Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/task_stack.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/pagemap.h>
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
27#include <linux/extable.h>
28#include <linux/kprobes.h>
29#include <linux/kdebug.h>
30#include <linux/perf_event.h>
31#include <linux/ratelimit.h>
32#include <linux/context_tracking.h>
33#include <linux/hugetlb.h>
34#include <linux/uaccess.h>
35#include <linux/kfence.h>
36#include <linux/pkeys.h>
37
38#include <asm/firmware.h>
39#include <asm/interrupt.h>
40#include <asm/page.h>
41#include <asm/mmu.h>
42#include <asm/mmu_context.h>
43#include <asm/siginfo.h>
44#include <asm/debug.h>
45#include <asm/kup.h>
46#include <asm/inst.h>
47
48
49/*
50 * do_page_fault error handling helpers
51 */
52
53static int
54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
55{
56 /*
57 * If we are in kernel mode, bail out with a SEGV, this will
58 * be caught by the assembly which will restore the non-volatile
59 * registers before calling bad_page_fault()
60 */
61 if (!user_mode(regs))
62 return SIGSEGV;
63
64 _exception(SIGSEGV, regs, si_code, address);
65
66 return 0;
67}
68
69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70{
71 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
72}
73
74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
75{
76 struct mm_struct *mm = current->mm;
77
78 /*
79 * Something tried to access memory that isn't in our memory map..
80 * Fix it, but check if it's kernel or user first..
81 */
82 mmap_read_unlock(mm);
83
84 return __bad_area_nosemaphore(regs, address, si_code);
85}
86
87static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
88 struct vm_area_struct *vma)
89{
90 struct mm_struct *mm = current->mm;
91 int pkey;
92
93 /*
94 * We don't try to fetch the pkey from page table because reading
95 * page table without locking doesn't guarantee stable pte value.
96 * Hence the pkey value that we return to userspace can be different
97 * from the pkey that actually caused access error.
98 *
99 * It does *not* guarantee that the VMA we find here
100 * was the one that we faulted on.
101 *
102 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
103 * 2. T1 : set AMR to deny access to pkey=4, touches, page
104 * 3. T1 : faults...
105 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
106 * 5. T1 : enters fault handler, takes mmap_lock, etc...
107 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
108 * faulted on a pte with its pkey=4.
109 */
110 pkey = vma_pkey(vma);
111
112 mmap_read_unlock(mm);
113
114 /*
115 * If we are in kernel mode, bail out with a SEGV, this will
116 * be caught by the assembly which will restore the non-volatile
117 * registers before calling bad_page_fault()
118 */
119 if (!user_mode(regs))
120 return SIGSEGV;
121
122 _exception_pkey(regs, address, pkey);
123
124 return 0;
125}
126
127static noinline int bad_access(struct pt_regs *regs, unsigned long address)
128{
129 return __bad_area(regs, address, SEGV_ACCERR);
130}
131
132static int do_sigbus(struct pt_regs *regs, unsigned long address,
133 vm_fault_t fault)
134{
135 if (!user_mode(regs))
136 return SIGBUS;
137
138 current->thread.trap_nr = BUS_ADRERR;
139#ifdef CONFIG_MEMORY_FAILURE
140 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
141 unsigned int lsb = 0; /* shutup gcc */
142
143 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
144 current->comm, current->pid, address);
145
146 if (fault & VM_FAULT_HWPOISON_LARGE)
147 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
148 if (fault & VM_FAULT_HWPOISON)
149 lsb = PAGE_SHIFT;
150
151 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
152 return 0;
153 }
154
155#endif
156 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
157 return 0;
158}
159
160static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
161 vm_fault_t fault)
162{
163 /*
164 * Kernel page fault interrupted by SIGKILL. We have no reason to
165 * continue processing.
166 */
167 if (fatal_signal_pending(current) && !user_mode(regs))
168 return SIGKILL;
169
170 /* Out of memory */
171 if (fault & VM_FAULT_OOM) {
172 /*
173 * We ran out of memory, or some other thing happened to us that
174 * made us unable to handle the page fault gracefully.
175 */
176 if (!user_mode(regs))
177 return SIGSEGV;
178 pagefault_out_of_memory();
179 } else {
180 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
181 VM_FAULT_HWPOISON_LARGE))
182 return do_sigbus(regs, addr, fault);
183 else if (fault & VM_FAULT_SIGSEGV)
184 return bad_area_nosemaphore(regs, addr);
185 else
186 BUG();
187 }
188 return 0;
189}
190
191/* Is this a bad kernel fault ? */
192static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
193 unsigned long address, bool is_write)
194{
195 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
196
197 if (is_exec) {
198 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
199 address >= TASK_SIZE ? "exec-protected" : "user",
200 address,
201 from_kuid(&init_user_ns, current_uid()));
202
203 // Kernel exec fault is always bad
204 return true;
205 }
206
207 // Kernel fault on kernel address is bad
208 if (address >= TASK_SIZE)
209 return true;
210
211 // Read/write fault blocked by KUAP is bad, it can never succeed.
212 if (bad_kuap_fault(regs, address, is_write)) {
213 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
214 is_write ? "write" : "read", address,
215 from_kuid(&init_user_ns, current_uid()));
216
217 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
218 if (!search_exception_tables(regs->nip))
219 return true;
220
221 // Read/write fault in a valid region (the exception table search passed
222 // above), but blocked by KUAP is bad, it can never succeed.
223 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
224 }
225
226 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
227 return false;
228}
229
230static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
231 struct vm_area_struct *vma)
232{
233 /*
234 * Make sure to check the VMA so that we do not perform
235 * faults just to hit a pkey fault as soon as we fill in a
236 * page. Only called for current mm, hence foreign == 0
237 */
238 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
239 return true;
240
241 return false;
242}
243
244static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
245{
246 /*
247 * Allow execution from readable areas if the MMU does not
248 * provide separate controls over reading and executing.
249 *
250 * Note: That code used to not be enabled for 4xx/BookE.
251 * It is now as I/D cache coherency for these is done at
252 * set_pte_at() time and I see no reason why the test
253 * below wouldn't be valid on those processors. This -may-
254 * break programs compiled with a really old ABI though.
255 */
256 if (is_exec) {
257 return !(vma->vm_flags & VM_EXEC) &&
258 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
259 !(vma->vm_flags & (VM_READ | VM_WRITE)));
260 }
261
262 if (is_write) {
263 if (unlikely(!(vma->vm_flags & VM_WRITE)))
264 return true;
265 return false;
266 }
267
268 /*
269 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
270 * defined in protection_map[]. In that case Read faults can only be
271 * caused by a PROT_NONE mapping. However a non exec access on a
272 * VM_EXEC only mapping is invalid anyway, so report it as such.
273 */
274 if (unlikely(!vma_is_accessible(vma)))
275 return true;
276
277 if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
278 return true;
279
280 /*
281 * We should ideally do the vma pkey access check here. But in the
282 * fault path, handle_mm_fault() also does the same check. To avoid
283 * these multiple checks, we skip it here and handle access error due
284 * to pkeys later.
285 */
286 return false;
287}
288
289#ifdef CONFIG_PPC_SMLPAR
290static inline void cmo_account_page_fault(void)
291{
292 if (firmware_has_feature(FW_FEATURE_CMO)) {
293 u32 page_ins;
294
295 preempt_disable();
296 page_ins = be32_to_cpu(get_lppaca()->page_ins);
297 page_ins += 1 << PAGE_FACTOR;
298 get_lppaca()->page_ins = cpu_to_be32(page_ins);
299 preempt_enable();
300 }
301}
302#else
303static inline void cmo_account_page_fault(void) { }
304#endif /* CONFIG_PPC_SMLPAR */
305
306static void sanity_check_fault(bool is_write, bool is_user,
307 unsigned long error_code, unsigned long address)
308{
309 /*
310 * Userspace trying to access kernel address, we get PROTFAULT for that.
311 */
312 if (is_user && address >= TASK_SIZE) {
313 if ((long)address == -1)
314 return;
315
316 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
317 current->comm, current->pid, address,
318 from_kuid(&init_user_ns, current_uid()));
319 return;
320 }
321
322 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
323 return;
324
325 /*
326 * For hash translation mode, we should never get a
327 * PROTFAULT. Any update to pte to reduce access will result in us
328 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
329 * fault instead of DSISR_PROTFAULT.
330 *
331 * A pte update to relax the access will not result in a hash page table
332 * entry invalidate and hence can result in DSISR_PROTFAULT.
333 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
334 * the special !is_write in the below conditional.
335 *
336 * For platforms that doesn't supports coherent icache and do support
337 * per page noexec bit, we do setup things such that we do the
338 * sync between D/I cache via fault. But that is handled via low level
339 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
340 * here in such case.
341 *
342 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
343 * check should handle those and hence we should fall to the bad_area
344 * handling correctly.
345 *
346 * For embedded with per page exec support that doesn't support coherent
347 * icache we do get PROTFAULT and we handle that D/I cache sync in
348 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
349 * is conditional for server MMU.
350 *
351 * For radix, we can get prot fault for autonuma case, because radix
352 * page table will have them marked noaccess for user.
353 */
354 if (radix_enabled() || is_write)
355 return;
356
357 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
358}
359
360/*
361 * Define the correct "is_write" bit in error_code based
362 * on the processor family
363 */
364#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365#define page_fault_is_write(__err) ((__err) & ESR_DST)
366#else
367#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
368#endif
369
370#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
371#define page_fault_is_bad(__err) (0)
372#elif defined(CONFIG_PPC_8xx)
373#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
374#elif defined(CONFIG_PPC64)
375static int page_fault_is_bad(unsigned long err)
376{
377 unsigned long flag = DSISR_BAD_FAULT_64S;
378
379 /*
380 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
381 * If byte 0, bit 3 of pi-attribute-specifier-type in
382 * ibm,pi-features property is defined, ignore the DSI error
383 * which is caused by the paste instruction on the
384 * suspended NX window.
385 */
386 if (mmu_has_feature(MMU_FTR_NX_DSI))
387 flag &= ~DSISR_BAD_COPYPASTE;
388
389 return err & flag;
390}
391#else
392#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
393#endif
394
395/*
396 * For 600- and 800-family processors, the error_code parameter is DSISR
397 * for a data fault, SRR1 for an instruction fault.
398 * For 400-family processors the error_code parameter is ESR for a data fault,
399 * 0 for an instruction fault.
400 * For 64-bit processors, the error_code parameter is DSISR for a data access
401 * fault, SRR1 & 0x08000000 for an instruction access fault.
402 *
403 * The return value is 0 if the fault was handled, or the signal
404 * number if this is a kernel fault that can't be handled here.
405 */
406static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
407 unsigned long error_code)
408{
409 struct vm_area_struct * vma;
410 struct mm_struct *mm = current->mm;
411 unsigned int flags = FAULT_FLAG_DEFAULT;
412 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
413 int is_user = user_mode(regs);
414 int is_write = page_fault_is_write(error_code);
415 vm_fault_t fault, major = 0;
416 bool kprobe_fault = kprobe_page_fault(regs, 11);
417
418 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
419 return 0;
420
421 if (unlikely(page_fault_is_bad(error_code))) {
422 if (is_user) {
423 _exception(SIGBUS, regs, BUS_OBJERR, address);
424 return 0;
425 }
426 return SIGBUS;
427 }
428
429 /* Additional sanity check(s) */
430 sanity_check_fault(is_write, is_user, error_code, address);
431
432 /*
433 * The kernel should never take an execute fault nor should it
434 * take a page fault to a kernel address or a page fault to a user
435 * address outside of dedicated places
436 */
437 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
438 if (kfence_handle_page_fault(address, is_write, regs))
439 return 0;
440
441 return SIGSEGV;
442 }
443
444 /*
445 * If we're in an interrupt, have no user context or are running
446 * in a region with pagefaults disabled then we must not take the fault
447 */
448 if (unlikely(faulthandler_disabled() || !mm)) {
449 if (is_user)
450 printk_ratelimited(KERN_ERR "Page fault in user mode"
451 " with faulthandler_disabled()=%d"
452 " mm=%p\n",
453 faulthandler_disabled(), mm);
454 return bad_area_nosemaphore(regs, address);
455 }
456
457 interrupt_cond_local_irq_enable(regs);
458
459 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460
461 /*
462 * We want to do this outside mmap_lock, because reading code around nip
463 * can result in fault, which will cause a deadlock when called with
464 * mmap_lock held
465 */
466 if (is_user)
467 flags |= FAULT_FLAG_USER;
468 if (is_write)
469 flags |= FAULT_FLAG_WRITE;
470 if (is_exec)
471 flags |= FAULT_FLAG_INSTRUCTION;
472
473 if (!(flags & FAULT_FLAG_USER))
474 goto lock_mmap;
475
476 vma = lock_vma_under_rcu(mm, address);
477 if (!vma)
478 goto lock_mmap;
479
480 if (unlikely(access_pkey_error(is_write, is_exec,
481 (error_code & DSISR_KEYFAULT), vma))) {
482 vma_end_read(vma);
483 goto lock_mmap;
484 }
485
486 if (unlikely(access_error(is_write, is_exec, vma))) {
487 vma_end_read(vma);
488 goto lock_mmap;
489 }
490
491 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
492 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
493 vma_end_read(vma);
494
495 if (!(fault & VM_FAULT_RETRY)) {
496 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497 goto done;
498 }
499 count_vm_vma_lock_event(VMA_LOCK_RETRY);
500 if (fault & VM_FAULT_MAJOR)
501 flags |= FAULT_FLAG_TRIED;
502
503 if (fault_signal_pending(fault, regs))
504 return user_mode(regs) ? 0 : SIGBUS;
505
506lock_mmap:
507
508 /* When running in the kernel we expect faults to occur only to
509 * addresses in user space. All other faults represent errors in the
510 * kernel and should generate an OOPS. Unfortunately, in the case of an
511 * erroneous fault occurring in a code path which already holds mmap_lock
512 * we will deadlock attempting to validate the fault against the
513 * address space. Luckily the kernel only validly references user
514 * space from well defined areas of code, which are listed in the
515 * exceptions table. lock_mm_and_find_vma() handles that logic.
516 */
517retry:
518 vma = lock_mm_and_find_vma(mm, address, regs);
519 if (unlikely(!vma))
520 return bad_area_nosemaphore(regs, address);
521
522 if (unlikely(access_pkey_error(is_write, is_exec,
523 (error_code & DSISR_KEYFAULT), vma)))
524 return bad_access_pkey(regs, address, vma);
525
526 if (unlikely(access_error(is_write, is_exec, vma)))
527 return bad_access(regs, address);
528
529 /*
530 * If for any reason at all we couldn't handle the fault,
531 * make sure we exit gracefully rather than endlessly redo
532 * the fault.
533 */
534 fault = handle_mm_fault(vma, address, flags, regs);
535
536 major |= fault & VM_FAULT_MAJOR;
537
538 if (fault_signal_pending(fault, regs))
539 return user_mode(regs) ? 0 : SIGBUS;
540
541 /* The fault is fully completed (including releasing mmap lock) */
542 if (fault & VM_FAULT_COMPLETED)
543 goto out;
544
545 /*
546 * Handle the retry right now, the mmap_lock has been released in that
547 * case.
548 */
549 if (unlikely(fault & VM_FAULT_RETRY)) {
550 flags |= FAULT_FLAG_TRIED;
551 goto retry;
552 }
553
554 mmap_read_unlock(current->mm);
555
556done:
557 if (unlikely(fault & VM_FAULT_ERROR))
558 return mm_fault_error(regs, address, fault);
559
560out:
561 /*
562 * Major/minor page fault accounting.
563 */
564 if (major)
565 cmo_account_page_fault();
566
567 return 0;
568}
569NOKPROBE_SYMBOL(___do_page_fault);
570
571static __always_inline void __do_page_fault(struct pt_regs *regs)
572{
573 long err;
574
575 err = ___do_page_fault(regs, regs->dar, regs->dsisr);
576 if (unlikely(err))
577 bad_page_fault(regs, err);
578}
579
580DEFINE_INTERRUPT_HANDLER(do_page_fault)
581{
582 __do_page_fault(regs);
583}
584
585#ifdef CONFIG_PPC_BOOK3S_64
586/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
587void hash__do_page_fault(struct pt_regs *regs)
588{
589 __do_page_fault(regs);
590}
591NOKPROBE_SYMBOL(hash__do_page_fault);
592#endif
593
594/*
595 * bad_page_fault is called when we have a bad access from the kernel.
596 * It is called from the DSI and ISI handlers in head.S and from some
597 * of the procedures in traps.c.
598 */
599static void __bad_page_fault(struct pt_regs *regs, int sig)
600{
601 int is_write = page_fault_is_write(regs->dsisr);
602 const char *msg;
603
604 /* kernel has accessed a bad area */
605
606 if (regs->dar < PAGE_SIZE)
607 msg = "Kernel NULL pointer dereference";
608 else
609 msg = "Unable to handle kernel data access";
610
611 switch (TRAP(regs)) {
612 case INTERRUPT_DATA_STORAGE:
613 case INTERRUPT_H_DATA_STORAGE:
614 pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
615 is_write ? "write" : "read", regs->dar);
616 break;
617 case INTERRUPT_DATA_SEGMENT:
618 pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
619 break;
620 case INTERRUPT_INST_STORAGE:
621 case INTERRUPT_INST_SEGMENT:
622 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
623 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
624 break;
625 case INTERRUPT_ALIGNMENT:
626 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
627 regs->dar);
628 break;
629 default:
630 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
631 regs->dar);
632 break;
633 }
634 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
635 regs->nip);
636
637 if (task_stack_end_corrupted(current))
638 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
639
640 die("Kernel access of bad area", regs, sig);
641}
642
643void bad_page_fault(struct pt_regs *regs, int sig)
644{
645 const struct exception_table_entry *entry;
646
647 /* Are we prepared to handle this fault? */
648 entry = search_exception_tables(instruction_pointer(regs));
649 if (entry)
650 instruction_pointer_set(regs, extable_fixup(entry));
651 else
652 __bad_page_fault(regs, sig);
653}
654
655#ifdef CONFIG_PPC_BOOK3S_64
656DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
657{
658 bad_page_fault(regs, SIGSEGV);
659}
660
661/*
662 * In radix, segment interrupts indicate the EA is not addressable by the
663 * page table geometry, so they are always sent here.
664 *
665 * In hash, this is called if do_slb_fault returns error. Typically it is
666 * because the EA was outside the region allowed by software.
667 */
668DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
669{
670 int err = regs->result;
671
672 if (err == -EFAULT) {
673 if (user_mode(regs))
674 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
675 else
676 bad_page_fault(regs, SIGSEGV);
677 } else if (err == -EINVAL) {
678 unrecoverable_exception(regs);
679 } else {
680 BUG();
681 }
682}
683#endif
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/task_stack.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/pagemap.h>
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
27#include <linux/extable.h>
28#include <linux/kprobes.h>
29#include <linux/kdebug.h>
30#include <linux/perf_event.h>
31#include <linux/ratelimit.h>
32#include <linux/context_tracking.h>
33#include <linux/hugetlb.h>
34#include <linux/uaccess.h>
35#include <linux/kfence.h>
36#include <linux/pkeys.h>
37
38#include <asm/firmware.h>
39#include <asm/interrupt.h>
40#include <asm/page.h>
41#include <asm/mmu.h>
42#include <asm/mmu_context.h>
43#include <asm/siginfo.h>
44#include <asm/debug.h>
45#include <asm/kup.h>
46#include <asm/inst.h>
47
48
49/*
50 * do_page_fault error handling helpers
51 */
52
53static int
54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
55{
56 /*
57 * If we are in kernel mode, bail out with a SEGV, this will
58 * be caught by the assembly which will restore the non-volatile
59 * registers before calling bad_page_fault()
60 */
61 if (!user_mode(regs))
62 return SIGSEGV;
63
64 _exception(SIGSEGV, regs, si_code, address);
65
66 return 0;
67}
68
69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70{
71 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
72}
73
74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
75 struct mm_struct *mm, struct vm_area_struct *vma)
76{
77
78 /*
79 * Something tried to access memory that isn't in our memory map..
80 * Fix it, but check if it's kernel or user first..
81 */
82 if (mm)
83 mmap_read_unlock(mm);
84 else
85 vma_end_read(vma);
86
87 return __bad_area_nosemaphore(regs, address, si_code);
88}
89
90static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
91 struct mm_struct *mm,
92 struct vm_area_struct *vma)
93{
94 int pkey;
95
96 /*
97 * We don't try to fetch the pkey from page table because reading
98 * page table without locking doesn't guarantee stable pte value.
99 * Hence the pkey value that we return to userspace can be different
100 * from the pkey that actually caused access error.
101 *
102 * It does *not* guarantee that the VMA we find here
103 * was the one that we faulted on.
104 *
105 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
106 * 2. T1 : set AMR to deny access to pkey=4, touches, page
107 * 3. T1 : faults...
108 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
109 * 5. T1 : enters fault handler, takes mmap_lock, etc...
110 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
111 * faulted on a pte with its pkey=4.
112 */
113 pkey = vma_pkey(vma);
114
115 if (mm)
116 mmap_read_unlock(mm);
117 else
118 vma_end_read(vma);
119
120 /*
121 * If we are in kernel mode, bail out with a SEGV, this will
122 * be caught by the assembly which will restore the non-volatile
123 * registers before calling bad_page_fault()
124 */
125 if (!user_mode(regs))
126 return SIGSEGV;
127
128 _exception_pkey(regs, address, pkey);
129
130 return 0;
131}
132
133static noinline int bad_access(struct pt_regs *regs, unsigned long address,
134 struct mm_struct *mm, struct vm_area_struct *vma)
135{
136 return __bad_area(regs, address, SEGV_ACCERR, mm, vma);
137}
138
139static int do_sigbus(struct pt_regs *regs, unsigned long address,
140 vm_fault_t fault)
141{
142 if (!user_mode(regs))
143 return SIGBUS;
144
145 current->thread.trap_nr = BUS_ADRERR;
146#ifdef CONFIG_MEMORY_FAILURE
147 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
148 unsigned int lsb = 0; /* shutup gcc */
149
150 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
151 current->comm, current->pid, address);
152
153 if (fault & VM_FAULT_HWPOISON_LARGE)
154 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
155 if (fault & VM_FAULT_HWPOISON)
156 lsb = PAGE_SHIFT;
157
158 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
159 return 0;
160 }
161
162#endif
163 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
164 return 0;
165}
166
167static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
168 vm_fault_t fault)
169{
170 /*
171 * Kernel page fault interrupted by SIGKILL. We have no reason to
172 * continue processing.
173 */
174 if (fatal_signal_pending(current) && !user_mode(regs))
175 return SIGKILL;
176
177 /* Out of memory */
178 if (fault & VM_FAULT_OOM) {
179 /*
180 * We ran out of memory, or some other thing happened to us that
181 * made us unable to handle the page fault gracefully.
182 */
183 if (!user_mode(regs))
184 return SIGSEGV;
185 pagefault_out_of_memory();
186 } else {
187 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
188 VM_FAULT_HWPOISON_LARGE))
189 return do_sigbus(regs, addr, fault);
190 else if (fault & VM_FAULT_SIGSEGV)
191 return bad_area_nosemaphore(regs, addr);
192 else
193 BUG();
194 }
195 return 0;
196}
197
198/* Is this a bad kernel fault ? */
199static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
200 unsigned long address, bool is_write)
201{
202 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
203
204 if (is_exec) {
205 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
206 address >= TASK_SIZE ? "exec-protected" : "user",
207 address,
208 from_kuid(&init_user_ns, current_uid()));
209
210 // Kernel exec fault is always bad
211 return true;
212 }
213
214 // Kernel fault on kernel address is bad
215 if (address >= TASK_SIZE)
216 return true;
217
218 // Read/write fault blocked by KUAP is bad, it can never succeed.
219 if (bad_kuap_fault(regs, address, is_write)) {
220 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
221 is_write ? "write" : "read", address,
222 from_kuid(&init_user_ns, current_uid()));
223
224 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
225 if (!search_exception_tables(regs->nip))
226 return true;
227
228 // Read/write fault in a valid region (the exception table search passed
229 // above), but blocked by KUAP is bad, it can never succeed.
230 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
231 }
232
233 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
234 return false;
235}
236
237static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
238 struct vm_area_struct *vma)
239{
240 /*
241 * Make sure to check the VMA so that we do not perform
242 * faults just to hit a pkey fault as soon as we fill in a
243 * page. Only called for current mm, hence foreign == 0
244 */
245 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
246 return true;
247
248 return false;
249}
250
251static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
252{
253 /*
254 * Allow execution from readable areas if the MMU does not
255 * provide separate controls over reading and executing.
256 *
257 * Note: That code used to not be enabled for 4xx/BookE.
258 * It is now as I/D cache coherency for these is done at
259 * set_pte_at() time and I see no reason why the test
260 * below wouldn't be valid on those processors. This -may-
261 * break programs compiled with a really old ABI though.
262 */
263 if (is_exec) {
264 return !(vma->vm_flags & VM_EXEC) &&
265 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
266 !(vma->vm_flags & (VM_READ | VM_WRITE)));
267 }
268
269 if (is_write) {
270 if (unlikely(!(vma->vm_flags & VM_WRITE)))
271 return true;
272 return false;
273 }
274
275 /*
276 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
277 * defined in protection_map[]. In that case Read faults can only be
278 * caused by a PROT_NONE mapping. However a non exec access on a
279 * VM_EXEC only mapping is invalid anyway, so report it as such.
280 */
281 if (unlikely(!vma_is_accessible(vma)))
282 return true;
283
284 if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
285 return true;
286
287 /*
288 * We should ideally do the vma pkey access check here. But in the
289 * fault path, handle_mm_fault() also does the same check. To avoid
290 * these multiple checks, we skip it here and handle access error due
291 * to pkeys later.
292 */
293 return false;
294}
295
296#ifdef CONFIG_PPC_SMLPAR
297static inline void cmo_account_page_fault(void)
298{
299 if (firmware_has_feature(FW_FEATURE_CMO)) {
300 u32 page_ins;
301
302 preempt_disable();
303 page_ins = be32_to_cpu(get_lppaca()->page_ins);
304 page_ins += 1 << PAGE_FACTOR;
305 get_lppaca()->page_ins = cpu_to_be32(page_ins);
306 preempt_enable();
307 }
308}
309#else
310static inline void cmo_account_page_fault(void) { }
311#endif /* CONFIG_PPC_SMLPAR */
312
313static void sanity_check_fault(bool is_write, bool is_user,
314 unsigned long error_code, unsigned long address)
315{
316 /*
317 * Userspace trying to access kernel address, we get PROTFAULT for that.
318 */
319 if (is_user && address >= TASK_SIZE) {
320 if ((long)address == -1)
321 return;
322
323 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
324 current->comm, current->pid, address,
325 from_kuid(&init_user_ns, current_uid()));
326 return;
327 }
328
329 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
330 return;
331
332 /*
333 * For hash translation mode, we should never get a
334 * PROTFAULT. Any update to pte to reduce access will result in us
335 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
336 * fault instead of DSISR_PROTFAULT.
337 *
338 * A pte update to relax the access will not result in a hash page table
339 * entry invalidate and hence can result in DSISR_PROTFAULT.
340 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
341 * the special !is_write in the below conditional.
342 *
343 * For platforms that doesn't supports coherent icache and do support
344 * per page noexec bit, we do setup things such that we do the
345 * sync between D/I cache via fault. But that is handled via low level
346 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
347 * here in such case.
348 *
349 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
350 * check should handle those and hence we should fall to the bad_area
351 * handling correctly.
352 *
353 * For embedded with per page exec support that doesn't support coherent
354 * icache we do get PROTFAULT and we handle that D/I cache sync in
355 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
356 * is conditional for server MMU.
357 *
358 * For radix, we can get prot fault for autonuma case, because radix
359 * page table will have them marked noaccess for user.
360 */
361 if (radix_enabled() || is_write)
362 return;
363
364 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
365}
366
367/*
368 * Define the correct "is_write" bit in error_code based
369 * on the processor family
370 */
371#ifdef CONFIG_BOOKE
372#define page_fault_is_write(__err) ((__err) & ESR_DST)
373#else
374#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
375#endif
376
377#ifdef CONFIG_BOOKE
378#define page_fault_is_bad(__err) (0)
379#elif defined(CONFIG_PPC_8xx)
380#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
381#elif defined(CONFIG_PPC64)
382static int page_fault_is_bad(unsigned long err)
383{
384 unsigned long flag = DSISR_BAD_FAULT_64S;
385
386 /*
387 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
388 * If byte 0, bit 3 of pi-attribute-specifier-type in
389 * ibm,pi-features property is defined, ignore the DSI error
390 * which is caused by the paste instruction on the
391 * suspended NX window.
392 */
393 if (mmu_has_feature(MMU_FTR_NX_DSI))
394 flag &= ~DSISR_BAD_COPYPASTE;
395
396 return err & flag;
397}
398#else
399#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
400#endif
401
402/*
403 * For 600- and 800-family processors, the error_code parameter is DSISR
404 * for a data fault, SRR1 for an instruction fault.
405 * For 400-family processors the error_code parameter is ESR for a data fault,
406 * 0 for an instruction fault.
407 * For 64-bit processors, the error_code parameter is DSISR for a data access
408 * fault, SRR1 & 0x08000000 for an instruction access fault.
409 *
410 * The return value is 0 if the fault was handled, or the signal
411 * number if this is a kernel fault that can't be handled here.
412 */
413static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
414 unsigned long error_code)
415{
416 struct vm_area_struct * vma;
417 struct mm_struct *mm = current->mm;
418 unsigned int flags = FAULT_FLAG_DEFAULT;
419 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
420 int is_user = user_mode(regs);
421 int is_write = page_fault_is_write(error_code);
422 vm_fault_t fault, major = 0;
423 bool kprobe_fault = kprobe_page_fault(regs, 11);
424
425 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
426 return 0;
427
428 if (unlikely(page_fault_is_bad(error_code))) {
429 if (is_user) {
430 _exception(SIGBUS, regs, BUS_OBJERR, address);
431 return 0;
432 }
433 return SIGBUS;
434 }
435
436 /* Additional sanity check(s) */
437 sanity_check_fault(is_write, is_user, error_code, address);
438
439 /*
440 * The kernel should never take an execute fault nor should it
441 * take a page fault to a kernel address or a page fault to a user
442 * address outside of dedicated places.
443 *
444 * Rather than kfence directly reporting false negatives, search whether
445 * the NIP belongs to the fixup table for cases where fault could come
446 * from functions like copy_from_kernel_nofault().
447 */
448 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
449 if (is_kfence_address((void *)address) &&
450 !search_exception_tables(instruction_pointer(regs)) &&
451 kfence_handle_page_fault(address, is_write, regs))
452 return 0;
453
454 return SIGSEGV;
455 }
456
457 /*
458 * If we're in an interrupt, have no user context or are running
459 * in a region with pagefaults disabled then we must not take the fault
460 */
461 if (unlikely(faulthandler_disabled() || !mm)) {
462 if (is_user)
463 printk_ratelimited(KERN_ERR "Page fault in user mode"
464 " with faulthandler_disabled()=%d"
465 " mm=%p\n",
466 faulthandler_disabled(), mm);
467 return bad_area_nosemaphore(regs, address);
468 }
469
470 interrupt_cond_local_irq_enable(regs);
471
472 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
473
474 /*
475 * We want to do this outside mmap_lock, because reading code around nip
476 * can result in fault, which will cause a deadlock when called with
477 * mmap_lock held
478 */
479 if (is_user)
480 flags |= FAULT_FLAG_USER;
481 if (is_write)
482 flags |= FAULT_FLAG_WRITE;
483 if (is_exec)
484 flags |= FAULT_FLAG_INSTRUCTION;
485
486 if (!(flags & FAULT_FLAG_USER))
487 goto lock_mmap;
488
489 vma = lock_vma_under_rcu(mm, address);
490 if (!vma)
491 goto lock_mmap;
492
493 if (unlikely(access_pkey_error(is_write, is_exec,
494 (error_code & DSISR_KEYFAULT), vma))) {
495 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
496 return bad_access_pkey(regs, address, NULL, vma);
497 }
498
499 if (unlikely(access_error(is_write, is_exec, vma))) {
500 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
501 return bad_access(regs, address, NULL, vma);
502 }
503
504 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
505 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
506 vma_end_read(vma);
507
508 if (!(fault & VM_FAULT_RETRY)) {
509 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
510 goto done;
511 }
512 count_vm_vma_lock_event(VMA_LOCK_RETRY);
513 if (fault & VM_FAULT_MAJOR)
514 flags |= FAULT_FLAG_TRIED;
515
516 if (fault_signal_pending(fault, regs))
517 return user_mode(regs) ? 0 : SIGBUS;
518
519lock_mmap:
520
521 /* When running in the kernel we expect faults to occur only to
522 * addresses in user space. All other faults represent errors in the
523 * kernel and should generate an OOPS. Unfortunately, in the case of an
524 * erroneous fault occurring in a code path which already holds mmap_lock
525 * we will deadlock attempting to validate the fault against the
526 * address space. Luckily the kernel only validly references user
527 * space from well defined areas of code, which are listed in the
528 * exceptions table. lock_mm_and_find_vma() handles that logic.
529 */
530retry:
531 vma = lock_mm_and_find_vma(mm, address, regs);
532 if (unlikely(!vma))
533 return bad_area_nosemaphore(regs, address);
534
535 if (unlikely(access_pkey_error(is_write, is_exec,
536 (error_code & DSISR_KEYFAULT), vma)))
537 return bad_access_pkey(regs, address, mm, vma);
538
539 if (unlikely(access_error(is_write, is_exec, vma)))
540 return bad_access(regs, address, mm, vma);
541
542 /*
543 * If for any reason at all we couldn't handle the fault,
544 * make sure we exit gracefully rather than endlessly redo
545 * the fault.
546 */
547 fault = handle_mm_fault(vma, address, flags, regs);
548
549 major |= fault & VM_FAULT_MAJOR;
550
551 if (fault_signal_pending(fault, regs))
552 return user_mode(regs) ? 0 : SIGBUS;
553
554 /* The fault is fully completed (including releasing mmap lock) */
555 if (fault & VM_FAULT_COMPLETED)
556 goto out;
557
558 /*
559 * Handle the retry right now, the mmap_lock has been released in that
560 * case.
561 */
562 if (unlikely(fault & VM_FAULT_RETRY)) {
563 flags |= FAULT_FLAG_TRIED;
564 goto retry;
565 }
566
567 mmap_read_unlock(current->mm);
568
569done:
570 if (unlikely(fault & VM_FAULT_ERROR))
571 return mm_fault_error(regs, address, fault);
572
573out:
574 /*
575 * Major/minor page fault accounting.
576 */
577 if (major)
578 cmo_account_page_fault();
579
580 return 0;
581}
582NOKPROBE_SYMBOL(___do_page_fault);
583
584static __always_inline void __do_page_fault(struct pt_regs *regs)
585{
586 long err;
587
588 err = ___do_page_fault(regs, regs->dar, regs->dsisr);
589 if (unlikely(err))
590 bad_page_fault(regs, err);
591}
592
593DEFINE_INTERRUPT_HANDLER(do_page_fault)
594{
595 __do_page_fault(regs);
596}
597
598#ifdef CONFIG_PPC_BOOK3S_64
599/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
600void hash__do_page_fault(struct pt_regs *regs)
601{
602 __do_page_fault(regs);
603}
604NOKPROBE_SYMBOL(hash__do_page_fault);
605#endif
606
607/*
608 * bad_page_fault is called when we have a bad access from the kernel.
609 * It is called from the DSI and ISI handlers in head.S and from some
610 * of the procedures in traps.c.
611 */
612static void __bad_page_fault(struct pt_regs *regs, int sig)
613{
614 int is_write = page_fault_is_write(regs->dsisr);
615 const char *msg;
616
617 /* kernel has accessed a bad area */
618
619 if (regs->dar < PAGE_SIZE)
620 msg = "Kernel NULL pointer dereference";
621 else
622 msg = "Unable to handle kernel data access";
623
624 switch (TRAP(regs)) {
625 case INTERRUPT_DATA_STORAGE:
626 case INTERRUPT_H_DATA_STORAGE:
627 pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
628 is_write ? "write" : "read", regs->dar);
629 break;
630 case INTERRUPT_DATA_SEGMENT:
631 pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
632 break;
633 case INTERRUPT_INST_STORAGE:
634 case INTERRUPT_INST_SEGMENT:
635 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
636 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
637 break;
638 case INTERRUPT_ALIGNMENT:
639 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
640 regs->dar);
641 break;
642 default:
643 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
644 regs->dar);
645 break;
646 }
647 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
648 regs->nip);
649
650 if (task_stack_end_corrupted(current))
651 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
652
653 die("Kernel access of bad area", regs, sig);
654}
655
656void bad_page_fault(struct pt_regs *regs, int sig)
657{
658 const struct exception_table_entry *entry;
659
660 /* Are we prepared to handle this fault? */
661 entry = search_exception_tables(instruction_pointer(regs));
662 if (entry)
663 instruction_pointer_set(regs, extable_fixup(entry));
664 else
665 __bad_page_fault(regs, sig);
666}
667
668#ifdef CONFIG_PPC_BOOK3S_64
669DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
670{
671 bad_page_fault(regs, SIGSEGV);
672}
673
674/*
675 * In radix, segment interrupts indicate the EA is not addressable by the
676 * page table geometry, so they are always sent here.
677 *
678 * In hash, this is called if do_slb_fault returns error. Typically it is
679 * because the EA was outside the region allowed by software.
680 */
681DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
682{
683 int err = regs->result;
684
685 if (err == -EFAULT) {
686 if (user_mode(regs))
687 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
688 else
689 bad_page_fault(regs, SIGSEGV);
690 } else if (err == -EINVAL) {
691 unrecoverable_exception(regs);
692 } else {
693 BUG();
694 }
695}
696#endif