Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/task_stack.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/pagemap.h>
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
27#include <linux/extable.h>
28#include <linux/kprobes.h>
29#include <linux/kdebug.h>
30#include <linux/perf_event.h>
31#include <linux/ratelimit.h>
32#include <linux/context_tracking.h>
33#include <linux/hugetlb.h>
34#include <linux/uaccess.h>
35#include <linux/kfence.h>
36#include <linux/pkeys.h>
37
38#include <asm/firmware.h>
39#include <asm/interrupt.h>
40#include <asm/page.h>
41#include <asm/mmu.h>
42#include <asm/mmu_context.h>
43#include <asm/siginfo.h>
44#include <asm/debug.h>
45#include <asm/kup.h>
46#include <asm/inst.h>
47
48
49/*
50 * do_page_fault error handling helpers
51 */
52
53static int
54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
55{
56 /*
57 * If we are in kernel mode, bail out with a SEGV, this will
58 * be caught by the assembly which will restore the non-volatile
59 * registers before calling bad_page_fault()
60 */
61 if (!user_mode(regs))
62 return SIGSEGV;
63
64 _exception(SIGSEGV, regs, si_code, address);
65
66 return 0;
67}
68
69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70{
71 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
72}
73
74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
75{
76 struct mm_struct *mm = current->mm;
77
78 /*
79 * Something tried to access memory that isn't in our memory map..
80 * Fix it, but check if it's kernel or user first..
81 */
82 mmap_read_unlock(mm);
83
84 return __bad_area_nosemaphore(regs, address, si_code);
85}
86
87static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
88 struct vm_area_struct *vma)
89{
90 struct mm_struct *mm = current->mm;
91 int pkey;
92
93 /*
94 * We don't try to fetch the pkey from page table because reading
95 * page table without locking doesn't guarantee stable pte value.
96 * Hence the pkey value that we return to userspace can be different
97 * from the pkey that actually caused access error.
98 *
99 * It does *not* guarantee that the VMA we find here
100 * was the one that we faulted on.
101 *
102 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
103 * 2. T1 : set AMR to deny access to pkey=4, touches, page
104 * 3. T1 : faults...
105 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
106 * 5. T1 : enters fault handler, takes mmap_lock, etc...
107 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
108 * faulted on a pte with its pkey=4.
109 */
110 pkey = vma_pkey(vma);
111
112 mmap_read_unlock(mm);
113
114 /*
115 * If we are in kernel mode, bail out with a SEGV, this will
116 * be caught by the assembly which will restore the non-volatile
117 * registers before calling bad_page_fault()
118 */
119 if (!user_mode(regs))
120 return SIGSEGV;
121
122 _exception_pkey(regs, address, pkey);
123
124 return 0;
125}
126
127static noinline int bad_access(struct pt_regs *regs, unsigned long address)
128{
129 return __bad_area(regs, address, SEGV_ACCERR);
130}
131
132static int do_sigbus(struct pt_regs *regs, unsigned long address,
133 vm_fault_t fault)
134{
135 if (!user_mode(regs))
136 return SIGBUS;
137
138 current->thread.trap_nr = BUS_ADRERR;
139#ifdef CONFIG_MEMORY_FAILURE
140 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
141 unsigned int lsb = 0; /* shutup gcc */
142
143 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
144 current->comm, current->pid, address);
145
146 if (fault & VM_FAULT_HWPOISON_LARGE)
147 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
148 if (fault & VM_FAULT_HWPOISON)
149 lsb = PAGE_SHIFT;
150
151 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
152 return 0;
153 }
154
155#endif
156 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
157 return 0;
158}
159
160static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
161 vm_fault_t fault)
162{
163 /*
164 * Kernel page fault interrupted by SIGKILL. We have no reason to
165 * continue processing.
166 */
167 if (fatal_signal_pending(current) && !user_mode(regs))
168 return SIGKILL;
169
170 /* Out of memory */
171 if (fault & VM_FAULT_OOM) {
172 /*
173 * We ran out of memory, or some other thing happened to us that
174 * made us unable to handle the page fault gracefully.
175 */
176 if (!user_mode(regs))
177 return SIGSEGV;
178 pagefault_out_of_memory();
179 } else {
180 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
181 VM_FAULT_HWPOISON_LARGE))
182 return do_sigbus(regs, addr, fault);
183 else if (fault & VM_FAULT_SIGSEGV)
184 return bad_area_nosemaphore(regs, addr);
185 else
186 BUG();
187 }
188 return 0;
189}
190
191/* Is this a bad kernel fault ? */
192static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
193 unsigned long address, bool is_write)
194{
195 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
196
197 if (is_exec) {
198 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
199 address >= TASK_SIZE ? "exec-protected" : "user",
200 address,
201 from_kuid(&init_user_ns, current_uid()));
202
203 // Kernel exec fault is always bad
204 return true;
205 }
206
207 // Kernel fault on kernel address is bad
208 if (address >= TASK_SIZE)
209 return true;
210
211 // Read/write fault blocked by KUAP is bad, it can never succeed.
212 if (bad_kuap_fault(regs, address, is_write)) {
213 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
214 is_write ? "write" : "read", address,
215 from_kuid(&init_user_ns, current_uid()));
216
217 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
218 if (!search_exception_tables(regs->nip))
219 return true;
220
221 // Read/write fault in a valid region (the exception table search passed
222 // above), but blocked by KUAP is bad, it can never succeed.
223 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
224 }
225
226 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
227 return false;
228}
229
230static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
231 struct vm_area_struct *vma)
232{
233 /*
234 * Make sure to check the VMA so that we do not perform
235 * faults just to hit a pkey fault as soon as we fill in a
236 * page. Only called for current mm, hence foreign == 0
237 */
238 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
239 return true;
240
241 return false;
242}
243
244static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
245{
246 /*
247 * Allow execution from readable areas if the MMU does not
248 * provide separate controls over reading and executing.
249 *
250 * Note: That code used to not be enabled for 4xx/BookE.
251 * It is now as I/D cache coherency for these is done at
252 * set_pte_at() time and I see no reason why the test
253 * below wouldn't be valid on those processors. This -may-
254 * break programs compiled with a really old ABI though.
255 */
256 if (is_exec) {
257 return !(vma->vm_flags & VM_EXEC) &&
258 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
259 !(vma->vm_flags & (VM_READ | VM_WRITE)));
260 }
261
262 if (is_write) {
263 if (unlikely(!(vma->vm_flags & VM_WRITE)))
264 return true;
265 return false;
266 }
267
268 /*
269 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
270 * defined in protection_map[]. In that case Read faults can only be
271 * caused by a PROT_NONE mapping. However a non exec access on a
272 * VM_EXEC only mapping is invalid anyway, so report it as such.
273 */
274 if (unlikely(!vma_is_accessible(vma)))
275 return true;
276
277 if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
278 return true;
279
280 /*
281 * We should ideally do the vma pkey access check here. But in the
282 * fault path, handle_mm_fault() also does the same check. To avoid
283 * these multiple checks, we skip it here and handle access error due
284 * to pkeys later.
285 */
286 return false;
287}
288
289#ifdef CONFIG_PPC_SMLPAR
290static inline void cmo_account_page_fault(void)
291{
292 if (firmware_has_feature(FW_FEATURE_CMO)) {
293 u32 page_ins;
294
295 preempt_disable();
296 page_ins = be32_to_cpu(get_lppaca()->page_ins);
297 page_ins += 1 << PAGE_FACTOR;
298 get_lppaca()->page_ins = cpu_to_be32(page_ins);
299 preempt_enable();
300 }
301}
302#else
303static inline void cmo_account_page_fault(void) { }
304#endif /* CONFIG_PPC_SMLPAR */
305
306static void sanity_check_fault(bool is_write, bool is_user,
307 unsigned long error_code, unsigned long address)
308{
309 /*
310 * Userspace trying to access kernel address, we get PROTFAULT for that.
311 */
312 if (is_user && address >= TASK_SIZE) {
313 if ((long)address == -1)
314 return;
315
316 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
317 current->comm, current->pid, address,
318 from_kuid(&init_user_ns, current_uid()));
319 return;
320 }
321
322 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
323 return;
324
325 /*
326 * For hash translation mode, we should never get a
327 * PROTFAULT. Any update to pte to reduce access will result in us
328 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
329 * fault instead of DSISR_PROTFAULT.
330 *
331 * A pte update to relax the access will not result in a hash page table
332 * entry invalidate and hence can result in DSISR_PROTFAULT.
333 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
334 * the special !is_write in the below conditional.
335 *
336 * For platforms that doesn't supports coherent icache and do support
337 * per page noexec bit, we do setup things such that we do the
338 * sync between D/I cache via fault. But that is handled via low level
339 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
340 * here in such case.
341 *
342 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
343 * check should handle those and hence we should fall to the bad_area
344 * handling correctly.
345 *
346 * For embedded with per page exec support that doesn't support coherent
347 * icache we do get PROTFAULT and we handle that D/I cache sync in
348 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
349 * is conditional for server MMU.
350 *
351 * For radix, we can get prot fault for autonuma case, because radix
352 * page table will have them marked noaccess for user.
353 */
354 if (radix_enabled() || is_write)
355 return;
356
357 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
358}
359
360/*
361 * Define the correct "is_write" bit in error_code based
362 * on the processor family
363 */
364#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365#define page_fault_is_write(__err) ((__err) & ESR_DST)
366#else
367#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
368#endif
369
370#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
371#define page_fault_is_bad(__err) (0)
372#elif defined(CONFIG_PPC_8xx)
373#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
374#elif defined(CONFIG_PPC64)
375static int page_fault_is_bad(unsigned long err)
376{
377 unsigned long flag = DSISR_BAD_FAULT_64S;
378
379 /*
380 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
381 * If byte 0, bit 3 of pi-attribute-specifier-type in
382 * ibm,pi-features property is defined, ignore the DSI error
383 * which is caused by the paste instruction on the
384 * suspended NX window.
385 */
386 if (mmu_has_feature(MMU_FTR_NX_DSI))
387 flag &= ~DSISR_BAD_COPYPASTE;
388
389 return err & flag;
390}
391#else
392#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
393#endif
394
395/*
396 * For 600- and 800-family processors, the error_code parameter is DSISR
397 * for a data fault, SRR1 for an instruction fault.
398 * For 400-family processors the error_code parameter is ESR for a data fault,
399 * 0 for an instruction fault.
400 * For 64-bit processors, the error_code parameter is DSISR for a data access
401 * fault, SRR1 & 0x08000000 for an instruction access fault.
402 *
403 * The return value is 0 if the fault was handled, or the signal
404 * number if this is a kernel fault that can't be handled here.
405 */
406static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
407 unsigned long error_code)
408{
409 struct vm_area_struct * vma;
410 struct mm_struct *mm = current->mm;
411 unsigned int flags = FAULT_FLAG_DEFAULT;
412 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
413 int is_user = user_mode(regs);
414 int is_write = page_fault_is_write(error_code);
415 vm_fault_t fault, major = 0;
416 bool kprobe_fault = kprobe_page_fault(regs, 11);
417
418 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
419 return 0;
420
421 if (unlikely(page_fault_is_bad(error_code))) {
422 if (is_user) {
423 _exception(SIGBUS, regs, BUS_OBJERR, address);
424 return 0;
425 }
426 return SIGBUS;
427 }
428
429 /* Additional sanity check(s) */
430 sanity_check_fault(is_write, is_user, error_code, address);
431
432 /*
433 * The kernel should never take an execute fault nor should it
434 * take a page fault to a kernel address or a page fault to a user
435 * address outside of dedicated places
436 */
437 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
438 if (kfence_handle_page_fault(address, is_write, regs))
439 return 0;
440
441 return SIGSEGV;
442 }
443
444 /*
445 * If we're in an interrupt, have no user context or are running
446 * in a region with pagefaults disabled then we must not take the fault
447 */
448 if (unlikely(faulthandler_disabled() || !mm)) {
449 if (is_user)
450 printk_ratelimited(KERN_ERR "Page fault in user mode"
451 " with faulthandler_disabled()=%d"
452 " mm=%p\n",
453 faulthandler_disabled(), mm);
454 return bad_area_nosemaphore(regs, address);
455 }
456
457 interrupt_cond_local_irq_enable(regs);
458
459 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460
461 /*
462 * We want to do this outside mmap_lock, because reading code around nip
463 * can result in fault, which will cause a deadlock when called with
464 * mmap_lock held
465 */
466 if (is_user)
467 flags |= FAULT_FLAG_USER;
468 if (is_write)
469 flags |= FAULT_FLAG_WRITE;
470 if (is_exec)
471 flags |= FAULT_FLAG_INSTRUCTION;
472
473 if (!(flags & FAULT_FLAG_USER))
474 goto lock_mmap;
475
476 vma = lock_vma_under_rcu(mm, address);
477 if (!vma)
478 goto lock_mmap;
479
480 if (unlikely(access_pkey_error(is_write, is_exec,
481 (error_code & DSISR_KEYFAULT), vma))) {
482 vma_end_read(vma);
483 goto lock_mmap;
484 }
485
486 if (unlikely(access_error(is_write, is_exec, vma))) {
487 vma_end_read(vma);
488 goto lock_mmap;
489 }
490
491 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
492 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
493 vma_end_read(vma);
494
495 if (!(fault & VM_FAULT_RETRY)) {
496 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497 goto done;
498 }
499 count_vm_vma_lock_event(VMA_LOCK_RETRY);
500 if (fault & VM_FAULT_MAJOR)
501 flags |= FAULT_FLAG_TRIED;
502
503 if (fault_signal_pending(fault, regs))
504 return user_mode(regs) ? 0 : SIGBUS;
505
506lock_mmap:
507
508 /* When running in the kernel we expect faults to occur only to
509 * addresses in user space. All other faults represent errors in the
510 * kernel and should generate an OOPS. Unfortunately, in the case of an
511 * erroneous fault occurring in a code path which already holds mmap_lock
512 * we will deadlock attempting to validate the fault against the
513 * address space. Luckily the kernel only validly references user
514 * space from well defined areas of code, which are listed in the
515 * exceptions table. lock_mm_and_find_vma() handles that logic.
516 */
517retry:
518 vma = lock_mm_and_find_vma(mm, address, regs);
519 if (unlikely(!vma))
520 return bad_area_nosemaphore(regs, address);
521
522 if (unlikely(access_pkey_error(is_write, is_exec,
523 (error_code & DSISR_KEYFAULT), vma)))
524 return bad_access_pkey(regs, address, vma);
525
526 if (unlikely(access_error(is_write, is_exec, vma)))
527 return bad_access(regs, address);
528
529 /*
530 * If for any reason at all we couldn't handle the fault,
531 * make sure we exit gracefully rather than endlessly redo
532 * the fault.
533 */
534 fault = handle_mm_fault(vma, address, flags, regs);
535
536 major |= fault & VM_FAULT_MAJOR;
537
538 if (fault_signal_pending(fault, regs))
539 return user_mode(regs) ? 0 : SIGBUS;
540
541 /* The fault is fully completed (including releasing mmap lock) */
542 if (fault & VM_FAULT_COMPLETED)
543 goto out;
544
545 /*
546 * Handle the retry right now, the mmap_lock has been released in that
547 * case.
548 */
549 if (unlikely(fault & VM_FAULT_RETRY)) {
550 flags |= FAULT_FLAG_TRIED;
551 goto retry;
552 }
553
554 mmap_read_unlock(current->mm);
555
556done:
557 if (unlikely(fault & VM_FAULT_ERROR))
558 return mm_fault_error(regs, address, fault);
559
560out:
561 /*
562 * Major/minor page fault accounting.
563 */
564 if (major)
565 cmo_account_page_fault();
566
567 return 0;
568}
569NOKPROBE_SYMBOL(___do_page_fault);
570
571static __always_inline void __do_page_fault(struct pt_regs *regs)
572{
573 long err;
574
575 err = ___do_page_fault(regs, regs->dar, regs->dsisr);
576 if (unlikely(err))
577 bad_page_fault(regs, err);
578}
579
580DEFINE_INTERRUPT_HANDLER(do_page_fault)
581{
582 __do_page_fault(regs);
583}
584
585#ifdef CONFIG_PPC_BOOK3S_64
586/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
587void hash__do_page_fault(struct pt_regs *regs)
588{
589 __do_page_fault(regs);
590}
591NOKPROBE_SYMBOL(hash__do_page_fault);
592#endif
593
594/*
595 * bad_page_fault is called when we have a bad access from the kernel.
596 * It is called from the DSI and ISI handlers in head.S and from some
597 * of the procedures in traps.c.
598 */
599static void __bad_page_fault(struct pt_regs *regs, int sig)
600{
601 int is_write = page_fault_is_write(regs->dsisr);
602 const char *msg;
603
604 /* kernel has accessed a bad area */
605
606 if (regs->dar < PAGE_SIZE)
607 msg = "Kernel NULL pointer dereference";
608 else
609 msg = "Unable to handle kernel data access";
610
611 switch (TRAP(regs)) {
612 case INTERRUPT_DATA_STORAGE:
613 case INTERRUPT_H_DATA_STORAGE:
614 pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
615 is_write ? "write" : "read", regs->dar);
616 break;
617 case INTERRUPT_DATA_SEGMENT:
618 pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
619 break;
620 case INTERRUPT_INST_STORAGE:
621 case INTERRUPT_INST_SEGMENT:
622 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
623 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
624 break;
625 case INTERRUPT_ALIGNMENT:
626 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
627 regs->dar);
628 break;
629 default:
630 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
631 regs->dar);
632 break;
633 }
634 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
635 regs->nip);
636
637 if (task_stack_end_corrupted(current))
638 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
639
640 die("Kernel access of bad area", regs, sig);
641}
642
643void bad_page_fault(struct pt_regs *regs, int sig)
644{
645 const struct exception_table_entry *entry;
646
647 /* Are we prepared to handle this fault? */
648 entry = search_exception_tables(instruction_pointer(regs));
649 if (entry)
650 instruction_pointer_set(regs, extable_fixup(entry));
651 else
652 __bad_page_fault(regs, sig);
653}
654
655#ifdef CONFIG_PPC_BOOK3S_64
656DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
657{
658 bad_page_fault(regs, SIGSEGV);
659}
660
661/*
662 * In radix, segment interrupts indicate the EA is not addressable by the
663 * page table geometry, so they are always sent here.
664 *
665 * In hash, this is called if do_slb_fault returns error. Typically it is
666 * because the EA was outside the region allowed by software.
667 */
668DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
669{
670 int err = regs->result;
671
672 if (err == -EFAULT) {
673 if (user_mode(regs))
674 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
675 else
676 bad_page_fault(regs, SIGSEGV);
677 } else if (err == -EINVAL) {
678 unrecoverable_exception(regs);
679 } else {
680 BUG();
681 }
682}
683#endif
1/*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#include <linux/signal.h>
19#include <linux/sched.h>
20#include <linux/kernel.h>
21#include <linux/errno.h>
22#include <linux/string.h>
23#include <linux/types.h>
24#include <linux/ptrace.h>
25#include <linux/mman.h>
26#include <linux/mm.h>
27#include <linux/interrupt.h>
28#include <linux/highmem.h>
29#include <linux/module.h>
30#include <linux/kprobes.h>
31#include <linux/kdebug.h>
32#include <linux/perf_event.h>
33#include <linux/magic.h>
34#include <linux/ratelimit.h>
35
36#include <asm/firmware.h>
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/mmu.h>
40#include <asm/mmu_context.h>
41#include <asm/uaccess.h>
42#include <asm/tlbflush.h>
43#include <asm/siginfo.h>
44#include <asm/debug.h>
45#include <mm/mmu_decl.h>
46
47#include "icswx.h"
48
49#ifdef CONFIG_KPROBES
50static inline int notify_page_fault(struct pt_regs *regs)
51{
52 int ret = 0;
53
54 /* kprobe_running() needs smp_processor_id() */
55 if (!user_mode(regs)) {
56 preempt_disable();
57 if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 ret = 1;
59 preempt_enable();
60 }
61
62 return ret;
63}
64#else
65static inline int notify_page_fault(struct pt_regs *regs)
66{
67 return 0;
68}
69#endif
70
71/*
72 * Check whether the instruction at regs->nip is a store using
73 * an update addressing form which will update r1.
74 */
75static int store_updates_sp(struct pt_regs *regs)
76{
77 unsigned int inst;
78
79 if (get_user(inst, (unsigned int __user *)regs->nip))
80 return 0;
81 /* check for 1 in the rA field */
82 if (((inst >> 16) & 0x1f) != 1)
83 return 0;
84 /* check major opcode */
85 switch (inst >> 26) {
86 case 37: /* stwu */
87 case 39: /* stbu */
88 case 45: /* sthu */
89 case 53: /* stfsu */
90 case 55: /* stfdu */
91 return 1;
92 case 62: /* std or stdu */
93 return (inst & 3) == 1;
94 case 31:
95 /* check minor opcode */
96 switch ((inst >> 1) & 0x3ff) {
97 case 181: /* stdux */
98 case 183: /* stwux */
99 case 247: /* stbux */
100 case 439: /* sthux */
101 case 695: /* stfsux */
102 case 759: /* stfdux */
103 return 1;
104 }
105 }
106 return 0;
107}
108/*
109 * do_page_fault error handling helpers
110 */
111
112#define MM_FAULT_RETURN 0
113#define MM_FAULT_CONTINUE -1
114#define MM_FAULT_ERR(sig) (sig)
115
116static int out_of_memory(struct pt_regs *regs)
117{
118 /*
119 * We ran out of memory, or some other thing happened to us that made
120 * us unable to handle the page fault gracefully.
121 */
122 up_read(¤t->mm->mmap_sem);
123 if (!user_mode(regs))
124 return MM_FAULT_ERR(SIGKILL);
125 pagefault_out_of_memory();
126 return MM_FAULT_RETURN;
127}
128
129static int do_sigbus(struct pt_regs *regs, unsigned long address)
130{
131 siginfo_t info;
132
133 up_read(¤t->mm->mmap_sem);
134
135 if (user_mode(regs)) {
136 info.si_signo = SIGBUS;
137 info.si_errno = 0;
138 info.si_code = BUS_ADRERR;
139 info.si_addr = (void __user *)address;
140 force_sig_info(SIGBUS, &info, current);
141 return MM_FAULT_RETURN;
142 }
143 return MM_FAULT_ERR(SIGBUS);
144}
145
146static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
147{
148 /*
149 * Pagefault was interrupted by SIGKILL. We have no reason to
150 * continue the pagefault.
151 */
152 if (fatal_signal_pending(current)) {
153 /*
154 * If we have retry set, the mmap semaphore will have
155 * alrady been released in __lock_page_or_retry(). Else
156 * we release it now.
157 */
158 if (!(fault & VM_FAULT_RETRY))
159 up_read(¤t->mm->mmap_sem);
160 /* Coming from kernel, we need to deal with uaccess fixups */
161 if (user_mode(regs))
162 return MM_FAULT_RETURN;
163 return MM_FAULT_ERR(SIGKILL);
164 }
165
166 /* No fault: be happy */
167 if (!(fault & VM_FAULT_ERROR))
168 return MM_FAULT_CONTINUE;
169
170 /* Out of memory */
171 if (fault & VM_FAULT_OOM)
172 return out_of_memory(regs);
173
174 /* Bus error. x86 handles HWPOISON here, we'll add this if/when
175 * we support the feature in HW
176 */
177 if (fault & VM_FAULT_SIGBUS)
178 return do_sigbus(regs, addr);
179
180 /* We don't understand the fault code, this is fatal */
181 BUG();
182 return MM_FAULT_CONTINUE;
183}
184
185/*
186 * For 600- and 800-family processors, the error_code parameter is DSISR
187 * for a data fault, SRR1 for an instruction fault. For 400-family processors
188 * the error_code parameter is ESR for a data fault, 0 for an instruction
189 * fault.
190 * For 64-bit processors, the error_code parameter is
191 * - DSISR for a non-SLB data access fault,
192 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
193 * - 0 any SLB fault.
194 *
195 * The return value is 0 if the fault was handled, or the signal
196 * number if this is a kernel fault that can't be handled here.
197 */
198int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
199 unsigned long error_code)
200{
201 struct vm_area_struct * vma;
202 struct mm_struct *mm = current->mm;
203 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
204 int code = SEGV_MAPERR;
205 int is_write = 0;
206 int trap = TRAP(regs);
207 int is_exec = trap == 0x400;
208 int fault;
209
210#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
211 /*
212 * Fortunately the bit assignments in SRR1 for an instruction
213 * fault and DSISR for a data fault are mostly the same for the
214 * bits we are interested in. But there are some bits which
215 * indicate errors in DSISR but can validly be set in SRR1.
216 */
217 if (trap == 0x400)
218 error_code &= 0x48200000;
219 else
220 is_write = error_code & DSISR_ISSTORE;
221#else
222 is_write = error_code & ESR_DST;
223#endif /* CONFIG_4xx || CONFIG_BOOKE */
224
225 if (is_write)
226 flags |= FAULT_FLAG_WRITE;
227
228#ifdef CONFIG_PPC_ICSWX
229 /*
230 * we need to do this early because this "data storage
231 * interrupt" does not update the DAR/DEAR so we don't want to
232 * look at it
233 */
234 if (error_code & ICSWX_DSI_UCT) {
235 int rc = acop_handle_fault(regs, address, error_code);
236 if (rc)
237 return rc;
238 }
239#endif /* CONFIG_PPC_ICSWX */
240
241 if (notify_page_fault(regs))
242 return 0;
243
244 if (unlikely(debugger_fault_handler(regs)))
245 return 0;
246
247 /* On a kernel SLB miss we can only check for a valid exception entry */
248 if (!user_mode(regs) && (address >= TASK_SIZE))
249 return SIGSEGV;
250
251#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252 defined(CONFIG_PPC_BOOK3S_64))
253 if (error_code & DSISR_DABRMATCH) {
254 /* DABR match */
255 do_dabr(regs, address, error_code);
256 return 0;
257 }
258#endif
259
260 /* We restore the interrupt state now */
261 if (!arch_irq_disabled_regs(regs))
262 local_irq_enable();
263
264 if (in_atomic() || mm == NULL) {
265 if (!user_mode(regs))
266 return SIGSEGV;
267 /* in_atomic() in user mode is really bad,
268 as is current->mm == NULL. */
269 printk(KERN_EMERG "Page fault in user mode with "
270 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
271 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
272 regs->nip, regs->msr);
273 die("Weird page fault", regs, SIGSEGV);
274 }
275
276 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
277
278 /* When running in the kernel we expect faults to occur only to
279 * addresses in user space. All other faults represent errors in the
280 * kernel and should generate an OOPS. Unfortunately, in the case of an
281 * erroneous fault occurring in a code path which already holds mmap_sem
282 * we will deadlock attempting to validate the fault against the
283 * address space. Luckily the kernel only validly references user
284 * space from well defined areas of code, which are listed in the
285 * exceptions table.
286 *
287 * As the vast majority of faults will be valid we will only perform
288 * the source reference check when there is a possibility of a deadlock.
289 * Attempt to lock the address space, if we cannot we then validate the
290 * source. If this is invalid we can skip the address space check,
291 * thus avoiding the deadlock.
292 */
293 if (!down_read_trylock(&mm->mmap_sem)) {
294 if (!user_mode(regs) && !search_exception_tables(regs->nip))
295 goto bad_area_nosemaphore;
296
297retry:
298 down_read(&mm->mmap_sem);
299 } else {
300 /*
301 * The above down_read_trylock() might have succeeded in
302 * which case we'll have missed the might_sleep() from
303 * down_read():
304 */
305 might_sleep();
306 }
307
308 vma = find_vma(mm, address);
309 if (!vma)
310 goto bad_area;
311 if (vma->vm_start <= address)
312 goto good_area;
313 if (!(vma->vm_flags & VM_GROWSDOWN))
314 goto bad_area;
315
316 /*
317 * N.B. The POWER/Open ABI allows programs to access up to
318 * 288 bytes below the stack pointer.
319 * The kernel signal delivery code writes up to about 1.5kB
320 * below the stack pointer (r1) before decrementing it.
321 * The exec code can write slightly over 640kB to the stack
322 * before setting the user r1. Thus we allow the stack to
323 * expand to 1MB without further checks.
324 */
325 if (address + 0x100000 < vma->vm_end) {
326 /* get user regs even if this fault is in kernel mode */
327 struct pt_regs *uregs = current->thread.regs;
328 if (uregs == NULL)
329 goto bad_area;
330
331 /*
332 * A user-mode access to an address a long way below
333 * the stack pointer is only valid if the instruction
334 * is one which would update the stack pointer to the
335 * address accessed if the instruction completed,
336 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
337 * (or the byte, halfword, float or double forms).
338 *
339 * If we don't check this then any write to the area
340 * between the last mapped region and the stack will
341 * expand the stack rather than segfaulting.
342 */
343 if (address + 2048 < uregs->gpr[1]
344 && (!user_mode(regs) || !store_updates_sp(regs)))
345 goto bad_area;
346 }
347 if (expand_stack(vma, address))
348 goto bad_area;
349
350good_area:
351 code = SEGV_ACCERR;
352#if defined(CONFIG_6xx)
353 if (error_code & 0x95700000)
354 /* an error such as lwarx to I/O controller space,
355 address matching DABR, eciwx, etc. */
356 goto bad_area;
357#endif /* CONFIG_6xx */
358#if defined(CONFIG_8xx)
359 /* 8xx sometimes need to load a invalid/non-present TLBs.
360 * These must be invalidated separately as linux mm don't.
361 */
362 if (error_code & 0x40000000) /* no translation? */
363 _tlbil_va(address, 0, 0, 0);
364
365 /* The MPC8xx seems to always set 0x80000000, which is
366 * "undefined". Of those that can be set, this is the only
367 * one which seems bad.
368 */
369 if (error_code & 0x10000000)
370 /* Guarded storage error. */
371 goto bad_area;
372#endif /* CONFIG_8xx */
373
374 if (is_exec) {
375#ifdef CONFIG_PPC_STD_MMU
376 /* Protection fault on exec go straight to failure on
377 * Hash based MMUs as they either don't support per-page
378 * execute permission, or if they do, it's handled already
379 * at the hash level. This test would probably have to
380 * be removed if we change the way this works to make hash
381 * processors use the same I/D cache coherency mechanism
382 * as embedded.
383 */
384 if (error_code & DSISR_PROTFAULT)
385 goto bad_area;
386#endif /* CONFIG_PPC_STD_MMU */
387
388 /*
389 * Allow execution from readable areas if the MMU does not
390 * provide separate controls over reading and executing.
391 *
392 * Note: That code used to not be enabled for 4xx/BookE.
393 * It is now as I/D cache coherency for these is done at
394 * set_pte_at() time and I see no reason why the test
395 * below wouldn't be valid on those processors. This -may-
396 * break programs compiled with a really old ABI though.
397 */
398 if (!(vma->vm_flags & VM_EXEC) &&
399 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
400 !(vma->vm_flags & (VM_READ | VM_WRITE))))
401 goto bad_area;
402 /* a write */
403 } else if (is_write) {
404 if (!(vma->vm_flags & VM_WRITE))
405 goto bad_area;
406 /* a read */
407 } else {
408 /* protection fault */
409 if (error_code & 0x08000000)
410 goto bad_area;
411 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
412 goto bad_area;
413 }
414
415 /*
416 * If for any reason at all we couldn't handle the fault,
417 * make sure we exit gracefully rather than endlessly redo
418 * the fault.
419 */
420 fault = handle_mm_fault(mm, vma, address, flags);
421 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
422 int rc = mm_fault_error(regs, address, fault);
423 if (rc >= MM_FAULT_RETURN)
424 return rc;
425 }
426
427 /*
428 * Major/minor page fault accounting is only done on the
429 * initial attempt. If we go through a retry, it is extremely
430 * likely that the page will be found in page cache at that point.
431 */
432 if (flags & FAULT_FLAG_ALLOW_RETRY) {
433 if (fault & VM_FAULT_MAJOR) {
434 current->maj_flt++;
435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
436 regs, address);
437#ifdef CONFIG_PPC_SMLPAR
438 if (firmware_has_feature(FW_FEATURE_CMO)) {
439 preempt_disable();
440 get_lppaca()->page_ins += (1 << PAGE_FACTOR);
441 preempt_enable();
442 }
443#endif /* CONFIG_PPC_SMLPAR */
444 } else {
445 current->min_flt++;
446 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
447 regs, address);
448 }
449 if (fault & VM_FAULT_RETRY) {
450 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
451 * of starvation. */
452 flags &= ~FAULT_FLAG_ALLOW_RETRY;
453 goto retry;
454 }
455 }
456
457 up_read(&mm->mmap_sem);
458 return 0;
459
460bad_area:
461 up_read(&mm->mmap_sem);
462
463bad_area_nosemaphore:
464 /* User mode accesses cause a SIGSEGV */
465 if (user_mode(regs)) {
466 _exception(SIGSEGV, regs, code, address);
467 return 0;
468 }
469
470 if (is_exec && (error_code & DSISR_PROTFAULT))
471 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
472 " page (%lx) - exploit attempt? (uid: %d)\n",
473 address, current_uid());
474
475 return SIGSEGV;
476
477}
478
479/*
480 * bad_page_fault is called when we have a bad access from the kernel.
481 * It is called from the DSI and ISI handlers in head.S and from some
482 * of the procedures in traps.c.
483 */
484void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
485{
486 const struct exception_table_entry *entry;
487 unsigned long *stackend;
488
489 /* Are we prepared to handle this fault? */
490 if ((entry = search_exception_tables(regs->nip)) != NULL) {
491 regs->nip = entry->fixup;
492 return;
493 }
494
495 /* kernel has accessed a bad area */
496
497 switch (regs->trap) {
498 case 0x300:
499 case 0x380:
500 printk(KERN_ALERT "Unable to handle kernel paging request for "
501 "data at address 0x%08lx\n", regs->dar);
502 break;
503 case 0x400:
504 case 0x480:
505 printk(KERN_ALERT "Unable to handle kernel paging request for "
506 "instruction fetch\n");
507 break;
508 default:
509 printk(KERN_ALERT "Unable to handle kernel paging request for "
510 "unknown fault\n");
511 break;
512 }
513 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
514 regs->nip);
515
516 stackend = end_of_stack(current);
517 if (current != &init_task && *stackend != STACK_END_MAGIC)
518 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
519
520 die("Kernel access of bad area", regs, sig);
521}