Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 35#include <linux/kfence.h>
 36#include <linux/pkeys.h>
 37
 38#include <asm/firmware.h>
 39#include <asm/interrupt.h>
 40#include <asm/page.h>
 41#include <asm/mmu.h>
 42#include <asm/mmu_context.h>
 43#include <asm/siginfo.h>
 44#include <asm/debug.h>
 45#include <asm/kup.h>
 46#include <asm/inst.h>
 47
 48
 49/*
 50 * do_page_fault error handling helpers
 51 */
 52
 53static int
 54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 55{
 56	/*
 57	 * If we are in kernel mode, bail out with a SEGV, this will
 58	 * be caught by the assembly which will restore the non-volatile
 59	 * registers before calling bad_page_fault()
 60	 */
 61	if (!user_mode(regs))
 62		return SIGSEGV;
 63
 64	_exception(SIGSEGV, regs, si_code, address);
 65
 66	return 0;
 67}
 68
 69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 70{
 71	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 72}
 73
 74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 75{
 76	struct mm_struct *mm = current->mm;
 77
 78	/*
 79	 * Something tried to access memory that isn't in our memory map..
 80	 * Fix it, but check if it's kernel or user first..
 81	 */
 82	mmap_read_unlock(mm);
 83
 84	return __bad_area_nosemaphore(regs, address, si_code);
 85}
 86
 
 
 
 
 
 87static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 88				    struct vm_area_struct *vma)
 89{
 90	struct mm_struct *mm = current->mm;
 91	int pkey;
 92
 93	/*
 94	 * We don't try to fetch the pkey from page table because reading
 95	 * page table without locking doesn't guarantee stable pte value.
 96	 * Hence the pkey value that we return to userspace can be different
 97	 * from the pkey that actually caused access error.
 98	 *
 99	 * It does *not* guarantee that the VMA we find here
100	 * was the one that we faulted on.
101	 *
102	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
103	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
104	 * 3. T1   : faults...
105	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
106	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
107	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
108	 *	     faulted on a pte with its pkey=4.
109	 */
110	pkey = vma_pkey(vma);
111
112	mmap_read_unlock(mm);
113
114	/*
115	 * If we are in kernel mode, bail out with a SEGV, this will
116	 * be caught by the assembly which will restore the non-volatile
117	 * registers before calling bad_page_fault()
118	 */
119	if (!user_mode(regs))
120		return SIGSEGV;
121
122	_exception_pkey(regs, address, pkey);
123
124	return 0;
125}
126
127static noinline int bad_access(struct pt_regs *regs, unsigned long address)
128{
129	return __bad_area(regs, address, SEGV_ACCERR);
130}
131
132static int do_sigbus(struct pt_regs *regs, unsigned long address,
133		     vm_fault_t fault)
134{
135	if (!user_mode(regs))
136		return SIGBUS;
137
138	current->thread.trap_nr = BUS_ADRERR;
139#ifdef CONFIG_MEMORY_FAILURE
140	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
141		unsigned int lsb = 0; /* shutup gcc */
142
143		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
144			current->comm, current->pid, address);
145
146		if (fault & VM_FAULT_HWPOISON_LARGE)
147			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
148		if (fault & VM_FAULT_HWPOISON)
149			lsb = PAGE_SHIFT;
150
151		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
152		return 0;
153	}
154
155#endif
156	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
157	return 0;
158}
159
160static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
161				vm_fault_t fault)
162{
163	/*
164	 * Kernel page fault interrupted by SIGKILL. We have no reason to
165	 * continue processing.
166	 */
167	if (fatal_signal_pending(current) && !user_mode(regs))
168		return SIGKILL;
169
170	/* Out of memory */
171	if (fault & VM_FAULT_OOM) {
172		/*
173		 * We ran out of memory, or some other thing happened to us that
174		 * made us unable to handle the page fault gracefully.
175		 */
176		if (!user_mode(regs))
177			return SIGSEGV;
178		pagefault_out_of_memory();
179	} else {
180		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
181			     VM_FAULT_HWPOISON_LARGE))
182			return do_sigbus(regs, addr, fault);
183		else if (fault & VM_FAULT_SIGSEGV)
184			return bad_area_nosemaphore(regs, addr);
185		else
186			BUG();
187	}
188	return 0;
189}
190
191/* Is this a bad kernel fault ? */
192static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
193			     unsigned long address, bool is_write)
194{
195	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
196
197	if (is_exec) {
198		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
199				    address >= TASK_SIZE ? "exec-protected" : "user",
200				    address,
201				    from_kuid(&init_user_ns, current_uid()));
202
203		// Kernel exec fault is always bad
204		return true;
205	}
206
207	// Kernel fault on kernel address is bad
208	if (address >= TASK_SIZE)
209		return true;
210
211	// Read/write fault blocked by KUAP is bad, it can never succeed.
212	if (bad_kuap_fault(regs, address, is_write)) {
213		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
214				    is_write ? "write" : "read", address,
215				    from_kuid(&init_user_ns, current_uid()));
216
217		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
218		if (!search_exception_tables(regs->nip))
219			return true;
220
221		// Read/write fault in a valid region (the exception table search passed
222		// above), but blocked by KUAP is bad, it can never succeed.
223		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
224	}
225
226	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
227	return false;
228}
229
230static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
231			      struct vm_area_struct *vma)
232{
233	/*
234	 * Make sure to check the VMA so that we do not perform
235	 * faults just to hit a pkey fault as soon as we fill in a
236	 * page. Only called for current mm, hence foreign == 0
237	 */
238	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
239		return true;
240
241	return false;
242}
243
244static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
245{
246	/*
247	 * Allow execution from readable areas if the MMU does not
248	 * provide separate controls over reading and executing.
249	 *
250	 * Note: That code used to not be enabled for 4xx/BookE.
251	 * It is now as I/D cache coherency for these is done at
252	 * set_pte_at() time and I see no reason why the test
253	 * below wouldn't be valid on those processors. This -may-
254	 * break programs compiled with a really old ABI though.
255	 */
256	if (is_exec) {
257		return !(vma->vm_flags & VM_EXEC) &&
258			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
259			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
260	}
261
262	if (is_write) {
263		if (unlikely(!(vma->vm_flags & VM_WRITE)))
264			return true;
265		return false;
266	}
267
268	/*
269	 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
270	 * defined in protection_map[].  In that case Read faults can only be
271	 * caused by a PROT_NONE mapping. However a non exec access on a
272	 * VM_EXEC only mapping is invalid anyway, so report it as such.
273	 */
274	if (unlikely(!vma_is_accessible(vma)))
275		return true;
276
277	if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
278		return true;
279
280	/*
281	 * We should ideally do the vma pkey access check here. But in the
282	 * fault path, handle_mm_fault() also does the same check. To avoid
283	 * these multiple checks, we skip it here and handle access error due
284	 * to pkeys later.
285	 */
286	return false;
287}
288
289#ifdef CONFIG_PPC_SMLPAR
290static inline void cmo_account_page_fault(void)
291{
292	if (firmware_has_feature(FW_FEATURE_CMO)) {
293		u32 page_ins;
294
295		preempt_disable();
296		page_ins = be32_to_cpu(get_lppaca()->page_ins);
297		page_ins += 1 << PAGE_FACTOR;
298		get_lppaca()->page_ins = cpu_to_be32(page_ins);
299		preempt_enable();
300	}
301}
302#else
303static inline void cmo_account_page_fault(void) { }
304#endif /* CONFIG_PPC_SMLPAR */
305
306static void sanity_check_fault(bool is_write, bool is_user,
307			       unsigned long error_code, unsigned long address)
308{
309	/*
310	 * Userspace trying to access kernel address, we get PROTFAULT for that.
311	 */
312	if (is_user && address >= TASK_SIZE) {
313		if ((long)address == -1)
314			return;
315
316		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
317				   current->comm, current->pid, address,
318				   from_kuid(&init_user_ns, current_uid()));
319		return;
320	}
321
322	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
323		return;
324
325	/*
326	 * For hash translation mode, we should never get a
327	 * PROTFAULT. Any update to pte to reduce access will result in us
328	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
329	 * fault instead of DSISR_PROTFAULT.
330	 *
331	 * A pte update to relax the access will not result in a hash page table
332	 * entry invalidate and hence can result in DSISR_PROTFAULT.
333	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
334	 * the special !is_write in the below conditional.
335	 *
336	 * For platforms that doesn't supports coherent icache and do support
337	 * per page noexec bit, we do setup things such that we do the
338	 * sync between D/I cache via fault. But that is handled via low level
339	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
340	 * here in such case.
341	 *
342	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
343	 * check should handle those and hence we should fall to the bad_area
344	 * handling correctly.
345	 *
346	 * For embedded with per page exec support that doesn't support coherent
347	 * icache we do get PROTFAULT and we handle that D/I cache sync in
348	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
349	 * is conditional for server MMU.
350	 *
351	 * For radix, we can get prot fault for autonuma case, because radix
352	 * page table will have them marked noaccess for user.
353	 */
354	if (radix_enabled() || is_write)
355		return;
356
357	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
358}
359
360/*
361 * Define the correct "is_write" bit in error_code based
362 * on the processor family
363 */
364#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365#define page_fault_is_write(__err)	((__err) & ESR_DST)
366#else
367#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
368#endif
369
370#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
371#define page_fault_is_bad(__err)	(0)
372#elif defined(CONFIG_PPC_8xx)
373#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
374#elif defined(CONFIG_PPC64)
375static int page_fault_is_bad(unsigned long err)
376{
377	unsigned long flag = DSISR_BAD_FAULT_64S;
378
379	/*
380	 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
381	 * If byte 0, bit 3 of pi-attribute-specifier-type in
382	 * ibm,pi-features property is defined, ignore the DSI error
383	 * which is caused by the paste instruction on the
384	 * suspended NX window.
385	 */
386	if (mmu_has_feature(MMU_FTR_NX_DSI))
387		flag &= ~DSISR_BAD_COPYPASTE;
388
389	return err & flag;
390}
391#else
392#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
393#endif
394
395/*
396 * For 600- and 800-family processors, the error_code parameter is DSISR
397 * for a data fault, SRR1 for an instruction fault.
398 * For 400-family processors the error_code parameter is ESR for a data fault,
399 * 0 for an instruction fault.
400 * For 64-bit processors, the error_code parameter is DSISR for a data access
401 * fault, SRR1 & 0x08000000 for an instruction access fault.
402 *
403 * The return value is 0 if the fault was handled, or the signal
404 * number if this is a kernel fault that can't be handled here.
405 */
406static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
407			   unsigned long error_code)
408{
409	struct vm_area_struct * vma;
410	struct mm_struct *mm = current->mm;
411	unsigned int flags = FAULT_FLAG_DEFAULT;
412	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
413	int is_user = user_mode(regs);
414	int is_write = page_fault_is_write(error_code);
415	vm_fault_t fault, major = 0;
416	bool kprobe_fault = kprobe_page_fault(regs, 11);
417
418	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
419		return 0;
420
421	if (unlikely(page_fault_is_bad(error_code))) {
422		if (is_user) {
423			_exception(SIGBUS, regs, BUS_OBJERR, address);
424			return 0;
425		}
426		return SIGBUS;
427	}
428
429	/* Additional sanity check(s) */
430	sanity_check_fault(is_write, is_user, error_code, address);
431
432	/*
433	 * The kernel should never take an execute fault nor should it
434	 * take a page fault to a kernel address or a page fault to a user
435	 * address outside of dedicated places
436	 */
437	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
438		if (kfence_handle_page_fault(address, is_write, regs))
439			return 0;
440
441		return SIGSEGV;
442	}
443
444	/*
445	 * If we're in an interrupt, have no user context or are running
446	 * in a region with pagefaults disabled then we must not take the fault
447	 */
448	if (unlikely(faulthandler_disabled() || !mm)) {
449		if (is_user)
450			printk_ratelimited(KERN_ERR "Page fault in user mode"
451					   " with faulthandler_disabled()=%d"
452					   " mm=%p\n",
453					   faulthandler_disabled(), mm);
454		return bad_area_nosemaphore(regs, address);
455	}
456
457	interrupt_cond_local_irq_enable(regs);
458
459	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460
461	/*
462	 * We want to do this outside mmap_lock, because reading code around nip
463	 * can result in fault, which will cause a deadlock when called with
464	 * mmap_lock held
465	 */
466	if (is_user)
467		flags |= FAULT_FLAG_USER;
468	if (is_write)
469		flags |= FAULT_FLAG_WRITE;
470	if (is_exec)
471		flags |= FAULT_FLAG_INSTRUCTION;
472
473	if (!(flags & FAULT_FLAG_USER))
474		goto lock_mmap;
475
476	vma = lock_vma_under_rcu(mm, address);
477	if (!vma)
478		goto lock_mmap;
479
480	if (unlikely(access_pkey_error(is_write, is_exec,
481				       (error_code & DSISR_KEYFAULT), vma))) {
482		vma_end_read(vma);
483		goto lock_mmap;
484	}
485
486	if (unlikely(access_error(is_write, is_exec, vma))) {
487		vma_end_read(vma);
488		goto lock_mmap;
489	}
490
491	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
492	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
493		vma_end_read(vma);
494
495	if (!(fault & VM_FAULT_RETRY)) {
496		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497		goto done;
498	}
499	count_vm_vma_lock_event(VMA_LOCK_RETRY);
500	if (fault & VM_FAULT_MAJOR)
501		flags |= FAULT_FLAG_TRIED;
502
503	if (fault_signal_pending(fault, regs))
504		return user_mode(regs) ? 0 : SIGBUS;
505
506lock_mmap:
507
508	/* When running in the kernel we expect faults to occur only to
509	 * addresses in user space.  All other faults represent errors in the
510	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
511	 * erroneous fault occurring in a code path which already holds mmap_lock
512	 * we will deadlock attempting to validate the fault against the
513	 * address space.  Luckily the kernel only validly references user
514	 * space from well defined areas of code, which are listed in the
515	 * exceptions table. lock_mm_and_find_vma() handles that logic.
516	 */
 
 
 
 
 
 
 
 
 
 
517retry:
518	vma = lock_mm_and_find_vma(mm, address, regs);
 
 
 
 
 
 
 
 
 
 
519	if (unlikely(!vma))
520		return bad_area_nosemaphore(regs, address);
 
 
 
 
 
 
 
 
521
522	if (unlikely(access_pkey_error(is_write, is_exec,
523				       (error_code & DSISR_KEYFAULT), vma)))
524		return bad_access_pkey(regs, address, vma);
525
526	if (unlikely(access_error(is_write, is_exec, vma)))
527		return bad_access(regs, address);
528
529	/*
530	 * If for any reason at all we couldn't handle the fault,
531	 * make sure we exit gracefully rather than endlessly redo
532	 * the fault.
533	 */
534	fault = handle_mm_fault(vma, address, flags, regs);
535
536	major |= fault & VM_FAULT_MAJOR;
537
538	if (fault_signal_pending(fault, regs))
539		return user_mode(regs) ? 0 : SIGBUS;
540
541	/* The fault is fully completed (including releasing mmap lock) */
542	if (fault & VM_FAULT_COMPLETED)
543		goto out;
544
545	/*
546	 * Handle the retry right now, the mmap_lock has been released in that
547	 * case.
548	 */
549	if (unlikely(fault & VM_FAULT_RETRY)) {
550		flags |= FAULT_FLAG_TRIED;
551		goto retry;
 
 
552	}
553
554	mmap_read_unlock(current->mm);
555
556done:
557	if (unlikely(fault & VM_FAULT_ERROR))
558		return mm_fault_error(regs, address, fault);
559
560out:
561	/*
562	 * Major/minor page fault accounting.
563	 */
564	if (major)
565		cmo_account_page_fault();
566
567	return 0;
568}
569NOKPROBE_SYMBOL(___do_page_fault);
570
571static __always_inline void __do_page_fault(struct pt_regs *regs)
572{
573	long err;
574
575	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
576	if (unlikely(err))
577		bad_page_fault(regs, err);
578}
579
580DEFINE_INTERRUPT_HANDLER(do_page_fault)
581{
582	__do_page_fault(regs);
583}
584
585#ifdef CONFIG_PPC_BOOK3S_64
586/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
587void hash__do_page_fault(struct pt_regs *regs)
588{
589	__do_page_fault(regs);
590}
591NOKPROBE_SYMBOL(hash__do_page_fault);
592#endif
593
594/*
595 * bad_page_fault is called when we have a bad access from the kernel.
596 * It is called from the DSI and ISI handlers in head.S and from some
597 * of the procedures in traps.c.
598 */
599static void __bad_page_fault(struct pt_regs *regs, int sig)
600{
601	int is_write = page_fault_is_write(regs->dsisr);
602	const char *msg;
603
604	/* kernel has accessed a bad area */
605
606	if (regs->dar < PAGE_SIZE)
607		msg = "Kernel NULL pointer dereference";
608	else
609		msg = "Unable to handle kernel data access";
610
611	switch (TRAP(regs)) {
612	case INTERRUPT_DATA_STORAGE:
 
613	case INTERRUPT_H_DATA_STORAGE:
614		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
 
 
615			 is_write ? "write" : "read", regs->dar);
616		break;
617	case INTERRUPT_DATA_SEGMENT:
618		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
619		break;
620	case INTERRUPT_INST_STORAGE:
621	case INTERRUPT_INST_SEGMENT:
622		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
623			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
624		break;
625	case INTERRUPT_ALIGNMENT:
626		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
627			 regs->dar);
628		break;
629	default:
630		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
631			 regs->dar);
632		break;
633	}
634	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
635		regs->nip);
636
637	if (task_stack_end_corrupted(current))
638		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
639
640	die("Kernel access of bad area", regs, sig);
641}
642
643void bad_page_fault(struct pt_regs *regs, int sig)
644{
645	const struct exception_table_entry *entry;
646
647	/* Are we prepared to handle this fault?  */
648	entry = search_exception_tables(instruction_pointer(regs));
649	if (entry)
650		instruction_pointer_set(regs, extable_fixup(entry));
651	else
652		__bad_page_fault(regs, sig);
653}
654
655#ifdef CONFIG_PPC_BOOK3S_64
656DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
657{
658	bad_page_fault(regs, SIGSEGV);
659}
660
661/*
662 * In radix, segment interrupts indicate the EA is not addressable by the
663 * page table geometry, so they are always sent here.
664 *
665 * In hash, this is called if do_slb_fault returns error. Typically it is
666 * because the EA was outside the region allowed by software.
667 */
668DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
669{
670	int err = regs->result;
671
672	if (err == -EFAULT) {
673		if (user_mode(regs))
674			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
675		else
676			bad_page_fault(regs, SIGSEGV);
677	} else if (err == -EINVAL) {
678		unrecoverable_exception(regs);
679	} else {
680		BUG();
681	}
682}
683#endif
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 35#include <linux/kfence.h>
 36#include <linux/pkeys.h>
 37
 38#include <asm/firmware.h>
 39#include <asm/interrupt.h>
 40#include <asm/page.h>
 41#include <asm/mmu.h>
 42#include <asm/mmu_context.h>
 43#include <asm/siginfo.h>
 44#include <asm/debug.h>
 45#include <asm/kup.h>
 46#include <asm/inst.h>
 47
 48
 49/*
 50 * do_page_fault error handling helpers
 51 */
 52
 53static int
 54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 55{
 56	/*
 57	 * If we are in kernel mode, bail out with a SEGV, this will
 58	 * be caught by the assembly which will restore the non-volatile
 59	 * registers before calling bad_page_fault()
 60	 */
 61	if (!user_mode(regs))
 62		return SIGSEGV;
 63
 64	_exception(SIGSEGV, regs, si_code, address);
 65
 66	return 0;
 67}
 68
 69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 70{
 71	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 72}
 73
 74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 75{
 76	struct mm_struct *mm = current->mm;
 77
 78	/*
 79	 * Something tried to access memory that isn't in our memory map..
 80	 * Fix it, but check if it's kernel or user first..
 81	 */
 82	mmap_read_unlock(mm);
 83
 84	return __bad_area_nosemaphore(regs, address, si_code);
 85}
 86
 87static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 88{
 89	return __bad_area(regs, address, SEGV_MAPERR);
 90}
 91
 92static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 93				    struct vm_area_struct *vma)
 94{
 95	struct mm_struct *mm = current->mm;
 96	int pkey;
 97
 98	/*
 99	 * We don't try to fetch the pkey from page table because reading
100	 * page table without locking doesn't guarantee stable pte value.
101	 * Hence the pkey value that we return to userspace can be different
102	 * from the pkey that actually caused access error.
103	 *
104	 * It does *not* guarantee that the VMA we find here
105	 * was the one that we faulted on.
106	 *
107	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
108	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
109	 * 3. T1   : faults...
110	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
111	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
112	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
113	 *	     faulted on a pte with its pkey=4.
114	 */
115	pkey = vma_pkey(vma);
116
117	mmap_read_unlock(mm);
118
119	/*
120	 * If we are in kernel mode, bail out with a SEGV, this will
121	 * be caught by the assembly which will restore the non-volatile
122	 * registers before calling bad_page_fault()
123	 */
124	if (!user_mode(regs))
125		return SIGSEGV;
126
127	_exception_pkey(regs, address, pkey);
128
129	return 0;
130}
131
132static noinline int bad_access(struct pt_regs *regs, unsigned long address)
133{
134	return __bad_area(regs, address, SEGV_ACCERR);
135}
136
137static int do_sigbus(struct pt_regs *regs, unsigned long address,
138		     vm_fault_t fault)
139{
140	if (!user_mode(regs))
141		return SIGBUS;
142
143	current->thread.trap_nr = BUS_ADRERR;
144#ifdef CONFIG_MEMORY_FAILURE
145	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
146		unsigned int lsb = 0; /* shutup gcc */
147
148		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
149			current->comm, current->pid, address);
150
151		if (fault & VM_FAULT_HWPOISON_LARGE)
152			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
153		if (fault & VM_FAULT_HWPOISON)
154			lsb = PAGE_SHIFT;
155
156		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
157		return 0;
158	}
159
160#endif
161	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
162	return 0;
163}
164
165static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
166				vm_fault_t fault)
167{
168	/*
169	 * Kernel page fault interrupted by SIGKILL. We have no reason to
170	 * continue processing.
171	 */
172	if (fatal_signal_pending(current) && !user_mode(regs))
173		return SIGKILL;
174
175	/* Out of memory */
176	if (fault & VM_FAULT_OOM) {
177		/*
178		 * We ran out of memory, or some other thing happened to us that
179		 * made us unable to handle the page fault gracefully.
180		 */
181		if (!user_mode(regs))
182			return SIGSEGV;
183		pagefault_out_of_memory();
184	} else {
185		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
186			     VM_FAULT_HWPOISON_LARGE))
187			return do_sigbus(regs, addr, fault);
188		else if (fault & VM_FAULT_SIGSEGV)
189			return bad_area_nosemaphore(regs, addr);
190		else
191			BUG();
192	}
193	return 0;
194}
195
196/* Is this a bad kernel fault ? */
197static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
198			     unsigned long address, bool is_write)
199{
200	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
201
202	if (is_exec) {
203		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
204				    address >= TASK_SIZE ? "exec-protected" : "user",
205				    address,
206				    from_kuid(&init_user_ns, current_uid()));
207
208		// Kernel exec fault is always bad
209		return true;
210	}
211
212	// Kernel fault on kernel address is bad
213	if (address >= TASK_SIZE)
214		return true;
215
216	// Read/write fault blocked by KUAP is bad, it can never succeed.
217	if (bad_kuap_fault(regs, address, is_write)) {
218		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
219				    is_write ? "write" : "read", address,
220				    from_kuid(&init_user_ns, current_uid()));
221
222		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
223		if (!search_exception_tables(regs->nip))
224			return true;
225
226		// Read/write fault in a valid region (the exception table search passed
227		// above), but blocked by KUAP is bad, it can never succeed.
228		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
229	}
230
231	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
232	return false;
233}
234
235static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
236			      struct vm_area_struct *vma)
237{
238	/*
239	 * Make sure to check the VMA so that we do not perform
240	 * faults just to hit a pkey fault as soon as we fill in a
241	 * page. Only called for current mm, hence foreign == 0
242	 */
243	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
244		return true;
245
246	return false;
247}
248
249static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
250{
251	/*
252	 * Allow execution from readable areas if the MMU does not
253	 * provide separate controls over reading and executing.
254	 *
255	 * Note: That code used to not be enabled for 4xx/BookE.
256	 * It is now as I/D cache coherency for these is done at
257	 * set_pte_at() time and I see no reason why the test
258	 * below wouldn't be valid on those processors. This -may-
259	 * break programs compiled with a really old ABI though.
260	 */
261	if (is_exec) {
262		return !(vma->vm_flags & VM_EXEC) &&
263			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
264			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
265	}
266
267	if (is_write) {
268		if (unlikely(!(vma->vm_flags & VM_WRITE)))
269			return true;
270		return false;
271	}
272
 
 
 
 
 
 
273	if (unlikely(!vma_is_accessible(vma)))
274		return true;
 
 
 
 
275	/*
276	 * We should ideally do the vma pkey access check here. But in the
277	 * fault path, handle_mm_fault() also does the same check. To avoid
278	 * these multiple checks, we skip it here and handle access error due
279	 * to pkeys later.
280	 */
281	return false;
282}
283
284#ifdef CONFIG_PPC_SMLPAR
285static inline void cmo_account_page_fault(void)
286{
287	if (firmware_has_feature(FW_FEATURE_CMO)) {
288		u32 page_ins;
289
290		preempt_disable();
291		page_ins = be32_to_cpu(get_lppaca()->page_ins);
292		page_ins += 1 << PAGE_FACTOR;
293		get_lppaca()->page_ins = cpu_to_be32(page_ins);
294		preempt_enable();
295	}
296}
297#else
298static inline void cmo_account_page_fault(void) { }
299#endif /* CONFIG_PPC_SMLPAR */
300
301static void sanity_check_fault(bool is_write, bool is_user,
302			       unsigned long error_code, unsigned long address)
303{
304	/*
305	 * Userspace trying to access kernel address, we get PROTFAULT for that.
306	 */
307	if (is_user && address >= TASK_SIZE) {
308		if ((long)address == -1)
309			return;
310
311		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
312				   current->comm, current->pid, address,
313				   from_kuid(&init_user_ns, current_uid()));
314		return;
315	}
316
317	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
318		return;
319
320	/*
321	 * For hash translation mode, we should never get a
322	 * PROTFAULT. Any update to pte to reduce access will result in us
323	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
324	 * fault instead of DSISR_PROTFAULT.
325	 *
326	 * A pte update to relax the access will not result in a hash page table
327	 * entry invalidate and hence can result in DSISR_PROTFAULT.
328	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
329	 * the special !is_write in the below conditional.
330	 *
331	 * For platforms that doesn't supports coherent icache and do support
332	 * per page noexec bit, we do setup things such that we do the
333	 * sync between D/I cache via fault. But that is handled via low level
334	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
335	 * here in such case.
336	 *
337	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
338	 * check should handle those and hence we should fall to the bad_area
339	 * handling correctly.
340	 *
341	 * For embedded with per page exec support that doesn't support coherent
342	 * icache we do get PROTFAULT and we handle that D/I cache sync in
343	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
344	 * is conditional for server MMU.
345	 *
346	 * For radix, we can get prot fault for autonuma case, because radix
347	 * page table will have them marked noaccess for user.
348	 */
349	if (radix_enabled() || is_write)
350		return;
351
352	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
353}
354
355/*
356 * Define the correct "is_write" bit in error_code based
357 * on the processor family
358 */
359#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
360#define page_fault_is_write(__err)	((__err) & ESR_DST)
361#else
362#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
363#endif
364
365#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
366#define page_fault_is_bad(__err)	(0)
367#elif defined(CONFIG_PPC_8xx)
368#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
369#elif defined(CONFIG_PPC64)
370#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371#else
372#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
373#endif
374
375/*
376 * For 600- and 800-family processors, the error_code parameter is DSISR
377 * for a data fault, SRR1 for an instruction fault.
378 * For 400-family processors the error_code parameter is ESR for a data fault,
379 * 0 for an instruction fault.
380 * For 64-bit processors, the error_code parameter is DSISR for a data access
381 * fault, SRR1 & 0x08000000 for an instruction access fault.
382 *
383 * The return value is 0 if the fault was handled, or the signal
384 * number if this is a kernel fault that can't be handled here.
385 */
386static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
387			   unsigned long error_code)
388{
389	struct vm_area_struct * vma;
390	struct mm_struct *mm = current->mm;
391	unsigned int flags = FAULT_FLAG_DEFAULT;
392	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
393	int is_user = user_mode(regs);
394	int is_write = page_fault_is_write(error_code);
395	vm_fault_t fault, major = 0;
396	bool kprobe_fault = kprobe_page_fault(regs, 11);
397
398	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
399		return 0;
400
401	if (unlikely(page_fault_is_bad(error_code))) {
402		if (is_user) {
403			_exception(SIGBUS, regs, BUS_OBJERR, address);
404			return 0;
405		}
406		return SIGBUS;
407	}
408
409	/* Additional sanity check(s) */
410	sanity_check_fault(is_write, is_user, error_code, address);
411
412	/*
413	 * The kernel should never take an execute fault nor should it
414	 * take a page fault to a kernel address or a page fault to a user
415	 * address outside of dedicated places
416	 */
417	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
418		if (kfence_handle_page_fault(address, is_write, regs))
419			return 0;
420
421		return SIGSEGV;
422	}
423
424	/*
425	 * If we're in an interrupt, have no user context or are running
426	 * in a region with pagefaults disabled then we must not take the fault
427	 */
428	if (unlikely(faulthandler_disabled() || !mm)) {
429		if (is_user)
430			printk_ratelimited(KERN_ERR "Page fault in user mode"
431					   " with faulthandler_disabled()=%d"
432					   " mm=%p\n",
433					   faulthandler_disabled(), mm);
434		return bad_area_nosemaphore(regs, address);
435	}
436
437	interrupt_cond_local_irq_enable(regs);
438
439	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
440
441	/*
442	 * We want to do this outside mmap_lock, because reading code around nip
443	 * can result in fault, which will cause a deadlock when called with
444	 * mmap_lock held
445	 */
446	if (is_user)
447		flags |= FAULT_FLAG_USER;
448	if (is_write)
449		flags |= FAULT_FLAG_WRITE;
450	if (is_exec)
451		flags |= FAULT_FLAG_INSTRUCTION;
452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453	/* When running in the kernel we expect faults to occur only to
454	 * addresses in user space.  All other faults represent errors in the
455	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
456	 * erroneous fault occurring in a code path which already holds mmap_lock
457	 * we will deadlock attempting to validate the fault against the
458	 * address space.  Luckily the kernel only validly references user
459	 * space from well defined areas of code, which are listed in the
460	 * exceptions table.
461	 *
462	 * As the vast majority of faults will be valid we will only perform
463	 * the source reference check when there is a possibility of a deadlock.
464	 * Attempt to lock the address space, if we cannot we then validate the
465	 * source.  If this is invalid we can skip the address space check,
466	 * thus avoiding the deadlock.
467	 */
468	if (unlikely(!mmap_read_trylock(mm))) {
469		if (!is_user && !search_exception_tables(regs->nip))
470			return bad_area_nosemaphore(regs, address);
471
472retry:
473		mmap_read_lock(mm);
474	} else {
475		/*
476		 * The above down_read_trylock() might have succeeded in
477		 * which case we'll have missed the might_sleep() from
478		 * down_read():
479		 */
480		might_sleep();
481	}
482
483	vma = find_vma(mm, address);
484	if (unlikely(!vma))
485		return bad_area(regs, address);
486
487	if (unlikely(vma->vm_start > address)) {
488		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
489			return bad_area(regs, address);
490
491		if (unlikely(expand_stack(vma, address)))
492			return bad_area(regs, address);
493	}
494
495	if (unlikely(access_pkey_error(is_write, is_exec,
496				       (error_code & DSISR_KEYFAULT), vma)))
497		return bad_access_pkey(regs, address, vma);
498
499	if (unlikely(access_error(is_write, is_exec, vma)))
500		return bad_access(regs, address);
501
502	/*
503	 * If for any reason at all we couldn't handle the fault,
504	 * make sure we exit gracefully rather than endlessly redo
505	 * the fault.
506	 */
507	fault = handle_mm_fault(vma, address, flags, regs);
508
509	major |= fault & VM_FAULT_MAJOR;
510
511	if (fault_signal_pending(fault, regs))
512		return user_mode(regs) ? 0 : SIGBUS;
513
 
 
 
 
514	/*
515	 * Handle the retry right now, the mmap_lock has been released in that
516	 * case.
517	 */
518	if (unlikely(fault & VM_FAULT_RETRY)) {
519		if (flags & FAULT_FLAG_ALLOW_RETRY) {
520			flags |= FAULT_FLAG_TRIED;
521			goto retry;
522		}
523	}
524
525	mmap_read_unlock(current->mm);
526
 
527	if (unlikely(fault & VM_FAULT_ERROR))
528		return mm_fault_error(regs, address, fault);
529
 
530	/*
531	 * Major/minor page fault accounting.
532	 */
533	if (major)
534		cmo_account_page_fault();
535
536	return 0;
537}
538NOKPROBE_SYMBOL(___do_page_fault);
539
540static __always_inline void __do_page_fault(struct pt_regs *regs)
541{
542	long err;
543
544	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
545	if (unlikely(err))
546		bad_page_fault(regs, err);
547}
548
549DEFINE_INTERRUPT_HANDLER(do_page_fault)
550{
551	__do_page_fault(regs);
552}
553
554#ifdef CONFIG_PPC_BOOK3S_64
555/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
556void hash__do_page_fault(struct pt_regs *regs)
557{
558	__do_page_fault(regs);
559}
560NOKPROBE_SYMBOL(hash__do_page_fault);
561#endif
562
563/*
564 * bad_page_fault is called when we have a bad access from the kernel.
565 * It is called from the DSI and ISI handlers in head.S and from some
566 * of the procedures in traps.c.
567 */
568static void __bad_page_fault(struct pt_regs *regs, int sig)
569{
570	int is_write = page_fault_is_write(regs->dsisr);
 
571
572	/* kernel has accessed a bad area */
573
 
 
 
 
 
574	switch (TRAP(regs)) {
575	case INTERRUPT_DATA_STORAGE:
576	case INTERRUPT_DATA_SEGMENT:
577	case INTERRUPT_H_DATA_STORAGE:
578		pr_alert("BUG: %s on %s at 0x%08lx\n",
579			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
580			 "Unable to handle kernel data access",
581			 is_write ? "write" : "read", regs->dar);
582		break;
 
 
 
583	case INTERRUPT_INST_STORAGE:
584	case INTERRUPT_INST_SEGMENT:
585		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
586			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
587		break;
588	case INTERRUPT_ALIGNMENT:
589		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
590			 regs->dar);
591		break;
592	default:
593		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
594			 regs->dar);
595		break;
596	}
597	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
598		regs->nip);
599
600	if (task_stack_end_corrupted(current))
601		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
602
603	die("Kernel access of bad area", regs, sig);
604}
605
606void bad_page_fault(struct pt_regs *regs, int sig)
607{
608	const struct exception_table_entry *entry;
609
610	/* Are we prepared to handle this fault?  */
611	entry = search_exception_tables(instruction_pointer(regs));
612	if (entry)
613		instruction_pointer_set(regs, extable_fixup(entry));
614	else
615		__bad_page_fault(regs, sig);
616}
617
618#ifdef CONFIG_PPC_BOOK3S_64
619DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
620{
621	bad_page_fault(regs, SIGSEGV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622}
623#endif