Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2006-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/pci.h>
  12#include <linux/module.h>
  13#include <linux/seq_file.h>
  14#include <linux/crc32.h>
  15#include "net_driver.h"
  16#include "bitfield.h"
  17#include "efx.h"
  18#include "rx_common.h"
  19#include "nic.h"
  20#include "farch_regs.h"
  21#include "sriov.h"
  22#include "siena_sriov.h"
  23#include "io.h"
  24#include "workarounds.h"
  25
  26/* Falcon-architecture (SFC9000-family) support */
  27
  28/**************************************************************************
  29 *
  30 * Configurable values
  31 *
  32 **************************************************************************
  33 */
  34
  35/* This is set to 16 for a good reason.  In summary, if larger than
  36 * 16, the descriptor cache holds more than a default socket
  37 * buffer's worth of packets (for UDP we can only have at most one
  38 * socket buffer's worth outstanding).  This combined with the fact
  39 * that we only get 1 TX event per descriptor cache means the NIC
  40 * goes idle.
  41 */
  42#define TX_DC_ENTRIES 16
  43#define TX_DC_ENTRIES_ORDER 1
  44
  45#define RX_DC_ENTRIES 64
  46#define RX_DC_ENTRIES_ORDER 3
  47
  48/* If EFX_MAX_INT_ERRORS internal errors occur within
  49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  50 * disable it.
  51 */
  52#define EFX_INT_ERROR_EXPIRE 3600
  53#define EFX_MAX_INT_ERRORS 5
  54
  55/* Depth of RX flush request fifo */
  56#define EFX_RX_FLUSH_COUNT 4
  57
  58/* Driver generated events */
  59#define _EFX_CHANNEL_MAGIC_TEST		0x000101
  60#define _EFX_CHANNEL_MAGIC_FILL		0x000102
  61#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
  62#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
  63
  64#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
  65#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
  66
  67#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
  68	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  69#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
  70	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
  71			   efx_rx_queue_index(_rx_queue))
  72#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
  73	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
  74			   efx_rx_queue_index(_rx_queue))
  75#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
  76	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
  77			   (_tx_queue)->queue)
  78
  79static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  80
  81/**************************************************************************
  82 *
  83 * Hardware access
  84 *
  85 **************************************************************************/
  86
  87static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  88				     unsigned int index)
  89{
  90	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  91			value, index);
  92}
  93
  94static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  95				     const efx_oword_t *mask)
  96{
  97	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  98		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  99}
 100
 101int efx_farch_test_registers(struct efx_nic *efx,
 102			     const struct efx_farch_register_test *regs,
 103			     size_t n_regs)
 104{
 105	unsigned address = 0;
 106	int i, j;
 107	efx_oword_t mask, imask, original, reg, buf;
 108
 109	for (i = 0; i < n_regs; ++i) {
 110		address = regs[i].address;
 111		mask = imask = regs[i].mask;
 112		EFX_INVERT_OWORD(imask);
 113
 114		efx_reado(efx, &original, address);
 115
 116		/* bit sweep on and off */
 117		for (j = 0; j < 128; j++) {
 118			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 119				continue;
 120
 121			/* Test this testable bit can be set in isolation */
 122			EFX_AND_OWORD(reg, original, mask);
 123			EFX_SET_OWORD32(reg, j, j, 1);
 124
 125			efx_writeo(efx, &reg, address);
 126			efx_reado(efx, &buf, address);
 127
 128			if (efx_masked_compare_oword(&reg, &buf, &mask))
 129				goto fail;
 130
 131			/* Test this testable bit can be cleared in isolation */
 132			EFX_OR_OWORD(reg, original, mask);
 133			EFX_SET_OWORD32(reg, j, j, 0);
 134
 135			efx_writeo(efx, &reg, address);
 136			efx_reado(efx, &buf, address);
 137
 138			if (efx_masked_compare_oword(&reg, &buf, &mask))
 139				goto fail;
 140		}
 141
 142		efx_writeo(efx, &original, address);
 143	}
 144
 145	return 0;
 146
 147fail:
 148	netif_err(efx, hw, efx->net_dev,
 149		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 150		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 151		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 152	return -EIO;
 153}
 154
 155/**************************************************************************
 156 *
 157 * Special buffer handling
 158 * Special buffers are used for event queues and the TX and RX
 159 * descriptor rings.
 160 *
 161 *************************************************************************/
 162
 163/*
 164 * Initialise a special buffer
 165 *
 166 * This will define a buffer (previously allocated via
 167 * efx_alloc_special_buffer()) in the buffer table, allowing
 168 * it to be used for event queues, descriptor rings etc.
 169 */
 170static void
 171efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 172{
 173	efx_qword_t buf_desc;
 174	unsigned int index;
 175	dma_addr_t dma_addr;
 176	int i;
 177
 178	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
 179
 180	/* Write buffer descriptors to NIC */
 181	for (i = 0; i < buffer->entries; i++) {
 182		index = buffer->index + i;
 183		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 184		netif_dbg(efx, probe, efx->net_dev,
 185			  "mapping special buffer %d at %llx\n",
 186			  index, (unsigned long long)dma_addr);
 187		EFX_POPULATE_QWORD_3(buf_desc,
 188				     FRF_AZ_BUF_ADR_REGION, 0,
 189				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 190				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 191		efx_write_buf_tbl(efx, &buf_desc, index);
 192	}
 193}
 194
 195/* Unmaps a buffer and clears the buffer table entries */
 196static void
 197efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 198{
 199	efx_oword_t buf_tbl_upd;
 200	unsigned int start = buffer->index;
 201	unsigned int end = (buffer->index + buffer->entries - 1);
 202
 203	if (!buffer->entries)
 204		return;
 205
 206	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 207		  buffer->index, buffer->index + buffer->entries - 1);
 208
 209	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 210			     FRF_AZ_BUF_UPD_CMD, 0,
 211			     FRF_AZ_BUF_CLR_CMD, 1,
 212			     FRF_AZ_BUF_CLR_END_ID, end,
 213			     FRF_AZ_BUF_CLR_START_ID, start);
 214	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 215}
 216
 217/*
 218 * Allocate a new special buffer
 219 *
 220 * This allocates memory for a new buffer, clears it and allocates a
 221 * new buffer ID range.  It does not write into the buffer table.
 222 *
 223 * This call will allocate 4KB buffers, since 8KB buffers can't be
 224 * used for event queues and descriptor rings.
 225 */
 226static int efx_alloc_special_buffer(struct efx_nic *efx,
 227				    struct efx_special_buffer *buffer,
 228				    unsigned int len)
 229{
 230#ifdef CONFIG_SFC_SRIOV
 231	struct siena_nic_data *nic_data = efx->nic_data;
 232#endif
 233	len = ALIGN(len, EFX_BUF_SIZE);
 234
 235	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 236		return -ENOMEM;
 237	buffer->entries = len / EFX_BUF_SIZE;
 238	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 239
 240	/* Select new buffer ID */
 241	buffer->index = efx->next_buffer_table;
 242	efx->next_buffer_table += buffer->entries;
 243#ifdef CONFIG_SFC_SRIOV
 244	BUG_ON(efx_siena_sriov_enabled(efx) &&
 245	       nic_data->vf_buftbl_base < efx->next_buffer_table);
 246#endif
 247
 248	netif_dbg(efx, probe, efx->net_dev,
 249		  "allocating special buffers %d-%d at %llx+%x "
 250		  "(virt %p phys %llx)\n", buffer->index,
 251		  buffer->index + buffer->entries - 1,
 252		  (u64)buffer->buf.dma_addr, len,
 253		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 254
 255	return 0;
 256}
 257
 258static void
 259efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 260{
 261	if (!buffer->buf.addr)
 262		return;
 263
 264	netif_dbg(efx, hw, efx->net_dev,
 265		  "deallocating special buffers %d-%d at %llx+%x "
 266		  "(virt %p phys %llx)\n", buffer->index,
 267		  buffer->index + buffer->entries - 1,
 268		  (u64)buffer->buf.dma_addr, buffer->buf.len,
 269		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 270
 271	efx_nic_free_buffer(efx, &buffer->buf);
 272	buffer->entries = 0;
 273}
 274
 275/**************************************************************************
 276 *
 277 * TX path
 278 *
 279 **************************************************************************/
 280
 281/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 282static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 283{
 284	unsigned write_ptr;
 285	efx_dword_t reg;
 286
 287	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 288	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 289	efx_writed_page(tx_queue->efx, &reg,
 290			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 291}
 292
 293/* Write pointer and first descriptor for TX descriptor ring */
 294static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 295					  const efx_qword_t *txd)
 296{
 297	unsigned write_ptr;
 298	efx_oword_t reg;
 299
 300	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 301	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 302
 303	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 304	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 305			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 306	reg.qword[0] = *txd;
 307	efx_writeo_page(tx_queue->efx, &reg,
 308			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 309}
 310
 311
 312/* For each entry inserted into the software descriptor ring, create a
 313 * descriptor in the hardware TX descriptor ring (in host memory), and
 314 * write a doorbell.
 315 */
 316void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 317{
 318	struct efx_tx_buffer *buffer;
 319	efx_qword_t *txd;
 320	unsigned write_ptr;
 321	unsigned old_write_count = tx_queue->write_count;
 322
 323	tx_queue->xmit_more_available = false;
 324	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 325		return;
 326
 327	do {
 328		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 329		buffer = &tx_queue->buffer[write_ptr];
 330		txd = efx_tx_desc(tx_queue, write_ptr);
 331		++tx_queue->write_count;
 332
 333		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 334
 335		/* Create TX descriptor ring entry */
 336		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 337		EFX_POPULATE_QWORD_4(*txd,
 338				     FSF_AZ_TX_KER_CONT,
 339				     buffer->flags & EFX_TX_BUF_CONT,
 340				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 341				     FSF_AZ_TX_KER_BUF_REGION, 0,
 342				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 343	} while (tx_queue->write_count != tx_queue->insert_count);
 344
 345	wmb(); /* Ensure descriptors are written before they are fetched */
 346
 347	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 348		txd = efx_tx_desc(tx_queue,
 349				  old_write_count & tx_queue->ptr_mask);
 350		efx_farch_push_tx_desc(tx_queue, txd);
 351		++tx_queue->pushes;
 352	} else {
 353		efx_farch_notify_tx_desc(tx_queue);
 354	}
 355}
 356
 357unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 358				    dma_addr_t dma_addr, unsigned int len)
 359{
 360	/* Don't cross 4K boundaries with descriptors. */
 361	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
 362
 363	len = min(limit, len);
 364
 365	return len;
 366}
 367
 368
 369/* Allocate hardware resources for a TX queue */
 370int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 371{
 372	struct efx_nic *efx = tx_queue->efx;
 373	unsigned entries;
 374
 375	entries = tx_queue->ptr_mask + 1;
 376	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 377					entries * sizeof(efx_qword_t));
 378}
 379
 380void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 381{
 382	int csum = tx_queue->label & EFX_TXQ_TYPE_OFFLOAD;
 383	struct efx_nic *efx = tx_queue->efx;
 384	efx_oword_t reg;
 385
 386	/* Pin TX descriptor ring */
 387	efx_init_special_buffer(efx, &tx_queue->txd);
 388
 389	/* Push TX descriptor ring to card */
 390	EFX_POPULATE_OWORD_10(reg,
 391			      FRF_AZ_TX_DESCQ_EN, 1,
 392			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 393			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 394			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 395			      FRF_AZ_TX_DESCQ_EVQ_ID,
 396			      tx_queue->channel->channel,
 397			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 398			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
 399			      FRF_AZ_TX_DESCQ_SIZE,
 400			      __ffs(tx_queue->txd.entries),
 401			      FRF_AZ_TX_DESCQ_TYPE, 0,
 402			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 403
 404	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 405	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
 406
 407	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 408			 tx_queue->queue);
 409
 410	EFX_POPULATE_OWORD_1(reg,
 411			     FRF_BZ_TX_PACE,
 412			     (tx_queue->label & EFX_TXQ_TYPE_HIGHPRI) ?
 413			     FFE_BZ_TX_PACE_OFF :
 414			     FFE_BZ_TX_PACE_RESERVED);
 415	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
 416}
 417
 418static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 419{
 420	struct efx_nic *efx = tx_queue->efx;
 421	efx_oword_t tx_flush_descq;
 422
 423	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 424	atomic_set(&tx_queue->flush_outstanding, 1);
 425
 426	EFX_POPULATE_OWORD_2(tx_flush_descq,
 427			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 428			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 429	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 430}
 431
 432void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 433{
 434	struct efx_nic *efx = tx_queue->efx;
 435	efx_oword_t tx_desc_ptr;
 436
 437	/* Remove TX descriptor ring from card */
 438	EFX_ZERO_OWORD(tx_desc_ptr);
 439	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 440			 tx_queue->queue);
 441
 442	/* Unpin TX descriptor ring */
 443	efx_fini_special_buffer(efx, &tx_queue->txd);
 444}
 445
 446/* Free buffers backing TX queue */
 447void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 448{
 449	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 450}
 451
 452/**************************************************************************
 453 *
 454 * RX path
 455 *
 456 **************************************************************************/
 457
 458/* This creates an entry in the RX descriptor queue */
 459static inline void
 460efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 461{
 462	struct efx_rx_buffer *rx_buf;
 463	efx_qword_t *rxd;
 464
 465	rxd = efx_rx_desc(rx_queue, index);
 466	rx_buf = efx_rx_buffer(rx_queue, index);
 467	EFX_POPULATE_QWORD_3(*rxd,
 468			     FSF_AZ_RX_KER_BUF_SIZE,
 469			     rx_buf->len -
 470			     rx_queue->efx->type->rx_buffer_padding,
 471			     FSF_AZ_RX_KER_BUF_REGION, 0,
 472			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 473}
 474
 475/* This writes to the RX_DESC_WPTR register for the specified receive
 476 * descriptor ring.
 477 */
 478void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 479{
 480	struct efx_nic *efx = rx_queue->efx;
 481	efx_dword_t reg;
 482	unsigned write_ptr;
 483
 484	while (rx_queue->notified_count != rx_queue->added_count) {
 485		efx_farch_build_rx_desc(
 486			rx_queue,
 487			rx_queue->notified_count & rx_queue->ptr_mask);
 488		++rx_queue->notified_count;
 489	}
 490
 491	wmb();
 492	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 493	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 494	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 495			efx_rx_queue_index(rx_queue));
 496}
 497
 498int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 499{
 500	struct efx_nic *efx = rx_queue->efx;
 501	unsigned entries;
 502
 503	entries = rx_queue->ptr_mask + 1;
 504	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 505					entries * sizeof(efx_qword_t));
 506}
 507
 508void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 509{
 510	efx_oword_t rx_desc_ptr;
 511	struct efx_nic *efx = rx_queue->efx;
 512	bool jumbo_en;
 513
 514	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
 515	jumbo_en = efx->rx_scatter;
 516
 517	netif_dbg(efx, hw, efx->net_dev,
 518		  "RX queue %d ring in special buffers %d-%d\n",
 519		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 520		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 521
 522	rx_queue->scatter_n = 0;
 523
 524	/* Pin RX descriptor ring */
 525	efx_init_special_buffer(efx, &rx_queue->rxd);
 526
 527	/* Push RX descriptor ring to card */
 528	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 529			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
 530			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
 531			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 532			      FRF_AZ_RX_DESCQ_EVQ_ID,
 533			      efx_rx_queue_channel(rx_queue)->channel,
 534			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 535			      FRF_AZ_RX_DESCQ_LABEL,
 536			      efx_rx_queue_index(rx_queue),
 537			      FRF_AZ_RX_DESCQ_SIZE,
 538			      __ffs(rx_queue->rxd.entries),
 539			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 540			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 541			      FRF_AZ_RX_DESCQ_EN, 1);
 542	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 543			 efx_rx_queue_index(rx_queue));
 544}
 545
 546static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 547{
 548	struct efx_nic *efx = rx_queue->efx;
 549	efx_oword_t rx_flush_descq;
 550
 551	EFX_POPULATE_OWORD_2(rx_flush_descq,
 552			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 553			     FRF_AZ_RX_FLUSH_DESCQ,
 554			     efx_rx_queue_index(rx_queue));
 555	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 556}
 557
 558void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 559{
 560	efx_oword_t rx_desc_ptr;
 561	struct efx_nic *efx = rx_queue->efx;
 562
 563	/* Remove RX descriptor ring from card */
 564	EFX_ZERO_OWORD(rx_desc_ptr);
 565	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 566			 efx_rx_queue_index(rx_queue));
 567
 568	/* Unpin RX descriptor ring */
 569	efx_fini_special_buffer(efx, &rx_queue->rxd);
 570}
 571
 572/* Free buffers backing RX queue */
 573void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 574{
 575	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 576}
 577
 578/**************************************************************************
 579 *
 580 * Flush handling
 581 *
 582 **************************************************************************/
 583
 584/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 585 * or more RX flushes can be kicked off.
 586 */
 587static bool efx_farch_flush_wake(struct efx_nic *efx)
 588{
 589	/* Ensure that all updates are visible to efx_farch_flush_queues() */
 590	smp_mb();
 591
 592	return (atomic_read(&efx->active_queues) == 0 ||
 593		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 594		 && atomic_read(&efx->rxq_flush_pending) > 0));
 595}
 596
 597static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 598{
 599	bool i = true;
 600	efx_oword_t txd_ptr_tbl;
 601	struct efx_channel *channel;
 602	struct efx_tx_queue *tx_queue;
 603
 604	efx_for_each_channel(channel, efx) {
 605		efx_for_each_channel_tx_queue(tx_queue, channel) {
 606			efx_reado_table(efx, &txd_ptr_tbl,
 607					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 608			if (EFX_OWORD_FIELD(txd_ptr_tbl,
 609					    FRF_AZ_TX_DESCQ_FLUSH) ||
 610			    EFX_OWORD_FIELD(txd_ptr_tbl,
 611					    FRF_AZ_TX_DESCQ_EN)) {
 612				netif_dbg(efx, hw, efx->net_dev,
 613					  "flush did not complete on TXQ %d\n",
 614					  tx_queue->queue);
 615				i = false;
 616			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 617						  1, 0)) {
 618				/* The flush is complete, but we didn't
 619				 * receive a flush completion event
 620				 */
 621				netif_dbg(efx, hw, efx->net_dev,
 622					  "flush complete on TXQ %d, so drain "
 623					  "the queue\n", tx_queue->queue);
 624				/* Don't need to increment active_queues as it
 625				 * has already been incremented for the queues
 626				 * which did not drain
 627				 */
 628				efx_farch_magic_event(channel,
 629						      EFX_CHANNEL_MAGIC_TX_DRAIN(
 630							      tx_queue));
 631			}
 632		}
 633	}
 634
 635	return i;
 636}
 637
 638/* Flush all the transmit queues, and continue flushing receive queues until
 639 * they're all flushed. Wait for the DRAIN events to be received so that there
 640 * are no more RX and TX events left on any channel. */
 641static int efx_farch_do_flush(struct efx_nic *efx)
 642{
 643	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 644	struct efx_channel *channel;
 645	struct efx_rx_queue *rx_queue;
 646	struct efx_tx_queue *tx_queue;
 647	int rc = 0;
 648
 649	efx_for_each_channel(channel, efx) {
 650		efx_for_each_channel_tx_queue(tx_queue, channel) {
 651			efx_farch_flush_tx_queue(tx_queue);
 652		}
 653		efx_for_each_channel_rx_queue(rx_queue, channel) {
 654			rx_queue->flush_pending = true;
 655			atomic_inc(&efx->rxq_flush_pending);
 656		}
 657	}
 658
 659	while (timeout && atomic_read(&efx->active_queues) > 0) {
 660		/* If SRIOV is enabled, then offload receive queue flushing to
 661		 * the firmware (though we will still have to poll for
 662		 * completion). If that fails, fall back to the old scheme.
 663		 */
 664		if (efx_siena_sriov_enabled(efx)) {
 665			rc = efx_mcdi_flush_rxqs(efx);
 666			if (!rc)
 667				goto wait;
 668		}
 669
 670		/* The hardware supports four concurrent rx flushes, each of
 671		 * which may need to be retried if there is an outstanding
 672		 * descriptor fetch
 673		 */
 674		efx_for_each_channel(channel, efx) {
 675			efx_for_each_channel_rx_queue(rx_queue, channel) {
 676				if (atomic_read(&efx->rxq_flush_outstanding) >=
 677				    EFX_RX_FLUSH_COUNT)
 678					break;
 679
 680				if (rx_queue->flush_pending) {
 681					rx_queue->flush_pending = false;
 682					atomic_dec(&efx->rxq_flush_pending);
 683					atomic_inc(&efx->rxq_flush_outstanding);
 684					efx_farch_flush_rx_queue(rx_queue);
 685				}
 686			}
 687		}
 688
 689	wait:
 690		timeout = wait_event_timeout(efx->flush_wq,
 691					     efx_farch_flush_wake(efx),
 692					     timeout);
 693	}
 694
 695	if (atomic_read(&efx->active_queues) &&
 696	    !efx_check_tx_flush_complete(efx)) {
 697		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 698			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 699			  atomic_read(&efx->rxq_flush_outstanding),
 700			  atomic_read(&efx->rxq_flush_pending));
 701		rc = -ETIMEDOUT;
 702
 703		atomic_set(&efx->active_queues, 0);
 704		atomic_set(&efx->rxq_flush_pending, 0);
 705		atomic_set(&efx->rxq_flush_outstanding, 0);
 706	}
 707
 708	return rc;
 709}
 710
 711int efx_farch_fini_dmaq(struct efx_nic *efx)
 712{
 713	struct efx_channel *channel;
 714	struct efx_tx_queue *tx_queue;
 715	struct efx_rx_queue *rx_queue;
 716	int rc = 0;
 717
 718	/* Do not attempt to write to the NIC during EEH recovery */
 719	if (efx->state != STATE_RECOVERY) {
 720		/* Only perform flush if DMA is enabled */
 721		if (efx->pci_dev->is_busmaster) {
 722			efx->type->prepare_flush(efx);
 723			rc = efx_farch_do_flush(efx);
 724			efx->type->finish_flush(efx);
 725		}
 726
 727		efx_for_each_channel(channel, efx) {
 728			efx_for_each_channel_rx_queue(rx_queue, channel)
 729				efx_farch_rx_fini(rx_queue);
 730			efx_for_each_channel_tx_queue(tx_queue, channel)
 731				efx_farch_tx_fini(tx_queue);
 732		}
 733	}
 734
 735	return rc;
 736}
 737
 738/* Reset queue and flush accounting after FLR
 739 *
 740 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 741 * mastering was disabled), in which case we don't receive (RXQ) flush
 742 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 743 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 744 * events were received, and we didn't go through efx_check_tx_flush_complete())
 745 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 746 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 747 * for batched flush requests; and the efx->active_queues gets messed up because
 748 * we keep incrementing for the newly initialised queues, but it never went to
 749 * zero previously.  Then we get a timeout every time we try to restart the
 750 * queues, as it doesn't go back to zero when we should be flushing the queues.
 751 */
 752void efx_farch_finish_flr(struct efx_nic *efx)
 753{
 754	atomic_set(&efx->rxq_flush_pending, 0);
 755	atomic_set(&efx->rxq_flush_outstanding, 0);
 756	atomic_set(&efx->active_queues, 0);
 757}
 758
 759
 760/**************************************************************************
 761 *
 762 * Event queue processing
 763 * Event queues are processed by per-channel tasklets.
 764 *
 765 **************************************************************************/
 766
 767/* Update a channel's event queue's read pointer (RPTR) register
 768 *
 769 * This writes the EVQ_RPTR_REG register for the specified channel's
 770 * event queue.
 771 */
 772void efx_farch_ev_read_ack(struct efx_channel *channel)
 773{
 774	efx_dword_t reg;
 775	struct efx_nic *efx = channel->efx;
 776
 777	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 778			     channel->eventq_read_ptr & channel->eventq_mask);
 779
 780	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 781	 * of 4 bytes, but it is really 16 bytes just like later revisions.
 782	 */
 783	efx_writed(efx, &reg,
 784		   efx->type->evq_rptr_tbl_base +
 785		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 786}
 787
 788/* Use HW to insert a SW defined event */
 789void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 790			      efx_qword_t *event)
 791{
 792	efx_oword_t drv_ev_reg;
 793
 794	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 795		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 796	drv_ev_reg.u32[0] = event->u32[0];
 797	drv_ev_reg.u32[1] = event->u32[1];
 798	drv_ev_reg.u32[2] = 0;
 799	drv_ev_reg.u32[3] = 0;
 800	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 801	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 802}
 803
 804static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 805{
 806	efx_qword_t event;
 807
 808	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 809			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 810			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 811	efx_farch_generate_event(channel->efx, channel->channel, &event);
 812}
 813
 814/* Handle a transmit completion event
 815 *
 816 * The NIC batches TX completion events; the message we receive is of
 817 * the form "complete all TX events up to this index".
 818 */
 819static void
 820efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 821{
 822	unsigned int tx_ev_desc_ptr;
 823	unsigned int tx_ev_q_label;
 824	struct efx_tx_queue *tx_queue;
 825	struct efx_nic *efx = channel->efx;
 826
 827	if (unlikely(READ_ONCE(efx->reset_pending)))
 828		return;
 829
 830	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 831		/* Transmit completion */
 832		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 833		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 834		tx_queue = efx_channel_get_tx_queue(
 835			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 836		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 837	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 838		/* Rewrite the FIFO write pointer */
 839		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 840		tx_queue = efx_channel_get_tx_queue(
 841			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 842
 843		netif_tx_lock(efx->net_dev);
 844		efx_farch_notify_tx_desc(tx_queue);
 845		netif_tx_unlock(efx->net_dev);
 846	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 847		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 848	} else {
 849		netif_err(efx, tx_err, efx->net_dev,
 850			  "channel %d unexpected TX event "
 851			  EFX_QWORD_FMT"\n", channel->channel,
 852			  EFX_QWORD_VAL(*event));
 853	}
 854}
 855
 856/* Detect errors included in the rx_evt_pkt_ok bit. */
 857static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 858				      const efx_qword_t *event)
 859{
 860	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 861	struct efx_nic *efx = rx_queue->efx;
 862	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 863	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 864	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
 865	bool rx_ev_other_err, rx_ev_pause_frm;
 866	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 867	unsigned rx_ev_pkt_type;
 868
 869	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 870	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 871	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 872	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 873	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 874						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 875	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 876						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 877	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 878						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 879	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 880	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 881	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 882
 883	/* Every error apart from tobe_disc and pause_frm */
 884	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
 885			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 886			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 887
 888	/* Count errors that are not in MAC stats.  Ignore expected
 889	 * checksum errors during self-test. */
 890	if (rx_ev_frm_trunc)
 891		++channel->n_rx_frm_trunc;
 892	else if (rx_ev_tobe_disc)
 893		++channel->n_rx_tobe_disc;
 894	else if (!efx->loopback_selftest) {
 895		if (rx_ev_ip_hdr_chksum_err)
 896			++channel->n_rx_ip_hdr_chksum_err;
 897		else if (rx_ev_tcp_udp_chksum_err)
 898			++channel->n_rx_tcp_udp_chksum_err;
 899	}
 900
 901	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 902	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 903	 * to a FIFO overflow.
 904	 */
 905#ifdef DEBUG
 906	if (rx_ev_other_err && net_ratelimit()) {
 907		netif_dbg(efx, rx_err, efx->net_dev,
 908			  " RX queue %d unexpected RX event "
 909			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
 910			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 911			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 912			  rx_ev_ip_hdr_chksum_err ?
 913			  " [IP_HDR_CHKSUM_ERR]" : "",
 914			  rx_ev_tcp_udp_chksum_err ?
 915			  " [TCP_UDP_CHKSUM_ERR]" : "",
 916			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 917			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 918			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 919			  rx_ev_pause_frm ? " [PAUSE]" : "");
 920	}
 921#endif
 922
 923	if (efx->net_dev->features & NETIF_F_RXALL)
 924		/* don't discard frame for CRC error */
 925		rx_ev_eth_crc_err = false;
 926
 927	/* The frame must be discarded if any of these are true. */
 928	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
 929		rx_ev_tobe_disc | rx_ev_pause_frm) ?
 930		EFX_RX_PKT_DISCARD : 0;
 931}
 932
 933/* Handle receive events that are not in-order. Return true if this
 934 * can be handled as a partial packet discard, false if it's more
 935 * serious.
 936 */
 937static bool
 938efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 939{
 940	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 941	struct efx_nic *efx = rx_queue->efx;
 942	unsigned expected, dropped;
 943
 944	if (rx_queue->scatter_n &&
 945	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 946		      rx_queue->ptr_mask)) {
 947		++channel->n_rx_nodesc_trunc;
 948		return true;
 949	}
 950
 951	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 952	dropped = (index - expected) & rx_queue->ptr_mask;
 953	netif_info(efx, rx_err, efx->net_dev,
 954		   "dropped %d events (index=%d expected=%d)\n",
 955		   dropped, index, expected);
 956
 957	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 958	return false;
 959}
 960
 961/* Handle a packet received event
 962 *
 963 * The NIC gives a "discard" flag if it's a unicast packet with the
 964 * wrong destination address
 965 * Also "is multicast" and "matches multicast filter" flags can be used to
 966 * discard non-matching multicast packets.
 967 */
 968static void
 969efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 970{
 971	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 972	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 973	unsigned expected_ptr;
 974	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 975	u16 flags;
 976	struct efx_rx_queue *rx_queue;
 977	struct efx_nic *efx = channel->efx;
 978
 979	if (unlikely(READ_ONCE(efx->reset_pending)))
 980		return;
 981
 982	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 983	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 984	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 985		channel->channel);
 986
 987	rx_queue = efx_channel_get_rx_queue(channel);
 988
 989	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 990	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
 991			rx_queue->ptr_mask);
 992
 993	/* Check for partial drops and other errors */
 994	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
 995	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
 996		if (rx_ev_desc_ptr != expected_ptr &&
 997		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
 998			return;
 999
1000		/* Discard all pending fragments */
1001		if (rx_queue->scatter_n) {
1002			efx_rx_packet(
1003				rx_queue,
1004				rx_queue->removed_count & rx_queue->ptr_mask,
1005				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1006			rx_queue->removed_count += rx_queue->scatter_n;
1007			rx_queue->scatter_n = 0;
1008		}
1009
1010		/* Return if there is no new fragment */
1011		if (rx_ev_desc_ptr != expected_ptr)
1012			return;
1013
1014		/* Discard new fragment if not SOP */
1015		if (!rx_ev_sop) {
1016			efx_rx_packet(
1017				rx_queue,
1018				rx_queue->removed_count & rx_queue->ptr_mask,
1019				1, 0, EFX_RX_PKT_DISCARD);
1020			++rx_queue->removed_count;
1021			return;
1022		}
1023	}
1024
1025	++rx_queue->scatter_n;
1026	if (rx_ev_cont)
1027		return;
1028
1029	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1030	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1031	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1032
1033	if (likely(rx_ev_pkt_ok)) {
1034		/* If packet is marked as OK then we can rely on the
1035		 * hardware checksum and classification.
1036		 */
1037		flags = 0;
1038		switch (rx_ev_hdr_type) {
1039		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1040			flags |= EFX_RX_PKT_TCP;
1041			fallthrough;
1042		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1043			flags |= EFX_RX_PKT_CSUMMED;
1044			fallthrough;
1045		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1046		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1047			break;
1048		}
1049	} else {
1050		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1051	}
1052
1053	/* Detect multicast packets that didn't match the filter */
1054	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1055	if (rx_ev_mcast_pkt) {
1056		unsigned int rx_ev_mcast_hash_match =
1057			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1058
1059		if (unlikely(!rx_ev_mcast_hash_match)) {
1060			++channel->n_rx_mcast_mismatch;
1061			flags |= EFX_RX_PKT_DISCARD;
1062		}
1063	}
1064
1065	channel->irq_mod_score += 2;
1066
1067	/* Handle received packet */
1068	efx_rx_packet(rx_queue,
1069		      rx_queue->removed_count & rx_queue->ptr_mask,
1070		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1071	rx_queue->removed_count += rx_queue->scatter_n;
1072	rx_queue->scatter_n = 0;
1073}
1074
1075/* If this flush done event corresponds to a &struct efx_tx_queue, then
1076 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1077 * of all transmit completions.
1078 */
1079static void
1080efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1081{
1082	struct efx_tx_queue *tx_queue;
1083	int qid;
1084
1085	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1086	if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1087		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1088					    qid % EFX_TXQ_TYPES);
1089		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1090			efx_farch_magic_event(tx_queue->channel,
1091					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1092		}
1093	}
1094}
1095
1096/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1097 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1098 * the RX queue back to the mask of RX queues in need of flushing.
1099 */
1100static void
1101efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1102{
1103	struct efx_channel *channel;
1104	struct efx_rx_queue *rx_queue;
1105	int qid;
1106	bool failed;
1107
1108	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1109	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1110	if (qid >= efx->n_channels)
1111		return;
1112	channel = efx_get_channel(efx, qid);
1113	if (!efx_channel_has_rx_queue(channel))
1114		return;
1115	rx_queue = efx_channel_get_rx_queue(channel);
1116
1117	if (failed) {
1118		netif_info(efx, hw, efx->net_dev,
1119			   "RXQ %d flush retry\n", qid);
1120		rx_queue->flush_pending = true;
1121		atomic_inc(&efx->rxq_flush_pending);
1122	} else {
1123		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1124				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1125	}
1126	atomic_dec(&efx->rxq_flush_outstanding);
1127	if (efx_farch_flush_wake(efx))
1128		wake_up(&efx->flush_wq);
1129}
1130
1131static void
1132efx_farch_handle_drain_event(struct efx_channel *channel)
1133{
1134	struct efx_nic *efx = channel->efx;
1135
1136	WARN_ON(atomic_read(&efx->active_queues) == 0);
1137	atomic_dec(&efx->active_queues);
1138	if (efx_farch_flush_wake(efx))
1139		wake_up(&efx->flush_wq);
1140}
1141
1142static void efx_farch_handle_generated_event(struct efx_channel *channel,
1143					     efx_qword_t *event)
1144{
1145	struct efx_nic *efx = channel->efx;
1146	struct efx_rx_queue *rx_queue =
1147		efx_channel_has_rx_queue(channel) ?
1148		efx_channel_get_rx_queue(channel) : NULL;
1149	unsigned magic, code;
1150
1151	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1152	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1153
1154	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1155		channel->event_test_cpu = raw_smp_processor_id();
1156	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1157		/* The queue must be empty, so we won't receive any rx
1158		 * events, so efx_process_channel() won't refill the
1159		 * queue. Refill it here */
1160		efx_fast_push_rx_descriptors(rx_queue, true);
1161	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1162		efx_farch_handle_drain_event(channel);
1163	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1164		efx_farch_handle_drain_event(channel);
1165	} else {
1166		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1167			  "generated event "EFX_QWORD_FMT"\n",
1168			  channel->channel, EFX_QWORD_VAL(*event));
1169	}
1170}
1171
1172static void
1173efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1174{
1175	struct efx_nic *efx = channel->efx;
1176	unsigned int ev_sub_code;
1177	unsigned int ev_sub_data;
1178
1179	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1180	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1181
1182	switch (ev_sub_code) {
1183	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1184		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1185			   channel->channel, ev_sub_data);
1186		efx_farch_handle_tx_flush_done(efx, event);
1187#ifdef CONFIG_SFC_SRIOV
1188		efx_siena_sriov_tx_flush_done(efx, event);
1189#endif
1190		break;
1191	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1192		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1193			   channel->channel, ev_sub_data);
1194		efx_farch_handle_rx_flush_done(efx, event);
1195#ifdef CONFIG_SFC_SRIOV
1196		efx_siena_sriov_rx_flush_done(efx, event);
1197#endif
1198		break;
1199	case FSE_AZ_EVQ_INIT_DONE_EV:
1200		netif_dbg(efx, hw, efx->net_dev,
1201			  "channel %d EVQ %d initialised\n",
1202			  channel->channel, ev_sub_data);
1203		break;
1204	case FSE_AZ_SRM_UPD_DONE_EV:
1205		netif_vdbg(efx, hw, efx->net_dev,
1206			   "channel %d SRAM update done\n", channel->channel);
1207		break;
1208	case FSE_AZ_WAKE_UP_EV:
1209		netif_vdbg(efx, hw, efx->net_dev,
1210			   "channel %d RXQ %d wakeup event\n",
1211			   channel->channel, ev_sub_data);
1212		break;
1213	case FSE_AZ_TIMER_EV:
1214		netif_vdbg(efx, hw, efx->net_dev,
1215			   "channel %d RX queue %d timer expired\n",
1216			   channel->channel, ev_sub_data);
1217		break;
1218	case FSE_AA_RX_RECOVER_EV:
1219		netif_err(efx, rx_err, efx->net_dev,
1220			  "channel %d seen DRIVER RX_RESET event. "
1221			"Resetting.\n", channel->channel);
1222		atomic_inc(&efx->rx_reset);
1223		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1224		break;
1225	case FSE_BZ_RX_DSC_ERROR_EV:
1226		if (ev_sub_data < EFX_VI_BASE) {
1227			netif_err(efx, rx_err, efx->net_dev,
1228				  "RX DMA Q %d reports descriptor fetch error."
1229				  " RX Q %d is disabled.\n", ev_sub_data,
1230				  ev_sub_data);
1231			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1232		}
1233#ifdef CONFIG_SFC_SRIOV
1234		else
1235			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1236#endif
1237		break;
1238	case FSE_BZ_TX_DSC_ERROR_EV:
1239		if (ev_sub_data < EFX_VI_BASE) {
1240			netif_err(efx, tx_err, efx->net_dev,
1241				  "TX DMA Q %d reports descriptor fetch error."
1242				  " TX Q %d is disabled.\n", ev_sub_data,
1243				  ev_sub_data);
1244			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1245		}
1246#ifdef CONFIG_SFC_SRIOV
1247		else
1248			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1249#endif
1250		break;
1251	default:
1252		netif_vdbg(efx, hw, efx->net_dev,
1253			   "channel %d unknown driver event code %d "
1254			   "data %04x\n", channel->channel, ev_sub_code,
1255			   ev_sub_data);
1256		break;
1257	}
1258}
1259
1260int efx_farch_ev_process(struct efx_channel *channel, int budget)
1261{
1262	struct efx_nic *efx = channel->efx;
1263	unsigned int read_ptr;
1264	efx_qword_t event, *p_event;
1265	int ev_code;
1266	int spent = 0;
1267
1268	if (budget <= 0)
1269		return spent;
1270
1271	read_ptr = channel->eventq_read_ptr;
1272
1273	for (;;) {
1274		p_event = efx_event(channel, read_ptr);
1275		event = *p_event;
1276
1277		if (!efx_event_present(&event))
1278			/* End of events */
1279			break;
1280
1281		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1282			   "channel %d event is "EFX_QWORD_FMT"\n",
1283			   channel->channel, EFX_QWORD_VAL(event));
1284
1285		/* Clear this event by marking it all ones */
1286		EFX_SET_QWORD(*p_event);
1287
1288		++read_ptr;
1289
1290		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1291
1292		switch (ev_code) {
1293		case FSE_AZ_EV_CODE_RX_EV:
1294			efx_farch_handle_rx_event(channel, &event);
1295			if (++spent == budget)
1296				goto out;
1297			break;
1298		case FSE_AZ_EV_CODE_TX_EV:
1299			efx_farch_handle_tx_event(channel, &event);
1300			break;
1301		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1302			efx_farch_handle_generated_event(channel, &event);
1303			break;
1304		case FSE_AZ_EV_CODE_DRIVER_EV:
1305			efx_farch_handle_driver_event(channel, &event);
1306			break;
1307#ifdef CONFIG_SFC_SRIOV
1308		case FSE_CZ_EV_CODE_USER_EV:
1309			efx_siena_sriov_event(channel, &event);
1310			break;
1311#endif
1312		case FSE_CZ_EV_CODE_MCDI_EV:
1313			efx_mcdi_process_event(channel, &event);
1314			break;
1315		case FSE_AZ_EV_CODE_GLOBAL_EV:
1316			if (efx->type->handle_global_event &&
1317			    efx->type->handle_global_event(channel, &event))
1318				break;
1319			fallthrough;
1320		default:
1321			netif_err(channel->efx, hw, channel->efx->net_dev,
1322				  "channel %d unknown event type %d (data "
1323				  EFX_QWORD_FMT ")\n", channel->channel,
1324				  ev_code, EFX_QWORD_VAL(event));
1325		}
1326	}
1327
1328out:
1329	channel->eventq_read_ptr = read_ptr;
1330	return spent;
1331}
1332
1333/* Allocate buffer table entries for event queue */
1334int efx_farch_ev_probe(struct efx_channel *channel)
1335{
1336	struct efx_nic *efx = channel->efx;
1337	unsigned entries;
1338
1339	entries = channel->eventq_mask + 1;
1340	return efx_alloc_special_buffer(efx, &channel->eventq,
1341					entries * sizeof(efx_qword_t));
1342}
1343
1344int efx_farch_ev_init(struct efx_channel *channel)
1345{
1346	efx_oword_t reg;
1347	struct efx_nic *efx = channel->efx;
1348
1349	netif_dbg(efx, hw, efx->net_dev,
1350		  "channel %d event queue in special buffers %d-%d\n",
1351		  channel->channel, channel->eventq.index,
1352		  channel->eventq.index + channel->eventq.entries - 1);
1353
1354	EFX_POPULATE_OWORD_3(reg,
1355			     FRF_CZ_TIMER_Q_EN, 1,
1356			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1357			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1358	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1359
1360	/* Pin event queue buffer */
1361	efx_init_special_buffer(efx, &channel->eventq);
1362
1363	/* Fill event queue with all ones (i.e. empty events) */
1364	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1365
1366	/* Push event queue to card */
1367	EFX_POPULATE_OWORD_3(reg,
1368			     FRF_AZ_EVQ_EN, 1,
1369			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1370			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1371	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1372			 channel->channel);
1373
1374	return 0;
1375}
1376
1377void efx_farch_ev_fini(struct efx_channel *channel)
1378{
1379	efx_oword_t reg;
1380	struct efx_nic *efx = channel->efx;
1381
1382	/* Remove event queue from card */
1383	EFX_ZERO_OWORD(reg);
1384	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1385			 channel->channel);
1386	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1387
1388	/* Unpin event queue */
1389	efx_fini_special_buffer(efx, &channel->eventq);
1390}
1391
1392/* Free buffers backing event queue */
1393void efx_farch_ev_remove(struct efx_channel *channel)
1394{
1395	efx_free_special_buffer(channel->efx, &channel->eventq);
1396}
1397
1398
1399void efx_farch_ev_test_generate(struct efx_channel *channel)
1400{
1401	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1402}
1403
1404void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1405{
1406	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1407			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1408}
1409
1410/**************************************************************************
1411 *
1412 * Hardware interrupts
1413 * The hardware interrupt handler does very little work; all the event
1414 * queue processing is carried out by per-channel tasklets.
1415 *
1416 **************************************************************************/
1417
1418/* Enable/disable/generate interrupts */
1419static inline void efx_farch_interrupts(struct efx_nic *efx,
1420				      bool enabled, bool force)
1421{
1422	efx_oword_t int_en_reg_ker;
1423
1424	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1425			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1426			     FRF_AZ_KER_INT_KER, force,
1427			     FRF_AZ_DRV_INT_EN_KER, enabled);
1428	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1429}
1430
1431void efx_farch_irq_enable_master(struct efx_nic *efx)
1432{
1433	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1434	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1435
1436	efx_farch_interrupts(efx, true, false);
1437}
1438
1439void efx_farch_irq_disable_master(struct efx_nic *efx)
1440{
1441	/* Disable interrupts */
1442	efx_farch_interrupts(efx, false, false);
1443}
1444
1445/* Generate a test interrupt
1446 * Interrupt must already have been enabled, otherwise nasty things
1447 * may happen.
1448 */
1449int efx_farch_irq_test_generate(struct efx_nic *efx)
1450{
1451	efx_farch_interrupts(efx, true, true);
1452	return 0;
1453}
1454
1455/* Process a fatal interrupt
1456 * Disable bus mastering ASAP and schedule a reset
1457 */
1458irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1459{
1460	efx_oword_t *int_ker = efx->irq_status.addr;
1461	efx_oword_t fatal_intr;
1462	int error, mem_perr;
1463
1464	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1465	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1466
1467	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1468		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1469		  EFX_OWORD_VAL(fatal_intr),
1470		  error ? "disabling bus mastering" : "no recognised error");
1471
1472	/* If this is a memory parity error dump which blocks are offending */
1473	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1474		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1475	if (mem_perr) {
1476		efx_oword_t reg;
1477		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1478		netif_err(efx, hw, efx->net_dev,
1479			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1480			  EFX_OWORD_VAL(reg));
1481	}
1482
1483	/* Disable both devices */
1484	pci_clear_master(efx->pci_dev);
1485	efx_farch_irq_disable_master(efx);
1486
1487	/* Count errors and reset or disable the NIC accordingly */
1488	if (efx->int_error_count == 0 ||
1489	    time_after(jiffies, efx->int_error_expire)) {
1490		efx->int_error_count = 0;
1491		efx->int_error_expire =
1492			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1493	}
1494	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1495		netif_err(efx, hw, efx->net_dev,
1496			  "SYSTEM ERROR - reset scheduled\n");
1497		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1498	} else {
1499		netif_err(efx, hw, efx->net_dev,
1500			  "SYSTEM ERROR - max number of errors seen."
1501			  "NIC will be disabled\n");
1502		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1503	}
1504
1505	return IRQ_HANDLED;
1506}
1507
1508/* Handle a legacy interrupt
1509 * Acknowledges the interrupt and schedule event queue processing.
1510 */
1511irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1512{
1513	struct efx_nic *efx = dev_id;
1514	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1515	efx_oword_t *int_ker = efx->irq_status.addr;
1516	irqreturn_t result = IRQ_NONE;
1517	struct efx_channel *channel;
1518	efx_dword_t reg;
1519	u32 queues;
1520	int syserr;
1521
1522	/* Read the ISR which also ACKs the interrupts */
1523	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1524	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1525
1526	/* Legacy interrupts are disabled too late by the EEH kernel
1527	 * code. Disable them earlier.
1528	 * If an EEH error occurred, the read will have returned all ones.
1529	 */
1530	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1531	    !efx->eeh_disabled_legacy_irq) {
1532		disable_irq_nosync(efx->legacy_irq);
1533		efx->eeh_disabled_legacy_irq = true;
1534	}
1535
1536	/* Handle non-event-queue sources */
1537	if (queues & (1U << efx->irq_level) && soft_enabled) {
1538		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1539		if (unlikely(syserr))
1540			return efx_farch_fatal_interrupt(efx);
1541		efx->last_irq_cpu = raw_smp_processor_id();
1542	}
1543
1544	if (queues != 0) {
1545		efx->irq_zero_count = 0;
1546
1547		/* Schedule processing of any interrupting queues */
1548		if (likely(soft_enabled)) {
1549			efx_for_each_channel(channel, efx) {
1550				if (queues & 1)
1551					efx_schedule_channel_irq(channel);
1552				queues >>= 1;
1553			}
1554		}
1555		result = IRQ_HANDLED;
1556
1557	} else {
1558		efx_qword_t *event;
1559
1560		/* Legacy ISR read can return zero once (SF bug 15783) */
1561
1562		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1563		 * because this might be a shared interrupt. */
1564		if (efx->irq_zero_count++ == 0)
1565			result = IRQ_HANDLED;
1566
1567		/* Ensure we schedule or rearm all event queues */
1568		if (likely(soft_enabled)) {
1569			efx_for_each_channel(channel, efx) {
1570				event = efx_event(channel,
1571						  channel->eventq_read_ptr);
1572				if (efx_event_present(event))
1573					efx_schedule_channel_irq(channel);
1574				else
1575					efx_farch_ev_read_ack(channel);
1576			}
1577		}
1578	}
1579
1580	if (result == IRQ_HANDLED)
1581		netif_vdbg(efx, intr, efx->net_dev,
1582			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1583			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1584
1585	return result;
1586}
1587
1588/* Handle an MSI interrupt
1589 *
1590 * Handle an MSI hardware interrupt.  This routine schedules event
1591 * queue processing.  No interrupt acknowledgement cycle is necessary.
1592 * Also, we never need to check that the interrupt is for us, since
1593 * MSI interrupts cannot be shared.
1594 */
1595irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1596{
1597	struct efx_msi_context *context = dev_id;
1598	struct efx_nic *efx = context->efx;
1599	efx_oword_t *int_ker = efx->irq_status.addr;
1600	int syserr;
1601
1602	netif_vdbg(efx, intr, efx->net_dev,
1603		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1604		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1605
1606	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1607		return IRQ_HANDLED;
1608
1609	/* Handle non-event-queue sources */
1610	if (context->index == efx->irq_level) {
1611		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1612		if (unlikely(syserr))
1613			return efx_farch_fatal_interrupt(efx);
1614		efx->last_irq_cpu = raw_smp_processor_id();
1615	}
1616
1617	/* Schedule processing of the channel */
1618	efx_schedule_channel_irq(efx->channel[context->index]);
1619
1620	return IRQ_HANDLED;
1621}
1622
1623/* Setup RSS indirection table.
1624 * This maps from the hash value of the packet to RXQ
1625 */
1626void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1627{
1628	size_t i = 0;
1629	efx_dword_t dword;
1630
1631	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1632		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1633
1634	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1635		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1636				     efx->rss_context.rx_indir_table[i]);
1637		efx_writed(efx, &dword,
1638			   FR_BZ_RX_INDIRECTION_TBL +
1639			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1640	}
1641}
1642
1643void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1644{
1645	size_t i = 0;
1646	efx_dword_t dword;
1647
1648	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1649		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1650
1651	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1652		efx_readd(efx, &dword,
1653			   FR_BZ_RX_INDIRECTION_TBL +
1654			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1655		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1656	}
1657}
1658
1659/* Looks at available SRAM resources and works out how many queues we
1660 * can support, and where things like descriptor caches should live.
1661 *
1662 * SRAM is split up as follows:
1663 * 0                          buftbl entries for channels
1664 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1665 * efx->rx_dc_base            RX descriptor caches
1666 * efx->tx_dc_base            TX descriptor caches
1667 */
1668void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1669{
1670	unsigned vi_count, buftbl_min, total_tx_channels;
1671
1672#ifdef CONFIG_SFC_SRIOV
1673	struct siena_nic_data *nic_data = efx->nic_data;
1674#endif
1675
1676	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1677	/* Account for the buffer table entries backing the datapath channels
1678	 * and the descriptor caches for those channels.
1679	 */
1680	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1681		       total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1682		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1683		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1684	vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1685
1686#ifdef CONFIG_SFC_SRIOV
1687	if (efx->type->sriov_wanted) {
1688		if (efx->type->sriov_wanted(efx)) {
1689			unsigned vi_dc_entries, buftbl_free;
1690			unsigned entries_per_vf, vf_limit;
1691
1692			nic_data->vf_buftbl_base = buftbl_min;
1693
1694			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1695			vi_count = max(vi_count, EFX_VI_BASE);
1696			buftbl_free = (sram_lim_qw - buftbl_min -
1697				       vi_count * vi_dc_entries);
1698
1699			entries_per_vf = ((vi_dc_entries +
1700					   EFX_VF_BUFTBL_PER_VI) *
1701					  efx_vf_size(efx));
1702			vf_limit = min(buftbl_free / entries_per_vf,
1703				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1704
1705			if (efx->vf_count > vf_limit) {
1706				netif_err(efx, probe, efx->net_dev,
1707					  "Reducing VF count from from %d to %d\n",
1708					  efx->vf_count, vf_limit);
1709				efx->vf_count = vf_limit;
1710			}
1711			vi_count += efx->vf_count * efx_vf_size(efx);
1712		}
1713	}
1714#endif
1715
1716	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1717	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1718}
1719
1720u32 efx_farch_fpga_ver(struct efx_nic *efx)
1721{
1722	efx_oword_t altera_build;
1723	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1724	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1725}
1726
1727void efx_farch_init_common(struct efx_nic *efx)
1728{
1729	efx_oword_t temp;
1730
1731	/* Set positions of descriptor caches in SRAM. */
1732	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1733	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1734	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1735	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1736
1737	/* Set TX descriptor cache size. */
1738	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1739	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1740	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1741
1742	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1743	 * this allows most efficient prefetching.
1744	 */
1745	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1746	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1747	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1748	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1749	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1750
1751	/* Program INT_KER address */
1752	EFX_POPULATE_OWORD_2(temp,
1753			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1754			     EFX_INT_MODE_USE_MSI(efx),
1755			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1756	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1757
1758	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1759		/* Use an interrupt level unused by event queues */
1760		efx->irq_level = 0x1f;
1761	else
1762		/* Use a valid MSI-X vector */
1763		efx->irq_level = 0;
1764
1765	/* Enable all the genuinely fatal interrupts.  (They are still
1766	 * masked by the overall interrupt mask, controlled by
1767	 * falcon_interrupts()).
1768	 *
1769	 * Note: All other fatal interrupts are enabled
1770	 */
1771	EFX_POPULATE_OWORD_3(temp,
1772			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1773			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1774			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1775	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1776	EFX_INVERT_OWORD(temp);
1777	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1778
1779	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1780	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1781	 */
1782	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1783	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1784	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1785	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1786	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1787	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1788	/* Enable SW_EV to inherit in char driver - assume harmless here */
1789	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1790	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1791	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1792	/* Disable hardware watchdog which can misfire */
1793	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1794	/* Squash TX of packets of 16 bytes or less */
1795	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1796	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1797
1798	EFX_POPULATE_OWORD_4(temp,
1799			     /* Default values */
1800			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1801			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1802			     FRF_BZ_TX_PACE_FB_BASE, 0,
1803			     /* Allow large pace values in the fast bin. */
1804			     FRF_BZ_TX_PACE_BIN_TH,
1805			     FFE_BZ_TX_PACE_RESERVED);
1806	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1807}
1808
1809/**************************************************************************
1810 *
1811 * Filter tables
1812 *
1813 **************************************************************************
1814 */
1815
1816/* "Fudge factors" - difference between programmed value and actual depth.
1817 * Due to pipelined implementation we need to program H/W with a value that
1818 * is larger than the hop limit we want.
1819 */
1820#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1821#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1822
1823/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1824 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1825 * table is full.
1826 */
1827#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1828
1829/* Don't try very hard to find space for performance hints, as this is
1830 * counter-productive. */
1831#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1832
1833enum efx_farch_filter_type {
1834	EFX_FARCH_FILTER_TCP_FULL = 0,
1835	EFX_FARCH_FILTER_TCP_WILD,
1836	EFX_FARCH_FILTER_UDP_FULL,
1837	EFX_FARCH_FILTER_UDP_WILD,
1838	EFX_FARCH_FILTER_MAC_FULL = 4,
1839	EFX_FARCH_FILTER_MAC_WILD,
1840	EFX_FARCH_FILTER_UC_DEF = 8,
1841	EFX_FARCH_FILTER_MC_DEF,
1842	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1843};
1844
1845enum efx_farch_filter_table_id {
1846	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1847	EFX_FARCH_FILTER_TABLE_RX_MAC,
1848	EFX_FARCH_FILTER_TABLE_RX_DEF,
1849	EFX_FARCH_FILTER_TABLE_TX_MAC,
1850	EFX_FARCH_FILTER_TABLE_COUNT,
1851};
1852
1853enum efx_farch_filter_index {
1854	EFX_FARCH_FILTER_INDEX_UC_DEF,
1855	EFX_FARCH_FILTER_INDEX_MC_DEF,
1856	EFX_FARCH_FILTER_SIZE_RX_DEF,
1857};
1858
1859struct efx_farch_filter_spec {
1860	u8	type:4;
1861	u8	priority:4;
1862	u8	flags;
1863	u16	dmaq_id;
1864	u32	data[3];
1865};
1866
1867struct efx_farch_filter_table {
1868	enum efx_farch_filter_table_id id;
1869	u32		offset;		/* address of table relative to BAR */
1870	unsigned	size;		/* number of entries */
1871	unsigned	step;		/* step between entries */
1872	unsigned	used;		/* number currently used */
1873	unsigned long	*used_bitmap;
1874	struct efx_farch_filter_spec *spec;
1875	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1876};
1877
1878struct efx_farch_filter_state {
1879	struct rw_semaphore lock; /* Protects table contents */
1880	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1881};
1882
1883static void
1884efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1885				   struct efx_farch_filter_table *table,
1886				   unsigned int filter_idx);
1887
1888/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1889 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1890static u16 efx_farch_filter_hash(u32 key)
1891{
1892	u16 tmp;
1893
1894	/* First 16 rounds */
1895	tmp = 0x1fff ^ key >> 16;
1896	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1897	tmp = tmp ^ tmp >> 9;
1898	/* Last 16 rounds */
1899	tmp = tmp ^ tmp << 13 ^ key;
1900	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1901	return tmp ^ tmp >> 9;
1902}
1903
1904/* To allow for hash collisions, filter search continues at these
1905 * increments from the first possible entry selected by the hash. */
1906static u16 efx_farch_filter_increment(u32 key)
1907{
1908	return key * 2 - 1;
1909}
1910
1911static enum efx_farch_filter_table_id
1912efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1913{
1914	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1915		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1916	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1918	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1920	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1922	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1923		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1924	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1925		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1926	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1927		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1928	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1929}
1930
1931static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1932{
1933	struct efx_farch_filter_state *state = efx->filter_state;
1934	struct efx_farch_filter_table *table;
1935	efx_oword_t filter_ctl;
1936
1937	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1938
1939	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1940	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1941			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1942			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1943	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1944			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1945			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1946	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1947			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1948			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1949	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1950			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1951			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1952
1953	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1954	if (table->size) {
1955		EFX_SET_OWORD_FIELD(
1956			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1957			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1958			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1959		EFX_SET_OWORD_FIELD(
1960			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1961			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1962			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1963	}
1964
1965	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1966	if (table->size) {
1967		EFX_SET_OWORD_FIELD(
1968			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1969			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1970		EFX_SET_OWORD_FIELD(
1971			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1972			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1973			   EFX_FILTER_FLAG_RX_RSS));
1974		EFX_SET_OWORD_FIELD(
1975			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1976			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1977		EFX_SET_OWORD_FIELD(
1978			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1979			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1980			   EFX_FILTER_FLAG_RX_RSS));
1981
1982		/* There is a single bit to enable RX scatter for all
1983		 * unmatched packets.  Only set it if scatter is
1984		 * enabled in both filter specs.
1985		 */
1986		EFX_SET_OWORD_FIELD(
1987			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1988			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1989			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1990			   EFX_FILTER_FLAG_RX_SCATTER));
1991	} else {
1992		/* We don't expose 'default' filters because unmatched
1993		 * packets always go to the queue number found in the
1994		 * RSS table.  But we still need to set the RX scatter
1995		 * bit here.
1996		 */
1997		EFX_SET_OWORD_FIELD(
1998			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1999			efx->rx_scatter);
2000	}
2001
2002	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2003}
2004
2005static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2006{
2007	struct efx_farch_filter_state *state = efx->filter_state;
2008	struct efx_farch_filter_table *table;
2009	efx_oword_t tx_cfg;
2010
2011	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2012
2013	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2014	if (table->size) {
2015		EFX_SET_OWORD_FIELD(
2016			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2017			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2018			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2019		EFX_SET_OWORD_FIELD(
2020			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2021			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2022			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2023	}
2024
2025	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2026}
2027
2028static int
2029efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2030			       const struct efx_filter_spec *gen_spec)
2031{
2032	bool is_full = false;
2033
2034	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2035		return -EINVAL;
2036
2037	spec->priority = gen_spec->priority;
2038	spec->flags = gen_spec->flags;
2039	spec->dmaq_id = gen_spec->dmaq_id;
2040
2041	switch (gen_spec->match_flags) {
2042	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2043	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2044	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2045		is_full = true;
2046		fallthrough;
2047	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2048	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2049		__be32 rhost, host1, host2;
2050		__be16 rport, port1, port2;
2051
2052		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2053
2054		if (gen_spec->ether_type != htons(ETH_P_IP))
2055			return -EPROTONOSUPPORT;
2056		if (gen_spec->loc_port == 0 ||
2057		    (is_full && gen_spec->rem_port == 0))
2058			return -EADDRNOTAVAIL;
2059		switch (gen_spec->ip_proto) {
2060		case IPPROTO_TCP:
2061			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2062				      EFX_FARCH_FILTER_TCP_WILD);
2063			break;
2064		case IPPROTO_UDP:
2065			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2066				      EFX_FARCH_FILTER_UDP_WILD);
2067			break;
2068		default:
2069			return -EPROTONOSUPPORT;
2070		}
2071
2072		/* Filter is constructed in terms of source and destination,
2073		 * with the odd wrinkle that the ports are swapped in a UDP
2074		 * wildcard filter.  We need to convert from local and remote
2075		 * (= zero for wildcard) addresses.
2076		 */
2077		rhost = is_full ? gen_spec->rem_host[0] : 0;
2078		rport = is_full ? gen_spec->rem_port : 0;
2079		host1 = rhost;
2080		host2 = gen_spec->loc_host[0];
2081		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2082			port1 = gen_spec->loc_port;
2083			port2 = rport;
2084		} else {
2085			port1 = rport;
2086			port2 = gen_spec->loc_port;
2087		}
2088		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2089		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2090		spec->data[2] = ntohl(host2);
2091
2092		break;
2093	}
2094
2095	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2096		is_full = true;
2097		fallthrough;
2098	case EFX_FILTER_MATCH_LOC_MAC:
2099		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2100			      EFX_FARCH_FILTER_MAC_WILD);
2101		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2102		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2103				 gen_spec->loc_mac[3] << 16 |
2104				 gen_spec->loc_mac[4] << 8 |
2105				 gen_spec->loc_mac[5]);
2106		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2107				 gen_spec->loc_mac[1]);
2108		break;
2109
2110	case EFX_FILTER_MATCH_LOC_MAC_IG:
2111		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2112			      EFX_FARCH_FILTER_MC_DEF :
2113			      EFX_FARCH_FILTER_UC_DEF);
2114		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2115		break;
2116
2117	default:
2118		return -EPROTONOSUPPORT;
2119	}
2120
2121	return 0;
2122}
2123
2124static void
2125efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2126			     const struct efx_farch_filter_spec *spec)
2127{
2128	bool is_full = false;
2129
2130	/* *gen_spec should be completely initialised, to be consistent
2131	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2132	 * it back to userland.
2133	 */
2134	memset(gen_spec, 0, sizeof(*gen_spec));
2135
2136	gen_spec->priority = spec->priority;
2137	gen_spec->flags = spec->flags;
2138	gen_spec->dmaq_id = spec->dmaq_id;
2139
2140	switch (spec->type) {
2141	case EFX_FARCH_FILTER_TCP_FULL:
2142	case EFX_FARCH_FILTER_UDP_FULL:
2143		is_full = true;
2144		fallthrough;
2145	case EFX_FARCH_FILTER_TCP_WILD:
2146	case EFX_FARCH_FILTER_UDP_WILD: {
2147		__be32 host1, host2;
2148		__be16 port1, port2;
2149
2150		gen_spec->match_flags =
2151			EFX_FILTER_MATCH_ETHER_TYPE |
2152			EFX_FILTER_MATCH_IP_PROTO |
2153			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2154		if (is_full)
2155			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2156						  EFX_FILTER_MATCH_REM_PORT);
2157		gen_spec->ether_type = htons(ETH_P_IP);
2158		gen_spec->ip_proto =
2159			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2160			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2161			IPPROTO_TCP : IPPROTO_UDP;
2162
2163		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2164		port1 = htons(spec->data[0]);
2165		host2 = htonl(spec->data[2]);
2166		port2 = htons(spec->data[1] >> 16);
2167		if (spec->flags & EFX_FILTER_FLAG_TX) {
2168			gen_spec->loc_host[0] = host1;
2169			gen_spec->rem_host[0] = host2;
2170		} else {
2171			gen_spec->loc_host[0] = host2;
2172			gen_spec->rem_host[0] = host1;
2173		}
2174		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2175		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2176			gen_spec->loc_port = port1;
2177			gen_spec->rem_port = port2;
2178		} else {
2179			gen_spec->loc_port = port2;
2180			gen_spec->rem_port = port1;
2181		}
2182
2183		break;
2184	}
2185
2186	case EFX_FARCH_FILTER_MAC_FULL:
2187		is_full = true;
2188		fallthrough;
2189	case EFX_FARCH_FILTER_MAC_WILD:
2190		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2191		if (is_full)
2192			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2193		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2194		gen_spec->loc_mac[1] = spec->data[2];
2195		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2196		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2197		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2198		gen_spec->loc_mac[5] = spec->data[1];
2199		gen_spec->outer_vid = htons(spec->data[0]);
2200		break;
2201
2202	case EFX_FARCH_FILTER_UC_DEF:
2203	case EFX_FARCH_FILTER_MC_DEF:
2204		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2205		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2206		break;
2207
2208	default:
2209		WARN_ON(1);
2210		break;
2211	}
2212}
2213
2214static void
2215efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2216			      struct efx_farch_filter_spec *spec)
2217{
2218	/* If there's only one channel then disable RSS for non VF
2219	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2220	 */
2221	spec->priority = EFX_FILTER_PRI_AUTO;
2222	spec->flags = (EFX_FILTER_FLAG_RX |
2223		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2224		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2225	spec->dmaq_id = 0;
2226}
2227
2228/* Build a filter entry and return its n-tuple key. */
2229static u32 efx_farch_filter_build(efx_oword_t *filter,
2230				  struct efx_farch_filter_spec *spec)
2231{
2232	u32 data3;
2233
2234	switch (efx_farch_filter_spec_table_id(spec)) {
2235	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2236		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2237			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2238		EFX_POPULATE_OWORD_7(
2239			*filter,
2240			FRF_BZ_RSS_EN,
2241			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2242			FRF_BZ_SCATTER_EN,
2243			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2244			FRF_BZ_TCP_UDP, is_udp,
2245			FRF_BZ_RXQ_ID, spec->dmaq_id,
2246			EFX_DWORD_2, spec->data[2],
2247			EFX_DWORD_1, spec->data[1],
2248			EFX_DWORD_0, spec->data[0]);
2249		data3 = is_udp;
2250		break;
2251	}
2252
2253	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2254		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2255		EFX_POPULATE_OWORD_7(
2256			*filter,
2257			FRF_CZ_RMFT_RSS_EN,
2258			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2259			FRF_CZ_RMFT_SCATTER_EN,
2260			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2261			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2262			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2263			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2264			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2265			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2266		data3 = is_wild;
2267		break;
2268	}
2269
2270	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2271		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2272		EFX_POPULATE_OWORD_5(*filter,
2273				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2274				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2275				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2276				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2277				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2278		data3 = is_wild | spec->dmaq_id << 1;
2279		break;
2280	}
2281
2282	default:
2283		BUG();
2284	}
2285
2286	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2287}
2288
2289static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2290				   const struct efx_farch_filter_spec *right)
2291{
2292	if (left->type != right->type ||
2293	    memcmp(left->data, right->data, sizeof(left->data)))
2294		return false;
2295
2296	if (left->flags & EFX_FILTER_FLAG_TX &&
2297	    left->dmaq_id != right->dmaq_id)
2298		return false;
2299
2300	return true;
2301}
2302
2303/*
2304 * Construct/deconstruct external filter IDs.  At least the RX filter
2305 * IDs must be ordered by matching priority, for RX NFC semantics.
2306 *
2307 * Deconstruction needs to be robust against invalid IDs so that
2308 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2309 * accept user-provided IDs.
2310 */
2311
2312#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2313
2314static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2315	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2316	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2317	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2318	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2319	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2320	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2321	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2322	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2323};
2324
2325static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2326	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2327	EFX_FARCH_FILTER_TABLE_RX_IP,
2328	EFX_FARCH_FILTER_TABLE_RX_MAC,
2329	EFX_FARCH_FILTER_TABLE_RX_MAC,
2330	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2331	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2332	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2333};
2334
2335#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2336#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2337
2338static inline u32
2339efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2340			 unsigned int index)
2341{
2342	unsigned int range;
2343
2344	range = efx_farch_filter_type_match_pri[spec->type];
2345	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2346		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2347
2348	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2349}
2350
2351static inline enum efx_farch_filter_table_id
2352efx_farch_filter_id_table_id(u32 id)
2353{
2354	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2355
2356	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2357		return efx_farch_filter_range_table[range];
2358	else
2359		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2360}
2361
2362static inline unsigned int efx_farch_filter_id_index(u32 id)
2363{
2364	return id & EFX_FARCH_FILTER_INDEX_MASK;
2365}
2366
2367u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2368{
2369	struct efx_farch_filter_state *state = efx->filter_state;
2370	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2371	enum efx_farch_filter_table_id table_id;
2372
2373	do {
2374		table_id = efx_farch_filter_range_table[range];
2375		if (state->table[table_id].size != 0)
2376			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2377				state->table[table_id].size;
2378	} while (range--);
2379
2380	return 0;
2381}
2382
2383s32 efx_farch_filter_insert(struct efx_nic *efx,
2384			    struct efx_filter_spec *gen_spec,
2385			    bool replace_equal)
2386{
2387	struct efx_farch_filter_state *state = efx->filter_state;
2388	struct efx_farch_filter_table *table;
2389	struct efx_farch_filter_spec spec;
2390	efx_oword_t filter;
2391	int rep_index, ins_index;
2392	unsigned int depth = 0;
2393	int rc;
2394
2395	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2396	if (rc)
2397		return rc;
2398
2399	down_write(&state->lock);
2400
2401	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2402	if (table->size == 0) {
2403		rc = -EINVAL;
2404		goto out_unlock;
2405	}
2406
2407	netif_vdbg(efx, hw, efx->net_dev,
2408		   "%s: type %d search_limit=%d", __func__, spec.type,
2409		   table->search_limit[spec.type]);
2410
2411	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2412		/* One filter spec per type */
2413		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2414		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2415			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2416		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2417		ins_index = rep_index;
2418	} else {
2419		/* Search concurrently for
2420		 * (1) a filter to be replaced (rep_index): any filter
2421		 *     with the same match values, up to the current
2422		 *     search depth for this type, and
2423		 * (2) the insertion point (ins_index): (1) or any
2424		 *     free slot before it or up to the maximum search
2425		 *     depth for this priority
2426		 * We fail if we cannot find (2).
2427		 *
2428		 * We can stop once either
2429		 * (a) we find (1), in which case we have definitely
2430		 *     found (2) as well; or
2431		 * (b) we have searched exhaustively for (1), and have
2432		 *     either found (2) or searched exhaustively for it
2433		 */
2434		u32 key = efx_farch_filter_build(&filter, &spec);
2435		unsigned int hash = efx_farch_filter_hash(key);
2436		unsigned int incr = efx_farch_filter_increment(key);
2437		unsigned int max_rep_depth = table->search_limit[spec.type];
2438		unsigned int max_ins_depth =
2439			spec.priority <= EFX_FILTER_PRI_HINT ?
2440			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2441			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2442		unsigned int i = hash & (table->size - 1);
2443
2444		ins_index = -1;
2445		depth = 1;
2446
2447		for (;;) {
2448			if (!test_bit(i, table->used_bitmap)) {
2449				if (ins_index < 0)
2450					ins_index = i;
2451			} else if (efx_farch_filter_equal(&spec,
2452							  &table->spec[i])) {
2453				/* Case (a) */
2454				if (ins_index < 0)
2455					ins_index = i;
2456				rep_index = i;
2457				break;
2458			}
2459
2460			if (depth >= max_rep_depth &&
2461			    (ins_index >= 0 || depth >= max_ins_depth)) {
2462				/* Case (b) */
2463				if (ins_index < 0) {
2464					rc = -EBUSY;
2465					goto out_unlock;
2466				}
2467				rep_index = -1;
2468				break;
2469			}
2470
2471			i = (i + incr) & (table->size - 1);
2472			++depth;
2473		}
2474	}
2475
2476	/* If we found a filter to be replaced, check whether we
2477	 * should do so
2478	 */
2479	if (rep_index >= 0) {
2480		struct efx_farch_filter_spec *saved_spec =
2481			&table->spec[rep_index];
2482
2483		if (spec.priority == saved_spec->priority && !replace_equal) {
2484			rc = -EEXIST;
2485			goto out_unlock;
2486		}
2487		if (spec.priority < saved_spec->priority) {
2488			rc = -EPERM;
2489			goto out_unlock;
2490		}
2491		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2492		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2493			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2494	}
2495
2496	/* Insert the filter */
2497	if (ins_index != rep_index) {
2498		__set_bit(ins_index, table->used_bitmap);
2499		++table->used;
2500	}
2501	table->spec[ins_index] = spec;
2502
2503	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2504		efx_farch_filter_push_rx_config(efx);
2505	} else {
2506		if (table->search_limit[spec.type] < depth) {
2507			table->search_limit[spec.type] = depth;
2508			if (spec.flags & EFX_FILTER_FLAG_TX)
2509				efx_farch_filter_push_tx_limits(efx);
2510			else
2511				efx_farch_filter_push_rx_config(efx);
2512		}
2513
2514		efx_writeo(efx, &filter,
2515			   table->offset + table->step * ins_index);
2516
2517		/* If we were able to replace a filter by inserting
2518		 * at a lower depth, clear the replaced filter
2519		 */
2520		if (ins_index != rep_index && rep_index >= 0)
2521			efx_farch_filter_table_clear_entry(efx, table,
2522							   rep_index);
2523	}
2524
2525	netif_vdbg(efx, hw, efx->net_dev,
2526		   "%s: filter type %d index %d rxq %u set",
2527		   __func__, spec.type, ins_index, spec.dmaq_id);
2528	rc = efx_farch_filter_make_id(&spec, ins_index);
2529
2530out_unlock:
2531	up_write(&state->lock);
2532	return rc;
2533}
2534
2535static void
2536efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2537				   struct efx_farch_filter_table *table,
2538				   unsigned int filter_idx)
2539{
2540	static efx_oword_t filter;
2541
2542	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2543	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2544
2545	__clear_bit(filter_idx, table->used_bitmap);
2546	--table->used;
2547	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2548
2549	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2550
2551	/* If this filter required a greater search depth than
2552	 * any other, the search limit for its type can now be
2553	 * decreased.  However, it is hard to determine that
2554	 * unless the table has become completely empty - in
2555	 * which case, all its search limits can be set to 0.
2556	 */
2557	if (unlikely(table->used == 0)) {
2558		memset(table->search_limit, 0, sizeof(table->search_limit));
2559		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2560			efx_farch_filter_push_tx_limits(efx);
2561		else
2562			efx_farch_filter_push_rx_config(efx);
2563	}
2564}
2565
2566static int efx_farch_filter_remove(struct efx_nic *efx,
2567				   struct efx_farch_filter_table *table,
2568				   unsigned int filter_idx,
2569				   enum efx_filter_priority priority)
2570{
2571	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2572
2573	if (!test_bit(filter_idx, table->used_bitmap) ||
2574	    spec->priority != priority)
2575		return -ENOENT;
2576
2577	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2578		efx_farch_filter_init_rx_auto(efx, spec);
2579		efx_farch_filter_push_rx_config(efx);
2580	} else {
2581		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2582	}
2583
2584	return 0;
2585}
2586
2587int efx_farch_filter_remove_safe(struct efx_nic *efx,
2588				 enum efx_filter_priority priority,
2589				 u32 filter_id)
2590{
2591	struct efx_farch_filter_state *state = efx->filter_state;
2592	enum efx_farch_filter_table_id table_id;
2593	struct efx_farch_filter_table *table;
2594	unsigned int filter_idx;
2595	struct efx_farch_filter_spec *spec;
2596	int rc;
2597
2598	table_id = efx_farch_filter_id_table_id(filter_id);
2599	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2600		return -ENOENT;
2601	table = &state->table[table_id];
2602
2603	filter_idx = efx_farch_filter_id_index(filter_id);
2604	if (filter_idx >= table->size)
2605		return -ENOENT;
2606	down_write(&state->lock);
2607	spec = &table->spec[filter_idx];
2608
2609	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2610	up_write(&state->lock);
2611
2612	return rc;
2613}
2614
2615int efx_farch_filter_get_safe(struct efx_nic *efx,
2616			      enum efx_filter_priority priority,
2617			      u32 filter_id, struct efx_filter_spec *spec_buf)
2618{
2619	struct efx_farch_filter_state *state = efx->filter_state;
2620	enum efx_farch_filter_table_id table_id;
2621	struct efx_farch_filter_table *table;
2622	struct efx_farch_filter_spec *spec;
2623	unsigned int filter_idx;
2624	int rc = -ENOENT;
2625
2626	down_read(&state->lock);
2627
2628	table_id = efx_farch_filter_id_table_id(filter_id);
2629	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2630		goto out_unlock;
2631	table = &state->table[table_id];
2632
2633	filter_idx = efx_farch_filter_id_index(filter_id);
2634	if (filter_idx >= table->size)
2635		goto out_unlock;
2636	spec = &table->spec[filter_idx];
2637
2638	if (test_bit(filter_idx, table->used_bitmap) &&
2639	    spec->priority == priority) {
2640		efx_farch_filter_to_gen_spec(spec_buf, spec);
2641		rc = 0;
2642	}
2643
2644out_unlock:
2645	up_read(&state->lock);
2646	return rc;
2647}
2648
2649static void
2650efx_farch_filter_table_clear(struct efx_nic *efx,
2651			     enum efx_farch_filter_table_id table_id,
2652			     enum efx_filter_priority priority)
2653{
2654	struct efx_farch_filter_state *state = efx->filter_state;
2655	struct efx_farch_filter_table *table = &state->table[table_id];
2656	unsigned int filter_idx;
2657
2658	down_write(&state->lock);
2659	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2660		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2661			efx_farch_filter_remove(efx, table,
2662						filter_idx, priority);
2663	}
2664	up_write(&state->lock);
2665}
2666
2667int efx_farch_filter_clear_rx(struct efx_nic *efx,
2668			       enum efx_filter_priority priority)
2669{
2670	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2671				     priority);
2672	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2673				     priority);
2674	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2675				     priority);
2676	return 0;
2677}
2678
2679u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2680				   enum efx_filter_priority priority)
2681{
2682	struct efx_farch_filter_state *state = efx->filter_state;
2683	enum efx_farch_filter_table_id table_id;
2684	struct efx_farch_filter_table *table;
2685	unsigned int filter_idx;
2686	u32 count = 0;
2687
2688	down_read(&state->lock);
2689
2690	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2691	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2692	     table_id++) {
2693		table = &state->table[table_id];
2694		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2695			if (test_bit(filter_idx, table->used_bitmap) &&
2696			    table->spec[filter_idx].priority == priority)
2697				++count;
2698		}
2699	}
2700
2701	up_read(&state->lock);
2702
2703	return count;
2704}
2705
2706s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2707				enum efx_filter_priority priority,
2708				u32 *buf, u32 size)
2709{
2710	struct efx_farch_filter_state *state = efx->filter_state;
2711	enum efx_farch_filter_table_id table_id;
2712	struct efx_farch_filter_table *table;
2713	unsigned int filter_idx;
2714	s32 count = 0;
2715
2716	down_read(&state->lock);
2717
2718	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2719	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2720	     table_id++) {
2721		table = &state->table[table_id];
2722		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2723			if (test_bit(filter_idx, table->used_bitmap) &&
2724			    table->spec[filter_idx].priority == priority) {
2725				if (count == size) {
2726					count = -EMSGSIZE;
2727					goto out;
2728				}
2729				buf[count++] = efx_farch_filter_make_id(
2730					&table->spec[filter_idx], filter_idx);
2731			}
2732		}
2733	}
2734out:
2735	up_read(&state->lock);
2736
2737	return count;
2738}
2739
2740/* Restore filter stater after reset */
2741void efx_farch_filter_table_restore(struct efx_nic *efx)
2742{
2743	struct efx_farch_filter_state *state = efx->filter_state;
2744	enum efx_farch_filter_table_id table_id;
2745	struct efx_farch_filter_table *table;
2746	efx_oword_t filter;
2747	unsigned int filter_idx;
2748
2749	down_write(&state->lock);
2750
2751	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2752		table = &state->table[table_id];
2753
2754		/* Check whether this is a regular register table */
2755		if (table->step == 0)
2756			continue;
2757
2758		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2759			if (!test_bit(filter_idx, table->used_bitmap))
2760				continue;
2761			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2762			efx_writeo(efx, &filter,
2763				   table->offset + table->step * filter_idx);
2764		}
2765	}
2766
2767	efx_farch_filter_push_rx_config(efx);
2768	efx_farch_filter_push_tx_limits(efx);
2769
2770	up_write(&state->lock);
2771}
2772
2773void efx_farch_filter_table_remove(struct efx_nic *efx)
2774{
2775	struct efx_farch_filter_state *state = efx->filter_state;
2776	enum efx_farch_filter_table_id table_id;
2777
2778	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2779		kfree(state->table[table_id].used_bitmap);
2780		vfree(state->table[table_id].spec);
2781	}
2782	kfree(state);
2783}
2784
2785int efx_farch_filter_table_probe(struct efx_nic *efx)
2786{
2787	struct efx_farch_filter_state *state;
2788	struct efx_farch_filter_table *table;
2789	unsigned table_id;
2790
2791	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2792	if (!state)
2793		return -ENOMEM;
2794	efx->filter_state = state;
2795	init_rwsem(&state->lock);
2796
2797	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2798	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2799	table->offset = FR_BZ_RX_FILTER_TBL0;
2800	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2801	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2802
2803	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2804	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2805	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2806	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2807	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2808
2809	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2810	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2811	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2812
2813	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2814	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2815	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2816	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2817	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2818
2819	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2820		table = &state->table[table_id];
2821		if (table->size == 0)
2822			continue;
2823		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2824					     sizeof(unsigned long),
2825					     GFP_KERNEL);
2826		if (!table->used_bitmap)
2827			goto fail;
2828		table->spec = vzalloc(array_size(sizeof(*table->spec),
2829						 table->size));
2830		if (!table->spec)
2831			goto fail;
2832	}
2833
2834	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2835	if (table->size) {
2836		/* RX default filters must always exist */
2837		struct efx_farch_filter_spec *spec;
2838		unsigned i;
2839
2840		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2841			spec = &table->spec[i];
2842			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2843			efx_farch_filter_init_rx_auto(efx, spec);
2844			__set_bit(i, table->used_bitmap);
2845		}
2846	}
2847
2848	efx_farch_filter_push_rx_config(efx);
2849
2850	return 0;
2851
2852fail:
2853	efx_farch_filter_table_remove(efx);
2854	return -ENOMEM;
2855}
2856
2857/* Update scatter enable flags for filters pointing to our own RX queues */
2858void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2859{
2860	struct efx_farch_filter_state *state = efx->filter_state;
2861	enum efx_farch_filter_table_id table_id;
2862	struct efx_farch_filter_table *table;
2863	efx_oword_t filter;
2864	unsigned int filter_idx;
2865
2866	down_write(&state->lock);
2867
2868	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2869	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2870	     table_id++) {
2871		table = &state->table[table_id];
2872
2873		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2874			if (!test_bit(filter_idx, table->used_bitmap) ||
2875			    table->spec[filter_idx].dmaq_id >=
2876			    efx->n_rx_channels)
2877				continue;
2878
2879			if (efx->rx_scatter)
2880				table->spec[filter_idx].flags |=
2881					EFX_FILTER_FLAG_RX_SCATTER;
2882			else
2883				table->spec[filter_idx].flags &=
2884					~EFX_FILTER_FLAG_RX_SCATTER;
2885
2886			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2887				/* Pushed by efx_farch_filter_push_rx_config() */
2888				continue;
2889
2890			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2891			efx_writeo(efx, &filter,
2892				   table->offset + table->step * filter_idx);
2893		}
2894	}
2895
2896	efx_farch_filter_push_rx_config(efx);
2897
2898	up_write(&state->lock);
2899}
2900
2901#ifdef CONFIG_RFS_ACCEL
2902
2903bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2904				     unsigned int index)
2905{
2906	struct efx_farch_filter_state *state = efx->filter_state;
2907	struct efx_farch_filter_table *table;
2908	bool ret = false, force = false;
2909	u16 arfs_id;
2910
2911	down_write(&state->lock);
2912	spin_lock_bh(&efx->rps_hash_lock);
2913	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914	if (test_bit(index, table->used_bitmap) &&
2915	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2916		struct efx_arfs_rule *rule = NULL;
2917		struct efx_filter_spec spec;
2918
2919		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2920		if (!efx->rps_hash_table) {
2921			/* In the absence of the table, we always returned 0 to
2922			 * ARFS, so use the same to query it.
2923			 */
2924			arfs_id = 0;
2925		} else {
2926			rule = efx_rps_hash_find(efx, &spec);
2927			if (!rule) {
2928				/* ARFS table doesn't know of this filter, remove it */
2929				force = true;
2930			} else {
2931				arfs_id = rule->arfs_id;
2932				if (!efx_rps_check_rule(rule, index, &force))
2933					goto out_unlock;
2934			}
2935		}
2936		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2937						 flow_id, arfs_id)) {
2938			if (rule)
2939				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2940			efx_rps_hash_del(efx, &spec);
2941			efx_farch_filter_table_clear_entry(efx, table, index);
2942			ret = true;
2943		}
2944	}
2945out_unlock:
2946	spin_unlock_bh(&efx->rps_hash_lock);
2947	up_write(&state->lock);
2948	return ret;
2949}
2950
2951#endif /* CONFIG_RFS_ACCEL */
2952
2953void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2954{
2955	struct net_device *net_dev = efx->net_dev;
2956	struct netdev_hw_addr *ha;
2957	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2958	u32 crc;
2959	int bit;
2960
2961	if (!efx_dev_registered(efx))
2962		return;
2963
2964	netif_addr_lock_bh(net_dev);
2965
2966	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2967
2968	/* Build multicast hash table */
2969	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2970		memset(mc_hash, 0xff, sizeof(*mc_hash));
2971	} else {
2972		memset(mc_hash, 0x00, sizeof(*mc_hash));
2973		netdev_for_each_mc_addr(ha, net_dev) {
2974			crc = ether_crc_le(ETH_ALEN, ha->addr);
2975			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2976			__set_bit_le(bit, mc_hash);
2977		}
2978
2979		/* Broadcast packets go through the multicast hash filter.
2980		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2981		 * so we always add bit 0xff to the mask.
2982		 */
2983		__set_bit_le(0xff, mc_hash);
2984	}
2985
2986	netif_addr_unlock_bh(net_dev);
2987}