Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 
 
 
 
 
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 35#include <linux/kfence.h>
 36#include <linux/pkeys.h>
 37
 38#include <asm/firmware.h>
 39#include <asm/interrupt.h>
 40#include <asm/page.h>
 
 41#include <asm/mmu.h>
 42#include <asm/mmu_context.h>
 
 43#include <asm/siginfo.h>
 44#include <asm/debug.h>
 45#include <asm/kup.h>
 46#include <asm/inst.h>
 47
 
 
 
 
 
 
 
 
 
 
 
 
 
 48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49/*
 50 * do_page_fault error handling helpers
 51 */
 52
 53static int
 54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 
 55{
 56	/*
 57	 * If we are in kernel mode, bail out with a SEGV, this will
 58	 * be caught by the assembly which will restore the non-volatile
 59	 * registers before calling bad_page_fault()
 60	 */
 61	if (!user_mode(regs))
 62		return SIGSEGV;
 63
 64	_exception(SIGSEGV, regs, si_code, address);
 65
 66	return 0;
 67}
 68
 69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 70{
 71	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 72}
 73
 74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 
 75{
 76	struct mm_struct *mm = current->mm;
 77
 78	/*
 79	 * Something tried to access memory that isn't in our memory map..
 80	 * Fix it, but check if it's kernel or user first..
 81	 */
 82	mmap_read_unlock(mm);
 83
 84	return __bad_area_nosemaphore(regs, address, si_code);
 85}
 86
 87static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 88				    struct vm_area_struct *vma)
 89{
 90	struct mm_struct *mm = current->mm;
 91	int pkey;
 92
 93	/*
 94	 * We don't try to fetch the pkey from page table because reading
 95	 * page table without locking doesn't guarantee stable pte value.
 96	 * Hence the pkey value that we return to userspace can be different
 97	 * from the pkey that actually caused access error.
 98	 *
 99	 * It does *not* guarantee that the VMA we find here
100	 * was the one that we faulted on.
101	 *
102	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
103	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
104	 * 3. T1   : faults...
105	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
106	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
107	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
108	 *	     faulted on a pte with its pkey=4.
109	 */
110	pkey = vma_pkey(vma);
111
112	mmap_read_unlock(mm);
113
114	/*
115	 * If we are in kernel mode, bail out with a SEGV, this will
116	 * be caught by the assembly which will restore the non-volatile
117	 * registers before calling bad_page_fault()
118	 */
119	if (!user_mode(regs))
120		return SIGSEGV;
121
122	_exception_pkey(regs, address, pkey);
123
124	return 0;
 
 
 
125}
126
127static noinline int bad_access(struct pt_regs *regs, unsigned long address)
128{
129	return __bad_area(regs, address, SEGV_ACCERR);
130}
131
132static int do_sigbus(struct pt_regs *regs, unsigned long address,
133		     vm_fault_t fault)
134{
 
 
 
135	if (!user_mode(regs))
136		return SIGBUS;
137
138	current->thread.trap_nr = BUS_ADRERR;
 
 
 
 
139#ifdef CONFIG_MEMORY_FAILURE
140	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
141		unsigned int lsb = 0; /* shutup gcc */
142
143		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
144			current->comm, current->pid, address);
145
146		if (fault & VM_FAULT_HWPOISON_LARGE)
147			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
148		if (fault & VM_FAULT_HWPOISON)
149			lsb = PAGE_SHIFT;
150
151		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
152		return 0;
153	}
154
 
 
 
 
155#endif
156	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 
157	return 0;
158}
159
160static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
161				vm_fault_t fault)
162{
163	/*
164	 * Kernel page fault interrupted by SIGKILL. We have no reason to
165	 * continue processing.
166	 */
167	if (fatal_signal_pending(current) && !user_mode(regs))
168		return SIGKILL;
169
170	/* Out of memory */
171	if (fault & VM_FAULT_OOM) {
172		/*
173		 * We ran out of memory, or some other thing happened to us that
174		 * made us unable to handle the page fault gracefully.
175		 */
176		if (!user_mode(regs))
177			return SIGSEGV;
178		pagefault_out_of_memory();
179	} else {
180		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
181			     VM_FAULT_HWPOISON_LARGE))
182			return do_sigbus(regs, addr, fault);
183		else if (fault & VM_FAULT_SIGSEGV)
184			return bad_area_nosemaphore(regs, addr);
185		else
186			BUG();
187	}
188	return 0;
189}
190
191/* Is this a bad kernel fault ? */
192static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
193			     unsigned long address, bool is_write)
194{
195	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
196
197	if (is_exec) {
198		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
199				    address >= TASK_SIZE ? "exec-protected" : "user",
200				    address,
201				    from_kuid(&init_user_ns, current_uid()));
202
203		// Kernel exec fault is always bad
204		return true;
205	}
206
207	// Kernel fault on kernel address is bad
208	if (address >= TASK_SIZE)
209		return true;
210
211	// Read/write fault blocked by KUAP is bad, it can never succeed.
212	if (bad_kuap_fault(regs, address, is_write)) {
213		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
214				    is_write ? "write" : "read", address,
215				    from_kuid(&init_user_ns, current_uid()));
216
217		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
218		if (!search_exception_tables(regs->nip))
 
 
 
219			return true;
220
221		// Read/write fault in a valid region (the exception table search passed
222		// above), but blocked by KUAP is bad, it can never succeed.
223		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
 
 
 
 
 
 
 
 
 
 
 
224	}
225
226	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
227	return false;
228}
229
230static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
231			      struct vm_area_struct *vma)
232{
233	/*
234	 * Make sure to check the VMA so that we do not perform
235	 * faults just to hit a pkey fault as soon as we fill in a
236	 * page. Only called for current mm, hence foreign == 0
237	 */
238	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
239		return true;
240
241	return false;
242}
243
244static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
 
245{
246	/*
247	 * Allow execution from readable areas if the MMU does not
248	 * provide separate controls over reading and executing.
249	 *
250	 * Note: That code used to not be enabled for 4xx/BookE.
251	 * It is now as I/D cache coherency for these is done at
252	 * set_pte_at() time and I see no reason why the test
253	 * below wouldn't be valid on those processors. This -may-
254	 * break programs compiled with a really old ABI though.
255	 */
256	if (is_exec) {
257		return !(vma->vm_flags & VM_EXEC) &&
258			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
259			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
260	}
261
262	if (is_write) {
263		if (unlikely(!(vma->vm_flags & VM_WRITE)))
264			return true;
265		return false;
266	}
267
268	/*
269	 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
270	 * defined in protection_map[].  In that case Read faults can only be
271	 * caused by a PROT_NONE mapping. However a non exec access on a
272	 * VM_EXEC only mapping is invalid anyway, so report it as such.
273	 */
274	if (unlikely(!vma_is_accessible(vma)))
275		return true;
276
277	if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
278		return true;
279
280	/*
281	 * We should ideally do the vma pkey access check here. But in the
282	 * fault path, handle_mm_fault() also does the same check. To avoid
283	 * these multiple checks, we skip it here and handle access error due
284	 * to pkeys later.
285	 */
286	return false;
287}
288
289#ifdef CONFIG_PPC_SMLPAR
290static inline void cmo_account_page_fault(void)
291{
292	if (firmware_has_feature(FW_FEATURE_CMO)) {
293		u32 page_ins;
294
295		preempt_disable();
296		page_ins = be32_to_cpu(get_lppaca()->page_ins);
297		page_ins += 1 << PAGE_FACTOR;
298		get_lppaca()->page_ins = cpu_to_be32(page_ins);
299		preempt_enable();
300	}
301}
302#else
303static inline void cmo_account_page_fault(void) { }
304#endif /* CONFIG_PPC_SMLPAR */
305
306static void sanity_check_fault(bool is_write, bool is_user,
307			       unsigned long error_code, unsigned long address)
308{
309	/*
310	 * Userspace trying to access kernel address, we get PROTFAULT for that.
311	 */
312	if (is_user && address >= TASK_SIZE) {
313		if ((long)address == -1)
314			return;
315
316		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
317				   current->comm, current->pid, address,
318				   from_kuid(&init_user_ns, current_uid()));
319		return;
320	}
321
322	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
323		return;
324
325	/*
326	 * For hash translation mode, we should never get a
327	 * PROTFAULT. Any update to pte to reduce access will result in us
328	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
329	 * fault instead of DSISR_PROTFAULT.
330	 *
331	 * A pte update to relax the access will not result in a hash page table
332	 * entry invalidate and hence can result in DSISR_PROTFAULT.
333	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
334	 * the special !is_write in the below conditional.
335	 *
336	 * For platforms that doesn't supports coherent icache and do support
337	 * per page noexec bit, we do setup things such that we do the
338	 * sync between D/I cache via fault. But that is handled via low level
339	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
340	 * here in such case.
341	 *
342	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
343	 * check should handle those and hence we should fall to the bad_area
344	 * handling correctly.
345	 *
346	 * For embedded with per page exec support that doesn't support coherent
347	 * icache we do get PROTFAULT and we handle that D/I cache sync in
348	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
349	 * is conditional for server MMU.
350	 *
351	 * For radix, we can get prot fault for autonuma case, because radix
352	 * page table will have them marked noaccess for user.
353	 */
354	if (radix_enabled() || is_write)
355		return;
356
357	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
358}
 
 
 
359
360/*
361 * Define the correct "is_write" bit in error_code based
362 * on the processor family
363 */
364#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365#define page_fault_is_write(__err)	((__err) & ESR_DST)
 
366#else
367#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
368#endif
369
370#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
371#define page_fault_is_bad(__err)	(0)
372#elif defined(CONFIG_PPC_8xx)
373#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
374#elif defined(CONFIG_PPC64)
375static int page_fault_is_bad(unsigned long err)
376{
377	unsigned long flag = DSISR_BAD_FAULT_64S;
378
379	/*
380	 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
381	 * If byte 0, bit 3 of pi-attribute-specifier-type in
382	 * ibm,pi-features property is defined, ignore the DSI error
383	 * which is caused by the paste instruction on the
384	 * suspended NX window.
385	 */
386	if (mmu_has_feature(MMU_FTR_NX_DSI))
387		flag &= ~DSISR_BAD_COPYPASTE;
388
389	return err & flag;
390}
391#else
392#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
393#endif
 
394
395/*
396 * For 600- and 800-family processors, the error_code parameter is DSISR
397 * for a data fault, SRR1 for an instruction fault.
398 * For 400-family processors the error_code parameter is ESR for a data fault,
399 * 0 for an instruction fault.
400 * For 64-bit processors, the error_code parameter is DSISR for a data access
401 * fault, SRR1 & 0x08000000 for an instruction access fault.
 
 
402 *
403 * The return value is 0 if the fault was handled, or the signal
404 * number if this is a kernel fault that can't be handled here.
405 */
406static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
407			   unsigned long error_code)
408{
409	struct vm_area_struct * vma;
410	struct mm_struct *mm = current->mm;
411	unsigned int flags = FAULT_FLAG_DEFAULT;
412	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
413	int is_user = user_mode(regs);
414	int is_write = page_fault_is_write(error_code);
415	vm_fault_t fault, major = 0;
416	bool kprobe_fault = kprobe_page_fault(regs, 11);
417
418	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
419		return 0;
420
421	if (unlikely(page_fault_is_bad(error_code))) {
422		if (is_user) {
423			_exception(SIGBUS, regs, BUS_OBJERR, address);
424			return 0;
425		}
426		return SIGBUS;
427	}
428
429	/* Additional sanity check(s) */
430	sanity_check_fault(is_write, is_user, error_code, address);
431
432	/*
433	 * The kernel should never take an execute fault nor should it
434	 * take a page fault to a kernel address or a page fault to a user
435	 * address outside of dedicated places
436	 */
437	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
438		if (kfence_handle_page_fault(address, is_write, regs))
439			return 0;
440
441		return SIGSEGV;
442	}
443
444	/*
445	 * If we're in an interrupt, have no user context or are running
446	 * in a region with pagefaults disabled then we must not take the fault
447	 */
448	if (unlikely(faulthandler_disabled() || !mm)) {
449		if (is_user)
450			printk_ratelimited(KERN_ERR "Page fault in user mode"
451					   " with faulthandler_disabled()=%d"
452					   " mm=%p\n",
453					   faulthandler_disabled(), mm);
454		return bad_area_nosemaphore(regs, address);
455	}
456
457	interrupt_cond_local_irq_enable(regs);
 
 
458
459	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460
 
 
 
 
461	/*
462	 * We want to do this outside mmap_lock, because reading code around nip
463	 * can result in fault, which will cause a deadlock when called with
464	 * mmap_lock held
465	 */
 
 
 
466	if (is_user)
467		flags |= FAULT_FLAG_USER;
468	if (is_write)
469		flags |= FAULT_FLAG_WRITE;
470	if (is_exec)
471		flags |= FAULT_FLAG_INSTRUCTION;
472
473	if (!(flags & FAULT_FLAG_USER))
474		goto lock_mmap;
475
476	vma = lock_vma_under_rcu(mm, address);
477	if (!vma)
478		goto lock_mmap;
479
480	if (unlikely(access_pkey_error(is_write, is_exec,
481				       (error_code & DSISR_KEYFAULT), vma))) {
482		vma_end_read(vma);
483		goto lock_mmap;
484	}
485
486	if (unlikely(access_error(is_write, is_exec, vma))) {
487		vma_end_read(vma);
488		goto lock_mmap;
489	}
490
491	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
492	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
493		vma_end_read(vma);
494
495	if (!(fault & VM_FAULT_RETRY)) {
496		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497		goto done;
498	}
499	count_vm_vma_lock_event(VMA_LOCK_RETRY);
500	if (fault & VM_FAULT_MAJOR)
501		flags |= FAULT_FLAG_TRIED;
502
503	if (fault_signal_pending(fault, regs))
504		return user_mode(regs) ? 0 : SIGBUS;
505
506lock_mmap:
507
508	/* When running in the kernel we expect faults to occur only to
509	 * addresses in user space.  All other faults represent errors in the
510	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
511	 * erroneous fault occurring in a code path which already holds mmap_lock
512	 * we will deadlock attempting to validate the fault against the
513	 * address space.  Luckily the kernel only validly references user
514	 * space from well defined areas of code, which are listed in the
515	 * exceptions table. lock_mm_and_find_vma() handles that logic.
516	 */
 
 
 
 
 
 
 
 
 
 
517retry:
518	vma = lock_mm_and_find_vma(mm, address, regs);
519	if (unlikely(!vma))
520		return bad_area_nosemaphore(regs, address);
 
 
 
 
 
 
521
522	if (unlikely(access_pkey_error(is_write, is_exec,
523				       (error_code & DSISR_KEYFAULT), vma)))
524		return bad_access_pkey(regs, address, vma);
 
 
 
 
 
 
 
 
 
 
 
 
525
 
526	if (unlikely(access_error(is_write, is_exec, vma)))
527		return bad_access(regs, address);
528
529	/*
530	 * If for any reason at all we couldn't handle the fault,
531	 * make sure we exit gracefully rather than endlessly redo
532	 * the fault.
533	 */
534	fault = handle_mm_fault(vma, address, flags, regs);
535
536	major |= fault & VM_FAULT_MAJOR;
 
 
 
 
 
 
537
538	if (fault_signal_pending(fault, regs))
539		return user_mode(regs) ? 0 : SIGBUS;
540
541	/* The fault is fully completed (including releasing mmap lock) */
542	if (fault & VM_FAULT_COMPLETED)
543		goto out;
 
 
 
544
545	/*
546	 * Handle the retry right now, the mmap_lock has been released in that
547	 * case.
548	 */
549	if (unlikely(fault & VM_FAULT_RETRY)) {
550		flags |= FAULT_FLAG_TRIED;
551		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552	}
553
554	mmap_read_unlock(current->mm);
555
556done:
557	if (unlikely(fault & VM_FAULT_ERROR))
558		return mm_fault_error(regs, address, fault);
559
560out:
561	/*
562	 * Major/minor page fault accounting.
563	 */
564	if (major)
 
 
565		cmo_account_page_fault();
566
 
 
 
567	return 0;
568}
569NOKPROBE_SYMBOL(___do_page_fault);
570
571static __always_inline void __do_page_fault(struct pt_regs *regs)
 
572{
573	long err;
574
575	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
576	if (unlikely(err))
577		bad_page_fault(regs, err);
578}
579
580DEFINE_INTERRUPT_HANDLER(do_page_fault)
581{
582	__do_page_fault(regs);
583}
584
585#ifdef CONFIG_PPC_BOOK3S_64
586/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
587void hash__do_page_fault(struct pt_regs *regs)
588{
589	__do_page_fault(regs);
590}
591NOKPROBE_SYMBOL(hash__do_page_fault);
592#endif
593
594/*
595 * bad_page_fault is called when we have a bad access from the kernel.
596 * It is called from the DSI and ISI handlers in head.S and from some
597 * of the procedures in traps.c.
598 */
599static void __bad_page_fault(struct pt_regs *regs, int sig)
600{
601	int is_write = page_fault_is_write(regs->dsisr);
602	const char *msg;
603
604	/* kernel has accessed a bad area */
 
 
 
 
605
606	if (regs->dar < PAGE_SIZE)
607		msg = "Kernel NULL pointer dereference";
608	else
609		msg = "Unable to handle kernel data access";
610
611	switch (TRAP(regs)) {
612	case INTERRUPT_DATA_STORAGE:
613	case INTERRUPT_H_DATA_STORAGE:
614		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
615			 is_write ? "write" : "read", regs->dar);
616		break;
617	case INTERRUPT_DATA_SEGMENT:
618		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
619		break;
620	case INTERRUPT_INST_STORAGE:
621	case INTERRUPT_INST_SEGMENT:
622		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
623			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
624		break;
625	case INTERRUPT_ALIGNMENT:
626		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
627			 regs->dar);
628		break;
629	default:
630		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
631			 regs->dar);
632		break;
633	}
634	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
635		regs->nip);
636
637	if (task_stack_end_corrupted(current))
638		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
639
640	die("Kernel access of bad area", regs, sig);
641}
642
643void bad_page_fault(struct pt_regs *regs, int sig)
644{
645	const struct exception_table_entry *entry;
646
647	/* Are we prepared to handle this fault?  */
648	entry = search_exception_tables(instruction_pointer(regs));
649	if (entry)
650		instruction_pointer_set(regs, extable_fixup(entry));
651	else
652		__bad_page_fault(regs, sig);
653}
654
655#ifdef CONFIG_PPC_BOOK3S_64
656DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
657{
658	bad_page_fault(regs, SIGSEGV);
659}
660
661/*
662 * In radix, segment interrupts indicate the EA is not addressable by the
663 * page table geometry, so they are always sent here.
664 *
665 * In hash, this is called if do_slb_fault returns error. Typically it is
666 * because the EA was outside the region allowed by software.
667 */
668DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
669{
670	int err = regs->result;
671
672	if (err == -EFAULT) {
673		if (user_mode(regs))
674			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
675		else
676			bad_page_fault(regs, SIGSEGV);
677	} else if (err == -EINVAL) {
678		unrecoverable_exception(regs);
679	} else {
680		BUG();
681	}
682}
683#endif
v4.17
 
  1/*
  2 *  PowerPC version
  3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4 *
  5 *  Derived from "arch/i386/mm/fault.c"
  6 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  7 *
  8 *  Modified by Cort Dougan and Paul Mackerras.
  9 *
 10 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 11 *
 12 *  This program is free software; you can redistribute it and/or
 13 *  modify it under the terms of the GNU General Public License
 14 *  as published by the Free Software Foundation; either version
 15 *  2 of the License, or (at your option) any later version.
 16 */
 17
 18#include <linux/signal.h>
 19#include <linux/sched.h>
 20#include <linux/sched/task_stack.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/string.h>
 24#include <linux/types.h>
 
 25#include <linux/ptrace.h>
 26#include <linux/mman.h>
 27#include <linux/mm.h>
 28#include <linux/interrupt.h>
 29#include <linux/highmem.h>
 30#include <linux/extable.h>
 31#include <linux/kprobes.h>
 32#include <linux/kdebug.h>
 33#include <linux/perf_event.h>
 34#include <linux/ratelimit.h>
 35#include <linux/context_tracking.h>
 36#include <linux/hugetlb.h>
 37#include <linux/uaccess.h>
 
 
 38
 39#include <asm/firmware.h>
 
 40#include <asm/page.h>
 41#include <asm/pgtable.h>
 42#include <asm/mmu.h>
 43#include <asm/mmu_context.h>
 44#include <asm/tlbflush.h>
 45#include <asm/siginfo.h>
 46#include <asm/debug.h>
 
 
 47
 48static inline bool notify_page_fault(struct pt_regs *regs)
 49{
 50	bool ret = false;
 51
 52#ifdef CONFIG_KPROBES
 53	/* kprobe_running() needs smp_processor_id() */
 54	if (!user_mode(regs)) {
 55		preempt_disable();
 56		if (kprobe_running() && kprobe_fault_handler(regs, 11))
 57			ret = true;
 58		preempt_enable();
 59	}
 60#endif /* CONFIG_KPROBES */
 61
 62	if (unlikely(debugger_fault_handler(regs)))
 63		ret = true;
 64
 65	return ret;
 66}
 67
 68/*
 69 * Check whether the instruction at regs->nip is a store using
 70 * an update addressing form which will update r1.
 71 */
 72static bool store_updates_sp(struct pt_regs *regs)
 73{
 74	unsigned int inst;
 75
 76	if (get_user(inst, (unsigned int __user *)regs->nip))
 77		return false;
 78	/* check for 1 in the rA field */
 79	if (((inst >> 16) & 0x1f) != 1)
 80		return false;
 81	/* check major opcode */
 82	switch (inst >> 26) {
 83	case 37:	/* stwu */
 84	case 39:	/* stbu */
 85	case 45:	/* sthu */
 86	case 53:	/* stfsu */
 87	case 55:	/* stfdu */
 88		return true;
 89	case 62:	/* std or stdu */
 90		return (inst & 3) == 1;
 91	case 31:
 92		/* check minor opcode */
 93		switch ((inst >> 1) & 0x3ff) {
 94		case 181:	/* stdux */
 95		case 183:	/* stwux */
 96		case 247:	/* stbux */
 97		case 439:	/* sthux */
 98		case 695:	/* stfsux */
 99		case 759:	/* stfdux */
100			return true;
101		}
102	}
103	return false;
104}
105/*
106 * do_page_fault error handling helpers
107 */
108
109static int
110__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
111		int pkey)
112{
113	/*
114	 * If we are in kernel mode, bail out with a SEGV, this will
115	 * be caught by the assembly which will restore the non-volatile
116	 * registers before calling bad_page_fault()
117	 */
118	if (!user_mode(regs))
119		return SIGSEGV;
120
121	_exception_pkey(SIGSEGV, regs, si_code, address, pkey);
122
123	return 0;
124}
125
126static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
127{
128	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
129}
130
131static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
132			int pkey)
133{
134	struct mm_struct *mm = current->mm;
135
136	/*
137	 * Something tried to access memory that isn't in our memory map..
138	 * Fix it, but check if it's kernel or user first..
139	 */
140	up_read(&mm->mmap_sem);
141
142	return __bad_area_nosemaphore(regs, address, si_code, pkey);
143}
144
145static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 
146{
147	return __bad_area(regs, address, SEGV_MAPERR, 0);
148}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
150static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
151				    int pkey)
152{
153	return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
154}
155
156static noinline int bad_access(struct pt_regs *regs, unsigned long address)
157{
158	return __bad_area(regs, address, SEGV_ACCERR, 0);
159}
160
161static int do_sigbus(struct pt_regs *regs, unsigned long address,
162		     unsigned int fault)
163{
164	siginfo_t info;
165	unsigned int lsb = 0;
166
167	if (!user_mode(regs))
168		return SIGBUS;
169
170	current->thread.trap_nr = BUS_ADRERR;
171	info.si_signo = SIGBUS;
172	info.si_errno = 0;
173	info.si_code = BUS_ADRERR;
174	info.si_addr = (void __user *)address;
175#ifdef CONFIG_MEMORY_FAILURE
176	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 
 
177		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
178			current->comm, current->pid, address);
179		info.si_code = BUS_MCEERR_AR;
 
 
 
 
 
 
 
180	}
181
182	if (fault & VM_FAULT_HWPOISON_LARGE)
183		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
184	if (fault & VM_FAULT_HWPOISON)
185		lsb = PAGE_SHIFT;
186#endif
187	info.si_addr_lsb = lsb;
188	force_sig_info(SIGBUS, &info, current);
189	return 0;
190}
191
192static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
 
193{
194	/*
195	 * Kernel page fault interrupted by SIGKILL. We have no reason to
196	 * continue processing.
197	 */
198	if (fatal_signal_pending(current) && !user_mode(regs))
199		return SIGKILL;
200
201	/* Out of memory */
202	if (fault & VM_FAULT_OOM) {
203		/*
204		 * We ran out of memory, or some other thing happened to us that
205		 * made us unable to handle the page fault gracefully.
206		 */
207		if (!user_mode(regs))
208			return SIGSEGV;
209		pagefault_out_of_memory();
210	} else {
211		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
212			     VM_FAULT_HWPOISON_LARGE))
213			return do_sigbus(regs, addr, fault);
214		else if (fault & VM_FAULT_SIGSEGV)
215			return bad_area_nosemaphore(regs, addr);
216		else
217			BUG();
218	}
219	return 0;
220}
221
222/* Is this a bad kernel fault ? */
223static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
224			     unsigned long address)
225{
226	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
227		printk_ratelimited(KERN_CRIT "kernel tried to execute"
228				   " exec-protected page (%lx) -"
229				   "exploit attempt? (uid: %d)\n",
230				   address, from_kuid(&init_user_ns,
231						      current_uid()));
232	}
233	return is_exec || (address >= TASK_SIZE);
234}
235
236static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
237				struct vm_area_struct *vma,
238				bool store_update_sp)
239{
240	/*
241	 * N.B. The POWER/Open ABI allows programs to access up to
242	 * 288 bytes below the stack pointer.
243	 * The kernel signal delivery code writes up to about 1.5kB
244	 * below the stack pointer (r1) before decrementing it.
245	 * The exec code can write slightly over 640kB to the stack
246	 * before setting the user r1.  Thus we allow the stack to
247	 * expand to 1MB without further checks.
248	 */
249	if (address + 0x100000 < vma->vm_end) {
250		/* get user regs even if this fault is in kernel mode */
251		struct pt_regs *uregs = current->thread.regs;
252		if (uregs == NULL)
253			return true;
254
255		/*
256		 * A user-mode access to an address a long way below
257		 * the stack pointer is only valid if the instruction
258		 * is one which would update the stack pointer to the
259		 * address accessed if the instruction completed,
260		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
261		 * (or the byte, halfword, float or double forms).
262		 *
263		 * If we don't check this then any write to the area
264		 * between the last mapped region and the stack will
265		 * expand the stack rather than segfaulting.
266		 */
267		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
268			return true;
269	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270	return false;
271}
272
273static bool access_error(bool is_write, bool is_exec,
274			 struct vm_area_struct *vma)
275{
276	/*
277	 * Allow execution from readable areas if the MMU does not
278	 * provide separate controls over reading and executing.
279	 *
280	 * Note: That code used to not be enabled for 4xx/BookE.
281	 * It is now as I/D cache coherency for these is done at
282	 * set_pte_at() time and I see no reason why the test
283	 * below wouldn't be valid on those processors. This -may-
284	 * break programs compiled with a really old ABI though.
285	 */
286	if (is_exec) {
287		return !(vma->vm_flags & VM_EXEC) &&
288			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
289			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
290	}
291
292	if (is_write) {
293		if (unlikely(!(vma->vm_flags & VM_WRITE)))
294			return true;
295		return false;
296	}
297
298	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 
 
 
 
 
 
299		return true;
 
 
 
 
300	/*
301	 * We should ideally do the vma pkey access check here. But in the
302	 * fault path, handle_mm_fault() also does the same check. To avoid
303	 * these multiple checks, we skip it here and handle access error due
304	 * to pkeys later.
305	 */
306	return false;
307}
308
309#ifdef CONFIG_PPC_SMLPAR
310static inline void cmo_account_page_fault(void)
311{
312	if (firmware_has_feature(FW_FEATURE_CMO)) {
313		u32 page_ins;
314
315		preempt_disable();
316		page_ins = be32_to_cpu(get_lppaca()->page_ins);
317		page_ins += 1 << PAGE_FACTOR;
318		get_lppaca()->page_ins = cpu_to_be32(page_ins);
319		preempt_enable();
320	}
321}
322#else
323static inline void cmo_account_page_fault(void) { }
324#endif /* CONFIG_PPC_SMLPAR */
325
326#ifdef CONFIG_PPC_STD_MMU
327static void sanity_check_fault(bool is_write, unsigned long error_code)
328{
329	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330	 * For hash translation mode, we should never get a
331	 * PROTFAULT. Any update to pte to reduce access will result in us
332	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
333	 * fault instead of DSISR_PROTFAULT.
334	 *
335	 * A pte update to relax the access will not result in a hash page table
336	 * entry invalidate and hence can result in DSISR_PROTFAULT.
337	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
338	 * the special !is_write in the below conditional.
339	 *
340	 * For platforms that doesn't supports coherent icache and do support
341	 * per page noexec bit, we do setup things such that we do the
342	 * sync between D/I cache via fault. But that is handled via low level
343	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
344	 * here in such case.
345	 *
346	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
347	 * check should handle those and hence we should fall to the bad_area
348	 * handling correctly.
349	 *
350	 * For embedded with per page exec support that doesn't support coherent
351	 * icache we do get PROTFAULT and we handle that D/I cache sync in
352	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
353	 * is conditional for server MMU.
354	 *
355	 * For radix, we can get prot fault for autonuma case, because radix
356	 * page table will have them marked noaccess for user.
357	 */
358	if (!radix_enabled() && !is_write)
359		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
 
 
360}
361#else
362static void sanity_check_fault(bool is_write, unsigned long error_code) { }
363#endif /* CONFIG_PPC_STD_MMU */
364
365/*
366 * Define the correct "is_write" bit in error_code based
367 * on the processor family
368 */
369#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
370#define page_fault_is_write(__err)	((__err) & ESR_DST)
371#define page_fault_is_bad(__err)	(0)
372#else
373#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
374#if defined(CONFIG_PPC_8xx)
 
 
 
 
375#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
376#elif defined(CONFIG_PPC64)
377#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378#else
379#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
380#endif
381#endif
382
383/*
384 * For 600- and 800-family processors, the error_code parameter is DSISR
385 * for a data fault, SRR1 for an instruction fault. For 400-family processors
386 * the error_code parameter is ESR for a data fault, 0 for an instruction
387 * fault.
388 * For 64-bit processors, the error_code parameter is
389 *  - DSISR for a non-SLB data access fault,
390 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
391 *  - 0 any SLB fault.
392 *
393 * The return value is 0 if the fault was handled, or the signal
394 * number if this is a kernel fault that can't be handled here.
395 */
396static int __do_page_fault(struct pt_regs *regs, unsigned long address,
397			   unsigned long error_code)
398{
399	struct vm_area_struct * vma;
400	struct mm_struct *mm = current->mm;
401	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
402 	int is_exec = TRAP(regs) == 0x400;
403	int is_user = user_mode(regs);
404	int is_write = page_fault_is_write(error_code);
405	int fault, major = 0;
406	bool store_update_sp = false;
407
408	if (notify_page_fault(regs))
409		return 0;
410
411	if (unlikely(page_fault_is_bad(error_code))) {
412		if (is_user) {
413			_exception(SIGBUS, regs, BUS_OBJERR, address);
414			return 0;
415		}
416		return SIGBUS;
417	}
418
419	/* Additional sanity check(s) */
420	sanity_check_fault(is_write, error_code);
421
422	/*
423	 * The kernel should never take an execute fault nor should it
424	 * take a page fault to a kernel address.
 
425	 */
426	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
 
 
 
427		return SIGSEGV;
 
428
429	/*
430	 * If we're in an interrupt, have no user context or are running
431	 * in a region with pagefaults disabled then we must not take the fault
432	 */
433	if (unlikely(faulthandler_disabled() || !mm)) {
434		if (is_user)
435			printk_ratelimited(KERN_ERR "Page fault in user mode"
436					   " with faulthandler_disabled()=%d"
437					   " mm=%p\n",
438					   faulthandler_disabled(), mm);
439		return bad_area_nosemaphore(regs, address);
440	}
441
442	/* We restore the interrupt state now */
443	if (!arch_irq_disabled_regs(regs))
444		local_irq_enable();
445
446	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
447
448	if (error_code & DSISR_KEYFAULT)
449		return bad_key_fault_exception(regs, address,
450					       get_mm_addr_key(mm, address));
451
452	/*
453	 * We want to do this outside mmap_sem, because reading code around nip
454	 * can result in fault, which will cause a deadlock when called with
455	 * mmap_sem held
456	 */
457	if (is_write && is_user)
458		store_update_sp = store_updates_sp(regs);
459
460	if (is_user)
461		flags |= FAULT_FLAG_USER;
462	if (is_write)
463		flags |= FAULT_FLAG_WRITE;
464	if (is_exec)
465		flags |= FAULT_FLAG_INSTRUCTION;
466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467	/* When running in the kernel we expect faults to occur only to
468	 * addresses in user space.  All other faults represent errors in the
469	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
470	 * erroneous fault occurring in a code path which already holds mmap_sem
471	 * we will deadlock attempting to validate the fault against the
472	 * address space.  Luckily the kernel only validly references user
473	 * space from well defined areas of code, which are listed in the
474	 * exceptions table.
475	 *
476	 * As the vast majority of faults will be valid we will only perform
477	 * the source reference check when there is a possibility of a deadlock.
478	 * Attempt to lock the address space, if we cannot we then validate the
479	 * source.  If this is invalid we can skip the address space check,
480	 * thus avoiding the deadlock.
481	 */
482	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
483		if (!is_user && !search_exception_tables(regs->nip))
484			return bad_area_nosemaphore(regs, address);
485
486retry:
487		down_read(&mm->mmap_sem);
488	} else {
489		/*
490		 * The above down_read_trylock() might have succeeded in
491		 * which case we'll have missed the might_sleep() from
492		 * down_read():
493		 */
494		might_sleep();
495	}
496
497	vma = find_vma(mm, address);
498	if (unlikely(!vma))
499		return bad_area(regs, address);
500	if (likely(vma->vm_start <= address))
501		goto good_area;
502	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
503		return bad_area(regs, address);
504
505	/* The stack is being expanded, check if it's valid */
506	if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
507		return bad_area(regs, address);
508
509	/* Try to expand it */
510	if (unlikely(expand_stack(vma, address)))
511		return bad_area(regs, address);
512
513good_area:
514	if (unlikely(access_error(is_write, is_exec, vma)))
515		return bad_access(regs, address);
516
517	/*
518	 * If for any reason at all we couldn't handle the fault,
519	 * make sure we exit gracefully rather than endlessly redo
520	 * the fault.
521	 */
522	fault = handle_mm_fault(vma, address, flags);
523
524#ifdef CONFIG_PPC_MEM_KEYS
525	/*
526	 * we skipped checking for access error due to key earlier.
527	 * Check that using handle_mm_fault error return.
528	 */
529	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
530		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
531
532		int pkey = vma_pkey(vma);
 
533
534		up_read(&mm->mmap_sem);
535		return bad_key_fault_exception(regs, address, pkey);
536	}
537#endif /* CONFIG_PPC_MEM_KEYS */
538
539	major |= fault & VM_FAULT_MAJOR;
540
541	/*
542	 * Handle the retry right now, the mmap_sem has been released in that
543	 * case.
544	 */
545	if (unlikely(fault & VM_FAULT_RETRY)) {
546		/* We retry only once */
547		if (flags & FAULT_FLAG_ALLOW_RETRY) {
548			/*
549			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
550			 * of starvation.
551			 */
552			flags &= ~FAULT_FLAG_ALLOW_RETRY;
553			flags |= FAULT_FLAG_TRIED;
554			if (!fatal_signal_pending(current))
555				goto retry;
556		}
557
558		/*
559		 * User mode? Just return to handle the fatal exception otherwise
560		 * return to bad_page_fault
561		 */
562		return is_user ? 0 : SIGBUS;
563	}
564
565	up_read(&current->mm->mmap_sem);
566
 
567	if (unlikely(fault & VM_FAULT_ERROR))
568		return mm_fault_error(regs, address, fault);
569
 
570	/*
571	 * Major/minor page fault accounting.
572	 */
573	if (major) {
574		current->maj_flt++;
575		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
576		cmo_account_page_fault();
577	} else {
578		current->min_flt++;
579		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
580	}
581	return 0;
582}
583NOKPROBE_SYMBOL(__do_page_fault);
584
585int do_page_fault(struct pt_regs *regs, unsigned long address,
586		  unsigned long error_code)
587{
588	enum ctx_state prev_state = exception_enter();
589	int rc = __do_page_fault(regs, address, error_code);
590	exception_exit(prev_state);
591	return rc;
 
592}
593NOKPROBE_SYMBOL(do_page_fault);
 
 
 
 
 
 
 
 
 
 
 
 
 
594
595/*
596 * bad_page_fault is called when we have a bad access from the kernel.
597 * It is called from the DSI and ISI handlers in head.S and from some
598 * of the procedures in traps.c.
599 */
600void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
601{
602	const struct exception_table_entry *entry;
 
603
604	/* Are we prepared to handle this fault?  */
605	if ((entry = search_exception_tables(regs->nip)) != NULL) {
606		regs->nip = extable_fixup(entry);
607		return;
608	}
609
610	/* kernel has accessed a bad area */
 
 
 
611
612	switch (TRAP(regs)) {
613	case 0x300:
614	case 0x380:
615		printk(KERN_ALERT "Unable to handle kernel paging request for "
616			"data at address 0x%08lx\n", regs->dar);
 
 
 
617		break;
618	case 0x400:
619	case 0x480:
620		printk(KERN_ALERT "Unable to handle kernel paging request for "
621			"instruction fetch\n");
622		break;
623	case 0x600:
624		printk(KERN_ALERT "Unable to handle kernel paging request for "
625			"unaligned access at address 0x%08lx\n", regs->dar);
626		break;
627	default:
628		printk(KERN_ALERT "Unable to handle kernel paging request for "
629			"unknown fault\n");
630		break;
631	}
632	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
633		regs->nip);
634
635	if (task_stack_end_corrupted(current))
636		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
637
638	die("Kernel access of bad area", regs, sig);
639}