Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 35#include <linux/kfence.h>
 36#include <linux/pkeys.h>
 37
 38#include <asm/firmware.h>
 39#include <asm/interrupt.h>
 40#include <asm/page.h>
 41#include <asm/mmu.h>
 42#include <asm/mmu_context.h>
 43#include <asm/siginfo.h>
 44#include <asm/debug.h>
 45#include <asm/kup.h>
 46#include <asm/inst.h>
 47
 48
 49/*
 50 * do_page_fault error handling helpers
 51 */
 52
 53static int
 54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 55{
 56	/*
 57	 * If we are in kernel mode, bail out with a SEGV, this will
 58	 * be caught by the assembly which will restore the non-volatile
 59	 * registers before calling bad_page_fault()
 60	 */
 61	if (!user_mode(regs))
 62		return SIGSEGV;
 63
 64	_exception(SIGSEGV, regs, si_code, address);
 65
 66	return 0;
 67}
 68
 69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 70{
 71	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 72}
 73
 74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 75{
 76	struct mm_struct *mm = current->mm;
 77
 78	/*
 79	 * Something tried to access memory that isn't in our memory map..
 80	 * Fix it, but check if it's kernel or user first..
 81	 */
 82	mmap_read_unlock(mm);
 83
 84	return __bad_area_nosemaphore(regs, address, si_code);
 85}
 86
 
 
 
 
 
 
 87static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 88				    struct vm_area_struct *vma)
 89{
 90	struct mm_struct *mm = current->mm;
 91	int pkey;
 92
 93	/*
 94	 * We don't try to fetch the pkey from page table because reading
 95	 * page table without locking doesn't guarantee stable pte value.
 96	 * Hence the pkey value that we return to userspace can be different
 97	 * from the pkey that actually caused access error.
 98	 *
 99	 * It does *not* guarantee that the VMA we find here
100	 * was the one that we faulted on.
101	 *
102	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
103	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
104	 * 3. T1   : faults...
105	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
106	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
107	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
108	 *	     faulted on a pte with its pkey=4.
109	 */
110	pkey = vma_pkey(vma);
111
112	mmap_read_unlock(mm);
113
114	/*
115	 * If we are in kernel mode, bail out with a SEGV, this will
116	 * be caught by the assembly which will restore the non-volatile
117	 * registers before calling bad_page_fault()
118	 */
119	if (!user_mode(regs))
120		return SIGSEGV;
121
122	_exception_pkey(regs, address, pkey);
123
124	return 0;
125}
 
126
127static noinline int bad_access(struct pt_regs *regs, unsigned long address)
128{
129	return __bad_area(regs, address, SEGV_ACCERR);
130}
131
132static int do_sigbus(struct pt_regs *regs, unsigned long address,
133		     vm_fault_t fault)
134{
135	if (!user_mode(regs))
136		return SIGBUS;
137
138	current->thread.trap_nr = BUS_ADRERR;
139#ifdef CONFIG_MEMORY_FAILURE
140	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
141		unsigned int lsb = 0; /* shutup gcc */
142
143		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
144			current->comm, current->pid, address);
145
146		if (fault & VM_FAULT_HWPOISON_LARGE)
147			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
148		if (fault & VM_FAULT_HWPOISON)
149			lsb = PAGE_SHIFT;
150
151		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
152		return 0;
153	}
154
155#endif
156	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
157	return 0;
158}
159
160static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
161				vm_fault_t fault)
162{
163	/*
164	 * Kernel page fault interrupted by SIGKILL. We have no reason to
165	 * continue processing.
166	 */
167	if (fatal_signal_pending(current) && !user_mode(regs))
168		return SIGKILL;
169
170	/* Out of memory */
171	if (fault & VM_FAULT_OOM) {
172		/*
173		 * We ran out of memory, or some other thing happened to us that
174		 * made us unable to handle the page fault gracefully.
175		 */
176		if (!user_mode(regs))
177			return SIGSEGV;
178		pagefault_out_of_memory();
179	} else {
180		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
181			     VM_FAULT_HWPOISON_LARGE))
182			return do_sigbus(regs, addr, fault);
183		else if (fault & VM_FAULT_SIGSEGV)
184			return bad_area_nosemaphore(regs, addr);
185		else
186			BUG();
187	}
188	return 0;
189}
190
191/* Is this a bad kernel fault ? */
192static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
193			     unsigned long address, bool is_write)
194{
195	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
196
197	if (is_exec) {
 
 
198		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
199				    address >= TASK_SIZE ? "exec-protected" : "user",
200				    address,
201				    from_kuid(&init_user_ns, current_uid()));
202
203		// Kernel exec fault is always bad
204		return true;
205	}
206
 
 
 
 
 
 
 
207	// Kernel fault on kernel address is bad
208	if (address >= TASK_SIZE)
209		return true;
210
211	// Read/write fault blocked by KUAP is bad, it can never succeed.
212	if (bad_kuap_fault(regs, address, is_write)) {
213		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
214				    is_write ? "write" : "read", address,
215				    from_kuid(&init_user_ns, current_uid()));
216
217		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
218		if (!search_exception_tables(regs->nip))
219			return true;
220
221		// Read/write fault in a valid region (the exception table search passed
222		// above), but blocked by KUAP is bad, it can never succeed.
223		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
224	}
225
226	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
 
227	return false;
228}
229
 
230static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
231			      struct vm_area_struct *vma)
232{
233	/*
234	 * Make sure to check the VMA so that we do not perform
235	 * faults just to hit a pkey fault as soon as we fill in a
236	 * page. Only called for current mm, hence foreign == 0
237	 */
238	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
239		return true;
240
241	return false;
242}
 
243
244static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
245{
246	/*
247	 * Allow execution from readable areas if the MMU does not
248	 * provide separate controls over reading and executing.
249	 *
250	 * Note: That code used to not be enabled for 4xx/BookE.
251	 * It is now as I/D cache coherency for these is done at
252	 * set_pte_at() time and I see no reason why the test
253	 * below wouldn't be valid on those processors. This -may-
254	 * break programs compiled with a really old ABI though.
255	 */
256	if (is_exec) {
257		return !(vma->vm_flags & VM_EXEC) &&
258			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
259			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
260	}
261
262	if (is_write) {
263		if (unlikely(!(vma->vm_flags & VM_WRITE)))
264			return true;
265		return false;
266	}
267
268	/*
269	 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
270	 * defined in protection_map[].  In that case Read faults can only be
271	 * caused by a PROT_NONE mapping. However a non exec access on a
272	 * VM_EXEC only mapping is invalid anyway, so report it as such.
273	 */
274	if (unlikely(!vma_is_accessible(vma)))
275		return true;
276
277	if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
278		return true;
279
280	/*
281	 * We should ideally do the vma pkey access check here. But in the
282	 * fault path, handle_mm_fault() also does the same check. To avoid
283	 * these multiple checks, we skip it here and handle access error due
284	 * to pkeys later.
285	 */
286	return false;
287}
288
289#ifdef CONFIG_PPC_SMLPAR
290static inline void cmo_account_page_fault(void)
291{
292	if (firmware_has_feature(FW_FEATURE_CMO)) {
293		u32 page_ins;
294
295		preempt_disable();
296		page_ins = be32_to_cpu(get_lppaca()->page_ins);
297		page_ins += 1 << PAGE_FACTOR;
298		get_lppaca()->page_ins = cpu_to_be32(page_ins);
299		preempt_enable();
300	}
301}
302#else
303static inline void cmo_account_page_fault(void) { }
304#endif /* CONFIG_PPC_SMLPAR */
305
 
306static void sanity_check_fault(bool is_write, bool is_user,
307			       unsigned long error_code, unsigned long address)
308{
309	/*
310	 * Userspace trying to access kernel address, we get PROTFAULT for that.
311	 */
312	if (is_user && address >= TASK_SIZE) {
313		if ((long)address == -1)
314			return;
315
316		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
317				   current->comm, current->pid, address,
318				   from_kuid(&init_user_ns, current_uid()));
319		return;
320	}
321
322	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
323		return;
324
325	/*
326	 * For hash translation mode, we should never get a
327	 * PROTFAULT. Any update to pte to reduce access will result in us
328	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
329	 * fault instead of DSISR_PROTFAULT.
330	 *
331	 * A pte update to relax the access will not result in a hash page table
332	 * entry invalidate and hence can result in DSISR_PROTFAULT.
333	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
334	 * the special !is_write in the below conditional.
335	 *
336	 * For platforms that doesn't supports coherent icache and do support
337	 * per page noexec bit, we do setup things such that we do the
338	 * sync between D/I cache via fault. But that is handled via low level
339	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
340	 * here in such case.
341	 *
342	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
343	 * check should handle those and hence we should fall to the bad_area
344	 * handling correctly.
345	 *
346	 * For embedded with per page exec support that doesn't support coherent
347	 * icache we do get PROTFAULT and we handle that D/I cache sync in
348	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
349	 * is conditional for server MMU.
350	 *
351	 * For radix, we can get prot fault for autonuma case, because radix
352	 * page table will have them marked noaccess for user.
353	 */
354	if (radix_enabled() || is_write)
355		return;
356
357	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
358}
 
 
 
 
359
360/*
361 * Define the correct "is_write" bit in error_code based
362 * on the processor family
363 */
364#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365#define page_fault_is_write(__err)	((__err) & ESR_DST)
 
366#else
367#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
368#endif
369
370#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
371#define page_fault_is_bad(__err)	(0)
372#elif defined(CONFIG_PPC_8xx)
373#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
374#elif defined(CONFIG_PPC64)
375static int page_fault_is_bad(unsigned long err)
376{
377	unsigned long flag = DSISR_BAD_FAULT_64S;
378
379	/*
380	 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
381	 * If byte 0, bit 3 of pi-attribute-specifier-type in
382	 * ibm,pi-features property is defined, ignore the DSI error
383	 * which is caused by the paste instruction on the
384	 * suspended NX window.
385	 */
386	if (mmu_has_feature(MMU_FTR_NX_DSI))
387		flag &= ~DSISR_BAD_COPYPASTE;
388
389	return err & flag;
390}
391#else
392#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
393#endif
 
394
395/*
396 * For 600- and 800-family processors, the error_code parameter is DSISR
397 * for a data fault, SRR1 for an instruction fault.
398 * For 400-family processors the error_code parameter is ESR for a data fault,
399 * 0 for an instruction fault.
400 * For 64-bit processors, the error_code parameter is DSISR for a data access
401 * fault, SRR1 & 0x08000000 for an instruction access fault.
 
 
402 *
403 * The return value is 0 if the fault was handled, or the signal
404 * number if this is a kernel fault that can't be handled here.
405 */
406static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
407			   unsigned long error_code)
408{
409	struct vm_area_struct * vma;
410	struct mm_struct *mm = current->mm;
411	unsigned int flags = FAULT_FLAG_DEFAULT;
412	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
413	int is_user = user_mode(regs);
414	int is_write = page_fault_is_write(error_code);
415	vm_fault_t fault, major = 0;
416	bool kprobe_fault = kprobe_page_fault(regs, 11);
417
418	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
419		return 0;
420
421	if (unlikely(page_fault_is_bad(error_code))) {
422		if (is_user) {
423			_exception(SIGBUS, regs, BUS_OBJERR, address);
424			return 0;
425		}
426		return SIGBUS;
427	}
428
429	/* Additional sanity check(s) */
430	sanity_check_fault(is_write, is_user, error_code, address);
431
432	/*
433	 * The kernel should never take an execute fault nor should it
434	 * take a page fault to a kernel address or a page fault to a user
435	 * address outside of dedicated places
436	 */
437	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
438		if (kfence_handle_page_fault(address, is_write, regs))
439			return 0;
440
441		return SIGSEGV;
442	}
443
444	/*
445	 * If we're in an interrupt, have no user context or are running
446	 * in a region with pagefaults disabled then we must not take the fault
447	 */
448	if (unlikely(faulthandler_disabled() || !mm)) {
449		if (is_user)
450			printk_ratelimited(KERN_ERR "Page fault in user mode"
451					   " with faulthandler_disabled()=%d"
452					   " mm=%p\n",
453					   faulthandler_disabled(), mm);
454		return bad_area_nosemaphore(regs, address);
455	}
456
457	interrupt_cond_local_irq_enable(regs);
 
 
458
459	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460
461	/*
462	 * We want to do this outside mmap_lock, because reading code around nip
463	 * can result in fault, which will cause a deadlock when called with
464	 * mmap_lock held
465	 */
466	if (is_user)
467		flags |= FAULT_FLAG_USER;
468	if (is_write)
469		flags |= FAULT_FLAG_WRITE;
470	if (is_exec)
471		flags |= FAULT_FLAG_INSTRUCTION;
472
473	if (!(flags & FAULT_FLAG_USER))
474		goto lock_mmap;
475
476	vma = lock_vma_under_rcu(mm, address);
477	if (!vma)
478		goto lock_mmap;
479
480	if (unlikely(access_pkey_error(is_write, is_exec,
481				       (error_code & DSISR_KEYFAULT), vma))) {
482		vma_end_read(vma);
483		goto lock_mmap;
484	}
485
486	if (unlikely(access_error(is_write, is_exec, vma))) {
487		vma_end_read(vma);
488		goto lock_mmap;
489	}
490
491	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
492	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
493		vma_end_read(vma);
494
495	if (!(fault & VM_FAULT_RETRY)) {
496		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497		goto done;
498	}
499	count_vm_vma_lock_event(VMA_LOCK_RETRY);
500	if (fault & VM_FAULT_MAJOR)
501		flags |= FAULT_FLAG_TRIED;
502
503	if (fault_signal_pending(fault, regs))
504		return user_mode(regs) ? 0 : SIGBUS;
505
506lock_mmap:
507
508	/* When running in the kernel we expect faults to occur only to
509	 * addresses in user space.  All other faults represent errors in the
510	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
511	 * erroneous fault occurring in a code path which already holds mmap_lock
512	 * we will deadlock attempting to validate the fault against the
513	 * address space.  Luckily the kernel only validly references user
514	 * space from well defined areas of code, which are listed in the
515	 * exceptions table. lock_mm_and_find_vma() handles that logic.
516	 */
 
 
 
 
 
 
 
 
 
 
517retry:
518	vma = lock_mm_and_find_vma(mm, address, regs);
 
 
 
 
 
 
 
 
 
 
519	if (unlikely(!vma))
520		return bad_area_nosemaphore(regs, address);
 
 
 
 
 
 
 
 
521
 
522	if (unlikely(access_pkey_error(is_write, is_exec,
523				       (error_code & DSISR_KEYFAULT), vma)))
524		return bad_access_pkey(regs, address, vma);
 
525
526	if (unlikely(access_error(is_write, is_exec, vma)))
527		return bad_access(regs, address);
528
529	/*
530	 * If for any reason at all we couldn't handle the fault,
531	 * make sure we exit gracefully rather than endlessly redo
532	 * the fault.
533	 */
534	fault = handle_mm_fault(vma, address, flags, regs);
535
536	major |= fault & VM_FAULT_MAJOR;
537
538	if (fault_signal_pending(fault, regs))
539		return user_mode(regs) ? 0 : SIGBUS;
540
541	/* The fault is fully completed (including releasing mmap lock) */
542	if (fault & VM_FAULT_COMPLETED)
543		goto out;
544
545	/*
546	 * Handle the retry right now, the mmap_lock has been released in that
547	 * case.
548	 */
549	if (unlikely(fault & VM_FAULT_RETRY)) {
550		flags |= FAULT_FLAG_TRIED;
551		goto retry;
 
 
552	}
553
554	mmap_read_unlock(current->mm);
555
556done:
557	if (unlikely(fault & VM_FAULT_ERROR))
558		return mm_fault_error(regs, address, fault);
559
560out:
561	/*
562	 * Major/minor page fault accounting.
563	 */
564	if (major)
565		cmo_account_page_fault();
566
567	return 0;
568}
569NOKPROBE_SYMBOL(___do_page_fault);
570
571static __always_inline void __do_page_fault(struct pt_regs *regs)
572{
573	long err;
574
575	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
576	if (unlikely(err))
577		bad_page_fault(regs, err);
578}
579
580DEFINE_INTERRUPT_HANDLER(do_page_fault)
 
581{
582	__do_page_fault(regs);
 
 
 
583}
584
585#ifdef CONFIG_PPC_BOOK3S_64
586/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
587void hash__do_page_fault(struct pt_regs *regs)
588{
589	__do_page_fault(regs);
590}
591NOKPROBE_SYMBOL(hash__do_page_fault);
592#endif
593
594/*
595 * bad_page_fault is called when we have a bad access from the kernel.
596 * It is called from the DSI and ISI handlers in head.S and from some
597 * of the procedures in traps.c.
598 */
599static void __bad_page_fault(struct pt_regs *regs, int sig)
600{
 
601	int is_write = page_fault_is_write(regs->dsisr);
602	const char *msg;
603
604	/* kernel has accessed a bad area */
 
 
 
 
605
606	if (regs->dar < PAGE_SIZE)
607		msg = "Kernel NULL pointer dereference";
608	else
609		msg = "Unable to handle kernel data access";
610
611	switch (TRAP(regs)) {
612	case INTERRUPT_DATA_STORAGE:
613	case INTERRUPT_H_DATA_STORAGE:
614		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
 
 
 
615			 is_write ? "write" : "read", regs->dar);
616		break;
617	case INTERRUPT_DATA_SEGMENT:
618		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
619		break;
620	case INTERRUPT_INST_STORAGE:
621	case INTERRUPT_INST_SEGMENT:
622		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
623			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
624		break;
625	case INTERRUPT_ALIGNMENT:
626		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
627			 regs->dar);
628		break;
629	default:
630		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
631			 regs->dar);
632		break;
633	}
634	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
635		regs->nip);
636
637	if (task_stack_end_corrupted(current))
638		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
639
640	die("Kernel access of bad area", regs, sig);
641}
642
643void bad_page_fault(struct pt_regs *regs, int sig)
644{
645	const struct exception_table_entry *entry;
646
647	/* Are we prepared to handle this fault?  */
648	entry = search_exception_tables(instruction_pointer(regs));
649	if (entry)
650		instruction_pointer_set(regs, extable_fixup(entry));
651	else
652		__bad_page_fault(regs, sig);
653}
654
655#ifdef CONFIG_PPC_BOOK3S_64
656DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
657{
658	bad_page_fault(regs, SIGSEGV);
659}
660
661/*
662 * In radix, segment interrupts indicate the EA is not addressable by the
663 * page table geometry, so they are always sent here.
664 *
665 * In hash, this is called if do_slb_fault returns error. Typically it is
666 * because the EA was outside the region allowed by software.
667 */
668DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
669{
670	int err = regs->result;
671
672	if (err == -EFAULT) {
673		if (user_mode(regs))
674			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
675		else
676			bad_page_fault(regs, SIGSEGV);
677	} else if (err == -EINVAL) {
678		unrecoverable_exception(regs);
679	} else {
680		BUG();
681	}
682}
683#endif
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Derived from "arch/i386/mm/fault.c"
  7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  8 *
  9 *  Modified by Cort Dougan and Paul Mackerras.
 10 *
 11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 12 */
 13
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/highmem.h>
 27#include <linux/extable.h>
 28#include <linux/kprobes.h>
 29#include <linux/kdebug.h>
 30#include <linux/perf_event.h>
 31#include <linux/ratelimit.h>
 32#include <linux/context_tracking.h>
 33#include <linux/hugetlb.h>
 34#include <linux/uaccess.h>
 
 
 35
 36#include <asm/firmware.h>
 
 37#include <asm/page.h>
 38#include <asm/mmu.h>
 39#include <asm/mmu_context.h>
 40#include <asm/siginfo.h>
 41#include <asm/debug.h>
 42#include <asm/kup.h>
 43#include <asm/inst.h>
 44
 45
 46/*
 47 * do_page_fault error handling helpers
 48 */
 49
 50static int
 51__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 52{
 53	/*
 54	 * If we are in kernel mode, bail out with a SEGV, this will
 55	 * be caught by the assembly which will restore the non-volatile
 56	 * registers before calling bad_page_fault()
 57	 */
 58	if (!user_mode(regs))
 59		return SIGSEGV;
 60
 61	_exception(SIGSEGV, regs, si_code, address);
 62
 63	return 0;
 64}
 65
 66static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 67{
 68	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 69}
 70
 71static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 72{
 73	struct mm_struct *mm = current->mm;
 74
 75	/*
 76	 * Something tried to access memory that isn't in our memory map..
 77	 * Fix it, but check if it's kernel or user first..
 78	 */
 79	mmap_read_unlock(mm);
 80
 81	return __bad_area_nosemaphore(regs, address, si_code);
 82}
 83
 84static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 85{
 86	return __bad_area(regs, address, SEGV_MAPERR);
 87}
 88
 89#ifdef CONFIG_PPC_MEM_KEYS
 90static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
 91				    struct vm_area_struct *vma)
 92{
 93	struct mm_struct *mm = current->mm;
 94	int pkey;
 95
 96	/*
 97	 * We don't try to fetch the pkey from page table because reading
 98	 * page table without locking doesn't guarantee stable pte value.
 99	 * Hence the pkey value that we return to userspace can be different
100	 * from the pkey that actually caused access error.
101	 *
102	 * It does *not* guarantee that the VMA we find here
103	 * was the one that we faulted on.
104	 *
105	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
106	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
107	 * 3. T1   : faults...
108	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
109	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
110	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
111	 *	     faulted on a pte with its pkey=4.
112	 */
113	pkey = vma_pkey(vma);
114
115	mmap_read_unlock(mm);
116
117	/*
118	 * If we are in kernel mode, bail out with a SEGV, this will
119	 * be caught by the assembly which will restore the non-volatile
120	 * registers before calling bad_page_fault()
121	 */
122	if (!user_mode(regs))
123		return SIGSEGV;
124
125	_exception_pkey(regs, address, pkey);
126
127	return 0;
128}
129#endif
130
131static noinline int bad_access(struct pt_regs *regs, unsigned long address)
132{
133	return __bad_area(regs, address, SEGV_ACCERR);
134}
135
136static int do_sigbus(struct pt_regs *regs, unsigned long address,
137		     vm_fault_t fault)
138{
139	if (!user_mode(regs))
140		return SIGBUS;
141
142	current->thread.trap_nr = BUS_ADRERR;
143#ifdef CONFIG_MEMORY_FAILURE
144	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
145		unsigned int lsb = 0; /* shutup gcc */
146
147		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
148			current->comm, current->pid, address);
149
150		if (fault & VM_FAULT_HWPOISON_LARGE)
151			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
152		if (fault & VM_FAULT_HWPOISON)
153			lsb = PAGE_SHIFT;
154
155		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
156		return 0;
157	}
158
159#endif
160	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
161	return 0;
162}
163
164static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
165				vm_fault_t fault)
166{
167	/*
168	 * Kernel page fault interrupted by SIGKILL. We have no reason to
169	 * continue processing.
170	 */
171	if (fatal_signal_pending(current) && !user_mode(regs))
172		return SIGKILL;
173
174	/* Out of memory */
175	if (fault & VM_FAULT_OOM) {
176		/*
177		 * We ran out of memory, or some other thing happened to us that
178		 * made us unable to handle the page fault gracefully.
179		 */
180		if (!user_mode(regs))
181			return SIGSEGV;
182		pagefault_out_of_memory();
183	} else {
184		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
185			     VM_FAULT_HWPOISON_LARGE))
186			return do_sigbus(regs, addr, fault);
187		else if (fault & VM_FAULT_SIGSEGV)
188			return bad_area_nosemaphore(regs, addr);
189		else
190			BUG();
191	}
192	return 0;
193}
194
195/* Is this a bad kernel fault ? */
196static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
197			     unsigned long address, bool is_write)
198{
199	int is_exec = TRAP(regs) == 0x400;
200
201	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
202	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
203				      DSISR_PROTFAULT))) {
204		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
205				    address >= TASK_SIZE ? "exec-protected" : "user",
206				    address,
207				    from_kuid(&init_user_ns, current_uid()));
208
209		// Kernel exec fault is always bad
210		return true;
211	}
212
213	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
214	    !search_exception_tables(regs->nip)) {
215		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
216				    address,
217				    from_kuid(&init_user_ns, current_uid()));
218	}
219
220	// Kernel fault on kernel address is bad
221	if (address >= TASK_SIZE)
222		return true;
223
224	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
225	if (!search_exception_tables(regs->nip))
226		return true;
 
 
 
 
 
 
227
228	// Read/write fault in a valid region (the exception table search passed
229	// above), but blocked by KUAP is bad, it can never succeed.
230	if (bad_kuap_fault(regs, address, is_write))
231		return true;
232
233	// What's left? Kernel fault on user in well defined regions (extable
234	// matched), and allowed by KUAP in the faulting context.
235	return false;
236}
237
238#ifdef CONFIG_PPC_MEM_KEYS
239static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
240			      struct vm_area_struct *vma)
241{
242	/*
243	 * Make sure to check the VMA so that we do not perform
244	 * faults just to hit a pkey fault as soon as we fill in a
245	 * page. Only called for current mm, hence foreign == 0
246	 */
247	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
248		return true;
249
250	return false;
251}
252#endif
253
254static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
255{
256	/*
257	 * Allow execution from readable areas if the MMU does not
258	 * provide separate controls over reading and executing.
259	 *
260	 * Note: That code used to not be enabled for 4xx/BookE.
261	 * It is now as I/D cache coherency for these is done at
262	 * set_pte_at() time and I see no reason why the test
263	 * below wouldn't be valid on those processors. This -may-
264	 * break programs compiled with a really old ABI though.
265	 */
266	if (is_exec) {
267		return !(vma->vm_flags & VM_EXEC) &&
268			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
269			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
270	}
271
272	if (is_write) {
273		if (unlikely(!(vma->vm_flags & VM_WRITE)))
274			return true;
275		return false;
276	}
277
 
 
 
 
 
 
278	if (unlikely(!vma_is_accessible(vma)))
279		return true;
 
 
 
 
280	/*
281	 * We should ideally do the vma pkey access check here. But in the
282	 * fault path, handle_mm_fault() also does the same check. To avoid
283	 * these multiple checks, we skip it here and handle access error due
284	 * to pkeys later.
285	 */
286	return false;
287}
288
289#ifdef CONFIG_PPC_SMLPAR
290static inline void cmo_account_page_fault(void)
291{
292	if (firmware_has_feature(FW_FEATURE_CMO)) {
293		u32 page_ins;
294
295		preempt_disable();
296		page_ins = be32_to_cpu(get_lppaca()->page_ins);
297		page_ins += 1 << PAGE_FACTOR;
298		get_lppaca()->page_ins = cpu_to_be32(page_ins);
299		preempt_enable();
300	}
301}
302#else
303static inline void cmo_account_page_fault(void) { }
304#endif /* CONFIG_PPC_SMLPAR */
305
306#ifdef CONFIG_PPC_BOOK3S
307static void sanity_check_fault(bool is_write, bool is_user,
308			       unsigned long error_code, unsigned long address)
309{
310	/*
311	 * Userspace trying to access kernel address, we get PROTFAULT for that.
312	 */
313	if (is_user && address >= TASK_SIZE) {
314		if ((long)address == -1)
315			return;
316
317		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
318				   current->comm, current->pid, address,
319				   from_kuid(&init_user_ns, current_uid()));
320		return;
321	}
322
 
 
 
323	/*
324	 * For hash translation mode, we should never get a
325	 * PROTFAULT. Any update to pte to reduce access will result in us
326	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
327	 * fault instead of DSISR_PROTFAULT.
328	 *
329	 * A pte update to relax the access will not result in a hash page table
330	 * entry invalidate and hence can result in DSISR_PROTFAULT.
331	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
332	 * the special !is_write in the below conditional.
333	 *
334	 * For platforms that doesn't supports coherent icache and do support
335	 * per page noexec bit, we do setup things such that we do the
336	 * sync between D/I cache via fault. But that is handled via low level
337	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
338	 * here in such case.
339	 *
340	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
341	 * check should handle those and hence we should fall to the bad_area
342	 * handling correctly.
343	 *
344	 * For embedded with per page exec support that doesn't support coherent
345	 * icache we do get PROTFAULT and we handle that D/I cache sync in
346	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
347	 * is conditional for server MMU.
348	 *
349	 * For radix, we can get prot fault for autonuma case, because radix
350	 * page table will have them marked noaccess for user.
351	 */
352	if (radix_enabled() || is_write)
353		return;
354
355	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
356}
357#else
358static void sanity_check_fault(bool is_write, bool is_user,
359			       unsigned long error_code, unsigned long address) { }
360#endif /* CONFIG_PPC_BOOK3S */
361
362/*
363 * Define the correct "is_write" bit in error_code based
364 * on the processor family
365 */
366#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
367#define page_fault_is_write(__err)	((__err) & ESR_DST)
368#define page_fault_is_bad(__err)	(0)
369#else
370#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
371#if defined(CONFIG_PPC_8xx)
 
 
 
 
372#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
373#elif defined(CONFIG_PPC64)
374#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375#else
376#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
377#endif
378#endif
379
380/*
381 * For 600- and 800-family processors, the error_code parameter is DSISR
382 * for a data fault, SRR1 for an instruction fault. For 400-family processors
383 * the error_code parameter is ESR for a data fault, 0 for an instruction
384 * fault.
385 * For 64-bit processors, the error_code parameter is
386 *  - DSISR for a non-SLB data access fault,
387 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
388 *  - 0 any SLB fault.
389 *
390 * The return value is 0 if the fault was handled, or the signal
391 * number if this is a kernel fault that can't be handled here.
392 */
393static int __do_page_fault(struct pt_regs *regs, unsigned long address,
394			   unsigned long error_code)
395{
396	struct vm_area_struct * vma;
397	struct mm_struct *mm = current->mm;
398	unsigned int flags = FAULT_FLAG_DEFAULT;
399 	int is_exec = TRAP(regs) == 0x400;
400	int is_user = user_mode(regs);
401	int is_write = page_fault_is_write(error_code);
402	vm_fault_t fault, major = 0;
403	bool kprobe_fault = kprobe_page_fault(regs, 11);
404
405	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
406		return 0;
407
408	if (unlikely(page_fault_is_bad(error_code))) {
409		if (is_user) {
410			_exception(SIGBUS, regs, BUS_OBJERR, address);
411			return 0;
412		}
413		return SIGBUS;
414	}
415
416	/* Additional sanity check(s) */
417	sanity_check_fault(is_write, is_user, error_code, address);
418
419	/*
420	 * The kernel should never take an execute fault nor should it
421	 * take a page fault to a kernel address or a page fault to a user
422	 * address outside of dedicated places
423	 */
424	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
 
 
 
425		return SIGSEGV;
 
426
427	/*
428	 * If we're in an interrupt, have no user context or are running
429	 * in a region with pagefaults disabled then we must not take the fault
430	 */
431	if (unlikely(faulthandler_disabled() || !mm)) {
432		if (is_user)
433			printk_ratelimited(KERN_ERR "Page fault in user mode"
434					   " with faulthandler_disabled()=%d"
435					   " mm=%p\n",
436					   faulthandler_disabled(), mm);
437		return bad_area_nosemaphore(regs, address);
438	}
439
440	/* We restore the interrupt state now */
441	if (!arch_irq_disabled_regs(regs))
442		local_irq_enable();
443
444	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
445
446	/*
447	 * We want to do this outside mmap_lock, because reading code around nip
448	 * can result in fault, which will cause a deadlock when called with
449	 * mmap_lock held
450	 */
451	if (is_user)
452		flags |= FAULT_FLAG_USER;
453	if (is_write)
454		flags |= FAULT_FLAG_WRITE;
455	if (is_exec)
456		flags |= FAULT_FLAG_INSTRUCTION;
457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458	/* When running in the kernel we expect faults to occur only to
459	 * addresses in user space.  All other faults represent errors in the
460	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
461	 * erroneous fault occurring in a code path which already holds mmap_lock
462	 * we will deadlock attempting to validate the fault against the
463	 * address space.  Luckily the kernel only validly references user
464	 * space from well defined areas of code, which are listed in the
465	 * exceptions table.
466	 *
467	 * As the vast majority of faults will be valid we will only perform
468	 * the source reference check when there is a possibility of a deadlock.
469	 * Attempt to lock the address space, if we cannot we then validate the
470	 * source.  If this is invalid we can skip the address space check,
471	 * thus avoiding the deadlock.
472	 */
473	if (unlikely(!mmap_read_trylock(mm))) {
474		if (!is_user && !search_exception_tables(regs->nip))
475			return bad_area_nosemaphore(regs, address);
476
477retry:
478		mmap_read_lock(mm);
479	} else {
480		/*
481		 * The above down_read_trylock() might have succeeded in
482		 * which case we'll have missed the might_sleep() from
483		 * down_read():
484		 */
485		might_sleep();
486	}
487
488	vma = find_vma(mm, address);
489	if (unlikely(!vma))
490		return bad_area(regs, address);
491
492	if (unlikely(vma->vm_start > address)) {
493		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
494			return bad_area(regs, address);
495
496		if (unlikely(expand_stack(vma, address)))
497			return bad_area(regs, address);
498	}
499
500#ifdef CONFIG_PPC_MEM_KEYS
501	if (unlikely(access_pkey_error(is_write, is_exec,
502				       (error_code & DSISR_KEYFAULT), vma)))
503		return bad_access_pkey(regs, address, vma);
504#endif /* CONFIG_PPC_MEM_KEYS */
505
506	if (unlikely(access_error(is_write, is_exec, vma)))
507		return bad_access(regs, address);
508
509	/*
510	 * If for any reason at all we couldn't handle the fault,
511	 * make sure we exit gracefully rather than endlessly redo
512	 * the fault.
513	 */
514	fault = handle_mm_fault(vma, address, flags, regs);
515
516	major |= fault & VM_FAULT_MAJOR;
517
518	if (fault_signal_pending(fault, regs))
519		return user_mode(regs) ? 0 : SIGBUS;
520
 
 
 
 
521	/*
522	 * Handle the retry right now, the mmap_lock has been released in that
523	 * case.
524	 */
525	if (unlikely(fault & VM_FAULT_RETRY)) {
526		if (flags & FAULT_FLAG_ALLOW_RETRY) {
527			flags |= FAULT_FLAG_TRIED;
528			goto retry;
529		}
530	}
531
532	mmap_read_unlock(current->mm);
533
 
534	if (unlikely(fault & VM_FAULT_ERROR))
535		return mm_fault_error(regs, address, fault);
536
 
537	/*
538	 * Major/minor page fault accounting.
539	 */
540	if (major)
541		cmo_account_page_fault();
542
543	return 0;
544}
545NOKPROBE_SYMBOL(__do_page_fault);
 
 
 
 
 
 
 
 
 
546
547int do_page_fault(struct pt_regs *regs, unsigned long address,
548		  unsigned long error_code)
549{
550	enum ctx_state prev_state = exception_enter();
551	int rc = __do_page_fault(regs, address, error_code);
552	exception_exit(prev_state);
553	return rc;
554}
555NOKPROBE_SYMBOL(do_page_fault);
 
 
 
 
 
 
 
 
556
557/*
558 * bad_page_fault is called when we have a bad access from the kernel.
559 * It is called from the DSI and ISI handlers in head.S and from some
560 * of the procedures in traps.c.
561 */
562void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
563{
564	const struct exception_table_entry *entry;
565	int is_write = page_fault_is_write(regs->dsisr);
 
566
567	/* Are we prepared to handle this fault?  */
568	if ((entry = search_exception_tables(regs->nip)) != NULL) {
569		regs->nip = extable_fixup(entry);
570		return;
571	}
572
573	/* kernel has accessed a bad area */
 
 
 
574
575	switch (TRAP(regs)) {
576	case 0x300:
577	case 0x380:
578	case 0xe00:
579		pr_alert("BUG: %s on %s at 0x%08lx\n",
580			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
581			 "Unable to handle kernel data access",
582			 is_write ? "write" : "read", regs->dar);
583		break;
584	case 0x400:
585	case 0x480:
 
 
 
586		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
587			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
588		break;
589	case 0x600:
590		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
591			 regs->dar);
592		break;
593	default:
594		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
595			 regs->dar);
596		break;
597	}
598	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
599		regs->nip);
600
601	if (task_stack_end_corrupted(current))
602		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
603
604	die("Kernel access of bad area", regs, sig);
605}