Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/crc32.h>
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "sriov.h"
  24#include "siena_sriov.h"
  25#include "io.h"
  26#include "workarounds.h"
  27
  28/* Falcon-architecture (SFC9000-family) support */
  29
  30/**************************************************************************
  31 *
  32 * Configurable values
  33 *
  34 **************************************************************************
  35 */
  36
  37/* This is set to 16 for a good reason.  In summary, if larger than
  38 * 16, the descriptor cache holds more than a default socket
  39 * buffer's worth of packets (for UDP we can only have at most one
  40 * socket buffer's worth outstanding).  This combined with the fact
  41 * that we only get 1 TX event per descriptor cache means the NIC
  42 * goes idle.
  43 */
  44#define TX_DC_ENTRIES 16
  45#define TX_DC_ENTRIES_ORDER 1
  46
  47#define RX_DC_ENTRIES 64
  48#define RX_DC_ENTRIES_ORDER 3
  49
  50/* If EFX_MAX_INT_ERRORS internal errors occur within
  51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  52 * disable it.
  53 */
  54#define EFX_INT_ERROR_EXPIRE 3600
  55#define EFX_MAX_INT_ERRORS 5
  56
  57/* Depth of RX flush request fifo */
  58#define EFX_RX_FLUSH_COUNT 4
  59
  60/* Driver generated events */
  61#define _EFX_CHANNEL_MAGIC_TEST		0x000101
  62#define _EFX_CHANNEL_MAGIC_FILL		0x000102
  63#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
  64#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
  65
  66#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
  67#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
  68
  69#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
  70	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  71#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
  72	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
  73			   efx_rx_queue_index(_rx_queue))
  74#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
  75	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
  76			   efx_rx_queue_index(_rx_queue))
  77#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
  78	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
  79			   (_tx_queue)->queue)
  80
  81static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  82
  83/**************************************************************************
  84 *
  85 * Hardware access
  86 *
  87 **************************************************************************/
  88
  89static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  90				     unsigned int index)
  91{
  92	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  93			value, index);
  94}
  95
  96static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  97				     const efx_oword_t *mask)
  98{
  99	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 100		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 101}
 102
 103int efx_farch_test_registers(struct efx_nic *efx,
 104			     const struct efx_farch_register_test *regs,
 105			     size_t n_regs)
 106{
 107	unsigned address = 0;
 108	int i, j;
 109	efx_oword_t mask, imask, original, reg, buf;
 110
 111	for (i = 0; i < n_regs; ++i) {
 112		address = regs[i].address;
 113		mask = imask = regs[i].mask;
 114		EFX_INVERT_OWORD(imask);
 115
 116		efx_reado(efx, &original, address);
 117
 118		/* bit sweep on and off */
 119		for (j = 0; j < 128; j++) {
 120			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 121				continue;
 122
 123			/* Test this testable bit can be set in isolation */
 124			EFX_AND_OWORD(reg, original, mask);
 125			EFX_SET_OWORD32(reg, j, j, 1);
 126
 127			efx_writeo(efx, &reg, address);
 128			efx_reado(efx, &buf, address);
 129
 130			if (efx_masked_compare_oword(&reg, &buf, &mask))
 131				goto fail;
 132
 133			/* Test this testable bit can be cleared in isolation */
 134			EFX_OR_OWORD(reg, original, mask);
 135			EFX_SET_OWORD32(reg, j, j, 0);
 136
 137			efx_writeo(efx, &reg, address);
 138			efx_reado(efx, &buf, address);
 139
 140			if (efx_masked_compare_oword(&reg, &buf, &mask))
 141				goto fail;
 142		}
 143
 144		efx_writeo(efx, &original, address);
 145	}
 146
 147	return 0;
 148
 149fail:
 150	netif_err(efx, hw, efx->net_dev,
 151		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 152		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 153		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 154	return -EIO;
 155}
 156
 157/**************************************************************************
 158 *
 159 * Special buffer handling
 160 * Special buffers are used for event queues and the TX and RX
 161 * descriptor rings.
 162 *
 163 *************************************************************************/
 164
 165/*
 166 * Initialise a special buffer
 167 *
 168 * This will define a buffer (previously allocated via
 169 * efx_alloc_special_buffer()) in the buffer table, allowing
 170 * it to be used for event queues, descriptor rings etc.
 171 */
 172static void
 173efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 174{
 175	efx_qword_t buf_desc;
 176	unsigned int index;
 177	dma_addr_t dma_addr;
 178	int i;
 179
 180	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
 181
 182	/* Write buffer descriptors to NIC */
 183	for (i = 0; i < buffer->entries; i++) {
 184		index = buffer->index + i;
 185		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 186		netif_dbg(efx, probe, efx->net_dev,
 187			  "mapping special buffer %d at %llx\n",
 188			  index, (unsigned long long)dma_addr);
 189		EFX_POPULATE_QWORD_3(buf_desc,
 190				     FRF_AZ_BUF_ADR_REGION, 0,
 191				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 192				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 193		efx_write_buf_tbl(efx, &buf_desc, index);
 194	}
 195}
 196
 197/* Unmaps a buffer and clears the buffer table entries */
 198static void
 199efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 200{
 201	efx_oword_t buf_tbl_upd;
 202	unsigned int start = buffer->index;
 203	unsigned int end = (buffer->index + buffer->entries - 1);
 204
 205	if (!buffer->entries)
 206		return;
 207
 208	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 209		  buffer->index, buffer->index + buffer->entries - 1);
 210
 211	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 212			     FRF_AZ_BUF_UPD_CMD, 0,
 213			     FRF_AZ_BUF_CLR_CMD, 1,
 214			     FRF_AZ_BUF_CLR_END_ID, end,
 215			     FRF_AZ_BUF_CLR_START_ID, start);
 216	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 217}
 218
 219/*
 220 * Allocate a new special buffer
 221 *
 222 * This allocates memory for a new buffer, clears it and allocates a
 223 * new buffer ID range.  It does not write into the buffer table.
 224 *
 225 * This call will allocate 4KB buffers, since 8KB buffers can't be
 226 * used for event queues and descriptor rings.
 227 */
 228static int efx_alloc_special_buffer(struct efx_nic *efx,
 229				    struct efx_special_buffer *buffer,
 230				    unsigned int len)
 231{
 232#ifdef CONFIG_SFC_SRIOV
 233	struct siena_nic_data *nic_data = efx->nic_data;
 234#endif
 235	len = ALIGN(len, EFX_BUF_SIZE);
 236
 237	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 238		return -ENOMEM;
 239	buffer->entries = len / EFX_BUF_SIZE;
 240	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 241
 242	/* Select new buffer ID */
 243	buffer->index = efx->next_buffer_table;
 244	efx->next_buffer_table += buffer->entries;
 245#ifdef CONFIG_SFC_SRIOV
 246	BUG_ON(efx_siena_sriov_enabled(efx) &&
 247	       nic_data->vf_buftbl_base < efx->next_buffer_table);
 248#endif
 249
 250	netif_dbg(efx, probe, efx->net_dev,
 251		  "allocating special buffers %d-%d at %llx+%x "
 252		  "(virt %p phys %llx)\n", buffer->index,
 253		  buffer->index + buffer->entries - 1,
 254		  (u64)buffer->buf.dma_addr, len,
 255		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 256
 257	return 0;
 258}
 259
 260static void
 261efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 262{
 263	if (!buffer->buf.addr)
 264		return;
 265
 266	netif_dbg(efx, hw, efx->net_dev,
 267		  "deallocating special buffers %d-%d at %llx+%x "
 268		  "(virt %p phys %llx)\n", buffer->index,
 269		  buffer->index + buffer->entries - 1,
 270		  (u64)buffer->buf.dma_addr, buffer->buf.len,
 271		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 272
 273	efx_nic_free_buffer(efx, &buffer->buf);
 274	buffer->entries = 0;
 275}
 276
 277/**************************************************************************
 278 *
 279 * TX path
 280 *
 281 **************************************************************************/
 282
 283/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 284static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 285{
 286	unsigned write_ptr;
 287	efx_dword_t reg;
 288
 289	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 290	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 291	efx_writed_page(tx_queue->efx, &reg,
 292			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 293}
 294
 295/* Write pointer and first descriptor for TX descriptor ring */
 296static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 297					  const efx_qword_t *txd)
 298{
 299	unsigned write_ptr;
 300	efx_oword_t reg;
 301
 302	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 303	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 304
 305	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 306	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 307			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 308	reg.qword[0] = *txd;
 309	efx_writeo_page(tx_queue->efx, &reg,
 310			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 311}
 312
 313
 314/* For each entry inserted into the software descriptor ring, create a
 315 * descriptor in the hardware TX descriptor ring (in host memory), and
 316 * write a doorbell.
 317 */
 318void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 319{
 320	struct efx_tx_buffer *buffer;
 321	efx_qword_t *txd;
 322	unsigned write_ptr;
 323	unsigned old_write_count = tx_queue->write_count;
 324
 325	tx_queue->xmit_more_available = false;
 326	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 327		return;
 328
 329	do {
 330		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 331		buffer = &tx_queue->buffer[write_ptr];
 332		txd = efx_tx_desc(tx_queue, write_ptr);
 333		++tx_queue->write_count;
 334
 335		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 336
 337		/* Create TX descriptor ring entry */
 338		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 339		EFX_POPULATE_QWORD_4(*txd,
 340				     FSF_AZ_TX_KER_CONT,
 341				     buffer->flags & EFX_TX_BUF_CONT,
 342				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 343				     FSF_AZ_TX_KER_BUF_REGION, 0,
 344				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 345	} while (tx_queue->write_count != tx_queue->insert_count);
 346
 347	wmb(); /* Ensure descriptors are written before they are fetched */
 348
 349	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 350		txd = efx_tx_desc(tx_queue,
 351				  old_write_count & tx_queue->ptr_mask);
 352		efx_farch_push_tx_desc(tx_queue, txd);
 353		++tx_queue->pushes;
 354	} else {
 355		efx_farch_notify_tx_desc(tx_queue);
 356	}
 357}
 358
 359unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 360				    dma_addr_t dma_addr, unsigned int len)
 361{
 362	/* Don't cross 4K boundaries with descriptors. */
 363	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
 364
 365	len = min(limit, len);
 366
 367	return len;
 368}
 369
 370
 371/* Allocate hardware resources for a TX queue */
 372int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 373{
 374	struct efx_nic *efx = tx_queue->efx;
 375	unsigned entries;
 376
 377	entries = tx_queue->ptr_mask + 1;
 378	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 379					entries * sizeof(efx_qword_t));
 380}
 381
 382void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 383{
 384	int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 385	struct efx_nic *efx = tx_queue->efx;
 386	efx_oword_t reg;
 387
 388	/* Pin TX descriptor ring */
 389	efx_init_special_buffer(efx, &tx_queue->txd);
 390
 391	/* Push TX descriptor ring to card */
 392	EFX_POPULATE_OWORD_10(reg,
 393			      FRF_AZ_TX_DESCQ_EN, 1,
 394			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 395			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 396			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 397			      FRF_AZ_TX_DESCQ_EVQ_ID,
 398			      tx_queue->channel->channel,
 399			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 400			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 401			      FRF_AZ_TX_DESCQ_SIZE,
 402			      __ffs(tx_queue->txd.entries),
 403			      FRF_AZ_TX_DESCQ_TYPE, 0,
 404			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 405
 406	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 407	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
 408
 409	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 410			 tx_queue->queue);
 411
 412	EFX_POPULATE_OWORD_1(reg,
 413			     FRF_BZ_TX_PACE,
 414			     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 415			     FFE_BZ_TX_PACE_OFF :
 416			     FFE_BZ_TX_PACE_RESERVED);
 417	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
 418}
 419
 420static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 421{
 422	struct efx_nic *efx = tx_queue->efx;
 423	efx_oword_t tx_flush_descq;
 424
 425	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 426	atomic_set(&tx_queue->flush_outstanding, 1);
 427
 428	EFX_POPULATE_OWORD_2(tx_flush_descq,
 429			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 430			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 431	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 432}
 433
 434void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 435{
 436	struct efx_nic *efx = tx_queue->efx;
 437	efx_oword_t tx_desc_ptr;
 438
 439	/* Remove TX descriptor ring from card */
 440	EFX_ZERO_OWORD(tx_desc_ptr);
 441	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 442			 tx_queue->queue);
 443
 444	/* Unpin TX descriptor ring */
 445	efx_fini_special_buffer(efx, &tx_queue->txd);
 446}
 447
 448/* Free buffers backing TX queue */
 449void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 450{
 451	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 452}
 453
 454/**************************************************************************
 455 *
 456 * RX path
 457 *
 458 **************************************************************************/
 459
 460/* This creates an entry in the RX descriptor queue */
 461static inline void
 462efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 463{
 464	struct efx_rx_buffer *rx_buf;
 465	efx_qword_t *rxd;
 466
 467	rxd = efx_rx_desc(rx_queue, index);
 468	rx_buf = efx_rx_buffer(rx_queue, index);
 469	EFX_POPULATE_QWORD_3(*rxd,
 470			     FSF_AZ_RX_KER_BUF_SIZE,
 471			     rx_buf->len -
 472			     rx_queue->efx->type->rx_buffer_padding,
 473			     FSF_AZ_RX_KER_BUF_REGION, 0,
 474			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 475}
 476
 477/* This writes to the RX_DESC_WPTR register for the specified receive
 478 * descriptor ring.
 479 */
 480void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 481{
 482	struct efx_nic *efx = rx_queue->efx;
 483	efx_dword_t reg;
 484	unsigned write_ptr;
 485
 486	while (rx_queue->notified_count != rx_queue->added_count) {
 487		efx_farch_build_rx_desc(
 488			rx_queue,
 489			rx_queue->notified_count & rx_queue->ptr_mask);
 490		++rx_queue->notified_count;
 491	}
 492
 493	wmb();
 494	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 495	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 496	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 497			efx_rx_queue_index(rx_queue));
 498}
 499
 500int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 501{
 502	struct efx_nic *efx = rx_queue->efx;
 503	unsigned entries;
 504
 505	entries = rx_queue->ptr_mask + 1;
 506	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 507					entries * sizeof(efx_qword_t));
 508}
 509
 510void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 511{
 512	efx_oword_t rx_desc_ptr;
 513	struct efx_nic *efx = rx_queue->efx;
 514	bool jumbo_en;
 515
 516	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
 517	jumbo_en = efx->rx_scatter;
 518
 519	netif_dbg(efx, hw, efx->net_dev,
 520		  "RX queue %d ring in special buffers %d-%d\n",
 521		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 522		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 523
 524	rx_queue->scatter_n = 0;
 525
 526	/* Pin RX descriptor ring */
 527	efx_init_special_buffer(efx, &rx_queue->rxd);
 528
 529	/* Push RX descriptor ring to card */
 530	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 531			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
 532			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
 533			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 534			      FRF_AZ_RX_DESCQ_EVQ_ID,
 535			      efx_rx_queue_channel(rx_queue)->channel,
 536			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 537			      FRF_AZ_RX_DESCQ_LABEL,
 538			      efx_rx_queue_index(rx_queue),
 539			      FRF_AZ_RX_DESCQ_SIZE,
 540			      __ffs(rx_queue->rxd.entries),
 541			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 542			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 543			      FRF_AZ_RX_DESCQ_EN, 1);
 544	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 545			 efx_rx_queue_index(rx_queue));
 546}
 547
 548static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 549{
 550	struct efx_nic *efx = rx_queue->efx;
 551	efx_oword_t rx_flush_descq;
 552
 553	EFX_POPULATE_OWORD_2(rx_flush_descq,
 554			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 555			     FRF_AZ_RX_FLUSH_DESCQ,
 556			     efx_rx_queue_index(rx_queue));
 557	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 558}
 559
 560void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 561{
 562	efx_oword_t rx_desc_ptr;
 563	struct efx_nic *efx = rx_queue->efx;
 564
 565	/* Remove RX descriptor ring from card */
 566	EFX_ZERO_OWORD(rx_desc_ptr);
 567	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 568			 efx_rx_queue_index(rx_queue));
 569
 570	/* Unpin RX descriptor ring */
 571	efx_fini_special_buffer(efx, &rx_queue->rxd);
 572}
 573
 574/* Free buffers backing RX queue */
 575void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 576{
 577	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 578}
 579
 580/**************************************************************************
 581 *
 582 * Flush handling
 583 *
 584 **************************************************************************/
 585
 586/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 587 * or more RX flushes can be kicked off.
 588 */
 589static bool efx_farch_flush_wake(struct efx_nic *efx)
 590{
 591	/* Ensure that all updates are visible to efx_farch_flush_queues() */
 592	smp_mb();
 593
 594	return (atomic_read(&efx->active_queues) == 0 ||
 595		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 596		 && atomic_read(&efx->rxq_flush_pending) > 0));
 597}
 598
 599static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 600{
 601	bool i = true;
 602	efx_oword_t txd_ptr_tbl;
 603	struct efx_channel *channel;
 604	struct efx_tx_queue *tx_queue;
 605
 606	efx_for_each_channel(channel, efx) {
 607		efx_for_each_channel_tx_queue(tx_queue, channel) {
 608			efx_reado_table(efx, &txd_ptr_tbl,
 609					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 610			if (EFX_OWORD_FIELD(txd_ptr_tbl,
 611					    FRF_AZ_TX_DESCQ_FLUSH) ||
 612			    EFX_OWORD_FIELD(txd_ptr_tbl,
 613					    FRF_AZ_TX_DESCQ_EN)) {
 614				netif_dbg(efx, hw, efx->net_dev,
 615					  "flush did not complete on TXQ %d\n",
 616					  tx_queue->queue);
 617				i = false;
 618			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 619						  1, 0)) {
 620				/* The flush is complete, but we didn't
 621				 * receive a flush completion event
 622				 */
 623				netif_dbg(efx, hw, efx->net_dev,
 624					  "flush complete on TXQ %d, so drain "
 625					  "the queue\n", tx_queue->queue);
 626				/* Don't need to increment active_queues as it
 627				 * has already been incremented for the queues
 628				 * which did not drain
 629				 */
 630				efx_farch_magic_event(channel,
 631						      EFX_CHANNEL_MAGIC_TX_DRAIN(
 632							      tx_queue));
 633			}
 634		}
 635	}
 636
 637	return i;
 638}
 639
 640/* Flush all the transmit queues, and continue flushing receive queues until
 641 * they're all flushed. Wait for the DRAIN events to be received so that there
 642 * are no more RX and TX events left on any channel. */
 643static int efx_farch_do_flush(struct efx_nic *efx)
 644{
 645	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 646	struct efx_channel *channel;
 647	struct efx_rx_queue *rx_queue;
 648	struct efx_tx_queue *tx_queue;
 649	int rc = 0;
 650
 651	efx_for_each_channel(channel, efx) {
 652		efx_for_each_channel_tx_queue(tx_queue, channel) {
 653			efx_farch_flush_tx_queue(tx_queue);
 654		}
 655		efx_for_each_channel_rx_queue(rx_queue, channel) {
 656			rx_queue->flush_pending = true;
 657			atomic_inc(&efx->rxq_flush_pending);
 658		}
 659	}
 660
 661	while (timeout && atomic_read(&efx->active_queues) > 0) {
 662		/* If SRIOV is enabled, then offload receive queue flushing to
 663		 * the firmware (though we will still have to poll for
 664		 * completion). If that fails, fall back to the old scheme.
 665		 */
 666		if (efx_siena_sriov_enabled(efx)) {
 667			rc = efx_mcdi_flush_rxqs(efx);
 668			if (!rc)
 669				goto wait;
 670		}
 671
 672		/* The hardware supports four concurrent rx flushes, each of
 673		 * which may need to be retried if there is an outstanding
 674		 * descriptor fetch
 675		 */
 676		efx_for_each_channel(channel, efx) {
 677			efx_for_each_channel_rx_queue(rx_queue, channel) {
 678				if (atomic_read(&efx->rxq_flush_outstanding) >=
 679				    EFX_RX_FLUSH_COUNT)
 680					break;
 681
 682				if (rx_queue->flush_pending) {
 683					rx_queue->flush_pending = false;
 684					atomic_dec(&efx->rxq_flush_pending);
 685					atomic_inc(&efx->rxq_flush_outstanding);
 686					efx_farch_flush_rx_queue(rx_queue);
 687				}
 688			}
 689		}
 690
 691	wait:
 692		timeout = wait_event_timeout(efx->flush_wq,
 693					     efx_farch_flush_wake(efx),
 694					     timeout);
 695	}
 696
 697	if (atomic_read(&efx->active_queues) &&
 698	    !efx_check_tx_flush_complete(efx)) {
 699		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 700			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 701			  atomic_read(&efx->rxq_flush_outstanding),
 702			  atomic_read(&efx->rxq_flush_pending));
 703		rc = -ETIMEDOUT;
 704
 705		atomic_set(&efx->active_queues, 0);
 706		atomic_set(&efx->rxq_flush_pending, 0);
 707		atomic_set(&efx->rxq_flush_outstanding, 0);
 708	}
 709
 710	return rc;
 711}
 712
 713int efx_farch_fini_dmaq(struct efx_nic *efx)
 714{
 715	struct efx_channel *channel;
 716	struct efx_tx_queue *tx_queue;
 717	struct efx_rx_queue *rx_queue;
 718	int rc = 0;
 719
 720	/* Do not attempt to write to the NIC during EEH recovery */
 721	if (efx->state != STATE_RECOVERY) {
 722		/* Only perform flush if DMA is enabled */
 723		if (efx->pci_dev->is_busmaster) {
 724			efx->type->prepare_flush(efx);
 725			rc = efx_farch_do_flush(efx);
 726			efx->type->finish_flush(efx);
 727		}
 728
 729		efx_for_each_channel(channel, efx) {
 730			efx_for_each_channel_rx_queue(rx_queue, channel)
 731				efx_farch_rx_fini(rx_queue);
 732			efx_for_each_channel_tx_queue(tx_queue, channel)
 733				efx_farch_tx_fini(tx_queue);
 734		}
 735	}
 736
 737	return rc;
 738}
 739
 740/* Reset queue and flush accounting after FLR
 741 *
 742 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 743 * mastering was disabled), in which case we don't receive (RXQ) flush
 744 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 745 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 746 * events were received, and we didn't go through efx_check_tx_flush_complete())
 747 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 748 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 749 * for batched flush requests; and the efx->active_queues gets messed up because
 750 * we keep incrementing for the newly initialised queues, but it never went to
 751 * zero previously.  Then we get a timeout every time we try to restart the
 752 * queues, as it doesn't go back to zero when we should be flushing the queues.
 753 */
 754void efx_farch_finish_flr(struct efx_nic *efx)
 755{
 756	atomic_set(&efx->rxq_flush_pending, 0);
 757	atomic_set(&efx->rxq_flush_outstanding, 0);
 758	atomic_set(&efx->active_queues, 0);
 759}
 760
 761
 762/**************************************************************************
 763 *
 764 * Event queue processing
 765 * Event queues are processed by per-channel tasklets.
 766 *
 767 **************************************************************************/
 768
 769/* Update a channel's event queue's read pointer (RPTR) register
 770 *
 771 * This writes the EVQ_RPTR_REG register for the specified channel's
 772 * event queue.
 773 */
 774void efx_farch_ev_read_ack(struct efx_channel *channel)
 775{
 776	efx_dword_t reg;
 777	struct efx_nic *efx = channel->efx;
 778
 779	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 780			     channel->eventq_read_ptr & channel->eventq_mask);
 781
 782	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 783	 * of 4 bytes, but it is really 16 bytes just like later revisions.
 784	 */
 785	efx_writed(efx, &reg,
 786		   efx->type->evq_rptr_tbl_base +
 787		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 788}
 789
 790/* Use HW to insert a SW defined event */
 791void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 792			      efx_qword_t *event)
 793{
 794	efx_oword_t drv_ev_reg;
 795
 796	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 797		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 798	drv_ev_reg.u32[0] = event->u32[0];
 799	drv_ev_reg.u32[1] = event->u32[1];
 800	drv_ev_reg.u32[2] = 0;
 801	drv_ev_reg.u32[3] = 0;
 802	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 803	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 804}
 805
 806static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 807{
 808	efx_qword_t event;
 809
 810	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 811			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 812			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 813	efx_farch_generate_event(channel->efx, channel->channel, &event);
 814}
 815
 816/* Handle a transmit completion event
 817 *
 818 * The NIC batches TX completion events; the message we receive is of
 819 * the form "complete all TX events up to this index".
 820 */
 821static int
 822efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 823{
 824	unsigned int tx_ev_desc_ptr;
 825	unsigned int tx_ev_q_label;
 826	struct efx_tx_queue *tx_queue;
 827	struct efx_nic *efx = channel->efx;
 828	int tx_packets = 0;
 829
 830	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 831		return 0;
 832
 833	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 834		/* Transmit completion */
 835		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 836		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 837		tx_queue = efx_channel_get_tx_queue(
 838			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 839		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 840			      tx_queue->ptr_mask);
 841		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 842	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 843		/* Rewrite the FIFO write pointer */
 844		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 845		tx_queue = efx_channel_get_tx_queue(
 846			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 847
 848		netif_tx_lock(efx->net_dev);
 849		efx_farch_notify_tx_desc(tx_queue);
 850		netif_tx_unlock(efx->net_dev);
 851	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 852		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 853	} else {
 854		netif_err(efx, tx_err, efx->net_dev,
 855			  "channel %d unexpected TX event "
 856			  EFX_QWORD_FMT"\n", channel->channel,
 857			  EFX_QWORD_VAL(*event));
 858	}
 859
 860	return tx_packets;
 861}
 862
 863/* Detect errors included in the rx_evt_pkt_ok bit. */
 864static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 865				      const efx_qword_t *event)
 866{
 867	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 868	struct efx_nic *efx = rx_queue->efx;
 869	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 870	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 871	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
 872	bool rx_ev_other_err, rx_ev_pause_frm;
 873	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 874	unsigned rx_ev_pkt_type;
 875
 876	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 877	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 878	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 879	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 880	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 881						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 882	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 883						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 884	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 885						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 886	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 887	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 888	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 889
 890	/* Every error apart from tobe_disc and pause_frm */
 891	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
 892			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 893			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 894
 895	/* Count errors that are not in MAC stats.  Ignore expected
 896	 * checksum errors during self-test. */
 897	if (rx_ev_frm_trunc)
 898		++channel->n_rx_frm_trunc;
 899	else if (rx_ev_tobe_disc)
 900		++channel->n_rx_tobe_disc;
 901	else if (!efx->loopback_selftest) {
 902		if (rx_ev_ip_hdr_chksum_err)
 903			++channel->n_rx_ip_hdr_chksum_err;
 904		else if (rx_ev_tcp_udp_chksum_err)
 905			++channel->n_rx_tcp_udp_chksum_err;
 906	}
 907
 908	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 909	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 910	 * to a FIFO overflow.
 911	 */
 912#ifdef DEBUG
 913	if (rx_ev_other_err && net_ratelimit()) {
 914		netif_dbg(efx, rx_err, efx->net_dev,
 915			  " RX queue %d unexpected RX event "
 916			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
 917			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 918			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 919			  rx_ev_ip_hdr_chksum_err ?
 920			  " [IP_HDR_CHKSUM_ERR]" : "",
 921			  rx_ev_tcp_udp_chksum_err ?
 922			  " [TCP_UDP_CHKSUM_ERR]" : "",
 923			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 924			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 925			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 926			  rx_ev_pause_frm ? " [PAUSE]" : "");
 927	}
 928#endif
 929
 930	/* The frame must be discarded if any of these are true. */
 931	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
 932		rx_ev_tobe_disc | rx_ev_pause_frm) ?
 933		EFX_RX_PKT_DISCARD : 0;
 934}
 935
 936/* Handle receive events that are not in-order. Return true if this
 937 * can be handled as a partial packet discard, false if it's more
 938 * serious.
 939 */
 940static bool
 941efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 942{
 943	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 944	struct efx_nic *efx = rx_queue->efx;
 945	unsigned expected, dropped;
 946
 947	if (rx_queue->scatter_n &&
 948	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 949		      rx_queue->ptr_mask)) {
 950		++channel->n_rx_nodesc_trunc;
 951		return true;
 952	}
 953
 954	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 955	dropped = (index - expected) & rx_queue->ptr_mask;
 956	netif_info(efx, rx_err, efx->net_dev,
 957		   "dropped %d events (index=%d expected=%d)\n",
 958		   dropped, index, expected);
 959
 960	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 961	return false;
 962}
 963
 964/* Handle a packet received event
 965 *
 966 * The NIC gives a "discard" flag if it's a unicast packet with the
 967 * wrong destination address
 968 * Also "is multicast" and "matches multicast filter" flags can be used to
 969 * discard non-matching multicast packets.
 970 */
 971static void
 972efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 973{
 974	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 975	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 976	unsigned expected_ptr;
 977	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 978	u16 flags;
 979	struct efx_rx_queue *rx_queue;
 980	struct efx_nic *efx = channel->efx;
 981
 982	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 983		return;
 984
 985	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 986	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 987	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 988		channel->channel);
 989
 990	rx_queue = efx_channel_get_rx_queue(channel);
 991
 992	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 993	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 994			rx_queue->ptr_mask);
 995
 996	/* Check for partial drops and other errors */
 997	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 998	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 999		if (rx_ev_desc_ptr != expected_ptr &&
1000		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1001			return;
1002
1003		/* Discard all pending fragments */
1004		if (rx_queue->scatter_n) {
1005			efx_rx_packet(
1006				rx_queue,
1007				rx_queue->removed_count & rx_queue->ptr_mask,
1008				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1009			rx_queue->removed_count += rx_queue->scatter_n;
1010			rx_queue->scatter_n = 0;
1011		}
1012
1013		/* Return if there is no new fragment */
1014		if (rx_ev_desc_ptr != expected_ptr)
1015			return;
1016
1017		/* Discard new fragment if not SOP */
1018		if (!rx_ev_sop) {
1019			efx_rx_packet(
1020				rx_queue,
1021				rx_queue->removed_count & rx_queue->ptr_mask,
1022				1, 0, EFX_RX_PKT_DISCARD);
1023			++rx_queue->removed_count;
1024			return;
1025		}
1026	}
1027
1028	++rx_queue->scatter_n;
1029	if (rx_ev_cont)
1030		return;
1031
1032	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1033	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1034	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1035
1036	if (likely(rx_ev_pkt_ok)) {
1037		/* If packet is marked as OK then we can rely on the
1038		 * hardware checksum and classification.
1039		 */
1040		flags = 0;
1041		switch (rx_ev_hdr_type) {
1042		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1043			flags |= EFX_RX_PKT_TCP;
1044			/* fall through */
1045		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1046			flags |= EFX_RX_PKT_CSUMMED;
1047			/* fall through */
1048		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1049		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1050			break;
1051		}
1052	} else {
1053		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1054	}
1055
1056	/* Detect multicast packets that didn't match the filter */
1057	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1058	if (rx_ev_mcast_pkt) {
1059		unsigned int rx_ev_mcast_hash_match =
1060			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1061
1062		if (unlikely(!rx_ev_mcast_hash_match)) {
1063			++channel->n_rx_mcast_mismatch;
1064			flags |= EFX_RX_PKT_DISCARD;
1065		}
1066	}
1067
1068	channel->irq_mod_score += 2;
1069
1070	/* Handle received packet */
1071	efx_rx_packet(rx_queue,
1072		      rx_queue->removed_count & rx_queue->ptr_mask,
1073		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1074	rx_queue->removed_count += rx_queue->scatter_n;
1075	rx_queue->scatter_n = 0;
1076}
1077
1078/* If this flush done event corresponds to a &struct efx_tx_queue, then
1079 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1080 * of all transmit completions.
1081 */
1082static void
1083efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1084{
1085	struct efx_tx_queue *tx_queue;
1086	int qid;
1087
1088	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1089	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1090		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1091					    qid % EFX_TXQ_TYPES);
1092		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1093			efx_farch_magic_event(tx_queue->channel,
1094					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1095		}
1096	}
1097}
1098
1099/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1100 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1101 * the RX queue back to the mask of RX queues in need of flushing.
1102 */
1103static void
1104efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1105{
1106	struct efx_channel *channel;
1107	struct efx_rx_queue *rx_queue;
1108	int qid;
1109	bool failed;
1110
1111	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1112	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1113	if (qid >= efx->n_channels)
1114		return;
1115	channel = efx_get_channel(efx, qid);
1116	if (!efx_channel_has_rx_queue(channel))
1117		return;
1118	rx_queue = efx_channel_get_rx_queue(channel);
1119
1120	if (failed) {
1121		netif_info(efx, hw, efx->net_dev,
1122			   "RXQ %d flush retry\n", qid);
1123		rx_queue->flush_pending = true;
1124		atomic_inc(&efx->rxq_flush_pending);
1125	} else {
1126		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1127				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1128	}
1129	atomic_dec(&efx->rxq_flush_outstanding);
1130	if (efx_farch_flush_wake(efx))
1131		wake_up(&efx->flush_wq);
1132}
1133
1134static void
1135efx_farch_handle_drain_event(struct efx_channel *channel)
1136{
1137	struct efx_nic *efx = channel->efx;
1138
1139	WARN_ON(atomic_read(&efx->active_queues) == 0);
1140	atomic_dec(&efx->active_queues);
1141	if (efx_farch_flush_wake(efx))
1142		wake_up(&efx->flush_wq);
1143}
1144
1145static void efx_farch_handle_generated_event(struct efx_channel *channel,
1146					     efx_qword_t *event)
1147{
1148	struct efx_nic *efx = channel->efx;
1149	struct efx_rx_queue *rx_queue =
1150		efx_channel_has_rx_queue(channel) ?
1151		efx_channel_get_rx_queue(channel) : NULL;
1152	unsigned magic, code;
1153
1154	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1155	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1156
1157	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1158		channel->event_test_cpu = raw_smp_processor_id();
1159	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1160		/* The queue must be empty, so we won't receive any rx
1161		 * events, so efx_process_channel() won't refill the
1162		 * queue. Refill it here */
1163		efx_fast_push_rx_descriptors(rx_queue, true);
1164	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1165		efx_farch_handle_drain_event(channel);
1166	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1167		efx_farch_handle_drain_event(channel);
1168	} else {
1169		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1170			  "generated event "EFX_QWORD_FMT"\n",
1171			  channel->channel, EFX_QWORD_VAL(*event));
1172	}
1173}
1174
1175static void
1176efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1177{
1178	struct efx_nic *efx = channel->efx;
1179	unsigned int ev_sub_code;
1180	unsigned int ev_sub_data;
1181
1182	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1183	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1184
1185	switch (ev_sub_code) {
1186	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1187		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1188			   channel->channel, ev_sub_data);
1189		efx_farch_handle_tx_flush_done(efx, event);
1190#ifdef CONFIG_SFC_SRIOV
1191		efx_siena_sriov_tx_flush_done(efx, event);
1192#endif
1193		break;
1194	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1195		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1196			   channel->channel, ev_sub_data);
1197		efx_farch_handle_rx_flush_done(efx, event);
1198#ifdef CONFIG_SFC_SRIOV
1199		efx_siena_sriov_rx_flush_done(efx, event);
1200#endif
1201		break;
1202	case FSE_AZ_EVQ_INIT_DONE_EV:
1203		netif_dbg(efx, hw, efx->net_dev,
1204			  "channel %d EVQ %d initialised\n",
1205			  channel->channel, ev_sub_data);
1206		break;
1207	case FSE_AZ_SRM_UPD_DONE_EV:
1208		netif_vdbg(efx, hw, efx->net_dev,
1209			   "channel %d SRAM update done\n", channel->channel);
1210		break;
1211	case FSE_AZ_WAKE_UP_EV:
1212		netif_vdbg(efx, hw, efx->net_dev,
1213			   "channel %d RXQ %d wakeup event\n",
1214			   channel->channel, ev_sub_data);
1215		break;
1216	case FSE_AZ_TIMER_EV:
1217		netif_vdbg(efx, hw, efx->net_dev,
1218			   "channel %d RX queue %d timer expired\n",
1219			   channel->channel, ev_sub_data);
1220		break;
1221	case FSE_AA_RX_RECOVER_EV:
1222		netif_err(efx, rx_err, efx->net_dev,
1223			  "channel %d seen DRIVER RX_RESET event. "
1224			"Resetting.\n", channel->channel);
1225		atomic_inc(&efx->rx_reset);
1226		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1227		break;
1228	case FSE_BZ_RX_DSC_ERROR_EV:
1229		if (ev_sub_data < EFX_VI_BASE) {
1230			netif_err(efx, rx_err, efx->net_dev,
1231				  "RX DMA Q %d reports descriptor fetch error."
1232				  " RX Q %d is disabled.\n", ev_sub_data,
1233				  ev_sub_data);
1234			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1235		}
1236#ifdef CONFIG_SFC_SRIOV
1237		else
1238			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1239#endif
1240		break;
1241	case FSE_BZ_TX_DSC_ERROR_EV:
1242		if (ev_sub_data < EFX_VI_BASE) {
1243			netif_err(efx, tx_err, efx->net_dev,
1244				  "TX DMA Q %d reports descriptor fetch error."
1245				  " TX Q %d is disabled.\n", ev_sub_data,
1246				  ev_sub_data);
1247			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1248		}
1249#ifdef CONFIG_SFC_SRIOV
1250		else
1251			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1252#endif
1253		break;
1254	default:
1255		netif_vdbg(efx, hw, efx->net_dev,
1256			   "channel %d unknown driver event code %d "
1257			   "data %04x\n", channel->channel, ev_sub_code,
1258			   ev_sub_data);
1259		break;
1260	}
1261}
1262
1263int efx_farch_ev_process(struct efx_channel *channel, int budget)
1264{
1265	struct efx_nic *efx = channel->efx;
1266	unsigned int read_ptr;
1267	efx_qword_t event, *p_event;
1268	int ev_code;
1269	int tx_packets = 0;
1270	int spent = 0;
1271
1272	if (budget <= 0)
1273		return spent;
1274
1275	read_ptr = channel->eventq_read_ptr;
1276
1277	for (;;) {
1278		p_event = efx_event(channel, read_ptr);
1279		event = *p_event;
1280
1281		if (!efx_event_present(&event))
1282			/* End of events */
1283			break;
1284
1285		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1286			   "channel %d event is "EFX_QWORD_FMT"\n",
1287			   channel->channel, EFX_QWORD_VAL(event));
1288
1289		/* Clear this event by marking it all ones */
1290		EFX_SET_QWORD(*p_event);
1291
1292		++read_ptr;
1293
1294		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1295
1296		switch (ev_code) {
1297		case FSE_AZ_EV_CODE_RX_EV:
1298			efx_farch_handle_rx_event(channel, &event);
1299			if (++spent == budget)
1300				goto out;
1301			break;
1302		case FSE_AZ_EV_CODE_TX_EV:
1303			tx_packets += efx_farch_handle_tx_event(channel,
1304								&event);
1305			if (tx_packets > efx->txq_entries) {
1306				spent = budget;
1307				goto out;
1308			}
1309			break;
1310		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1311			efx_farch_handle_generated_event(channel, &event);
1312			break;
1313		case FSE_AZ_EV_CODE_DRIVER_EV:
1314			efx_farch_handle_driver_event(channel, &event);
1315			break;
1316#ifdef CONFIG_SFC_SRIOV
1317		case FSE_CZ_EV_CODE_USER_EV:
1318			efx_siena_sriov_event(channel, &event);
1319			break;
1320#endif
1321		case FSE_CZ_EV_CODE_MCDI_EV:
1322			efx_mcdi_process_event(channel, &event);
1323			break;
1324		case FSE_AZ_EV_CODE_GLOBAL_EV:
1325			if (efx->type->handle_global_event &&
1326			    efx->type->handle_global_event(channel, &event))
1327				break;
1328			/* else fall through */
1329		default:
1330			netif_err(channel->efx, hw, channel->efx->net_dev,
1331				  "channel %d unknown event type %d (data "
1332				  EFX_QWORD_FMT ")\n", channel->channel,
1333				  ev_code, EFX_QWORD_VAL(event));
1334		}
1335	}
1336
1337out:
1338	channel->eventq_read_ptr = read_ptr;
1339	return spent;
1340}
1341
1342/* Allocate buffer table entries for event queue */
1343int efx_farch_ev_probe(struct efx_channel *channel)
1344{
1345	struct efx_nic *efx = channel->efx;
1346	unsigned entries;
1347
1348	entries = channel->eventq_mask + 1;
1349	return efx_alloc_special_buffer(efx, &channel->eventq,
1350					entries * sizeof(efx_qword_t));
1351}
1352
1353int efx_farch_ev_init(struct efx_channel *channel)
1354{
1355	efx_oword_t reg;
1356	struct efx_nic *efx = channel->efx;
1357
1358	netif_dbg(efx, hw, efx->net_dev,
1359		  "channel %d event queue in special buffers %d-%d\n",
1360		  channel->channel, channel->eventq.index,
1361		  channel->eventq.index + channel->eventq.entries - 1);
1362
1363	EFX_POPULATE_OWORD_3(reg,
1364			     FRF_CZ_TIMER_Q_EN, 1,
1365			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1366			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1367	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1368
1369	/* Pin event queue buffer */
1370	efx_init_special_buffer(efx, &channel->eventq);
1371
1372	/* Fill event queue with all ones (i.e. empty events) */
1373	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1374
1375	/* Push event queue to card */
1376	EFX_POPULATE_OWORD_3(reg,
1377			     FRF_AZ_EVQ_EN, 1,
1378			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1379			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1380	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1381			 channel->channel);
1382
1383	return 0;
1384}
1385
1386void efx_farch_ev_fini(struct efx_channel *channel)
1387{
1388	efx_oword_t reg;
1389	struct efx_nic *efx = channel->efx;
1390
1391	/* Remove event queue from card */
1392	EFX_ZERO_OWORD(reg);
1393	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1394			 channel->channel);
1395	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1396
1397	/* Unpin event queue */
1398	efx_fini_special_buffer(efx, &channel->eventq);
1399}
1400
1401/* Free buffers backing event queue */
1402void efx_farch_ev_remove(struct efx_channel *channel)
1403{
1404	efx_free_special_buffer(channel->efx, &channel->eventq);
1405}
1406
1407
1408void efx_farch_ev_test_generate(struct efx_channel *channel)
1409{
1410	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1411}
1412
1413void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1414{
1415	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1416			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1417}
1418
1419/**************************************************************************
1420 *
1421 * Hardware interrupts
1422 * The hardware interrupt handler does very little work; all the event
1423 * queue processing is carried out by per-channel tasklets.
1424 *
1425 **************************************************************************/
1426
1427/* Enable/disable/generate interrupts */
1428static inline void efx_farch_interrupts(struct efx_nic *efx,
1429				      bool enabled, bool force)
1430{
1431	efx_oword_t int_en_reg_ker;
1432
1433	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1434			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1435			     FRF_AZ_KER_INT_KER, force,
1436			     FRF_AZ_DRV_INT_EN_KER, enabled);
1437	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1438}
1439
1440void efx_farch_irq_enable_master(struct efx_nic *efx)
1441{
1442	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1443	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1444
1445	efx_farch_interrupts(efx, true, false);
1446}
1447
1448void efx_farch_irq_disable_master(struct efx_nic *efx)
1449{
1450	/* Disable interrupts */
1451	efx_farch_interrupts(efx, false, false);
1452}
1453
1454/* Generate a test interrupt
1455 * Interrupt must already have been enabled, otherwise nasty things
1456 * may happen.
1457 */
1458int efx_farch_irq_test_generate(struct efx_nic *efx)
1459{
1460	efx_farch_interrupts(efx, true, true);
1461	return 0;
1462}
1463
1464/* Process a fatal interrupt
1465 * Disable bus mastering ASAP and schedule a reset
1466 */
1467irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1468{
1469	efx_oword_t *int_ker = efx->irq_status.addr;
1470	efx_oword_t fatal_intr;
1471	int error, mem_perr;
1472
1473	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1474	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1475
1476	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1477		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1478		  EFX_OWORD_VAL(fatal_intr),
1479		  error ? "disabling bus mastering" : "no recognised error");
1480
1481	/* If this is a memory parity error dump which blocks are offending */
1482	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1483		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1484	if (mem_perr) {
1485		efx_oword_t reg;
1486		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1487		netif_err(efx, hw, efx->net_dev,
1488			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1489			  EFX_OWORD_VAL(reg));
1490	}
1491
1492	/* Disable both devices */
1493	pci_clear_master(efx->pci_dev);
1494	efx_farch_irq_disable_master(efx);
1495
1496	/* Count errors and reset or disable the NIC accordingly */
1497	if (efx->int_error_count == 0 ||
1498	    time_after(jiffies, efx->int_error_expire)) {
1499		efx->int_error_count = 0;
1500		efx->int_error_expire =
1501			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1502	}
1503	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1504		netif_err(efx, hw, efx->net_dev,
1505			  "SYSTEM ERROR - reset scheduled\n");
1506		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1507	} else {
1508		netif_err(efx, hw, efx->net_dev,
1509			  "SYSTEM ERROR - max number of errors seen."
1510			  "NIC will be disabled\n");
1511		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1512	}
1513
1514	return IRQ_HANDLED;
1515}
1516
1517/* Handle a legacy interrupt
1518 * Acknowledges the interrupt and schedule event queue processing.
1519 */
1520irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1521{
1522	struct efx_nic *efx = dev_id;
1523	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1524	efx_oword_t *int_ker = efx->irq_status.addr;
1525	irqreturn_t result = IRQ_NONE;
1526	struct efx_channel *channel;
1527	efx_dword_t reg;
1528	u32 queues;
1529	int syserr;
1530
1531	/* Read the ISR which also ACKs the interrupts */
1532	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1533	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1534
1535	/* Legacy interrupts are disabled too late by the EEH kernel
1536	 * code. Disable them earlier.
1537	 * If an EEH error occurred, the read will have returned all ones.
1538	 */
1539	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1540	    !efx->eeh_disabled_legacy_irq) {
1541		disable_irq_nosync(efx->legacy_irq);
1542		efx->eeh_disabled_legacy_irq = true;
1543	}
1544
1545	/* Handle non-event-queue sources */
1546	if (queues & (1U << efx->irq_level) && soft_enabled) {
1547		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1548		if (unlikely(syserr))
1549			return efx_farch_fatal_interrupt(efx);
1550		efx->last_irq_cpu = raw_smp_processor_id();
1551	}
1552
1553	if (queues != 0) {
1554		efx->irq_zero_count = 0;
1555
1556		/* Schedule processing of any interrupting queues */
1557		if (likely(soft_enabled)) {
1558			efx_for_each_channel(channel, efx) {
1559				if (queues & 1)
1560					efx_schedule_channel_irq(channel);
1561				queues >>= 1;
1562			}
1563		}
1564		result = IRQ_HANDLED;
1565
1566	} else {
1567		efx_qword_t *event;
1568
1569		/* Legacy ISR read can return zero once (SF bug 15783) */
1570
1571		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1572		 * because this might be a shared interrupt. */
1573		if (efx->irq_zero_count++ == 0)
1574			result = IRQ_HANDLED;
1575
1576		/* Ensure we schedule or rearm all event queues */
1577		if (likely(soft_enabled)) {
1578			efx_for_each_channel(channel, efx) {
1579				event = efx_event(channel,
1580						  channel->eventq_read_ptr);
1581				if (efx_event_present(event))
1582					efx_schedule_channel_irq(channel);
1583				else
1584					efx_farch_ev_read_ack(channel);
1585			}
1586		}
1587	}
1588
1589	if (result == IRQ_HANDLED)
1590		netif_vdbg(efx, intr, efx->net_dev,
1591			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1592			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1593
1594	return result;
1595}
1596
1597/* Handle an MSI interrupt
1598 *
1599 * Handle an MSI hardware interrupt.  This routine schedules event
1600 * queue processing.  No interrupt acknowledgement cycle is necessary.
1601 * Also, we never need to check that the interrupt is for us, since
1602 * MSI interrupts cannot be shared.
1603 */
1604irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1605{
1606	struct efx_msi_context *context = dev_id;
1607	struct efx_nic *efx = context->efx;
1608	efx_oword_t *int_ker = efx->irq_status.addr;
1609	int syserr;
1610
1611	netif_vdbg(efx, intr, efx->net_dev,
1612		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1613		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1614
1615	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1616		return IRQ_HANDLED;
1617
1618	/* Handle non-event-queue sources */
1619	if (context->index == efx->irq_level) {
1620		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1621		if (unlikely(syserr))
1622			return efx_farch_fatal_interrupt(efx);
1623		efx->last_irq_cpu = raw_smp_processor_id();
1624	}
1625
1626	/* Schedule processing of the channel */
1627	efx_schedule_channel_irq(efx->channel[context->index]);
1628
1629	return IRQ_HANDLED;
1630}
1631
1632/* Setup RSS indirection table.
1633 * This maps from the hash value of the packet to RXQ
1634 */
1635void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1636{
1637	size_t i = 0;
1638	efx_dword_t dword;
1639
1640	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1641		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1642
1643	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1644		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1645				     efx->rx_indir_table[i]);
1646		efx_writed(efx, &dword,
1647			   FR_BZ_RX_INDIRECTION_TBL +
1648			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1649	}
1650}
1651
1652/* Looks at available SRAM resources and works out how many queues we
1653 * can support, and where things like descriptor caches should live.
1654 *
1655 * SRAM is split up as follows:
1656 * 0                          buftbl entries for channels
1657 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1658 * efx->rx_dc_base            RX descriptor caches
1659 * efx->tx_dc_base            TX descriptor caches
1660 */
1661void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1662{
1663	unsigned vi_count, buftbl_min;
1664
1665#ifdef CONFIG_SFC_SRIOV
1666	struct siena_nic_data *nic_data = efx->nic_data;
1667#endif
1668
1669	/* Account for the buffer table entries backing the datapath channels
1670	 * and the descriptor caches for those channels.
1671	 */
1672	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1673		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1674		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1675		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1676	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1677
1678#ifdef CONFIG_SFC_SRIOV
1679	if (efx->type->sriov_wanted) {
1680		if (efx->type->sriov_wanted(efx)) {
1681			unsigned vi_dc_entries, buftbl_free;
1682			unsigned entries_per_vf, vf_limit;
1683
1684			nic_data->vf_buftbl_base = buftbl_min;
1685
1686			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1687			vi_count = max(vi_count, EFX_VI_BASE);
1688			buftbl_free = (sram_lim_qw - buftbl_min -
1689				       vi_count * vi_dc_entries);
1690
1691			entries_per_vf = ((vi_dc_entries +
1692					   EFX_VF_BUFTBL_PER_VI) *
1693					  efx_vf_size(efx));
1694			vf_limit = min(buftbl_free / entries_per_vf,
1695				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1696
1697			if (efx->vf_count > vf_limit) {
1698				netif_err(efx, probe, efx->net_dev,
1699					  "Reducing VF count from from %d to %d\n",
1700					  efx->vf_count, vf_limit);
1701				efx->vf_count = vf_limit;
1702			}
1703			vi_count += efx->vf_count * efx_vf_size(efx);
1704		}
1705	}
1706#endif
1707
1708	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1709	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1710}
1711
1712u32 efx_farch_fpga_ver(struct efx_nic *efx)
1713{
1714	efx_oword_t altera_build;
1715	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1716	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1717}
1718
1719void efx_farch_init_common(struct efx_nic *efx)
1720{
1721	efx_oword_t temp;
1722
1723	/* Set positions of descriptor caches in SRAM. */
1724	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1725	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1726	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1727	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1728
1729	/* Set TX descriptor cache size. */
1730	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1731	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1732	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1733
1734	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1735	 * this allows most efficient prefetching.
1736	 */
1737	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1738	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1739	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1740	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1741	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1742
1743	/* Program INT_KER address */
1744	EFX_POPULATE_OWORD_2(temp,
1745			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1746			     EFX_INT_MODE_USE_MSI(efx),
1747			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1748	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1749
1750	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1751		/* Use an interrupt level unused by event queues */
1752		efx->irq_level = 0x1f;
1753	else
1754		/* Use a valid MSI-X vector */
1755		efx->irq_level = 0;
1756
1757	/* Enable all the genuinely fatal interrupts.  (They are still
1758	 * masked by the overall interrupt mask, controlled by
1759	 * falcon_interrupts()).
1760	 *
1761	 * Note: All other fatal interrupts are enabled
1762	 */
1763	EFX_POPULATE_OWORD_3(temp,
1764			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1765			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1766			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1767	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1768	EFX_INVERT_OWORD(temp);
1769	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1770
1771	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1772	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1773	 */
1774	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1775	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1776	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1777	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1778	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1779	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1780	/* Enable SW_EV to inherit in char driver - assume harmless here */
1781	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1782	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1783	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1784	/* Disable hardware watchdog which can misfire */
1785	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1786	/* Squash TX of packets of 16 bytes or less */
1787	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1788	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1789
1790	EFX_POPULATE_OWORD_4(temp,
1791			     /* Default values */
1792			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1793			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1794			     FRF_BZ_TX_PACE_FB_BASE, 0,
1795			     /* Allow large pace values in the fast bin. */
1796			     FRF_BZ_TX_PACE_BIN_TH,
1797			     FFE_BZ_TX_PACE_RESERVED);
1798	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1799}
1800
1801/**************************************************************************
1802 *
1803 * Filter tables
1804 *
1805 **************************************************************************
1806 */
1807
1808/* "Fudge factors" - difference between programmed value and actual depth.
1809 * Due to pipelined implementation we need to program H/W with a value that
1810 * is larger than the hop limit we want.
1811 */
1812#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1813#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1814
1815/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1816 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1817 * table is full.
1818 */
1819#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1820
1821/* Don't try very hard to find space for performance hints, as this is
1822 * counter-productive. */
1823#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1824
1825enum efx_farch_filter_type {
1826	EFX_FARCH_FILTER_TCP_FULL = 0,
1827	EFX_FARCH_FILTER_TCP_WILD,
1828	EFX_FARCH_FILTER_UDP_FULL,
1829	EFX_FARCH_FILTER_UDP_WILD,
1830	EFX_FARCH_FILTER_MAC_FULL = 4,
1831	EFX_FARCH_FILTER_MAC_WILD,
1832	EFX_FARCH_FILTER_UC_DEF = 8,
1833	EFX_FARCH_FILTER_MC_DEF,
1834	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1835};
1836
1837enum efx_farch_filter_table_id {
1838	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1839	EFX_FARCH_FILTER_TABLE_RX_MAC,
1840	EFX_FARCH_FILTER_TABLE_RX_DEF,
1841	EFX_FARCH_FILTER_TABLE_TX_MAC,
1842	EFX_FARCH_FILTER_TABLE_COUNT,
1843};
1844
1845enum efx_farch_filter_index {
1846	EFX_FARCH_FILTER_INDEX_UC_DEF,
1847	EFX_FARCH_FILTER_INDEX_MC_DEF,
1848	EFX_FARCH_FILTER_SIZE_RX_DEF,
1849};
1850
1851struct efx_farch_filter_spec {
1852	u8	type:4;
1853	u8	priority:4;
1854	u8	flags;
1855	u16	dmaq_id;
1856	u32	data[3];
1857};
1858
1859struct efx_farch_filter_table {
1860	enum efx_farch_filter_table_id id;
1861	u32		offset;		/* address of table relative to BAR */
1862	unsigned	size;		/* number of entries */
1863	unsigned	step;		/* step between entries */
1864	unsigned	used;		/* number currently used */
1865	unsigned long	*used_bitmap;
1866	struct efx_farch_filter_spec *spec;
1867	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1868};
1869
1870struct efx_farch_filter_state {
1871	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1872};
1873
1874static void
1875efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1876				   struct efx_farch_filter_table *table,
1877				   unsigned int filter_idx);
1878
1879/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1880 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1881static u16 efx_farch_filter_hash(u32 key)
1882{
1883	u16 tmp;
1884
1885	/* First 16 rounds */
1886	tmp = 0x1fff ^ key >> 16;
1887	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1888	tmp = tmp ^ tmp >> 9;
1889	/* Last 16 rounds */
1890	tmp = tmp ^ tmp << 13 ^ key;
1891	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1892	return tmp ^ tmp >> 9;
1893}
1894
1895/* To allow for hash collisions, filter search continues at these
1896 * increments from the first possible entry selected by the hash. */
1897static u16 efx_farch_filter_increment(u32 key)
1898{
1899	return key * 2 - 1;
1900}
1901
1902static enum efx_farch_filter_table_id
1903efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1904{
1905	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1906		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1907	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1908		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1909	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1910		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1911	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1912		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1913	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1914		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1915	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1916		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1917	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1918		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1919	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1920}
1921
1922static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1923{
1924	struct efx_farch_filter_state *state = efx->filter_state;
1925	struct efx_farch_filter_table *table;
1926	efx_oword_t filter_ctl;
1927
1928	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1929
1930	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1931	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1932			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1933			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1934	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1935			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1936			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1937	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1938			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1939			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1940	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1941			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1942			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1943
1944	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1945	if (table->size) {
1946		EFX_SET_OWORD_FIELD(
1947			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1948			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1949			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1950		EFX_SET_OWORD_FIELD(
1951			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1952			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1953			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1954	}
1955
1956	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1957	if (table->size) {
1958		EFX_SET_OWORD_FIELD(
1959			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1960			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1961		EFX_SET_OWORD_FIELD(
1962			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1963			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1964			   EFX_FILTER_FLAG_RX_RSS));
1965		EFX_SET_OWORD_FIELD(
1966			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1967			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1968		EFX_SET_OWORD_FIELD(
1969			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1970			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1971			   EFX_FILTER_FLAG_RX_RSS));
1972
1973		/* There is a single bit to enable RX scatter for all
1974		 * unmatched packets.  Only set it if scatter is
1975		 * enabled in both filter specs.
1976		 */
1977		EFX_SET_OWORD_FIELD(
1978			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1979			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1980			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1981			   EFX_FILTER_FLAG_RX_SCATTER));
1982	} else {
1983		/* We don't expose 'default' filters because unmatched
1984		 * packets always go to the queue number found in the
1985		 * RSS table.  But we still need to set the RX scatter
1986		 * bit here.
1987		 */
1988		EFX_SET_OWORD_FIELD(
1989			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1990			efx->rx_scatter);
1991	}
1992
1993	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1994}
1995
1996static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
1997{
1998	struct efx_farch_filter_state *state = efx->filter_state;
1999	struct efx_farch_filter_table *table;
2000	efx_oword_t tx_cfg;
2001
2002	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2003
2004	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2005	if (table->size) {
2006		EFX_SET_OWORD_FIELD(
2007			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2008			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2009			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2010		EFX_SET_OWORD_FIELD(
2011			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2012			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2013			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2014	}
2015
2016	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2017}
2018
2019static int
2020efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2021			       const struct efx_filter_spec *gen_spec)
2022{
2023	bool is_full = false;
2024
2025	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2026	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2027		return -EINVAL;
2028
2029	spec->priority = gen_spec->priority;
2030	spec->flags = gen_spec->flags;
2031	spec->dmaq_id = gen_spec->dmaq_id;
2032
2033	switch (gen_spec->match_flags) {
2034	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2035	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2036	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2037		is_full = true;
2038		/* fall through */
2039	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2040	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2041		__be32 rhost, host1, host2;
2042		__be16 rport, port1, port2;
2043
2044		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2045
2046		if (gen_spec->ether_type != htons(ETH_P_IP))
2047			return -EPROTONOSUPPORT;
2048		if (gen_spec->loc_port == 0 ||
2049		    (is_full && gen_spec->rem_port == 0))
2050			return -EADDRNOTAVAIL;
2051		switch (gen_spec->ip_proto) {
2052		case IPPROTO_TCP:
2053			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2054				      EFX_FARCH_FILTER_TCP_WILD);
2055			break;
2056		case IPPROTO_UDP:
2057			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2058				      EFX_FARCH_FILTER_UDP_WILD);
2059			break;
2060		default:
2061			return -EPROTONOSUPPORT;
2062		}
2063
2064		/* Filter is constructed in terms of source and destination,
2065		 * with the odd wrinkle that the ports are swapped in a UDP
2066		 * wildcard filter.  We need to convert from local and remote
2067		 * (= zero for wildcard) addresses.
2068		 */
2069		rhost = is_full ? gen_spec->rem_host[0] : 0;
2070		rport = is_full ? gen_spec->rem_port : 0;
2071		host1 = rhost;
2072		host2 = gen_spec->loc_host[0];
2073		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2074			port1 = gen_spec->loc_port;
2075			port2 = rport;
2076		} else {
2077			port1 = rport;
2078			port2 = gen_spec->loc_port;
2079		}
2080		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2081		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2082		spec->data[2] = ntohl(host2);
2083
2084		break;
2085	}
2086
2087	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2088		is_full = true;
2089		/* fall through */
2090	case EFX_FILTER_MATCH_LOC_MAC:
2091		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2092			      EFX_FARCH_FILTER_MAC_WILD);
2093		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2094		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2095				 gen_spec->loc_mac[3] << 16 |
2096				 gen_spec->loc_mac[4] << 8 |
2097				 gen_spec->loc_mac[5]);
2098		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2099				 gen_spec->loc_mac[1]);
2100		break;
2101
2102	case EFX_FILTER_MATCH_LOC_MAC_IG:
2103		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2104			      EFX_FARCH_FILTER_MC_DEF :
2105			      EFX_FARCH_FILTER_UC_DEF);
2106		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2107		break;
2108
2109	default:
2110		return -EPROTONOSUPPORT;
2111	}
2112
2113	return 0;
2114}
2115
2116static void
2117efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2118			     const struct efx_farch_filter_spec *spec)
2119{
2120	bool is_full = false;
2121
2122	/* *gen_spec should be completely initialised, to be consistent
2123	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2124	 * it back to userland.
2125	 */
2126	memset(gen_spec, 0, sizeof(*gen_spec));
2127
2128	gen_spec->priority = spec->priority;
2129	gen_spec->flags = spec->flags;
2130	gen_spec->dmaq_id = spec->dmaq_id;
2131
2132	switch (spec->type) {
2133	case EFX_FARCH_FILTER_TCP_FULL:
2134	case EFX_FARCH_FILTER_UDP_FULL:
2135		is_full = true;
2136		/* fall through */
2137	case EFX_FARCH_FILTER_TCP_WILD:
2138	case EFX_FARCH_FILTER_UDP_WILD: {
2139		__be32 host1, host2;
2140		__be16 port1, port2;
2141
2142		gen_spec->match_flags =
2143			EFX_FILTER_MATCH_ETHER_TYPE |
2144			EFX_FILTER_MATCH_IP_PROTO |
2145			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2146		if (is_full)
2147			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2148						  EFX_FILTER_MATCH_REM_PORT);
2149		gen_spec->ether_type = htons(ETH_P_IP);
2150		gen_spec->ip_proto =
2151			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2152			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2153			IPPROTO_TCP : IPPROTO_UDP;
2154
2155		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2156		port1 = htons(spec->data[0]);
2157		host2 = htonl(spec->data[2]);
2158		port2 = htons(spec->data[1] >> 16);
2159		if (spec->flags & EFX_FILTER_FLAG_TX) {
2160			gen_spec->loc_host[0] = host1;
2161			gen_spec->rem_host[0] = host2;
2162		} else {
2163			gen_spec->loc_host[0] = host2;
2164			gen_spec->rem_host[0] = host1;
2165		}
2166		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2167		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2168			gen_spec->loc_port = port1;
2169			gen_spec->rem_port = port2;
2170		} else {
2171			gen_spec->loc_port = port2;
2172			gen_spec->rem_port = port1;
2173		}
2174
2175		break;
2176	}
2177
2178	case EFX_FARCH_FILTER_MAC_FULL:
2179		is_full = true;
2180		/* fall through */
2181	case EFX_FARCH_FILTER_MAC_WILD:
2182		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2183		if (is_full)
2184			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2185		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2186		gen_spec->loc_mac[1] = spec->data[2];
2187		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2188		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2189		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2190		gen_spec->loc_mac[5] = spec->data[1];
2191		gen_spec->outer_vid = htons(spec->data[0]);
2192		break;
2193
2194	case EFX_FARCH_FILTER_UC_DEF:
2195	case EFX_FARCH_FILTER_MC_DEF:
2196		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2197		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2198		break;
2199
2200	default:
2201		WARN_ON(1);
2202		break;
2203	}
2204}
2205
2206static void
2207efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2208			      struct efx_farch_filter_spec *spec)
2209{
2210	/* If there's only one channel then disable RSS for non VF
2211	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2212	 */
2213	spec->priority = EFX_FILTER_PRI_AUTO;
2214	spec->flags = (EFX_FILTER_FLAG_RX |
2215		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2216		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2217	spec->dmaq_id = 0;
2218}
2219
2220/* Build a filter entry and return its n-tuple key. */
2221static u32 efx_farch_filter_build(efx_oword_t *filter,
2222				  struct efx_farch_filter_spec *spec)
2223{
2224	u32 data3;
2225
2226	switch (efx_farch_filter_spec_table_id(spec)) {
2227	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2228		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2229			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2230		EFX_POPULATE_OWORD_7(
2231			*filter,
2232			FRF_BZ_RSS_EN,
2233			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2234			FRF_BZ_SCATTER_EN,
2235			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2236			FRF_BZ_TCP_UDP, is_udp,
2237			FRF_BZ_RXQ_ID, spec->dmaq_id,
2238			EFX_DWORD_2, spec->data[2],
2239			EFX_DWORD_1, spec->data[1],
2240			EFX_DWORD_0, spec->data[0]);
2241		data3 = is_udp;
2242		break;
2243	}
2244
2245	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2246		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2247		EFX_POPULATE_OWORD_7(
2248			*filter,
2249			FRF_CZ_RMFT_RSS_EN,
2250			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2251			FRF_CZ_RMFT_SCATTER_EN,
2252			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2253			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2254			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2255			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2256			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2257			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2258		data3 = is_wild;
2259		break;
2260	}
2261
2262	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2263		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2264		EFX_POPULATE_OWORD_5(*filter,
2265				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2266				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2267				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2268				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2269				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2270		data3 = is_wild | spec->dmaq_id << 1;
2271		break;
2272	}
2273
2274	default:
2275		BUG();
2276	}
2277
2278	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2279}
2280
2281static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2282				   const struct efx_farch_filter_spec *right)
2283{
2284	if (left->type != right->type ||
2285	    memcmp(left->data, right->data, sizeof(left->data)))
2286		return false;
2287
2288	if (left->flags & EFX_FILTER_FLAG_TX &&
2289	    left->dmaq_id != right->dmaq_id)
2290		return false;
2291
2292	return true;
2293}
2294
2295/*
2296 * Construct/deconstruct external filter IDs.  At least the RX filter
2297 * IDs must be ordered by matching priority, for RX NFC semantics.
2298 *
2299 * Deconstruction needs to be robust against invalid IDs so that
2300 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2301 * accept user-provided IDs.
2302 */
2303
2304#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2305
2306static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2307	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2308	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2309	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2310	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2311	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2312	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2313	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2314	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2315};
2316
2317static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2318	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2319	EFX_FARCH_FILTER_TABLE_RX_IP,
2320	EFX_FARCH_FILTER_TABLE_RX_MAC,
2321	EFX_FARCH_FILTER_TABLE_RX_MAC,
2322	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2323	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2324	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2325};
2326
2327#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2328#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2329
2330static inline u32
2331efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2332			 unsigned int index)
2333{
2334	unsigned int range;
2335
2336	range = efx_farch_filter_type_match_pri[spec->type];
2337	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2338		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2339
2340	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2341}
2342
2343static inline enum efx_farch_filter_table_id
2344efx_farch_filter_id_table_id(u32 id)
2345{
2346	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2347
2348	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2349		return efx_farch_filter_range_table[range];
2350	else
2351		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2352}
2353
2354static inline unsigned int efx_farch_filter_id_index(u32 id)
2355{
2356	return id & EFX_FARCH_FILTER_INDEX_MASK;
2357}
2358
2359u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2360{
2361	struct efx_farch_filter_state *state = efx->filter_state;
2362	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2363	enum efx_farch_filter_table_id table_id;
2364
2365	do {
2366		table_id = efx_farch_filter_range_table[range];
2367		if (state->table[table_id].size != 0)
2368			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2369				state->table[table_id].size;
2370	} while (range--);
2371
2372	return 0;
2373}
2374
2375s32 efx_farch_filter_insert(struct efx_nic *efx,
2376			    struct efx_filter_spec *gen_spec,
2377			    bool replace_equal)
2378{
2379	struct efx_farch_filter_state *state = efx->filter_state;
2380	struct efx_farch_filter_table *table;
2381	struct efx_farch_filter_spec spec;
2382	efx_oword_t filter;
2383	int rep_index, ins_index;
2384	unsigned int depth = 0;
2385	int rc;
2386
2387	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2388	if (rc)
2389		return rc;
2390
2391	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2392	if (table->size == 0)
2393		return -EINVAL;
2394
2395	netif_vdbg(efx, hw, efx->net_dev,
2396		   "%s: type %d search_limit=%d", __func__, spec.type,
2397		   table->search_limit[spec.type]);
2398
2399	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2400		/* One filter spec per type */
2401		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2402		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2403			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2404		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2405		ins_index = rep_index;
2406
2407		spin_lock_bh(&efx->filter_lock);
2408	} else {
2409		/* Search concurrently for
2410		 * (1) a filter to be replaced (rep_index): any filter
2411		 *     with the same match values, up to the current
2412		 *     search depth for this type, and
2413		 * (2) the insertion point (ins_index): (1) or any
2414		 *     free slot before it or up to the maximum search
2415		 *     depth for this priority
2416		 * We fail if we cannot find (2).
2417		 *
2418		 * We can stop once either
2419		 * (a) we find (1), in which case we have definitely
2420		 *     found (2) as well; or
2421		 * (b) we have searched exhaustively for (1), and have
2422		 *     either found (2) or searched exhaustively for it
2423		 */
2424		u32 key = efx_farch_filter_build(&filter, &spec);
2425		unsigned int hash = efx_farch_filter_hash(key);
2426		unsigned int incr = efx_farch_filter_increment(key);
2427		unsigned int max_rep_depth = table->search_limit[spec.type];
2428		unsigned int max_ins_depth =
2429			spec.priority <= EFX_FILTER_PRI_HINT ?
2430			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2431			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2432		unsigned int i = hash & (table->size - 1);
2433
2434		ins_index = -1;
2435		depth = 1;
2436
2437		spin_lock_bh(&efx->filter_lock);
2438
2439		for (;;) {
2440			if (!test_bit(i, table->used_bitmap)) {
2441				if (ins_index < 0)
2442					ins_index = i;
2443			} else if (efx_farch_filter_equal(&spec,
2444							  &table->spec[i])) {
2445				/* Case (a) */
2446				if (ins_index < 0)
2447					ins_index = i;
2448				rep_index = i;
2449				break;
2450			}
2451
2452			if (depth >= max_rep_depth &&
2453			    (ins_index >= 0 || depth >= max_ins_depth)) {
2454				/* Case (b) */
2455				if (ins_index < 0) {
2456					rc = -EBUSY;
2457					goto out;
2458				}
2459				rep_index = -1;
2460				break;
2461			}
2462
2463			i = (i + incr) & (table->size - 1);
2464			++depth;
2465		}
2466	}
2467
2468	/* If we found a filter to be replaced, check whether we
2469	 * should do so
2470	 */
2471	if (rep_index >= 0) {
2472		struct efx_farch_filter_spec *saved_spec =
2473			&table->spec[rep_index];
2474
2475		if (spec.priority == saved_spec->priority && !replace_equal) {
2476			rc = -EEXIST;
2477			goto out;
2478		}
2479		if (spec.priority < saved_spec->priority) {
2480			rc = -EPERM;
2481			goto out;
2482		}
2483		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2484		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2485			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2486	}
2487
2488	/* Insert the filter */
2489	if (ins_index != rep_index) {
2490		__set_bit(ins_index, table->used_bitmap);
2491		++table->used;
2492	}
2493	table->spec[ins_index] = spec;
2494
2495	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2496		efx_farch_filter_push_rx_config(efx);
2497	} else {
2498		if (table->search_limit[spec.type] < depth) {
2499			table->search_limit[spec.type] = depth;
2500			if (spec.flags & EFX_FILTER_FLAG_TX)
2501				efx_farch_filter_push_tx_limits(efx);
2502			else
2503				efx_farch_filter_push_rx_config(efx);
2504		}
2505
2506		efx_writeo(efx, &filter,
2507			   table->offset + table->step * ins_index);
2508
2509		/* If we were able to replace a filter by inserting
2510		 * at a lower depth, clear the replaced filter
2511		 */
2512		if (ins_index != rep_index && rep_index >= 0)
2513			efx_farch_filter_table_clear_entry(efx, table,
2514							   rep_index);
2515	}
2516
2517	netif_vdbg(efx, hw, efx->net_dev,
2518		   "%s: filter type %d index %d rxq %u set",
2519		   __func__, spec.type, ins_index, spec.dmaq_id);
2520	rc = efx_farch_filter_make_id(&spec, ins_index);
2521
2522out:
2523	spin_unlock_bh(&efx->filter_lock);
2524	return rc;
2525}
2526
2527static void
2528efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2529				   struct efx_farch_filter_table *table,
2530				   unsigned int filter_idx)
2531{
2532	static efx_oword_t filter;
2533
2534	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2535	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2536
2537	__clear_bit(filter_idx, table->used_bitmap);
2538	--table->used;
2539	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2540
2541	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2542
2543	/* If this filter required a greater search depth than
2544	 * any other, the search limit for its type can now be
2545	 * decreased.  However, it is hard to determine that
2546	 * unless the table has become completely empty - in
2547	 * which case, all its search limits can be set to 0.
2548	 */
2549	if (unlikely(table->used == 0)) {
2550		memset(table->search_limit, 0, sizeof(table->search_limit));
2551		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2552			efx_farch_filter_push_tx_limits(efx);
2553		else
2554			efx_farch_filter_push_rx_config(efx);
2555	}
2556}
2557
2558static int efx_farch_filter_remove(struct efx_nic *efx,
2559				   struct efx_farch_filter_table *table,
2560				   unsigned int filter_idx,
2561				   enum efx_filter_priority priority)
2562{
2563	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2564
2565	if (!test_bit(filter_idx, table->used_bitmap) ||
2566	    spec->priority != priority)
2567		return -ENOENT;
2568
2569	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2570		efx_farch_filter_init_rx_auto(efx, spec);
2571		efx_farch_filter_push_rx_config(efx);
2572	} else {
2573		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2574	}
2575
2576	return 0;
2577}
2578
2579int efx_farch_filter_remove_safe(struct efx_nic *efx,
2580				 enum efx_filter_priority priority,
2581				 u32 filter_id)
2582{
2583	struct efx_farch_filter_state *state = efx->filter_state;
2584	enum efx_farch_filter_table_id table_id;
2585	struct efx_farch_filter_table *table;
2586	unsigned int filter_idx;
2587	struct efx_farch_filter_spec *spec;
2588	int rc;
2589
2590	table_id = efx_farch_filter_id_table_id(filter_id);
2591	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2592		return -ENOENT;
2593	table = &state->table[table_id];
2594
2595	filter_idx = efx_farch_filter_id_index(filter_id);
2596	if (filter_idx >= table->size)
2597		return -ENOENT;
2598	spec = &table->spec[filter_idx];
2599
2600	spin_lock_bh(&efx->filter_lock);
2601	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2602	spin_unlock_bh(&efx->filter_lock);
2603
2604	return rc;
2605}
2606
2607int efx_farch_filter_get_safe(struct efx_nic *efx,
2608			      enum efx_filter_priority priority,
2609			      u32 filter_id, struct efx_filter_spec *spec_buf)
2610{
2611	struct efx_farch_filter_state *state = efx->filter_state;
2612	enum efx_farch_filter_table_id table_id;
2613	struct efx_farch_filter_table *table;
2614	struct efx_farch_filter_spec *spec;
2615	unsigned int filter_idx;
2616	int rc;
2617
2618	table_id = efx_farch_filter_id_table_id(filter_id);
2619	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2620		return -ENOENT;
2621	table = &state->table[table_id];
2622
2623	filter_idx = efx_farch_filter_id_index(filter_id);
2624	if (filter_idx >= table->size)
2625		return -ENOENT;
2626	spec = &table->spec[filter_idx];
2627
2628	spin_lock_bh(&efx->filter_lock);
2629
2630	if (test_bit(filter_idx, table->used_bitmap) &&
2631	    spec->priority == priority) {
2632		efx_farch_filter_to_gen_spec(spec_buf, spec);
2633		rc = 0;
2634	} else {
2635		rc = -ENOENT;
2636	}
2637
2638	spin_unlock_bh(&efx->filter_lock);
2639
2640	return rc;
2641}
2642
2643static void
2644efx_farch_filter_table_clear(struct efx_nic *efx,
2645			     enum efx_farch_filter_table_id table_id,
2646			     enum efx_filter_priority priority)
2647{
2648	struct efx_farch_filter_state *state = efx->filter_state;
2649	struct efx_farch_filter_table *table = &state->table[table_id];
2650	unsigned int filter_idx;
2651
2652	spin_lock_bh(&efx->filter_lock);
2653	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2654		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2655			efx_farch_filter_remove(efx, table,
2656						filter_idx, priority);
2657	}
2658	spin_unlock_bh(&efx->filter_lock);
2659}
2660
2661int efx_farch_filter_clear_rx(struct efx_nic *efx,
2662			       enum efx_filter_priority priority)
2663{
2664	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2665				     priority);
2666	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2667				     priority);
2668	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2669				     priority);
2670	return 0;
2671}
2672
2673u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2674				   enum efx_filter_priority priority)
2675{
2676	struct efx_farch_filter_state *state = efx->filter_state;
2677	enum efx_farch_filter_table_id table_id;
2678	struct efx_farch_filter_table *table;
2679	unsigned int filter_idx;
2680	u32 count = 0;
2681
2682	spin_lock_bh(&efx->filter_lock);
2683
2684	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2685	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2686	     table_id++) {
2687		table = &state->table[table_id];
2688		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2689			if (test_bit(filter_idx, table->used_bitmap) &&
2690			    table->spec[filter_idx].priority == priority)
2691				++count;
2692		}
2693	}
2694
2695	spin_unlock_bh(&efx->filter_lock);
2696
2697	return count;
2698}
2699
2700s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2701				enum efx_filter_priority priority,
2702				u32 *buf, u32 size)
2703{
2704	struct efx_farch_filter_state *state = efx->filter_state;
2705	enum efx_farch_filter_table_id table_id;
2706	struct efx_farch_filter_table *table;
2707	unsigned int filter_idx;
2708	s32 count = 0;
2709
2710	spin_lock_bh(&efx->filter_lock);
2711
2712	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2713	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2714	     table_id++) {
2715		table = &state->table[table_id];
2716		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2717			if (test_bit(filter_idx, table->used_bitmap) &&
2718			    table->spec[filter_idx].priority == priority) {
2719				if (count == size) {
2720					count = -EMSGSIZE;
2721					goto out;
2722				}
2723				buf[count++] = efx_farch_filter_make_id(
2724					&table->spec[filter_idx], filter_idx);
2725			}
2726		}
2727	}
2728out:
2729	spin_unlock_bh(&efx->filter_lock);
2730
2731	return count;
2732}
2733
2734/* Restore filter stater after reset */
2735void efx_farch_filter_table_restore(struct efx_nic *efx)
2736{
2737	struct efx_farch_filter_state *state = efx->filter_state;
2738	enum efx_farch_filter_table_id table_id;
2739	struct efx_farch_filter_table *table;
2740	efx_oword_t filter;
2741	unsigned int filter_idx;
2742
2743	spin_lock_bh(&efx->filter_lock);
2744
2745	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2746		table = &state->table[table_id];
2747
2748		/* Check whether this is a regular register table */
2749		if (table->step == 0)
2750			continue;
2751
2752		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2753			if (!test_bit(filter_idx, table->used_bitmap))
2754				continue;
2755			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2756			efx_writeo(efx, &filter,
2757				   table->offset + table->step * filter_idx);
2758		}
2759	}
2760
2761	efx_farch_filter_push_rx_config(efx);
2762	efx_farch_filter_push_tx_limits(efx);
2763
2764	spin_unlock_bh(&efx->filter_lock);
2765}
2766
2767void efx_farch_filter_table_remove(struct efx_nic *efx)
2768{
2769	struct efx_farch_filter_state *state = efx->filter_state;
2770	enum efx_farch_filter_table_id table_id;
2771
2772	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2773		kfree(state->table[table_id].used_bitmap);
2774		vfree(state->table[table_id].spec);
2775	}
2776	kfree(state);
2777}
2778
2779int efx_farch_filter_table_probe(struct efx_nic *efx)
2780{
2781	struct efx_farch_filter_state *state;
2782	struct efx_farch_filter_table *table;
2783	unsigned table_id;
2784
2785	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2786	if (!state)
2787		return -ENOMEM;
2788	efx->filter_state = state;
2789
2790	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2791	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2792	table->offset = FR_BZ_RX_FILTER_TBL0;
2793	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2794	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2795
2796	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2797	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2798	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2799	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2800	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2801
2802	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2803	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2804	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2805
2806	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2807	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2808	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2809	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2810	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2811
2812	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2813		table = &state->table[table_id];
2814		if (table->size == 0)
2815			continue;
2816		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2817					     sizeof(unsigned long),
2818					     GFP_KERNEL);
2819		if (!table->used_bitmap)
2820			goto fail;
2821		table->spec = vzalloc(table->size * sizeof(*table->spec));
2822		if (!table->spec)
2823			goto fail;
2824	}
2825
2826	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2827	if (table->size) {
2828		/* RX default filters must always exist */
2829		struct efx_farch_filter_spec *spec;
2830		unsigned i;
2831
2832		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2833			spec = &table->spec[i];
2834			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2835			efx_farch_filter_init_rx_auto(efx, spec);
2836			__set_bit(i, table->used_bitmap);
2837		}
2838	}
2839
2840	efx_farch_filter_push_rx_config(efx);
2841
2842	return 0;
2843
2844fail:
2845	efx_farch_filter_table_remove(efx);
2846	return -ENOMEM;
2847}
2848
2849/* Update scatter enable flags for filters pointing to our own RX queues */
2850void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2851{
2852	struct efx_farch_filter_state *state = efx->filter_state;
2853	enum efx_farch_filter_table_id table_id;
2854	struct efx_farch_filter_table *table;
2855	efx_oword_t filter;
2856	unsigned int filter_idx;
2857
2858	spin_lock_bh(&efx->filter_lock);
2859
2860	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2861	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2862	     table_id++) {
2863		table = &state->table[table_id];
2864
2865		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2866			if (!test_bit(filter_idx, table->used_bitmap) ||
2867			    table->spec[filter_idx].dmaq_id >=
2868			    efx->n_rx_channels)
2869				continue;
2870
2871			if (efx->rx_scatter)
2872				table->spec[filter_idx].flags |=
2873					EFX_FILTER_FLAG_RX_SCATTER;
2874			else
2875				table->spec[filter_idx].flags &=
2876					~EFX_FILTER_FLAG_RX_SCATTER;
2877
2878			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2879				/* Pushed by efx_farch_filter_push_rx_config() */
2880				continue;
2881
2882			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2883			efx_writeo(efx, &filter,
2884				   table->offset + table->step * filter_idx);
2885		}
2886	}
2887
2888	efx_farch_filter_push_rx_config(efx);
2889
2890	spin_unlock_bh(&efx->filter_lock);
2891}
2892
2893#ifdef CONFIG_RFS_ACCEL
2894
2895s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2896				struct efx_filter_spec *gen_spec)
2897{
2898	return efx_farch_filter_insert(efx, gen_spec, true);
2899}
2900
2901bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2902				     unsigned int index)
2903{
2904	struct efx_farch_filter_state *state = efx->filter_state;
2905	struct efx_farch_filter_table *table =
2906		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2907
2908	if (test_bit(index, table->used_bitmap) &&
2909	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2910	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2911				flow_id, index)) {
2912		efx_farch_filter_table_clear_entry(efx, table, index);
2913		return true;
2914	}
2915
2916	return false;
2917}
2918
2919#endif /* CONFIG_RFS_ACCEL */
2920
2921void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2922{
2923	struct net_device *net_dev = efx->net_dev;
2924	struct netdev_hw_addr *ha;
2925	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2926	u32 crc;
2927	int bit;
2928
2929	if (!efx_dev_registered(efx))
2930		return;
2931
2932	netif_addr_lock_bh(net_dev);
2933
2934	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2935
2936	/* Build multicast hash table */
2937	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2938		memset(mc_hash, 0xff, sizeof(*mc_hash));
2939	} else {
2940		memset(mc_hash, 0x00, sizeof(*mc_hash));
2941		netdev_for_each_mc_addr(ha, net_dev) {
2942			crc = ether_crc_le(ETH_ALEN, ha->addr);
2943			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2944			__set_bit_le(bit, mc_hash);
2945		}
2946
2947		/* Broadcast packets go through the multicast hash filter.
2948		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2949		 * so we always add bit 0xff to the mask.
2950		 */
2951		__set_bit_le(0xff, mc_hash);
2952	}
2953
2954	netif_addr_unlock_bh(net_dev);
2955}