
1704
1705 struct extent_buffer *commit_root;
1706 struct btrfs_root *log_root;
1707 struct btrfs_root *reloc_root;
1708
1709 struct btrfs_root_item root_item;
1710 struct btrfs_key root_key;
1711 struct btrfs_fs_info *fs_info;
1712 struct extent_io_tree dirty_log_pages;
1713
1714 struct kobject root_kobj;
1715 struct completion kobj_unregister;
1716 struct mutex objectid_mutex;
1717
1718 spinlock_t accounting_lock;
1719 struct btrfs_block_rsv *block_rsv;
1720
1721 /* free ino cache stuff */
1722 struct btrfs_free_space_ctl *free_ino_ctl;
1723 enum btrfs_caching_type cached;
1724 spinlock_t cache_lock;
1725 wait_queue_head_t cache_wait;
1726 struct btrfs_free_space_ctl *free_ino_pinned;
1727 u64 cache_progress;
1728 struct inode *cache_inode;
1729
1730 struct mutex log_mutex;
1731 wait_queue_head_t log_writer_wait;
1732 wait_queue_head_t log_commit_wait[2];
1733 struct list_head log_ctxs[2];
1734 atomic_t log_writers;
1735 atomic_t log_commit[2];
1736 atomic_t log_batch;
1737 int log_transid;
1738 /* No matter the commit succeeds or not*/
1739 int log_transid_committed;
1740 /* Just be updated when the commit succeeds. */
1741 int last_log_commit;
1742 pid_t log_start_pid;
1743 bool log_multiple_pids;
1744
1745 u64 objectid;
1746 u64 last_trans;
1747
1748 /* data allocations are done in sectorsize units */
1749 u32 sectorsize;
1750
1751 /* node allocations are done in nodesize units */
1752 u32 nodesize;
1753
1754 /* leaf allocations are done in leafsize units */
1755 u32 leafsize;
1756
1757 u32 stripesize;
1758
1759 u32 type;
1760
1761 u64 highest_objectid;
1762
1763 /* btrfs_record_root_in_trans is a multi-step process,
1764 * and it can race with the balancing code. But the
1765 * race is very small, and only the first time the root
1766 * is added to each transaction. So in_trans_setup
1767 * is used to tell us when more checks are required
1768 */
1769 unsigned long in_trans_setup;
1770 int ref_cows;
1771 int track_dirty;
1772 int in_radix;
1773#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1774 int dummy_root;
1775#endif
1776 u64 defrag_trans_start;
1777 struct btrfs_key defrag_progress;
1778 struct btrfs_key defrag_max;
1779 int defrag_running;
1780 char *name;
1781
1782 /* the dirty list is only used by non-reference counted roots */
1783 struct list_head dirty_list;
1784
1785 struct list_head root_list;
1786
1787 spinlock_t log_extents_lock[2];
1788 struct list_head logged_list[2];
1789
1790 spinlock_t orphan_lock;
1791 atomic_t orphan_inodes;
1792 struct btrfs_block_rsv *orphan_block_rsv;
1793 int orphan_item_inserted;
1794 int orphan_cleanup_state;
1795
1796 spinlock_t inode_lock;
1797 /* red-black tree that keeps track of in-memory inodes */
1798 struct rb_root inode_tree;
1799
1800 /*
1801 * radix tree that keeps track of delayed nodes of every inode,
1802 * protected by inode_lock
1803 */
1804 struct radix_tree_root delayed_nodes_tree;
1805 /*
1806 * right now this just gets used so that a root has its own devid
1807 * for stat. It may be used for more later
1808 */
1809 dev_t anon_dev;
1810
1811 int force_cow;
1812
1813 spinlock_t root_item_lock;
1814 atomic_t refs;
1815
1816 struct mutex delalloc_mutex;
1817 spinlock_t delalloc_lock;
1818 /*
1819 * all of the inodes that have delalloc bytes. It is possible for
1820 * this list to be empty even when there is still dirty data=ordered
1821 * extents waiting to finish IO.
1822 */
1823 struct list_head delalloc_inodes;
1824 struct list_head delalloc_root;
1825 u64 nr_delalloc_inodes;
1826
1827 struct mutex ordered_extent_mutex;
1828 /*
1829 * this is used by the balancing code to wait for all the pending
1830 * ordered extents
1831 */
1832 spinlock_t ordered_extent_lock;
1833
1834 /*
1835 * all of the data=ordered extents pending writeback
1836 * these can span multiple transactions and basically include
1837 * every dirty data page that isn't from nodatacow
1838 */
1839 struct list_head ordered_extents;
1840 struct list_head ordered_root;
1841 u64 nr_ordered_extents;
1842
1843 /*
1844 * Number of currently running SEND ioctls to prevent
1845 * manipulation with the read-only status via SUBVOL_SETFLAGS
1846 */
1847 int send_in_progress;
1848 struct btrfs_subvolume_writers *subv_writers;
1849 atomic_t will_be_snapshoted;
1850};
1851
1852struct btrfs_ioctl_defrag_range_args {
1853 /* start of the defrag operation */
1854 __u64 start;
1855
1856 /* number of bytes to defrag, use (u64)-1 to say all */
1857 __u64 len;
1858
1859 /*
1860 * flags for the operation, which can include turning
1861 * on compression for this one defrag
1862 */
1863 __u64 flags;
1864
1865 /*
1866 * any extent bigger than this will be considered
1867 * already defragged. Use 0 to take the kernel default
1868 * Use 1 to say every single extent must be rewritten
1869 */
1870 __u32 extent_thresh;
1871
1872 /*
1873 * which compression method to use if turning on compression
1874 * for this defrag operation. If unspecified, zlib will
1875 * be used
1876 */
1877 __u32 compress_type;
1878
1879 /* spare for later */
1880 __u32 unused[4];
1881};
1882
1883
1884/*
1885 * inode items have the data typically returned from stat and store other
1886 * info about object characteristics. There is one for every file and dir in
1887 * the FS
1888 */
1889#define BTRFS_INODE_ITEM_KEY 1
1890#define BTRFS_INODE_REF_KEY 12
1891#define BTRFS_INODE_EXTREF_KEY 13
1892#define BTRFS_XATTR_ITEM_KEY 24
1893#define BTRFS_ORPHAN_ITEM_KEY 48
1894/* reserve 2-15 close to the inode for later flexibility */
1895
1896/*
1897 * dir items are the name -> inode pointers in a directory. There is one
1898 * for every name in a directory.
1899 */
1900#define BTRFS_DIR_LOG_ITEM_KEY 60
1901#define BTRFS_DIR_LOG_INDEX_KEY 72
1902#define BTRFS_DIR_ITEM_KEY 84
1903#define BTRFS_DIR_INDEX_KEY 96
1904/*
1905 * extent data is for file data
1906 */
1907#define BTRFS_EXTENT_DATA_KEY 108
1908
1909/*
1910 * extent csums are stored in a separate tree and hold csums for
1911 * an entire extent on disk.
1912 */
1913#define BTRFS_EXTENT_CSUM_KEY 128
1914
1915/*
1916 * root items point to tree roots. They are typically in the root
1917 * tree used by the super block to find all the other trees
1918 */
1919#define BTRFS_ROOT_ITEM_KEY 132
1920
1921/*
1922 * root backrefs tie subvols and snapshots to the directory entries that
1923 * reference them
1924 */
1925#define BTRFS_ROOT_BACKREF_KEY 144
1926
1927/*
1928 * root refs make a fast index for listing all of the snapshots and
1929 * subvolumes referenced by a given root. They point directly to the
1930 * directory item in the root that references the subvol
1931 */
1932#define BTRFS_ROOT_REF_KEY 156
1933
1934/*
1935 * extent items are in the extent map tree. These record which blocks
1936 * are used, and how many references there are to each block
1937 */
1938#define BTRFS_EXTENT_ITEM_KEY 168
1939
1940/*
1941 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
1942 * the length, so we save the level in key->offset instead of the length.
1943 */
1944#define BTRFS_METADATA_ITEM_KEY 169
1945
1946#define BTRFS_TREE_BLOCK_REF_KEY 176
1947
1948#define BTRFS_EXTENT_DATA_REF_KEY 178
1949
1950#define BTRFS_EXTENT_REF_V0_KEY 180
1951
1952#define BTRFS_SHARED_BLOCK_REF_KEY 182
1953
1954#define BTRFS_SHARED_DATA_REF_KEY 184
1955
1956/*
1957 * block groups give us hints into the extent allocation trees. Which
1958 * blocks are free etc etc
1959 */
1960#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1961
1962#define BTRFS_DEV_EXTENT_KEY 204
1963#define BTRFS_DEV_ITEM_KEY 216
1964#define BTRFS_CHUNK_ITEM_KEY 228
1965
1966/*
1967 * Records the overall state of the qgroups.
1968 * There's only one instance of this key present,
1969 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
1970 */
1971#define BTRFS_QGROUP_STATUS_KEY 240
1972/*
1973 * Records the currently used space of the qgroup.
1974 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
1975 */
1976#define BTRFS_QGROUP_INFO_KEY 242
1977/*
1978 * Contains the user configured limits for the qgroup.
1979 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
1980 */
1981#define BTRFS_QGROUP_LIMIT_KEY 244
1982/*
1983 * Records the child-parent relationship of qgroups. For
1984 * each relation, 2 keys are present:
1985 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
1986 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
1987 */
1988#define BTRFS_QGROUP_RELATION_KEY 246
1989
1990#define BTRFS_BALANCE_ITEM_KEY 248
1991
1992/*
1993 * Persistantly stores the io stats in the device tree.
1994 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
1995 */
1996#define BTRFS_DEV_STATS_KEY 249
1997
1998/*
1999 * Persistantly stores the device replace state in the device tree.
2000 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2001 */
2002#define BTRFS_DEV_REPLACE_KEY 250
2003
2004/*
2005 * Stores items that allow to quickly map UUIDs to something else.
2006 * These items are part of the filesystem UUID tree.
2007 * The key is built like this:
2008 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2009 */
2010#if BTRFS_UUID_SIZE != 16
2011#error "UUID items require BTRFS_UUID_SIZE == 16!"
2012#endif
2013#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2014#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2015 * received subvols */
2016
2017/*
2018 * string items are for debugging. They just store a short string of
2019 * data in the FS
2020 */
2021#define BTRFS_STRING_ITEM_KEY 253
2022
2023/*
2024 * Flags for mount options.
2025 *
2026 * Note: don't forget to add new options to btrfs_show_options()
2027 */
2028#define BTRFS_MOUNT_NODATASUM (1 << 0)
2029#define BTRFS_MOUNT_NODATACOW (1 << 1)
2030#define BTRFS_MOUNT_NOBARRIER (1 << 2)
2031#define BTRFS_MOUNT_SSD (1 << 3)
2032#define BTRFS_MOUNT_DEGRADED (1 << 4)
2033#define BTRFS_MOUNT_COMPRESS (1 << 5)
2034#define BTRFS_MOUNT_NOTREELOG (1 << 6)
2035#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2036#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2037#define BTRFS_MOUNT_NOSSD (1 << 9)
2038#define BTRFS_MOUNT_DISCARD (1 << 10)
2039#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2040#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2041#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2042#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2043#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2044#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2045#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2046#define BTRFS_MOUNT_RECOVERY (1 << 18)
2047#define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2048#define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2049#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2050#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2051#define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2052#define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24)
2053
2054#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2055
2056#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2057#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2058#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2059#define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2060 BTRFS_MOUNT_##opt)
2061#define btrfs_set_and_info(root, opt, fmt, args...) \
2062{ \
2063 if (!btrfs_test_opt(root, opt)) \
2064 btrfs_info(root->fs_info, fmt, ##args); \
2065 btrfs_set_opt(root->fs_info->mount_opt, opt); \
2066}
2067
2068#define btrfs_clear_and_info(root, opt, fmt, args...) \
2069{ \
2070 if (btrfs_test_opt(root, opt)) \
2071 btrfs_info(root->fs_info, fmt, ##args); \
2072 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
2073}
2074
2075/*
2076 * Inode flags
2077 */
2078#define BTRFS_INODE_NODATASUM (1 << 0)
2079#define BTRFS_INODE_NODATACOW (1 << 1)
2080#define BTRFS_INODE_READONLY (1 << 2)
2081#define BTRFS_INODE_NOCOMPRESS (1 << 3)
2082#define BTRFS_INODE_PREALLOC (1 << 4)
2083#define BTRFS_INODE_SYNC (1 << 5)
2084#define BTRFS_INODE_IMMUTABLE (1 << 6)
2085#define BTRFS_INODE_APPEND (1 << 7)
2086#define BTRFS_INODE_NODUMP (1 << 8)
2087#define BTRFS_INODE_NOATIME (1 << 9)
2088#define BTRFS_INODE_DIRSYNC (1 << 10)
2089#define BTRFS_INODE_COMPRESS (1 << 11)
2090
2091#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2092
2093struct btrfs_map_token {
2094 struct extent_buffer *eb;
2095 char *kaddr;
2096 unsigned long offset;
2097};
2098
2099static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2100{
2101 token->kaddr = NULL;
2102}
2103
2104/* some macros to generate set/get funcs for the struct fields. This
2105 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2106 * one for u8:
2107 */
2108#define le8_to_cpu(v) (v)
2109#define cpu_to_le8(v) (v)
2110#define __le8 u8
2111
2112#define read_eb_member(eb, ptr, type, member, result) ( \
2113 read_extent_buffer(eb, (char *)(result), \
2114 ((unsigned long)(ptr)) + \
2115 offsetof(type, member), \
2116 sizeof(((type *)0)->member)))
2117
2118#define write_eb_member(eb, ptr, type, member, result) ( \
2119 write_extent_buffer(eb, (char *)(result), \
2120 ((unsigned long)(ptr)) + \
2121 offsetof(type, member), \
2122 sizeof(((type *)0)->member)))
2123
2124#define DECLARE_BTRFS_SETGET_BITS(bits) \
2125u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2126 unsigned long off, \
2127 struct btrfs_map_token *token); \
2128void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2129 unsigned long off, u##bits val, \
2130 struct btrfs_map_token *token); \
2131static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2132 unsigned long off) \
2133{ \
2134 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2135} \
2136static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2137 unsigned long off, u##bits val) \
2138{ \
2139 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2140}
2141
2142DECLARE_BTRFS_SETGET_BITS(8)
2143DECLARE_BTRFS_SETGET_BITS(16)
2144DECLARE_BTRFS_SETGET_BITS(32)
2145DECLARE_BTRFS_SETGET_BITS(64)
2146
2147#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2148static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2149{ \
2150 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2151 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2152} \
2153static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2154 u##bits val) \
2155{ \
2156 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2157 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2158} \
2159static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2160 struct btrfs_map_token *token) \
2161{ \
2162 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2163 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2164} \
2165static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2166 type *s, u##bits val, \
2167 struct btrfs_map_token *token) \
2168{ \
2169 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2170 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2171}
2172
2173#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2174static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2175{ \
2176 type *p = page_address(eb->pages[0]); \
2177 u##bits res = le##bits##_to_cpu(p->member); \
2178 return res; \
2179} \
2180static inline void btrfs_set_##name(struct extent_buffer *eb, \
2181 u##bits val) \
2182{ \
2183 type *p = page_address(eb->pages[0]); \
2184 p->member = cpu_to_le##bits(val); \
2185}
2186
2187#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2188static inline u##bits btrfs_##name(type *s) \
2189{ \
2190 return le##bits##_to_cpu(s->member); \
2191} \
2192static inline void btrfs_set_##name(type *s, u##bits val) \
2193{ \
2194 s->member = cpu_to_le##bits(val); \
2195}
2196
2197BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2198BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2199BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2200BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2201BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2202BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2203 start_offset, 64);
2204BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2205BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2206BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2207BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2208BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2209BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2210
2211BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2212BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2213 total_bytes, 64);
2214BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2215 bytes_used, 64);
2216BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2217 io_align, 32);
2218BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2219 io_width, 32);
2220BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2221 sector_size, 32);
2222BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2223BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2224 dev_group, 32);
2225BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2226 seek_speed, 8);
2227BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2228 bandwidth, 8);
2229BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2230 generation, 64);
2231
2232static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2233{
2234 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2235}
2236
2237static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2238{
2239 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2240}
2241
2242BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2243BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2244BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2245BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2246BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2247BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2248BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2249BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2250BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2251BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2252BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2253
2254static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2255{
2256 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2257}
2258
2259BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2260BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2261BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2262 stripe_len, 64);
2263BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2264 io_align, 32);
2265BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2266 io_width, 32);
2267BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2268 sector_size, 32);
2269BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2270BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2271 num_stripes, 16);
2272BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2273 sub_stripes, 16);
2274BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2275BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2276
2277static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2278 int nr)
2279{
2280 unsigned long offset = (unsigned long)c;
2281 offset += offsetof(struct btrfs_chunk, stripe);
2282 offset += nr * sizeof(struct btrfs_stripe);
2283 return (struct btrfs_stripe *)offset;
2284}
2285
2286static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2287{
2288 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2289}
2290
2291static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2292 struct btrfs_chunk *c, int nr)
2293{
2294 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2295}
2296
2297static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2298 struct btrfs_chunk *c, int nr)
2299{
2300 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2301}
2302
2303/* struct btrfs_block_group_item */
2304BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2305 used, 64);
2306BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2307 used, 64);
2308BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2309 struct btrfs_block_group_item, chunk_objectid, 64);
2310
2311BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2312 struct btrfs_block_group_item, chunk_objectid, 64);
2313BTRFS_SETGET_FUNCS(disk_block_group_flags,
2314 struct btrfs_block_group_item, flags, 64);
2315BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2316 struct btrfs_block_group_item, flags, 64);
2317
2318/* struct btrfs_inode_ref */
2319BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2320BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2321
2322/* struct btrfs_inode_extref */
2323BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2324 parent_objectid, 64);
2325BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2326 name_len, 16);
2327BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2328
2329/* struct btrfs_inode_item */
2330BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2331BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2332BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2333BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2334BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2335BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2336BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2337BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2338BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2339BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2340BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2341BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2342BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2343 generation, 64);
2344BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2345 sequence, 64);
2346BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2347 transid, 64);
2348BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2349BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2350 nbytes, 64);
2351BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2352 block_group, 64);
2353BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2354BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2355BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2356BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2357BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2358BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2359
2360static inline struct btrfs_timespec *
2361btrfs_inode_atime(struct btrfs_inode_item *inode_item)
2362{
2363 unsigned long ptr = (unsigned long)inode_item;
2364 ptr += offsetof(struct btrfs_inode_item, atime);
2365 return (struct btrfs_timespec *)ptr;
2366}
2367
2368static inline struct btrfs_timespec *
2369btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
2370{
2371 unsigned long ptr = (unsigned long)inode_item;
2372 ptr += offsetof(struct btrfs_inode_item, mtime);
2373 return (struct btrfs_timespec *)ptr;
2374}
2375
2376static inline struct btrfs_timespec *
2377btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
2378{
2379 unsigned long ptr = (unsigned long)inode_item;
2380 ptr += offsetof(struct btrfs_inode_item, ctime);
2381 return (struct btrfs_timespec *)ptr;
2382}
2383
2384BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2385BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2386BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2387BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2388
2389/* struct btrfs_dev_extent */
2390BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2391 chunk_tree, 64);
2392BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2393 chunk_objectid, 64);
2394BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2395 chunk_offset, 64);
2396BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2397
2398static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2399{
2400 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2401 return (unsigned long)dev + ptr;
2402}
2403
2404BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2405BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2406 generation, 64);
2407BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2408
2409BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2410
2411
2412BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2413
2414static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2415 struct btrfs_tree_block_info *item,
2416 struct btrfs_disk_key *key)
2417{
2418 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2419}
2420
2421static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2422 struct btrfs_tree_block_info *item,
2423 struct btrfs_disk_key *key)
2424{
2425 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2426}
2427
2428BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2429 root, 64);
2430BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2431 objectid, 64);
2432BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2433 offset, 64);
2434BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2435 count, 32);
2436
2437BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2438 count, 32);
2439
2440BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2441 type, 8);
2442BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2443 offset, 64);
2444
2445static inline u32 btrfs_extent_inline_ref_size(int type)
2446{
2447 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2448 type == BTRFS_SHARED_BLOCK_REF_KEY)
2449 return sizeof(struct btrfs_extent_inline_ref);
2450 if (type == BTRFS_SHARED_DATA_REF_KEY)
2451 return sizeof(struct btrfs_shared_data_ref) +
2452 sizeof(struct btrfs_extent_inline_ref);
2453 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2454 return sizeof(struct btrfs_extent_data_ref) +
2455 offsetof(struct btrfs_extent_inline_ref, offset);
2456 BUG();
2457 return 0;
2458}
2459
2460BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2461BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2462 generation, 64);
2463BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2464BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2465
2466/* struct btrfs_node */
2467BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2468BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2469BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2470 blockptr, 64);
2471BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2472 generation, 64);
2473
2474static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2475{
2476 unsigned long ptr;
2477 ptr = offsetof(struct btrfs_node, ptrs) +
2478 sizeof(struct btrfs_key_ptr) * nr;
2479 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2480}
2481
2482static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2483 int nr, u64 val)
2484{
2485 unsigned long ptr;
2486 ptr = offsetof(struct btrfs_node, ptrs) +
2487 sizeof(struct btrfs_key_ptr) * nr;
2488 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2489}
2490
2491static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2492{
2493 unsigned long ptr;
2494 ptr = offsetof(struct btrfs_node, ptrs) +
2495 sizeof(struct btrfs_key_ptr) * nr;
2496 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2497}
2498
2499static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2500 int nr, u64 val)
2501{
2502 unsigned long ptr;
2503 ptr = offsetof(struct btrfs_node, ptrs) +
2504 sizeof(struct btrfs_key_ptr) * nr;
2505 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2506}
2507
2508static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2509{
2510 return offsetof(struct btrfs_node, ptrs) +
2511 sizeof(struct btrfs_key_ptr) * nr;
2512}
2513
2514void btrfs_node_key(struct extent_buffer *eb,
2515 struct btrfs_disk_key *disk_key, int nr);
2516
2517static inline void btrfs_set_node_key(struct extent_buffer *eb,
2518 struct btrfs_disk_key *disk_key, int nr)
2519{
2520 unsigned long ptr;
2521 ptr = btrfs_node_key_ptr_offset(nr);
2522 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2523 struct btrfs_key_ptr, key, disk_key);
2524}
2525
2526/* struct btrfs_item */
2527BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2528BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2529BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2530BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2531
2532static inline unsigned long btrfs_item_nr_offset(int nr)
2533{
2534 return offsetof(struct btrfs_leaf, items) +
2535 sizeof(struct btrfs_item) * nr;
2536}
2537
2538static inline struct btrfs_item *btrfs_item_nr(int nr)
2539{
2540 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2541}
2542
2543static inline u32 btrfs_item_end(struct extent_buffer *eb,
2544 struct btrfs_item *item)
2545{
2546 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2547}
2548
2549static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2550{
2551 return btrfs_item_end(eb, btrfs_item_nr(nr));
2552}
2553
2554static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2555{
2556 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2557}
2558
2559static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2560{
2561 return btrfs_item_size(eb, btrfs_item_nr(nr));
2562}
2563
2564static inline void btrfs_item_key(struct extent_buffer *eb,
2565 struct btrfs_disk_key *disk_key, int nr)
2566{
2567 struct btrfs_item *item = btrfs_item_nr(nr);
2568 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2569}
2570
2571static inline void btrfs_set_item_key(struct extent_buffer *eb,
2572 struct btrfs_disk_key *disk_key, int nr)
2573{
2574 struct btrfs_item *item = btrfs_item_nr(nr);
2575 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2576}
2577
2578BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2579
2580/*
2581 * struct btrfs_root_ref
2582 */
2583BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2584BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2585BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2586
2587/* struct btrfs_dir_item */
2588BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2589BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2590BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2591BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2592BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2593BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2594 data_len, 16);
2595BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2596 name_len, 16);
2597BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2598 transid, 64);
2599
2600static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2601 struct btrfs_dir_item *item,
2602 struct btrfs_disk_key *key)
2603{
2604 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2605}
2606
2607static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2608 struct btrfs_dir_item *item,
2609 struct btrfs_disk_key *key)
2610{
2611 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2612}
2613
2614BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2615 num_entries, 64);
2616BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2617 num_bitmaps, 64);
2618BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2619 generation, 64);
2620
2621static inline void btrfs_free_space_key(struct extent_buffer *eb,
2622 struct btrfs_free_space_header *h,
2623 struct btrfs_disk_key *key)
2624{
2625 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2626}
2627
2628static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2629 struct btrfs_free_space_header *h,
2630 struct btrfs_disk_key *key)
2631{
2632 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2633}
2634
2635/* struct btrfs_disk_key */
2636BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2637 objectid, 64);
2638BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2639BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2640
2641static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2642 struct btrfs_disk_key *disk)
2643{
2644 cpu->offset = le64_to_cpu(disk->offset);
2645 cpu->type = disk->type;
2646 cpu->objectid = le64_to_cpu(disk->objectid);
2647}
2648
2649static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2650 struct btrfs_key *cpu)
2651{
2652 disk->offset = cpu_to_le64(cpu->offset);
2653 disk->type = cpu->type;
2654 disk->objectid = cpu_to_le64(cpu->objectid);
2655}
2656
2657static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2658 struct btrfs_key *key, int nr)
2659{
2660 struct btrfs_disk_key disk_key;
2661 btrfs_node_key(eb, &disk_key, nr);
2662 btrfs_disk_key_to_cpu(key, &disk_key);
2663}
2664
2665static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2666 struct btrfs_key *key, int nr)
2667{
2668 struct btrfs_disk_key disk_key;
2669 btrfs_item_key(eb, &disk_key, nr);
2670 btrfs_disk_key_to_cpu(key, &disk_key);
2671}
2672
2673static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2674 struct btrfs_dir_item *item,
2675 struct btrfs_key *key)
2676{
2677 struct btrfs_disk_key disk_key;
2678 btrfs_dir_item_key(eb, item, &disk_key);
2679 btrfs_disk_key_to_cpu(key, &disk_key);
2680}
2681
2682
2683static inline u8 btrfs_key_type(struct btrfs_key *key)
2684{
2685 return key->type;
2686}
2687
2688static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2689{
2690 key->type = val;
2691}
2692
2693/* struct btrfs_header */
2694BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2695BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2696 generation, 64);
2697BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2698BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2699BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2700BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2701BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2702 generation, 64);
2703BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2704BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2705 nritems, 32);
2706BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2707
2708static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2709{
2710 return (btrfs_header_flags(eb) & flag) == flag;
2711}
2712
2713static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2714{
2715 u64 flags = btrfs_header_flags(eb);
2716 btrfs_set_header_flags(eb, flags | flag);
2717 return (flags & flag) == flag;
2718}
2719
2720static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2721{
2722 u64 flags = btrfs_header_flags(eb);
2723 btrfs_set_header_flags(eb, flags & ~flag);
2724 return (flags & flag) == flag;
2725}
2726
2727static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2728{
2729 u64 flags = btrfs_header_flags(eb);
2730 return flags >> BTRFS_BACKREF_REV_SHIFT;
2731}
2732
2733static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2734 int rev)
2735{
2736 u64 flags = btrfs_header_flags(eb);
2737 flags &= ~BTRFS_BACKREF_REV_MASK;
2738 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2739 btrfs_set_header_flags(eb, flags);
2740}
2741
2742static inline unsigned long btrfs_header_fsid(void)
2743{
2744 return offsetof(struct btrfs_header, fsid);
2745}
2746
2747static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2748{
2749 return offsetof(struct btrfs_header, chunk_tree_uuid);
2750}
2751
2752static inline int btrfs_is_leaf(struct extent_buffer *eb)
2753{
2754 return btrfs_header_level(eb) == 0;
2755}
2756
2757/* struct btrfs_root_item */
2758BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2759 generation, 64);
2760BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2761BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2762BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2763
2764BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2765 generation, 64);
2766BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2767BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2768BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2769BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2770BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2771BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2772BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2773BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2774 last_snapshot, 64);
2775BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2776 generation_v2, 64);
2777BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2778 ctransid, 64);
2779BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2780 otransid, 64);
2781BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2782 stransid, 64);
2783BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2784 rtransid, 64);
2785
2786static inline bool btrfs_root_readonly(struct btrfs_root *root)
2787{
2788 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2789}
2790
2791/* struct btrfs_root_backup */
2792BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2793 tree_root, 64);
2794BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2795 tree_root_gen, 64);
2796BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2797 tree_root_level, 8);
2798
2799BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2800 chunk_root, 64);
2801BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2802 chunk_root_gen, 64);
2803BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2804 chunk_root_level, 8);
2805
2806BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2807 extent_root, 64);
2808BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2809 extent_root_gen, 64);
2810BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2811 extent_root_level, 8);
2812
2813BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2814 fs_root, 64);
2815BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2816 fs_root_gen, 64);
2817BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2818 fs_root_level, 8);
2819
2820BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2821 dev_root, 64);
2822BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2823 dev_root_gen, 64);
2824BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2825 dev_root_level, 8);
2826
2827BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2828 csum_root, 64);
2829BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2830 csum_root_gen, 64);
2831BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2832 csum_root_level, 8);
2833BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2834 total_bytes, 64);
2835BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2836 bytes_used, 64);
2837BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2838 num_devices, 64);
2839
2840/* struct btrfs_balance_item */
2841BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2842
2843static inline void btrfs_balance_data(struct extent_buffer *eb,
2844 struct btrfs_balance_item *bi,
2845 struct btrfs_disk_balance_args *ba)
2846{
2847 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2848}
2849
2850static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2851 struct btrfs_balance_item *bi,
2852 struct btrfs_disk_balance_args *ba)
2853{
2854 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2855}
2856
2857static inline void btrfs_balance_meta(struct extent_buffer *eb,
2858 struct btrfs_balance_item *bi,
2859 struct btrfs_disk_balance_args *ba)
2860{
2861 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2862}
2863
2864static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2865 struct btrfs_balance_item *bi,
2866 struct btrfs_disk_balance_args *ba)
2867{
2868 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2869}
2870
2871static inline void btrfs_balance_sys(struct extent_buffer *eb,
2872 struct btrfs_balance_item *bi,
2873 struct btrfs_disk_balance_args *ba)
2874{
2875 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2876}
2877
2878static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2879 struct btrfs_balance_item *bi,
2880 struct btrfs_disk_balance_args *ba)
2881{
2882 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2883}
2884
2885static inline void
2886btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2887 struct btrfs_disk_balance_args *disk)
2888{
2889 memset(cpu, 0, sizeof(*cpu));
2890
2891 cpu->profiles = le64_to_cpu(disk->profiles);
2892 cpu->usage = le64_to_cpu(disk->usage);
2893 cpu->devid = le64_to_cpu(disk->devid);
2894 cpu->pstart = le64_to_cpu(disk->pstart);
2895 cpu->pend = le64_to_cpu(disk->pend);
2896 cpu->vstart = le64_to_cpu(disk->vstart);
2897 cpu->vend = le64_to_cpu(disk->vend);
2898 cpu->target = le64_to_cpu(disk->target);
2899 cpu->flags = le64_to_cpu(disk->flags);
2900}
2901
2902static inline void
2903btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2904 struct btrfs_balance_args *cpu)
2905{
2906 memset(disk, 0, sizeof(*disk));
2907
2908 disk->profiles = cpu_to_le64(cpu->profiles);
2909 disk->usage = cpu_to_le64(cpu->usage);
2910 disk->devid = cpu_to_le64(cpu->devid);
2911 disk->pstart = cpu_to_le64(cpu->pstart);
2912 disk->pend = cpu_to_le64(cpu->pend);
2913 disk->vstart = cpu_to_le64(cpu->vstart);
2914 disk->vend = cpu_to_le64(cpu->vend);
2915 disk->target = cpu_to_le64(cpu->target);
2916 disk->flags = cpu_to_le64(cpu->flags);
2917}
2918
2919/* struct btrfs_super_block */
2920BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2921BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2922BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2923 generation, 64);
2924BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2925BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2926 struct btrfs_super_block, sys_chunk_array_size, 32);
2927BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2928 struct btrfs_super_block, chunk_root_generation, 64);
2929BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2930 root_level, 8);
2931BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2932 chunk_root, 64);
2933BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2934 chunk_root_level, 8);
2935BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2936 log_root, 64);
2937BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2938 log_root_transid, 64);
2939BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2940 log_root_level, 8);
2941BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2942 total_bytes, 64);
2943BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2944 bytes_used, 64);
2945BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2946 sectorsize, 32);
2947BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2948 nodesize, 32);
2949BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
2950 leafsize, 32);
2951BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2952 stripesize, 32);
2953BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2954 root_dir_objectid, 64);
2955BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2956 num_devices, 64);
2957BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2958 compat_flags, 64);
2959BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2960 compat_ro_flags, 64);
2961BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2962 incompat_flags, 64);
2963BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2964 csum_type, 16);
2965BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2966 cache_generation, 64);
2967BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2968BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2969 uuid_tree_generation, 64);
2970
2971static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2972{
2973 u16 t = btrfs_super_csum_type(s);
2974 /*
2975 * csum type is validated at mount time
2976 */
2977 return btrfs_csum_sizes[t];
2978}
2979
2980static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2981{
2982 return offsetof(struct btrfs_leaf, items);
2983}
2984
2985/* struct btrfs_file_extent_item */
2986BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2987BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2988 struct btrfs_file_extent_item, disk_bytenr, 64);
2989BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2990 struct btrfs_file_extent_item, offset, 64);
2991BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2992 struct btrfs_file_extent_item, generation, 64);
2993BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2994 struct btrfs_file_extent_item, num_bytes, 64);
2995BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2996 struct btrfs_file_extent_item, disk_num_bytes, 64);
2997BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2998 struct btrfs_file_extent_item, compression, 8);
2999
3000static inline unsigned long
3001btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3002{
3003 unsigned long offset = (unsigned long)e;
3004 offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
3005 return offset;
3006}
3007
3008static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3009{
3010 return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
3011}
3012
3013BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3014 disk_bytenr, 64);
3015BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3016 generation, 64);
3017BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3018 disk_num_bytes, 64);
3019BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3020 offset, 64);
3021BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3022 num_bytes, 64);
3023BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3024 ram_bytes, 64);
3025BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3026 compression, 8);
3027BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3028 encryption, 8);
3029BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3030 other_encoding, 16);
3031
3032/*
3033 * this returns the number of bytes used by the item on disk, minus the
3034 * size of any extent headers. If a file is compressed on disk, this is
3035 * the compressed size
3036 */
3037static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3038 struct btrfs_item *e)
3039{
3040 unsigned long offset;
3041 offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
3042 return btrfs_item_size(eb, e) - offset;
3043}
3044
3045/* this returns the number of file bytes represented by the inline item.
3046 * If an item is compressed, this is the uncompressed size
3047 */
3048static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3049 int slot,
3050 struct btrfs_file_extent_item *fi)
3051{
3052 struct btrfs_map_token token;
3053
3054 btrfs_init_map_token(&token);
3055 /*
3056 * return the space used on disk if this item isn't
3057 * compressed or encoded
3058 */
3059 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3060 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3061 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3062 return btrfs_file_extent_inline_item_len(eb,
3063 btrfs_item_nr(slot));
3064 }
3065
3066 /* otherwise use the ram bytes field */
3067 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3068}
3069
3070
3071/* btrfs_dev_stats_item */
3072static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3073 struct btrfs_dev_stats_item *ptr,
3074 int index)
3075{
3076 u64 val;
3077
3078 read_extent_buffer(eb, &val,
3079 offsetof(struct btrfs_dev_stats_item, values) +
3080 ((unsigned long)ptr) + (index * sizeof(u64)),
3081 sizeof(val));
3082 return val;
3083}
3084
3085static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3086 struct btrfs_dev_stats_item *ptr,
3087 int index, u64 val)
3088{
3089 write_extent_buffer(eb, &val,
3090 offsetof(struct btrfs_dev_stats_item, values) +
3091 ((unsigned long)ptr) + (index * sizeof(u64)),
3092 sizeof(val));
3093}
3094
3095/* btrfs_qgroup_status_item */
3096BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3097 generation, 64);
3098BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3099 version, 64);
3100BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3101 flags, 64);
3102BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3103 rescan, 64);
3104
3105/* btrfs_qgroup_info_item */
3106BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3107 generation, 64);
3108BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3109BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3110 rfer_cmpr, 64);
3111BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3112BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3113 excl_cmpr, 64);
3114
3115BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3116 struct btrfs_qgroup_info_item, generation, 64);
3117BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3118 rfer, 64);
3119BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3120 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3121BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3122 excl, 64);
3123BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3124 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3125
3126/* btrfs_qgroup_limit_item */
3127BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3128 flags, 64);
3129BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3130 max_rfer, 64);
3131BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3132 max_excl, 64);
3133BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3134 rsv_rfer, 64);
3135BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3136 rsv_excl, 64);
3137
3138/* btrfs_dev_replace_item */
3139BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3140 struct btrfs_dev_replace_item, src_devid, 64);
3141BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3142 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3143 64);
3144BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3145 replace_state, 64);
3146BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3147 time_started, 64);
3148BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3149 time_stopped, 64);
3150BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3151 num_write_errors, 64);
3152BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3153 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3154 64);
3155BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3156 cursor_left, 64);
3157BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3158 cursor_right, 64);
3159
3160BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3161 struct btrfs_dev_replace_item, src_devid, 64);
3162BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3163 struct btrfs_dev_replace_item,
3164 cont_reading_from_srcdev_mode, 64);
3165BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3166 struct btrfs_dev_replace_item, replace_state, 64);
3167BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3168 struct btrfs_dev_replace_item, time_started, 64);
3169BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3170 struct btrfs_dev_replace_item, time_stopped, 64);
3171BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3172 struct btrfs_dev_replace_item, num_write_errors, 64);
3173BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3174 struct btrfs_dev_replace_item,
3175 num_uncorrectable_read_errors, 64);
3176BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3177 struct btrfs_dev_replace_item, cursor_left, 64);
3178BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3179 struct btrfs_dev_replace_item, cursor_right, 64);
3180
3181static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3182{
3183 return sb->s_fs_info;
3184}
3185
3186static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
3187{
3188 if (level == 0)
3189 return root->leafsize;
3190 return root->nodesize;
3191}
3192
3193/* helper function to cast into the data area of the leaf. */
3194#define btrfs_item_ptr(leaf, slot, type) \
3195 ((type *)(btrfs_leaf_data(leaf) + \
3196 btrfs_item_offset_nr(leaf, slot)))
3197
3198#define btrfs_item_ptr_offset(leaf, slot) \
3199 ((unsigned long)(btrfs_leaf_data(leaf) + \
3200 btrfs_item_offset_nr(leaf, slot)))
3201
3202static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3203{
3204 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3205 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3206}
3207
3208static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3209{
3210 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3211}
3212
3213/* extent-tree.c */
3214static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3215 unsigned num_items)
3216{
3217 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3218 2 * num_items;
3219}
3220
3221/*
3222 * Doing a truncate won't result in new nodes or leaves, just what we need for
3223 * COW.
3224 */
3225static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3226 unsigned num_items)
3227{
3228 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3229 num_items;
3230}
3231
3232int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3233 struct btrfs_root *root);
3234int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3235 struct btrfs_root *root);
3236void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3237int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3238 struct btrfs_root *root, unsigned long count);
3239int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
3240int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3241 struct btrfs_root *root, u64 bytenr,
3242 u64 offset, int metadata, u64 *refs, u64 *flags);
3243int btrfs_pin_extent(struct btrfs_root *root,
3244 u64 bytenr, u64 num, int reserved);
3245int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3246 u64 bytenr, u64 num_bytes);
3247int btrfs_exclude_logged_extents(struct btrfs_root *root,
3248 struct extent_buffer *eb);
3249int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3250 struct btrfs_root *root,
3251 u64 objectid, u64 offset, u64 bytenr);
3252struct btrfs_block_group_cache *btrfs_lookup_block_group(
3253 struct btrfs_fs_info *info,
3254 u64 bytenr);
3255void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3256int get_block_group_index(struct btrfs_block_group_cache *cache);
3257struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3258 struct btrfs_root *root, u32 blocksize,
3259 u64 parent, u64 root_objectid,
3260 struct btrfs_disk_key *key, int level,
3261 u64 hint, u64 empty_size);
3262void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *root,
3264 struct extent_buffer *buf,
3265 u64 parent, int last_ref);
3266int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *root,
3268 u64 root_objectid, u64 owner,
3269 u64 offset, struct btrfs_key *ins);
3270int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3271 struct btrfs_root *root,
3272 u64 root_objectid, u64 owner, u64 offset,
3273 struct btrfs_key *ins);
3274int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3275 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3276 struct btrfs_key *ins, int is_data);
3277int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3278 struct extent_buffer *buf, int full_backref, int for_cow);
3279int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3280 struct extent_buffer *buf, int full_backref, int for_cow);
3281int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root,
3283 u64 bytenr, u64 num_bytes, u64 flags,
3284 int level, int is_data);
3285int btrfs_free_extent(struct btrfs_trans_handle *trans,
3286 struct btrfs_root *root,
3287 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3288 u64 owner, u64 offset, int for_cow);
3289
3290int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
3291int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3292 u64 start, u64 len);
3293void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3294 struct btrfs_root *root);
3295int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3296 struct btrfs_root *root);
3297int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *root,
3299 u64 bytenr, u64 num_bytes, u64 parent,
3300 u64 root_objectid, u64 owner, u64 offset, int for_cow);
3301
3302int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3303 struct btrfs_root *root);
3304int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3305int btrfs_free_block_groups(struct btrfs_fs_info *info);
3306int btrfs_read_block_groups(struct btrfs_root *root);
3307int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3308int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3309 struct btrfs_root *root, u64 bytes_used,
3310 u64 type, u64 chunk_objectid, u64 chunk_offset,
3311 u64 size);
3312int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3313 struct btrfs_root *root, u64 group_start);
3314void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3315 struct btrfs_root *root);
3316u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3317void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3318
3319enum btrfs_reserve_flush_enum {
3320 /* If we are in the transaction, we can't flush anything.*/
3321 BTRFS_RESERVE_NO_FLUSH,
3322 /*
3323 * Flushing delalloc may cause deadlock somewhere, in this
3324 * case, use FLUSH LIMIT
3325 */
3326 BTRFS_RESERVE_FLUSH_LIMIT,
3327 BTRFS_RESERVE_FLUSH_ALL,
3328};
3329
3330int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3331void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3332void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3333 struct btrfs_root *root);
3334int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3335 struct inode *inode);
3336void btrfs_orphan_release_metadata(struct inode *inode);
3337int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3338 struct btrfs_block_rsv *rsv,
3339 int nitems,
3340 u64 *qgroup_reserved, bool use_global_rsv);
3341void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3342 struct btrfs_block_rsv *rsv,
3343 u64 qgroup_reserved);
3344int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3345void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3346int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3347void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3348void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3349struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3350 unsigned short type);
3351void btrfs_free_block_rsv(struct btrfs_root *root,
3352 struct btrfs_block_rsv *rsv);
3353int btrfs_block_rsv_add(struct btrfs_root *root,
3354 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3355 enum btrfs_reserve_flush_enum flush);
3356int btrfs_block_rsv_check(struct btrfs_root *root,
3357 struct btrfs_block_rsv *block_rsv, int min_factor);
3358int btrfs_block_rsv_refill(struct btrfs_root *root,
3359 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3360 enum btrfs_reserve_flush_enum flush);
3361int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3362 struct btrfs_block_rsv *dst_rsv,
3363 u64 num_bytes);
3364int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3365 struct btrfs_block_rsv *dest, u64 num_bytes,
3366 int min_factor);
3367void btrfs_block_rsv_release(struct btrfs_root *root,
3368 struct btrfs_block_rsv *block_rsv,
3369 u64 num_bytes);
3370int btrfs_set_block_group_ro(struct btrfs_root *root,
3371 struct btrfs_block_group_cache *cache);
3372void btrfs_set_block_group_rw(struct btrfs_root *root,
3373 struct btrfs_block_group_cache *cache);
3374void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3375u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3376int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3377 u64 start, u64 end);
3378int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
3379 u64 num_bytes, u64 *actual_bytes);
3380int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3381 struct btrfs_root *root, u64 type);
3382int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3383
3384int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3385int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3386 struct btrfs_fs_info *fs_info);
3387int __get_raid_index(u64 flags);
3388
3389int btrfs_start_nocow_write(struct btrfs_root *root);
3390void btrfs_end_nocow_write(struct btrfs_root *root);
3391/* ctree.c */
3392int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3393 int level, int *slot);
3394int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3395int btrfs_previous_item(struct btrfs_root *root,
3396 struct btrfs_path *path, u64 min_objectid,
3397 int type);
3398int btrfs_previous_extent_item(struct btrfs_root *root,
3399 struct btrfs_path *path, u64 min_objectid);
3400void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3401 struct btrfs_key *new_key);
3402struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3403struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3404int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3405 struct btrfs_key *key, int lowest_level,
3406 u64 min_trans);
3407int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3408 struct btrfs_path *path,
3409 u64 min_trans);
3410enum btrfs_compare_tree_result {
3411 BTRFS_COMPARE_TREE_NEW,
3412 BTRFS_COMPARE_TREE_DELETED,
3413 BTRFS_COMPARE_TREE_CHANGED,
3414 BTRFS_COMPARE_TREE_SAME,
3415};
3416typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3417 struct btrfs_root *right_root,
3418 struct btrfs_path *left_path,
3419 struct btrfs_path *right_path,
3420 struct btrfs_key *key,
3421 enum btrfs_compare_tree_result result,
3422 void *ctx);
3423int btrfs_compare_trees(struct btrfs_root *left_root,
3424 struct btrfs_root *right_root,
3425 btrfs_changed_cb_t cb, void *ctx);
3426int btrfs_cow_block(struct btrfs_trans_handle *trans,
3427 struct btrfs_root *root, struct extent_buffer *buf,
3428 struct extent_buffer *parent, int parent_slot,
3429 struct extent_buffer **cow_ret);
3430int btrfs_copy_root(struct btrfs_trans_handle *trans,
3431 struct btrfs_root *root,
3432 struct extent_buffer *buf,
3433 struct extent_buffer **cow_ret, u64 new_root_objectid);
3434int btrfs_block_can_be_shared(struct btrfs_root *root,
3435 struct extent_buffer *buf);
3436void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3437 u32 data_size);
3438void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3439 u32 new_size, int from_end);
3440int btrfs_split_item(struct btrfs_trans_handle *trans,
3441 struct btrfs_root *root,
3442 struct btrfs_path *path,
3443 struct btrfs_key *new_key,
3444 unsigned long split_offset);
3445int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3446 struct btrfs_root *root,
3447 struct btrfs_path *path,
3448 struct btrfs_key *new_key);
3449int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3450 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3451int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3452 *root, struct btrfs_key *key, struct btrfs_path *p, int
3453 ins_len, int cow);
3454int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3455 struct btrfs_path *p, u64 time_seq);
3456int btrfs_search_slot_for_read(struct btrfs_root *root,
3457 struct btrfs_key *key, struct btrfs_path *p,
3458 int find_higher, int return_any);
3459int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3460 struct btrfs_root *root, struct extent_buffer *parent,
3461 int start_slot, u64 *last_ret,
3462 struct btrfs_key *progress);
3463void btrfs_release_path(struct btrfs_path *p);
3464struct btrfs_path *btrfs_alloc_path(void);
3465void btrfs_free_path(struct btrfs_path *p);
3466void btrfs_set_path_blocking(struct btrfs_path *p);
3467void btrfs_clear_path_blocking(struct btrfs_path *p,
3468 struct extent_buffer *held, int held_rw);
3469void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3470
3471int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3472 struct btrfs_path *path, int slot, int nr);
3473static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *root,
3475 struct btrfs_path *path)
3476{
3477 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3478}
3479
3480void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3481 struct btrfs_key *cpu_key, u32 *data_size,
3482 u32 total_data, u32 total_size, int nr);
3483int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3484 *root, struct btrfs_key *key, void *data, u32 data_size);
3485int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3486 struct btrfs_root *root,
3487 struct btrfs_path *path,
3488 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3489
3490static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *root,
3492 struct btrfs_path *path,
3493 struct btrfs_key *key,
3494 u32 data_size)
3495{
3496 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3497}
3498
3499int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3500int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3501int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3502 u64 time_seq);
3503static inline int btrfs_next_old_item(struct btrfs_root *root,
3504 struct btrfs_path *p, u64 time_seq)
3505{
3506 ++p->slots[0];
3507 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3508 return btrfs_next_old_leaf(root, p, time_seq);
3509 return 0;
3510}
3511static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3512{
3513 return btrfs_next_old_item(root, p, 0);
3514}
3515int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3516int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3517 struct btrfs_block_rsv *block_rsv,
3518 int update_ref, int for_reloc);
3519int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3520 struct btrfs_root *root,
3521 struct extent_buffer *node,
3522 struct extent_buffer *parent);
3523static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3524{
3525 /*
3526 * Get synced with close_ctree()
3527 */
3528 smp_mb();
3529 return fs_info->closing;
3530}
3531
3532/*
3533 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3534 * anything except sleeping. This function is used to check the status of
3535 * the fs.
3536 */
3537static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3538{
3539 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3540 btrfs_fs_closing(root->fs_info));
3541}
3542
3543static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3544{
3545 kfree(fs_info->balance_ctl);
3546 kfree(fs_info->delayed_root);
3547 kfree(fs_info->extent_root);
3548 kfree(fs_info->tree_root);
3549 kfree(fs_info->chunk_root);
3550 kfree(fs_info->dev_root);
3551 kfree(fs_info->csum_root);
3552 kfree(fs_info->quota_root);
3553 kfree(fs_info->uuid_root);
3554 kfree(fs_info->super_copy);
3555 kfree(fs_info->super_for_commit);
3556 kfree(fs_info);
3557}
3558
3559/* tree mod log functions from ctree.c */
3560u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3561 struct seq_list *elem);
3562void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3563 struct seq_list *elem);
3564u64 btrfs_tree_mod_seq_prev(u64 seq);
3565int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3566
3567/* root-item.c */
3568int btrfs_find_root_ref(struct btrfs_root *tree_root,
3569 struct btrfs_path *path,
3570 u64 root_id, u64 ref_id);
3571int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3572 struct btrfs_root *tree_root,
3573 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3574 const char *name, int name_len);
3575int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3576 struct btrfs_root *tree_root,
3577 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3578 const char *name, int name_len);
3579int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3580 struct btrfs_key *key);
3581int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3582 *root, struct btrfs_key *key, struct btrfs_root_item
3583 *item);
3584int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3585 struct btrfs_root *root,
3586 struct btrfs_key *key,
3587 struct btrfs_root_item *item);
3588int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3589 struct btrfs_path *path, struct btrfs_root_item *root_item,
3590 struct btrfs_key *root_key);
3591int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3592void btrfs_set_root_node(struct btrfs_root_item *item,
3593 struct extent_buffer *node);
3594void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3595void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3596 struct btrfs_root *root);
3597
3598/* uuid-tree.c */
3599int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3600 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3601 u64 subid);
3602int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3603 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3604 u64 subid);
3605int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3606 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3607 u64));
3608
3609/* dir-item.c */
3610int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3611 const char *name, int name_len);
3612int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3613 struct btrfs_root *root, const char *name,
3614 int name_len, struct inode *dir,
3615 struct btrfs_key *location, u8 type, u64 index);
3616struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3617 struct btrfs_root *root,
3618 struct btrfs_path *path, u64 dir,
3619 const char *name, int name_len,
3620 int mod);
3621struct btrfs_dir_item *
3622btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3623 struct btrfs_root *root,
3624 struct btrfs_path *path, u64 dir,
3625 u64 objectid, const char *name, int name_len,
3626 int mod);
3627struct btrfs_dir_item *
3628btrfs_search_dir_index_item(struct btrfs_root *root,
3629 struct btrfs_path *path, u64 dirid,
3630 const char *name, int name_len);
3631int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3632 struct btrfs_root *root,
3633 struct btrfs_path *path,
3634 struct btrfs_dir_item *di);
3635int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3636 struct btrfs_root *root,
3637 struct btrfs_path *path, u64 objectid,
3638 const char *name, u16 name_len,
3639 const void *data, u16 data_len);
3640struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3641 struct btrfs_root *root,
3642 struct btrfs_path *path, u64 dir,
3643 const char *name, u16 name_len,
3644 int mod);
3645int verify_dir_item(struct btrfs_root *root,
3646 struct extent_buffer *leaf,
3647 struct btrfs_dir_item *dir_item);
3648
3649/* orphan.c */
3650int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3651 struct btrfs_root *root, u64 offset);
3652int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3653 struct btrfs_root *root, u64 offset);
3654int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3655
3656/* inode-item.c */
3657int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3658 struct btrfs_root *root,
3659 const char *name, int name_len,
3660 u64 inode_objectid, u64 ref_objectid, u64 index);
3661int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3662 struct btrfs_root *root,
3663 const char *name, int name_len,
3664 u64 inode_objectid, u64 ref_objectid, u64 *index);
3665int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3666 struct btrfs_root *root,
3667 struct btrfs_path *path, u64 objectid);
3668int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3669 *root, struct btrfs_path *path,
3670 struct btrfs_key *location, int mod);
3671
3672struct btrfs_inode_extref *
3673btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3674 struct btrfs_root *root,
3675 struct btrfs_path *path,
3676 const char *name, int name_len,
3677 u64 inode_objectid, u64 ref_objectid, int ins_len,
3678 int cow);
3679
3680int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3681 u64 ref_objectid, const char *name,
3682 int name_len,
3683 struct btrfs_inode_extref **extref_ret);
3684
3685/* file-item.c */
3686struct btrfs_dio_private;
3687int btrfs_del_csums(struct btrfs_trans_handle *trans,
3688 struct btrfs_root *root, u64 bytenr, u64 len);
3689int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3690 struct bio *bio, u32 *dst);
3691int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3692 struct btrfs_dio_private *dip, struct bio *bio,
3693 u64 logical_offset);
3694int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3695 struct btrfs_root *root,
3696 u64 objectid, u64 pos,
3697 u64 disk_offset, u64 disk_num_bytes,
3698 u64 num_bytes, u64 offset, u64 ram_bytes,
3699 u8 compression, u8 encryption, u16 other_encoding);
3700int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3701 struct btrfs_root *root,
3702 struct btrfs_path *path, u64 objectid,
3703 u64 bytenr, int mod);
3704int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3705 struct btrfs_root *root,
3706 struct btrfs_ordered_sum *sums);
3707int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3708 struct bio *bio, u64 file_start, int contig);
3709int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3710 struct list_head *list, int search_commit);
3711/* inode.c */
3712struct btrfs_delalloc_work {
3713 struct inode *inode;
3714 int wait;
3715 int delay_iput;
3716 struct completion completion;
3717 struct list_head list;
3718 struct btrfs_work work;
3719};
3720
3721struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3722 int wait, int delay_iput);
3723void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3724
3725struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3726 size_t pg_offset, u64 start, u64 len,
3727 int create);
3728noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3729 u64 *orig_start, u64 *orig_block_len,
3730 u64 *ram_bytes);
3731
3732/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3733#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3734#define ClearPageChecked ClearPageFsMisc
3735#define SetPageChecked SetPageFsMisc
3736#define PageChecked PageFsMisc
3737#endif
3738
3739/* This forces readahead on a given range of bytes in an inode */
3740static inline void btrfs_force_ra(struct address_space *mapping,
3741 struct file_ra_state *ra, struct file *file,
3742 pgoff_t offset, unsigned long req_size)
3743{
3744 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3745}
3746
3747struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3748int btrfs_set_inode_index(struct inode *dir, u64 *index);
3749int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3750 struct btrfs_root *root,
3751 struct inode *dir, struct inode *inode,
3752 const char *name, int name_len);
3753int btrfs_add_link(struct btrfs_trans_handle *trans,
3754 struct inode *parent_inode, struct inode *inode,
3755 const char *name, int name_len, int add_backref, u64 index);
3756int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3757 struct btrfs_root *root,
3758 struct inode *dir, u64 objectid,
3759 const char *name, int name_len);
3760int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3761 int front);
3762int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3763 struct btrfs_root *root,
3764 struct inode *inode, u64 new_size,
3765 u32 min_type);
3766
3767int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3768int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3769 int nr);
3770int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3771 struct extent_state **cached_state);
3772int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3773 struct btrfs_root *new_root,
3774 struct btrfs_root *parent_root,
3775 u64 new_dirid);
3776int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3777 size_t size, struct bio *bio,
3778 unsigned long bio_flags);
3779int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3780int btrfs_readpage(struct file *file, struct page *page);
3781void btrfs_evict_inode(struct inode *inode);
3782int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3783struct inode *btrfs_alloc_inode(struct super_block *sb);
3784void btrfs_destroy_inode(struct inode *inode);
3785int btrfs_drop_inode(struct inode *inode);
3786int btrfs_init_cachep(void);
3787void btrfs_destroy_cachep(void);
3788long btrfs_ioctl_trans_end(struct file *file);
3789struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3790 struct btrfs_root *root, int *was_new);
3791struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3792 size_t pg_offset, u64 start, u64 end,
3793 int create);
3794int btrfs_update_inode(struct btrfs_trans_handle *trans,
3795 struct btrfs_root *root,
3796 struct inode *inode);
3797int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3798 struct btrfs_root *root, struct inode *inode);
3799int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3800int btrfs_orphan_cleanup(struct btrfs_root *root);
3801void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3802 struct btrfs_root *root);
3803int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3804void btrfs_invalidate_inodes(struct btrfs_root *root);
3805void btrfs_add_delayed_iput(struct inode *inode);
3806void btrfs_run_delayed_iputs(struct btrfs_root *root);
3807int btrfs_prealloc_file_range(struct inode *inode, int mode,
3808 u64 start, u64 num_bytes, u64 min_size,
3809 loff_t actual_len, u64 *alloc_hint);
3810int btrfs_prealloc_file_range_trans(struct inode *inode,
3811 struct btrfs_trans_handle *trans, int mode,
3812 u64 start, u64 num_bytes, u64 min_size,
3813 loff_t actual_len, u64 *alloc_hint);
3814extern const struct dentry_operations btrfs_dentry_operations;
3815
3816/* ioctl.c */
3817long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3818void btrfs_update_iflags(struct inode *inode);
3819void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3820int btrfs_is_empty_uuid(u8 *uuid);
3821int btrfs_defrag_file(struct inode *inode, struct file *file,
3822 struct btrfs_ioctl_defrag_range_args *range,
3823 u64 newer_than, unsigned long max_pages);
3824void btrfs_get_block_group_info(struct list_head *groups_list,
3825 struct btrfs_ioctl_space_info *space);
3826void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3827 struct btrfs_ioctl_balance_args *bargs);
3828
3829
3830/* file.c */
3831int btrfs_auto_defrag_init(void);
3832void btrfs_auto_defrag_exit(void);
3833int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3834 struct inode *inode);
3835int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3836void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3837int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3838void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3839 int skip_pinned);
3840extern const struct file_operations btrfs_file_operations;
3841int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3842 struct btrfs_root *root, struct inode *inode,
3843 struct btrfs_path *path, u64 start, u64 end,
3844 u64 *drop_end, int drop_cache,
3845 int replace_extent,
3846 u32 extent_item_size,
3847 int *key_inserted);
3848int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root, struct inode *inode, u64 start,
3850 u64 end, int drop_cache);
3851int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3852 struct inode *inode, u64 start, u64 end);
3853int btrfs_release_file(struct inode *inode, struct file *file);
3854int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3855 struct page **pages, size_t num_pages,
3856 loff_t pos, size_t write_bytes,
3857 struct extent_state **cached);
3858
3859/* tree-defrag.c */
3860int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3861 struct btrfs_root *root);
3862
3863/* sysfs.c */
3864int btrfs_init_sysfs(void);
3865void btrfs_exit_sysfs(void);
3866int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
3867void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
3868
3869/* xattr.c */
3870ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3871
3872/* super.c */
3873int btrfs_parse_options(struct btrfs_root *root, char *options);
3874int btrfs_sync_fs(struct super_block *sb, int wait);
3875
3876#ifdef CONFIG_PRINTK
3877__printf(2, 3)
3878void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3879#else
3880static inline __printf(2, 3)
3881void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3882{
3883}
3884#endif
3885
3886#define btrfs_emerg(fs_info, fmt, args...) \
3887 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3888#define btrfs_alert(fs_info, fmt, args...) \
3889 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3890#define btrfs_crit(fs_info, fmt, args...) \
3891 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3892#define btrfs_err(fs_info, fmt, args...) \
3893 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3894#define btrfs_warn(fs_info, fmt, args...) \
3895 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3896#define btrfs_notice(fs_info, fmt, args...) \
3897 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3898#define btrfs_info(fs_info, fmt, args...) \
3899 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3900
3901#ifdef DEBUG
3902#define btrfs_debug(fs_info, fmt, args...) \
3903 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3904#else
3905#define btrfs_debug(fs_info, fmt, args...) \
3906 no_printk(KERN_DEBUG fmt, ##args)
3907#endif
3908
3909#ifdef CONFIG_BTRFS_ASSERT
3910
3911static inline void assfail(char *expr, char *file, int line)
3912{
3913 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
3914 expr, file, line);
3915 BUG();
3916}
3917
3918#define ASSERT(expr) \
3919 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3920#else
3921#define ASSERT(expr) ((void)0)
3922#endif
3923
3924#define btrfs_assert()
3925__printf(5, 6)
3926void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3927 unsigned int line, int errno, const char *fmt, ...);
3928
3929
3930void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3931 struct btrfs_root *root, const char *function,
3932 unsigned int line, int errno);
3933
3934#define btrfs_set_fs_incompat(__fs_info, opt) \
3935 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3936
3937static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3938 u64 flag)
3939{
3940 struct btrfs_super_block *disk_super;
3941 u64 features;
3942
3943 disk_super = fs_info->super_copy;
3944 features = btrfs_super_incompat_flags(disk_super);
3945 if (!(features & flag)) {
3946 spin_lock(&fs_info->super_lock);
3947 features = btrfs_super_incompat_flags(disk_super);
3948 if (!(features & flag)) {
3949 features |= flag;
3950 btrfs_set_super_incompat_flags(disk_super, features);
3951 btrfs_info(fs_info, "setting %llu feature flag",
3952 flag);
3953 }
3954 spin_unlock(&fs_info->super_lock);
3955 }
3956}
3957
3958#define btrfs_fs_incompat(fs_info, opt) \
3959 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3960
3961static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3962{
3963 struct btrfs_super_block *disk_super;
3964 disk_super = fs_info->super_copy;
3965 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3966}
3967
3968/*
3969 * Call btrfs_abort_transaction as early as possible when an error condition is
3970 * detected, that way the exact line number is reported.
3971 */
3972
3973#define btrfs_abort_transaction(trans, root, errno) \
3974do { \
3975 __btrfs_abort_transaction(trans, root, __func__, \
3976 __LINE__, errno); \
3977} while (0)
3978
3979#define btrfs_std_error(fs_info, errno) \
3980do { \
3981 if ((errno)) \
3982 __btrfs_std_error((fs_info), __func__, \
3983 __LINE__, (errno), NULL); \
3984} while (0)
3985
3986#define btrfs_error(fs_info, errno, fmt, args...) \
3987do { \
3988 __btrfs_std_error((fs_info), __func__, __LINE__, \
3989 (errno), fmt, ##args); \
3990} while (0)
3991
3992__printf(5, 6)
3993void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3994 unsigned int line, int errno, const char *fmt, ...);
3995
3996/*
3997 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3998 * will panic(). Otherwise we BUG() here.
3999 */
4000#define btrfs_panic(fs_info, errno, fmt, args...) \
4001do { \
4002 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
4003 BUG(); \
4004} while (0)
4005
4006/* acl.c */
4007#ifdef CONFIG_BTRFS_FS_POSIX_ACL
4008struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4009int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4010int btrfs_init_acl(struct btrfs_trans_handle *trans,
4011 struct inode *inode, struct inode *dir);
4012#else
4013#define btrfs_get_acl NULL
4014#define btrfs_set_acl NULL
4015static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4016 struct inode *inode, struct inode *dir)
4017{
4018 return 0;
4019}
4020#endif
4021
4022/* relocation.c */
4023int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4024int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4025 struct btrfs_root *root);
4026int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4027 struct btrfs_root *root);
4028int btrfs_recover_relocation(struct btrfs_root *root);
4029int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4030int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4031 struct btrfs_root *root, struct extent_buffer *buf,
4032 struct extent_buffer *cow);
4033void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4034 struct btrfs_pending_snapshot *pending,
4035 u64 *bytes_to_reserve);
4036int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4037 struct btrfs_pending_snapshot *pending);
4038
4039/* scrub.c */
4040int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4041 u64 end, struct btrfs_scrub_progress *progress,
4042 int readonly, int is_dev_replace);
4043void btrfs_scrub_pause(struct btrfs_root *root);
4044void btrfs_scrub_continue(struct btrfs_root *root);
4045int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4046int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4047 struct btrfs_device *dev);
4048int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4049 struct btrfs_scrub_progress *progress);
4050
4051/* dev-replace.c */
4052void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4053void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4054void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info);
4055
4056/* reada.c */
4057struct reada_control {
4058 struct btrfs_root *root; /* tree to prefetch */
4059 struct btrfs_key key_start;
4060 struct btrfs_key key_end; /* exclusive */
4061 atomic_t elems;
4062 struct kref refcnt;
4063 wait_queue_head_t wait;
4064};
4065struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4066 struct btrfs_key *start, struct btrfs_key *end);
4067int btrfs_reada_wait(void *handle);
4068void btrfs_reada_detach(void *handle);
4069int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4070 u64 start, int err);
4071
4072/* qgroup.c */
4073struct qgroup_update {
4074 struct list_head list;
4075 struct btrfs_delayed_ref_node *node;
4076 struct btrfs_delayed_extent_op *extent_op;
4077};
4078
4079int btrfs_quota_enable(struct btrfs_trans_handle *trans,
4080 struct btrfs_fs_info *fs_info);
4081int btrfs_quota_disable(struct btrfs_trans_handle *trans,
4082 struct btrfs_fs_info *fs_info);
4083int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info);
4084void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info);
4085int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info);
4086int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans,
4087 struct btrfs_fs_info *fs_info, u64 src, u64 dst);
4088int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans,
4089 struct btrfs_fs_info *fs_info, u64 src, u64 dst);
4090int btrfs_create_qgroup(struct btrfs_trans_handle *trans,
4091 struct btrfs_fs_info *fs_info, u64 qgroupid,
4092 char *name);
4093int btrfs_remove_qgroup(struct btrfs_trans_handle *trans,
4094 struct btrfs_fs_info *fs_info, u64 qgroupid);
4095int btrfs_limit_qgroup(struct btrfs_trans_handle *trans,
4096 struct btrfs_fs_info *fs_info, u64 qgroupid,
4097 struct btrfs_qgroup_limit *limit);
4098int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info);
4099void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info);
4100struct btrfs_delayed_extent_op;
4101int btrfs_qgroup_record_ref(struct btrfs_trans_handle *trans,
4102 struct btrfs_delayed_ref_node *node,
4103 struct btrfs_delayed_extent_op *extent_op);
4104int btrfs_qgroup_account_ref(struct btrfs_trans_handle *trans,
4105 struct btrfs_fs_info *fs_info,
4106 struct btrfs_delayed_ref_node *node,
4107 struct btrfs_delayed_extent_op *extent_op);
4108int btrfs_run_qgroups(struct btrfs_trans_handle *trans,
4109 struct btrfs_fs_info *fs_info);
4110int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans,
4111 struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid,
4112 struct btrfs_qgroup_inherit *inherit);
4113int btrfs_qgroup_reserve(struct btrfs_root *root, u64 num_bytes);
4114void btrfs_qgroup_free(struct btrfs_root *root, u64 num_bytes);
4115
4116void assert_qgroups_uptodate(struct btrfs_trans_handle *trans);
4117
4118static inline int is_fstree(u64 rootid)
4119{
4120 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4121 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
4122 return 1;
4123 return 0;
4124}
4125
4126static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4127{
4128 return signal_pending(current);
4129}
4130
4131/* Sanity test specific functions */
4132#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4133void btrfs_test_destroy_inode(struct inode *inode);
4134#endif
4135
4136#endif