Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2006-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/pci.h>
  12#include <linux/module.h>
  13#include <linux/seq_file.h>
  14#include <linux/crc32.h>
  15#include "net_driver.h"
  16#include "bitfield.h"
  17#include "efx.h"
  18#include "rx_common.h"
  19#include "nic.h"
  20#include "farch_regs.h"
  21#include "sriov.h"
  22#include "siena_sriov.h"
  23#include "io.h"
  24#include "workarounds.h"
  25
  26/* Falcon-architecture (SFC9000-family) support */
  27
  28/**************************************************************************
  29 *
  30 * Configurable values
  31 *
  32 **************************************************************************
  33 */
  34
  35/* This is set to 16 for a good reason.  In summary, if larger than
  36 * 16, the descriptor cache holds more than a default socket
  37 * buffer's worth of packets (for UDP we can only have at most one
  38 * socket buffer's worth outstanding).  This combined with the fact
  39 * that we only get 1 TX event per descriptor cache means the NIC
  40 * goes idle.
  41 */
  42#define TX_DC_ENTRIES 16
  43#define TX_DC_ENTRIES_ORDER 1
  44
  45#define RX_DC_ENTRIES 64
  46#define RX_DC_ENTRIES_ORDER 3
  47
  48/* If EFX_MAX_INT_ERRORS internal errors occur within
  49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  50 * disable it.
  51 */
  52#define EFX_INT_ERROR_EXPIRE 3600
  53#define EFX_MAX_INT_ERRORS 5
  54
  55/* Depth of RX flush request fifo */
  56#define EFX_RX_FLUSH_COUNT 4
  57
  58/* Driver generated events */
  59#define _EFX_CHANNEL_MAGIC_TEST		0x000101
  60#define _EFX_CHANNEL_MAGIC_FILL		0x000102
  61#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
  62#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
  63
  64#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
  65#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
  66
  67#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
  68	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  69#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
  70	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
  71			   efx_rx_queue_index(_rx_queue))
  72#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
  73	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
  74			   efx_rx_queue_index(_rx_queue))
  75#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
  76	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
  77			   (_tx_queue)->queue)
  78
  79static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  80
  81/**************************************************************************
  82 *
  83 * Hardware access
  84 *
  85 **************************************************************************/
  86
  87static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  88				     unsigned int index)
  89{
  90	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  91			value, index);
  92}
  93
  94static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  95				     const efx_oword_t *mask)
  96{
  97	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  98		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  99}
 100
 101int efx_farch_test_registers(struct efx_nic *efx,
 102			     const struct efx_farch_register_test *regs,
 103			     size_t n_regs)
 104{
 105	unsigned address = 0;
 106	int i, j;
 107	efx_oword_t mask, imask, original, reg, buf;
 108
 109	for (i = 0; i < n_regs; ++i) {
 110		address = regs[i].address;
 111		mask = imask = regs[i].mask;
 112		EFX_INVERT_OWORD(imask);
 113
 114		efx_reado(efx, &original, address);
 115
 116		/* bit sweep on and off */
 117		for (j = 0; j < 128; j++) {
 118			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 119				continue;
 120
 121			/* Test this testable bit can be set in isolation */
 122			EFX_AND_OWORD(reg, original, mask);
 123			EFX_SET_OWORD32(reg, j, j, 1);
 124
 125			efx_writeo(efx, &reg, address);
 126			efx_reado(efx, &buf, address);
 127
 128			if (efx_masked_compare_oword(&reg, &buf, &mask))
 129				goto fail;
 130
 131			/* Test this testable bit can be cleared in isolation */
 132			EFX_OR_OWORD(reg, original, mask);
 133			EFX_SET_OWORD32(reg, j, j, 0);
 134
 135			efx_writeo(efx, &reg, address);
 136			efx_reado(efx, &buf, address);
 137
 138			if (efx_masked_compare_oword(&reg, &buf, &mask))
 139				goto fail;
 140		}
 141
 142		efx_writeo(efx, &original, address);
 143	}
 144
 145	return 0;
 146
 147fail:
 148	netif_err(efx, hw, efx->net_dev,
 149		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 150		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 151		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 152	return -EIO;
 153}
 154
 155/**************************************************************************
 156 *
 157 * Special buffer handling
 158 * Special buffers are used for event queues and the TX and RX
 159 * descriptor rings.
 160 *
 161 *************************************************************************/
 162
 163/*
 164 * Initialise a special buffer
 165 *
 166 * This will define a buffer (previously allocated via
 167 * efx_alloc_special_buffer()) in the buffer table, allowing
 168 * it to be used for event queues, descriptor rings etc.
 169 */
 170static void
 171efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 172{
 173	efx_qword_t buf_desc;
 174	unsigned int index;
 175	dma_addr_t dma_addr;
 176	int i;
 177
 178	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
 179
 180	/* Write buffer descriptors to NIC */
 181	for (i = 0; i < buffer->entries; i++) {
 182		index = buffer->index + i;
 183		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 184		netif_dbg(efx, probe, efx->net_dev,
 185			  "mapping special buffer %d at %llx\n",
 186			  index, (unsigned long long)dma_addr);
 187		EFX_POPULATE_QWORD_3(buf_desc,
 188				     FRF_AZ_BUF_ADR_REGION, 0,
 189				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 190				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 191		efx_write_buf_tbl(efx, &buf_desc, index);
 192	}
 193}
 194
 195/* Unmaps a buffer and clears the buffer table entries */
 196static void
 197efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 198{
 199	efx_oword_t buf_tbl_upd;
 200	unsigned int start = buffer->index;
 201	unsigned int end = (buffer->index + buffer->entries - 1);
 202
 203	if (!buffer->entries)
 204		return;
 205
 206	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 207		  buffer->index, buffer->index + buffer->entries - 1);
 208
 209	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 210			     FRF_AZ_BUF_UPD_CMD, 0,
 211			     FRF_AZ_BUF_CLR_CMD, 1,
 212			     FRF_AZ_BUF_CLR_END_ID, end,
 213			     FRF_AZ_BUF_CLR_START_ID, start);
 214	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 215}
 216
 217/*
 218 * Allocate a new special buffer
 219 *
 220 * This allocates memory for a new buffer, clears it and allocates a
 221 * new buffer ID range.  It does not write into the buffer table.
 222 *
 223 * This call will allocate 4KB buffers, since 8KB buffers can't be
 224 * used for event queues and descriptor rings.
 225 */
 226static int efx_alloc_special_buffer(struct efx_nic *efx,
 227				    struct efx_special_buffer *buffer,
 228				    unsigned int len)
 229{
 230#ifdef CONFIG_SFC_SRIOV
 231	struct siena_nic_data *nic_data = efx->nic_data;
 232#endif
 233	len = ALIGN(len, EFX_BUF_SIZE);
 234
 235	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 236		return -ENOMEM;
 237	buffer->entries = len / EFX_BUF_SIZE;
 238	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 239
 240	/* Select new buffer ID */
 241	buffer->index = efx->next_buffer_table;
 242	efx->next_buffer_table += buffer->entries;
 243#ifdef CONFIG_SFC_SRIOV
 244	BUG_ON(efx_siena_sriov_enabled(efx) &&
 245	       nic_data->vf_buftbl_base < efx->next_buffer_table);
 246#endif
 247
 248	netif_dbg(efx, probe, efx->net_dev,
 249		  "allocating special buffers %d-%d at %llx+%x "
 250		  "(virt %p phys %llx)\n", buffer->index,
 251		  buffer->index + buffer->entries - 1,
 252		  (u64)buffer->buf.dma_addr, len,
 253		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 254
 255	return 0;
 256}
 257
 258static void
 259efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 260{
 261	if (!buffer->buf.addr)
 262		return;
 263
 264	netif_dbg(efx, hw, efx->net_dev,
 265		  "deallocating special buffers %d-%d at %llx+%x "
 266		  "(virt %p phys %llx)\n", buffer->index,
 267		  buffer->index + buffer->entries - 1,
 268		  (u64)buffer->buf.dma_addr, buffer->buf.len,
 269		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 270
 271	efx_nic_free_buffer(efx, &buffer->buf);
 272	buffer->entries = 0;
 273}
 274
 275/**************************************************************************
 276 *
 277 * TX path
 278 *
 279 **************************************************************************/
 280
 281/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 282static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 283{
 284	unsigned write_ptr;
 285	efx_dword_t reg;
 286
 287	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 288	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 289	efx_writed_page(tx_queue->efx, &reg,
 290			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 291}
 292
 293/* Write pointer and first descriptor for TX descriptor ring */
 294static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 295					  const efx_qword_t *txd)
 296{
 297	unsigned write_ptr;
 298	efx_oword_t reg;
 299
 300	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 301	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 302
 303	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 304	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 305			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 306	reg.qword[0] = *txd;
 307	efx_writeo_page(tx_queue->efx, &reg,
 308			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 309}
 310
 311
 312/* For each entry inserted into the software descriptor ring, create a
 313 * descriptor in the hardware TX descriptor ring (in host memory), and
 314 * write a doorbell.
 315 */
 316void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 317{
 318	struct efx_tx_buffer *buffer;
 319	efx_qword_t *txd;
 320	unsigned write_ptr;
 321	unsigned old_write_count = tx_queue->write_count;
 322
 323	tx_queue->xmit_pending = false;
 324	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 325		return;
 326
 327	do {
 328		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 329		buffer = &tx_queue->buffer[write_ptr];
 330		txd = efx_tx_desc(tx_queue, write_ptr);
 331		++tx_queue->write_count;
 332
 333		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 334
 335		/* Create TX descriptor ring entry */
 336		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 337		EFX_POPULATE_QWORD_4(*txd,
 338				     FSF_AZ_TX_KER_CONT,
 339				     buffer->flags & EFX_TX_BUF_CONT,
 340				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 341				     FSF_AZ_TX_KER_BUF_REGION, 0,
 342				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 343	} while (tx_queue->write_count != tx_queue->insert_count);
 344
 345	wmb(); /* Ensure descriptors are written before they are fetched */
 346
 347	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 348		txd = efx_tx_desc(tx_queue,
 349				  old_write_count & tx_queue->ptr_mask);
 350		efx_farch_push_tx_desc(tx_queue, txd);
 351		++tx_queue->pushes;
 352	} else {
 353		efx_farch_notify_tx_desc(tx_queue);
 354	}
 355}
 356
 357unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 358				    dma_addr_t dma_addr, unsigned int len)
 359{
 360	/* Don't cross 4K boundaries with descriptors. */
 361	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
 362
 363	len = min(limit, len);
 364
 365	return len;
 366}
 367
 368
 369/* Allocate hardware resources for a TX queue */
 370int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 371{
 372	struct efx_nic *efx = tx_queue->efx;
 373	unsigned entries;
 374
 375	tx_queue->type = ((tx_queue->label & 1) ? EFX_TXQ_TYPE_OUTER_CSUM : 0) |
 376			 ((tx_queue->label & 2) ? EFX_TXQ_TYPE_HIGHPRI : 0);
 377	entries = tx_queue->ptr_mask + 1;
 378	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 379					entries * sizeof(efx_qword_t));
 380}
 381
 382void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 383{
 384	int csum = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
 385	struct efx_nic *efx = tx_queue->efx;
 386	efx_oword_t reg;
 387
 388	/* Pin TX descriptor ring */
 389	efx_init_special_buffer(efx, &tx_queue->txd);
 390
 391	/* Push TX descriptor ring to card */
 392	EFX_POPULATE_OWORD_10(reg,
 393			      FRF_AZ_TX_DESCQ_EN, 1,
 394			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 395			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 396			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 397			      FRF_AZ_TX_DESCQ_EVQ_ID,
 398			      tx_queue->channel->channel,
 399			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 400			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
 401			      FRF_AZ_TX_DESCQ_SIZE,
 402			      __ffs(tx_queue->txd.entries),
 403			      FRF_AZ_TX_DESCQ_TYPE, 0,
 404			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 405
 406	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 407	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
 408
 409	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 410			 tx_queue->queue);
 411
 412	EFX_POPULATE_OWORD_1(reg,
 413			     FRF_BZ_TX_PACE,
 414			     (tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
 415			     FFE_BZ_TX_PACE_OFF :
 416			     FFE_BZ_TX_PACE_RESERVED);
 417	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
 418
 419	tx_queue->tso_version = 1;
 420}
 421
 422static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 423{
 424	struct efx_nic *efx = tx_queue->efx;
 425	efx_oword_t tx_flush_descq;
 426
 427	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 428	atomic_set(&tx_queue->flush_outstanding, 1);
 429
 430	EFX_POPULATE_OWORD_2(tx_flush_descq,
 431			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 432			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 433	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 434}
 435
 436void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 437{
 438	struct efx_nic *efx = tx_queue->efx;
 439	efx_oword_t tx_desc_ptr;
 440
 441	/* Remove TX descriptor ring from card */
 442	EFX_ZERO_OWORD(tx_desc_ptr);
 443	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 444			 tx_queue->queue);
 445
 446	/* Unpin TX descriptor ring */
 447	efx_fini_special_buffer(efx, &tx_queue->txd);
 448}
 449
 450/* Free buffers backing TX queue */
 451void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 452{
 453	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 454}
 455
 456/**************************************************************************
 457 *
 458 * RX path
 459 *
 460 **************************************************************************/
 461
 462/* This creates an entry in the RX descriptor queue */
 463static inline void
 464efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 465{
 466	struct efx_rx_buffer *rx_buf;
 467	efx_qword_t *rxd;
 468
 469	rxd = efx_rx_desc(rx_queue, index);
 470	rx_buf = efx_rx_buffer(rx_queue, index);
 471	EFX_POPULATE_QWORD_3(*rxd,
 472			     FSF_AZ_RX_KER_BUF_SIZE,
 473			     rx_buf->len -
 474			     rx_queue->efx->type->rx_buffer_padding,
 475			     FSF_AZ_RX_KER_BUF_REGION, 0,
 476			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 477}
 478
 479/* This writes to the RX_DESC_WPTR register for the specified receive
 480 * descriptor ring.
 481 */
 482void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 483{
 484	struct efx_nic *efx = rx_queue->efx;
 485	efx_dword_t reg;
 486	unsigned write_ptr;
 487
 488	while (rx_queue->notified_count != rx_queue->added_count) {
 489		efx_farch_build_rx_desc(
 490			rx_queue,
 491			rx_queue->notified_count & rx_queue->ptr_mask);
 492		++rx_queue->notified_count;
 493	}
 494
 495	wmb();
 496	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 497	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 498	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 499			efx_rx_queue_index(rx_queue));
 500}
 501
 502int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 503{
 504	struct efx_nic *efx = rx_queue->efx;
 505	unsigned entries;
 506
 507	entries = rx_queue->ptr_mask + 1;
 508	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 509					entries * sizeof(efx_qword_t));
 510}
 511
 512void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 513{
 514	efx_oword_t rx_desc_ptr;
 515	struct efx_nic *efx = rx_queue->efx;
 516	bool jumbo_en;
 517
 518	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
 519	jumbo_en = efx->rx_scatter;
 520
 521	netif_dbg(efx, hw, efx->net_dev,
 522		  "RX queue %d ring in special buffers %d-%d\n",
 523		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 524		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 525
 526	rx_queue->scatter_n = 0;
 527
 528	/* Pin RX descriptor ring */
 529	efx_init_special_buffer(efx, &rx_queue->rxd);
 530
 531	/* Push RX descriptor ring to card */
 532	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 533			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
 534			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
 535			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 536			      FRF_AZ_RX_DESCQ_EVQ_ID,
 537			      efx_rx_queue_channel(rx_queue)->channel,
 538			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 539			      FRF_AZ_RX_DESCQ_LABEL,
 540			      efx_rx_queue_index(rx_queue),
 541			      FRF_AZ_RX_DESCQ_SIZE,
 542			      __ffs(rx_queue->rxd.entries),
 543			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 544			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 545			      FRF_AZ_RX_DESCQ_EN, 1);
 546	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 547			 efx_rx_queue_index(rx_queue));
 548}
 549
 550static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 551{
 552	struct efx_nic *efx = rx_queue->efx;
 553	efx_oword_t rx_flush_descq;
 554
 555	EFX_POPULATE_OWORD_2(rx_flush_descq,
 556			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 557			     FRF_AZ_RX_FLUSH_DESCQ,
 558			     efx_rx_queue_index(rx_queue));
 559	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 560}
 561
 562void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 563{
 564	efx_oword_t rx_desc_ptr;
 565	struct efx_nic *efx = rx_queue->efx;
 566
 567	/* Remove RX descriptor ring from card */
 568	EFX_ZERO_OWORD(rx_desc_ptr);
 569	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 570			 efx_rx_queue_index(rx_queue));
 571
 572	/* Unpin RX descriptor ring */
 573	efx_fini_special_buffer(efx, &rx_queue->rxd);
 574}
 575
 576/* Free buffers backing RX queue */
 577void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 578{
 579	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 580}
 581
 582/**************************************************************************
 583 *
 584 * Flush handling
 585 *
 586 **************************************************************************/
 587
 588/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 589 * or more RX flushes can be kicked off.
 590 */
 591static bool efx_farch_flush_wake(struct efx_nic *efx)
 592{
 593	/* Ensure that all updates are visible to efx_farch_flush_queues() */
 594	smp_mb();
 595
 596	return (atomic_read(&efx->active_queues) == 0 ||
 597		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 598		 && atomic_read(&efx->rxq_flush_pending) > 0));
 599}
 600
 601static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 602{
 603	bool i = true;
 604	efx_oword_t txd_ptr_tbl;
 605	struct efx_channel *channel;
 606	struct efx_tx_queue *tx_queue;
 607
 608	efx_for_each_channel(channel, efx) {
 609		efx_for_each_channel_tx_queue(tx_queue, channel) {
 610			efx_reado_table(efx, &txd_ptr_tbl,
 611					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 612			if (EFX_OWORD_FIELD(txd_ptr_tbl,
 613					    FRF_AZ_TX_DESCQ_FLUSH) ||
 614			    EFX_OWORD_FIELD(txd_ptr_tbl,
 615					    FRF_AZ_TX_DESCQ_EN)) {
 616				netif_dbg(efx, hw, efx->net_dev,
 617					  "flush did not complete on TXQ %d\n",
 618					  tx_queue->queue);
 619				i = false;
 620			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 621						  1, 0)) {
 622				/* The flush is complete, but we didn't
 623				 * receive a flush completion event
 624				 */
 625				netif_dbg(efx, hw, efx->net_dev,
 626					  "flush complete on TXQ %d, so drain "
 627					  "the queue\n", tx_queue->queue);
 628				/* Don't need to increment active_queues as it
 629				 * has already been incremented for the queues
 630				 * which did not drain
 631				 */
 632				efx_farch_magic_event(channel,
 633						      EFX_CHANNEL_MAGIC_TX_DRAIN(
 634							      tx_queue));
 635			}
 636		}
 637	}
 638
 639	return i;
 640}
 641
 642/* Flush all the transmit queues, and continue flushing receive queues until
 643 * they're all flushed. Wait for the DRAIN events to be received so that there
 644 * are no more RX and TX events left on any channel. */
 645static int efx_farch_do_flush(struct efx_nic *efx)
 646{
 647	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 648	struct efx_channel *channel;
 649	struct efx_rx_queue *rx_queue;
 650	struct efx_tx_queue *tx_queue;
 651	int rc = 0;
 652
 653	efx_for_each_channel(channel, efx) {
 654		efx_for_each_channel_tx_queue(tx_queue, channel) {
 655			efx_farch_flush_tx_queue(tx_queue);
 656		}
 657		efx_for_each_channel_rx_queue(rx_queue, channel) {
 658			rx_queue->flush_pending = true;
 659			atomic_inc(&efx->rxq_flush_pending);
 660		}
 661	}
 662
 663	while (timeout && atomic_read(&efx->active_queues) > 0) {
 664		/* If SRIOV is enabled, then offload receive queue flushing to
 665		 * the firmware (though we will still have to poll for
 666		 * completion). If that fails, fall back to the old scheme.
 667		 */
 668		if (efx_siena_sriov_enabled(efx)) {
 669			rc = efx_mcdi_flush_rxqs(efx);
 670			if (!rc)
 671				goto wait;
 672		}
 673
 674		/* The hardware supports four concurrent rx flushes, each of
 675		 * which may need to be retried if there is an outstanding
 676		 * descriptor fetch
 677		 */
 678		efx_for_each_channel(channel, efx) {
 679			efx_for_each_channel_rx_queue(rx_queue, channel) {
 680				if (atomic_read(&efx->rxq_flush_outstanding) >=
 681				    EFX_RX_FLUSH_COUNT)
 682					break;
 683
 684				if (rx_queue->flush_pending) {
 685					rx_queue->flush_pending = false;
 686					atomic_dec(&efx->rxq_flush_pending);
 687					atomic_inc(&efx->rxq_flush_outstanding);
 688					efx_farch_flush_rx_queue(rx_queue);
 689				}
 690			}
 691		}
 692
 693	wait:
 694		timeout = wait_event_timeout(efx->flush_wq,
 695					     efx_farch_flush_wake(efx),
 696					     timeout);
 697	}
 698
 699	if (atomic_read(&efx->active_queues) &&
 700	    !efx_check_tx_flush_complete(efx)) {
 701		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 702			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 703			  atomic_read(&efx->rxq_flush_outstanding),
 704			  atomic_read(&efx->rxq_flush_pending));
 705		rc = -ETIMEDOUT;
 706
 707		atomic_set(&efx->active_queues, 0);
 708		atomic_set(&efx->rxq_flush_pending, 0);
 709		atomic_set(&efx->rxq_flush_outstanding, 0);
 710	}
 711
 712	return rc;
 713}
 714
 715int efx_farch_fini_dmaq(struct efx_nic *efx)
 716{
 717	struct efx_channel *channel;
 718	struct efx_tx_queue *tx_queue;
 719	struct efx_rx_queue *rx_queue;
 720	int rc = 0;
 721
 722	/* Do not attempt to write to the NIC during EEH recovery */
 723	if (efx->state != STATE_RECOVERY) {
 724		/* Only perform flush if DMA is enabled */
 725		if (efx->pci_dev->is_busmaster) {
 726			efx->type->prepare_flush(efx);
 727			rc = efx_farch_do_flush(efx);
 728			efx->type->finish_flush(efx);
 729		}
 730
 731		efx_for_each_channel(channel, efx) {
 732			efx_for_each_channel_rx_queue(rx_queue, channel)
 733				efx_farch_rx_fini(rx_queue);
 734			efx_for_each_channel_tx_queue(tx_queue, channel)
 735				efx_farch_tx_fini(tx_queue);
 736		}
 737	}
 738
 739	return rc;
 740}
 741
 742/* Reset queue and flush accounting after FLR
 743 *
 744 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 745 * mastering was disabled), in which case we don't receive (RXQ) flush
 746 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 747 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 748 * events were received, and we didn't go through efx_check_tx_flush_complete())
 749 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 750 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 751 * for batched flush requests; and the efx->active_queues gets messed up because
 752 * we keep incrementing for the newly initialised queues, but it never went to
 753 * zero previously.  Then we get a timeout every time we try to restart the
 754 * queues, as it doesn't go back to zero when we should be flushing the queues.
 755 */
 756void efx_farch_finish_flr(struct efx_nic *efx)
 757{
 758	atomic_set(&efx->rxq_flush_pending, 0);
 759	atomic_set(&efx->rxq_flush_outstanding, 0);
 760	atomic_set(&efx->active_queues, 0);
 761}
 762
 763
 764/**************************************************************************
 765 *
 766 * Event queue processing
 767 * Event queues are processed by per-channel tasklets.
 768 *
 769 **************************************************************************/
 770
 771/* Update a channel's event queue's read pointer (RPTR) register
 772 *
 773 * This writes the EVQ_RPTR_REG register for the specified channel's
 774 * event queue.
 775 */
 776void efx_farch_ev_read_ack(struct efx_channel *channel)
 777{
 778	efx_dword_t reg;
 779	struct efx_nic *efx = channel->efx;
 780
 781	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 782			     channel->eventq_read_ptr & channel->eventq_mask);
 783
 784	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 785	 * of 4 bytes, but it is really 16 bytes just like later revisions.
 786	 */
 787	efx_writed(efx, &reg,
 788		   efx->type->evq_rptr_tbl_base +
 789		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 790}
 791
 792/* Use HW to insert a SW defined event */
 793void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 794			      efx_qword_t *event)
 795{
 796	efx_oword_t drv_ev_reg;
 797
 798	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 799		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 800	drv_ev_reg.u32[0] = event->u32[0];
 801	drv_ev_reg.u32[1] = event->u32[1];
 802	drv_ev_reg.u32[2] = 0;
 803	drv_ev_reg.u32[3] = 0;
 804	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 805	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 806}
 807
 808static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 809{
 810	efx_qword_t event;
 811
 812	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 813			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 814			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 815	efx_farch_generate_event(channel->efx, channel->channel, &event);
 816}
 817
 818/* Handle a transmit completion event
 819 *
 820 * The NIC batches TX completion events; the message we receive is of
 821 * the form "complete all TX events up to this index".
 822 */
 823static void
 824efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 825{
 826	unsigned int tx_ev_desc_ptr;
 827	unsigned int tx_ev_q_label;
 828	struct efx_tx_queue *tx_queue;
 829	struct efx_nic *efx = channel->efx;
 830
 831	if (unlikely(READ_ONCE(efx->reset_pending)))
 832		return;
 833
 834	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 835		/* Transmit completion */
 836		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 837		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 838		tx_queue = channel->tx_queue +
 839				(tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
 840		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 841	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 842		/* Rewrite the FIFO write pointer */
 843		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 844		tx_queue = channel->tx_queue +
 845				(tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
 846
 847		netif_tx_lock(efx->net_dev);
 848		efx_farch_notify_tx_desc(tx_queue);
 849		netif_tx_unlock(efx->net_dev);
 850	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 851		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 852	} else {
 853		netif_err(efx, tx_err, efx->net_dev,
 854			  "channel %d unexpected TX event "
 855			  EFX_QWORD_FMT"\n", channel->channel,
 856			  EFX_QWORD_VAL(*event));
 857	}
 858}
 859
 860/* Detect errors included in the rx_evt_pkt_ok bit. */
 861static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 862				      const efx_qword_t *event)
 863{
 864	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 865	struct efx_nic *efx = rx_queue->efx;
 866	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 867	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 868	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
 869	bool rx_ev_other_err, rx_ev_pause_frm;
 870
 871	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 872	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 873						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 874	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 875						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 876	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 877						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 878	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 879	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 880	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 881
 882	/* Every error apart from tobe_disc and pause_frm */
 883	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
 884			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 885			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 886
 887	/* Count errors that are not in MAC stats.  Ignore expected
 888	 * checksum errors during self-test. */
 889	if (rx_ev_frm_trunc)
 890		++channel->n_rx_frm_trunc;
 891	else if (rx_ev_tobe_disc)
 892		++channel->n_rx_tobe_disc;
 893	else if (!efx->loopback_selftest) {
 894		if (rx_ev_ip_hdr_chksum_err)
 895			++channel->n_rx_ip_hdr_chksum_err;
 896		else if (rx_ev_tcp_udp_chksum_err)
 897			++channel->n_rx_tcp_udp_chksum_err;
 898	}
 899
 900	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 901	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 902	 * to a FIFO overflow.
 903	 */
 904#ifdef DEBUG
 905	if (rx_ev_other_err && net_ratelimit()) {
 906		netif_dbg(efx, rx_err, efx->net_dev,
 907			  " RX queue %d unexpected RX event "
 908			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
 909			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 910			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 911			  rx_ev_ip_hdr_chksum_err ?
 912			  " [IP_HDR_CHKSUM_ERR]" : "",
 913			  rx_ev_tcp_udp_chksum_err ?
 914			  " [TCP_UDP_CHKSUM_ERR]" : "",
 915			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 916			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 917			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 918			  rx_ev_pause_frm ? " [PAUSE]" : "");
 919	}
 920#else
 921	(void) rx_ev_other_err;
 922#endif
 923
 924	if (efx->net_dev->features & NETIF_F_RXALL)
 925		/* don't discard frame for CRC error */
 926		rx_ev_eth_crc_err = false;
 927
 928	/* The frame must be discarded if any of these are true. */
 929	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
 930		rx_ev_tobe_disc | rx_ev_pause_frm) ?
 931		EFX_RX_PKT_DISCARD : 0;
 932}
 933
 934/* Handle receive events that are not in-order. Return true if this
 935 * can be handled as a partial packet discard, false if it's more
 936 * serious.
 937 */
 938static bool
 939efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 940{
 941	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 942	struct efx_nic *efx = rx_queue->efx;
 943	unsigned expected, dropped;
 944
 945	if (rx_queue->scatter_n &&
 946	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 947		      rx_queue->ptr_mask)) {
 948		++channel->n_rx_nodesc_trunc;
 949		return true;
 950	}
 951
 952	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 953	dropped = (index - expected) & rx_queue->ptr_mask;
 954	netif_info(efx, rx_err, efx->net_dev,
 955		   "dropped %d events (index=%d expected=%d)\n",
 956		   dropped, index, expected);
 957
 958	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 959	return false;
 960}
 961
 962/* Handle a packet received event
 963 *
 964 * The NIC gives a "discard" flag if it's a unicast packet with the
 965 * wrong destination address
 966 * Also "is multicast" and "matches multicast filter" flags can be used to
 967 * discard non-matching multicast packets.
 968 */
 969static void
 970efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 971{
 972	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 973	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 974	unsigned expected_ptr;
 975	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 976	u16 flags;
 977	struct efx_rx_queue *rx_queue;
 978	struct efx_nic *efx = channel->efx;
 979
 980	if (unlikely(READ_ONCE(efx->reset_pending)))
 981		return;
 982
 983	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 984	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 985	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 986		channel->channel);
 987
 988	rx_queue = efx_channel_get_rx_queue(channel);
 989
 990	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 991	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 992			rx_queue->ptr_mask);
 993
 994	/* Check for partial drops and other errors */
 995	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 996	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 997		if (rx_ev_desc_ptr != expected_ptr &&
 998		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
 999			return;
1000
1001		/* Discard all pending fragments */
1002		if (rx_queue->scatter_n) {
1003			efx_rx_packet(
1004				rx_queue,
1005				rx_queue->removed_count & rx_queue->ptr_mask,
1006				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1007			rx_queue->removed_count += rx_queue->scatter_n;
1008			rx_queue->scatter_n = 0;
1009		}
1010
1011		/* Return if there is no new fragment */
1012		if (rx_ev_desc_ptr != expected_ptr)
1013			return;
1014
1015		/* Discard new fragment if not SOP */
1016		if (!rx_ev_sop) {
1017			efx_rx_packet(
1018				rx_queue,
1019				rx_queue->removed_count & rx_queue->ptr_mask,
1020				1, 0, EFX_RX_PKT_DISCARD);
1021			++rx_queue->removed_count;
1022			return;
1023		}
1024	}
1025
1026	++rx_queue->scatter_n;
1027	if (rx_ev_cont)
1028		return;
1029
1030	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1031	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1032	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1033
1034	if (likely(rx_ev_pkt_ok)) {
1035		/* If packet is marked as OK then we can rely on the
1036		 * hardware checksum and classification.
1037		 */
1038		flags = 0;
1039		switch (rx_ev_hdr_type) {
1040		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1041			flags |= EFX_RX_PKT_TCP;
1042			fallthrough;
1043		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1044			flags |= EFX_RX_PKT_CSUMMED;
1045			fallthrough;
1046		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1047		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1048			break;
1049		}
1050	} else {
1051		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1052	}
1053
1054	/* Detect multicast packets that didn't match the filter */
1055	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1056	if (rx_ev_mcast_pkt) {
1057		unsigned int rx_ev_mcast_hash_match =
1058			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1059
1060		if (unlikely(!rx_ev_mcast_hash_match)) {
1061			++channel->n_rx_mcast_mismatch;
1062			flags |= EFX_RX_PKT_DISCARD;
1063		}
1064	}
1065
1066	channel->irq_mod_score += 2;
1067
1068	/* Handle received packet */
1069	efx_rx_packet(rx_queue,
1070		      rx_queue->removed_count & rx_queue->ptr_mask,
1071		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1072	rx_queue->removed_count += rx_queue->scatter_n;
1073	rx_queue->scatter_n = 0;
1074}
1075
1076/* If this flush done event corresponds to a &struct efx_tx_queue, then
1077 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1078 * of all transmit completions.
1079 */
1080static void
1081efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1082{
1083	struct efx_tx_queue *tx_queue;
1084	struct efx_channel *channel;
1085	int qid;
1086
1087	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1088	if (qid < EFX_MAX_TXQ_PER_CHANNEL * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1089		channel = efx_get_tx_channel(efx, qid / EFX_MAX_TXQ_PER_CHANNEL);
1090		tx_queue = channel->tx_queue + (qid % EFX_MAX_TXQ_PER_CHANNEL);
1091		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0))
1092			efx_farch_magic_event(tx_queue->channel,
1093					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1094	}
1095}
1096
1097/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1098 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1099 * the RX queue back to the mask of RX queues in need of flushing.
1100 */
1101static void
1102efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1103{
1104	struct efx_channel *channel;
1105	struct efx_rx_queue *rx_queue;
1106	int qid;
1107	bool failed;
1108
1109	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1110	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1111	if (qid >= efx->n_channels)
1112		return;
1113	channel = efx_get_channel(efx, qid);
1114	if (!efx_channel_has_rx_queue(channel))
1115		return;
1116	rx_queue = efx_channel_get_rx_queue(channel);
1117
1118	if (failed) {
1119		netif_info(efx, hw, efx->net_dev,
1120			   "RXQ %d flush retry\n", qid);
1121		rx_queue->flush_pending = true;
1122		atomic_inc(&efx->rxq_flush_pending);
1123	} else {
1124		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1125				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1126	}
1127	atomic_dec(&efx->rxq_flush_outstanding);
1128	if (efx_farch_flush_wake(efx))
1129		wake_up(&efx->flush_wq);
1130}
1131
1132static void
1133efx_farch_handle_drain_event(struct efx_channel *channel)
1134{
1135	struct efx_nic *efx = channel->efx;
1136
1137	WARN_ON(atomic_read(&efx->active_queues) == 0);
1138	atomic_dec(&efx->active_queues);
1139	if (efx_farch_flush_wake(efx))
1140		wake_up(&efx->flush_wq);
1141}
1142
1143static void efx_farch_handle_generated_event(struct efx_channel *channel,
1144					     efx_qword_t *event)
1145{
1146	struct efx_nic *efx = channel->efx;
1147	struct efx_rx_queue *rx_queue =
1148		efx_channel_has_rx_queue(channel) ?
1149		efx_channel_get_rx_queue(channel) : NULL;
1150	unsigned magic, code;
1151
1152	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1153	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1154
1155	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1156		channel->event_test_cpu = raw_smp_processor_id();
1157	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1158		/* The queue must be empty, so we won't receive any rx
1159		 * events, so efx_process_channel() won't refill the
1160		 * queue. Refill it here */
1161		efx_fast_push_rx_descriptors(rx_queue, true);
1162	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1163		efx_farch_handle_drain_event(channel);
1164	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1165		efx_farch_handle_drain_event(channel);
1166	} else {
1167		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1168			  "generated event "EFX_QWORD_FMT"\n",
1169			  channel->channel, EFX_QWORD_VAL(*event));
1170	}
1171}
1172
1173static void
1174efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1175{
1176	struct efx_nic *efx = channel->efx;
1177	unsigned int ev_sub_code;
1178	unsigned int ev_sub_data;
1179
1180	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1181	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1182
1183	switch (ev_sub_code) {
1184	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1185		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1186			   channel->channel, ev_sub_data);
1187		efx_farch_handle_tx_flush_done(efx, event);
1188#ifdef CONFIG_SFC_SRIOV
1189		efx_siena_sriov_tx_flush_done(efx, event);
1190#endif
1191		break;
1192	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1193		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1194			   channel->channel, ev_sub_data);
1195		efx_farch_handle_rx_flush_done(efx, event);
1196#ifdef CONFIG_SFC_SRIOV
1197		efx_siena_sriov_rx_flush_done(efx, event);
1198#endif
1199		break;
1200	case FSE_AZ_EVQ_INIT_DONE_EV:
1201		netif_dbg(efx, hw, efx->net_dev,
1202			  "channel %d EVQ %d initialised\n",
1203			  channel->channel, ev_sub_data);
1204		break;
1205	case FSE_AZ_SRM_UPD_DONE_EV:
1206		netif_vdbg(efx, hw, efx->net_dev,
1207			   "channel %d SRAM update done\n", channel->channel);
1208		break;
1209	case FSE_AZ_WAKE_UP_EV:
1210		netif_vdbg(efx, hw, efx->net_dev,
1211			   "channel %d RXQ %d wakeup event\n",
1212			   channel->channel, ev_sub_data);
1213		break;
1214	case FSE_AZ_TIMER_EV:
1215		netif_vdbg(efx, hw, efx->net_dev,
1216			   "channel %d RX queue %d timer expired\n",
1217			   channel->channel, ev_sub_data);
1218		break;
1219	case FSE_AA_RX_RECOVER_EV:
1220		netif_err(efx, rx_err, efx->net_dev,
1221			  "channel %d seen DRIVER RX_RESET event. "
1222			"Resetting.\n", channel->channel);
1223		atomic_inc(&efx->rx_reset);
1224		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1225		break;
1226	case FSE_BZ_RX_DSC_ERROR_EV:
1227		if (ev_sub_data < EFX_VI_BASE) {
1228			netif_err(efx, rx_err, efx->net_dev,
1229				  "RX DMA Q %d reports descriptor fetch error."
1230				  " RX Q %d is disabled.\n", ev_sub_data,
1231				  ev_sub_data);
1232			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1233		}
1234#ifdef CONFIG_SFC_SRIOV
1235		else
1236			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1237#endif
1238		break;
1239	case FSE_BZ_TX_DSC_ERROR_EV:
1240		if (ev_sub_data < EFX_VI_BASE) {
1241			netif_err(efx, tx_err, efx->net_dev,
1242				  "TX DMA Q %d reports descriptor fetch error."
1243				  " TX Q %d is disabled.\n", ev_sub_data,
1244				  ev_sub_data);
1245			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1246		}
1247#ifdef CONFIG_SFC_SRIOV
1248		else
1249			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1250#endif
1251		break;
1252	default:
1253		netif_vdbg(efx, hw, efx->net_dev,
1254			   "channel %d unknown driver event code %d "
1255			   "data %04x\n", channel->channel, ev_sub_code,
1256			   ev_sub_data);
1257		break;
1258	}
1259}
1260
1261int efx_farch_ev_process(struct efx_channel *channel, int budget)
1262{
1263	struct efx_nic *efx = channel->efx;
1264	unsigned int read_ptr;
1265	efx_qword_t event, *p_event;
1266	int ev_code;
1267	int spent = 0;
1268
1269	if (budget <= 0)
1270		return spent;
1271
1272	read_ptr = channel->eventq_read_ptr;
1273
1274	for (;;) {
1275		p_event = efx_event(channel, read_ptr);
1276		event = *p_event;
1277
1278		if (!efx_event_present(&event))
1279			/* End of events */
1280			break;
1281
1282		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1283			   "channel %d event is "EFX_QWORD_FMT"\n",
1284			   channel->channel, EFX_QWORD_VAL(event));
1285
1286		/* Clear this event by marking it all ones */
1287		EFX_SET_QWORD(*p_event);
1288
1289		++read_ptr;
1290
1291		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1292
1293		switch (ev_code) {
1294		case FSE_AZ_EV_CODE_RX_EV:
1295			efx_farch_handle_rx_event(channel, &event);
1296			if (++spent == budget)
1297				goto out;
1298			break;
1299		case FSE_AZ_EV_CODE_TX_EV:
1300			efx_farch_handle_tx_event(channel, &event);
1301			break;
1302		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1303			efx_farch_handle_generated_event(channel, &event);
1304			break;
1305		case FSE_AZ_EV_CODE_DRIVER_EV:
1306			efx_farch_handle_driver_event(channel, &event);
1307			break;
1308#ifdef CONFIG_SFC_SRIOV
1309		case FSE_CZ_EV_CODE_USER_EV:
1310			efx_siena_sriov_event(channel, &event);
1311			break;
1312#endif
1313		case FSE_CZ_EV_CODE_MCDI_EV:
1314			efx_mcdi_process_event(channel, &event);
1315			break;
1316		case FSE_AZ_EV_CODE_GLOBAL_EV:
1317			if (efx->type->handle_global_event &&
1318			    efx->type->handle_global_event(channel, &event))
1319				break;
1320			fallthrough;
1321		default:
1322			netif_err(channel->efx, hw, channel->efx->net_dev,
1323				  "channel %d unknown event type %d (data "
1324				  EFX_QWORD_FMT ")\n", channel->channel,
1325				  ev_code, EFX_QWORD_VAL(event));
1326		}
1327	}
1328
1329out:
1330	channel->eventq_read_ptr = read_ptr;
1331	return spent;
1332}
1333
1334/* Allocate buffer table entries for event queue */
1335int efx_farch_ev_probe(struct efx_channel *channel)
1336{
1337	struct efx_nic *efx = channel->efx;
1338	unsigned entries;
1339
1340	entries = channel->eventq_mask + 1;
1341	return efx_alloc_special_buffer(efx, &channel->eventq,
1342					entries * sizeof(efx_qword_t));
1343}
1344
1345int efx_farch_ev_init(struct efx_channel *channel)
1346{
1347	efx_oword_t reg;
1348	struct efx_nic *efx = channel->efx;
1349
1350	netif_dbg(efx, hw, efx->net_dev,
1351		  "channel %d event queue in special buffers %d-%d\n",
1352		  channel->channel, channel->eventq.index,
1353		  channel->eventq.index + channel->eventq.entries - 1);
1354
1355	EFX_POPULATE_OWORD_3(reg,
1356			     FRF_CZ_TIMER_Q_EN, 1,
1357			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1358			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1359	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1360
1361	/* Pin event queue buffer */
1362	efx_init_special_buffer(efx, &channel->eventq);
1363
1364	/* Fill event queue with all ones (i.e. empty events) */
1365	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1366
1367	/* Push event queue to card */
1368	EFX_POPULATE_OWORD_3(reg,
1369			     FRF_AZ_EVQ_EN, 1,
1370			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1371			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1372	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1373			 channel->channel);
1374
1375	return 0;
1376}
1377
1378void efx_farch_ev_fini(struct efx_channel *channel)
1379{
1380	efx_oword_t reg;
1381	struct efx_nic *efx = channel->efx;
1382
1383	/* Remove event queue from card */
1384	EFX_ZERO_OWORD(reg);
1385	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1386			 channel->channel);
1387	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1388
1389	/* Unpin event queue */
1390	efx_fini_special_buffer(efx, &channel->eventq);
1391}
1392
1393/* Free buffers backing event queue */
1394void efx_farch_ev_remove(struct efx_channel *channel)
1395{
1396	efx_free_special_buffer(channel->efx, &channel->eventq);
1397}
1398
1399
1400void efx_farch_ev_test_generate(struct efx_channel *channel)
1401{
1402	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1403}
1404
1405void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1406{
1407	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1408			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1409}
1410
1411/**************************************************************************
1412 *
1413 * Hardware interrupts
1414 * The hardware interrupt handler does very little work; all the event
1415 * queue processing is carried out by per-channel tasklets.
1416 *
1417 **************************************************************************/
1418
1419/* Enable/disable/generate interrupts */
1420static inline void efx_farch_interrupts(struct efx_nic *efx,
1421				      bool enabled, bool force)
1422{
1423	efx_oword_t int_en_reg_ker;
1424
1425	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1426			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1427			     FRF_AZ_KER_INT_KER, force,
1428			     FRF_AZ_DRV_INT_EN_KER, enabled);
1429	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1430}
1431
1432void efx_farch_irq_enable_master(struct efx_nic *efx)
1433{
1434	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1435	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1436
1437	efx_farch_interrupts(efx, true, false);
1438}
1439
1440void efx_farch_irq_disable_master(struct efx_nic *efx)
1441{
1442	/* Disable interrupts */
1443	efx_farch_interrupts(efx, false, false);
1444}
1445
1446/* Generate a test interrupt
1447 * Interrupt must already have been enabled, otherwise nasty things
1448 * may happen.
1449 */
1450int efx_farch_irq_test_generate(struct efx_nic *efx)
1451{
1452	efx_farch_interrupts(efx, true, true);
1453	return 0;
1454}
1455
1456/* Process a fatal interrupt
1457 * Disable bus mastering ASAP and schedule a reset
1458 */
1459irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1460{
1461	efx_oword_t *int_ker = efx->irq_status.addr;
1462	efx_oword_t fatal_intr;
1463	int error, mem_perr;
1464
1465	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1466	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1467
1468	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1469		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1470		  EFX_OWORD_VAL(fatal_intr),
1471		  error ? "disabling bus mastering" : "no recognised error");
1472
1473	/* If this is a memory parity error dump which blocks are offending */
1474	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1475		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1476	if (mem_perr) {
1477		efx_oword_t reg;
1478		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1479		netif_err(efx, hw, efx->net_dev,
1480			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1481			  EFX_OWORD_VAL(reg));
1482	}
1483
1484	/* Disable both devices */
1485	pci_clear_master(efx->pci_dev);
1486	efx_farch_irq_disable_master(efx);
1487
1488	/* Count errors and reset or disable the NIC accordingly */
1489	if (efx->int_error_count == 0 ||
1490	    time_after(jiffies, efx->int_error_expire)) {
1491		efx->int_error_count = 0;
1492		efx->int_error_expire =
1493			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1494	}
1495	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1496		netif_err(efx, hw, efx->net_dev,
1497			  "SYSTEM ERROR - reset scheduled\n");
1498		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1499	} else {
1500		netif_err(efx, hw, efx->net_dev,
1501			  "SYSTEM ERROR - max number of errors seen."
1502			  "NIC will be disabled\n");
1503		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1504	}
1505
1506	return IRQ_HANDLED;
1507}
1508
1509/* Handle a legacy interrupt
1510 * Acknowledges the interrupt and schedule event queue processing.
1511 */
1512irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1513{
1514	struct efx_nic *efx = dev_id;
1515	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1516	efx_oword_t *int_ker = efx->irq_status.addr;
1517	irqreturn_t result = IRQ_NONE;
1518	struct efx_channel *channel;
1519	efx_dword_t reg;
1520	u32 queues;
1521	int syserr;
1522
1523	/* Read the ISR which also ACKs the interrupts */
1524	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1525	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1526
1527	/* Legacy interrupts are disabled too late by the EEH kernel
1528	 * code. Disable them earlier.
1529	 * If an EEH error occurred, the read will have returned all ones.
1530	 */
1531	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1532	    !efx->eeh_disabled_legacy_irq) {
1533		disable_irq_nosync(efx->legacy_irq);
1534		efx->eeh_disabled_legacy_irq = true;
1535	}
1536
1537	/* Handle non-event-queue sources */
1538	if (queues & (1U << efx->irq_level) && soft_enabled) {
1539		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1540		if (unlikely(syserr))
1541			return efx_farch_fatal_interrupt(efx);
1542		efx->last_irq_cpu = raw_smp_processor_id();
1543	}
1544
1545	if (queues != 0) {
1546		efx->irq_zero_count = 0;
1547
1548		/* Schedule processing of any interrupting queues */
1549		if (likely(soft_enabled)) {
1550			efx_for_each_channel(channel, efx) {
1551				if (queues & 1)
1552					efx_schedule_channel_irq(channel);
1553				queues >>= 1;
1554			}
1555		}
1556		result = IRQ_HANDLED;
1557
1558	} else {
1559		efx_qword_t *event;
1560
1561		/* Legacy ISR read can return zero once (SF bug 15783) */
1562
1563		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1564		 * because this might be a shared interrupt. */
1565		if (efx->irq_zero_count++ == 0)
1566			result = IRQ_HANDLED;
1567
1568		/* Ensure we schedule or rearm all event queues */
1569		if (likely(soft_enabled)) {
1570			efx_for_each_channel(channel, efx) {
1571				event = efx_event(channel,
1572						  channel->eventq_read_ptr);
1573				if (efx_event_present(event))
1574					efx_schedule_channel_irq(channel);
1575				else
1576					efx_farch_ev_read_ack(channel);
1577			}
1578		}
1579	}
1580
1581	if (result == IRQ_HANDLED)
1582		netif_vdbg(efx, intr, efx->net_dev,
1583			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1584			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1585
1586	return result;
1587}
1588
1589/* Handle an MSI interrupt
1590 *
1591 * Handle an MSI hardware interrupt.  This routine schedules event
1592 * queue processing.  No interrupt acknowledgement cycle is necessary.
1593 * Also, we never need to check that the interrupt is for us, since
1594 * MSI interrupts cannot be shared.
1595 */
1596irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1597{
1598	struct efx_msi_context *context = dev_id;
1599	struct efx_nic *efx = context->efx;
1600	efx_oword_t *int_ker = efx->irq_status.addr;
1601	int syserr;
1602
1603	netif_vdbg(efx, intr, efx->net_dev,
1604		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1605		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1606
1607	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1608		return IRQ_HANDLED;
1609
1610	/* Handle non-event-queue sources */
1611	if (context->index == efx->irq_level) {
1612		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1613		if (unlikely(syserr))
1614			return efx_farch_fatal_interrupt(efx);
1615		efx->last_irq_cpu = raw_smp_processor_id();
1616	}
1617
1618	/* Schedule processing of the channel */
1619	efx_schedule_channel_irq(efx->channel[context->index]);
1620
1621	return IRQ_HANDLED;
1622}
1623
1624/* Setup RSS indirection table.
1625 * This maps from the hash value of the packet to RXQ
1626 */
1627void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1628{
1629	size_t i = 0;
1630	efx_dword_t dword;
1631
1632	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1633		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1634
1635	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1636		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1637				     efx->rss_context.rx_indir_table[i]);
1638		efx_writed(efx, &dword,
1639			   FR_BZ_RX_INDIRECTION_TBL +
1640			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1641	}
1642}
1643
1644void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1645{
1646	size_t i = 0;
1647	efx_dword_t dword;
1648
1649	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1650		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1651
1652	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1653		efx_readd(efx, &dword,
1654			   FR_BZ_RX_INDIRECTION_TBL +
1655			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1656		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1657	}
1658}
1659
1660/* Looks at available SRAM resources and works out how many queues we
1661 * can support, and where things like descriptor caches should live.
1662 *
1663 * SRAM is split up as follows:
1664 * 0                          buftbl entries for channels
1665 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1666 * efx->rx_dc_base            RX descriptor caches
1667 * efx->tx_dc_base            TX descriptor caches
1668 */
1669void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1670{
1671	unsigned vi_count, total_tx_channels;
1672#ifdef CONFIG_SFC_SRIOV
1673	struct siena_nic_data *nic_data;
1674	unsigned buftbl_min;
1675#endif
1676
1677	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1678	vi_count = max(efx->n_channels, total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL);
1679
1680#ifdef CONFIG_SFC_SRIOV
1681	nic_data = efx->nic_data;
1682	/* Account for the buffer table entries backing the datapath channels
1683	 * and the descriptor caches for those channels.
1684	 */
1685	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1686		       total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_DMAQ_SIZE +
1687		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1688		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1689	if (efx->type->sriov_wanted) {
1690		if (efx->type->sriov_wanted(efx)) {
1691			unsigned vi_dc_entries, buftbl_free;
1692			unsigned entries_per_vf, vf_limit;
1693
1694			nic_data->vf_buftbl_base = buftbl_min;
1695
1696			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1697			vi_count = max(vi_count, EFX_VI_BASE);
1698			buftbl_free = (sram_lim_qw - buftbl_min -
1699				       vi_count * vi_dc_entries);
1700
1701			entries_per_vf = ((vi_dc_entries +
1702					   EFX_VF_BUFTBL_PER_VI) *
1703					  efx_vf_size(efx));
1704			vf_limit = min(buftbl_free / entries_per_vf,
1705				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1706
1707			if (efx->vf_count > vf_limit) {
1708				netif_err(efx, probe, efx->net_dev,
1709					  "Reducing VF count from from %d to %d\n",
1710					  efx->vf_count, vf_limit);
1711				efx->vf_count = vf_limit;
1712			}
1713			vi_count += efx->vf_count * efx_vf_size(efx);
1714		}
1715	}
1716#endif
1717
1718	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1719	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1720}
1721
1722u32 efx_farch_fpga_ver(struct efx_nic *efx)
1723{
1724	efx_oword_t altera_build;
1725	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1726	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1727}
1728
1729void efx_farch_init_common(struct efx_nic *efx)
1730{
1731	efx_oword_t temp;
1732
1733	/* Set positions of descriptor caches in SRAM. */
1734	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1735	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1736	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1737	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1738
1739	/* Set TX descriptor cache size. */
1740	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1741	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1742	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1743
1744	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1745	 * this allows most efficient prefetching.
1746	 */
1747	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1748	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1749	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1750	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1751	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1752
1753	/* Program INT_KER address */
1754	EFX_POPULATE_OWORD_2(temp,
1755			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1756			     EFX_INT_MODE_USE_MSI(efx),
1757			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1758	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1759
1760	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1761		/* Use an interrupt level unused by event queues */
1762		efx->irq_level = 0x1f;
1763	else
1764		/* Use a valid MSI-X vector */
1765		efx->irq_level = 0;
1766
1767	/* Enable all the genuinely fatal interrupts.  (They are still
1768	 * masked by the overall interrupt mask, controlled by
1769	 * falcon_interrupts()).
1770	 *
1771	 * Note: All other fatal interrupts are enabled
1772	 */
1773	EFX_POPULATE_OWORD_3(temp,
1774			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1775			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1776			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1777	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1778	EFX_INVERT_OWORD(temp);
1779	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1780
1781	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1782	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1783	 */
1784	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1785	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1786	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1787	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1788	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1789	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1790	/* Enable SW_EV to inherit in char driver - assume harmless here */
1791	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1792	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1793	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1794	/* Disable hardware watchdog which can misfire */
1795	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1796	/* Squash TX of packets of 16 bytes or less */
1797	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1798	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1799
1800	EFX_POPULATE_OWORD_4(temp,
1801			     /* Default values */
1802			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1803			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1804			     FRF_BZ_TX_PACE_FB_BASE, 0,
1805			     /* Allow large pace values in the fast bin. */
1806			     FRF_BZ_TX_PACE_BIN_TH,
1807			     FFE_BZ_TX_PACE_RESERVED);
1808	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1809}
1810
1811/**************************************************************************
1812 *
1813 * Filter tables
1814 *
1815 **************************************************************************
1816 */
1817
1818/* "Fudge factors" - difference between programmed value and actual depth.
1819 * Due to pipelined implementation we need to program H/W with a value that
1820 * is larger than the hop limit we want.
1821 */
1822#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1823#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1824
1825/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1826 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1827 * table is full.
1828 */
1829#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1830
1831/* Don't try very hard to find space for performance hints, as this is
1832 * counter-productive. */
1833#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1834
1835enum efx_farch_filter_type {
1836	EFX_FARCH_FILTER_TCP_FULL = 0,
1837	EFX_FARCH_FILTER_TCP_WILD,
1838	EFX_FARCH_FILTER_UDP_FULL,
1839	EFX_FARCH_FILTER_UDP_WILD,
1840	EFX_FARCH_FILTER_MAC_FULL = 4,
1841	EFX_FARCH_FILTER_MAC_WILD,
1842	EFX_FARCH_FILTER_UC_DEF = 8,
1843	EFX_FARCH_FILTER_MC_DEF,
1844	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1845};
1846
1847enum efx_farch_filter_table_id {
1848	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1849	EFX_FARCH_FILTER_TABLE_RX_MAC,
1850	EFX_FARCH_FILTER_TABLE_RX_DEF,
1851	EFX_FARCH_FILTER_TABLE_TX_MAC,
1852	EFX_FARCH_FILTER_TABLE_COUNT,
1853};
1854
1855enum efx_farch_filter_index {
1856	EFX_FARCH_FILTER_INDEX_UC_DEF,
1857	EFX_FARCH_FILTER_INDEX_MC_DEF,
1858	EFX_FARCH_FILTER_SIZE_RX_DEF,
1859};
1860
1861struct efx_farch_filter_spec {
1862	u8	type:4;
1863	u8	priority:4;
1864	u8	flags;
1865	u16	dmaq_id;
1866	u32	data[3];
1867};
1868
1869struct efx_farch_filter_table {
1870	enum efx_farch_filter_table_id id;
1871	u32		offset;		/* address of table relative to BAR */
1872	unsigned	size;		/* number of entries */
1873	unsigned	step;		/* step between entries */
1874	unsigned	used;		/* number currently used */
1875	unsigned long	*used_bitmap;
1876	struct efx_farch_filter_spec *spec;
1877	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1878};
1879
1880struct efx_farch_filter_state {
1881	struct rw_semaphore lock; /* Protects table contents */
1882	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1883};
1884
1885static void
1886efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1887				   struct efx_farch_filter_table *table,
1888				   unsigned int filter_idx);
1889
1890/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1891 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1892static u16 efx_farch_filter_hash(u32 key)
1893{
1894	u16 tmp;
1895
1896	/* First 16 rounds */
1897	tmp = 0x1fff ^ key >> 16;
1898	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1899	tmp = tmp ^ tmp >> 9;
1900	/* Last 16 rounds */
1901	tmp = tmp ^ tmp << 13 ^ key;
1902	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1903	return tmp ^ tmp >> 9;
1904}
1905
1906/* To allow for hash collisions, filter search continues at these
1907 * increments from the first possible entry selected by the hash. */
1908static u16 efx_farch_filter_increment(u32 key)
1909{
1910	return key * 2 - 1;
1911}
1912
1913static enum efx_farch_filter_table_id
1914efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1915{
1916	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1918	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1920	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1922	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1923		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1924	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1925		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1926	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1927		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1928	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1929		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1930	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1931}
1932
1933static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1934{
1935	struct efx_farch_filter_state *state = efx->filter_state;
1936	struct efx_farch_filter_table *table;
1937	efx_oword_t filter_ctl;
1938
1939	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1940
1941	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1942	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1943			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1944			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1945	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1946			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1947			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1948	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1949			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1950			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1951	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1952			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1953			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1954
1955	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1956	if (table->size) {
1957		EFX_SET_OWORD_FIELD(
1958			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1959			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1960			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1961		EFX_SET_OWORD_FIELD(
1962			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1963			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1964			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965	}
1966
1967	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1968	if (table->size) {
1969		EFX_SET_OWORD_FIELD(
1970			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1971			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1972		EFX_SET_OWORD_FIELD(
1973			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1974			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1975			   EFX_FILTER_FLAG_RX_RSS));
1976		EFX_SET_OWORD_FIELD(
1977			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1978			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1979		EFX_SET_OWORD_FIELD(
1980			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1981			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1982			   EFX_FILTER_FLAG_RX_RSS));
1983
1984		/* There is a single bit to enable RX scatter for all
1985		 * unmatched packets.  Only set it if scatter is
1986		 * enabled in both filter specs.
1987		 */
1988		EFX_SET_OWORD_FIELD(
1989			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1990			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1991			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1992			   EFX_FILTER_FLAG_RX_SCATTER));
1993	} else {
1994		/* We don't expose 'default' filters because unmatched
1995		 * packets always go to the queue number found in the
1996		 * RSS table.  But we still need to set the RX scatter
1997		 * bit here.
1998		 */
1999		EFX_SET_OWORD_FIELD(
2000			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2001			efx->rx_scatter);
2002	}
2003
2004	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2005}
2006
2007static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2008{
2009	struct efx_farch_filter_state *state = efx->filter_state;
2010	struct efx_farch_filter_table *table;
2011	efx_oword_t tx_cfg;
2012
2013	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2014
2015	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2016	if (table->size) {
2017		EFX_SET_OWORD_FIELD(
2018			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2019			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2020			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2021		EFX_SET_OWORD_FIELD(
2022			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2023			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2024			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2025	}
2026
2027	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2028}
2029
2030static int
2031efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2032			       const struct efx_filter_spec *gen_spec)
2033{
2034	bool is_full = false;
2035
2036	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2037		return -EINVAL;
2038
2039	spec->priority = gen_spec->priority;
2040	spec->flags = gen_spec->flags;
2041	spec->dmaq_id = gen_spec->dmaq_id;
2042
2043	switch (gen_spec->match_flags) {
2044	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2045	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2046	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2047		is_full = true;
2048		fallthrough;
2049	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2050	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2051		__be32 rhost, host1, host2;
2052		__be16 rport, port1, port2;
2053
2054		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2055
2056		if (gen_spec->ether_type != htons(ETH_P_IP))
2057			return -EPROTONOSUPPORT;
2058		if (gen_spec->loc_port == 0 ||
2059		    (is_full && gen_spec->rem_port == 0))
2060			return -EADDRNOTAVAIL;
2061		switch (gen_spec->ip_proto) {
2062		case IPPROTO_TCP:
2063			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2064				      EFX_FARCH_FILTER_TCP_WILD);
2065			break;
2066		case IPPROTO_UDP:
2067			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2068				      EFX_FARCH_FILTER_UDP_WILD);
2069			break;
2070		default:
2071			return -EPROTONOSUPPORT;
2072		}
2073
2074		/* Filter is constructed in terms of source and destination,
2075		 * with the odd wrinkle that the ports are swapped in a UDP
2076		 * wildcard filter.  We need to convert from local and remote
2077		 * (= zero for wildcard) addresses.
2078		 */
2079		rhost = is_full ? gen_spec->rem_host[0] : 0;
2080		rport = is_full ? gen_spec->rem_port : 0;
2081		host1 = rhost;
2082		host2 = gen_spec->loc_host[0];
2083		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2084			port1 = gen_spec->loc_port;
2085			port2 = rport;
2086		} else {
2087			port1 = rport;
2088			port2 = gen_spec->loc_port;
2089		}
2090		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2091		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2092		spec->data[2] = ntohl(host2);
2093
2094		break;
2095	}
2096
2097	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2098		is_full = true;
2099		fallthrough;
2100	case EFX_FILTER_MATCH_LOC_MAC:
2101		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2102			      EFX_FARCH_FILTER_MAC_WILD);
2103		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2104		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2105				 gen_spec->loc_mac[3] << 16 |
2106				 gen_spec->loc_mac[4] << 8 |
2107				 gen_spec->loc_mac[5]);
2108		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2109				 gen_spec->loc_mac[1]);
2110		break;
2111
2112	case EFX_FILTER_MATCH_LOC_MAC_IG:
2113		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2114			      EFX_FARCH_FILTER_MC_DEF :
2115			      EFX_FARCH_FILTER_UC_DEF);
2116		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2117		break;
2118
2119	default:
2120		return -EPROTONOSUPPORT;
2121	}
2122
2123	return 0;
2124}
2125
2126static void
2127efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2128			     const struct efx_farch_filter_spec *spec)
2129{
2130	bool is_full = false;
2131
2132	/* *gen_spec should be completely initialised, to be consistent
2133	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2134	 * it back to userland.
2135	 */
2136	memset(gen_spec, 0, sizeof(*gen_spec));
2137
2138	gen_spec->priority = spec->priority;
2139	gen_spec->flags = spec->flags;
2140	gen_spec->dmaq_id = spec->dmaq_id;
2141
2142	switch (spec->type) {
2143	case EFX_FARCH_FILTER_TCP_FULL:
2144	case EFX_FARCH_FILTER_UDP_FULL:
2145		is_full = true;
2146		fallthrough;
2147	case EFX_FARCH_FILTER_TCP_WILD:
2148	case EFX_FARCH_FILTER_UDP_WILD: {
2149		__be32 host1, host2;
2150		__be16 port1, port2;
2151
2152		gen_spec->match_flags =
2153			EFX_FILTER_MATCH_ETHER_TYPE |
2154			EFX_FILTER_MATCH_IP_PROTO |
2155			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2156		if (is_full)
2157			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2158						  EFX_FILTER_MATCH_REM_PORT);
2159		gen_spec->ether_type = htons(ETH_P_IP);
2160		gen_spec->ip_proto =
2161			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2162			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2163			IPPROTO_TCP : IPPROTO_UDP;
2164
2165		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2166		port1 = htons(spec->data[0]);
2167		host2 = htonl(spec->data[2]);
2168		port2 = htons(spec->data[1] >> 16);
2169		if (spec->flags & EFX_FILTER_FLAG_TX) {
2170			gen_spec->loc_host[0] = host1;
2171			gen_spec->rem_host[0] = host2;
2172		} else {
2173			gen_spec->loc_host[0] = host2;
2174			gen_spec->rem_host[0] = host1;
2175		}
2176		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2177		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2178			gen_spec->loc_port = port1;
2179			gen_spec->rem_port = port2;
2180		} else {
2181			gen_spec->loc_port = port2;
2182			gen_spec->rem_port = port1;
2183		}
2184
2185		break;
2186	}
2187
2188	case EFX_FARCH_FILTER_MAC_FULL:
2189		is_full = true;
2190		fallthrough;
2191	case EFX_FARCH_FILTER_MAC_WILD:
2192		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2193		if (is_full)
2194			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2195		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2196		gen_spec->loc_mac[1] = spec->data[2];
2197		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2198		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2199		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2200		gen_spec->loc_mac[5] = spec->data[1];
2201		gen_spec->outer_vid = htons(spec->data[0]);
2202		break;
2203
2204	case EFX_FARCH_FILTER_UC_DEF:
2205	case EFX_FARCH_FILTER_MC_DEF:
2206		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2207		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2208		break;
2209
2210	default:
2211		WARN_ON(1);
2212		break;
2213	}
2214}
2215
2216static void
2217efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2218			      struct efx_farch_filter_spec *spec)
2219{
2220	/* If there's only one channel then disable RSS for non VF
2221	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2222	 */
2223	spec->priority = EFX_FILTER_PRI_AUTO;
2224	spec->flags = (EFX_FILTER_FLAG_RX |
2225		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2226		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2227	spec->dmaq_id = 0;
2228}
2229
2230/* Build a filter entry and return its n-tuple key. */
2231static u32 efx_farch_filter_build(efx_oword_t *filter,
2232				  struct efx_farch_filter_spec *spec)
2233{
2234	u32 data3;
2235
2236	switch (efx_farch_filter_spec_table_id(spec)) {
2237	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2238		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2239			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2240		EFX_POPULATE_OWORD_7(
2241			*filter,
2242			FRF_BZ_RSS_EN,
2243			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2244			FRF_BZ_SCATTER_EN,
2245			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2246			FRF_BZ_TCP_UDP, is_udp,
2247			FRF_BZ_RXQ_ID, spec->dmaq_id,
2248			EFX_DWORD_2, spec->data[2],
2249			EFX_DWORD_1, spec->data[1],
2250			EFX_DWORD_0, spec->data[0]);
2251		data3 = is_udp;
2252		break;
2253	}
2254
2255	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2256		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2257		EFX_POPULATE_OWORD_7(
2258			*filter,
2259			FRF_CZ_RMFT_RSS_EN,
2260			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2261			FRF_CZ_RMFT_SCATTER_EN,
2262			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2263			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2264			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2265			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2266			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2267			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2268		data3 = is_wild;
2269		break;
2270	}
2271
2272	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2273		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2274		EFX_POPULATE_OWORD_5(*filter,
2275				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2276				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2277				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2278				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2279				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2280		data3 = is_wild | spec->dmaq_id << 1;
2281		break;
2282	}
2283
2284	default:
2285		BUG();
2286	}
2287
2288	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2289}
2290
2291static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2292				   const struct efx_farch_filter_spec *right)
2293{
2294	if (left->type != right->type ||
2295	    memcmp(left->data, right->data, sizeof(left->data)))
2296		return false;
2297
2298	if (left->flags & EFX_FILTER_FLAG_TX &&
2299	    left->dmaq_id != right->dmaq_id)
2300		return false;
2301
2302	return true;
2303}
2304
2305/*
2306 * Construct/deconstruct external filter IDs.  At least the RX filter
2307 * IDs must be ordered by matching priority, for RX NFC semantics.
2308 *
2309 * Deconstruction needs to be robust against invalid IDs so that
2310 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2311 * accept user-provided IDs.
2312 */
2313
2314#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2315
2316static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2317	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2318	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2319	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2320	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2321	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2322	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2323	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2324	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2325};
2326
2327static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2328	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2329	EFX_FARCH_FILTER_TABLE_RX_IP,
2330	EFX_FARCH_FILTER_TABLE_RX_MAC,
2331	EFX_FARCH_FILTER_TABLE_RX_MAC,
2332	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2333	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2334	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2335};
2336
2337#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2338#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2339
2340static inline u32
2341efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2342			 unsigned int index)
2343{
2344	unsigned int range;
2345
2346	range = efx_farch_filter_type_match_pri[spec->type];
2347	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2348		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2349
2350	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2351}
2352
2353static inline enum efx_farch_filter_table_id
2354efx_farch_filter_id_table_id(u32 id)
2355{
2356	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2357
2358	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2359		return efx_farch_filter_range_table[range];
2360	else
2361		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2362}
2363
2364static inline unsigned int efx_farch_filter_id_index(u32 id)
2365{
2366	return id & EFX_FARCH_FILTER_INDEX_MASK;
2367}
2368
2369u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2370{
2371	struct efx_farch_filter_state *state = efx->filter_state;
2372	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2373	enum efx_farch_filter_table_id table_id;
2374
2375	do {
2376		table_id = efx_farch_filter_range_table[range];
2377		if (state->table[table_id].size != 0)
2378			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2379				state->table[table_id].size;
2380	} while (range--);
2381
2382	return 0;
2383}
2384
2385s32 efx_farch_filter_insert(struct efx_nic *efx,
2386			    struct efx_filter_spec *gen_spec,
2387			    bool replace_equal)
2388{
2389	struct efx_farch_filter_state *state = efx->filter_state;
2390	struct efx_farch_filter_table *table;
2391	struct efx_farch_filter_spec spec;
2392	efx_oword_t filter;
2393	int rep_index, ins_index;
2394	unsigned int depth = 0;
2395	int rc;
2396
2397	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2398	if (rc)
2399		return rc;
2400
2401	down_write(&state->lock);
2402
2403	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2404	if (table->size == 0) {
2405		rc = -EINVAL;
2406		goto out_unlock;
2407	}
2408
2409	netif_vdbg(efx, hw, efx->net_dev,
2410		   "%s: type %d search_limit=%d", __func__, spec.type,
2411		   table->search_limit[spec.type]);
2412
2413	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2414		/* One filter spec per type */
2415		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2416		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2417			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2418		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2419		ins_index = rep_index;
2420	} else {
2421		/* Search concurrently for
2422		 * (1) a filter to be replaced (rep_index): any filter
2423		 *     with the same match values, up to the current
2424		 *     search depth for this type, and
2425		 * (2) the insertion point (ins_index): (1) or any
2426		 *     free slot before it or up to the maximum search
2427		 *     depth for this priority
2428		 * We fail if we cannot find (2).
2429		 *
2430		 * We can stop once either
2431		 * (a) we find (1), in which case we have definitely
2432		 *     found (2) as well; or
2433		 * (b) we have searched exhaustively for (1), and have
2434		 *     either found (2) or searched exhaustively for it
2435		 */
2436		u32 key = efx_farch_filter_build(&filter, &spec);
2437		unsigned int hash = efx_farch_filter_hash(key);
2438		unsigned int incr = efx_farch_filter_increment(key);
2439		unsigned int max_rep_depth = table->search_limit[spec.type];
2440		unsigned int max_ins_depth =
2441			spec.priority <= EFX_FILTER_PRI_HINT ?
2442			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2443			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2444		unsigned int i = hash & (table->size - 1);
2445
2446		ins_index = -1;
2447		depth = 1;
2448
2449		for (;;) {
2450			if (!test_bit(i, table->used_bitmap)) {
2451				if (ins_index < 0)
2452					ins_index = i;
2453			} else if (efx_farch_filter_equal(&spec,
2454							  &table->spec[i])) {
2455				/* Case (a) */
2456				if (ins_index < 0)
2457					ins_index = i;
2458				rep_index = i;
2459				break;
2460			}
2461
2462			if (depth >= max_rep_depth &&
2463			    (ins_index >= 0 || depth >= max_ins_depth)) {
2464				/* Case (b) */
2465				if (ins_index < 0) {
2466					rc = -EBUSY;
2467					goto out_unlock;
2468				}
2469				rep_index = -1;
2470				break;
2471			}
2472
2473			i = (i + incr) & (table->size - 1);
2474			++depth;
2475		}
2476	}
2477
2478	/* If we found a filter to be replaced, check whether we
2479	 * should do so
2480	 */
2481	if (rep_index >= 0) {
2482		struct efx_farch_filter_spec *saved_spec =
2483			&table->spec[rep_index];
2484
2485		if (spec.priority == saved_spec->priority && !replace_equal) {
2486			rc = -EEXIST;
2487			goto out_unlock;
2488		}
2489		if (spec.priority < saved_spec->priority) {
2490			rc = -EPERM;
2491			goto out_unlock;
2492		}
2493		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2494		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2495			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2496	}
2497
2498	/* Insert the filter */
2499	if (ins_index != rep_index) {
2500		__set_bit(ins_index, table->used_bitmap);
2501		++table->used;
2502	}
2503	table->spec[ins_index] = spec;
2504
2505	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2506		efx_farch_filter_push_rx_config(efx);
2507	} else {
2508		if (table->search_limit[spec.type] < depth) {
2509			table->search_limit[spec.type] = depth;
2510			if (spec.flags & EFX_FILTER_FLAG_TX)
2511				efx_farch_filter_push_tx_limits(efx);
2512			else
2513				efx_farch_filter_push_rx_config(efx);
2514		}
2515
2516		efx_writeo(efx, &filter,
2517			   table->offset + table->step * ins_index);
2518
2519		/* If we were able to replace a filter by inserting
2520		 * at a lower depth, clear the replaced filter
2521		 */
2522		if (ins_index != rep_index && rep_index >= 0)
2523			efx_farch_filter_table_clear_entry(efx, table,
2524							   rep_index);
2525	}
2526
2527	netif_vdbg(efx, hw, efx->net_dev,
2528		   "%s: filter type %d index %d rxq %u set",
2529		   __func__, spec.type, ins_index, spec.dmaq_id);
2530	rc = efx_farch_filter_make_id(&spec, ins_index);
2531
2532out_unlock:
2533	up_write(&state->lock);
2534	return rc;
2535}
2536
2537static void
2538efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2539				   struct efx_farch_filter_table *table,
2540				   unsigned int filter_idx)
2541{
2542	static efx_oword_t filter;
2543
2544	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2545	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2546
2547	__clear_bit(filter_idx, table->used_bitmap);
2548	--table->used;
2549	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2550
2551	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2552
2553	/* If this filter required a greater search depth than
2554	 * any other, the search limit for its type can now be
2555	 * decreased.  However, it is hard to determine that
2556	 * unless the table has become completely empty - in
2557	 * which case, all its search limits can be set to 0.
2558	 */
2559	if (unlikely(table->used == 0)) {
2560		memset(table->search_limit, 0, sizeof(table->search_limit));
2561		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2562			efx_farch_filter_push_tx_limits(efx);
2563		else
2564			efx_farch_filter_push_rx_config(efx);
2565	}
2566}
2567
2568static int efx_farch_filter_remove(struct efx_nic *efx,
2569				   struct efx_farch_filter_table *table,
2570				   unsigned int filter_idx,
2571				   enum efx_filter_priority priority)
2572{
2573	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2574
2575	if (!test_bit(filter_idx, table->used_bitmap) ||
2576	    spec->priority != priority)
2577		return -ENOENT;
2578
2579	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2580		efx_farch_filter_init_rx_auto(efx, spec);
2581		efx_farch_filter_push_rx_config(efx);
2582	} else {
2583		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2584	}
2585
2586	return 0;
2587}
2588
2589int efx_farch_filter_remove_safe(struct efx_nic *efx,
2590				 enum efx_filter_priority priority,
2591				 u32 filter_id)
2592{
2593	struct efx_farch_filter_state *state = efx->filter_state;
2594	enum efx_farch_filter_table_id table_id;
2595	struct efx_farch_filter_table *table;
2596	unsigned int filter_idx;
2597	int rc;
2598
2599	table_id = efx_farch_filter_id_table_id(filter_id);
2600	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2601		return -ENOENT;
2602	table = &state->table[table_id];
2603
2604	filter_idx = efx_farch_filter_id_index(filter_id);
2605	if (filter_idx >= table->size)
2606		return -ENOENT;
2607	down_write(&state->lock);
2608
2609	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2610	up_write(&state->lock);
2611
2612	return rc;
2613}
2614
2615int efx_farch_filter_get_safe(struct efx_nic *efx,
2616			      enum efx_filter_priority priority,
2617			      u32 filter_id, struct efx_filter_spec *spec_buf)
2618{
2619	struct efx_farch_filter_state *state = efx->filter_state;
2620	enum efx_farch_filter_table_id table_id;
2621	struct efx_farch_filter_table *table;
2622	struct efx_farch_filter_spec *spec;
2623	unsigned int filter_idx;
2624	int rc = -ENOENT;
2625
2626	down_read(&state->lock);
2627
2628	table_id = efx_farch_filter_id_table_id(filter_id);
2629	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2630		goto out_unlock;
2631	table = &state->table[table_id];
2632
2633	filter_idx = efx_farch_filter_id_index(filter_id);
2634	if (filter_idx >= table->size)
2635		goto out_unlock;
2636	spec = &table->spec[filter_idx];
2637
2638	if (test_bit(filter_idx, table->used_bitmap) &&
2639	    spec->priority == priority) {
2640		efx_farch_filter_to_gen_spec(spec_buf, spec);
2641		rc = 0;
2642	}
2643
2644out_unlock:
2645	up_read(&state->lock);
2646	return rc;
2647}
2648
2649static void
2650efx_farch_filter_table_clear(struct efx_nic *efx,
2651			     enum efx_farch_filter_table_id table_id,
2652			     enum efx_filter_priority priority)
2653{
2654	struct efx_farch_filter_state *state = efx->filter_state;
2655	struct efx_farch_filter_table *table = &state->table[table_id];
2656	unsigned int filter_idx;
2657
2658	down_write(&state->lock);
2659	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2660		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2661			efx_farch_filter_remove(efx, table,
2662						filter_idx, priority);
2663	}
2664	up_write(&state->lock);
2665}
2666
2667int efx_farch_filter_clear_rx(struct efx_nic *efx,
2668			       enum efx_filter_priority priority)
2669{
2670	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2671				     priority);
2672	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2673				     priority);
2674	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2675				     priority);
2676	return 0;
2677}
2678
2679u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2680				   enum efx_filter_priority priority)
2681{
2682	struct efx_farch_filter_state *state = efx->filter_state;
2683	enum efx_farch_filter_table_id table_id;
2684	struct efx_farch_filter_table *table;
2685	unsigned int filter_idx;
2686	u32 count = 0;
2687
2688	down_read(&state->lock);
2689
2690	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2691	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2692	     table_id++) {
2693		table = &state->table[table_id];
2694		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2695			if (test_bit(filter_idx, table->used_bitmap) &&
2696			    table->spec[filter_idx].priority == priority)
2697				++count;
2698		}
2699	}
2700
2701	up_read(&state->lock);
2702
2703	return count;
2704}
2705
2706s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2707				enum efx_filter_priority priority,
2708				u32 *buf, u32 size)
2709{
2710	struct efx_farch_filter_state *state = efx->filter_state;
2711	enum efx_farch_filter_table_id table_id;
2712	struct efx_farch_filter_table *table;
2713	unsigned int filter_idx;
2714	s32 count = 0;
2715
2716	down_read(&state->lock);
2717
2718	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2719	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2720	     table_id++) {
2721		table = &state->table[table_id];
2722		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2723			if (test_bit(filter_idx, table->used_bitmap) &&
2724			    table->spec[filter_idx].priority == priority) {
2725				if (count == size) {
2726					count = -EMSGSIZE;
2727					goto out;
2728				}
2729				buf[count++] = efx_farch_filter_make_id(
2730					&table->spec[filter_idx], filter_idx);
2731			}
2732		}
2733	}
2734out:
2735	up_read(&state->lock);
2736
2737	return count;
2738}
2739
2740/* Restore filter stater after reset */
2741void efx_farch_filter_table_restore(struct efx_nic *efx)
2742{
2743	struct efx_farch_filter_state *state = efx->filter_state;
2744	enum efx_farch_filter_table_id table_id;
2745	struct efx_farch_filter_table *table;
2746	efx_oword_t filter;
2747	unsigned int filter_idx;
2748
2749	down_write(&state->lock);
2750
2751	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2752		table = &state->table[table_id];
2753
2754		/* Check whether this is a regular register table */
2755		if (table->step == 0)
2756			continue;
2757
2758		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2759			if (!test_bit(filter_idx, table->used_bitmap))
2760				continue;
2761			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2762			efx_writeo(efx, &filter,
2763				   table->offset + table->step * filter_idx);
2764		}
2765	}
2766
2767	efx_farch_filter_push_rx_config(efx);
2768	efx_farch_filter_push_tx_limits(efx);
2769
2770	up_write(&state->lock);
2771}
2772
2773void efx_farch_filter_table_remove(struct efx_nic *efx)
2774{
2775	struct efx_farch_filter_state *state = efx->filter_state;
2776	enum efx_farch_filter_table_id table_id;
2777
2778	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2779		kfree(state->table[table_id].used_bitmap);
2780		vfree(state->table[table_id].spec);
2781	}
2782	kfree(state);
2783}
2784
2785int efx_farch_filter_table_probe(struct efx_nic *efx)
2786{
2787	struct efx_farch_filter_state *state;
2788	struct efx_farch_filter_table *table;
2789	unsigned table_id;
2790
2791	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2792	if (!state)
2793		return -ENOMEM;
2794	efx->filter_state = state;
2795	init_rwsem(&state->lock);
2796
2797	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2798	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2799	table->offset = FR_BZ_RX_FILTER_TBL0;
2800	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2801	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2802
2803	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2804	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2805	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2806	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2807	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2808
2809	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2810	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2811	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2812
2813	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2814	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2815	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2816	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2817	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2818
2819	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2820		table = &state->table[table_id];
2821		if (table->size == 0)
2822			continue;
2823		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2824					     sizeof(unsigned long),
2825					     GFP_KERNEL);
2826		if (!table->used_bitmap)
2827			goto fail;
2828		table->spec = vzalloc(array_size(sizeof(*table->spec),
2829						 table->size));
2830		if (!table->spec)
2831			goto fail;
2832	}
2833
2834	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2835	if (table->size) {
2836		/* RX default filters must always exist */
2837		struct efx_farch_filter_spec *spec;
2838		unsigned i;
2839
2840		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2841			spec = &table->spec[i];
2842			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2843			efx_farch_filter_init_rx_auto(efx, spec);
2844			__set_bit(i, table->used_bitmap);
2845		}
2846	}
2847
2848	efx_farch_filter_push_rx_config(efx);
2849
2850	return 0;
2851
2852fail:
2853	efx_farch_filter_table_remove(efx);
2854	return -ENOMEM;
2855}
2856
2857/* Update scatter enable flags for filters pointing to our own RX queues */
2858void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2859{
2860	struct efx_farch_filter_state *state = efx->filter_state;
2861	enum efx_farch_filter_table_id table_id;
2862	struct efx_farch_filter_table *table;
2863	efx_oword_t filter;
2864	unsigned int filter_idx;
2865
2866	down_write(&state->lock);
2867
2868	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2869	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2870	     table_id++) {
2871		table = &state->table[table_id];
2872
2873		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2874			if (!test_bit(filter_idx, table->used_bitmap) ||
2875			    table->spec[filter_idx].dmaq_id >=
2876			    efx->n_rx_channels)
2877				continue;
2878
2879			if (efx->rx_scatter)
2880				table->spec[filter_idx].flags |=
2881					EFX_FILTER_FLAG_RX_SCATTER;
2882			else
2883				table->spec[filter_idx].flags &=
2884					~EFX_FILTER_FLAG_RX_SCATTER;
2885
2886			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2887				/* Pushed by efx_farch_filter_push_rx_config() */
2888				continue;
2889
2890			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2891			efx_writeo(efx, &filter,
2892				   table->offset + table->step * filter_idx);
2893		}
2894	}
2895
2896	efx_farch_filter_push_rx_config(efx);
2897
2898	up_write(&state->lock);
2899}
2900
2901#ifdef CONFIG_RFS_ACCEL
2902
2903bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2904				     unsigned int index)
2905{
2906	struct efx_farch_filter_state *state = efx->filter_state;
2907	struct efx_farch_filter_table *table;
2908	bool ret = false, force = false;
2909	u16 arfs_id;
2910
2911	down_write(&state->lock);
2912	spin_lock_bh(&efx->rps_hash_lock);
2913	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914	if (test_bit(index, table->used_bitmap) &&
2915	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2916		struct efx_arfs_rule *rule = NULL;
2917		struct efx_filter_spec spec;
2918
2919		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2920		if (!efx->rps_hash_table) {
2921			/* In the absence of the table, we always returned 0 to
2922			 * ARFS, so use the same to query it.
2923			 */
2924			arfs_id = 0;
2925		} else {
2926			rule = efx_rps_hash_find(efx, &spec);
2927			if (!rule) {
2928				/* ARFS table doesn't know of this filter, remove it */
2929				force = true;
2930			} else {
2931				arfs_id = rule->arfs_id;
2932				if (!efx_rps_check_rule(rule, index, &force))
2933					goto out_unlock;
2934			}
2935		}
2936		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2937						 flow_id, arfs_id)) {
2938			if (rule)
2939				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2940			efx_rps_hash_del(efx, &spec);
2941			efx_farch_filter_table_clear_entry(efx, table, index);
2942			ret = true;
2943		}
2944	}
2945out_unlock:
2946	spin_unlock_bh(&efx->rps_hash_lock);
2947	up_write(&state->lock);
2948	return ret;
2949}
2950
2951#endif /* CONFIG_RFS_ACCEL */
2952
2953void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2954{
2955	struct net_device *net_dev = efx->net_dev;
2956	struct netdev_hw_addr *ha;
2957	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2958	u32 crc;
2959	int bit;
2960
2961	if (!efx_dev_registered(efx))
2962		return;
2963
2964	netif_addr_lock_bh(net_dev);
2965
2966	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2967
2968	/* Build multicast hash table */
2969	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2970		memset(mc_hash, 0xff, sizeof(*mc_hash));
2971	} else {
2972		memset(mc_hash, 0x00, sizeof(*mc_hash));
2973		netdev_for_each_mc_addr(ha, net_dev) {
2974			crc = ether_crc_le(ETH_ALEN, ha->addr);
2975			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2976			__set_bit_le(bit, mc_hash);
2977		}
2978
2979		/* Broadcast packets go through the multicast hash filter.
2980		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2981		 * so we always add bit 0xff to the mask.
2982		 */
2983		__set_bit_le(0xff, mc_hash);
2984	}
2985
2986	netif_addr_unlock_bh(net_dev);
2987}