Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2006-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/pci.h>
  12#include <linux/module.h>
  13#include <linux/seq_file.h>
  14#include <linux/crc32.h>
  15#include "net_driver.h"
  16#include "bitfield.h"
  17#include "efx.h"
  18#include "nic.h"
  19#include "farch_regs.h"
  20#include "sriov.h"
  21#include "siena_sriov.h"
  22#include "io.h"
  23#include "workarounds.h"
  24
  25/* Falcon-architecture (SFC9000-family) support */
  26
  27/**************************************************************************
  28 *
  29 * Configurable values
  30 *
  31 **************************************************************************
  32 */
  33
  34/* This is set to 16 for a good reason.  In summary, if larger than
  35 * 16, the descriptor cache holds more than a default socket
  36 * buffer's worth of packets (for UDP we can only have at most one
  37 * socket buffer's worth outstanding).  This combined with the fact
  38 * that we only get 1 TX event per descriptor cache means the NIC
  39 * goes idle.
  40 */
  41#define TX_DC_ENTRIES 16
  42#define TX_DC_ENTRIES_ORDER 1
  43
  44#define RX_DC_ENTRIES 64
  45#define RX_DC_ENTRIES_ORDER 3
  46
  47/* If EFX_MAX_INT_ERRORS internal errors occur within
  48 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  49 * disable it.
  50 */
  51#define EFX_INT_ERROR_EXPIRE 3600
  52#define EFX_MAX_INT_ERRORS 5
  53
  54/* Depth of RX flush request fifo */
  55#define EFX_RX_FLUSH_COUNT 4
  56
  57/* Driver generated events */
  58#define _EFX_CHANNEL_MAGIC_TEST		0x000101
  59#define _EFX_CHANNEL_MAGIC_FILL		0x000102
  60#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
  61#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
  62
  63#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
  64#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
  65
  66#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
  67	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  68#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
  69	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
  70			   efx_rx_queue_index(_rx_queue))
  71#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
  72	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
  73			   efx_rx_queue_index(_rx_queue))
  74#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
  75	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
  76			   (_tx_queue)->queue)
  77
  78static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  79
  80/**************************************************************************
  81 *
  82 * Hardware access
  83 *
  84 **************************************************************************/
  85
  86static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  87				     unsigned int index)
  88{
  89	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  90			value, index);
  91}
  92
  93static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  94				     const efx_oword_t *mask)
  95{
  96	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  97		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  98}
  99
 100int efx_farch_test_registers(struct efx_nic *efx,
 101			     const struct efx_farch_register_test *regs,
 102			     size_t n_regs)
 103{
 104	unsigned address = 0;
 105	int i, j;
 106	efx_oword_t mask, imask, original, reg, buf;
 107
 108	for (i = 0; i < n_regs; ++i) {
 109		address = regs[i].address;
 110		mask = imask = regs[i].mask;
 111		EFX_INVERT_OWORD(imask);
 112
 113		efx_reado(efx, &original, address);
 114
 115		/* bit sweep on and off */
 116		for (j = 0; j < 128; j++) {
 117			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 118				continue;
 119
 120			/* Test this testable bit can be set in isolation */
 121			EFX_AND_OWORD(reg, original, mask);
 122			EFX_SET_OWORD32(reg, j, j, 1);
 123
 124			efx_writeo(efx, &reg, address);
 125			efx_reado(efx, &buf, address);
 126
 127			if (efx_masked_compare_oword(&reg, &buf, &mask))
 128				goto fail;
 129
 130			/* Test this testable bit can be cleared in isolation */
 131			EFX_OR_OWORD(reg, original, mask);
 132			EFX_SET_OWORD32(reg, j, j, 0);
 133
 134			efx_writeo(efx, &reg, address);
 135			efx_reado(efx, &buf, address);
 136
 137			if (efx_masked_compare_oword(&reg, &buf, &mask))
 138				goto fail;
 139		}
 140
 141		efx_writeo(efx, &original, address);
 142	}
 143
 144	return 0;
 145
 146fail:
 147	netif_err(efx, hw, efx->net_dev,
 148		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 149		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 150		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 151	return -EIO;
 152}
 153
 154/**************************************************************************
 155 *
 156 * Special buffer handling
 157 * Special buffers are used for event queues and the TX and RX
 158 * descriptor rings.
 159 *
 160 *************************************************************************/
 161
 162/*
 163 * Initialise a special buffer
 164 *
 165 * This will define a buffer (previously allocated via
 166 * efx_alloc_special_buffer()) in the buffer table, allowing
 167 * it to be used for event queues, descriptor rings etc.
 168 */
 169static void
 170efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 171{
 172	efx_qword_t buf_desc;
 173	unsigned int index;
 174	dma_addr_t dma_addr;
 175	int i;
 176
 177	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
 178
 179	/* Write buffer descriptors to NIC */
 180	for (i = 0; i < buffer->entries; i++) {
 181		index = buffer->index + i;
 182		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 183		netif_dbg(efx, probe, efx->net_dev,
 184			  "mapping special buffer %d at %llx\n",
 185			  index, (unsigned long long)dma_addr);
 186		EFX_POPULATE_QWORD_3(buf_desc,
 187				     FRF_AZ_BUF_ADR_REGION, 0,
 188				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 189				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 190		efx_write_buf_tbl(efx, &buf_desc, index);
 191	}
 192}
 193
 194/* Unmaps a buffer and clears the buffer table entries */
 195static void
 196efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 197{
 198	efx_oword_t buf_tbl_upd;
 199	unsigned int start = buffer->index;
 200	unsigned int end = (buffer->index + buffer->entries - 1);
 201
 202	if (!buffer->entries)
 203		return;
 204
 205	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 206		  buffer->index, buffer->index + buffer->entries - 1);
 207
 208	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 209			     FRF_AZ_BUF_UPD_CMD, 0,
 210			     FRF_AZ_BUF_CLR_CMD, 1,
 211			     FRF_AZ_BUF_CLR_END_ID, end,
 212			     FRF_AZ_BUF_CLR_START_ID, start);
 213	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 214}
 215
 216/*
 217 * Allocate a new special buffer
 218 *
 219 * This allocates memory for a new buffer, clears it and allocates a
 220 * new buffer ID range.  It does not write into the buffer table.
 221 *
 222 * This call will allocate 4KB buffers, since 8KB buffers can't be
 223 * used for event queues and descriptor rings.
 224 */
 225static int efx_alloc_special_buffer(struct efx_nic *efx,
 226				    struct efx_special_buffer *buffer,
 227				    unsigned int len)
 228{
 229#ifdef CONFIG_SFC_SRIOV
 230	struct siena_nic_data *nic_data = efx->nic_data;
 231#endif
 232	len = ALIGN(len, EFX_BUF_SIZE);
 233
 234	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 235		return -ENOMEM;
 236	buffer->entries = len / EFX_BUF_SIZE;
 237	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 238
 239	/* Select new buffer ID */
 240	buffer->index = efx->next_buffer_table;
 241	efx->next_buffer_table += buffer->entries;
 242#ifdef CONFIG_SFC_SRIOV
 243	BUG_ON(efx_siena_sriov_enabled(efx) &&
 244	       nic_data->vf_buftbl_base < efx->next_buffer_table);
 245#endif
 246
 247	netif_dbg(efx, probe, efx->net_dev,
 248		  "allocating special buffers %d-%d at %llx+%x "
 249		  "(virt %p phys %llx)\n", buffer->index,
 250		  buffer->index + buffer->entries - 1,
 251		  (u64)buffer->buf.dma_addr, len,
 252		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 253
 254	return 0;
 255}
 256
 257static void
 258efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 259{
 260	if (!buffer->buf.addr)
 261		return;
 262
 263	netif_dbg(efx, hw, efx->net_dev,
 264		  "deallocating special buffers %d-%d at %llx+%x "
 265		  "(virt %p phys %llx)\n", buffer->index,
 266		  buffer->index + buffer->entries - 1,
 267		  (u64)buffer->buf.dma_addr, buffer->buf.len,
 268		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 269
 270	efx_nic_free_buffer(efx, &buffer->buf);
 271	buffer->entries = 0;
 272}
 273
 274/**************************************************************************
 275 *
 276 * TX path
 277 *
 278 **************************************************************************/
 279
 280/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 281static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 282{
 283	unsigned write_ptr;
 284	efx_dword_t reg;
 285
 286	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 287	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 288	efx_writed_page(tx_queue->efx, &reg,
 289			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 290}
 291
 292/* Write pointer and first descriptor for TX descriptor ring */
 293static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 294					  const efx_qword_t *txd)
 295{
 296	unsigned write_ptr;
 297	efx_oword_t reg;
 298
 299	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 300	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 301
 302	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 303	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 304			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 305	reg.qword[0] = *txd;
 306	efx_writeo_page(tx_queue->efx, &reg,
 307			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 308}
 309
 310
 311/* For each entry inserted into the software descriptor ring, create a
 312 * descriptor in the hardware TX descriptor ring (in host memory), and
 313 * write a doorbell.
 314 */
 315void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 316{
 317	struct efx_tx_buffer *buffer;
 318	efx_qword_t *txd;
 319	unsigned write_ptr;
 320	unsigned old_write_count = tx_queue->write_count;
 321
 322	tx_queue->xmit_more_available = false;
 323	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 324		return;
 325
 326	do {
 327		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 328		buffer = &tx_queue->buffer[write_ptr];
 329		txd = efx_tx_desc(tx_queue, write_ptr);
 330		++tx_queue->write_count;
 331
 332		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 333
 334		/* Create TX descriptor ring entry */
 335		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 336		EFX_POPULATE_QWORD_4(*txd,
 337				     FSF_AZ_TX_KER_CONT,
 338				     buffer->flags & EFX_TX_BUF_CONT,
 339				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 340				     FSF_AZ_TX_KER_BUF_REGION, 0,
 341				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 342	} while (tx_queue->write_count != tx_queue->insert_count);
 343
 344	wmb(); /* Ensure descriptors are written before they are fetched */
 345
 346	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 347		txd = efx_tx_desc(tx_queue,
 348				  old_write_count & tx_queue->ptr_mask);
 349		efx_farch_push_tx_desc(tx_queue, txd);
 350		++tx_queue->pushes;
 351	} else {
 352		efx_farch_notify_tx_desc(tx_queue);
 353	}
 354}
 355
 356unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 357				    dma_addr_t dma_addr, unsigned int len)
 358{
 359	/* Don't cross 4K boundaries with descriptors. */
 360	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
 361
 362	len = min(limit, len);
 363
 364	return len;
 365}
 366
 367
 368/* Allocate hardware resources for a TX queue */
 369int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 370{
 371	struct efx_nic *efx = tx_queue->efx;
 372	unsigned entries;
 373
 374	entries = tx_queue->ptr_mask + 1;
 375	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 376					entries * sizeof(efx_qword_t));
 377}
 378
 379void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 380{
 381	int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 382	struct efx_nic *efx = tx_queue->efx;
 383	efx_oword_t reg;
 384
 385	/* Pin TX descriptor ring */
 386	efx_init_special_buffer(efx, &tx_queue->txd);
 387
 388	/* Push TX descriptor ring to card */
 389	EFX_POPULATE_OWORD_10(reg,
 390			      FRF_AZ_TX_DESCQ_EN, 1,
 391			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 392			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 393			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 394			      FRF_AZ_TX_DESCQ_EVQ_ID,
 395			      tx_queue->channel->channel,
 396			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 397			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 398			      FRF_AZ_TX_DESCQ_SIZE,
 399			      __ffs(tx_queue->txd.entries),
 400			      FRF_AZ_TX_DESCQ_TYPE, 0,
 401			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 402
 403	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 404	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
 405
 406	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 407			 tx_queue->queue);
 408
 409	EFX_POPULATE_OWORD_1(reg,
 410			     FRF_BZ_TX_PACE,
 411			     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 412			     FFE_BZ_TX_PACE_OFF :
 413			     FFE_BZ_TX_PACE_RESERVED);
 414	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
 415}
 416
 417static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 418{
 419	struct efx_nic *efx = tx_queue->efx;
 420	efx_oword_t tx_flush_descq;
 421
 422	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 423	atomic_set(&tx_queue->flush_outstanding, 1);
 424
 425	EFX_POPULATE_OWORD_2(tx_flush_descq,
 426			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 427			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 428	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 429}
 430
 431void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 432{
 433	struct efx_nic *efx = tx_queue->efx;
 434	efx_oword_t tx_desc_ptr;
 435
 436	/* Remove TX descriptor ring from card */
 437	EFX_ZERO_OWORD(tx_desc_ptr);
 438	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 439			 tx_queue->queue);
 440
 441	/* Unpin TX descriptor ring */
 442	efx_fini_special_buffer(efx, &tx_queue->txd);
 443}
 444
 445/* Free buffers backing TX queue */
 446void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 447{
 448	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 449}
 450
 451/**************************************************************************
 452 *
 453 * RX path
 454 *
 455 **************************************************************************/
 456
 457/* This creates an entry in the RX descriptor queue */
 458static inline void
 459efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 460{
 461	struct efx_rx_buffer *rx_buf;
 462	efx_qword_t *rxd;
 463
 464	rxd = efx_rx_desc(rx_queue, index);
 465	rx_buf = efx_rx_buffer(rx_queue, index);
 466	EFX_POPULATE_QWORD_3(*rxd,
 467			     FSF_AZ_RX_KER_BUF_SIZE,
 468			     rx_buf->len -
 469			     rx_queue->efx->type->rx_buffer_padding,
 470			     FSF_AZ_RX_KER_BUF_REGION, 0,
 471			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 472}
 473
 474/* This writes to the RX_DESC_WPTR register for the specified receive
 475 * descriptor ring.
 476 */
 477void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 478{
 479	struct efx_nic *efx = rx_queue->efx;
 480	efx_dword_t reg;
 481	unsigned write_ptr;
 482
 483	while (rx_queue->notified_count != rx_queue->added_count) {
 484		efx_farch_build_rx_desc(
 485			rx_queue,
 486			rx_queue->notified_count & rx_queue->ptr_mask);
 487		++rx_queue->notified_count;
 488	}
 489
 490	wmb();
 491	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 492	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 493	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 494			efx_rx_queue_index(rx_queue));
 495}
 496
 497int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 498{
 499	struct efx_nic *efx = rx_queue->efx;
 500	unsigned entries;
 501
 502	entries = rx_queue->ptr_mask + 1;
 503	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 504					entries * sizeof(efx_qword_t));
 505}
 506
 507void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 508{
 509	efx_oword_t rx_desc_ptr;
 510	struct efx_nic *efx = rx_queue->efx;
 511	bool jumbo_en;
 512
 513	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
 514	jumbo_en = efx->rx_scatter;
 515
 516	netif_dbg(efx, hw, efx->net_dev,
 517		  "RX queue %d ring in special buffers %d-%d\n",
 518		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 519		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 520
 521	rx_queue->scatter_n = 0;
 522
 523	/* Pin RX descriptor ring */
 524	efx_init_special_buffer(efx, &rx_queue->rxd);
 525
 526	/* Push RX descriptor ring to card */
 527	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 528			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
 529			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
 530			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 531			      FRF_AZ_RX_DESCQ_EVQ_ID,
 532			      efx_rx_queue_channel(rx_queue)->channel,
 533			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 534			      FRF_AZ_RX_DESCQ_LABEL,
 535			      efx_rx_queue_index(rx_queue),
 536			      FRF_AZ_RX_DESCQ_SIZE,
 537			      __ffs(rx_queue->rxd.entries),
 538			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 539			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 540			      FRF_AZ_RX_DESCQ_EN, 1);
 541	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 542			 efx_rx_queue_index(rx_queue));
 543}
 544
 545static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 546{
 547	struct efx_nic *efx = rx_queue->efx;
 548	efx_oword_t rx_flush_descq;
 549
 550	EFX_POPULATE_OWORD_2(rx_flush_descq,
 551			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 552			     FRF_AZ_RX_FLUSH_DESCQ,
 553			     efx_rx_queue_index(rx_queue));
 554	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 555}
 556
 557void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 558{
 559	efx_oword_t rx_desc_ptr;
 560	struct efx_nic *efx = rx_queue->efx;
 561
 562	/* Remove RX descriptor ring from card */
 563	EFX_ZERO_OWORD(rx_desc_ptr);
 564	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 565			 efx_rx_queue_index(rx_queue));
 566
 567	/* Unpin RX descriptor ring */
 568	efx_fini_special_buffer(efx, &rx_queue->rxd);
 569}
 570
 571/* Free buffers backing RX queue */
 572void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 573{
 574	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 575}
 576
 577/**************************************************************************
 578 *
 579 * Flush handling
 580 *
 581 **************************************************************************/
 582
 583/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 584 * or more RX flushes can be kicked off.
 585 */
 586static bool efx_farch_flush_wake(struct efx_nic *efx)
 587{
 588	/* Ensure that all updates are visible to efx_farch_flush_queues() */
 589	smp_mb();
 590
 591	return (atomic_read(&efx->active_queues) == 0 ||
 592		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 593		 && atomic_read(&efx->rxq_flush_pending) > 0));
 594}
 595
 596static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 597{
 598	bool i = true;
 599	efx_oword_t txd_ptr_tbl;
 600	struct efx_channel *channel;
 601	struct efx_tx_queue *tx_queue;
 602
 603	efx_for_each_channel(channel, efx) {
 604		efx_for_each_channel_tx_queue(tx_queue, channel) {
 605			efx_reado_table(efx, &txd_ptr_tbl,
 606					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 607			if (EFX_OWORD_FIELD(txd_ptr_tbl,
 608					    FRF_AZ_TX_DESCQ_FLUSH) ||
 609			    EFX_OWORD_FIELD(txd_ptr_tbl,
 610					    FRF_AZ_TX_DESCQ_EN)) {
 611				netif_dbg(efx, hw, efx->net_dev,
 612					  "flush did not complete on TXQ %d\n",
 613					  tx_queue->queue);
 614				i = false;
 615			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 616						  1, 0)) {
 617				/* The flush is complete, but we didn't
 618				 * receive a flush completion event
 619				 */
 620				netif_dbg(efx, hw, efx->net_dev,
 621					  "flush complete on TXQ %d, so drain "
 622					  "the queue\n", tx_queue->queue);
 623				/* Don't need to increment active_queues as it
 624				 * has already been incremented for the queues
 625				 * which did not drain
 626				 */
 627				efx_farch_magic_event(channel,
 628						      EFX_CHANNEL_MAGIC_TX_DRAIN(
 629							      tx_queue));
 630			}
 631		}
 632	}
 633
 634	return i;
 635}
 636
 637/* Flush all the transmit queues, and continue flushing receive queues until
 638 * they're all flushed. Wait for the DRAIN events to be received so that there
 639 * are no more RX and TX events left on any channel. */
 640static int efx_farch_do_flush(struct efx_nic *efx)
 641{
 642	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 643	struct efx_channel *channel;
 644	struct efx_rx_queue *rx_queue;
 645	struct efx_tx_queue *tx_queue;
 646	int rc = 0;
 647
 648	efx_for_each_channel(channel, efx) {
 649		efx_for_each_channel_tx_queue(tx_queue, channel) {
 650			efx_farch_flush_tx_queue(tx_queue);
 651		}
 652		efx_for_each_channel_rx_queue(rx_queue, channel) {
 653			rx_queue->flush_pending = true;
 654			atomic_inc(&efx->rxq_flush_pending);
 655		}
 656	}
 657
 658	while (timeout && atomic_read(&efx->active_queues) > 0) {
 659		/* If SRIOV is enabled, then offload receive queue flushing to
 660		 * the firmware (though we will still have to poll for
 661		 * completion). If that fails, fall back to the old scheme.
 662		 */
 663		if (efx_siena_sriov_enabled(efx)) {
 664			rc = efx_mcdi_flush_rxqs(efx);
 665			if (!rc)
 666				goto wait;
 667		}
 668
 669		/* The hardware supports four concurrent rx flushes, each of
 670		 * which may need to be retried if there is an outstanding
 671		 * descriptor fetch
 672		 */
 673		efx_for_each_channel(channel, efx) {
 674			efx_for_each_channel_rx_queue(rx_queue, channel) {
 675				if (atomic_read(&efx->rxq_flush_outstanding) >=
 676				    EFX_RX_FLUSH_COUNT)
 677					break;
 678
 679				if (rx_queue->flush_pending) {
 680					rx_queue->flush_pending = false;
 681					atomic_dec(&efx->rxq_flush_pending);
 682					atomic_inc(&efx->rxq_flush_outstanding);
 683					efx_farch_flush_rx_queue(rx_queue);
 684				}
 685			}
 686		}
 687
 688	wait:
 689		timeout = wait_event_timeout(efx->flush_wq,
 690					     efx_farch_flush_wake(efx),
 691					     timeout);
 692	}
 693
 694	if (atomic_read(&efx->active_queues) &&
 695	    !efx_check_tx_flush_complete(efx)) {
 696		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 697			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 698			  atomic_read(&efx->rxq_flush_outstanding),
 699			  atomic_read(&efx->rxq_flush_pending));
 700		rc = -ETIMEDOUT;
 701
 702		atomic_set(&efx->active_queues, 0);
 703		atomic_set(&efx->rxq_flush_pending, 0);
 704		atomic_set(&efx->rxq_flush_outstanding, 0);
 705	}
 706
 707	return rc;
 708}
 709
 710int efx_farch_fini_dmaq(struct efx_nic *efx)
 711{
 712	struct efx_channel *channel;
 713	struct efx_tx_queue *tx_queue;
 714	struct efx_rx_queue *rx_queue;
 715	int rc = 0;
 716
 717	/* Do not attempt to write to the NIC during EEH recovery */
 718	if (efx->state != STATE_RECOVERY) {
 719		/* Only perform flush if DMA is enabled */
 720		if (efx->pci_dev->is_busmaster) {
 721			efx->type->prepare_flush(efx);
 722			rc = efx_farch_do_flush(efx);
 723			efx->type->finish_flush(efx);
 724		}
 725
 726		efx_for_each_channel(channel, efx) {
 727			efx_for_each_channel_rx_queue(rx_queue, channel)
 728				efx_farch_rx_fini(rx_queue);
 729			efx_for_each_channel_tx_queue(tx_queue, channel)
 730				efx_farch_tx_fini(tx_queue);
 731		}
 732	}
 733
 734	return rc;
 735}
 736
 737/* Reset queue and flush accounting after FLR
 738 *
 739 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 740 * mastering was disabled), in which case we don't receive (RXQ) flush
 741 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 742 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 743 * events were received, and we didn't go through efx_check_tx_flush_complete())
 744 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 745 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 746 * for batched flush requests; and the efx->active_queues gets messed up because
 747 * we keep incrementing for the newly initialised queues, but it never went to
 748 * zero previously.  Then we get a timeout every time we try to restart the
 749 * queues, as it doesn't go back to zero when we should be flushing the queues.
 750 */
 751void efx_farch_finish_flr(struct efx_nic *efx)
 752{
 753	atomic_set(&efx->rxq_flush_pending, 0);
 754	atomic_set(&efx->rxq_flush_outstanding, 0);
 755	atomic_set(&efx->active_queues, 0);
 756}
 757
 758
 759/**************************************************************************
 760 *
 761 * Event queue processing
 762 * Event queues are processed by per-channel tasklets.
 763 *
 764 **************************************************************************/
 765
 766/* Update a channel's event queue's read pointer (RPTR) register
 767 *
 768 * This writes the EVQ_RPTR_REG register for the specified channel's
 769 * event queue.
 770 */
 771void efx_farch_ev_read_ack(struct efx_channel *channel)
 772{
 773	efx_dword_t reg;
 774	struct efx_nic *efx = channel->efx;
 775
 776	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 777			     channel->eventq_read_ptr & channel->eventq_mask);
 778
 779	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 780	 * of 4 bytes, but it is really 16 bytes just like later revisions.
 781	 */
 782	efx_writed(efx, &reg,
 783		   efx->type->evq_rptr_tbl_base +
 784		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 785}
 786
 787/* Use HW to insert a SW defined event */
 788void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 789			      efx_qword_t *event)
 790{
 791	efx_oword_t drv_ev_reg;
 792
 793	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 794		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 795	drv_ev_reg.u32[0] = event->u32[0];
 796	drv_ev_reg.u32[1] = event->u32[1];
 797	drv_ev_reg.u32[2] = 0;
 798	drv_ev_reg.u32[3] = 0;
 799	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 800	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 801}
 802
 803static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 804{
 805	efx_qword_t event;
 806
 807	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 808			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 809			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 810	efx_farch_generate_event(channel->efx, channel->channel, &event);
 811}
 812
 813/* Handle a transmit completion event
 814 *
 815 * The NIC batches TX completion events; the message we receive is of
 816 * the form "complete all TX events up to this index".
 817 */
 818static void
 819efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 820{
 821	unsigned int tx_ev_desc_ptr;
 822	unsigned int tx_ev_q_label;
 823	struct efx_tx_queue *tx_queue;
 824	struct efx_nic *efx = channel->efx;
 825
 826	if (unlikely(READ_ONCE(efx->reset_pending)))
 827		return;
 828
 829	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 830		/* Transmit completion */
 831		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 832		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 833		tx_queue = efx_channel_get_tx_queue(
 834			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 835		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 836	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 837		/* Rewrite the FIFO write pointer */
 838		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 839		tx_queue = efx_channel_get_tx_queue(
 840			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 841
 842		netif_tx_lock(efx->net_dev);
 843		efx_farch_notify_tx_desc(tx_queue);
 844		netif_tx_unlock(efx->net_dev);
 845	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 846		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 847	} else {
 848		netif_err(efx, tx_err, efx->net_dev,
 849			  "channel %d unexpected TX event "
 850			  EFX_QWORD_FMT"\n", channel->channel,
 851			  EFX_QWORD_VAL(*event));
 852	}
 853}
 854
 855/* Detect errors included in the rx_evt_pkt_ok bit. */
 856static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 857				      const efx_qword_t *event)
 858{
 859	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 860	struct efx_nic *efx = rx_queue->efx;
 861	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 862	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 863	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
 864	bool rx_ev_other_err, rx_ev_pause_frm;
 865	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 866	unsigned rx_ev_pkt_type;
 867
 868	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 869	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 870	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 871	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 872	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 873						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 874	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 875						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 876	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 877						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 878	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 879	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 880	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 881
 882	/* Every error apart from tobe_disc and pause_frm */
 883	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
 884			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 885			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 886
 887	/* Count errors that are not in MAC stats.  Ignore expected
 888	 * checksum errors during self-test. */
 889	if (rx_ev_frm_trunc)
 890		++channel->n_rx_frm_trunc;
 891	else if (rx_ev_tobe_disc)
 892		++channel->n_rx_tobe_disc;
 893	else if (!efx->loopback_selftest) {
 894		if (rx_ev_ip_hdr_chksum_err)
 895			++channel->n_rx_ip_hdr_chksum_err;
 896		else if (rx_ev_tcp_udp_chksum_err)
 897			++channel->n_rx_tcp_udp_chksum_err;
 898	}
 899
 900	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 901	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 902	 * to a FIFO overflow.
 903	 */
 904#ifdef DEBUG
 905	if (rx_ev_other_err && net_ratelimit()) {
 906		netif_dbg(efx, rx_err, efx->net_dev,
 907			  " RX queue %d unexpected RX event "
 908			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
 909			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 910			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 911			  rx_ev_ip_hdr_chksum_err ?
 912			  " [IP_HDR_CHKSUM_ERR]" : "",
 913			  rx_ev_tcp_udp_chksum_err ?
 914			  " [TCP_UDP_CHKSUM_ERR]" : "",
 915			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 916			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 917			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 918			  rx_ev_pause_frm ? " [PAUSE]" : "");
 919	}
 920#endif
 921
 922	if (efx->net_dev->features & NETIF_F_RXALL)
 923		/* don't discard frame for CRC error */
 924		rx_ev_eth_crc_err = false;
 925
 926	/* The frame must be discarded if any of these are true. */
 927	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
 928		rx_ev_tobe_disc | rx_ev_pause_frm) ?
 929		EFX_RX_PKT_DISCARD : 0;
 930}
 931
 932/* Handle receive events that are not in-order. Return true if this
 933 * can be handled as a partial packet discard, false if it's more
 934 * serious.
 935 */
 936static bool
 937efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 938{
 939	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 940	struct efx_nic *efx = rx_queue->efx;
 941	unsigned expected, dropped;
 942
 943	if (rx_queue->scatter_n &&
 944	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 945		      rx_queue->ptr_mask)) {
 946		++channel->n_rx_nodesc_trunc;
 947		return true;
 948	}
 949
 950	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 951	dropped = (index - expected) & rx_queue->ptr_mask;
 952	netif_info(efx, rx_err, efx->net_dev,
 953		   "dropped %d events (index=%d expected=%d)\n",
 954		   dropped, index, expected);
 955
 956	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 957	return false;
 958}
 959
 960/* Handle a packet received event
 961 *
 962 * The NIC gives a "discard" flag if it's a unicast packet with the
 963 * wrong destination address
 964 * Also "is multicast" and "matches multicast filter" flags can be used to
 965 * discard non-matching multicast packets.
 966 */
 967static void
 968efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 969{
 970	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 971	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 972	unsigned expected_ptr;
 973	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 974	u16 flags;
 975	struct efx_rx_queue *rx_queue;
 976	struct efx_nic *efx = channel->efx;
 977
 978	if (unlikely(READ_ONCE(efx->reset_pending)))
 979		return;
 980
 981	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 982	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 983	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 984		channel->channel);
 985
 986	rx_queue = efx_channel_get_rx_queue(channel);
 987
 988	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 989	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 990			rx_queue->ptr_mask);
 991
 992	/* Check for partial drops and other errors */
 993	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 994	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 995		if (rx_ev_desc_ptr != expected_ptr &&
 996		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
 997			return;
 998
 999		/* Discard all pending fragments */
1000		if (rx_queue->scatter_n) {
1001			efx_rx_packet(
1002				rx_queue,
1003				rx_queue->removed_count & rx_queue->ptr_mask,
1004				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1005			rx_queue->removed_count += rx_queue->scatter_n;
1006			rx_queue->scatter_n = 0;
1007		}
1008
1009		/* Return if there is no new fragment */
1010		if (rx_ev_desc_ptr != expected_ptr)
1011			return;
1012
1013		/* Discard new fragment if not SOP */
1014		if (!rx_ev_sop) {
1015			efx_rx_packet(
1016				rx_queue,
1017				rx_queue->removed_count & rx_queue->ptr_mask,
1018				1, 0, EFX_RX_PKT_DISCARD);
1019			++rx_queue->removed_count;
1020			return;
1021		}
1022	}
1023
1024	++rx_queue->scatter_n;
1025	if (rx_ev_cont)
1026		return;
1027
1028	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1029	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1030	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1031
1032	if (likely(rx_ev_pkt_ok)) {
1033		/* If packet is marked as OK then we can rely on the
1034		 * hardware checksum and classification.
1035		 */
1036		flags = 0;
1037		switch (rx_ev_hdr_type) {
1038		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1039			flags |= EFX_RX_PKT_TCP;
1040			/* fall through */
1041		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1042			flags |= EFX_RX_PKT_CSUMMED;
1043			/* fall through */
1044		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1045		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1046			break;
1047		}
1048	} else {
1049		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1050	}
1051
1052	/* Detect multicast packets that didn't match the filter */
1053	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1054	if (rx_ev_mcast_pkt) {
1055		unsigned int rx_ev_mcast_hash_match =
1056			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1057
1058		if (unlikely(!rx_ev_mcast_hash_match)) {
1059			++channel->n_rx_mcast_mismatch;
1060			flags |= EFX_RX_PKT_DISCARD;
1061		}
1062	}
1063
1064	channel->irq_mod_score += 2;
1065
1066	/* Handle received packet */
1067	efx_rx_packet(rx_queue,
1068		      rx_queue->removed_count & rx_queue->ptr_mask,
1069		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1070	rx_queue->removed_count += rx_queue->scatter_n;
1071	rx_queue->scatter_n = 0;
1072}
1073
1074/* If this flush done event corresponds to a &struct efx_tx_queue, then
1075 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1076 * of all transmit completions.
1077 */
1078static void
1079efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1080{
1081	struct efx_tx_queue *tx_queue;
1082	int qid;
1083
1084	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1085	if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1086		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1087					    qid % EFX_TXQ_TYPES);
1088		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1089			efx_farch_magic_event(tx_queue->channel,
1090					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1091		}
1092	}
1093}
1094
1095/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1096 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1097 * the RX queue back to the mask of RX queues in need of flushing.
1098 */
1099static void
1100efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1101{
1102	struct efx_channel *channel;
1103	struct efx_rx_queue *rx_queue;
1104	int qid;
1105	bool failed;
1106
1107	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1108	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1109	if (qid >= efx->n_channels)
1110		return;
1111	channel = efx_get_channel(efx, qid);
1112	if (!efx_channel_has_rx_queue(channel))
1113		return;
1114	rx_queue = efx_channel_get_rx_queue(channel);
1115
1116	if (failed) {
1117		netif_info(efx, hw, efx->net_dev,
1118			   "RXQ %d flush retry\n", qid);
1119		rx_queue->flush_pending = true;
1120		atomic_inc(&efx->rxq_flush_pending);
1121	} else {
1122		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1123				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1124	}
1125	atomic_dec(&efx->rxq_flush_outstanding);
1126	if (efx_farch_flush_wake(efx))
1127		wake_up(&efx->flush_wq);
1128}
1129
1130static void
1131efx_farch_handle_drain_event(struct efx_channel *channel)
1132{
1133	struct efx_nic *efx = channel->efx;
1134
1135	WARN_ON(atomic_read(&efx->active_queues) == 0);
1136	atomic_dec(&efx->active_queues);
1137	if (efx_farch_flush_wake(efx))
1138		wake_up(&efx->flush_wq);
1139}
1140
1141static void efx_farch_handle_generated_event(struct efx_channel *channel,
1142					     efx_qword_t *event)
1143{
1144	struct efx_nic *efx = channel->efx;
1145	struct efx_rx_queue *rx_queue =
1146		efx_channel_has_rx_queue(channel) ?
1147		efx_channel_get_rx_queue(channel) : NULL;
1148	unsigned magic, code;
1149
1150	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1151	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1152
1153	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1154		channel->event_test_cpu = raw_smp_processor_id();
1155	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1156		/* The queue must be empty, so we won't receive any rx
1157		 * events, so efx_process_channel() won't refill the
1158		 * queue. Refill it here */
1159		efx_fast_push_rx_descriptors(rx_queue, true);
1160	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1161		efx_farch_handle_drain_event(channel);
1162	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1163		efx_farch_handle_drain_event(channel);
1164	} else {
1165		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1166			  "generated event "EFX_QWORD_FMT"\n",
1167			  channel->channel, EFX_QWORD_VAL(*event));
1168	}
1169}
1170
1171static void
1172efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1173{
1174	struct efx_nic *efx = channel->efx;
1175	unsigned int ev_sub_code;
1176	unsigned int ev_sub_data;
1177
1178	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1179	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1180
1181	switch (ev_sub_code) {
1182	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1183		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1184			   channel->channel, ev_sub_data);
1185		efx_farch_handle_tx_flush_done(efx, event);
1186#ifdef CONFIG_SFC_SRIOV
1187		efx_siena_sriov_tx_flush_done(efx, event);
1188#endif
1189		break;
1190	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1191		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1192			   channel->channel, ev_sub_data);
1193		efx_farch_handle_rx_flush_done(efx, event);
1194#ifdef CONFIG_SFC_SRIOV
1195		efx_siena_sriov_rx_flush_done(efx, event);
1196#endif
1197		break;
1198	case FSE_AZ_EVQ_INIT_DONE_EV:
1199		netif_dbg(efx, hw, efx->net_dev,
1200			  "channel %d EVQ %d initialised\n",
1201			  channel->channel, ev_sub_data);
1202		break;
1203	case FSE_AZ_SRM_UPD_DONE_EV:
1204		netif_vdbg(efx, hw, efx->net_dev,
1205			   "channel %d SRAM update done\n", channel->channel);
1206		break;
1207	case FSE_AZ_WAKE_UP_EV:
1208		netif_vdbg(efx, hw, efx->net_dev,
1209			   "channel %d RXQ %d wakeup event\n",
1210			   channel->channel, ev_sub_data);
1211		break;
1212	case FSE_AZ_TIMER_EV:
1213		netif_vdbg(efx, hw, efx->net_dev,
1214			   "channel %d RX queue %d timer expired\n",
1215			   channel->channel, ev_sub_data);
1216		break;
1217	case FSE_AA_RX_RECOVER_EV:
1218		netif_err(efx, rx_err, efx->net_dev,
1219			  "channel %d seen DRIVER RX_RESET event. "
1220			"Resetting.\n", channel->channel);
1221		atomic_inc(&efx->rx_reset);
1222		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1223		break;
1224	case FSE_BZ_RX_DSC_ERROR_EV:
1225		if (ev_sub_data < EFX_VI_BASE) {
1226			netif_err(efx, rx_err, efx->net_dev,
1227				  "RX DMA Q %d reports descriptor fetch error."
1228				  " RX Q %d is disabled.\n", ev_sub_data,
1229				  ev_sub_data);
1230			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1231		}
1232#ifdef CONFIG_SFC_SRIOV
1233		else
1234			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1235#endif
1236		break;
1237	case FSE_BZ_TX_DSC_ERROR_EV:
1238		if (ev_sub_data < EFX_VI_BASE) {
1239			netif_err(efx, tx_err, efx->net_dev,
1240				  "TX DMA Q %d reports descriptor fetch error."
1241				  " TX Q %d is disabled.\n", ev_sub_data,
1242				  ev_sub_data);
1243			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1244		}
1245#ifdef CONFIG_SFC_SRIOV
1246		else
1247			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1248#endif
1249		break;
1250	default:
1251		netif_vdbg(efx, hw, efx->net_dev,
1252			   "channel %d unknown driver event code %d "
1253			   "data %04x\n", channel->channel, ev_sub_code,
1254			   ev_sub_data);
1255		break;
1256	}
1257}
1258
1259int efx_farch_ev_process(struct efx_channel *channel, int budget)
1260{
1261	struct efx_nic *efx = channel->efx;
1262	unsigned int read_ptr;
1263	efx_qword_t event, *p_event;
1264	int ev_code;
1265	int spent = 0;
1266
1267	if (budget <= 0)
1268		return spent;
1269
1270	read_ptr = channel->eventq_read_ptr;
1271
1272	for (;;) {
1273		p_event = efx_event(channel, read_ptr);
1274		event = *p_event;
1275
1276		if (!efx_event_present(&event))
1277			/* End of events */
1278			break;
1279
1280		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1281			   "channel %d event is "EFX_QWORD_FMT"\n",
1282			   channel->channel, EFX_QWORD_VAL(event));
1283
1284		/* Clear this event by marking it all ones */
1285		EFX_SET_QWORD(*p_event);
1286
1287		++read_ptr;
1288
1289		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1290
1291		switch (ev_code) {
1292		case FSE_AZ_EV_CODE_RX_EV:
1293			efx_farch_handle_rx_event(channel, &event);
1294			if (++spent == budget)
1295				goto out;
1296			break;
1297		case FSE_AZ_EV_CODE_TX_EV:
1298			efx_farch_handle_tx_event(channel, &event);
1299			break;
1300		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1301			efx_farch_handle_generated_event(channel, &event);
1302			break;
1303		case FSE_AZ_EV_CODE_DRIVER_EV:
1304			efx_farch_handle_driver_event(channel, &event);
1305			break;
1306#ifdef CONFIG_SFC_SRIOV
1307		case FSE_CZ_EV_CODE_USER_EV:
1308			efx_siena_sriov_event(channel, &event);
1309			break;
1310#endif
1311		case FSE_CZ_EV_CODE_MCDI_EV:
1312			efx_mcdi_process_event(channel, &event);
1313			break;
1314		case FSE_AZ_EV_CODE_GLOBAL_EV:
1315			if (efx->type->handle_global_event &&
1316			    efx->type->handle_global_event(channel, &event))
1317				break;
1318			/* else fall through */
1319		default:
1320			netif_err(channel->efx, hw, channel->efx->net_dev,
1321				  "channel %d unknown event type %d (data "
1322				  EFX_QWORD_FMT ")\n", channel->channel,
1323				  ev_code, EFX_QWORD_VAL(event));
1324		}
1325	}
1326
1327out:
1328	channel->eventq_read_ptr = read_ptr;
1329	return spent;
1330}
1331
1332/* Allocate buffer table entries for event queue */
1333int efx_farch_ev_probe(struct efx_channel *channel)
1334{
1335	struct efx_nic *efx = channel->efx;
1336	unsigned entries;
1337
1338	entries = channel->eventq_mask + 1;
1339	return efx_alloc_special_buffer(efx, &channel->eventq,
1340					entries * sizeof(efx_qword_t));
1341}
1342
1343int efx_farch_ev_init(struct efx_channel *channel)
1344{
1345	efx_oword_t reg;
1346	struct efx_nic *efx = channel->efx;
1347
1348	netif_dbg(efx, hw, efx->net_dev,
1349		  "channel %d event queue in special buffers %d-%d\n",
1350		  channel->channel, channel->eventq.index,
1351		  channel->eventq.index + channel->eventq.entries - 1);
1352
1353	EFX_POPULATE_OWORD_3(reg,
1354			     FRF_CZ_TIMER_Q_EN, 1,
1355			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1356			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1357	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1358
1359	/* Pin event queue buffer */
1360	efx_init_special_buffer(efx, &channel->eventq);
1361
1362	/* Fill event queue with all ones (i.e. empty events) */
1363	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1364
1365	/* Push event queue to card */
1366	EFX_POPULATE_OWORD_3(reg,
1367			     FRF_AZ_EVQ_EN, 1,
1368			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1369			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1370	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371			 channel->channel);
1372
1373	return 0;
1374}
1375
1376void efx_farch_ev_fini(struct efx_channel *channel)
1377{
1378	efx_oword_t reg;
1379	struct efx_nic *efx = channel->efx;
1380
1381	/* Remove event queue from card */
1382	EFX_ZERO_OWORD(reg);
1383	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1384			 channel->channel);
1385	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1386
1387	/* Unpin event queue */
1388	efx_fini_special_buffer(efx, &channel->eventq);
1389}
1390
1391/* Free buffers backing event queue */
1392void efx_farch_ev_remove(struct efx_channel *channel)
1393{
1394	efx_free_special_buffer(channel->efx, &channel->eventq);
1395}
1396
1397
1398void efx_farch_ev_test_generate(struct efx_channel *channel)
1399{
1400	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1401}
1402
1403void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1404{
1405	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1406			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1407}
1408
1409/**************************************************************************
1410 *
1411 * Hardware interrupts
1412 * The hardware interrupt handler does very little work; all the event
1413 * queue processing is carried out by per-channel tasklets.
1414 *
1415 **************************************************************************/
1416
1417/* Enable/disable/generate interrupts */
1418static inline void efx_farch_interrupts(struct efx_nic *efx,
1419				      bool enabled, bool force)
1420{
1421	efx_oword_t int_en_reg_ker;
1422
1423	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1424			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1425			     FRF_AZ_KER_INT_KER, force,
1426			     FRF_AZ_DRV_INT_EN_KER, enabled);
1427	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1428}
1429
1430void efx_farch_irq_enable_master(struct efx_nic *efx)
1431{
1432	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1433	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1434
1435	efx_farch_interrupts(efx, true, false);
1436}
1437
1438void efx_farch_irq_disable_master(struct efx_nic *efx)
1439{
1440	/* Disable interrupts */
1441	efx_farch_interrupts(efx, false, false);
1442}
1443
1444/* Generate a test interrupt
1445 * Interrupt must already have been enabled, otherwise nasty things
1446 * may happen.
1447 */
1448int efx_farch_irq_test_generate(struct efx_nic *efx)
1449{
1450	efx_farch_interrupts(efx, true, true);
1451	return 0;
1452}
1453
1454/* Process a fatal interrupt
1455 * Disable bus mastering ASAP and schedule a reset
1456 */
1457irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1458{
1459	efx_oword_t *int_ker = efx->irq_status.addr;
1460	efx_oword_t fatal_intr;
1461	int error, mem_perr;
1462
1463	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1464	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1465
1466	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1467		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1468		  EFX_OWORD_VAL(fatal_intr),
1469		  error ? "disabling bus mastering" : "no recognised error");
1470
1471	/* If this is a memory parity error dump which blocks are offending */
1472	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1473		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1474	if (mem_perr) {
1475		efx_oword_t reg;
1476		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1477		netif_err(efx, hw, efx->net_dev,
1478			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1479			  EFX_OWORD_VAL(reg));
1480	}
1481
1482	/* Disable both devices */
1483	pci_clear_master(efx->pci_dev);
1484	efx_farch_irq_disable_master(efx);
1485
1486	/* Count errors and reset or disable the NIC accordingly */
1487	if (efx->int_error_count == 0 ||
1488	    time_after(jiffies, efx->int_error_expire)) {
1489		efx->int_error_count = 0;
1490		efx->int_error_expire =
1491			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1492	}
1493	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1494		netif_err(efx, hw, efx->net_dev,
1495			  "SYSTEM ERROR - reset scheduled\n");
1496		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1497	} else {
1498		netif_err(efx, hw, efx->net_dev,
1499			  "SYSTEM ERROR - max number of errors seen."
1500			  "NIC will be disabled\n");
1501		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1502	}
1503
1504	return IRQ_HANDLED;
1505}
1506
1507/* Handle a legacy interrupt
1508 * Acknowledges the interrupt and schedule event queue processing.
1509 */
1510irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1511{
1512	struct efx_nic *efx = dev_id;
1513	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1514	efx_oword_t *int_ker = efx->irq_status.addr;
1515	irqreturn_t result = IRQ_NONE;
1516	struct efx_channel *channel;
1517	efx_dword_t reg;
1518	u32 queues;
1519	int syserr;
1520
1521	/* Read the ISR which also ACKs the interrupts */
1522	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1523	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1524
1525	/* Legacy interrupts are disabled too late by the EEH kernel
1526	 * code. Disable them earlier.
1527	 * If an EEH error occurred, the read will have returned all ones.
1528	 */
1529	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1530	    !efx->eeh_disabled_legacy_irq) {
1531		disable_irq_nosync(efx->legacy_irq);
1532		efx->eeh_disabled_legacy_irq = true;
1533	}
1534
1535	/* Handle non-event-queue sources */
1536	if (queues & (1U << efx->irq_level) && soft_enabled) {
1537		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1538		if (unlikely(syserr))
1539			return efx_farch_fatal_interrupt(efx);
1540		efx->last_irq_cpu = raw_smp_processor_id();
1541	}
1542
1543	if (queues != 0) {
1544		efx->irq_zero_count = 0;
1545
1546		/* Schedule processing of any interrupting queues */
1547		if (likely(soft_enabled)) {
1548			efx_for_each_channel(channel, efx) {
1549				if (queues & 1)
1550					efx_schedule_channel_irq(channel);
1551				queues >>= 1;
1552			}
1553		}
1554		result = IRQ_HANDLED;
1555
1556	} else {
1557		efx_qword_t *event;
1558
1559		/* Legacy ISR read can return zero once (SF bug 15783) */
1560
1561		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1562		 * because this might be a shared interrupt. */
1563		if (efx->irq_zero_count++ == 0)
1564			result = IRQ_HANDLED;
1565
1566		/* Ensure we schedule or rearm all event queues */
1567		if (likely(soft_enabled)) {
1568			efx_for_each_channel(channel, efx) {
1569				event = efx_event(channel,
1570						  channel->eventq_read_ptr);
1571				if (efx_event_present(event))
1572					efx_schedule_channel_irq(channel);
1573				else
1574					efx_farch_ev_read_ack(channel);
1575			}
1576		}
1577	}
1578
1579	if (result == IRQ_HANDLED)
1580		netif_vdbg(efx, intr, efx->net_dev,
1581			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1582			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1583
1584	return result;
1585}
1586
1587/* Handle an MSI interrupt
1588 *
1589 * Handle an MSI hardware interrupt.  This routine schedules event
1590 * queue processing.  No interrupt acknowledgement cycle is necessary.
1591 * Also, we never need to check that the interrupt is for us, since
1592 * MSI interrupts cannot be shared.
1593 */
1594irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1595{
1596	struct efx_msi_context *context = dev_id;
1597	struct efx_nic *efx = context->efx;
1598	efx_oword_t *int_ker = efx->irq_status.addr;
1599	int syserr;
1600
1601	netif_vdbg(efx, intr, efx->net_dev,
1602		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1603		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1604
1605	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1606		return IRQ_HANDLED;
1607
1608	/* Handle non-event-queue sources */
1609	if (context->index == efx->irq_level) {
1610		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1611		if (unlikely(syserr))
1612			return efx_farch_fatal_interrupt(efx);
1613		efx->last_irq_cpu = raw_smp_processor_id();
1614	}
1615
1616	/* Schedule processing of the channel */
1617	efx_schedule_channel_irq(efx->channel[context->index]);
1618
1619	return IRQ_HANDLED;
1620}
1621
1622/* Setup RSS indirection table.
1623 * This maps from the hash value of the packet to RXQ
1624 */
1625void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1626{
1627	size_t i = 0;
1628	efx_dword_t dword;
1629
1630	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1631		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1632
1633	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1634		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1635				     efx->rss_context.rx_indir_table[i]);
1636		efx_writed(efx, &dword,
1637			   FR_BZ_RX_INDIRECTION_TBL +
1638			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1639	}
1640}
1641
1642void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1643{
1644	size_t i = 0;
1645	efx_dword_t dword;
1646
1647	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1648		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1649
1650	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1651		efx_readd(efx, &dword,
1652			   FR_BZ_RX_INDIRECTION_TBL +
1653			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1654		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1655	}
1656}
1657
1658/* Looks at available SRAM resources and works out how many queues we
1659 * can support, and where things like descriptor caches should live.
1660 *
1661 * SRAM is split up as follows:
1662 * 0                          buftbl entries for channels
1663 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1664 * efx->rx_dc_base            RX descriptor caches
1665 * efx->tx_dc_base            TX descriptor caches
1666 */
1667void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1668{
1669	unsigned vi_count, buftbl_min, total_tx_channels;
1670
1671#ifdef CONFIG_SFC_SRIOV
1672	struct siena_nic_data *nic_data = efx->nic_data;
1673#endif
1674
1675	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1676	/* Account for the buffer table entries backing the datapath channels
1677	 * and the descriptor caches for those channels.
1678	 */
1679	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1680		       total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1681		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1682		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1683	vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1684
1685#ifdef CONFIG_SFC_SRIOV
1686	if (efx->type->sriov_wanted) {
1687		if (efx->type->sriov_wanted(efx)) {
1688			unsigned vi_dc_entries, buftbl_free;
1689			unsigned entries_per_vf, vf_limit;
1690
1691			nic_data->vf_buftbl_base = buftbl_min;
1692
1693			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1694			vi_count = max(vi_count, EFX_VI_BASE);
1695			buftbl_free = (sram_lim_qw - buftbl_min -
1696				       vi_count * vi_dc_entries);
1697
1698			entries_per_vf = ((vi_dc_entries +
1699					   EFX_VF_BUFTBL_PER_VI) *
1700					  efx_vf_size(efx));
1701			vf_limit = min(buftbl_free / entries_per_vf,
1702				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1703
1704			if (efx->vf_count > vf_limit) {
1705				netif_err(efx, probe, efx->net_dev,
1706					  "Reducing VF count from from %d to %d\n",
1707					  efx->vf_count, vf_limit);
1708				efx->vf_count = vf_limit;
1709			}
1710			vi_count += efx->vf_count * efx_vf_size(efx);
1711		}
1712	}
1713#endif
1714
1715	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1716	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1717}
1718
1719u32 efx_farch_fpga_ver(struct efx_nic *efx)
1720{
1721	efx_oword_t altera_build;
1722	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1723	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1724}
1725
1726void efx_farch_init_common(struct efx_nic *efx)
1727{
1728	efx_oword_t temp;
1729
1730	/* Set positions of descriptor caches in SRAM. */
1731	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1732	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1733	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1734	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1735
1736	/* Set TX descriptor cache size. */
1737	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1738	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1739	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1740
1741	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1742	 * this allows most efficient prefetching.
1743	 */
1744	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1745	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1746	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1747	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1748	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1749
1750	/* Program INT_KER address */
1751	EFX_POPULATE_OWORD_2(temp,
1752			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1753			     EFX_INT_MODE_USE_MSI(efx),
1754			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1755	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1756
1757	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1758		/* Use an interrupt level unused by event queues */
1759		efx->irq_level = 0x1f;
1760	else
1761		/* Use a valid MSI-X vector */
1762		efx->irq_level = 0;
1763
1764	/* Enable all the genuinely fatal interrupts.  (They are still
1765	 * masked by the overall interrupt mask, controlled by
1766	 * falcon_interrupts()).
1767	 *
1768	 * Note: All other fatal interrupts are enabled
1769	 */
1770	EFX_POPULATE_OWORD_3(temp,
1771			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1772			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1773			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1774	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1775	EFX_INVERT_OWORD(temp);
1776	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1777
1778	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1779	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1780	 */
1781	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1782	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1783	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1784	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1785	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1786	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1787	/* Enable SW_EV to inherit in char driver - assume harmless here */
1788	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1789	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1790	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1791	/* Disable hardware watchdog which can misfire */
1792	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1793	/* Squash TX of packets of 16 bytes or less */
1794	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1795	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1796
1797	EFX_POPULATE_OWORD_4(temp,
1798			     /* Default values */
1799			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1800			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1801			     FRF_BZ_TX_PACE_FB_BASE, 0,
1802			     /* Allow large pace values in the fast bin. */
1803			     FRF_BZ_TX_PACE_BIN_TH,
1804			     FFE_BZ_TX_PACE_RESERVED);
1805	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1806}
1807
1808/**************************************************************************
1809 *
1810 * Filter tables
1811 *
1812 **************************************************************************
1813 */
1814
1815/* "Fudge factors" - difference between programmed value and actual depth.
1816 * Due to pipelined implementation we need to program H/W with a value that
1817 * is larger than the hop limit we want.
1818 */
1819#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1820#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1821
1822/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1823 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1824 * table is full.
1825 */
1826#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1827
1828/* Don't try very hard to find space for performance hints, as this is
1829 * counter-productive. */
1830#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1831
1832enum efx_farch_filter_type {
1833	EFX_FARCH_FILTER_TCP_FULL = 0,
1834	EFX_FARCH_FILTER_TCP_WILD,
1835	EFX_FARCH_FILTER_UDP_FULL,
1836	EFX_FARCH_FILTER_UDP_WILD,
1837	EFX_FARCH_FILTER_MAC_FULL = 4,
1838	EFX_FARCH_FILTER_MAC_WILD,
1839	EFX_FARCH_FILTER_UC_DEF = 8,
1840	EFX_FARCH_FILTER_MC_DEF,
1841	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1842};
1843
1844enum efx_farch_filter_table_id {
1845	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1846	EFX_FARCH_FILTER_TABLE_RX_MAC,
1847	EFX_FARCH_FILTER_TABLE_RX_DEF,
1848	EFX_FARCH_FILTER_TABLE_TX_MAC,
1849	EFX_FARCH_FILTER_TABLE_COUNT,
1850};
1851
1852enum efx_farch_filter_index {
1853	EFX_FARCH_FILTER_INDEX_UC_DEF,
1854	EFX_FARCH_FILTER_INDEX_MC_DEF,
1855	EFX_FARCH_FILTER_SIZE_RX_DEF,
1856};
1857
1858struct efx_farch_filter_spec {
1859	u8	type:4;
1860	u8	priority:4;
1861	u8	flags;
1862	u16	dmaq_id;
1863	u32	data[3];
1864};
1865
1866struct efx_farch_filter_table {
1867	enum efx_farch_filter_table_id id;
1868	u32		offset;		/* address of table relative to BAR */
1869	unsigned	size;		/* number of entries */
1870	unsigned	step;		/* step between entries */
1871	unsigned	used;		/* number currently used */
1872	unsigned long	*used_bitmap;
1873	struct efx_farch_filter_spec *spec;
1874	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1875};
1876
1877struct efx_farch_filter_state {
1878	struct rw_semaphore lock; /* Protects table contents */
1879	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1880};
1881
1882static void
1883efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1884				   struct efx_farch_filter_table *table,
1885				   unsigned int filter_idx);
1886
1887/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1888 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1889static u16 efx_farch_filter_hash(u32 key)
1890{
1891	u16 tmp;
1892
1893	/* First 16 rounds */
1894	tmp = 0x1fff ^ key >> 16;
1895	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1896	tmp = tmp ^ tmp >> 9;
1897	/* Last 16 rounds */
1898	tmp = tmp ^ tmp << 13 ^ key;
1899	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1900	return tmp ^ tmp >> 9;
1901}
1902
1903/* To allow for hash collisions, filter search continues at these
1904 * increments from the first possible entry selected by the hash. */
1905static u16 efx_farch_filter_increment(u32 key)
1906{
1907	return key * 2 - 1;
1908}
1909
1910static enum efx_farch_filter_table_id
1911efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1912{
1913	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1914		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1915	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1916		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1917	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1919	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1921	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1922		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1923	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1924		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1925	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1926		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1927	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1928}
1929
1930static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1931{
1932	struct efx_farch_filter_state *state = efx->filter_state;
1933	struct efx_farch_filter_table *table;
1934	efx_oword_t filter_ctl;
1935
1936	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937
1938	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1939	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1940			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1941			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1942	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1943			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1944			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1945	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1946			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1947			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1948	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1949			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1950			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1951
1952	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1953	if (table->size) {
1954		EFX_SET_OWORD_FIELD(
1955			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1956			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1957			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1958		EFX_SET_OWORD_FIELD(
1959			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1960			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1961			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1962	}
1963
1964	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1965	if (table->size) {
1966		EFX_SET_OWORD_FIELD(
1967			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1968			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1969		EFX_SET_OWORD_FIELD(
1970			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1971			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1972			   EFX_FILTER_FLAG_RX_RSS));
1973		EFX_SET_OWORD_FIELD(
1974			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1975			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1976		EFX_SET_OWORD_FIELD(
1977			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1978			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1979			   EFX_FILTER_FLAG_RX_RSS));
1980
1981		/* There is a single bit to enable RX scatter for all
1982		 * unmatched packets.  Only set it if scatter is
1983		 * enabled in both filter specs.
1984		 */
1985		EFX_SET_OWORD_FIELD(
1986			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1987			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1988			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1989			   EFX_FILTER_FLAG_RX_SCATTER));
1990	} else {
1991		/* We don't expose 'default' filters because unmatched
1992		 * packets always go to the queue number found in the
1993		 * RSS table.  But we still need to set the RX scatter
1994		 * bit here.
1995		 */
1996		EFX_SET_OWORD_FIELD(
1997			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1998			efx->rx_scatter);
1999	}
2000
2001	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2002}
2003
2004static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2005{
2006	struct efx_farch_filter_state *state = efx->filter_state;
2007	struct efx_farch_filter_table *table;
2008	efx_oword_t tx_cfg;
2009
2010	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2011
2012	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2013	if (table->size) {
2014		EFX_SET_OWORD_FIELD(
2015			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2016			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2017			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2018		EFX_SET_OWORD_FIELD(
2019			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2020			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2021			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2022	}
2023
2024	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2025}
2026
2027static int
2028efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2029			       const struct efx_filter_spec *gen_spec)
2030{
2031	bool is_full = false;
2032
2033	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2034		return -EINVAL;
2035
2036	spec->priority = gen_spec->priority;
2037	spec->flags = gen_spec->flags;
2038	spec->dmaq_id = gen_spec->dmaq_id;
2039
2040	switch (gen_spec->match_flags) {
2041	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2042	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2043	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2044		is_full = true;
2045		/* fall through */
2046	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2048		__be32 rhost, host1, host2;
2049		__be16 rport, port1, port2;
2050
2051		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2052
2053		if (gen_spec->ether_type != htons(ETH_P_IP))
2054			return -EPROTONOSUPPORT;
2055		if (gen_spec->loc_port == 0 ||
2056		    (is_full && gen_spec->rem_port == 0))
2057			return -EADDRNOTAVAIL;
2058		switch (gen_spec->ip_proto) {
2059		case IPPROTO_TCP:
2060			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2061				      EFX_FARCH_FILTER_TCP_WILD);
2062			break;
2063		case IPPROTO_UDP:
2064			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2065				      EFX_FARCH_FILTER_UDP_WILD);
2066			break;
2067		default:
2068			return -EPROTONOSUPPORT;
2069		}
2070
2071		/* Filter is constructed in terms of source and destination,
2072		 * with the odd wrinkle that the ports are swapped in a UDP
2073		 * wildcard filter.  We need to convert from local and remote
2074		 * (= zero for wildcard) addresses.
2075		 */
2076		rhost = is_full ? gen_spec->rem_host[0] : 0;
2077		rport = is_full ? gen_spec->rem_port : 0;
2078		host1 = rhost;
2079		host2 = gen_spec->loc_host[0];
2080		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2081			port1 = gen_spec->loc_port;
2082			port2 = rport;
2083		} else {
2084			port1 = rport;
2085			port2 = gen_spec->loc_port;
2086		}
2087		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2088		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2089		spec->data[2] = ntohl(host2);
2090
2091		break;
2092	}
2093
2094	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2095		is_full = true;
2096		/* fall through */
2097	case EFX_FILTER_MATCH_LOC_MAC:
2098		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2099			      EFX_FARCH_FILTER_MAC_WILD);
2100		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2101		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2102				 gen_spec->loc_mac[3] << 16 |
2103				 gen_spec->loc_mac[4] << 8 |
2104				 gen_spec->loc_mac[5]);
2105		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2106				 gen_spec->loc_mac[1]);
2107		break;
2108
2109	case EFX_FILTER_MATCH_LOC_MAC_IG:
2110		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2111			      EFX_FARCH_FILTER_MC_DEF :
2112			      EFX_FARCH_FILTER_UC_DEF);
2113		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2114		break;
2115
2116	default:
2117		return -EPROTONOSUPPORT;
2118	}
2119
2120	return 0;
2121}
2122
2123static void
2124efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2125			     const struct efx_farch_filter_spec *spec)
2126{
2127	bool is_full = false;
2128
2129	/* *gen_spec should be completely initialised, to be consistent
2130	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2131	 * it back to userland.
2132	 */
2133	memset(gen_spec, 0, sizeof(*gen_spec));
2134
2135	gen_spec->priority = spec->priority;
2136	gen_spec->flags = spec->flags;
2137	gen_spec->dmaq_id = spec->dmaq_id;
2138
2139	switch (spec->type) {
2140	case EFX_FARCH_FILTER_TCP_FULL:
2141	case EFX_FARCH_FILTER_UDP_FULL:
2142		is_full = true;
2143		/* fall through */
2144	case EFX_FARCH_FILTER_TCP_WILD:
2145	case EFX_FARCH_FILTER_UDP_WILD: {
2146		__be32 host1, host2;
2147		__be16 port1, port2;
2148
2149		gen_spec->match_flags =
2150			EFX_FILTER_MATCH_ETHER_TYPE |
2151			EFX_FILTER_MATCH_IP_PROTO |
2152			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2153		if (is_full)
2154			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2155						  EFX_FILTER_MATCH_REM_PORT);
2156		gen_spec->ether_type = htons(ETH_P_IP);
2157		gen_spec->ip_proto =
2158			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2159			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2160			IPPROTO_TCP : IPPROTO_UDP;
2161
2162		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2163		port1 = htons(spec->data[0]);
2164		host2 = htonl(spec->data[2]);
2165		port2 = htons(spec->data[1] >> 16);
2166		if (spec->flags & EFX_FILTER_FLAG_TX) {
2167			gen_spec->loc_host[0] = host1;
2168			gen_spec->rem_host[0] = host2;
2169		} else {
2170			gen_spec->loc_host[0] = host2;
2171			gen_spec->rem_host[0] = host1;
2172		}
2173		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2174		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2175			gen_spec->loc_port = port1;
2176			gen_spec->rem_port = port2;
2177		} else {
2178			gen_spec->loc_port = port2;
2179			gen_spec->rem_port = port1;
2180		}
2181
2182		break;
2183	}
2184
2185	case EFX_FARCH_FILTER_MAC_FULL:
2186		is_full = true;
2187		/* fall through */
2188	case EFX_FARCH_FILTER_MAC_WILD:
2189		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2190		if (is_full)
2191			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2192		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2193		gen_spec->loc_mac[1] = spec->data[2];
2194		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2195		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2196		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2197		gen_spec->loc_mac[5] = spec->data[1];
2198		gen_spec->outer_vid = htons(spec->data[0]);
2199		break;
2200
2201	case EFX_FARCH_FILTER_UC_DEF:
2202	case EFX_FARCH_FILTER_MC_DEF:
2203		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2204		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2205		break;
2206
2207	default:
2208		WARN_ON(1);
2209		break;
2210	}
2211}
2212
2213static void
2214efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2215			      struct efx_farch_filter_spec *spec)
2216{
2217	/* If there's only one channel then disable RSS for non VF
2218	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2219	 */
2220	spec->priority = EFX_FILTER_PRI_AUTO;
2221	spec->flags = (EFX_FILTER_FLAG_RX |
2222		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2223		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2224	spec->dmaq_id = 0;
2225}
2226
2227/* Build a filter entry and return its n-tuple key. */
2228static u32 efx_farch_filter_build(efx_oword_t *filter,
2229				  struct efx_farch_filter_spec *spec)
2230{
2231	u32 data3;
2232
2233	switch (efx_farch_filter_spec_table_id(spec)) {
2234	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2235		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2236			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2237		EFX_POPULATE_OWORD_7(
2238			*filter,
2239			FRF_BZ_RSS_EN,
2240			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2241			FRF_BZ_SCATTER_EN,
2242			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2243			FRF_BZ_TCP_UDP, is_udp,
2244			FRF_BZ_RXQ_ID, spec->dmaq_id,
2245			EFX_DWORD_2, spec->data[2],
2246			EFX_DWORD_1, spec->data[1],
2247			EFX_DWORD_0, spec->data[0]);
2248		data3 = is_udp;
2249		break;
2250	}
2251
2252	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2253		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2254		EFX_POPULATE_OWORD_7(
2255			*filter,
2256			FRF_CZ_RMFT_RSS_EN,
2257			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2258			FRF_CZ_RMFT_SCATTER_EN,
2259			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2260			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2261			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2262			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2263			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2264			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2265		data3 = is_wild;
2266		break;
2267	}
2268
2269	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2270		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2271		EFX_POPULATE_OWORD_5(*filter,
2272				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2273				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2274				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2275				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2276				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2277		data3 = is_wild | spec->dmaq_id << 1;
2278		break;
2279	}
2280
2281	default:
2282		BUG();
2283	}
2284
2285	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2286}
2287
2288static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2289				   const struct efx_farch_filter_spec *right)
2290{
2291	if (left->type != right->type ||
2292	    memcmp(left->data, right->data, sizeof(left->data)))
2293		return false;
2294
2295	if (left->flags & EFX_FILTER_FLAG_TX &&
2296	    left->dmaq_id != right->dmaq_id)
2297		return false;
2298
2299	return true;
2300}
2301
2302/*
2303 * Construct/deconstruct external filter IDs.  At least the RX filter
2304 * IDs must be ordered by matching priority, for RX NFC semantics.
2305 *
2306 * Deconstruction needs to be robust against invalid IDs so that
2307 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2308 * accept user-provided IDs.
2309 */
2310
2311#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2312
2313static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2314	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2315	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2316	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2317	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2318	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2319	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2320	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2321	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2322};
2323
2324static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2325	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2326	EFX_FARCH_FILTER_TABLE_RX_IP,
2327	EFX_FARCH_FILTER_TABLE_RX_MAC,
2328	EFX_FARCH_FILTER_TABLE_RX_MAC,
2329	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2330	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2331	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2332};
2333
2334#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2335#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2336
2337static inline u32
2338efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2339			 unsigned int index)
2340{
2341	unsigned int range;
2342
2343	range = efx_farch_filter_type_match_pri[spec->type];
2344	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2345		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2346
2347	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2348}
2349
2350static inline enum efx_farch_filter_table_id
2351efx_farch_filter_id_table_id(u32 id)
2352{
2353	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2354
2355	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2356		return efx_farch_filter_range_table[range];
2357	else
2358		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2359}
2360
2361static inline unsigned int efx_farch_filter_id_index(u32 id)
2362{
2363	return id & EFX_FARCH_FILTER_INDEX_MASK;
2364}
2365
2366u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2367{
2368	struct efx_farch_filter_state *state = efx->filter_state;
2369	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2370	enum efx_farch_filter_table_id table_id;
2371
2372	do {
2373		table_id = efx_farch_filter_range_table[range];
2374		if (state->table[table_id].size != 0)
2375			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2376				state->table[table_id].size;
2377	} while (range--);
2378
2379	return 0;
2380}
2381
2382s32 efx_farch_filter_insert(struct efx_nic *efx,
2383			    struct efx_filter_spec *gen_spec,
2384			    bool replace_equal)
2385{
2386	struct efx_farch_filter_state *state = efx->filter_state;
2387	struct efx_farch_filter_table *table;
2388	struct efx_farch_filter_spec spec;
2389	efx_oword_t filter;
2390	int rep_index, ins_index;
2391	unsigned int depth = 0;
2392	int rc;
2393
2394	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2395	if (rc)
2396		return rc;
2397
2398	down_write(&state->lock);
2399
2400	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2401	if (table->size == 0) {
2402		rc = -EINVAL;
2403		goto out_unlock;
2404	}
2405
2406	netif_vdbg(efx, hw, efx->net_dev,
2407		   "%s: type %d search_limit=%d", __func__, spec.type,
2408		   table->search_limit[spec.type]);
2409
2410	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2411		/* One filter spec per type */
2412		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2413		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2414			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2415		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2416		ins_index = rep_index;
2417	} else {
2418		/* Search concurrently for
2419		 * (1) a filter to be replaced (rep_index): any filter
2420		 *     with the same match values, up to the current
2421		 *     search depth for this type, and
2422		 * (2) the insertion point (ins_index): (1) or any
2423		 *     free slot before it or up to the maximum search
2424		 *     depth for this priority
2425		 * We fail if we cannot find (2).
2426		 *
2427		 * We can stop once either
2428		 * (a) we find (1), in which case we have definitely
2429		 *     found (2) as well; or
2430		 * (b) we have searched exhaustively for (1), and have
2431		 *     either found (2) or searched exhaustively for it
2432		 */
2433		u32 key = efx_farch_filter_build(&filter, &spec);
2434		unsigned int hash = efx_farch_filter_hash(key);
2435		unsigned int incr = efx_farch_filter_increment(key);
2436		unsigned int max_rep_depth = table->search_limit[spec.type];
2437		unsigned int max_ins_depth =
2438			spec.priority <= EFX_FILTER_PRI_HINT ?
2439			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2440			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2441		unsigned int i = hash & (table->size - 1);
2442
2443		ins_index = -1;
2444		depth = 1;
2445
2446		for (;;) {
2447			if (!test_bit(i, table->used_bitmap)) {
2448				if (ins_index < 0)
2449					ins_index = i;
2450			} else if (efx_farch_filter_equal(&spec,
2451							  &table->spec[i])) {
2452				/* Case (a) */
2453				if (ins_index < 0)
2454					ins_index = i;
2455				rep_index = i;
2456				break;
2457			}
2458
2459			if (depth >= max_rep_depth &&
2460			    (ins_index >= 0 || depth >= max_ins_depth)) {
2461				/* Case (b) */
2462				if (ins_index < 0) {
2463					rc = -EBUSY;
2464					goto out_unlock;
2465				}
2466				rep_index = -1;
2467				break;
2468			}
2469
2470			i = (i + incr) & (table->size - 1);
2471			++depth;
2472		}
2473	}
2474
2475	/* If we found a filter to be replaced, check whether we
2476	 * should do so
2477	 */
2478	if (rep_index >= 0) {
2479		struct efx_farch_filter_spec *saved_spec =
2480			&table->spec[rep_index];
2481
2482		if (spec.priority == saved_spec->priority && !replace_equal) {
2483			rc = -EEXIST;
2484			goto out_unlock;
2485		}
2486		if (spec.priority < saved_spec->priority) {
2487			rc = -EPERM;
2488			goto out_unlock;
2489		}
2490		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2491		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2492			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2493	}
2494
2495	/* Insert the filter */
2496	if (ins_index != rep_index) {
2497		__set_bit(ins_index, table->used_bitmap);
2498		++table->used;
2499	}
2500	table->spec[ins_index] = spec;
2501
2502	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2503		efx_farch_filter_push_rx_config(efx);
2504	} else {
2505		if (table->search_limit[spec.type] < depth) {
2506			table->search_limit[spec.type] = depth;
2507			if (spec.flags & EFX_FILTER_FLAG_TX)
2508				efx_farch_filter_push_tx_limits(efx);
2509			else
2510				efx_farch_filter_push_rx_config(efx);
2511		}
2512
2513		efx_writeo(efx, &filter,
2514			   table->offset + table->step * ins_index);
2515
2516		/* If we were able to replace a filter by inserting
2517		 * at a lower depth, clear the replaced filter
2518		 */
2519		if (ins_index != rep_index && rep_index >= 0)
2520			efx_farch_filter_table_clear_entry(efx, table,
2521							   rep_index);
2522	}
2523
2524	netif_vdbg(efx, hw, efx->net_dev,
2525		   "%s: filter type %d index %d rxq %u set",
2526		   __func__, spec.type, ins_index, spec.dmaq_id);
2527	rc = efx_farch_filter_make_id(&spec, ins_index);
2528
2529out_unlock:
2530	up_write(&state->lock);
2531	return rc;
2532}
2533
2534static void
2535efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2536				   struct efx_farch_filter_table *table,
2537				   unsigned int filter_idx)
2538{
2539	static efx_oword_t filter;
2540
2541	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2542	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2543
2544	__clear_bit(filter_idx, table->used_bitmap);
2545	--table->used;
2546	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2547
2548	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2549
2550	/* If this filter required a greater search depth than
2551	 * any other, the search limit for its type can now be
2552	 * decreased.  However, it is hard to determine that
2553	 * unless the table has become completely empty - in
2554	 * which case, all its search limits can be set to 0.
2555	 */
2556	if (unlikely(table->used == 0)) {
2557		memset(table->search_limit, 0, sizeof(table->search_limit));
2558		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2559			efx_farch_filter_push_tx_limits(efx);
2560		else
2561			efx_farch_filter_push_rx_config(efx);
2562	}
2563}
2564
2565static int efx_farch_filter_remove(struct efx_nic *efx,
2566				   struct efx_farch_filter_table *table,
2567				   unsigned int filter_idx,
2568				   enum efx_filter_priority priority)
2569{
2570	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2571
2572	if (!test_bit(filter_idx, table->used_bitmap) ||
2573	    spec->priority != priority)
2574		return -ENOENT;
2575
2576	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2577		efx_farch_filter_init_rx_auto(efx, spec);
2578		efx_farch_filter_push_rx_config(efx);
2579	} else {
2580		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2581	}
2582
2583	return 0;
2584}
2585
2586int efx_farch_filter_remove_safe(struct efx_nic *efx,
2587				 enum efx_filter_priority priority,
2588				 u32 filter_id)
2589{
2590	struct efx_farch_filter_state *state = efx->filter_state;
2591	enum efx_farch_filter_table_id table_id;
2592	struct efx_farch_filter_table *table;
2593	unsigned int filter_idx;
2594	struct efx_farch_filter_spec *spec;
2595	int rc;
2596
2597	table_id = efx_farch_filter_id_table_id(filter_id);
2598	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2599		return -ENOENT;
2600	table = &state->table[table_id];
2601
2602	filter_idx = efx_farch_filter_id_index(filter_id);
2603	if (filter_idx >= table->size)
2604		return -ENOENT;
2605	down_write(&state->lock);
2606	spec = &table->spec[filter_idx];
2607
2608	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2609	up_write(&state->lock);
2610
2611	return rc;
2612}
2613
2614int efx_farch_filter_get_safe(struct efx_nic *efx,
2615			      enum efx_filter_priority priority,
2616			      u32 filter_id, struct efx_filter_spec *spec_buf)
2617{
2618	struct efx_farch_filter_state *state = efx->filter_state;
2619	enum efx_farch_filter_table_id table_id;
2620	struct efx_farch_filter_table *table;
2621	struct efx_farch_filter_spec *spec;
2622	unsigned int filter_idx;
2623	int rc = -ENOENT;
2624
2625	down_read(&state->lock);
2626
2627	table_id = efx_farch_filter_id_table_id(filter_id);
2628	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2629		goto out_unlock;
2630	table = &state->table[table_id];
2631
2632	filter_idx = efx_farch_filter_id_index(filter_id);
2633	if (filter_idx >= table->size)
2634		goto out_unlock;
2635	spec = &table->spec[filter_idx];
2636
2637	if (test_bit(filter_idx, table->used_bitmap) &&
2638	    spec->priority == priority) {
2639		efx_farch_filter_to_gen_spec(spec_buf, spec);
2640		rc = 0;
2641	}
2642
2643out_unlock:
2644	up_read(&state->lock);
2645	return rc;
2646}
2647
2648static void
2649efx_farch_filter_table_clear(struct efx_nic *efx,
2650			     enum efx_farch_filter_table_id table_id,
2651			     enum efx_filter_priority priority)
2652{
2653	struct efx_farch_filter_state *state = efx->filter_state;
2654	struct efx_farch_filter_table *table = &state->table[table_id];
2655	unsigned int filter_idx;
2656
2657	down_write(&state->lock);
2658	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2659		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2660			efx_farch_filter_remove(efx, table,
2661						filter_idx, priority);
2662	}
2663	up_write(&state->lock);
2664}
2665
2666int efx_farch_filter_clear_rx(struct efx_nic *efx,
2667			       enum efx_filter_priority priority)
2668{
2669	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2670				     priority);
2671	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2672				     priority);
2673	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2674				     priority);
2675	return 0;
2676}
2677
2678u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2679				   enum efx_filter_priority priority)
2680{
2681	struct efx_farch_filter_state *state = efx->filter_state;
2682	enum efx_farch_filter_table_id table_id;
2683	struct efx_farch_filter_table *table;
2684	unsigned int filter_idx;
2685	u32 count = 0;
2686
2687	down_read(&state->lock);
2688
2689	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2690	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2691	     table_id++) {
2692		table = &state->table[table_id];
2693		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694			if (test_bit(filter_idx, table->used_bitmap) &&
2695			    table->spec[filter_idx].priority == priority)
2696				++count;
2697		}
2698	}
2699
2700	up_read(&state->lock);
2701
2702	return count;
2703}
2704
2705s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2706				enum efx_filter_priority priority,
2707				u32 *buf, u32 size)
2708{
2709	struct efx_farch_filter_state *state = efx->filter_state;
2710	enum efx_farch_filter_table_id table_id;
2711	struct efx_farch_filter_table *table;
2712	unsigned int filter_idx;
2713	s32 count = 0;
2714
2715	down_read(&state->lock);
2716
2717	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2718	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2719	     table_id++) {
2720		table = &state->table[table_id];
2721		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2722			if (test_bit(filter_idx, table->used_bitmap) &&
2723			    table->spec[filter_idx].priority == priority) {
2724				if (count == size) {
2725					count = -EMSGSIZE;
2726					goto out;
2727				}
2728				buf[count++] = efx_farch_filter_make_id(
2729					&table->spec[filter_idx], filter_idx);
2730			}
2731		}
2732	}
2733out:
2734	up_read(&state->lock);
2735
2736	return count;
2737}
2738
2739/* Restore filter stater after reset */
2740void efx_farch_filter_table_restore(struct efx_nic *efx)
2741{
2742	struct efx_farch_filter_state *state = efx->filter_state;
2743	enum efx_farch_filter_table_id table_id;
2744	struct efx_farch_filter_table *table;
2745	efx_oword_t filter;
2746	unsigned int filter_idx;
2747
2748	down_write(&state->lock);
2749
2750	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2751		table = &state->table[table_id];
2752
2753		/* Check whether this is a regular register table */
2754		if (table->step == 0)
2755			continue;
2756
2757		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2758			if (!test_bit(filter_idx, table->used_bitmap))
2759				continue;
2760			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2761			efx_writeo(efx, &filter,
2762				   table->offset + table->step * filter_idx);
2763		}
2764	}
2765
2766	efx_farch_filter_push_rx_config(efx);
2767	efx_farch_filter_push_tx_limits(efx);
2768
2769	up_write(&state->lock);
2770}
2771
2772void efx_farch_filter_table_remove(struct efx_nic *efx)
2773{
2774	struct efx_farch_filter_state *state = efx->filter_state;
2775	enum efx_farch_filter_table_id table_id;
2776
2777	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2778		kfree(state->table[table_id].used_bitmap);
2779		vfree(state->table[table_id].spec);
2780	}
2781	kfree(state);
2782}
2783
2784int efx_farch_filter_table_probe(struct efx_nic *efx)
2785{
2786	struct efx_farch_filter_state *state;
2787	struct efx_farch_filter_table *table;
2788	unsigned table_id;
2789
2790	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2791	if (!state)
2792		return -ENOMEM;
2793	efx->filter_state = state;
2794	init_rwsem(&state->lock);
2795
2796	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2797	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2798	table->offset = FR_BZ_RX_FILTER_TBL0;
2799	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2800	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2801
2802	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2803	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2804	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2805	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2806	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2807
2808	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2809	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2810	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2811
2812	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2813	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2814	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2815	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2816	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2817
2818	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2819		table = &state->table[table_id];
2820		if (table->size == 0)
2821			continue;
2822		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2823					     sizeof(unsigned long),
2824					     GFP_KERNEL);
2825		if (!table->used_bitmap)
2826			goto fail;
2827		table->spec = vzalloc(array_size(sizeof(*table->spec),
2828						 table->size));
2829		if (!table->spec)
2830			goto fail;
2831	}
2832
2833	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2834	if (table->size) {
2835		/* RX default filters must always exist */
2836		struct efx_farch_filter_spec *spec;
2837		unsigned i;
2838
2839		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2840			spec = &table->spec[i];
2841			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2842			efx_farch_filter_init_rx_auto(efx, spec);
2843			__set_bit(i, table->used_bitmap);
2844		}
2845	}
2846
2847	efx_farch_filter_push_rx_config(efx);
2848
2849	return 0;
2850
2851fail:
2852	efx_farch_filter_table_remove(efx);
2853	return -ENOMEM;
2854}
2855
2856/* Update scatter enable flags for filters pointing to our own RX queues */
2857void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2858{
2859	struct efx_farch_filter_state *state = efx->filter_state;
2860	enum efx_farch_filter_table_id table_id;
2861	struct efx_farch_filter_table *table;
2862	efx_oword_t filter;
2863	unsigned int filter_idx;
2864
2865	down_write(&state->lock);
2866
2867	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2868	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2869	     table_id++) {
2870		table = &state->table[table_id];
2871
2872		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2873			if (!test_bit(filter_idx, table->used_bitmap) ||
2874			    table->spec[filter_idx].dmaq_id >=
2875			    efx->n_rx_channels)
2876				continue;
2877
2878			if (efx->rx_scatter)
2879				table->spec[filter_idx].flags |=
2880					EFX_FILTER_FLAG_RX_SCATTER;
2881			else
2882				table->spec[filter_idx].flags &=
2883					~EFX_FILTER_FLAG_RX_SCATTER;
2884
2885			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2886				/* Pushed by efx_farch_filter_push_rx_config() */
2887				continue;
2888
2889			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2890			efx_writeo(efx, &filter,
2891				   table->offset + table->step * filter_idx);
2892		}
2893	}
2894
2895	efx_farch_filter_push_rx_config(efx);
2896
2897	up_write(&state->lock);
2898}
2899
2900#ifdef CONFIG_RFS_ACCEL
2901
2902bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2903				     unsigned int index)
2904{
2905	struct efx_farch_filter_state *state = efx->filter_state;
2906	struct efx_farch_filter_table *table;
2907	bool ret = false, force = false;
2908	u16 arfs_id;
2909
2910	down_write(&state->lock);
2911	spin_lock_bh(&efx->rps_hash_lock);
2912	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2913	if (test_bit(index, table->used_bitmap) &&
2914	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2915		struct efx_arfs_rule *rule = NULL;
2916		struct efx_filter_spec spec;
2917
2918		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2919		if (!efx->rps_hash_table) {
2920			/* In the absence of the table, we always returned 0 to
2921			 * ARFS, so use the same to query it.
2922			 */
2923			arfs_id = 0;
2924		} else {
2925			rule = efx_rps_hash_find(efx, &spec);
2926			if (!rule) {
2927				/* ARFS table doesn't know of this filter, remove it */
2928				force = true;
2929			} else {
2930				arfs_id = rule->arfs_id;
2931				if (!efx_rps_check_rule(rule, index, &force))
2932					goto out_unlock;
2933			}
2934		}
2935		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2936						 flow_id, arfs_id)) {
2937			if (rule)
2938				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2939			efx_rps_hash_del(efx, &spec);
2940			efx_farch_filter_table_clear_entry(efx, table, index);
2941			ret = true;
2942		}
2943	}
2944out_unlock:
2945	spin_unlock_bh(&efx->rps_hash_lock);
2946	up_write(&state->lock);
2947	return ret;
2948}
2949
2950#endif /* CONFIG_RFS_ACCEL */
2951
2952void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2953{
2954	struct net_device *net_dev = efx->net_dev;
2955	struct netdev_hw_addr *ha;
2956	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2957	u32 crc;
2958	int bit;
2959
2960	if (!efx_dev_registered(efx))
2961		return;
2962
2963	netif_addr_lock_bh(net_dev);
2964
2965	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2966
2967	/* Build multicast hash table */
2968	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2969		memset(mc_hash, 0xff, sizeof(*mc_hash));
2970	} else {
2971		memset(mc_hash, 0x00, sizeof(*mc_hash));
2972		netdev_for_each_mc_addr(ha, net_dev) {
2973			crc = ether_crc_le(ETH_ALEN, ha->addr);
2974			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2975			__set_bit_le(bit, mc_hash);
2976		}
2977
2978		/* Broadcast packets go through the multicast hash filter.
2979		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2980		 * so we always add bit 0xff to the mask.
2981		 */
2982		__set_bit_le(0xff, mc_hash);
2983	}
2984
2985	netif_addr_unlock_bh(net_dev);
2986}