Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/crc32.h>
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "sriov.h"
  24#include "siena_sriov.h"
  25#include "io.h"
  26#include "workarounds.h"
  27
  28/* Falcon-architecture (SFC9000-family) support */
  29
  30/**************************************************************************
  31 *
  32 * Configurable values
  33 *
  34 **************************************************************************
  35 */
  36
  37/* This is set to 16 for a good reason.  In summary, if larger than
  38 * 16, the descriptor cache holds more than a default socket
  39 * buffer's worth of packets (for UDP we can only have at most one
  40 * socket buffer's worth outstanding).  This combined with the fact
  41 * that we only get 1 TX event per descriptor cache means the NIC
  42 * goes idle.
  43 */
  44#define TX_DC_ENTRIES 16
  45#define TX_DC_ENTRIES_ORDER 1
  46
  47#define RX_DC_ENTRIES 64
  48#define RX_DC_ENTRIES_ORDER 3
  49
  50/* If EFX_MAX_INT_ERRORS internal errors occur within
  51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  52 * disable it.
  53 */
  54#define EFX_INT_ERROR_EXPIRE 3600
  55#define EFX_MAX_INT_ERRORS 5
  56
  57/* Depth of RX flush request fifo */
  58#define EFX_RX_FLUSH_COUNT 4
  59
  60/* Driver generated events */
  61#define _EFX_CHANNEL_MAGIC_TEST		0x000101
  62#define _EFX_CHANNEL_MAGIC_FILL		0x000102
  63#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
  64#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
  65
  66#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
  67#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
  68
  69#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
  70	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  71#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
  72	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
  73			   efx_rx_queue_index(_rx_queue))
  74#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
  75	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
  76			   efx_rx_queue_index(_rx_queue))
  77#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
  78	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
  79			   (_tx_queue)->queue)
  80
  81static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  82
  83/**************************************************************************
  84 *
  85 * Hardware access
  86 *
  87 **************************************************************************/
  88
  89static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  90				     unsigned int index)
  91{
  92	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  93			value, index);
  94}
  95
  96static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  97				     const efx_oword_t *mask)
  98{
  99	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 100		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 101}
 102
 103int efx_farch_test_registers(struct efx_nic *efx,
 104			     const struct efx_farch_register_test *regs,
 105			     size_t n_regs)
 106{
 107	unsigned address = 0;
 108	int i, j;
 109	efx_oword_t mask, imask, original, reg, buf;
 110
 111	for (i = 0; i < n_regs; ++i) {
 112		address = regs[i].address;
 113		mask = imask = regs[i].mask;
 114		EFX_INVERT_OWORD(imask);
 115
 116		efx_reado(efx, &original, address);
 117
 118		/* bit sweep on and off */
 119		for (j = 0; j < 128; j++) {
 120			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 121				continue;
 122
 123			/* Test this testable bit can be set in isolation */
 124			EFX_AND_OWORD(reg, original, mask);
 125			EFX_SET_OWORD32(reg, j, j, 1);
 126
 127			efx_writeo(efx, &reg, address);
 128			efx_reado(efx, &buf, address);
 129
 130			if (efx_masked_compare_oword(&reg, &buf, &mask))
 131				goto fail;
 132
 133			/* Test this testable bit can be cleared in isolation */
 134			EFX_OR_OWORD(reg, original, mask);
 135			EFX_SET_OWORD32(reg, j, j, 0);
 136
 137			efx_writeo(efx, &reg, address);
 138			efx_reado(efx, &buf, address);
 139
 140			if (efx_masked_compare_oword(&reg, &buf, &mask))
 141				goto fail;
 142		}
 143
 144		efx_writeo(efx, &original, address);
 145	}
 146
 147	return 0;
 148
 149fail:
 150	netif_err(efx, hw, efx->net_dev,
 151		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 152		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 153		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 154	return -EIO;
 155}
 156
 157/**************************************************************************
 158 *
 159 * Special buffer handling
 160 * Special buffers are used for event queues and the TX and RX
 161 * descriptor rings.
 162 *
 163 *************************************************************************/
 164
 165/*
 166 * Initialise a special buffer
 167 *
 168 * This will define a buffer (previously allocated via
 169 * efx_alloc_special_buffer()) in the buffer table, allowing
 170 * it to be used for event queues, descriptor rings etc.
 171 */
 172static void
 173efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 174{
 175	efx_qword_t buf_desc;
 176	unsigned int index;
 177	dma_addr_t dma_addr;
 178	int i;
 179
 180	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
 181
 182	/* Write buffer descriptors to NIC */
 183	for (i = 0; i < buffer->entries; i++) {
 184		index = buffer->index + i;
 185		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 186		netif_dbg(efx, probe, efx->net_dev,
 187			  "mapping special buffer %d at %llx\n",
 188			  index, (unsigned long long)dma_addr);
 189		EFX_POPULATE_QWORD_3(buf_desc,
 190				     FRF_AZ_BUF_ADR_REGION, 0,
 191				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 192				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 193		efx_write_buf_tbl(efx, &buf_desc, index);
 194	}
 195}
 196
 197/* Unmaps a buffer and clears the buffer table entries */
 198static void
 199efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 200{
 201	efx_oword_t buf_tbl_upd;
 202	unsigned int start = buffer->index;
 203	unsigned int end = (buffer->index + buffer->entries - 1);
 204
 205	if (!buffer->entries)
 206		return;
 207
 208	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 209		  buffer->index, buffer->index + buffer->entries - 1);
 210
 211	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 212			     FRF_AZ_BUF_UPD_CMD, 0,
 213			     FRF_AZ_BUF_CLR_CMD, 1,
 214			     FRF_AZ_BUF_CLR_END_ID, end,
 215			     FRF_AZ_BUF_CLR_START_ID, start);
 216	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 217}
 218
 219/*
 220 * Allocate a new special buffer
 221 *
 222 * This allocates memory for a new buffer, clears it and allocates a
 223 * new buffer ID range.  It does not write into the buffer table.
 224 *
 225 * This call will allocate 4KB buffers, since 8KB buffers can't be
 226 * used for event queues and descriptor rings.
 227 */
 228static int efx_alloc_special_buffer(struct efx_nic *efx,
 229				    struct efx_special_buffer *buffer,
 230				    unsigned int len)
 231{
 232#ifdef CONFIG_SFC_SRIOV
 233	struct siena_nic_data *nic_data = efx->nic_data;
 234#endif
 235	len = ALIGN(len, EFX_BUF_SIZE);
 236
 237	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 238		return -ENOMEM;
 239	buffer->entries = len / EFX_BUF_SIZE;
 240	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 241
 242	/* Select new buffer ID */
 243	buffer->index = efx->next_buffer_table;
 244	efx->next_buffer_table += buffer->entries;
 245#ifdef CONFIG_SFC_SRIOV
 246	BUG_ON(efx_siena_sriov_enabled(efx) &&
 247	       nic_data->vf_buftbl_base < efx->next_buffer_table);
 248#endif
 249
 250	netif_dbg(efx, probe, efx->net_dev,
 251		  "allocating special buffers %d-%d at %llx+%x "
 252		  "(virt %p phys %llx)\n", buffer->index,
 253		  buffer->index + buffer->entries - 1,
 254		  (u64)buffer->buf.dma_addr, len,
 255		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 256
 257	return 0;
 258}
 259
 260static void
 261efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 262{
 263	if (!buffer->buf.addr)
 264		return;
 265
 266	netif_dbg(efx, hw, efx->net_dev,
 267		  "deallocating special buffers %d-%d at %llx+%x "
 268		  "(virt %p phys %llx)\n", buffer->index,
 269		  buffer->index + buffer->entries - 1,
 270		  (u64)buffer->buf.dma_addr, buffer->buf.len,
 271		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 272
 273	efx_nic_free_buffer(efx, &buffer->buf);
 274	buffer->entries = 0;
 275}
 276
 277/**************************************************************************
 278 *
 279 * TX path
 280 *
 281 **************************************************************************/
 282
 283/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 284static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 285{
 286	unsigned write_ptr;
 287	efx_dword_t reg;
 288
 289	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 290	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 291	efx_writed_page(tx_queue->efx, &reg,
 292			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 293}
 294
 295/* Write pointer and first descriptor for TX descriptor ring */
 296static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 297					  const efx_qword_t *txd)
 298{
 299	unsigned write_ptr;
 300	efx_oword_t reg;
 301
 302	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 303	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 304
 305	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 306	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 307			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 308	reg.qword[0] = *txd;
 309	efx_writeo_page(tx_queue->efx, &reg,
 310			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 311}
 312
 313
 314/* For each entry inserted into the software descriptor ring, create a
 315 * descriptor in the hardware TX descriptor ring (in host memory), and
 316 * write a doorbell.
 317 */
 318void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 319{
 320	struct efx_tx_buffer *buffer;
 321	efx_qword_t *txd;
 322	unsigned write_ptr;
 323	unsigned old_write_count = tx_queue->write_count;
 324
 325	tx_queue->xmit_more_available = false;
 326	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 327		return;
 328
 329	do {
 330		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 331		buffer = &tx_queue->buffer[write_ptr];
 332		txd = efx_tx_desc(tx_queue, write_ptr);
 333		++tx_queue->write_count;
 334
 335		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 336
 337		/* Create TX descriptor ring entry */
 338		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 339		EFX_POPULATE_QWORD_4(*txd,
 340				     FSF_AZ_TX_KER_CONT,
 341				     buffer->flags & EFX_TX_BUF_CONT,
 342				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 343				     FSF_AZ_TX_KER_BUF_REGION, 0,
 344				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 345	} while (tx_queue->write_count != tx_queue->insert_count);
 346
 347	wmb(); /* Ensure descriptors are written before they are fetched */
 348
 349	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 350		txd = efx_tx_desc(tx_queue,
 351				  old_write_count & tx_queue->ptr_mask);
 352		efx_farch_push_tx_desc(tx_queue, txd);
 353		++tx_queue->pushes;
 354	} else {
 355		efx_farch_notify_tx_desc(tx_queue);
 356	}
 357}
 358
 359unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 360				    dma_addr_t dma_addr, unsigned int len)
 361{
 362	/* Don't cross 4K boundaries with descriptors. */
 363	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
 364
 365	len = min(limit, len);
 366
 367	return len;
 368}
 369
 370
 371/* Allocate hardware resources for a TX queue */
 372int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 373{
 374	struct efx_nic *efx = tx_queue->efx;
 375	unsigned entries;
 376
 377	entries = tx_queue->ptr_mask + 1;
 378	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 379					entries * sizeof(efx_qword_t));
 380}
 381
 382void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 383{
 384	int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 385	struct efx_nic *efx = tx_queue->efx;
 386	efx_oword_t reg;
 387
 388	/* Pin TX descriptor ring */
 389	efx_init_special_buffer(efx, &tx_queue->txd);
 390
 391	/* Push TX descriptor ring to card */
 392	EFX_POPULATE_OWORD_10(reg,
 393			      FRF_AZ_TX_DESCQ_EN, 1,
 394			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 395			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 396			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 397			      FRF_AZ_TX_DESCQ_EVQ_ID,
 398			      tx_queue->channel->channel,
 399			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 400			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 401			      FRF_AZ_TX_DESCQ_SIZE,
 402			      __ffs(tx_queue->txd.entries),
 403			      FRF_AZ_TX_DESCQ_TYPE, 0,
 404			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 405
 406	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 407	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
 408
 409	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 410			 tx_queue->queue);
 411
 412	EFX_POPULATE_OWORD_1(reg,
 413			     FRF_BZ_TX_PACE,
 414			     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 415			     FFE_BZ_TX_PACE_OFF :
 416			     FFE_BZ_TX_PACE_RESERVED);
 417	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
 418}
 419
 420static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 421{
 422	struct efx_nic *efx = tx_queue->efx;
 423	efx_oword_t tx_flush_descq;
 424
 425	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 426	atomic_set(&tx_queue->flush_outstanding, 1);
 427
 428	EFX_POPULATE_OWORD_2(tx_flush_descq,
 429			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 430			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 431	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 432}
 433
 434void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 435{
 436	struct efx_nic *efx = tx_queue->efx;
 437	efx_oword_t tx_desc_ptr;
 438
 439	/* Remove TX descriptor ring from card */
 440	EFX_ZERO_OWORD(tx_desc_ptr);
 441	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 442			 tx_queue->queue);
 443
 444	/* Unpin TX descriptor ring */
 445	efx_fini_special_buffer(efx, &tx_queue->txd);
 446}
 447
 448/* Free buffers backing TX queue */
 449void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 450{
 451	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 452}
 453
 454/**************************************************************************
 455 *
 456 * RX path
 457 *
 458 **************************************************************************/
 459
 460/* This creates an entry in the RX descriptor queue */
 461static inline void
 462efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 463{
 464	struct efx_rx_buffer *rx_buf;
 465	efx_qword_t *rxd;
 466
 467	rxd = efx_rx_desc(rx_queue, index);
 468	rx_buf = efx_rx_buffer(rx_queue, index);
 469	EFX_POPULATE_QWORD_3(*rxd,
 470			     FSF_AZ_RX_KER_BUF_SIZE,
 471			     rx_buf->len -
 472			     rx_queue->efx->type->rx_buffer_padding,
 473			     FSF_AZ_RX_KER_BUF_REGION, 0,
 474			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 475}
 476
 477/* This writes to the RX_DESC_WPTR register for the specified receive
 478 * descriptor ring.
 479 */
 480void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 481{
 482	struct efx_nic *efx = rx_queue->efx;
 483	efx_dword_t reg;
 484	unsigned write_ptr;
 485
 486	while (rx_queue->notified_count != rx_queue->added_count) {
 487		efx_farch_build_rx_desc(
 488			rx_queue,
 489			rx_queue->notified_count & rx_queue->ptr_mask);
 490		++rx_queue->notified_count;
 491	}
 492
 493	wmb();
 494	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 495	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 496	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 497			efx_rx_queue_index(rx_queue));
 498}
 499
 500int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 501{
 502	struct efx_nic *efx = rx_queue->efx;
 503	unsigned entries;
 504
 505	entries = rx_queue->ptr_mask + 1;
 506	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 507					entries * sizeof(efx_qword_t));
 508}
 509
 510void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 511{
 512	efx_oword_t rx_desc_ptr;
 513	struct efx_nic *efx = rx_queue->efx;
 514	bool jumbo_en;
 515
 516	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
 517	jumbo_en = efx->rx_scatter;
 518
 519	netif_dbg(efx, hw, efx->net_dev,
 520		  "RX queue %d ring in special buffers %d-%d\n",
 521		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 522		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 523
 524	rx_queue->scatter_n = 0;
 525
 526	/* Pin RX descriptor ring */
 527	efx_init_special_buffer(efx, &rx_queue->rxd);
 528
 529	/* Push RX descriptor ring to card */
 530	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 531			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
 532			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
 533			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 534			      FRF_AZ_RX_DESCQ_EVQ_ID,
 535			      efx_rx_queue_channel(rx_queue)->channel,
 536			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 537			      FRF_AZ_RX_DESCQ_LABEL,
 538			      efx_rx_queue_index(rx_queue),
 539			      FRF_AZ_RX_DESCQ_SIZE,
 540			      __ffs(rx_queue->rxd.entries),
 541			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 542			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 543			      FRF_AZ_RX_DESCQ_EN, 1);
 544	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 545			 efx_rx_queue_index(rx_queue));
 546}
 547
 548static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 549{
 550	struct efx_nic *efx = rx_queue->efx;
 551	efx_oword_t rx_flush_descq;
 552
 553	EFX_POPULATE_OWORD_2(rx_flush_descq,
 554			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 555			     FRF_AZ_RX_FLUSH_DESCQ,
 556			     efx_rx_queue_index(rx_queue));
 557	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 558}
 559
 560void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 561{
 562	efx_oword_t rx_desc_ptr;
 563	struct efx_nic *efx = rx_queue->efx;
 564
 565	/* Remove RX descriptor ring from card */
 566	EFX_ZERO_OWORD(rx_desc_ptr);
 567	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 568			 efx_rx_queue_index(rx_queue));
 569
 570	/* Unpin RX descriptor ring */
 571	efx_fini_special_buffer(efx, &rx_queue->rxd);
 572}
 573
 574/* Free buffers backing RX queue */
 575void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 576{
 577	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 578}
 579
 580/**************************************************************************
 581 *
 582 * Flush handling
 583 *
 584 **************************************************************************/
 585
 586/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 587 * or more RX flushes can be kicked off.
 588 */
 589static bool efx_farch_flush_wake(struct efx_nic *efx)
 590{
 591	/* Ensure that all updates are visible to efx_farch_flush_queues() */
 592	smp_mb();
 593
 594	return (atomic_read(&efx->active_queues) == 0 ||
 595		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 596		 && atomic_read(&efx->rxq_flush_pending) > 0));
 597}
 598
 599static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 600{
 601	bool i = true;
 602	efx_oword_t txd_ptr_tbl;
 603	struct efx_channel *channel;
 604	struct efx_tx_queue *tx_queue;
 605
 606	efx_for_each_channel(channel, efx) {
 607		efx_for_each_channel_tx_queue(tx_queue, channel) {
 608			efx_reado_table(efx, &txd_ptr_tbl,
 609					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 610			if (EFX_OWORD_FIELD(txd_ptr_tbl,
 611					    FRF_AZ_TX_DESCQ_FLUSH) ||
 612			    EFX_OWORD_FIELD(txd_ptr_tbl,
 613					    FRF_AZ_TX_DESCQ_EN)) {
 614				netif_dbg(efx, hw, efx->net_dev,
 615					  "flush did not complete on TXQ %d\n",
 616					  tx_queue->queue);
 617				i = false;
 618			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 619						  1, 0)) {
 620				/* The flush is complete, but we didn't
 621				 * receive a flush completion event
 622				 */
 623				netif_dbg(efx, hw, efx->net_dev,
 624					  "flush complete on TXQ %d, so drain "
 625					  "the queue\n", tx_queue->queue);
 626				/* Don't need to increment active_queues as it
 627				 * has already been incremented for the queues
 628				 * which did not drain
 629				 */
 630				efx_farch_magic_event(channel,
 631						      EFX_CHANNEL_MAGIC_TX_DRAIN(
 632							      tx_queue));
 633			}
 634		}
 635	}
 636
 637	return i;
 638}
 639
 640/* Flush all the transmit queues, and continue flushing receive queues until
 641 * they're all flushed. Wait for the DRAIN events to be received so that there
 642 * are no more RX and TX events left on any channel. */
 643static int efx_farch_do_flush(struct efx_nic *efx)
 644{
 645	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 646	struct efx_channel *channel;
 647	struct efx_rx_queue *rx_queue;
 648	struct efx_tx_queue *tx_queue;
 649	int rc = 0;
 650
 651	efx_for_each_channel(channel, efx) {
 652		efx_for_each_channel_tx_queue(tx_queue, channel) {
 653			efx_farch_flush_tx_queue(tx_queue);
 654		}
 655		efx_for_each_channel_rx_queue(rx_queue, channel) {
 656			rx_queue->flush_pending = true;
 657			atomic_inc(&efx->rxq_flush_pending);
 658		}
 659	}
 660
 661	while (timeout && atomic_read(&efx->active_queues) > 0) {
 662		/* If SRIOV is enabled, then offload receive queue flushing to
 663		 * the firmware (though we will still have to poll for
 664		 * completion). If that fails, fall back to the old scheme.
 665		 */
 666		if (efx_siena_sriov_enabled(efx)) {
 667			rc = efx_mcdi_flush_rxqs(efx);
 668			if (!rc)
 669				goto wait;
 670		}
 671
 672		/* The hardware supports four concurrent rx flushes, each of
 673		 * which may need to be retried if there is an outstanding
 674		 * descriptor fetch
 675		 */
 676		efx_for_each_channel(channel, efx) {
 677			efx_for_each_channel_rx_queue(rx_queue, channel) {
 678				if (atomic_read(&efx->rxq_flush_outstanding) >=
 679				    EFX_RX_FLUSH_COUNT)
 680					break;
 681
 682				if (rx_queue->flush_pending) {
 683					rx_queue->flush_pending = false;
 684					atomic_dec(&efx->rxq_flush_pending);
 685					atomic_inc(&efx->rxq_flush_outstanding);
 686					efx_farch_flush_rx_queue(rx_queue);
 687				}
 688			}
 689		}
 690
 691	wait:
 692		timeout = wait_event_timeout(efx->flush_wq,
 693					     efx_farch_flush_wake(efx),
 694					     timeout);
 695	}
 696
 697	if (atomic_read(&efx->active_queues) &&
 698	    !efx_check_tx_flush_complete(efx)) {
 699		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 700			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 701			  atomic_read(&efx->rxq_flush_outstanding),
 702			  atomic_read(&efx->rxq_flush_pending));
 703		rc = -ETIMEDOUT;
 704
 705		atomic_set(&efx->active_queues, 0);
 706		atomic_set(&efx->rxq_flush_pending, 0);
 707		atomic_set(&efx->rxq_flush_outstanding, 0);
 708	}
 709
 710	return rc;
 711}
 712
 713int efx_farch_fini_dmaq(struct efx_nic *efx)
 714{
 715	struct efx_channel *channel;
 716	struct efx_tx_queue *tx_queue;
 717	struct efx_rx_queue *rx_queue;
 718	int rc = 0;
 719
 720	/* Do not attempt to write to the NIC during EEH recovery */
 721	if (efx->state != STATE_RECOVERY) {
 722		/* Only perform flush if DMA is enabled */
 723		if (efx->pci_dev->is_busmaster) {
 724			efx->type->prepare_flush(efx);
 725			rc = efx_farch_do_flush(efx);
 726			efx->type->finish_flush(efx);
 727		}
 728
 729		efx_for_each_channel(channel, efx) {
 730			efx_for_each_channel_rx_queue(rx_queue, channel)
 731				efx_farch_rx_fini(rx_queue);
 732			efx_for_each_channel_tx_queue(tx_queue, channel)
 733				efx_farch_tx_fini(tx_queue);
 734		}
 735	}
 736
 737	return rc;
 738}
 739
 740/* Reset queue and flush accounting after FLR
 741 *
 742 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 743 * mastering was disabled), in which case we don't receive (RXQ) flush
 744 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 745 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 746 * events were received, and we didn't go through efx_check_tx_flush_complete())
 747 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 748 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 749 * for batched flush requests; and the efx->active_queues gets messed up because
 750 * we keep incrementing for the newly initialised queues, but it never went to
 751 * zero previously.  Then we get a timeout every time we try to restart the
 752 * queues, as it doesn't go back to zero when we should be flushing the queues.
 753 */
 754void efx_farch_finish_flr(struct efx_nic *efx)
 755{
 756	atomic_set(&efx->rxq_flush_pending, 0);
 757	atomic_set(&efx->rxq_flush_outstanding, 0);
 758	atomic_set(&efx->active_queues, 0);
 759}
 760
 761
 762/**************************************************************************
 763 *
 764 * Event queue processing
 765 * Event queues are processed by per-channel tasklets.
 766 *
 767 **************************************************************************/
 768
 769/* Update a channel's event queue's read pointer (RPTR) register
 770 *
 771 * This writes the EVQ_RPTR_REG register for the specified channel's
 772 * event queue.
 773 */
 774void efx_farch_ev_read_ack(struct efx_channel *channel)
 775{
 776	efx_dword_t reg;
 777	struct efx_nic *efx = channel->efx;
 778
 779	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 780			     channel->eventq_read_ptr & channel->eventq_mask);
 781
 782	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 783	 * of 4 bytes, but it is really 16 bytes just like later revisions.
 784	 */
 785	efx_writed(efx, &reg,
 786		   efx->type->evq_rptr_tbl_base +
 787		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 788}
 789
 790/* Use HW to insert a SW defined event */
 791void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 792			      efx_qword_t *event)
 793{
 794	efx_oword_t drv_ev_reg;
 795
 796	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 797		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 798	drv_ev_reg.u32[0] = event->u32[0];
 799	drv_ev_reg.u32[1] = event->u32[1];
 800	drv_ev_reg.u32[2] = 0;
 801	drv_ev_reg.u32[3] = 0;
 802	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 803	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 804}
 805
 806static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 807{
 808	efx_qword_t event;
 809
 810	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 811			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 812			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 813	efx_farch_generate_event(channel->efx, channel->channel, &event);
 814}
 815
 816/* Handle a transmit completion event
 817 *
 818 * The NIC batches TX completion events; the message we receive is of
 819 * the form "complete all TX events up to this index".
 820 */
 821static void
 822efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 823{
 824	unsigned int tx_ev_desc_ptr;
 825	unsigned int tx_ev_q_label;
 826	struct efx_tx_queue *tx_queue;
 827	struct efx_nic *efx = channel->efx;
 828
 829	if (unlikely(READ_ONCE(efx->reset_pending)))
 830		return;
 831
 832	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 833		/* Transmit completion */
 834		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 835		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 836		tx_queue = efx_channel_get_tx_queue(
 837			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 838		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 839	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 840		/* Rewrite the FIFO write pointer */
 841		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 842		tx_queue = efx_channel_get_tx_queue(
 843			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 844
 845		netif_tx_lock(efx->net_dev);
 846		efx_farch_notify_tx_desc(tx_queue);
 847		netif_tx_unlock(efx->net_dev);
 848	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 849		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 850	} else {
 851		netif_err(efx, tx_err, efx->net_dev,
 852			  "channel %d unexpected TX event "
 853			  EFX_QWORD_FMT"\n", channel->channel,
 854			  EFX_QWORD_VAL(*event));
 855	}
 856}
 857
 858/* Detect errors included in the rx_evt_pkt_ok bit. */
 859static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 860				      const efx_qword_t *event)
 861{
 862	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 863	struct efx_nic *efx = rx_queue->efx;
 864	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 865	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 866	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
 867	bool rx_ev_other_err, rx_ev_pause_frm;
 868	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 869	unsigned rx_ev_pkt_type;
 870
 871	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 872	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 873	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 874	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 875	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 876						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 877	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 878						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 879	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 880						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 881	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 882	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 883	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 884
 885	/* Every error apart from tobe_disc and pause_frm */
 886	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
 887			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 888			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 889
 890	/* Count errors that are not in MAC stats.  Ignore expected
 891	 * checksum errors during self-test. */
 892	if (rx_ev_frm_trunc)
 893		++channel->n_rx_frm_trunc;
 894	else if (rx_ev_tobe_disc)
 895		++channel->n_rx_tobe_disc;
 896	else if (!efx->loopback_selftest) {
 897		if (rx_ev_ip_hdr_chksum_err)
 898			++channel->n_rx_ip_hdr_chksum_err;
 899		else if (rx_ev_tcp_udp_chksum_err)
 900			++channel->n_rx_tcp_udp_chksum_err;
 901	}
 902
 903	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 904	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 905	 * to a FIFO overflow.
 906	 */
 907#ifdef DEBUG
 908	if (rx_ev_other_err && net_ratelimit()) {
 909		netif_dbg(efx, rx_err, efx->net_dev,
 910			  " RX queue %d unexpected RX event "
 911			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
 912			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 913			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 914			  rx_ev_ip_hdr_chksum_err ?
 915			  " [IP_HDR_CHKSUM_ERR]" : "",
 916			  rx_ev_tcp_udp_chksum_err ?
 917			  " [TCP_UDP_CHKSUM_ERR]" : "",
 918			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 919			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 920			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 921			  rx_ev_pause_frm ? " [PAUSE]" : "");
 922	}
 923#endif
 924
 925	if (efx->net_dev->features & NETIF_F_RXALL)
 926		/* don't discard frame for CRC error */
 927		rx_ev_eth_crc_err = false;
 928
 929	/* The frame must be discarded if any of these are true. */
 930	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
 931		rx_ev_tobe_disc | rx_ev_pause_frm) ?
 932		EFX_RX_PKT_DISCARD : 0;
 933}
 934
 935/* Handle receive events that are not in-order. Return true if this
 936 * can be handled as a partial packet discard, false if it's more
 937 * serious.
 938 */
 939static bool
 940efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 941{
 942	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 943	struct efx_nic *efx = rx_queue->efx;
 944	unsigned expected, dropped;
 945
 946	if (rx_queue->scatter_n &&
 947	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 948		      rx_queue->ptr_mask)) {
 949		++channel->n_rx_nodesc_trunc;
 950		return true;
 951	}
 952
 953	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 954	dropped = (index - expected) & rx_queue->ptr_mask;
 955	netif_info(efx, rx_err, efx->net_dev,
 956		   "dropped %d events (index=%d expected=%d)\n",
 957		   dropped, index, expected);
 958
 959	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 960	return false;
 961}
 962
 963/* Handle a packet received event
 964 *
 965 * The NIC gives a "discard" flag if it's a unicast packet with the
 966 * wrong destination address
 967 * Also "is multicast" and "matches multicast filter" flags can be used to
 968 * discard non-matching multicast packets.
 969 */
 970static void
 971efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 972{
 973	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 974	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 975	unsigned expected_ptr;
 976	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 977	u16 flags;
 978	struct efx_rx_queue *rx_queue;
 979	struct efx_nic *efx = channel->efx;
 980
 981	if (unlikely(READ_ONCE(efx->reset_pending)))
 982		return;
 983
 984	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 985	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 986	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 987		channel->channel);
 988
 989	rx_queue = efx_channel_get_rx_queue(channel);
 990
 991	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 992	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 993			rx_queue->ptr_mask);
 994
 995	/* Check for partial drops and other errors */
 996	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 997	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 998		if (rx_ev_desc_ptr != expected_ptr &&
 999		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1000			return;
1001
1002		/* Discard all pending fragments */
1003		if (rx_queue->scatter_n) {
1004			efx_rx_packet(
1005				rx_queue,
1006				rx_queue->removed_count & rx_queue->ptr_mask,
1007				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1008			rx_queue->removed_count += rx_queue->scatter_n;
1009			rx_queue->scatter_n = 0;
1010		}
1011
1012		/* Return if there is no new fragment */
1013		if (rx_ev_desc_ptr != expected_ptr)
1014			return;
1015
1016		/* Discard new fragment if not SOP */
1017		if (!rx_ev_sop) {
1018			efx_rx_packet(
1019				rx_queue,
1020				rx_queue->removed_count & rx_queue->ptr_mask,
1021				1, 0, EFX_RX_PKT_DISCARD);
1022			++rx_queue->removed_count;
1023			return;
1024		}
1025	}
1026
1027	++rx_queue->scatter_n;
1028	if (rx_ev_cont)
1029		return;
1030
1031	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1032	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1033	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1034
1035	if (likely(rx_ev_pkt_ok)) {
1036		/* If packet is marked as OK then we can rely on the
1037		 * hardware checksum and classification.
1038		 */
1039		flags = 0;
1040		switch (rx_ev_hdr_type) {
1041		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1042			flags |= EFX_RX_PKT_TCP;
1043			/* fall through */
1044		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1045			flags |= EFX_RX_PKT_CSUMMED;
1046			/* fall through */
1047		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1048		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1049			break;
1050		}
1051	} else {
1052		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1053	}
1054
1055	/* Detect multicast packets that didn't match the filter */
1056	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1057	if (rx_ev_mcast_pkt) {
1058		unsigned int rx_ev_mcast_hash_match =
1059			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1060
1061		if (unlikely(!rx_ev_mcast_hash_match)) {
1062			++channel->n_rx_mcast_mismatch;
1063			flags |= EFX_RX_PKT_DISCARD;
1064		}
1065	}
1066
1067	channel->irq_mod_score += 2;
1068
1069	/* Handle received packet */
1070	efx_rx_packet(rx_queue,
1071		      rx_queue->removed_count & rx_queue->ptr_mask,
1072		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1073	rx_queue->removed_count += rx_queue->scatter_n;
1074	rx_queue->scatter_n = 0;
1075}
1076
1077/* If this flush done event corresponds to a &struct efx_tx_queue, then
1078 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1079 * of all transmit completions.
1080 */
1081static void
1082efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1083{
1084	struct efx_tx_queue *tx_queue;
1085	int qid;
1086
1087	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1088	if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1089		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1090					    qid % EFX_TXQ_TYPES);
1091		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1092			efx_farch_magic_event(tx_queue->channel,
1093					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1094		}
1095	}
1096}
1097
1098/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1099 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1100 * the RX queue back to the mask of RX queues in need of flushing.
1101 */
1102static void
1103efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1104{
1105	struct efx_channel *channel;
1106	struct efx_rx_queue *rx_queue;
1107	int qid;
1108	bool failed;
1109
1110	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1111	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1112	if (qid >= efx->n_channels)
1113		return;
1114	channel = efx_get_channel(efx, qid);
1115	if (!efx_channel_has_rx_queue(channel))
1116		return;
1117	rx_queue = efx_channel_get_rx_queue(channel);
1118
1119	if (failed) {
1120		netif_info(efx, hw, efx->net_dev,
1121			   "RXQ %d flush retry\n", qid);
1122		rx_queue->flush_pending = true;
1123		atomic_inc(&efx->rxq_flush_pending);
1124	} else {
1125		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1126				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1127	}
1128	atomic_dec(&efx->rxq_flush_outstanding);
1129	if (efx_farch_flush_wake(efx))
1130		wake_up(&efx->flush_wq);
1131}
1132
1133static void
1134efx_farch_handle_drain_event(struct efx_channel *channel)
1135{
1136	struct efx_nic *efx = channel->efx;
1137
1138	WARN_ON(atomic_read(&efx->active_queues) == 0);
1139	atomic_dec(&efx->active_queues);
1140	if (efx_farch_flush_wake(efx))
1141		wake_up(&efx->flush_wq);
1142}
1143
1144static void efx_farch_handle_generated_event(struct efx_channel *channel,
1145					     efx_qword_t *event)
1146{
1147	struct efx_nic *efx = channel->efx;
1148	struct efx_rx_queue *rx_queue =
1149		efx_channel_has_rx_queue(channel) ?
1150		efx_channel_get_rx_queue(channel) : NULL;
1151	unsigned magic, code;
1152
1153	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1154	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1155
1156	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1157		channel->event_test_cpu = raw_smp_processor_id();
1158	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1159		/* The queue must be empty, so we won't receive any rx
1160		 * events, so efx_process_channel() won't refill the
1161		 * queue. Refill it here */
1162		efx_fast_push_rx_descriptors(rx_queue, true);
1163	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1164		efx_farch_handle_drain_event(channel);
1165	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1166		efx_farch_handle_drain_event(channel);
1167	} else {
1168		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1169			  "generated event "EFX_QWORD_FMT"\n",
1170			  channel->channel, EFX_QWORD_VAL(*event));
1171	}
1172}
1173
1174static void
1175efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1176{
1177	struct efx_nic *efx = channel->efx;
1178	unsigned int ev_sub_code;
1179	unsigned int ev_sub_data;
1180
1181	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1182	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1183
1184	switch (ev_sub_code) {
1185	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1186		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1187			   channel->channel, ev_sub_data);
1188		efx_farch_handle_tx_flush_done(efx, event);
1189#ifdef CONFIG_SFC_SRIOV
1190		efx_siena_sriov_tx_flush_done(efx, event);
1191#endif
1192		break;
1193	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1194		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1195			   channel->channel, ev_sub_data);
1196		efx_farch_handle_rx_flush_done(efx, event);
1197#ifdef CONFIG_SFC_SRIOV
1198		efx_siena_sriov_rx_flush_done(efx, event);
1199#endif
1200		break;
1201	case FSE_AZ_EVQ_INIT_DONE_EV:
1202		netif_dbg(efx, hw, efx->net_dev,
1203			  "channel %d EVQ %d initialised\n",
1204			  channel->channel, ev_sub_data);
1205		break;
1206	case FSE_AZ_SRM_UPD_DONE_EV:
1207		netif_vdbg(efx, hw, efx->net_dev,
1208			   "channel %d SRAM update done\n", channel->channel);
1209		break;
1210	case FSE_AZ_WAKE_UP_EV:
1211		netif_vdbg(efx, hw, efx->net_dev,
1212			   "channel %d RXQ %d wakeup event\n",
1213			   channel->channel, ev_sub_data);
1214		break;
1215	case FSE_AZ_TIMER_EV:
1216		netif_vdbg(efx, hw, efx->net_dev,
1217			   "channel %d RX queue %d timer expired\n",
1218			   channel->channel, ev_sub_data);
1219		break;
1220	case FSE_AA_RX_RECOVER_EV:
1221		netif_err(efx, rx_err, efx->net_dev,
1222			  "channel %d seen DRIVER RX_RESET event. "
1223			"Resetting.\n", channel->channel);
1224		atomic_inc(&efx->rx_reset);
1225		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1226		break;
1227	case FSE_BZ_RX_DSC_ERROR_EV:
1228		if (ev_sub_data < EFX_VI_BASE) {
1229			netif_err(efx, rx_err, efx->net_dev,
1230				  "RX DMA Q %d reports descriptor fetch error."
1231				  " RX Q %d is disabled.\n", ev_sub_data,
1232				  ev_sub_data);
1233			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1234		}
1235#ifdef CONFIG_SFC_SRIOV
1236		else
1237			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1238#endif
1239		break;
1240	case FSE_BZ_TX_DSC_ERROR_EV:
1241		if (ev_sub_data < EFX_VI_BASE) {
1242			netif_err(efx, tx_err, efx->net_dev,
1243				  "TX DMA Q %d reports descriptor fetch error."
1244				  " TX Q %d is disabled.\n", ev_sub_data,
1245				  ev_sub_data);
1246			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1247		}
1248#ifdef CONFIG_SFC_SRIOV
1249		else
1250			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1251#endif
1252		break;
1253	default:
1254		netif_vdbg(efx, hw, efx->net_dev,
1255			   "channel %d unknown driver event code %d "
1256			   "data %04x\n", channel->channel, ev_sub_code,
1257			   ev_sub_data);
1258		break;
1259	}
1260}
1261
1262int efx_farch_ev_process(struct efx_channel *channel, int budget)
1263{
1264	struct efx_nic *efx = channel->efx;
1265	unsigned int read_ptr;
1266	efx_qword_t event, *p_event;
1267	int ev_code;
1268	int spent = 0;
1269
1270	if (budget <= 0)
1271		return spent;
1272
1273	read_ptr = channel->eventq_read_ptr;
1274
1275	for (;;) {
1276		p_event = efx_event(channel, read_ptr);
1277		event = *p_event;
1278
1279		if (!efx_event_present(&event))
1280			/* End of events */
1281			break;
1282
1283		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1284			   "channel %d event is "EFX_QWORD_FMT"\n",
1285			   channel->channel, EFX_QWORD_VAL(event));
1286
1287		/* Clear this event by marking it all ones */
1288		EFX_SET_QWORD(*p_event);
1289
1290		++read_ptr;
1291
1292		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1293
1294		switch (ev_code) {
1295		case FSE_AZ_EV_CODE_RX_EV:
1296			efx_farch_handle_rx_event(channel, &event);
1297			if (++spent == budget)
1298				goto out;
1299			break;
1300		case FSE_AZ_EV_CODE_TX_EV:
1301			efx_farch_handle_tx_event(channel, &event);
1302			break;
1303		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1304			efx_farch_handle_generated_event(channel, &event);
1305			break;
1306		case FSE_AZ_EV_CODE_DRIVER_EV:
1307			efx_farch_handle_driver_event(channel, &event);
1308			break;
1309#ifdef CONFIG_SFC_SRIOV
1310		case FSE_CZ_EV_CODE_USER_EV:
1311			efx_siena_sriov_event(channel, &event);
1312			break;
1313#endif
1314		case FSE_CZ_EV_CODE_MCDI_EV:
1315			efx_mcdi_process_event(channel, &event);
1316			break;
1317		case FSE_AZ_EV_CODE_GLOBAL_EV:
1318			if (efx->type->handle_global_event &&
1319			    efx->type->handle_global_event(channel, &event))
1320				break;
1321			/* else fall through */
1322		default:
1323			netif_err(channel->efx, hw, channel->efx->net_dev,
1324				  "channel %d unknown event type %d (data "
1325				  EFX_QWORD_FMT ")\n", channel->channel,
1326				  ev_code, EFX_QWORD_VAL(event));
1327		}
1328	}
1329
1330out:
1331	channel->eventq_read_ptr = read_ptr;
1332	return spent;
1333}
1334
1335/* Allocate buffer table entries for event queue */
1336int efx_farch_ev_probe(struct efx_channel *channel)
1337{
1338	struct efx_nic *efx = channel->efx;
1339	unsigned entries;
1340
1341	entries = channel->eventq_mask + 1;
1342	return efx_alloc_special_buffer(efx, &channel->eventq,
1343					entries * sizeof(efx_qword_t));
1344}
1345
1346int efx_farch_ev_init(struct efx_channel *channel)
1347{
1348	efx_oword_t reg;
1349	struct efx_nic *efx = channel->efx;
1350
1351	netif_dbg(efx, hw, efx->net_dev,
1352		  "channel %d event queue in special buffers %d-%d\n",
1353		  channel->channel, channel->eventq.index,
1354		  channel->eventq.index + channel->eventq.entries - 1);
1355
1356	EFX_POPULATE_OWORD_3(reg,
1357			     FRF_CZ_TIMER_Q_EN, 1,
1358			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1359			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1360	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1361
1362	/* Pin event queue buffer */
1363	efx_init_special_buffer(efx, &channel->eventq);
1364
1365	/* Fill event queue with all ones (i.e. empty events) */
1366	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1367
1368	/* Push event queue to card */
1369	EFX_POPULATE_OWORD_3(reg,
1370			     FRF_AZ_EVQ_EN, 1,
1371			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1372			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1373	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1374			 channel->channel);
1375
1376	return 0;
1377}
1378
1379void efx_farch_ev_fini(struct efx_channel *channel)
1380{
1381	efx_oword_t reg;
1382	struct efx_nic *efx = channel->efx;
1383
1384	/* Remove event queue from card */
1385	EFX_ZERO_OWORD(reg);
1386	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1387			 channel->channel);
1388	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1389
1390	/* Unpin event queue */
1391	efx_fini_special_buffer(efx, &channel->eventq);
1392}
1393
1394/* Free buffers backing event queue */
1395void efx_farch_ev_remove(struct efx_channel *channel)
1396{
1397	efx_free_special_buffer(channel->efx, &channel->eventq);
1398}
1399
1400
1401void efx_farch_ev_test_generate(struct efx_channel *channel)
1402{
1403	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1404}
1405
1406void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1407{
1408	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1409			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1410}
1411
1412/**************************************************************************
1413 *
1414 * Hardware interrupts
1415 * The hardware interrupt handler does very little work; all the event
1416 * queue processing is carried out by per-channel tasklets.
1417 *
1418 **************************************************************************/
1419
1420/* Enable/disable/generate interrupts */
1421static inline void efx_farch_interrupts(struct efx_nic *efx,
1422				      bool enabled, bool force)
1423{
1424	efx_oword_t int_en_reg_ker;
1425
1426	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1427			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1428			     FRF_AZ_KER_INT_KER, force,
1429			     FRF_AZ_DRV_INT_EN_KER, enabled);
1430	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1431}
1432
1433void efx_farch_irq_enable_master(struct efx_nic *efx)
1434{
1435	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1436	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1437
1438	efx_farch_interrupts(efx, true, false);
1439}
1440
1441void efx_farch_irq_disable_master(struct efx_nic *efx)
1442{
1443	/* Disable interrupts */
1444	efx_farch_interrupts(efx, false, false);
1445}
1446
1447/* Generate a test interrupt
1448 * Interrupt must already have been enabled, otherwise nasty things
1449 * may happen.
1450 */
1451int efx_farch_irq_test_generate(struct efx_nic *efx)
1452{
1453	efx_farch_interrupts(efx, true, true);
1454	return 0;
1455}
1456
1457/* Process a fatal interrupt
1458 * Disable bus mastering ASAP and schedule a reset
1459 */
1460irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1461{
1462	efx_oword_t *int_ker = efx->irq_status.addr;
1463	efx_oword_t fatal_intr;
1464	int error, mem_perr;
1465
1466	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1467	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1468
1469	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1470		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1471		  EFX_OWORD_VAL(fatal_intr),
1472		  error ? "disabling bus mastering" : "no recognised error");
1473
1474	/* If this is a memory parity error dump which blocks are offending */
1475	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1476		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1477	if (mem_perr) {
1478		efx_oword_t reg;
1479		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1480		netif_err(efx, hw, efx->net_dev,
1481			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1482			  EFX_OWORD_VAL(reg));
1483	}
1484
1485	/* Disable both devices */
1486	pci_clear_master(efx->pci_dev);
1487	efx_farch_irq_disable_master(efx);
1488
1489	/* Count errors and reset or disable the NIC accordingly */
1490	if (efx->int_error_count == 0 ||
1491	    time_after(jiffies, efx->int_error_expire)) {
1492		efx->int_error_count = 0;
1493		efx->int_error_expire =
1494			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1495	}
1496	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1497		netif_err(efx, hw, efx->net_dev,
1498			  "SYSTEM ERROR - reset scheduled\n");
1499		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1500	} else {
1501		netif_err(efx, hw, efx->net_dev,
1502			  "SYSTEM ERROR - max number of errors seen."
1503			  "NIC will be disabled\n");
1504		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1505	}
1506
1507	return IRQ_HANDLED;
1508}
1509
1510/* Handle a legacy interrupt
1511 * Acknowledges the interrupt and schedule event queue processing.
1512 */
1513irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1514{
1515	struct efx_nic *efx = dev_id;
1516	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1517	efx_oword_t *int_ker = efx->irq_status.addr;
1518	irqreturn_t result = IRQ_NONE;
1519	struct efx_channel *channel;
1520	efx_dword_t reg;
1521	u32 queues;
1522	int syserr;
1523
1524	/* Read the ISR which also ACKs the interrupts */
1525	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1526	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1527
1528	/* Legacy interrupts are disabled too late by the EEH kernel
1529	 * code. Disable them earlier.
1530	 * If an EEH error occurred, the read will have returned all ones.
1531	 */
1532	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1533	    !efx->eeh_disabled_legacy_irq) {
1534		disable_irq_nosync(efx->legacy_irq);
1535		efx->eeh_disabled_legacy_irq = true;
1536	}
1537
1538	/* Handle non-event-queue sources */
1539	if (queues & (1U << efx->irq_level) && soft_enabled) {
1540		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1541		if (unlikely(syserr))
1542			return efx_farch_fatal_interrupt(efx);
1543		efx->last_irq_cpu = raw_smp_processor_id();
1544	}
1545
1546	if (queues != 0) {
1547		efx->irq_zero_count = 0;
1548
1549		/* Schedule processing of any interrupting queues */
1550		if (likely(soft_enabled)) {
1551			efx_for_each_channel(channel, efx) {
1552				if (queues & 1)
1553					efx_schedule_channel_irq(channel);
1554				queues >>= 1;
1555			}
1556		}
1557		result = IRQ_HANDLED;
1558
1559	} else {
1560		efx_qword_t *event;
1561
1562		/* Legacy ISR read can return zero once (SF bug 15783) */
1563
1564		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1565		 * because this might be a shared interrupt. */
1566		if (efx->irq_zero_count++ == 0)
1567			result = IRQ_HANDLED;
1568
1569		/* Ensure we schedule or rearm all event queues */
1570		if (likely(soft_enabled)) {
1571			efx_for_each_channel(channel, efx) {
1572				event = efx_event(channel,
1573						  channel->eventq_read_ptr);
1574				if (efx_event_present(event))
1575					efx_schedule_channel_irq(channel);
1576				else
1577					efx_farch_ev_read_ack(channel);
1578			}
1579		}
1580	}
1581
1582	if (result == IRQ_HANDLED)
1583		netif_vdbg(efx, intr, efx->net_dev,
1584			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1585			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1586
1587	return result;
1588}
1589
1590/* Handle an MSI interrupt
1591 *
1592 * Handle an MSI hardware interrupt.  This routine schedules event
1593 * queue processing.  No interrupt acknowledgement cycle is necessary.
1594 * Also, we never need to check that the interrupt is for us, since
1595 * MSI interrupts cannot be shared.
1596 */
1597irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1598{
1599	struct efx_msi_context *context = dev_id;
1600	struct efx_nic *efx = context->efx;
1601	efx_oword_t *int_ker = efx->irq_status.addr;
1602	int syserr;
1603
1604	netif_vdbg(efx, intr, efx->net_dev,
1605		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1606		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1607
1608	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1609		return IRQ_HANDLED;
1610
1611	/* Handle non-event-queue sources */
1612	if (context->index == efx->irq_level) {
1613		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1614		if (unlikely(syserr))
1615			return efx_farch_fatal_interrupt(efx);
1616		efx->last_irq_cpu = raw_smp_processor_id();
1617	}
1618
1619	/* Schedule processing of the channel */
1620	efx_schedule_channel_irq(efx->channel[context->index]);
1621
1622	return IRQ_HANDLED;
1623}
1624
1625/* Setup RSS indirection table.
1626 * This maps from the hash value of the packet to RXQ
1627 */
1628void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1629{
1630	size_t i = 0;
1631	efx_dword_t dword;
1632
1633	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1634		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1635
1636	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1637		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1638				     efx->rss_context.rx_indir_table[i]);
1639		efx_writed(efx, &dword,
1640			   FR_BZ_RX_INDIRECTION_TBL +
1641			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1642	}
1643}
1644
1645void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1646{
1647	size_t i = 0;
1648	efx_dword_t dword;
1649
1650	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1651		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1652
1653	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1654		efx_readd(efx, &dword,
1655			   FR_BZ_RX_INDIRECTION_TBL +
1656			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1657		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1658	}
1659}
1660
1661/* Looks at available SRAM resources and works out how many queues we
1662 * can support, and where things like descriptor caches should live.
1663 *
1664 * SRAM is split up as follows:
1665 * 0                          buftbl entries for channels
1666 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1667 * efx->rx_dc_base            RX descriptor caches
1668 * efx->tx_dc_base            TX descriptor caches
1669 */
1670void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1671{
1672	unsigned vi_count, buftbl_min, total_tx_channels;
1673
1674#ifdef CONFIG_SFC_SRIOV
1675	struct siena_nic_data *nic_data = efx->nic_data;
1676#endif
1677
1678	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1679	/* Account for the buffer table entries backing the datapath channels
1680	 * and the descriptor caches for those channels.
1681	 */
1682	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1683		       total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1684		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1685		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1686	vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1687
1688#ifdef CONFIG_SFC_SRIOV
1689	if (efx->type->sriov_wanted) {
1690		if (efx->type->sriov_wanted(efx)) {
1691			unsigned vi_dc_entries, buftbl_free;
1692			unsigned entries_per_vf, vf_limit;
1693
1694			nic_data->vf_buftbl_base = buftbl_min;
1695
1696			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1697			vi_count = max(vi_count, EFX_VI_BASE);
1698			buftbl_free = (sram_lim_qw - buftbl_min -
1699				       vi_count * vi_dc_entries);
1700
1701			entries_per_vf = ((vi_dc_entries +
1702					   EFX_VF_BUFTBL_PER_VI) *
1703					  efx_vf_size(efx));
1704			vf_limit = min(buftbl_free / entries_per_vf,
1705				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1706
1707			if (efx->vf_count > vf_limit) {
1708				netif_err(efx, probe, efx->net_dev,
1709					  "Reducing VF count from from %d to %d\n",
1710					  efx->vf_count, vf_limit);
1711				efx->vf_count = vf_limit;
1712			}
1713			vi_count += efx->vf_count * efx_vf_size(efx);
1714		}
1715	}
1716#endif
1717
1718	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1719	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1720}
1721
1722u32 efx_farch_fpga_ver(struct efx_nic *efx)
1723{
1724	efx_oword_t altera_build;
1725	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1726	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1727}
1728
1729void efx_farch_init_common(struct efx_nic *efx)
1730{
1731	efx_oword_t temp;
1732
1733	/* Set positions of descriptor caches in SRAM. */
1734	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1735	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1736	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1737	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1738
1739	/* Set TX descriptor cache size. */
1740	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1741	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1742	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1743
1744	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1745	 * this allows most efficient prefetching.
1746	 */
1747	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1748	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1749	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1750	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1751	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1752
1753	/* Program INT_KER address */
1754	EFX_POPULATE_OWORD_2(temp,
1755			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1756			     EFX_INT_MODE_USE_MSI(efx),
1757			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1758	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1759
1760	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1761		/* Use an interrupt level unused by event queues */
1762		efx->irq_level = 0x1f;
1763	else
1764		/* Use a valid MSI-X vector */
1765		efx->irq_level = 0;
1766
1767	/* Enable all the genuinely fatal interrupts.  (They are still
1768	 * masked by the overall interrupt mask, controlled by
1769	 * falcon_interrupts()).
1770	 *
1771	 * Note: All other fatal interrupts are enabled
1772	 */
1773	EFX_POPULATE_OWORD_3(temp,
1774			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1775			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1776			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1777	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1778	EFX_INVERT_OWORD(temp);
1779	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1780
1781	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1782	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1783	 */
1784	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1785	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1786	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1787	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1788	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1789	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1790	/* Enable SW_EV to inherit in char driver - assume harmless here */
1791	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1792	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1793	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1794	/* Disable hardware watchdog which can misfire */
1795	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1796	/* Squash TX of packets of 16 bytes or less */
1797	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1798	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1799
1800	EFX_POPULATE_OWORD_4(temp,
1801			     /* Default values */
1802			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1803			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1804			     FRF_BZ_TX_PACE_FB_BASE, 0,
1805			     /* Allow large pace values in the fast bin. */
1806			     FRF_BZ_TX_PACE_BIN_TH,
1807			     FFE_BZ_TX_PACE_RESERVED);
1808	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1809}
1810
1811/**************************************************************************
1812 *
1813 * Filter tables
1814 *
1815 **************************************************************************
1816 */
1817
1818/* "Fudge factors" - difference between programmed value and actual depth.
1819 * Due to pipelined implementation we need to program H/W with a value that
1820 * is larger than the hop limit we want.
1821 */
1822#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1823#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1824
1825/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1826 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1827 * table is full.
1828 */
1829#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1830
1831/* Don't try very hard to find space for performance hints, as this is
1832 * counter-productive. */
1833#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1834
1835enum efx_farch_filter_type {
1836	EFX_FARCH_FILTER_TCP_FULL = 0,
1837	EFX_FARCH_FILTER_TCP_WILD,
1838	EFX_FARCH_FILTER_UDP_FULL,
1839	EFX_FARCH_FILTER_UDP_WILD,
1840	EFX_FARCH_FILTER_MAC_FULL = 4,
1841	EFX_FARCH_FILTER_MAC_WILD,
1842	EFX_FARCH_FILTER_UC_DEF = 8,
1843	EFX_FARCH_FILTER_MC_DEF,
1844	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1845};
1846
1847enum efx_farch_filter_table_id {
1848	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1849	EFX_FARCH_FILTER_TABLE_RX_MAC,
1850	EFX_FARCH_FILTER_TABLE_RX_DEF,
1851	EFX_FARCH_FILTER_TABLE_TX_MAC,
1852	EFX_FARCH_FILTER_TABLE_COUNT,
1853};
1854
1855enum efx_farch_filter_index {
1856	EFX_FARCH_FILTER_INDEX_UC_DEF,
1857	EFX_FARCH_FILTER_INDEX_MC_DEF,
1858	EFX_FARCH_FILTER_SIZE_RX_DEF,
1859};
1860
1861struct efx_farch_filter_spec {
1862	u8	type:4;
1863	u8	priority:4;
1864	u8	flags;
1865	u16	dmaq_id;
1866	u32	data[3];
1867};
1868
1869struct efx_farch_filter_table {
1870	enum efx_farch_filter_table_id id;
1871	u32		offset;		/* address of table relative to BAR */
1872	unsigned	size;		/* number of entries */
1873	unsigned	step;		/* step between entries */
1874	unsigned	used;		/* number currently used */
1875	unsigned long	*used_bitmap;
1876	struct efx_farch_filter_spec *spec;
1877	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1878};
1879
1880struct efx_farch_filter_state {
1881	struct rw_semaphore lock; /* Protects table contents */
1882	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1883};
1884
1885static void
1886efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1887				   struct efx_farch_filter_table *table,
1888				   unsigned int filter_idx);
1889
1890/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1891 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1892static u16 efx_farch_filter_hash(u32 key)
1893{
1894	u16 tmp;
1895
1896	/* First 16 rounds */
1897	tmp = 0x1fff ^ key >> 16;
1898	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1899	tmp = tmp ^ tmp >> 9;
1900	/* Last 16 rounds */
1901	tmp = tmp ^ tmp << 13 ^ key;
1902	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1903	return tmp ^ tmp >> 9;
1904}
1905
1906/* To allow for hash collisions, filter search continues at these
1907 * increments from the first possible entry selected by the hash. */
1908static u16 efx_farch_filter_increment(u32 key)
1909{
1910	return key * 2 - 1;
1911}
1912
1913static enum efx_farch_filter_table_id
1914efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1915{
1916	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1918	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1920	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1922	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1923		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1924	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1925		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1926	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1927		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1928	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1929		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1930	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1931}
1932
1933static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1934{
1935	struct efx_farch_filter_state *state = efx->filter_state;
1936	struct efx_farch_filter_table *table;
1937	efx_oword_t filter_ctl;
1938
1939	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1940
1941	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1942	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1943			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1944			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1945	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1946			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1947			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1948	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1949			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1950			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1951	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1952			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1953			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1954
1955	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1956	if (table->size) {
1957		EFX_SET_OWORD_FIELD(
1958			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1959			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1960			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1961		EFX_SET_OWORD_FIELD(
1962			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1963			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1964			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965	}
1966
1967	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1968	if (table->size) {
1969		EFX_SET_OWORD_FIELD(
1970			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1971			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1972		EFX_SET_OWORD_FIELD(
1973			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1974			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1975			   EFX_FILTER_FLAG_RX_RSS));
1976		EFX_SET_OWORD_FIELD(
1977			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1978			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1979		EFX_SET_OWORD_FIELD(
1980			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1981			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1982			   EFX_FILTER_FLAG_RX_RSS));
1983
1984		/* There is a single bit to enable RX scatter for all
1985		 * unmatched packets.  Only set it if scatter is
1986		 * enabled in both filter specs.
1987		 */
1988		EFX_SET_OWORD_FIELD(
1989			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1990			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1991			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1992			   EFX_FILTER_FLAG_RX_SCATTER));
1993	} else {
1994		/* We don't expose 'default' filters because unmatched
1995		 * packets always go to the queue number found in the
1996		 * RSS table.  But we still need to set the RX scatter
1997		 * bit here.
1998		 */
1999		EFX_SET_OWORD_FIELD(
2000			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2001			efx->rx_scatter);
2002	}
2003
2004	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2005}
2006
2007static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2008{
2009	struct efx_farch_filter_state *state = efx->filter_state;
2010	struct efx_farch_filter_table *table;
2011	efx_oword_t tx_cfg;
2012
2013	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2014
2015	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2016	if (table->size) {
2017		EFX_SET_OWORD_FIELD(
2018			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2019			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2020			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2021		EFX_SET_OWORD_FIELD(
2022			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2023			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2024			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2025	}
2026
2027	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2028}
2029
2030static int
2031efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2032			       const struct efx_filter_spec *gen_spec)
2033{
2034	bool is_full = false;
2035
2036	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2037		return -EINVAL;
2038
2039	spec->priority = gen_spec->priority;
2040	spec->flags = gen_spec->flags;
2041	spec->dmaq_id = gen_spec->dmaq_id;
2042
2043	switch (gen_spec->match_flags) {
2044	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2045	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2046	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2047		is_full = true;
2048		/* fall through */
2049	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2050	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2051		__be32 rhost, host1, host2;
2052		__be16 rport, port1, port2;
2053
2054		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2055
2056		if (gen_spec->ether_type != htons(ETH_P_IP))
2057			return -EPROTONOSUPPORT;
2058		if (gen_spec->loc_port == 0 ||
2059		    (is_full && gen_spec->rem_port == 0))
2060			return -EADDRNOTAVAIL;
2061		switch (gen_spec->ip_proto) {
2062		case IPPROTO_TCP:
2063			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2064				      EFX_FARCH_FILTER_TCP_WILD);
2065			break;
2066		case IPPROTO_UDP:
2067			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2068				      EFX_FARCH_FILTER_UDP_WILD);
2069			break;
2070		default:
2071			return -EPROTONOSUPPORT;
2072		}
2073
2074		/* Filter is constructed in terms of source and destination,
2075		 * with the odd wrinkle that the ports are swapped in a UDP
2076		 * wildcard filter.  We need to convert from local and remote
2077		 * (= zero for wildcard) addresses.
2078		 */
2079		rhost = is_full ? gen_spec->rem_host[0] : 0;
2080		rport = is_full ? gen_spec->rem_port : 0;
2081		host1 = rhost;
2082		host2 = gen_spec->loc_host[0];
2083		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2084			port1 = gen_spec->loc_port;
2085			port2 = rport;
2086		} else {
2087			port1 = rport;
2088			port2 = gen_spec->loc_port;
2089		}
2090		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2091		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2092		spec->data[2] = ntohl(host2);
2093
2094		break;
2095	}
2096
2097	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2098		is_full = true;
2099		/* fall through */
2100	case EFX_FILTER_MATCH_LOC_MAC:
2101		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2102			      EFX_FARCH_FILTER_MAC_WILD);
2103		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2104		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2105				 gen_spec->loc_mac[3] << 16 |
2106				 gen_spec->loc_mac[4] << 8 |
2107				 gen_spec->loc_mac[5]);
2108		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2109				 gen_spec->loc_mac[1]);
2110		break;
2111
2112	case EFX_FILTER_MATCH_LOC_MAC_IG:
2113		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2114			      EFX_FARCH_FILTER_MC_DEF :
2115			      EFX_FARCH_FILTER_UC_DEF);
2116		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2117		break;
2118
2119	default:
2120		return -EPROTONOSUPPORT;
2121	}
2122
2123	return 0;
2124}
2125
2126static void
2127efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2128			     const struct efx_farch_filter_spec *spec)
2129{
2130	bool is_full = false;
2131
2132	/* *gen_spec should be completely initialised, to be consistent
2133	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2134	 * it back to userland.
2135	 */
2136	memset(gen_spec, 0, sizeof(*gen_spec));
2137
2138	gen_spec->priority = spec->priority;
2139	gen_spec->flags = spec->flags;
2140	gen_spec->dmaq_id = spec->dmaq_id;
2141
2142	switch (spec->type) {
2143	case EFX_FARCH_FILTER_TCP_FULL:
2144	case EFX_FARCH_FILTER_UDP_FULL:
2145		is_full = true;
2146		/* fall through */
2147	case EFX_FARCH_FILTER_TCP_WILD:
2148	case EFX_FARCH_FILTER_UDP_WILD: {
2149		__be32 host1, host2;
2150		__be16 port1, port2;
2151
2152		gen_spec->match_flags =
2153			EFX_FILTER_MATCH_ETHER_TYPE |
2154			EFX_FILTER_MATCH_IP_PROTO |
2155			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2156		if (is_full)
2157			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2158						  EFX_FILTER_MATCH_REM_PORT);
2159		gen_spec->ether_type = htons(ETH_P_IP);
2160		gen_spec->ip_proto =
2161			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2162			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2163			IPPROTO_TCP : IPPROTO_UDP;
2164
2165		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2166		port1 = htons(spec->data[0]);
2167		host2 = htonl(spec->data[2]);
2168		port2 = htons(spec->data[1] >> 16);
2169		if (spec->flags & EFX_FILTER_FLAG_TX) {
2170			gen_spec->loc_host[0] = host1;
2171			gen_spec->rem_host[0] = host2;
2172		} else {
2173			gen_spec->loc_host[0] = host2;
2174			gen_spec->rem_host[0] = host1;
2175		}
2176		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2177		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2178			gen_spec->loc_port = port1;
2179			gen_spec->rem_port = port2;
2180		} else {
2181			gen_spec->loc_port = port2;
2182			gen_spec->rem_port = port1;
2183		}
2184
2185		break;
2186	}
2187
2188	case EFX_FARCH_FILTER_MAC_FULL:
2189		is_full = true;
2190		/* fall through */
2191	case EFX_FARCH_FILTER_MAC_WILD:
2192		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2193		if (is_full)
2194			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2195		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2196		gen_spec->loc_mac[1] = spec->data[2];
2197		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2198		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2199		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2200		gen_spec->loc_mac[5] = spec->data[1];
2201		gen_spec->outer_vid = htons(spec->data[0]);
2202		break;
2203
2204	case EFX_FARCH_FILTER_UC_DEF:
2205	case EFX_FARCH_FILTER_MC_DEF:
2206		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2207		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2208		break;
2209
2210	default:
2211		WARN_ON(1);
2212		break;
2213	}
2214}
2215
2216static void
2217efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2218			      struct efx_farch_filter_spec *spec)
2219{
2220	/* If there's only one channel then disable RSS for non VF
2221	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2222	 */
2223	spec->priority = EFX_FILTER_PRI_AUTO;
2224	spec->flags = (EFX_FILTER_FLAG_RX |
2225		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2226		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2227	spec->dmaq_id = 0;
2228}
2229
2230/* Build a filter entry and return its n-tuple key. */
2231static u32 efx_farch_filter_build(efx_oword_t *filter,
2232				  struct efx_farch_filter_spec *spec)
2233{
2234	u32 data3;
2235
2236	switch (efx_farch_filter_spec_table_id(spec)) {
2237	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2238		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2239			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2240		EFX_POPULATE_OWORD_7(
2241			*filter,
2242			FRF_BZ_RSS_EN,
2243			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2244			FRF_BZ_SCATTER_EN,
2245			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2246			FRF_BZ_TCP_UDP, is_udp,
2247			FRF_BZ_RXQ_ID, spec->dmaq_id,
2248			EFX_DWORD_2, spec->data[2],
2249			EFX_DWORD_1, spec->data[1],
2250			EFX_DWORD_0, spec->data[0]);
2251		data3 = is_udp;
2252		break;
2253	}
2254
2255	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2256		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2257		EFX_POPULATE_OWORD_7(
2258			*filter,
2259			FRF_CZ_RMFT_RSS_EN,
2260			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2261			FRF_CZ_RMFT_SCATTER_EN,
2262			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2263			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2264			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2265			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2266			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2267			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2268		data3 = is_wild;
2269		break;
2270	}
2271
2272	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2273		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2274		EFX_POPULATE_OWORD_5(*filter,
2275				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2276				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2277				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2278				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2279				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2280		data3 = is_wild | spec->dmaq_id << 1;
2281		break;
2282	}
2283
2284	default:
2285		BUG();
2286	}
2287
2288	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2289}
2290
2291static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2292				   const struct efx_farch_filter_spec *right)
2293{
2294	if (left->type != right->type ||
2295	    memcmp(left->data, right->data, sizeof(left->data)))
2296		return false;
2297
2298	if (left->flags & EFX_FILTER_FLAG_TX &&
2299	    left->dmaq_id != right->dmaq_id)
2300		return false;
2301
2302	return true;
2303}
2304
2305/*
2306 * Construct/deconstruct external filter IDs.  At least the RX filter
2307 * IDs must be ordered by matching priority, for RX NFC semantics.
2308 *
2309 * Deconstruction needs to be robust against invalid IDs so that
2310 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2311 * accept user-provided IDs.
2312 */
2313
2314#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2315
2316static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2317	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2318	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2319	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2320	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2321	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2322	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2323	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2324	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2325};
2326
2327static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2328	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2329	EFX_FARCH_FILTER_TABLE_RX_IP,
2330	EFX_FARCH_FILTER_TABLE_RX_MAC,
2331	EFX_FARCH_FILTER_TABLE_RX_MAC,
2332	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2333	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2334	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2335};
2336
2337#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2338#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2339
2340static inline u32
2341efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2342			 unsigned int index)
2343{
2344	unsigned int range;
2345
2346	range = efx_farch_filter_type_match_pri[spec->type];
2347	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2348		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2349
2350	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2351}
2352
2353static inline enum efx_farch_filter_table_id
2354efx_farch_filter_id_table_id(u32 id)
2355{
2356	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2357
2358	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2359		return efx_farch_filter_range_table[range];
2360	else
2361		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2362}
2363
2364static inline unsigned int efx_farch_filter_id_index(u32 id)
2365{
2366	return id & EFX_FARCH_FILTER_INDEX_MASK;
2367}
2368
2369u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2370{
2371	struct efx_farch_filter_state *state = efx->filter_state;
2372	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2373	enum efx_farch_filter_table_id table_id;
2374
2375	do {
2376		table_id = efx_farch_filter_range_table[range];
2377		if (state->table[table_id].size != 0)
2378			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2379				state->table[table_id].size;
2380	} while (range--);
2381
2382	return 0;
2383}
2384
2385s32 efx_farch_filter_insert(struct efx_nic *efx,
2386			    struct efx_filter_spec *gen_spec,
2387			    bool replace_equal)
2388{
2389	struct efx_farch_filter_state *state = efx->filter_state;
2390	struct efx_farch_filter_table *table;
2391	struct efx_farch_filter_spec spec;
2392	efx_oword_t filter;
2393	int rep_index, ins_index;
2394	unsigned int depth = 0;
2395	int rc;
2396
2397	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2398	if (rc)
2399		return rc;
2400
2401	down_write(&state->lock);
2402
2403	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2404	if (table->size == 0) {
2405		rc = -EINVAL;
2406		goto out_unlock;
2407	}
2408
2409	netif_vdbg(efx, hw, efx->net_dev,
2410		   "%s: type %d search_limit=%d", __func__, spec.type,
2411		   table->search_limit[spec.type]);
2412
2413	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2414		/* One filter spec per type */
2415		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2416		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2417			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2418		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2419		ins_index = rep_index;
2420	} else {
2421		/* Search concurrently for
2422		 * (1) a filter to be replaced (rep_index): any filter
2423		 *     with the same match values, up to the current
2424		 *     search depth for this type, and
2425		 * (2) the insertion point (ins_index): (1) or any
2426		 *     free slot before it or up to the maximum search
2427		 *     depth for this priority
2428		 * We fail if we cannot find (2).
2429		 *
2430		 * We can stop once either
2431		 * (a) we find (1), in which case we have definitely
2432		 *     found (2) as well; or
2433		 * (b) we have searched exhaustively for (1), and have
2434		 *     either found (2) or searched exhaustively for it
2435		 */
2436		u32 key = efx_farch_filter_build(&filter, &spec);
2437		unsigned int hash = efx_farch_filter_hash(key);
2438		unsigned int incr = efx_farch_filter_increment(key);
2439		unsigned int max_rep_depth = table->search_limit[spec.type];
2440		unsigned int max_ins_depth =
2441			spec.priority <= EFX_FILTER_PRI_HINT ?
2442			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2443			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2444		unsigned int i = hash & (table->size - 1);
2445
2446		ins_index = -1;
2447		depth = 1;
2448
2449		for (;;) {
2450			if (!test_bit(i, table->used_bitmap)) {
2451				if (ins_index < 0)
2452					ins_index = i;
2453			} else if (efx_farch_filter_equal(&spec,
2454							  &table->spec[i])) {
2455				/* Case (a) */
2456				if (ins_index < 0)
2457					ins_index = i;
2458				rep_index = i;
2459				break;
2460			}
2461
2462			if (depth >= max_rep_depth &&
2463			    (ins_index >= 0 || depth >= max_ins_depth)) {
2464				/* Case (b) */
2465				if (ins_index < 0) {
2466					rc = -EBUSY;
2467					goto out_unlock;
2468				}
2469				rep_index = -1;
2470				break;
2471			}
2472
2473			i = (i + incr) & (table->size - 1);
2474			++depth;
2475		}
2476	}
2477
2478	/* If we found a filter to be replaced, check whether we
2479	 * should do so
2480	 */
2481	if (rep_index >= 0) {
2482		struct efx_farch_filter_spec *saved_spec =
2483			&table->spec[rep_index];
2484
2485		if (spec.priority == saved_spec->priority && !replace_equal) {
2486			rc = -EEXIST;
2487			goto out_unlock;
2488		}
2489		if (spec.priority < saved_spec->priority) {
2490			rc = -EPERM;
2491			goto out_unlock;
2492		}
2493		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2494		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2495			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2496	}
2497
2498	/* Insert the filter */
2499	if (ins_index != rep_index) {
2500		__set_bit(ins_index, table->used_bitmap);
2501		++table->used;
2502	}
2503	table->spec[ins_index] = spec;
2504
2505	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2506		efx_farch_filter_push_rx_config(efx);
2507	} else {
2508		if (table->search_limit[spec.type] < depth) {
2509			table->search_limit[spec.type] = depth;
2510			if (spec.flags & EFX_FILTER_FLAG_TX)
2511				efx_farch_filter_push_tx_limits(efx);
2512			else
2513				efx_farch_filter_push_rx_config(efx);
2514		}
2515
2516		efx_writeo(efx, &filter,
2517			   table->offset + table->step * ins_index);
2518
2519		/* If we were able to replace a filter by inserting
2520		 * at a lower depth, clear the replaced filter
2521		 */
2522		if (ins_index != rep_index && rep_index >= 0)
2523			efx_farch_filter_table_clear_entry(efx, table,
2524							   rep_index);
2525	}
2526
2527	netif_vdbg(efx, hw, efx->net_dev,
2528		   "%s: filter type %d index %d rxq %u set",
2529		   __func__, spec.type, ins_index, spec.dmaq_id);
2530	rc = efx_farch_filter_make_id(&spec, ins_index);
2531
2532out_unlock:
2533	up_write(&state->lock);
2534	return rc;
2535}
2536
2537static void
2538efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2539				   struct efx_farch_filter_table *table,
2540				   unsigned int filter_idx)
2541{
2542	static efx_oword_t filter;
2543
2544	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2545	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2546
2547	__clear_bit(filter_idx, table->used_bitmap);
2548	--table->used;
2549	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2550
2551	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2552
2553	/* If this filter required a greater search depth than
2554	 * any other, the search limit for its type can now be
2555	 * decreased.  However, it is hard to determine that
2556	 * unless the table has become completely empty - in
2557	 * which case, all its search limits can be set to 0.
2558	 */
2559	if (unlikely(table->used == 0)) {
2560		memset(table->search_limit, 0, sizeof(table->search_limit));
2561		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2562			efx_farch_filter_push_tx_limits(efx);
2563		else
2564			efx_farch_filter_push_rx_config(efx);
2565	}
2566}
2567
2568static int efx_farch_filter_remove(struct efx_nic *efx,
2569				   struct efx_farch_filter_table *table,
2570				   unsigned int filter_idx,
2571				   enum efx_filter_priority priority)
2572{
2573	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2574
2575	if (!test_bit(filter_idx, table->used_bitmap) ||
2576	    spec->priority != priority)
2577		return -ENOENT;
2578
2579	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2580		efx_farch_filter_init_rx_auto(efx, spec);
2581		efx_farch_filter_push_rx_config(efx);
2582	} else {
2583		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2584	}
2585
2586	return 0;
2587}
2588
2589int efx_farch_filter_remove_safe(struct efx_nic *efx,
2590				 enum efx_filter_priority priority,
2591				 u32 filter_id)
2592{
2593	struct efx_farch_filter_state *state = efx->filter_state;
2594	enum efx_farch_filter_table_id table_id;
2595	struct efx_farch_filter_table *table;
2596	unsigned int filter_idx;
2597	struct efx_farch_filter_spec *spec;
2598	int rc;
2599
2600	table_id = efx_farch_filter_id_table_id(filter_id);
2601	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2602		return -ENOENT;
2603	table = &state->table[table_id];
2604
2605	filter_idx = efx_farch_filter_id_index(filter_id);
2606	if (filter_idx >= table->size)
2607		return -ENOENT;
2608	down_write(&state->lock);
2609	spec = &table->spec[filter_idx];
2610
2611	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612	up_write(&state->lock);
2613
2614	return rc;
2615}
2616
2617int efx_farch_filter_get_safe(struct efx_nic *efx,
2618			      enum efx_filter_priority priority,
2619			      u32 filter_id, struct efx_filter_spec *spec_buf)
2620{
2621	struct efx_farch_filter_state *state = efx->filter_state;
2622	enum efx_farch_filter_table_id table_id;
2623	struct efx_farch_filter_table *table;
2624	struct efx_farch_filter_spec *spec;
2625	unsigned int filter_idx;
2626	int rc = -ENOENT;
2627
2628	down_read(&state->lock);
2629
2630	table_id = efx_farch_filter_id_table_id(filter_id);
2631	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632		goto out_unlock;
2633	table = &state->table[table_id];
2634
2635	filter_idx = efx_farch_filter_id_index(filter_id);
2636	if (filter_idx >= table->size)
2637		goto out_unlock;
2638	spec = &table->spec[filter_idx];
2639
2640	if (test_bit(filter_idx, table->used_bitmap) &&
2641	    spec->priority == priority) {
2642		efx_farch_filter_to_gen_spec(spec_buf, spec);
2643		rc = 0;
2644	}
2645
2646out_unlock:
2647	up_read(&state->lock);
2648	return rc;
2649}
2650
2651static void
2652efx_farch_filter_table_clear(struct efx_nic *efx,
2653			     enum efx_farch_filter_table_id table_id,
2654			     enum efx_filter_priority priority)
2655{
2656	struct efx_farch_filter_state *state = efx->filter_state;
2657	struct efx_farch_filter_table *table = &state->table[table_id];
2658	unsigned int filter_idx;
2659
2660	down_write(&state->lock);
2661	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2662		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2663			efx_farch_filter_remove(efx, table,
2664						filter_idx, priority);
2665	}
2666	up_write(&state->lock);
2667}
2668
2669int efx_farch_filter_clear_rx(struct efx_nic *efx,
2670			       enum efx_filter_priority priority)
2671{
2672	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2673				     priority);
2674	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2675				     priority);
2676	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2677				     priority);
2678	return 0;
2679}
2680
2681u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2682				   enum efx_filter_priority priority)
2683{
2684	struct efx_farch_filter_state *state = efx->filter_state;
2685	enum efx_farch_filter_table_id table_id;
2686	struct efx_farch_filter_table *table;
2687	unsigned int filter_idx;
2688	u32 count = 0;
2689
2690	down_read(&state->lock);
2691
2692	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2693	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2694	     table_id++) {
2695		table = &state->table[table_id];
2696		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2697			if (test_bit(filter_idx, table->used_bitmap) &&
2698			    table->spec[filter_idx].priority == priority)
2699				++count;
2700		}
2701	}
2702
2703	up_read(&state->lock);
2704
2705	return count;
2706}
2707
2708s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2709				enum efx_filter_priority priority,
2710				u32 *buf, u32 size)
2711{
2712	struct efx_farch_filter_state *state = efx->filter_state;
2713	enum efx_farch_filter_table_id table_id;
2714	struct efx_farch_filter_table *table;
2715	unsigned int filter_idx;
2716	s32 count = 0;
2717
2718	down_read(&state->lock);
2719
2720	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2721	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2722	     table_id++) {
2723		table = &state->table[table_id];
2724		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2725			if (test_bit(filter_idx, table->used_bitmap) &&
2726			    table->spec[filter_idx].priority == priority) {
2727				if (count == size) {
2728					count = -EMSGSIZE;
2729					goto out;
2730				}
2731				buf[count++] = efx_farch_filter_make_id(
2732					&table->spec[filter_idx], filter_idx);
2733			}
2734		}
2735	}
2736out:
2737	up_read(&state->lock);
2738
2739	return count;
2740}
2741
2742/* Restore filter stater after reset */
2743void efx_farch_filter_table_restore(struct efx_nic *efx)
2744{
2745	struct efx_farch_filter_state *state = efx->filter_state;
2746	enum efx_farch_filter_table_id table_id;
2747	struct efx_farch_filter_table *table;
2748	efx_oword_t filter;
2749	unsigned int filter_idx;
2750
2751	down_write(&state->lock);
2752
2753	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2754		table = &state->table[table_id];
2755
2756		/* Check whether this is a regular register table */
2757		if (table->step == 0)
2758			continue;
2759
2760		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2761			if (!test_bit(filter_idx, table->used_bitmap))
2762				continue;
2763			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2764			efx_writeo(efx, &filter,
2765				   table->offset + table->step * filter_idx);
2766		}
2767	}
2768
2769	efx_farch_filter_push_rx_config(efx);
2770	efx_farch_filter_push_tx_limits(efx);
2771
2772	up_write(&state->lock);
2773}
2774
2775void efx_farch_filter_table_remove(struct efx_nic *efx)
2776{
2777	struct efx_farch_filter_state *state = efx->filter_state;
2778	enum efx_farch_filter_table_id table_id;
2779
2780	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2781		kfree(state->table[table_id].used_bitmap);
2782		vfree(state->table[table_id].spec);
2783	}
2784	kfree(state);
2785}
2786
2787int efx_farch_filter_table_probe(struct efx_nic *efx)
2788{
2789	struct efx_farch_filter_state *state;
2790	struct efx_farch_filter_table *table;
2791	unsigned table_id;
2792
2793	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2794	if (!state)
2795		return -ENOMEM;
2796	efx->filter_state = state;
2797
2798	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2799	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2800	table->offset = FR_BZ_RX_FILTER_TBL0;
2801	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2802	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2803
2804	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2805	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2806	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2807	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2808	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2809
2810	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2811	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2812	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2813
2814	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2815	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2816	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2817	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2818	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2819
2820	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2821		table = &state->table[table_id];
2822		if (table->size == 0)
2823			continue;
2824		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2825					     sizeof(unsigned long),
2826					     GFP_KERNEL);
2827		if (!table->used_bitmap)
2828			goto fail;
2829		table->spec = vzalloc(table->size * sizeof(*table->spec));
2830		if (!table->spec)
2831			goto fail;
2832	}
2833
2834	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2835	if (table->size) {
2836		/* RX default filters must always exist */
2837		struct efx_farch_filter_spec *spec;
2838		unsigned i;
2839
2840		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2841			spec = &table->spec[i];
2842			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2843			efx_farch_filter_init_rx_auto(efx, spec);
2844			__set_bit(i, table->used_bitmap);
2845		}
2846	}
2847
2848	efx_farch_filter_push_rx_config(efx);
2849
2850	return 0;
2851
2852fail:
2853	efx_farch_filter_table_remove(efx);
2854	return -ENOMEM;
2855}
2856
2857/* Update scatter enable flags for filters pointing to our own RX queues */
2858void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2859{
2860	struct efx_farch_filter_state *state = efx->filter_state;
2861	enum efx_farch_filter_table_id table_id;
2862	struct efx_farch_filter_table *table;
2863	efx_oword_t filter;
2864	unsigned int filter_idx;
2865
2866	down_write(&state->lock);
2867
2868	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2869	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2870	     table_id++) {
2871		table = &state->table[table_id];
2872
2873		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2874			if (!test_bit(filter_idx, table->used_bitmap) ||
2875			    table->spec[filter_idx].dmaq_id >=
2876			    efx->n_rx_channels)
2877				continue;
2878
2879			if (efx->rx_scatter)
2880				table->spec[filter_idx].flags |=
2881					EFX_FILTER_FLAG_RX_SCATTER;
2882			else
2883				table->spec[filter_idx].flags &=
2884					~EFX_FILTER_FLAG_RX_SCATTER;
2885
2886			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2887				/* Pushed by efx_farch_filter_push_rx_config() */
2888				continue;
2889
2890			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2891			efx_writeo(efx, &filter,
2892				   table->offset + table->step * filter_idx);
2893		}
2894	}
2895
2896	efx_farch_filter_push_rx_config(efx);
2897
2898	up_write(&state->lock);
2899}
2900
2901#ifdef CONFIG_RFS_ACCEL
2902
2903bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2904				     unsigned int index)
2905{
2906	struct efx_farch_filter_state *state = efx->filter_state;
2907	struct efx_farch_filter_table *table;
2908	bool ret = false, force = false;
2909	u16 arfs_id;
2910
2911	down_write(&state->lock);
2912	spin_lock_bh(&efx->rps_hash_lock);
2913	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914	if (test_bit(index, table->used_bitmap) &&
2915	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2916		struct efx_arfs_rule *rule = NULL;
2917		struct efx_filter_spec spec;
2918
2919		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2920		if (!efx->rps_hash_table) {
2921			/* In the absence of the table, we always returned 0 to
2922			 * ARFS, so use the same to query it.
2923			 */
2924			arfs_id = 0;
2925		} else {
2926			rule = efx_rps_hash_find(efx, &spec);
2927			if (!rule) {
2928				/* ARFS table doesn't know of this filter, remove it */
2929				force = true;
2930			} else {
2931				arfs_id = rule->arfs_id;
2932				if (!efx_rps_check_rule(rule, index, &force))
2933					goto out_unlock;
2934			}
2935		}
2936		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2937						 flow_id, arfs_id)) {
2938			if (rule)
2939				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2940			efx_rps_hash_del(efx, &spec);
2941			efx_farch_filter_table_clear_entry(efx, table, index);
2942			ret = true;
2943		}
2944	}
2945out_unlock:
2946	spin_unlock_bh(&efx->rps_hash_lock);
2947	up_write(&state->lock);
2948	return ret;
2949}
2950
2951#endif /* CONFIG_RFS_ACCEL */
2952
2953void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2954{
2955	struct net_device *net_dev = efx->net_dev;
2956	struct netdev_hw_addr *ha;
2957	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2958	u32 crc;
2959	int bit;
2960
2961	if (!efx_dev_registered(efx))
2962		return;
2963
2964	netif_addr_lock_bh(net_dev);
2965
2966	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2967
2968	/* Build multicast hash table */
2969	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2970		memset(mc_hash, 0xff, sizeof(*mc_hash));
2971	} else {
2972		memset(mc_hash, 0x00, sizeof(*mc_hash));
2973		netdev_for_each_mc_addr(ha, net_dev) {
2974			crc = ether_crc_le(ETH_ALEN, ha->addr);
2975			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2976			__set_bit_le(bit, mc_hash);
2977		}
2978
2979		/* Broadcast packets go through the multicast hash filter.
2980		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2981		 * so we always add bit 0xff to the mask.
2982		 */
2983		__set_bit_le(0xff, mc_hash);
2984	}
2985
2986	netif_addr_unlock_bh(net_dev);
2987}