Loading...
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2023 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201out:
202 rcu_read_unlock();
203
204 return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216 return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299}
300
301static void reg_free_last_request(void)
302{
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323{
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473}
474
475struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624};
625
626struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658 return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708{
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740#include <keys/asymmetric-type.h>
741
742static struct key *builtin_regdb_keys;
743
744static int __init load_builtin_regdb_keys(void)
745{
746 builtin_regdb_keys =
747 keyring_alloc(".builtin_regdb_keys",
748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 if (IS_ERR(builtin_regdb_keys))
753 return PTR_ERR(builtin_regdb_keys);
754
755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 x509_load_certificate_list(shipped_regdb_certs,
759 shipped_regdb_certs_len,
760 builtin_regdb_keys);
761#endif
762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 x509_load_certificate_list(extra_regdb_certs,
765 extra_regdb_certs_len,
766 builtin_regdb_keys);
767#endif
768
769 return 0;
770}
771
772MODULE_FIRMWARE("regulatory.db.p7s");
773
774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775{
776 const struct firmware *sig;
777 bool result;
778
779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
780 return false;
781
782 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 builtin_regdb_keys,
784 VERIFYING_UNSPECIFIED_SIGNATURE,
785 NULL, NULL) == 0;
786
787 release_firmware(sig);
788
789 return result;
790}
791
792static void free_regdb_keyring(void)
793{
794 key_put(builtin_regdb_keys);
795}
796#else
797static int load_builtin_regdb_keys(void)
798{
799 return 0;
800}
801
802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803{
804 return true;
805}
806
807static void free_regdb_keyring(void)
808{
809}
810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812static bool valid_regdb(const u8 *data, unsigned int size)
813{
814 const struct fwdb_header *hdr = (void *)data;
815 const struct fwdb_country *country;
816
817 if (size < sizeof(*hdr))
818 return false;
819
820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 return false;
822
823 if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 return false;
825
826 if (!regdb_has_valid_signature(data, size))
827 return false;
828
829 country = &hdr->country[0];
830 while ((u8 *)(country + 1) <= data + size) {
831 if (!country->coll_ptr)
832 break;
833 if (!valid_country(data, size, country))
834 return false;
835 country++;
836 }
837
838 return true;
839}
840
841static void set_wmm_rule(const struct fwdb_header *db,
842 const struct fwdb_country *country,
843 const struct fwdb_rule *rule,
844 struct ieee80211_reg_rule *rrule)
845{
846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 struct fwdb_wmm_rule *wmm;
848 unsigned int i, wmm_ptr;
849
850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 wmm = (void *)((u8 *)db + wmm_ptr);
852
853 if (!valid_wmm(wmm)) {
854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 country->alpha2[0], country->alpha2[1]);
857 return;
858 }
859
860 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 wmm_rule->client[i].cw_min =
862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
865 wmm_rule->client[i].cot =
866 1000 * be16_to_cpu(wmm->client[i].cot);
867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 }
872
873 rrule->has_wmm = true;
874}
875
876static int __regdb_query_wmm(const struct fwdb_header *db,
877 const struct fwdb_country *country, int freq,
878 struct ieee80211_reg_rule *rrule)
879{
880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 int i;
883
884 for (i = 0; i < coll->n_rules; i++) {
885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 continue;
891
892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 set_wmm_rule(db, country, rule, rrule);
895 return 0;
896 }
897 }
898
899 return -ENODATA;
900}
901
902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903{
904 const struct fwdb_header *hdr = regdb;
905 const struct fwdb_country *country;
906
907 if (!regdb)
908 return -ENODATA;
909
910 if (IS_ERR(regdb))
911 return PTR_ERR(regdb);
912
913 country = &hdr->country[0];
914 while (country->coll_ptr) {
915 if (alpha2_equal(alpha2, country->alpha2))
916 return __regdb_query_wmm(regdb, country, freq, rule);
917
918 country++;
919 }
920
921 return -ENODATA;
922}
923EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925static int regdb_query_country(const struct fwdb_header *db,
926 const struct fwdb_country *country)
927{
928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 struct ieee80211_regdomain *regdom;
931 unsigned int i;
932
933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 GFP_KERNEL);
935 if (!regdom)
936 return -ENOMEM;
937
938 regdom->n_reg_rules = coll->n_rules;
939 regdom->alpha2[0] = country->alpha2[0];
940 regdom->alpha2[1] = country->alpha2[1];
941 regdom->dfs_region = coll->dfs_region;
942
943 for (i = 0; i < regdom->n_reg_rules; i++) {
944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
948
949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953 rrule->power_rule.max_antenna_gain = 0;
954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956 rrule->flags = 0;
957 if (rule->flags & FWDB_FLAG_NO_OFDM)
958 rrule->flags |= NL80211_RRF_NO_OFDM;
959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 if (rule->flags & FWDB_FLAG_DFS)
962 rrule->flags |= NL80211_RRF_DFS;
963 if (rule->flags & FWDB_FLAG_NO_IR)
964 rrule->flags |= NL80211_RRF_NO_IR;
965 if (rule->flags & FWDB_FLAG_AUTO_BW)
966 rrule->flags |= NL80211_RRF_AUTO_BW;
967
968 rrule->dfs_cac_ms = 0;
969
970 /* handle optional data */
971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 rrule->dfs_cac_ms =
973 1000 * be16_to_cpu(rule->cac_timeout);
974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 set_wmm_rule(db, country, rule, rrule);
976 }
977
978 return reg_schedule_apply(regdom);
979}
980
981static int query_regdb(const char *alpha2)
982{
983 const struct fwdb_header *hdr = regdb;
984 const struct fwdb_country *country;
985
986 ASSERT_RTNL();
987
988 if (IS_ERR(regdb))
989 return PTR_ERR(regdb);
990
991 country = &hdr->country[0];
992 while (country->coll_ptr) {
993 if (alpha2_equal(alpha2, country->alpha2))
994 return regdb_query_country(regdb, country);
995 country++;
996 }
997
998 return -ENODATA;
999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003 int set_error = 0;
1004 bool restore = true;
1005 void *db;
1006
1007 if (!fw) {
1008 pr_info("failed to load regulatory.db\n");
1009 set_error = -ENODATA;
1010 } else if (!valid_regdb(fw->data, fw->size)) {
1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 set_error = -EINVAL;
1013 }
1014
1015 rtnl_lock();
1016 if (regdb && !IS_ERR(regdb)) {
1017 /* negative case - a bug
1018 * positive case - can happen due to race in case of multiple cb's in
1019 * queue, due to usage of asynchronous callback
1020 *
1021 * Either case, just restore and free new db.
1022 */
1023 } else if (set_error) {
1024 regdb = ERR_PTR(set_error);
1025 } else if (fw) {
1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 if (db) {
1028 regdb = db;
1029 restore = context && query_regdb(context);
1030 } else {
1031 restore = true;
1032 }
1033 }
1034
1035 if (restore)
1036 restore_regulatory_settings(true, false);
1037
1038 rtnl_unlock();
1039
1040 kfree(context);
1041
1042 release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049 int err;
1050
1051 ASSERT_RTNL();
1052
1053 if (regdb)
1054 return query_regdb(alpha2);
1055
1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 if (!alpha2)
1058 return -ENOMEM;
1059
1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 ®_pdev->dev, GFP_KERNEL,
1062 (void *)alpha2, regdb_fw_cb);
1063 if (err)
1064 kfree(alpha2);
1065
1066 return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071 const struct firmware *fw;
1072 void *db;
1073 int err;
1074 const struct ieee80211_regdomain *current_regdomain;
1075 struct regulatory_request *request;
1076
1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1078 if (err)
1079 return err;
1080
1081 if (!valid_regdb(fw->data, fw->size)) {
1082 err = -ENODATA;
1083 goto out;
1084 }
1085
1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 if (!db) {
1088 err = -ENOMEM;
1089 goto out;
1090 }
1091
1092 rtnl_lock();
1093 if (!IS_ERR_OR_NULL(regdb))
1094 kfree(regdb);
1095 regdb = db;
1096
1097 /* reset regulatory domain */
1098 current_regdomain = get_cfg80211_regdom();
1099
1100 request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 if (!request) {
1102 err = -ENOMEM;
1103 goto out_unlock;
1104 }
1105
1106 request->wiphy_idx = WIPHY_IDX_INVALID;
1107 request->alpha2[0] = current_regdomain->alpha2[0];
1108 request->alpha2[1] = current_regdomain->alpha2[1];
1109 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112 reg_process_hint(request);
1113
1114out_unlock:
1115 rtnl_unlock();
1116 out:
1117 release_firmware(fw);
1118 return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123 if (query_regdb_file(request->alpha2) == 0)
1124 return true;
1125
1126 if (call_crda(request->alpha2) == 0)
1127 return true;
1128
1129 return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134 struct regulatory_request *lr = get_last_request();
1135
1136 if (!lr || lr->processed)
1137 return false;
1138
1139 return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144 struct regulatory_request *lr = get_last_request();
1145
1146 /*
1147 * Follow the driver's regulatory domain, if present, unless a country
1148 * IE has been processed or a user wants to help complaince further
1149 */
1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 wiphy->regd)
1153 return get_wiphy_regdom(wiphy);
1154
1155 return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 const struct ieee80211_reg_rule *rule)
1161{
1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 const struct ieee80211_freq_range *freq_range_tmp;
1164 const struct ieee80211_reg_rule *tmp;
1165 u32 start_freq, end_freq, idx, no;
1166
1167 for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 if (rule == &rd->reg_rules[idx])
1169 break;
1170
1171 if (idx == rd->n_reg_rules)
1172 return 0;
1173
1174 /* get start_freq */
1175 no = idx;
1176
1177 while (no) {
1178 tmp = &rd->reg_rules[--no];
1179 freq_range_tmp = &tmp->freq_range;
1180
1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 break;
1183
1184 freq_range = freq_range_tmp;
1185 }
1186
1187 start_freq = freq_range->start_freq_khz;
1188
1189 /* get end_freq */
1190 freq_range = &rule->freq_range;
1191 no = idx;
1192
1193 while (no < rd->n_reg_rules - 1) {
1194 tmp = &rd->reg_rules[++no];
1195 freq_range_tmp = &tmp->freq_range;
1196
1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 break;
1199
1200 freq_range = freq_range_tmp;
1201 }
1202
1203 end_freq = freq_range->end_freq_khz;
1204
1205 return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 const struct ieee80211_reg_rule *rule)
1210{
1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213 if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220 /*
1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 * are not allowed.
1223 */
1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228 return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 u32 freq_diff;
1236
1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 return false;
1239
1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 return false;
1242
1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 freq_range->max_bandwidth_khz > freq_diff)
1247 return false;
1248
1249 return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254 const struct ieee80211_reg_rule *reg_rule = NULL;
1255 unsigned int i;
1256
1257 if (!rd->n_reg_rules)
1258 return false;
1259
1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 return false;
1262
1263 for (i = 0; i < rd->n_reg_rules; i++) {
1264 reg_rule = &rd->reg_rules[i];
1265 if (!is_valid_reg_rule(reg_rule))
1266 return false;
1267 }
1268
1269 return true;
1270}
1271
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 *
1287 * Returns: whether or not the frequency is in the range
1288 */
1289static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290 u32 freq_khz)
1291{
1292#define ONE_GHZ_IN_KHZ 1000000
1293 /*
1294 * From 802.11ad: directional multi-gigabit (DMG):
1295 * Pertaining to operation in a frequency band containing a channel
1296 * with the Channel starting frequency above 45 GHz.
1297 */
1298 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 return true;
1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 return true;
1304 return false;
1305#undef ONE_GHZ_IN_KHZ
1306}
1307
1308/*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313static enum nl80211_dfs_regions
1314reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 const enum nl80211_dfs_regions dfs_region2)
1316{
1317 if (dfs_region1 != dfs_region2)
1318 return NL80211_DFS_UNSET;
1319 return dfs_region1;
1320}
1321
1322static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 const struct ieee80211_wmm_ac *wmm_ac2,
1324 struct ieee80211_wmm_ac *intersect)
1325{
1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330}
1331
1332/*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
1336static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 const struct ieee80211_regdomain *rd2,
1338 const struct ieee80211_reg_rule *rule1,
1339 const struct ieee80211_reg_rule *rule2,
1340 struct ieee80211_reg_rule *intersected_rule)
1341{
1342 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 struct ieee80211_freq_range *freq_range;
1344 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 struct ieee80211_power_rule *power_rule;
1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 struct ieee80211_wmm_rule *wmm_rule;
1348 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350 freq_range1 = &rule1->freq_range;
1351 freq_range2 = &rule2->freq_range;
1352 freq_range = &intersected_rule->freq_range;
1353
1354 power_rule1 = &rule1->power_rule;
1355 power_rule2 = &rule2->power_rule;
1356 power_rule = &intersected_rule->power_rule;
1357
1358 wmm_rule1 = &rule1->wmm_rule;
1359 wmm_rule2 = &rule2->wmm_rule;
1360 wmm_rule = &intersected_rule->wmm_rule;
1361
1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 freq_range2->start_freq_khz);
1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 freq_range2->end_freq_khz);
1366
1367 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370 if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377 intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379 /*
1380 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 * set AUTO_BW in intersected rule also. Next we will
1382 * calculate BW correctly in handle_channel function.
1383 * In other case remove AUTO_BW flag while we calculate
1384 * maximum bandwidth correctly and auto calculation is
1385 * not required.
1386 */
1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 (rule2->flags & NL80211_RRF_AUTO_BW))
1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 else
1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 if (freq_range->max_bandwidth_khz > freq_diff)
1395 freq_range->max_bandwidth_khz = freq_diff;
1396
1397 power_rule->max_eirp = min(power_rule1->max_eirp,
1398 power_rule2->max_eirp);
1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 power_rule2->max_antenna_gain);
1401
1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 rule2->dfs_cac_ms);
1404
1405 if (rule1->has_wmm && rule2->has_wmm) {
1406 u8 ac;
1407
1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 &wmm_rule2->client[ac],
1411 &wmm_rule->client[ac]);
1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 &wmm_rule2->ap[ac],
1414 &wmm_rule->ap[ac]);
1415 }
1416
1417 intersected_rule->has_wmm = true;
1418 } else if (rule1->has_wmm) {
1419 *wmm_rule = *wmm_rule1;
1420 intersected_rule->has_wmm = true;
1421 } else if (rule2->has_wmm) {
1422 *wmm_rule = *wmm_rule2;
1423 intersected_rule->has_wmm = true;
1424 } else {
1425 intersected_rule->has_wmm = false;
1426 }
1427
1428 if (!is_valid_reg_rule(intersected_rule))
1429 return -EINVAL;
1430
1431 return 0;
1432}
1433
1434/* check whether old rule contains new rule */
1435static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 struct ieee80211_reg_rule *r2)
1437{
1438 /* for simplicity, currently consider only same flags */
1439 if (r1->flags != r2->flags)
1440 return false;
1441
1442 /* verify r1 is more restrictive */
1443 if ((r1->power_rule.max_antenna_gain >
1444 r2->power_rule.max_antenna_gain) ||
1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 return false;
1447
1448 /* make sure r2's range is contained within r1 */
1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 return false;
1452
1453 /* and finally verify that r1.max_bw >= r2.max_bw */
1454 if (r1->freq_range.max_bandwidth_khz <
1455 r2->freq_range.max_bandwidth_khz)
1456 return false;
1457
1458 return true;
1459}
1460
1461/* add or extend current rules. do nothing if rule is already contained */
1462static void add_rule(struct ieee80211_reg_rule *rule,
1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464{
1465 struct ieee80211_reg_rule *tmp_rule;
1466 int i;
1467
1468 for (i = 0; i < *n_rules; i++) {
1469 tmp_rule = ®_rules[i];
1470 /* rule is already contained - do nothing */
1471 if (rule_contains(tmp_rule, rule))
1472 return;
1473
1474 /* extend rule if possible */
1475 if (rule_contains(rule, tmp_rule)) {
1476 memcpy(tmp_rule, rule, sizeof(*rule));
1477 return;
1478 }
1479 }
1480
1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1482 (*n_rules)++;
1483}
1484
1485/**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500static struct ieee80211_regdomain *
1501regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 const struct ieee80211_regdomain *rd2)
1503{
1504 int r;
1505 unsigned int x, y;
1506 unsigned int num_rules = 0;
1507 const struct ieee80211_reg_rule *rule1, *rule2;
1508 struct ieee80211_reg_rule intersected_rule;
1509 struct ieee80211_regdomain *rd;
1510
1511 if (!rd1 || !rd2)
1512 return NULL;
1513
1514 /*
1515 * First we get a count of the rules we'll need, then we actually
1516 * build them. This is to so we can malloc() and free() a
1517 * regdomain once. The reason we use reg_rules_intersect() here
1518 * is it will return -EINVAL if the rule computed makes no sense.
1519 * All rules that do check out OK are valid.
1520 */
1521
1522 for (x = 0; x < rd1->n_reg_rules; x++) {
1523 rule1 = &rd1->reg_rules[x];
1524 for (y = 0; y < rd2->n_reg_rules; y++) {
1525 rule2 = &rd2->reg_rules[y];
1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 &intersected_rule))
1528 num_rules++;
1529 }
1530 }
1531
1532 if (!num_rules)
1533 return NULL;
1534
1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 if (!rd)
1537 return NULL;
1538
1539 for (x = 0; x < rd1->n_reg_rules; x++) {
1540 rule1 = &rd1->reg_rules[x];
1541 for (y = 0; y < rd2->n_reg_rules; y++) {
1542 rule2 = &rd2->reg_rules[y];
1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 &intersected_rule);
1545 /*
1546 * No need to memset here the intersected rule here as
1547 * we're not using the stack anymore
1548 */
1549 if (r)
1550 continue;
1551
1552 add_rule(&intersected_rule, rd->reg_rules,
1553 &rd->n_reg_rules);
1554 }
1555 }
1556
1557 rd->alpha2[0] = '9';
1558 rd->alpha2[1] = '8';
1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 rd2->dfs_region);
1561
1562 return rd;
1563}
1564
1565/*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
1569static u32 map_regdom_flags(u32 rd_flags)
1570{
1571 u32 channel_flags = 0;
1572 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 channel_flags |= IEEE80211_CHAN_NO_IR;
1574 if (rd_flags & NL80211_RRF_DFS)
1575 channel_flags |= IEEE80211_CHAN_RADAR;
1576 if (rd_flags & NL80211_RRF_NO_OFDM)
1577 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 if (rd_flags & NL80211_RRF_NO_HE)
1591 channel_flags |= IEEE80211_CHAN_NO_HE;
1592 if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 if (rd_flags & NL80211_RRF_NO_EHT)
1595 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT)
1599 channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT;
1600 if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT)
1601 channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT;
1602 if (rd_flags & NL80211_RRF_PSD)
1603 channel_flags |= IEEE80211_CHAN_PSD;
1604 return channel_flags;
1605}
1606
1607static const struct ieee80211_reg_rule *
1608freq_reg_info_regd(u32 center_freq,
1609 const struct ieee80211_regdomain *regd, u32 bw)
1610{
1611 int i;
1612 bool band_rule_found = false;
1613 bool bw_fits = false;
1614
1615 if (!regd)
1616 return ERR_PTR(-EINVAL);
1617
1618 for (i = 0; i < regd->n_reg_rules; i++) {
1619 const struct ieee80211_reg_rule *rr;
1620 const struct ieee80211_freq_range *fr = NULL;
1621
1622 rr = ®d->reg_rules[i];
1623 fr = &rr->freq_range;
1624
1625 /*
1626 * We only need to know if one frequency rule was
1627 * in center_freq's band, that's enough, so let's
1628 * not overwrite it once found
1629 */
1630 if (!band_rule_found)
1631 band_rule_found = freq_in_rule_band(fr, center_freq);
1632
1633 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1634
1635 if (band_rule_found && bw_fits)
1636 return rr;
1637 }
1638
1639 if (!band_rule_found)
1640 return ERR_PTR(-ERANGE);
1641
1642 return ERR_PTR(-EINVAL);
1643}
1644
1645static const struct ieee80211_reg_rule *
1646__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1647{
1648 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1649 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1650 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1651 int i = ARRAY_SIZE(bws) - 1;
1652 u32 bw;
1653
1654 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1655 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1656 if (!IS_ERR(reg_rule))
1657 return reg_rule;
1658 }
1659
1660 return reg_rule;
1661}
1662
1663const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1664 u32 center_freq)
1665{
1666 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1667
1668 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1669}
1670EXPORT_SYMBOL(freq_reg_info);
1671
1672const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1673{
1674 switch (initiator) {
1675 case NL80211_REGDOM_SET_BY_CORE:
1676 return "core";
1677 case NL80211_REGDOM_SET_BY_USER:
1678 return "user";
1679 case NL80211_REGDOM_SET_BY_DRIVER:
1680 return "driver";
1681 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1682 return "country element";
1683 default:
1684 WARN_ON(1);
1685 return "bug";
1686 }
1687}
1688EXPORT_SYMBOL(reg_initiator_name);
1689
1690static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1691 const struct ieee80211_reg_rule *reg_rule,
1692 const struct ieee80211_channel *chan)
1693{
1694 const struct ieee80211_freq_range *freq_range = NULL;
1695 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1696 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1697
1698 freq_range = ®_rule->freq_range;
1699
1700 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1701 center_freq_khz = ieee80211_channel_to_khz(chan);
1702 /* Check if auto calculation requested */
1703 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1704 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1705
1706 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1707 if (!cfg80211_does_bw_fit_range(freq_range,
1708 center_freq_khz,
1709 MHZ_TO_KHZ(10)))
1710 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1711 if (!cfg80211_does_bw_fit_range(freq_range,
1712 center_freq_khz,
1713 MHZ_TO_KHZ(20)))
1714 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1715
1716 if (is_s1g) {
1717 /* S1G is strict about non overlapping channels. We can
1718 * calculate which bandwidth is allowed per channel by finding
1719 * the largest bandwidth which cleanly divides the freq_range.
1720 */
1721 int edge_offset;
1722 int ch_bw = max_bandwidth_khz;
1723
1724 while (ch_bw) {
1725 edge_offset = (center_freq_khz - ch_bw / 2) -
1726 freq_range->start_freq_khz;
1727 if (edge_offset % ch_bw == 0) {
1728 switch (KHZ_TO_MHZ(ch_bw)) {
1729 case 1:
1730 bw_flags |= IEEE80211_CHAN_1MHZ;
1731 break;
1732 case 2:
1733 bw_flags |= IEEE80211_CHAN_2MHZ;
1734 break;
1735 case 4:
1736 bw_flags |= IEEE80211_CHAN_4MHZ;
1737 break;
1738 case 8:
1739 bw_flags |= IEEE80211_CHAN_8MHZ;
1740 break;
1741 case 16:
1742 bw_flags |= IEEE80211_CHAN_16MHZ;
1743 break;
1744 default:
1745 /* If we got here, no bandwidths fit on
1746 * this frequency, ie. band edge.
1747 */
1748 bw_flags |= IEEE80211_CHAN_DISABLED;
1749 break;
1750 }
1751 break;
1752 }
1753 ch_bw /= 2;
1754 }
1755 } else {
1756 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1757 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1759 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1760 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1761 bw_flags |= IEEE80211_CHAN_NO_HT40;
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1763 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1764 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1765 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1767 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1768 }
1769 return bw_flags;
1770}
1771
1772static void handle_channel_single_rule(struct wiphy *wiphy,
1773 enum nl80211_reg_initiator initiator,
1774 struct ieee80211_channel *chan,
1775 u32 flags,
1776 struct regulatory_request *lr,
1777 struct wiphy *request_wiphy,
1778 const struct ieee80211_reg_rule *reg_rule)
1779{
1780 u32 bw_flags = 0;
1781 const struct ieee80211_power_rule *power_rule = NULL;
1782 const struct ieee80211_regdomain *regd;
1783
1784 regd = reg_get_regdomain(wiphy);
1785
1786 power_rule = ®_rule->power_rule;
1787 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1788
1789 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1790 request_wiphy && request_wiphy == wiphy &&
1791 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1792 /*
1793 * This guarantees the driver's requested regulatory domain
1794 * will always be used as a base for further regulatory
1795 * settings
1796 */
1797 chan->flags = chan->orig_flags =
1798 map_regdom_flags(reg_rule->flags) | bw_flags;
1799 chan->max_antenna_gain = chan->orig_mag =
1800 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1801 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1802 (int) MBM_TO_DBM(power_rule->max_eirp);
1803
1804 if (chan->flags & IEEE80211_CHAN_RADAR) {
1805 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806 if (reg_rule->dfs_cac_ms)
1807 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1808 }
1809
1810 if (chan->flags & IEEE80211_CHAN_PSD)
1811 chan->psd = reg_rule->psd;
1812
1813 return;
1814 }
1815
1816 chan->dfs_state = NL80211_DFS_USABLE;
1817 chan->dfs_state_entered = jiffies;
1818
1819 chan->beacon_found = false;
1820 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1821 chan->max_antenna_gain =
1822 min_t(int, chan->orig_mag,
1823 MBI_TO_DBI(power_rule->max_antenna_gain));
1824 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1825
1826 if (chan->flags & IEEE80211_CHAN_RADAR) {
1827 if (reg_rule->dfs_cac_ms)
1828 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1829 else
1830 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1831 }
1832
1833 if (chan->flags & IEEE80211_CHAN_PSD)
1834 chan->psd = reg_rule->psd;
1835
1836 if (chan->orig_mpwr) {
1837 /*
1838 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1839 * will always follow the passed country IE power settings.
1840 */
1841 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1842 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1843 chan->max_power = chan->max_reg_power;
1844 else
1845 chan->max_power = min(chan->orig_mpwr,
1846 chan->max_reg_power);
1847 } else
1848 chan->max_power = chan->max_reg_power;
1849}
1850
1851static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1852 enum nl80211_reg_initiator initiator,
1853 struct ieee80211_channel *chan,
1854 u32 flags,
1855 struct regulatory_request *lr,
1856 struct wiphy *request_wiphy,
1857 const struct ieee80211_reg_rule *rrule1,
1858 const struct ieee80211_reg_rule *rrule2,
1859 struct ieee80211_freq_range *comb_range)
1860{
1861 u32 bw_flags1 = 0;
1862 u32 bw_flags2 = 0;
1863 const struct ieee80211_power_rule *power_rule1 = NULL;
1864 const struct ieee80211_power_rule *power_rule2 = NULL;
1865 const struct ieee80211_regdomain *regd;
1866
1867 regd = reg_get_regdomain(wiphy);
1868
1869 power_rule1 = &rrule1->power_rule;
1870 power_rule2 = &rrule2->power_rule;
1871 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1872 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1873
1874 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1875 request_wiphy && request_wiphy == wiphy &&
1876 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1877 /* This guarantees the driver's requested regulatory domain
1878 * will always be used as a base for further regulatory
1879 * settings
1880 */
1881 chan->flags =
1882 map_regdom_flags(rrule1->flags) |
1883 map_regdom_flags(rrule2->flags) |
1884 bw_flags1 |
1885 bw_flags2;
1886 chan->orig_flags = chan->flags;
1887 chan->max_antenna_gain =
1888 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1889 MBI_TO_DBI(power_rule2->max_antenna_gain));
1890 chan->orig_mag = chan->max_antenna_gain;
1891 chan->max_reg_power =
1892 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1893 MBM_TO_DBM(power_rule2->max_eirp));
1894 chan->max_power = chan->max_reg_power;
1895 chan->orig_mpwr = chan->max_reg_power;
1896
1897 if (chan->flags & IEEE80211_CHAN_RADAR) {
1898 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1899 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1900 chan->dfs_cac_ms = max_t(unsigned int,
1901 rrule1->dfs_cac_ms,
1902 rrule2->dfs_cac_ms);
1903 }
1904
1905 if ((rrule1->flags & NL80211_RRF_PSD) &&
1906 (rrule2->flags & NL80211_RRF_PSD))
1907 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1908 else
1909 chan->flags &= ~NL80211_RRF_PSD;
1910
1911 return;
1912 }
1913
1914 chan->dfs_state = NL80211_DFS_USABLE;
1915 chan->dfs_state_entered = jiffies;
1916
1917 chan->beacon_found = false;
1918 chan->flags = flags | bw_flags1 | bw_flags2 |
1919 map_regdom_flags(rrule1->flags) |
1920 map_regdom_flags(rrule2->flags);
1921
1922 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1923 * (otherwise no adj. rule case), recheck therefore
1924 */
1925 if (cfg80211_does_bw_fit_range(comb_range,
1926 ieee80211_channel_to_khz(chan),
1927 MHZ_TO_KHZ(10)))
1928 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1929 if (cfg80211_does_bw_fit_range(comb_range,
1930 ieee80211_channel_to_khz(chan),
1931 MHZ_TO_KHZ(20)))
1932 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1933
1934 chan->max_antenna_gain =
1935 min_t(int, chan->orig_mag,
1936 min_t(int,
1937 MBI_TO_DBI(power_rule1->max_antenna_gain),
1938 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1939 chan->max_reg_power = min_t(int,
1940 MBM_TO_DBM(power_rule1->max_eirp),
1941 MBM_TO_DBM(power_rule2->max_eirp));
1942
1943 if (chan->flags & IEEE80211_CHAN_RADAR) {
1944 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1945 chan->dfs_cac_ms = max_t(unsigned int,
1946 rrule1->dfs_cac_ms,
1947 rrule2->dfs_cac_ms);
1948 else
1949 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1950 }
1951
1952 if (chan->orig_mpwr) {
1953 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1954 * will always follow the passed country IE power settings.
1955 */
1956 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1957 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1958 chan->max_power = chan->max_reg_power;
1959 else
1960 chan->max_power = min(chan->orig_mpwr,
1961 chan->max_reg_power);
1962 } else {
1963 chan->max_power = chan->max_reg_power;
1964 }
1965}
1966
1967/* Note that right now we assume the desired channel bandwidth
1968 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1969 * per channel, the primary and the extension channel).
1970 */
1971static void handle_channel(struct wiphy *wiphy,
1972 enum nl80211_reg_initiator initiator,
1973 struct ieee80211_channel *chan)
1974{
1975 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1976 struct regulatory_request *lr = get_last_request();
1977 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1978 const struct ieee80211_reg_rule *rrule = NULL;
1979 const struct ieee80211_reg_rule *rrule1 = NULL;
1980 const struct ieee80211_reg_rule *rrule2 = NULL;
1981
1982 u32 flags = chan->orig_flags;
1983
1984 rrule = freq_reg_info(wiphy, orig_chan_freq);
1985 if (IS_ERR(rrule)) {
1986 /* check for adjacent match, therefore get rules for
1987 * chan - 20 MHz and chan + 20 MHz and test
1988 * if reg rules are adjacent
1989 */
1990 rrule1 = freq_reg_info(wiphy,
1991 orig_chan_freq - MHZ_TO_KHZ(20));
1992 rrule2 = freq_reg_info(wiphy,
1993 orig_chan_freq + MHZ_TO_KHZ(20));
1994 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1995 struct ieee80211_freq_range comb_range;
1996
1997 if (rrule1->freq_range.end_freq_khz !=
1998 rrule2->freq_range.start_freq_khz)
1999 goto disable_chan;
2000
2001 comb_range.start_freq_khz =
2002 rrule1->freq_range.start_freq_khz;
2003 comb_range.end_freq_khz =
2004 rrule2->freq_range.end_freq_khz;
2005 comb_range.max_bandwidth_khz =
2006 min_t(u32,
2007 rrule1->freq_range.max_bandwidth_khz,
2008 rrule2->freq_range.max_bandwidth_khz);
2009
2010 if (!cfg80211_does_bw_fit_range(&comb_range,
2011 orig_chan_freq,
2012 MHZ_TO_KHZ(20)))
2013 goto disable_chan;
2014
2015 handle_channel_adjacent_rules(wiphy, initiator, chan,
2016 flags, lr, request_wiphy,
2017 rrule1, rrule2,
2018 &comb_range);
2019 return;
2020 }
2021
2022disable_chan:
2023 /* We will disable all channels that do not match our
2024 * received regulatory rule unless the hint is coming
2025 * from a Country IE and the Country IE had no information
2026 * about a band. The IEEE 802.11 spec allows for an AP
2027 * to send only a subset of the regulatory rules allowed,
2028 * so an AP in the US that only supports 2.4 GHz may only send
2029 * a country IE with information for the 2.4 GHz band
2030 * while 5 GHz is still supported.
2031 */
2032 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2033 PTR_ERR(rrule) == -ERANGE)
2034 return;
2035
2036 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2037 request_wiphy && request_wiphy == wiphy &&
2038 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2039 pr_debug("Disabling freq %d.%03d MHz for good\n",
2040 chan->center_freq, chan->freq_offset);
2041 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2042 chan->flags = chan->orig_flags;
2043 } else {
2044 pr_debug("Disabling freq %d.%03d MHz\n",
2045 chan->center_freq, chan->freq_offset);
2046 chan->flags |= IEEE80211_CHAN_DISABLED;
2047 }
2048 return;
2049 }
2050
2051 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2052 request_wiphy, rrule);
2053}
2054
2055static void handle_band(struct wiphy *wiphy,
2056 enum nl80211_reg_initiator initiator,
2057 struct ieee80211_supported_band *sband)
2058{
2059 unsigned int i;
2060
2061 if (!sband)
2062 return;
2063
2064 for (i = 0; i < sband->n_channels; i++)
2065 handle_channel(wiphy, initiator, &sband->channels[i]);
2066}
2067
2068static bool reg_request_cell_base(struct regulatory_request *request)
2069{
2070 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2071 return false;
2072 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2073}
2074
2075bool reg_last_request_cell_base(void)
2076{
2077 return reg_request_cell_base(get_last_request());
2078}
2079
2080#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2081/* Core specific check */
2082static enum reg_request_treatment
2083reg_ignore_cell_hint(struct regulatory_request *pending_request)
2084{
2085 struct regulatory_request *lr = get_last_request();
2086
2087 if (!reg_num_devs_support_basehint)
2088 return REG_REQ_IGNORE;
2089
2090 if (reg_request_cell_base(lr) &&
2091 !regdom_changes(pending_request->alpha2))
2092 return REG_REQ_ALREADY_SET;
2093
2094 return REG_REQ_OK;
2095}
2096
2097/* Device specific check */
2098static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2099{
2100 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2101}
2102#else
2103static enum reg_request_treatment
2104reg_ignore_cell_hint(struct regulatory_request *pending_request)
2105{
2106 return REG_REQ_IGNORE;
2107}
2108
2109static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2110{
2111 return true;
2112}
2113#endif
2114
2115static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2116{
2117 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2118 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119 return true;
2120 return false;
2121}
2122
2123static bool ignore_reg_update(struct wiphy *wiphy,
2124 enum nl80211_reg_initiator initiator)
2125{
2126 struct regulatory_request *lr = get_last_request();
2127
2128 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2129 return true;
2130
2131 if (!lr) {
2132 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2133 reg_initiator_name(initiator));
2134 return true;
2135 }
2136
2137 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2138 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2139 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2140 reg_initiator_name(initiator));
2141 return true;
2142 }
2143
2144 /*
2145 * wiphy->regd will be set once the device has its own
2146 * desired regulatory domain set
2147 */
2148 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2149 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2150 !is_world_regdom(lr->alpha2)) {
2151 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2152 reg_initiator_name(initiator));
2153 return true;
2154 }
2155
2156 if (reg_request_cell_base(lr))
2157 return reg_dev_ignore_cell_hint(wiphy);
2158
2159 return false;
2160}
2161
2162static bool reg_is_world_roaming(struct wiphy *wiphy)
2163{
2164 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2165 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2166 struct regulatory_request *lr = get_last_request();
2167
2168 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2169 return true;
2170
2171 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2172 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2173 return true;
2174
2175 return false;
2176}
2177
2178static void reg_call_notifier(struct wiphy *wiphy,
2179 struct regulatory_request *request)
2180{
2181 if (wiphy->reg_notifier)
2182 wiphy->reg_notifier(wiphy, request);
2183}
2184
2185static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2186 struct reg_beacon *reg_beacon)
2187{
2188 struct ieee80211_supported_band *sband;
2189 struct ieee80211_channel *chan;
2190 bool channel_changed = false;
2191 struct ieee80211_channel chan_before;
2192 struct regulatory_request *lr = get_last_request();
2193
2194 sband = wiphy->bands[reg_beacon->chan.band];
2195 chan = &sband->channels[chan_idx];
2196
2197 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2198 return;
2199
2200 if (chan->beacon_found)
2201 return;
2202
2203 chan->beacon_found = true;
2204
2205 if (!reg_is_world_roaming(wiphy))
2206 return;
2207
2208 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2209 return;
2210
2211 chan_before = *chan;
2212
2213 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2214 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2215 channel_changed = true;
2216 }
2217
2218 if (channel_changed) {
2219 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2220 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2221 reg_call_notifier(wiphy, lr);
2222 }
2223}
2224
2225/*
2226 * Called when a scan on a wiphy finds a beacon on
2227 * new channel
2228 */
2229static void wiphy_update_new_beacon(struct wiphy *wiphy,
2230 struct reg_beacon *reg_beacon)
2231{
2232 unsigned int i;
2233 struct ieee80211_supported_band *sband;
2234
2235 if (!wiphy->bands[reg_beacon->chan.band])
2236 return;
2237
2238 sband = wiphy->bands[reg_beacon->chan.band];
2239
2240 for (i = 0; i < sband->n_channels; i++)
2241 handle_reg_beacon(wiphy, i, reg_beacon);
2242}
2243
2244/*
2245 * Called upon reg changes or a new wiphy is added
2246 */
2247static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2248{
2249 unsigned int i;
2250 struct ieee80211_supported_band *sband;
2251 struct reg_beacon *reg_beacon;
2252
2253 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2254 if (!wiphy->bands[reg_beacon->chan.band])
2255 continue;
2256 sband = wiphy->bands[reg_beacon->chan.band];
2257 for (i = 0; i < sband->n_channels; i++)
2258 handle_reg_beacon(wiphy, i, reg_beacon);
2259 }
2260}
2261
2262/* Reap the advantages of previously found beacons */
2263static void reg_process_beacons(struct wiphy *wiphy)
2264{
2265 /*
2266 * Means we are just firing up cfg80211, so no beacons would
2267 * have been processed yet.
2268 */
2269 if (!last_request)
2270 return;
2271 wiphy_update_beacon_reg(wiphy);
2272}
2273
2274static bool is_ht40_allowed(struct ieee80211_channel *chan)
2275{
2276 if (!chan)
2277 return false;
2278 if (chan->flags & IEEE80211_CHAN_DISABLED)
2279 return false;
2280 /* This would happen when regulatory rules disallow HT40 completely */
2281 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2282 return false;
2283 return true;
2284}
2285
2286static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2287 struct ieee80211_channel *channel)
2288{
2289 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2290 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2291 const struct ieee80211_regdomain *regd;
2292 unsigned int i;
2293 u32 flags;
2294
2295 if (!is_ht40_allowed(channel)) {
2296 channel->flags |= IEEE80211_CHAN_NO_HT40;
2297 return;
2298 }
2299
2300 /*
2301 * We need to ensure the extension channels exist to
2302 * be able to use HT40- or HT40+, this finds them (or not)
2303 */
2304 for (i = 0; i < sband->n_channels; i++) {
2305 struct ieee80211_channel *c = &sband->channels[i];
2306
2307 if (c->center_freq == (channel->center_freq - 20))
2308 channel_before = c;
2309 if (c->center_freq == (channel->center_freq + 20))
2310 channel_after = c;
2311 }
2312
2313 flags = 0;
2314 regd = get_wiphy_regdom(wiphy);
2315 if (regd) {
2316 const struct ieee80211_reg_rule *reg_rule =
2317 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2318 regd, MHZ_TO_KHZ(20));
2319
2320 if (!IS_ERR(reg_rule))
2321 flags = reg_rule->flags;
2322 }
2323
2324 /*
2325 * Please note that this assumes target bandwidth is 20 MHz,
2326 * if that ever changes we also need to change the below logic
2327 * to include that as well.
2328 */
2329 if (!is_ht40_allowed(channel_before) ||
2330 flags & NL80211_RRF_NO_HT40MINUS)
2331 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2332 else
2333 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2334
2335 if (!is_ht40_allowed(channel_after) ||
2336 flags & NL80211_RRF_NO_HT40PLUS)
2337 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2338 else
2339 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2340}
2341
2342static void reg_process_ht_flags_band(struct wiphy *wiphy,
2343 struct ieee80211_supported_band *sband)
2344{
2345 unsigned int i;
2346
2347 if (!sband)
2348 return;
2349
2350 for (i = 0; i < sband->n_channels; i++)
2351 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2352}
2353
2354static void reg_process_ht_flags(struct wiphy *wiphy)
2355{
2356 enum nl80211_band band;
2357
2358 if (!wiphy)
2359 return;
2360
2361 for (band = 0; band < NUM_NL80211_BANDS; band++)
2362 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2363}
2364
2365static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2366{
2367 struct cfg80211_chan_def chandef = {};
2368 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2369 enum nl80211_iftype iftype;
2370 bool ret;
2371 int link;
2372
2373 iftype = wdev->iftype;
2374
2375 /* make sure the interface is active */
2376 if (!wdev->netdev || !netif_running(wdev->netdev))
2377 return true;
2378
2379 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2380 struct ieee80211_channel *chan;
2381
2382 if (!wdev->valid_links && link > 0)
2383 break;
2384 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2385 continue;
2386 switch (iftype) {
2387 case NL80211_IFTYPE_AP:
2388 case NL80211_IFTYPE_P2P_GO:
2389 if (!wdev->links[link].ap.beacon_interval)
2390 continue;
2391 chandef = wdev->links[link].ap.chandef;
2392 break;
2393 case NL80211_IFTYPE_MESH_POINT:
2394 if (!wdev->u.mesh.beacon_interval)
2395 continue;
2396 chandef = wdev->u.mesh.chandef;
2397 break;
2398 case NL80211_IFTYPE_ADHOC:
2399 if (!wdev->u.ibss.ssid_len)
2400 continue;
2401 chandef = wdev->u.ibss.chandef;
2402 break;
2403 case NL80211_IFTYPE_STATION:
2404 case NL80211_IFTYPE_P2P_CLIENT:
2405 /* Maybe we could consider disabling that link only? */
2406 if (!wdev->links[link].client.current_bss)
2407 continue;
2408
2409 chan = wdev->links[link].client.current_bss->pub.channel;
2410 if (!chan)
2411 continue;
2412
2413 if (!rdev->ops->get_channel ||
2414 rdev_get_channel(rdev, wdev, link, &chandef))
2415 cfg80211_chandef_create(&chandef, chan,
2416 NL80211_CHAN_NO_HT);
2417 break;
2418 case NL80211_IFTYPE_MONITOR:
2419 case NL80211_IFTYPE_AP_VLAN:
2420 case NL80211_IFTYPE_P2P_DEVICE:
2421 /* no enforcement required */
2422 break;
2423 case NL80211_IFTYPE_OCB:
2424 if (!wdev->u.ocb.chandef.chan)
2425 continue;
2426 chandef = wdev->u.ocb.chandef;
2427 break;
2428 case NL80211_IFTYPE_NAN:
2429 /* we have no info, but NAN is also pretty universal */
2430 continue;
2431 default:
2432 /* others not implemented for now */
2433 WARN_ON_ONCE(1);
2434 break;
2435 }
2436
2437 switch (iftype) {
2438 case NL80211_IFTYPE_AP:
2439 case NL80211_IFTYPE_P2P_GO:
2440 case NL80211_IFTYPE_ADHOC:
2441 case NL80211_IFTYPE_MESH_POINT:
2442 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2443 iftype);
2444 if (!ret)
2445 return ret;
2446 break;
2447 case NL80211_IFTYPE_STATION:
2448 case NL80211_IFTYPE_P2P_CLIENT:
2449 ret = cfg80211_chandef_usable(wiphy, &chandef,
2450 IEEE80211_CHAN_DISABLED);
2451 if (!ret)
2452 return ret;
2453 break;
2454 default:
2455 break;
2456 }
2457 }
2458
2459 return true;
2460}
2461
2462static void reg_leave_invalid_chans(struct wiphy *wiphy)
2463{
2464 struct wireless_dev *wdev;
2465 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2466
2467 wiphy_lock(wiphy);
2468 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2469 if (!reg_wdev_chan_valid(wiphy, wdev))
2470 cfg80211_leave(rdev, wdev);
2471 wiphy_unlock(wiphy);
2472}
2473
2474static void reg_check_chans_work(struct work_struct *work)
2475{
2476 struct cfg80211_registered_device *rdev;
2477
2478 pr_debug("Verifying active interfaces after reg change\n");
2479 rtnl_lock();
2480
2481 for_each_rdev(rdev)
2482 reg_leave_invalid_chans(&rdev->wiphy);
2483
2484 rtnl_unlock();
2485}
2486
2487void reg_check_channels(void)
2488{
2489 /*
2490 * Give usermode a chance to do something nicer (move to another
2491 * channel, orderly disconnection), before forcing a disconnection.
2492 */
2493 mod_delayed_work(system_power_efficient_wq,
2494 ®_check_chans,
2495 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2496}
2497
2498static void wiphy_update_regulatory(struct wiphy *wiphy,
2499 enum nl80211_reg_initiator initiator)
2500{
2501 enum nl80211_band band;
2502 struct regulatory_request *lr = get_last_request();
2503
2504 if (ignore_reg_update(wiphy, initiator)) {
2505 /*
2506 * Regulatory updates set by CORE are ignored for custom
2507 * regulatory cards. Let us notify the changes to the driver,
2508 * as some drivers used this to restore its orig_* reg domain.
2509 */
2510 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2511 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2512 !(wiphy->regulatory_flags &
2513 REGULATORY_WIPHY_SELF_MANAGED))
2514 reg_call_notifier(wiphy, lr);
2515 return;
2516 }
2517
2518 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2519
2520 for (band = 0; band < NUM_NL80211_BANDS; band++)
2521 handle_band(wiphy, initiator, wiphy->bands[band]);
2522
2523 reg_process_beacons(wiphy);
2524 reg_process_ht_flags(wiphy);
2525 reg_call_notifier(wiphy, lr);
2526}
2527
2528static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2529{
2530 struct cfg80211_registered_device *rdev;
2531 struct wiphy *wiphy;
2532
2533 ASSERT_RTNL();
2534
2535 for_each_rdev(rdev) {
2536 wiphy = &rdev->wiphy;
2537 wiphy_update_regulatory(wiphy, initiator);
2538 }
2539
2540 reg_check_channels();
2541}
2542
2543static void handle_channel_custom(struct wiphy *wiphy,
2544 struct ieee80211_channel *chan,
2545 const struct ieee80211_regdomain *regd,
2546 u32 min_bw)
2547{
2548 u32 bw_flags = 0;
2549 const struct ieee80211_reg_rule *reg_rule = NULL;
2550 const struct ieee80211_power_rule *power_rule = NULL;
2551 u32 bw, center_freq_khz;
2552
2553 center_freq_khz = ieee80211_channel_to_khz(chan);
2554 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2555 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2556 if (!IS_ERR(reg_rule))
2557 break;
2558 }
2559
2560 if (IS_ERR_OR_NULL(reg_rule)) {
2561 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2562 chan->center_freq, chan->freq_offset);
2563 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2564 chan->flags |= IEEE80211_CHAN_DISABLED;
2565 } else {
2566 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2567 chan->flags = chan->orig_flags;
2568 }
2569 return;
2570 }
2571
2572 power_rule = ®_rule->power_rule;
2573 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2574
2575 chan->dfs_state_entered = jiffies;
2576 chan->dfs_state = NL80211_DFS_USABLE;
2577
2578 chan->beacon_found = false;
2579
2580 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581 chan->flags = chan->orig_flags | bw_flags |
2582 map_regdom_flags(reg_rule->flags);
2583 else
2584 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2585
2586 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2587 chan->max_reg_power = chan->max_power =
2588 (int) MBM_TO_DBM(power_rule->max_eirp);
2589
2590 if (chan->flags & IEEE80211_CHAN_RADAR) {
2591 if (reg_rule->dfs_cac_ms)
2592 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2593 else
2594 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2595 }
2596
2597 if (chan->flags & IEEE80211_CHAN_PSD)
2598 chan->psd = reg_rule->psd;
2599
2600 chan->max_power = chan->max_reg_power;
2601}
2602
2603static void handle_band_custom(struct wiphy *wiphy,
2604 struct ieee80211_supported_band *sband,
2605 const struct ieee80211_regdomain *regd)
2606{
2607 unsigned int i;
2608
2609 if (!sband)
2610 return;
2611
2612 /*
2613 * We currently assume that you always want at least 20 MHz,
2614 * otherwise channel 12 might get enabled if this rule is
2615 * compatible to US, which permits 2402 - 2472 MHz.
2616 */
2617 for (i = 0; i < sband->n_channels; i++)
2618 handle_channel_custom(wiphy, &sband->channels[i], regd,
2619 MHZ_TO_KHZ(20));
2620}
2621
2622/* Used by drivers prior to wiphy registration */
2623void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2624 const struct ieee80211_regdomain *regd)
2625{
2626 const struct ieee80211_regdomain *new_regd, *tmp;
2627 enum nl80211_band band;
2628 unsigned int bands_set = 0;
2629
2630 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2631 "wiphy should have REGULATORY_CUSTOM_REG\n");
2632 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2633
2634 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2635 if (!wiphy->bands[band])
2636 continue;
2637 handle_band_custom(wiphy, wiphy->bands[band], regd);
2638 bands_set++;
2639 }
2640
2641 /*
2642 * no point in calling this if it won't have any effect
2643 * on your device's supported bands.
2644 */
2645 WARN_ON(!bands_set);
2646 new_regd = reg_copy_regd(regd);
2647 if (IS_ERR(new_regd))
2648 return;
2649
2650 rtnl_lock();
2651 wiphy_lock(wiphy);
2652
2653 tmp = get_wiphy_regdom(wiphy);
2654 rcu_assign_pointer(wiphy->regd, new_regd);
2655 rcu_free_regdom(tmp);
2656
2657 wiphy_unlock(wiphy);
2658 rtnl_unlock();
2659}
2660EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661
2662static void reg_set_request_processed(void)
2663{
2664 bool need_more_processing = false;
2665 struct regulatory_request *lr = get_last_request();
2666
2667 lr->processed = true;
2668
2669 spin_lock(®_requests_lock);
2670 if (!list_empty(®_requests_list))
2671 need_more_processing = true;
2672 spin_unlock(®_requests_lock);
2673
2674 cancel_crda_timeout();
2675
2676 if (need_more_processing)
2677 schedule_work(®_work);
2678}
2679
2680/**
2681 * reg_process_hint_core - process core regulatory requests
2682 * @core_request: a pending core regulatory request
2683 *
2684 * The wireless subsystem can use this function to process
2685 * a regulatory request issued by the regulatory core.
2686 *
2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688 * hint was processed or ignored
2689 */
2690static enum reg_request_treatment
2691reg_process_hint_core(struct regulatory_request *core_request)
2692{
2693 if (reg_query_database(core_request)) {
2694 core_request->intersect = false;
2695 core_request->processed = false;
2696 reg_update_last_request(core_request);
2697 return REG_REQ_OK;
2698 }
2699
2700 return REG_REQ_IGNORE;
2701}
2702
2703static enum reg_request_treatment
2704__reg_process_hint_user(struct regulatory_request *user_request)
2705{
2706 struct regulatory_request *lr = get_last_request();
2707
2708 if (reg_request_cell_base(user_request))
2709 return reg_ignore_cell_hint(user_request);
2710
2711 if (reg_request_cell_base(lr))
2712 return REG_REQ_IGNORE;
2713
2714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715 return REG_REQ_INTERSECT;
2716 /*
2717 * If the user knows better the user should set the regdom
2718 * to their country before the IE is picked up
2719 */
2720 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721 lr->intersect)
2722 return REG_REQ_IGNORE;
2723 /*
2724 * Process user requests only after previous user/driver/core
2725 * requests have been processed
2726 */
2727 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730 regdom_changes(lr->alpha2))
2731 return REG_REQ_IGNORE;
2732
2733 if (!regdom_changes(user_request->alpha2))
2734 return REG_REQ_ALREADY_SET;
2735
2736 return REG_REQ_OK;
2737}
2738
2739/**
2740 * reg_process_hint_user - process user regulatory requests
2741 * @user_request: a pending user regulatory request
2742 *
2743 * The wireless subsystem can use this function to process
2744 * a regulatory request initiated by userspace.
2745 *
2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747 * hint was processed or ignored
2748 */
2749static enum reg_request_treatment
2750reg_process_hint_user(struct regulatory_request *user_request)
2751{
2752 enum reg_request_treatment treatment;
2753
2754 treatment = __reg_process_hint_user(user_request);
2755 if (treatment == REG_REQ_IGNORE ||
2756 treatment == REG_REQ_ALREADY_SET)
2757 return REG_REQ_IGNORE;
2758
2759 user_request->intersect = treatment == REG_REQ_INTERSECT;
2760 user_request->processed = false;
2761
2762 if (reg_query_database(user_request)) {
2763 reg_update_last_request(user_request);
2764 user_alpha2[0] = user_request->alpha2[0];
2765 user_alpha2[1] = user_request->alpha2[1];
2766 return REG_REQ_OK;
2767 }
2768
2769 return REG_REQ_IGNORE;
2770}
2771
2772static enum reg_request_treatment
2773__reg_process_hint_driver(struct regulatory_request *driver_request)
2774{
2775 struct regulatory_request *lr = get_last_request();
2776
2777 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778 if (regdom_changes(driver_request->alpha2))
2779 return REG_REQ_OK;
2780 return REG_REQ_ALREADY_SET;
2781 }
2782
2783 /*
2784 * This would happen if you unplug and plug your card
2785 * back in or if you add a new device for which the previously
2786 * loaded card also agrees on the regulatory domain.
2787 */
2788 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789 !regdom_changes(driver_request->alpha2))
2790 return REG_REQ_ALREADY_SET;
2791
2792 return REG_REQ_INTERSECT;
2793}
2794
2795/**
2796 * reg_process_hint_driver - process driver regulatory requests
2797 * @wiphy: the wireless device for the regulatory request
2798 * @driver_request: a pending driver regulatory request
2799 *
2800 * The wireless subsystem can use this function to process
2801 * a regulatory request issued by an 802.11 driver.
2802 *
2803 * Returns: one of the different reg request treatment values.
2804 */
2805static enum reg_request_treatment
2806reg_process_hint_driver(struct wiphy *wiphy,
2807 struct regulatory_request *driver_request)
2808{
2809 const struct ieee80211_regdomain *regd, *tmp;
2810 enum reg_request_treatment treatment;
2811
2812 treatment = __reg_process_hint_driver(driver_request);
2813
2814 switch (treatment) {
2815 case REG_REQ_OK:
2816 break;
2817 case REG_REQ_IGNORE:
2818 return REG_REQ_IGNORE;
2819 case REG_REQ_INTERSECT:
2820 case REG_REQ_ALREADY_SET:
2821 regd = reg_copy_regd(get_cfg80211_regdom());
2822 if (IS_ERR(regd))
2823 return REG_REQ_IGNORE;
2824
2825 tmp = get_wiphy_regdom(wiphy);
2826 ASSERT_RTNL();
2827 wiphy_lock(wiphy);
2828 rcu_assign_pointer(wiphy->regd, regd);
2829 wiphy_unlock(wiphy);
2830 rcu_free_regdom(tmp);
2831 }
2832
2833
2834 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835 driver_request->processed = false;
2836
2837 /*
2838 * Since CRDA will not be called in this case as we already
2839 * have applied the requested regulatory domain before we just
2840 * inform userspace we have processed the request
2841 */
2842 if (treatment == REG_REQ_ALREADY_SET) {
2843 nl80211_send_reg_change_event(driver_request);
2844 reg_update_last_request(driver_request);
2845 reg_set_request_processed();
2846 return REG_REQ_ALREADY_SET;
2847 }
2848
2849 if (reg_query_database(driver_request)) {
2850 reg_update_last_request(driver_request);
2851 return REG_REQ_OK;
2852 }
2853
2854 return REG_REQ_IGNORE;
2855}
2856
2857static enum reg_request_treatment
2858__reg_process_hint_country_ie(struct wiphy *wiphy,
2859 struct regulatory_request *country_ie_request)
2860{
2861 struct wiphy *last_wiphy = NULL;
2862 struct regulatory_request *lr = get_last_request();
2863
2864 if (reg_request_cell_base(lr)) {
2865 /* Trust a Cell base station over the AP's country IE */
2866 if (regdom_changes(country_ie_request->alpha2))
2867 return REG_REQ_IGNORE;
2868 return REG_REQ_ALREADY_SET;
2869 } else {
2870 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871 return REG_REQ_IGNORE;
2872 }
2873
2874 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875 return -EINVAL;
2876
2877 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878 return REG_REQ_OK;
2879
2880 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881
2882 if (last_wiphy != wiphy) {
2883 /*
2884 * Two cards with two APs claiming different
2885 * Country IE alpha2s. We could
2886 * intersect them, but that seems unlikely
2887 * to be correct. Reject second one for now.
2888 */
2889 if (regdom_changes(country_ie_request->alpha2))
2890 return REG_REQ_IGNORE;
2891 return REG_REQ_ALREADY_SET;
2892 }
2893
2894 if (regdom_changes(country_ie_request->alpha2))
2895 return REG_REQ_OK;
2896 return REG_REQ_ALREADY_SET;
2897}
2898
2899/**
2900 * reg_process_hint_country_ie - process regulatory requests from country IEs
2901 * @wiphy: the wireless device for the regulatory request
2902 * @country_ie_request: a regulatory request from a country IE
2903 *
2904 * The wireless subsystem can use this function to process
2905 * a regulatory request issued by a country Information Element.
2906 *
2907 * Returns: one of the different reg request treatment values.
2908 */
2909static enum reg_request_treatment
2910reg_process_hint_country_ie(struct wiphy *wiphy,
2911 struct regulatory_request *country_ie_request)
2912{
2913 enum reg_request_treatment treatment;
2914
2915 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916
2917 switch (treatment) {
2918 case REG_REQ_OK:
2919 break;
2920 case REG_REQ_IGNORE:
2921 return REG_REQ_IGNORE;
2922 case REG_REQ_ALREADY_SET:
2923 reg_free_request(country_ie_request);
2924 return REG_REQ_ALREADY_SET;
2925 case REG_REQ_INTERSECT:
2926 /*
2927 * This doesn't happen yet, not sure we
2928 * ever want to support it for this case.
2929 */
2930 WARN_ONCE(1, "Unexpected intersection for country elements");
2931 return REG_REQ_IGNORE;
2932 }
2933
2934 country_ie_request->intersect = false;
2935 country_ie_request->processed = false;
2936
2937 if (reg_query_database(country_ie_request)) {
2938 reg_update_last_request(country_ie_request);
2939 return REG_REQ_OK;
2940 }
2941
2942 return REG_REQ_IGNORE;
2943}
2944
2945bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946{
2947 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950 bool dfs_domain_same;
2951
2952 rcu_read_lock();
2953
2954 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955 wiphy1_regd = rcu_dereference(wiphy1->regd);
2956 if (!wiphy1_regd)
2957 wiphy1_regd = cfg80211_regd;
2958
2959 wiphy2_regd = rcu_dereference(wiphy2->regd);
2960 if (!wiphy2_regd)
2961 wiphy2_regd = cfg80211_regd;
2962
2963 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964
2965 rcu_read_unlock();
2966
2967 return dfs_domain_same;
2968}
2969
2970static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971 struct ieee80211_channel *src_chan)
2972{
2973 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975 return;
2976
2977 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978 src_chan->flags & IEEE80211_CHAN_DISABLED)
2979 return;
2980
2981 if (src_chan->center_freq == dst_chan->center_freq &&
2982 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983 dst_chan->dfs_state = src_chan->dfs_state;
2984 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985 }
2986}
2987
2988static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989 struct wiphy *src_wiphy)
2990{
2991 struct ieee80211_supported_band *src_sband, *dst_sband;
2992 struct ieee80211_channel *src_chan, *dst_chan;
2993 int i, j, band;
2994
2995 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996 return;
2997
2998 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999 dst_sband = dst_wiphy->bands[band];
3000 src_sband = src_wiphy->bands[band];
3001 if (!dst_sband || !src_sband)
3002 continue;
3003
3004 for (i = 0; i < dst_sband->n_channels; i++) {
3005 dst_chan = &dst_sband->channels[i];
3006 for (j = 0; j < src_sband->n_channels; j++) {
3007 src_chan = &src_sband->channels[j];
3008 reg_copy_dfs_chan_state(dst_chan, src_chan);
3009 }
3010 }
3011 }
3012}
3013
3014static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015{
3016 struct cfg80211_registered_device *rdev;
3017
3018 ASSERT_RTNL();
3019
3020 for_each_rdev(rdev) {
3021 if (wiphy == &rdev->wiphy)
3022 continue;
3023 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024 }
3025}
3026
3027/* This processes *all* regulatory hints */
3028static void reg_process_hint(struct regulatory_request *reg_request)
3029{
3030 struct wiphy *wiphy = NULL;
3031 enum reg_request_treatment treatment;
3032 enum nl80211_reg_initiator initiator = reg_request->initiator;
3033
3034 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036
3037 switch (initiator) {
3038 case NL80211_REGDOM_SET_BY_CORE:
3039 treatment = reg_process_hint_core(reg_request);
3040 break;
3041 case NL80211_REGDOM_SET_BY_USER:
3042 treatment = reg_process_hint_user(reg_request);
3043 break;
3044 case NL80211_REGDOM_SET_BY_DRIVER:
3045 if (!wiphy)
3046 goto out_free;
3047 treatment = reg_process_hint_driver(wiphy, reg_request);
3048 break;
3049 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050 if (!wiphy)
3051 goto out_free;
3052 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053 break;
3054 default:
3055 WARN(1, "invalid initiator %d\n", initiator);
3056 goto out_free;
3057 }
3058
3059 if (treatment == REG_REQ_IGNORE)
3060 goto out_free;
3061
3062 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063 "unexpected treatment value %d\n", treatment);
3064
3065 /* This is required so that the orig_* parameters are saved.
3066 * NOTE: treatment must be set for any case that reaches here!
3067 */
3068 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070 wiphy_update_regulatory(wiphy, initiator);
3071 wiphy_all_share_dfs_chan_state(wiphy);
3072 reg_check_channels();
3073 }
3074
3075 return;
3076
3077out_free:
3078 reg_free_request(reg_request);
3079}
3080
3081static void notify_self_managed_wiphys(struct regulatory_request *request)
3082{
3083 struct cfg80211_registered_device *rdev;
3084 struct wiphy *wiphy;
3085
3086 for_each_rdev(rdev) {
3087 wiphy = &rdev->wiphy;
3088 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089 request->initiator == NL80211_REGDOM_SET_BY_USER)
3090 reg_call_notifier(wiphy, request);
3091 }
3092}
3093
3094/*
3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096 * Regulatory hints come on a first come first serve basis and we
3097 * must process each one atomically.
3098 */
3099static void reg_process_pending_hints(void)
3100{
3101 struct regulatory_request *reg_request, *lr;
3102
3103 lr = get_last_request();
3104
3105 /* When last_request->processed becomes true this will be rescheduled */
3106 if (lr && !lr->processed) {
3107 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108 return;
3109 }
3110
3111 spin_lock(®_requests_lock);
3112
3113 if (list_empty(®_requests_list)) {
3114 spin_unlock(®_requests_lock);
3115 return;
3116 }
3117
3118 reg_request = list_first_entry(®_requests_list,
3119 struct regulatory_request,
3120 list);
3121 list_del_init(®_request->list);
3122
3123 spin_unlock(®_requests_lock);
3124
3125 notify_self_managed_wiphys(reg_request);
3126
3127 reg_process_hint(reg_request);
3128
3129 lr = get_last_request();
3130
3131 spin_lock(®_requests_lock);
3132 if (!list_empty(®_requests_list) && lr && lr->processed)
3133 schedule_work(®_work);
3134 spin_unlock(®_requests_lock);
3135}
3136
3137/* Processes beacon hints -- this has nothing to do with country IEs */
3138static void reg_process_pending_beacon_hints(void)
3139{
3140 struct cfg80211_registered_device *rdev;
3141 struct reg_beacon *pending_beacon, *tmp;
3142
3143 /* This goes through the _pending_ beacon list */
3144 spin_lock_bh(®_pending_beacons_lock);
3145
3146 list_for_each_entry_safe(pending_beacon, tmp,
3147 ®_pending_beacons, list) {
3148 list_del_init(&pending_beacon->list);
3149
3150 /* Applies the beacon hint to current wiphys */
3151 for_each_rdev(rdev)
3152 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153
3154 /* Remembers the beacon hint for new wiphys or reg changes */
3155 list_add_tail(&pending_beacon->list, ®_beacon_list);
3156 }
3157
3158 spin_unlock_bh(®_pending_beacons_lock);
3159}
3160
3161static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162{
3163 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3164 const struct ieee80211_regdomain *tmp;
3165 const struct ieee80211_regdomain *regd;
3166 enum nl80211_band band;
3167 struct regulatory_request request = {};
3168
3169 ASSERT_RTNL();
3170 lockdep_assert_wiphy(wiphy);
3171
3172 spin_lock(®_requests_lock);
3173 regd = rdev->requested_regd;
3174 rdev->requested_regd = NULL;
3175 spin_unlock(®_requests_lock);
3176
3177 if (!regd)
3178 return;
3179
3180 tmp = get_wiphy_regdom(wiphy);
3181 rcu_assign_pointer(wiphy->regd, regd);
3182 rcu_free_regdom(tmp);
3183
3184 for (band = 0; band < NUM_NL80211_BANDS; band++)
3185 handle_band_custom(wiphy, wiphy->bands[band], regd);
3186
3187 reg_process_ht_flags(wiphy);
3188
3189 request.wiphy_idx = get_wiphy_idx(wiphy);
3190 request.alpha2[0] = regd->alpha2[0];
3191 request.alpha2[1] = regd->alpha2[1];
3192 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193
3194 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195 reg_call_notifier(wiphy, &request);
3196
3197 nl80211_send_wiphy_reg_change_event(&request);
3198}
3199
3200static void reg_process_self_managed_hints(void)
3201{
3202 struct cfg80211_registered_device *rdev;
3203
3204 ASSERT_RTNL();
3205
3206 for_each_rdev(rdev) {
3207 wiphy_lock(&rdev->wiphy);
3208 reg_process_self_managed_hint(&rdev->wiphy);
3209 wiphy_unlock(&rdev->wiphy);
3210 }
3211
3212 reg_check_channels();
3213}
3214
3215static void reg_todo(struct work_struct *work)
3216{
3217 rtnl_lock();
3218 reg_process_pending_hints();
3219 reg_process_pending_beacon_hints();
3220 reg_process_self_managed_hints();
3221 rtnl_unlock();
3222}
3223
3224static void queue_regulatory_request(struct regulatory_request *request)
3225{
3226 request->alpha2[0] = toupper(request->alpha2[0]);
3227 request->alpha2[1] = toupper(request->alpha2[1]);
3228
3229 spin_lock(®_requests_lock);
3230 list_add_tail(&request->list, ®_requests_list);
3231 spin_unlock(®_requests_lock);
3232
3233 schedule_work(®_work);
3234}
3235
3236/*
3237 * Core regulatory hint -- happens during cfg80211_init()
3238 * and when we restore regulatory settings.
3239 */
3240static int regulatory_hint_core(const char *alpha2)
3241{
3242 struct regulatory_request *request;
3243
3244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245 if (!request)
3246 return -ENOMEM;
3247
3248 request->alpha2[0] = alpha2[0];
3249 request->alpha2[1] = alpha2[1];
3250 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251 request->wiphy_idx = WIPHY_IDX_INVALID;
3252
3253 queue_regulatory_request(request);
3254
3255 return 0;
3256}
3257
3258/* User hints */
3259int regulatory_hint_user(const char *alpha2,
3260 enum nl80211_user_reg_hint_type user_reg_hint_type)
3261{
3262 struct regulatory_request *request;
3263
3264 if (WARN_ON(!alpha2))
3265 return -EINVAL;
3266
3267 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268 return -EINVAL;
3269
3270 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271 if (!request)
3272 return -ENOMEM;
3273
3274 request->wiphy_idx = WIPHY_IDX_INVALID;
3275 request->alpha2[0] = alpha2[0];
3276 request->alpha2[1] = alpha2[1];
3277 request->initiator = NL80211_REGDOM_SET_BY_USER;
3278 request->user_reg_hint_type = user_reg_hint_type;
3279
3280 /* Allow calling CRDA again */
3281 reset_crda_timeouts();
3282
3283 queue_regulatory_request(request);
3284
3285 return 0;
3286}
3287
3288int regulatory_hint_indoor(bool is_indoor, u32 portid)
3289{
3290 spin_lock(®_indoor_lock);
3291
3292 /* It is possible that more than one user space process is trying to
3293 * configure the indoor setting. To handle such cases, clear the indoor
3294 * setting in case that some process does not think that the device
3295 * is operating in an indoor environment. In addition, if a user space
3296 * process indicates that it is controlling the indoor setting, save its
3297 * portid, i.e., make it the owner.
3298 */
3299 reg_is_indoor = is_indoor;
3300 if (reg_is_indoor) {
3301 if (!reg_is_indoor_portid)
3302 reg_is_indoor_portid = portid;
3303 } else {
3304 reg_is_indoor_portid = 0;
3305 }
3306
3307 spin_unlock(®_indoor_lock);
3308
3309 if (!is_indoor)
3310 reg_check_channels();
3311
3312 return 0;
3313}
3314
3315void regulatory_netlink_notify(u32 portid)
3316{
3317 spin_lock(®_indoor_lock);
3318
3319 if (reg_is_indoor_portid != portid) {
3320 spin_unlock(®_indoor_lock);
3321 return;
3322 }
3323
3324 reg_is_indoor = false;
3325 reg_is_indoor_portid = 0;
3326
3327 spin_unlock(®_indoor_lock);
3328
3329 reg_check_channels();
3330}
3331
3332/* Driver hints */
3333int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334{
3335 struct regulatory_request *request;
3336
3337 if (WARN_ON(!alpha2 || !wiphy))
3338 return -EINVAL;
3339
3340 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341
3342 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343 if (!request)
3344 return -ENOMEM;
3345
3346 request->wiphy_idx = get_wiphy_idx(wiphy);
3347
3348 request->alpha2[0] = alpha2[0];
3349 request->alpha2[1] = alpha2[1];
3350 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351
3352 /* Allow calling CRDA again */
3353 reset_crda_timeouts();
3354
3355 queue_regulatory_request(request);
3356
3357 return 0;
3358}
3359EXPORT_SYMBOL(regulatory_hint);
3360
3361void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362 const u8 *country_ie, u8 country_ie_len)
3363{
3364 char alpha2[2];
3365 enum environment_cap env = ENVIRON_ANY;
3366 struct regulatory_request *request = NULL, *lr;
3367
3368 /* IE len must be evenly divisible by 2 */
3369 if (country_ie_len & 0x01)
3370 return;
3371
3372 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373 return;
3374
3375 request = kzalloc(sizeof(*request), GFP_KERNEL);
3376 if (!request)
3377 return;
3378
3379 alpha2[0] = country_ie[0];
3380 alpha2[1] = country_ie[1];
3381
3382 if (country_ie[2] == 'I')
3383 env = ENVIRON_INDOOR;
3384 else if (country_ie[2] == 'O')
3385 env = ENVIRON_OUTDOOR;
3386
3387 rcu_read_lock();
3388 lr = get_last_request();
3389
3390 if (unlikely(!lr))
3391 goto out;
3392
3393 /*
3394 * We will run this only upon a successful connection on cfg80211.
3395 * We leave conflict resolution to the workqueue, where can hold
3396 * the RTNL.
3397 */
3398 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399 lr->wiphy_idx != WIPHY_IDX_INVALID)
3400 goto out;
3401
3402 request->wiphy_idx = get_wiphy_idx(wiphy);
3403 request->alpha2[0] = alpha2[0];
3404 request->alpha2[1] = alpha2[1];
3405 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406 request->country_ie_env = env;
3407
3408 /* Allow calling CRDA again */
3409 reset_crda_timeouts();
3410
3411 queue_regulatory_request(request);
3412 request = NULL;
3413out:
3414 kfree(request);
3415 rcu_read_unlock();
3416}
3417
3418static void restore_alpha2(char *alpha2, bool reset_user)
3419{
3420 /* indicates there is no alpha2 to consider for restoration */
3421 alpha2[0] = '9';
3422 alpha2[1] = '7';
3423
3424 /* The user setting has precedence over the module parameter */
3425 if (is_user_regdom_saved()) {
3426 /* Unless we're asked to ignore it and reset it */
3427 if (reset_user) {
3428 pr_debug("Restoring regulatory settings including user preference\n");
3429 user_alpha2[0] = '9';
3430 user_alpha2[1] = '7';
3431
3432 /*
3433 * If we're ignoring user settings, we still need to
3434 * check the module parameter to ensure we put things
3435 * back as they were for a full restore.
3436 */
3437 if (!is_world_regdom(ieee80211_regdom)) {
3438 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439 ieee80211_regdom[0], ieee80211_regdom[1]);
3440 alpha2[0] = ieee80211_regdom[0];
3441 alpha2[1] = ieee80211_regdom[1];
3442 }
3443 } else {
3444 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445 user_alpha2[0], user_alpha2[1]);
3446 alpha2[0] = user_alpha2[0];
3447 alpha2[1] = user_alpha2[1];
3448 }
3449 } else if (!is_world_regdom(ieee80211_regdom)) {
3450 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451 ieee80211_regdom[0], ieee80211_regdom[1]);
3452 alpha2[0] = ieee80211_regdom[0];
3453 alpha2[1] = ieee80211_regdom[1];
3454 } else
3455 pr_debug("Restoring regulatory settings\n");
3456}
3457
3458static void restore_custom_reg_settings(struct wiphy *wiphy)
3459{
3460 struct ieee80211_supported_band *sband;
3461 enum nl80211_band band;
3462 struct ieee80211_channel *chan;
3463 int i;
3464
3465 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466 sband = wiphy->bands[band];
3467 if (!sband)
3468 continue;
3469 for (i = 0; i < sband->n_channels; i++) {
3470 chan = &sband->channels[i];
3471 chan->flags = chan->orig_flags;
3472 chan->max_antenna_gain = chan->orig_mag;
3473 chan->max_power = chan->orig_mpwr;
3474 chan->beacon_found = false;
3475 }
3476 }
3477}
3478
3479/*
3480 * Restoring regulatory settings involves ignoring any
3481 * possibly stale country IE information and user regulatory
3482 * settings if so desired, this includes any beacon hints
3483 * learned as we could have traveled outside to another country
3484 * after disconnection. To restore regulatory settings we do
3485 * exactly what we did at bootup:
3486 *
3487 * - send a core regulatory hint
3488 * - send a user regulatory hint if applicable
3489 *
3490 * Device drivers that send a regulatory hint for a specific country
3491 * keep their own regulatory domain on wiphy->regd so that does
3492 * not need to be remembered.
3493 */
3494static void restore_regulatory_settings(bool reset_user, bool cached)
3495{
3496 char alpha2[2];
3497 char world_alpha2[2];
3498 struct reg_beacon *reg_beacon, *btmp;
3499 LIST_HEAD(tmp_reg_req_list);
3500 struct cfg80211_registered_device *rdev;
3501
3502 ASSERT_RTNL();
3503
3504 /*
3505 * Clear the indoor setting in case that it is not controlled by user
3506 * space, as otherwise there is no guarantee that the device is still
3507 * operating in an indoor environment.
3508 */
3509 spin_lock(®_indoor_lock);
3510 if (reg_is_indoor && !reg_is_indoor_portid) {
3511 reg_is_indoor = false;
3512 reg_check_channels();
3513 }
3514 spin_unlock(®_indoor_lock);
3515
3516 reset_regdomains(true, &world_regdom);
3517 restore_alpha2(alpha2, reset_user);
3518
3519 /*
3520 * If there's any pending requests we simply
3521 * stash them to a temporary pending queue and
3522 * add then after we've restored regulatory
3523 * settings.
3524 */
3525 spin_lock(®_requests_lock);
3526 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3527 spin_unlock(®_requests_lock);
3528
3529 /* Clear beacon hints */
3530 spin_lock_bh(®_pending_beacons_lock);
3531 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3532 list_del(®_beacon->list);
3533 kfree(reg_beacon);
3534 }
3535 spin_unlock_bh(®_pending_beacons_lock);
3536
3537 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3538 list_del(®_beacon->list);
3539 kfree(reg_beacon);
3540 }
3541
3542 /* First restore to the basic regulatory settings */
3543 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545
3546 for_each_rdev(rdev) {
3547 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548 continue;
3549 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550 restore_custom_reg_settings(&rdev->wiphy);
3551 }
3552
3553 if (cached && (!is_an_alpha2(alpha2) ||
3554 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555 reset_regdomains(false, cfg80211_world_regdom);
3556 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557 print_regdomain(get_cfg80211_regdom());
3558 nl80211_send_reg_change_event(&core_request_world);
3559 reg_set_request_processed();
3560
3561 if (is_an_alpha2(alpha2) &&
3562 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563 struct regulatory_request *ureq;
3564
3565 spin_lock(®_requests_lock);
3566 ureq = list_last_entry(®_requests_list,
3567 struct regulatory_request,
3568 list);
3569 list_del(&ureq->list);
3570 spin_unlock(®_requests_lock);
3571
3572 notify_self_managed_wiphys(ureq);
3573 reg_update_last_request(ureq);
3574 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575 REGD_SOURCE_CACHED);
3576 }
3577 } else {
3578 regulatory_hint_core(world_alpha2);
3579
3580 /*
3581 * This restores the ieee80211_regdom module parameter
3582 * preference or the last user requested regulatory
3583 * settings, user regulatory settings takes precedence.
3584 */
3585 if (is_an_alpha2(alpha2))
3586 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587 }
3588
3589 spin_lock(®_requests_lock);
3590 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3591 spin_unlock(®_requests_lock);
3592
3593 pr_debug("Kicking the queue\n");
3594
3595 schedule_work(®_work);
3596}
3597
3598static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599{
3600 struct cfg80211_registered_device *rdev;
3601 struct wireless_dev *wdev;
3602
3603 for_each_rdev(rdev) {
3604 wiphy_lock(&rdev->wiphy);
3605 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3606 if (!(wdev->wiphy->regulatory_flags & flag)) {
3607 wiphy_unlock(&rdev->wiphy);
3608 return false;
3609 }
3610 }
3611 wiphy_unlock(&rdev->wiphy);
3612 }
3613
3614 return true;
3615}
3616
3617void regulatory_hint_disconnect(void)
3618{
3619 /* Restore of regulatory settings is not required when wiphy(s)
3620 * ignore IE from connected access point but clearance of beacon hints
3621 * is required when wiphy(s) supports beacon hints.
3622 */
3623 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3624 struct reg_beacon *reg_beacon, *btmp;
3625
3626 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3627 return;
3628
3629 spin_lock_bh(®_pending_beacons_lock);
3630 list_for_each_entry_safe(reg_beacon, btmp,
3631 ®_pending_beacons, list) {
3632 list_del(®_beacon->list);
3633 kfree(reg_beacon);
3634 }
3635 spin_unlock_bh(®_pending_beacons_lock);
3636
3637 list_for_each_entry_safe(reg_beacon, btmp,
3638 ®_beacon_list, list) {
3639 list_del(®_beacon->list);
3640 kfree(reg_beacon);
3641 }
3642
3643 return;
3644 }
3645
3646 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3647 restore_regulatory_settings(false, true);
3648}
3649
3650static bool freq_is_chan_12_13_14(u32 freq)
3651{
3652 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3653 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3654 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3655 return true;
3656 return false;
3657}
3658
3659static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3660{
3661 struct reg_beacon *pending_beacon;
3662
3663 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3664 if (ieee80211_channel_equal(beacon_chan,
3665 &pending_beacon->chan))
3666 return true;
3667 return false;
3668}
3669
3670int regulatory_hint_found_beacon(struct wiphy *wiphy,
3671 struct ieee80211_channel *beacon_chan,
3672 gfp_t gfp)
3673{
3674 struct reg_beacon *reg_beacon;
3675 bool processing;
3676
3677 if (beacon_chan->beacon_found ||
3678 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3679 (beacon_chan->band == NL80211_BAND_2GHZ &&
3680 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3681 return 0;
3682
3683 spin_lock_bh(®_pending_beacons_lock);
3684 processing = pending_reg_beacon(beacon_chan);
3685 spin_unlock_bh(®_pending_beacons_lock);
3686
3687 if (processing)
3688 return 0;
3689
3690 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3691 if (!reg_beacon)
3692 return -ENOMEM;
3693
3694 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3695 beacon_chan->center_freq, beacon_chan->freq_offset,
3696 ieee80211_freq_khz_to_channel(
3697 ieee80211_channel_to_khz(beacon_chan)),
3698 wiphy_name(wiphy));
3699
3700 memcpy(®_beacon->chan, beacon_chan,
3701 sizeof(struct ieee80211_channel));
3702
3703 /*
3704 * Since we can be called from BH or and non-BH context
3705 * we must use spin_lock_bh()
3706 */
3707 spin_lock_bh(®_pending_beacons_lock);
3708 list_add_tail(®_beacon->list, ®_pending_beacons);
3709 spin_unlock_bh(®_pending_beacons_lock);
3710
3711 schedule_work(®_work);
3712
3713 return 0;
3714}
3715
3716static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717{
3718 unsigned int i;
3719 const struct ieee80211_reg_rule *reg_rule = NULL;
3720 const struct ieee80211_freq_range *freq_range = NULL;
3721 const struct ieee80211_power_rule *power_rule = NULL;
3722 char bw[32], cac_time[32];
3723
3724 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725
3726 for (i = 0; i < rd->n_reg_rules; i++) {
3727 reg_rule = &rd->reg_rules[i];
3728 freq_range = ®_rule->freq_range;
3729 power_rule = ®_rule->power_rule;
3730
3731 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733 freq_range->max_bandwidth_khz,
3734 reg_get_max_bandwidth(rd, reg_rule));
3735 else
3736 snprintf(bw, sizeof(bw), "%d KHz",
3737 freq_range->max_bandwidth_khz);
3738
3739 if (reg_rule->flags & NL80211_RRF_DFS)
3740 scnprintf(cac_time, sizeof(cac_time), "%u s",
3741 reg_rule->dfs_cac_ms/1000);
3742 else
3743 scnprintf(cac_time, sizeof(cac_time), "N/A");
3744
3745
3746 /*
3747 * There may not be documentation for max antenna gain
3748 * in certain regions
3749 */
3750 if (power_rule->max_antenna_gain)
3751 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752 freq_range->start_freq_khz,
3753 freq_range->end_freq_khz,
3754 bw,
3755 power_rule->max_antenna_gain,
3756 power_rule->max_eirp,
3757 cac_time);
3758 else
3759 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760 freq_range->start_freq_khz,
3761 freq_range->end_freq_khz,
3762 bw,
3763 power_rule->max_eirp,
3764 cac_time);
3765 }
3766}
3767
3768bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769{
3770 switch (dfs_region) {
3771 case NL80211_DFS_UNSET:
3772 case NL80211_DFS_FCC:
3773 case NL80211_DFS_ETSI:
3774 case NL80211_DFS_JP:
3775 return true;
3776 default:
3777 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3778 return false;
3779 }
3780}
3781
3782static void print_regdomain(const struct ieee80211_regdomain *rd)
3783{
3784 struct regulatory_request *lr = get_last_request();
3785
3786 if (is_intersected_alpha2(rd->alpha2)) {
3787 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788 struct cfg80211_registered_device *rdev;
3789 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790 if (rdev) {
3791 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792 rdev->country_ie_alpha2[0],
3793 rdev->country_ie_alpha2[1]);
3794 } else
3795 pr_debug("Current regulatory domain intersected:\n");
3796 } else
3797 pr_debug("Current regulatory domain intersected:\n");
3798 } else if (is_world_regdom(rd->alpha2)) {
3799 pr_debug("World regulatory domain updated:\n");
3800 } else {
3801 if (is_unknown_alpha2(rd->alpha2))
3802 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803 else {
3804 if (reg_request_cell_base(lr))
3805 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806 rd->alpha2[0], rd->alpha2[1]);
3807 else
3808 pr_debug("Regulatory domain changed to country: %c%c\n",
3809 rd->alpha2[0], rd->alpha2[1]);
3810 }
3811 }
3812
3813 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814 print_rd_rules(rd);
3815}
3816
3817static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818{
3819 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820 print_rd_rules(rd);
3821}
3822
3823static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824{
3825 if (!is_world_regdom(rd->alpha2))
3826 return -EINVAL;
3827 update_world_regdomain(rd);
3828 return 0;
3829}
3830
3831static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832 struct regulatory_request *user_request)
3833{
3834 const struct ieee80211_regdomain *intersected_rd = NULL;
3835
3836 if (!regdom_changes(rd->alpha2))
3837 return -EALREADY;
3838
3839 if (!is_valid_rd(rd)) {
3840 pr_err("Invalid regulatory domain detected: %c%c\n",
3841 rd->alpha2[0], rd->alpha2[1]);
3842 print_regdomain_info(rd);
3843 return -EINVAL;
3844 }
3845
3846 if (!user_request->intersect) {
3847 reset_regdomains(false, rd);
3848 return 0;
3849 }
3850
3851 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852 if (!intersected_rd)
3853 return -EINVAL;
3854
3855 kfree(rd);
3856 rd = NULL;
3857 reset_regdomains(false, intersected_rd);
3858
3859 return 0;
3860}
3861
3862static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863 struct regulatory_request *driver_request)
3864{
3865 const struct ieee80211_regdomain *regd;
3866 const struct ieee80211_regdomain *intersected_rd = NULL;
3867 const struct ieee80211_regdomain *tmp = NULL;
3868 struct wiphy *request_wiphy;
3869
3870 if (is_world_regdom(rd->alpha2))
3871 return -EINVAL;
3872
3873 if (!regdom_changes(rd->alpha2))
3874 return -EALREADY;
3875
3876 if (!is_valid_rd(rd)) {
3877 pr_err("Invalid regulatory domain detected: %c%c\n",
3878 rd->alpha2[0], rd->alpha2[1]);
3879 print_regdomain_info(rd);
3880 return -EINVAL;
3881 }
3882
3883 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884 if (!request_wiphy)
3885 return -ENODEV;
3886
3887 if (!driver_request->intersect) {
3888 ASSERT_RTNL();
3889 wiphy_lock(request_wiphy);
3890 if (request_wiphy->regd)
3891 tmp = get_wiphy_regdom(request_wiphy);
3892
3893 regd = reg_copy_regd(rd);
3894 if (IS_ERR(regd)) {
3895 wiphy_unlock(request_wiphy);
3896 return PTR_ERR(regd);
3897 }
3898
3899 rcu_assign_pointer(request_wiphy->regd, regd);
3900 rcu_free_regdom(tmp);
3901 wiphy_unlock(request_wiphy);
3902 reset_regdomains(false, rd);
3903 return 0;
3904 }
3905
3906 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907 if (!intersected_rd)
3908 return -EINVAL;
3909
3910 /*
3911 * We can trash what CRDA provided now.
3912 * However if a driver requested this specific regulatory
3913 * domain we keep it for its private use
3914 */
3915 tmp = get_wiphy_regdom(request_wiphy);
3916 rcu_assign_pointer(request_wiphy->regd, rd);
3917 rcu_free_regdom(tmp);
3918
3919 rd = NULL;
3920
3921 reset_regdomains(false, intersected_rd);
3922
3923 return 0;
3924}
3925
3926static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927 struct regulatory_request *country_ie_request)
3928{
3929 struct wiphy *request_wiphy;
3930
3931 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932 !is_unknown_alpha2(rd->alpha2))
3933 return -EINVAL;
3934
3935 /*
3936 * Lets only bother proceeding on the same alpha2 if the current
3937 * rd is non static (it means CRDA was present and was used last)
3938 * and the pending request came in from a country IE
3939 */
3940
3941 if (!is_valid_rd(rd)) {
3942 pr_err("Invalid regulatory domain detected: %c%c\n",
3943 rd->alpha2[0], rd->alpha2[1]);
3944 print_regdomain_info(rd);
3945 return -EINVAL;
3946 }
3947
3948 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949 if (!request_wiphy)
3950 return -ENODEV;
3951
3952 if (country_ie_request->intersect)
3953 return -EINVAL;
3954
3955 reset_regdomains(false, rd);
3956 return 0;
3957}
3958
3959/*
3960 * Use this call to set the current regulatory domain. Conflicts with
3961 * multiple drivers can be ironed out later. Caller must've already
3962 * kmalloc'd the rd structure.
3963 */
3964int set_regdom(const struct ieee80211_regdomain *rd,
3965 enum ieee80211_regd_source regd_src)
3966{
3967 struct regulatory_request *lr;
3968 bool user_reset = false;
3969 int r;
3970
3971 if (IS_ERR_OR_NULL(rd))
3972 return -ENODATA;
3973
3974 if (!reg_is_valid_request(rd->alpha2)) {
3975 kfree(rd);
3976 return -EINVAL;
3977 }
3978
3979 if (regd_src == REGD_SOURCE_CRDA)
3980 reset_crda_timeouts();
3981
3982 lr = get_last_request();
3983
3984 /* Note that this doesn't update the wiphys, this is done below */
3985 switch (lr->initiator) {
3986 case NL80211_REGDOM_SET_BY_CORE:
3987 r = reg_set_rd_core(rd);
3988 break;
3989 case NL80211_REGDOM_SET_BY_USER:
3990 cfg80211_save_user_regdom(rd);
3991 r = reg_set_rd_user(rd, lr);
3992 user_reset = true;
3993 break;
3994 case NL80211_REGDOM_SET_BY_DRIVER:
3995 r = reg_set_rd_driver(rd, lr);
3996 break;
3997 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998 r = reg_set_rd_country_ie(rd, lr);
3999 break;
4000 default:
4001 WARN(1, "invalid initiator %d\n", lr->initiator);
4002 kfree(rd);
4003 return -EINVAL;
4004 }
4005
4006 if (r) {
4007 switch (r) {
4008 case -EALREADY:
4009 reg_set_request_processed();
4010 break;
4011 default:
4012 /* Back to world regulatory in case of errors */
4013 restore_regulatory_settings(user_reset, false);
4014 }
4015
4016 kfree(rd);
4017 return r;
4018 }
4019
4020 /* This would make this whole thing pointless */
4021 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022 return -EINVAL;
4023
4024 /* update all wiphys now with the new established regulatory domain */
4025 update_all_wiphy_regulatory(lr->initiator);
4026
4027 print_regdomain(get_cfg80211_regdom());
4028
4029 nl80211_send_reg_change_event(lr);
4030
4031 reg_set_request_processed();
4032
4033 return 0;
4034}
4035
4036static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037 struct ieee80211_regdomain *rd)
4038{
4039 const struct ieee80211_regdomain *regd;
4040 const struct ieee80211_regdomain *prev_regd;
4041 struct cfg80211_registered_device *rdev;
4042
4043 if (WARN_ON(!wiphy || !rd))
4044 return -EINVAL;
4045
4046 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048 return -EPERM;
4049
4050 if (WARN(!is_valid_rd(rd),
4051 "Invalid regulatory domain detected: %c%c\n",
4052 rd->alpha2[0], rd->alpha2[1])) {
4053 print_regdomain_info(rd);
4054 return -EINVAL;
4055 }
4056
4057 regd = reg_copy_regd(rd);
4058 if (IS_ERR(regd))
4059 return PTR_ERR(regd);
4060
4061 rdev = wiphy_to_rdev(wiphy);
4062
4063 spin_lock(®_requests_lock);
4064 prev_regd = rdev->requested_regd;
4065 rdev->requested_regd = regd;
4066 spin_unlock(®_requests_lock);
4067
4068 kfree(prev_regd);
4069 return 0;
4070}
4071
4072int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073 struct ieee80211_regdomain *rd)
4074{
4075 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076
4077 if (ret)
4078 return ret;
4079
4080 schedule_work(®_work);
4081 return 0;
4082}
4083EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084
4085int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086 struct ieee80211_regdomain *rd)
4087{
4088 int ret;
4089
4090 ASSERT_RTNL();
4091
4092 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093 if (ret)
4094 return ret;
4095
4096 /* process the request immediately */
4097 reg_process_self_managed_hint(wiphy);
4098 reg_check_channels();
4099 return 0;
4100}
4101EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102
4103void wiphy_regulatory_register(struct wiphy *wiphy)
4104{
4105 struct regulatory_request *lr = get_last_request();
4106
4107 /* self-managed devices ignore beacon hints and country IE */
4108 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110 REGULATORY_COUNTRY_IE_IGNORE;
4111
4112 /*
4113 * The last request may have been received before this
4114 * registration call. Call the driver notifier if
4115 * initiator is USER.
4116 */
4117 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118 reg_call_notifier(wiphy, lr);
4119 }
4120
4121 if (!reg_dev_ignore_cell_hint(wiphy))
4122 reg_num_devs_support_basehint++;
4123
4124 wiphy_update_regulatory(wiphy, lr->initiator);
4125 wiphy_all_share_dfs_chan_state(wiphy);
4126 reg_process_self_managed_hints();
4127}
4128
4129void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130{
4131 struct wiphy *request_wiphy = NULL;
4132 struct regulatory_request *lr;
4133
4134 lr = get_last_request();
4135
4136 if (!reg_dev_ignore_cell_hint(wiphy))
4137 reg_num_devs_support_basehint--;
4138
4139 rcu_free_regdom(get_wiphy_regdom(wiphy));
4140 RCU_INIT_POINTER(wiphy->regd, NULL);
4141
4142 if (lr)
4143 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144
4145 if (!request_wiphy || request_wiphy != wiphy)
4146 return;
4147
4148 lr->wiphy_idx = WIPHY_IDX_INVALID;
4149 lr->country_ie_env = ENVIRON_ANY;
4150}
4151
4152/*
4153 * See FCC notices for UNII band definitions
4154 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156 */
4157int cfg80211_get_unii(int freq)
4158{
4159 /* UNII-1 */
4160 if (freq >= 5150 && freq <= 5250)
4161 return 0;
4162
4163 /* UNII-2A */
4164 if (freq > 5250 && freq <= 5350)
4165 return 1;
4166
4167 /* UNII-2B */
4168 if (freq > 5350 && freq <= 5470)
4169 return 2;
4170
4171 /* UNII-2C */
4172 if (freq > 5470 && freq <= 5725)
4173 return 3;
4174
4175 /* UNII-3 */
4176 if (freq > 5725 && freq <= 5825)
4177 return 4;
4178
4179 /* UNII-5 */
4180 if (freq > 5925 && freq <= 6425)
4181 return 5;
4182
4183 /* UNII-6 */
4184 if (freq > 6425 && freq <= 6525)
4185 return 6;
4186
4187 /* UNII-7 */
4188 if (freq > 6525 && freq <= 6875)
4189 return 7;
4190
4191 /* UNII-8 */
4192 if (freq > 6875 && freq <= 7125)
4193 return 8;
4194
4195 return -EINVAL;
4196}
4197
4198bool regulatory_indoor_allowed(void)
4199{
4200 return reg_is_indoor;
4201}
4202
4203bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204{
4205 const struct ieee80211_regdomain *regd = NULL;
4206 const struct ieee80211_regdomain *wiphy_regd = NULL;
4207 bool pre_cac_allowed = false;
4208
4209 rcu_read_lock();
4210
4211 regd = rcu_dereference(cfg80211_regdomain);
4212 wiphy_regd = rcu_dereference(wiphy->regd);
4213 if (!wiphy_regd) {
4214 if (regd->dfs_region == NL80211_DFS_ETSI)
4215 pre_cac_allowed = true;
4216
4217 rcu_read_unlock();
4218
4219 return pre_cac_allowed;
4220 }
4221
4222 if (regd->dfs_region == wiphy_regd->dfs_region &&
4223 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224 pre_cac_allowed = true;
4225
4226 rcu_read_unlock();
4227
4228 return pre_cac_allowed;
4229}
4230EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231
4232static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233{
4234 struct wireless_dev *wdev;
4235 /* If we finished CAC or received radar, we should end any
4236 * CAC running on the same channels.
4237 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4238 * either all channels are available - those the CAC_FINISHED
4239 * event has effected another wdev state, or there is a channel
4240 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4241 * event has effected another wdev state.
4242 * In both cases we should end the CAC on the wdev.
4243 */
4244 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4245 struct cfg80211_chan_def *chandef;
4246
4247 if (!wdev->cac_started)
4248 continue;
4249
4250 /* FIXME: radar detection is tied to link 0 for now */
4251 chandef = wdev_chandef(wdev, 0);
4252 if (!chandef)
4253 continue;
4254
4255 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4256 rdev_end_cac(rdev, wdev->netdev);
4257 }
4258}
4259
4260void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261 struct cfg80211_chan_def *chandef,
4262 enum nl80211_dfs_state dfs_state,
4263 enum nl80211_radar_event event)
4264{
4265 struct cfg80211_registered_device *rdev;
4266
4267 ASSERT_RTNL();
4268
4269 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270 return;
4271
4272 for_each_rdev(rdev) {
4273 if (wiphy == &rdev->wiphy)
4274 continue;
4275
4276 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277 continue;
4278
4279 if (!ieee80211_get_channel(&rdev->wiphy,
4280 chandef->chan->center_freq))
4281 continue;
4282
4283 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285 if (event == NL80211_RADAR_DETECTED ||
4286 event == NL80211_RADAR_CAC_FINISHED) {
4287 cfg80211_sched_dfs_chan_update(rdev);
4288 cfg80211_check_and_end_cac(rdev);
4289 }
4290
4291 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292 }
4293}
4294
4295static int __init regulatory_init_db(void)
4296{
4297 int err;
4298
4299 /*
4300 * It's possible that - due to other bugs/issues - cfg80211
4301 * never called regulatory_init() below, or that it failed;
4302 * in that case, don't try to do any further work here as
4303 * it's doomed to lead to crashes.
4304 */
4305 if (IS_ERR_OR_NULL(reg_pdev))
4306 return -EINVAL;
4307
4308 err = load_builtin_regdb_keys();
4309 if (err) {
4310 platform_device_unregister(reg_pdev);
4311 return err;
4312 }
4313
4314 /* We always try to get an update for the static regdomain */
4315 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316 if (err) {
4317 if (err == -ENOMEM) {
4318 platform_device_unregister(reg_pdev);
4319 return err;
4320 }
4321 /*
4322 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323 * memory which is handled and propagated appropriately above
4324 * but it can also fail during a netlink_broadcast() or during
4325 * early boot for call_usermodehelper(). For now treat these
4326 * errors as non-fatal.
4327 */
4328 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329 }
4330
4331 /*
4332 * Finally, if the user set the module parameter treat it
4333 * as a user hint.
4334 */
4335 if (!is_world_regdom(ieee80211_regdom))
4336 regulatory_hint_user(ieee80211_regdom,
4337 NL80211_USER_REG_HINT_USER);
4338
4339 return 0;
4340}
4341#ifndef MODULE
4342late_initcall(regulatory_init_db);
4343#endif
4344
4345int __init regulatory_init(void)
4346{
4347 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348 if (IS_ERR(reg_pdev))
4349 return PTR_ERR(reg_pdev);
4350
4351 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353 user_alpha2[0] = '9';
4354 user_alpha2[1] = '7';
4355
4356#ifdef MODULE
4357 return regulatory_init_db();
4358#else
4359 return 0;
4360#endif
4361}
4362
4363void regulatory_exit(void)
4364{
4365 struct regulatory_request *reg_request, *tmp;
4366 struct reg_beacon *reg_beacon, *btmp;
4367
4368 cancel_work_sync(®_work);
4369 cancel_crda_timeout_sync();
4370 cancel_delayed_work_sync(®_check_chans);
4371
4372 /* Lock to suppress warnings */
4373 rtnl_lock();
4374 reset_regdomains(true, NULL);
4375 rtnl_unlock();
4376
4377 dev_set_uevent_suppress(®_pdev->dev, true);
4378
4379 platform_device_unregister(reg_pdev);
4380
4381 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4382 list_del(®_beacon->list);
4383 kfree(reg_beacon);
4384 }
4385
4386 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4387 list_del(®_beacon->list);
4388 kfree(reg_beacon);
4389 }
4390
4391 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4392 list_del(®_request->list);
4393 kfree(reg_request);
4394 }
4395
4396 if (!IS_ERR_OR_NULL(regdb))
4397 kfree(regdb);
4398 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399 kfree(cfg80211_user_regdom);
4400
4401 free_regdb_keyring();
4402}
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21/**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/kernel.h>
48#include <linux/export.h>
49#include <linux/slab.h>
50#include <linux/list.h>
51#include <linux/ctype.h>
52#include <linux/nl80211.h>
53#include <linux/platform_device.h>
54#include <linux/moduleparam.h>
55#include <net/cfg80211.h>
56#include "core.h"
57#include "reg.h"
58#include "regdb.h"
59#include "nl80211.h"
60
61#ifdef CONFIG_CFG80211_REG_DEBUG
62#define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64#else
65#define REG_DBG_PRINT(args...)
66#endif
67
68enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73};
74
75static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82};
83
84/*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91/* To trigger userspace events */
92static struct platform_device *reg_pdev;
93
94/*
95 * Central wireless core regulatory domains, we only need two,
96 * the current one and a world regulatory domain in case we have no
97 * information to give us an alpha2.
98 * (protected by RTNL, can be read under RCU)
99 */
100const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
101
102/*
103 * Number of devices that registered to the core
104 * that support cellular base station regulatory hints
105 * (protected by RTNL)
106 */
107static int reg_num_devs_support_basehint;
108
109static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
110{
111 return rtnl_dereference(cfg80211_regdomain);
112}
113
114static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
115{
116 return rtnl_dereference(wiphy->regd);
117}
118
119static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
120{
121 switch (dfs_region) {
122 case NL80211_DFS_UNSET:
123 return "unset";
124 case NL80211_DFS_FCC:
125 return "FCC";
126 case NL80211_DFS_ETSI:
127 return "ETSI";
128 case NL80211_DFS_JP:
129 return "JP";
130 }
131 return "Unknown";
132}
133
134enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
135{
136 const struct ieee80211_regdomain *regd = NULL;
137 const struct ieee80211_regdomain *wiphy_regd = NULL;
138
139 regd = get_cfg80211_regdom();
140 if (!wiphy)
141 goto out;
142
143 wiphy_regd = get_wiphy_regdom(wiphy);
144 if (!wiphy_regd)
145 goto out;
146
147 if (wiphy_regd->dfs_region == regd->dfs_region)
148 goto out;
149
150 REG_DBG_PRINT("%s: device specific dfs_region "
151 "(%s) disagrees with cfg80211's "
152 "central dfs_region (%s)\n",
153 dev_name(&wiphy->dev),
154 reg_dfs_region_str(wiphy_regd->dfs_region),
155 reg_dfs_region_str(regd->dfs_region));
156
157out:
158 return regd->dfs_region;
159}
160
161static void rcu_free_regdom(const struct ieee80211_regdomain *r)
162{
163 if (!r)
164 return;
165 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
166}
167
168static struct regulatory_request *get_last_request(void)
169{
170 return rcu_dereference_rtnl(last_request);
171}
172
173/* Used to queue up regulatory hints */
174static LIST_HEAD(reg_requests_list);
175static spinlock_t reg_requests_lock;
176
177/* Used to queue up beacon hints for review */
178static LIST_HEAD(reg_pending_beacons);
179static spinlock_t reg_pending_beacons_lock;
180
181/* Used to keep track of processed beacon hints */
182static LIST_HEAD(reg_beacon_list);
183
184struct reg_beacon {
185 struct list_head list;
186 struct ieee80211_channel chan;
187};
188
189static void reg_todo(struct work_struct *work);
190static DECLARE_WORK(reg_work, reg_todo);
191
192static void reg_timeout_work(struct work_struct *work);
193static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
194
195/* We keep a static world regulatory domain in case of the absence of CRDA */
196static const struct ieee80211_regdomain world_regdom = {
197 .n_reg_rules = 6,
198 .alpha2 = "00",
199 .reg_rules = {
200 /* IEEE 802.11b/g, channels 1..11 */
201 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
202 /* IEEE 802.11b/g, channels 12..13. */
203 REG_RULE(2467-10, 2472+10, 40, 6, 20,
204 NL80211_RRF_NO_IR),
205 /* IEEE 802.11 channel 14 - Only JP enables
206 * this and for 802.11b only */
207 REG_RULE(2484-10, 2484+10, 20, 6, 20,
208 NL80211_RRF_NO_IR |
209 NL80211_RRF_NO_OFDM),
210 /* IEEE 802.11a, channel 36..48 */
211 REG_RULE(5180-10, 5240+10, 160, 6, 20,
212 NL80211_RRF_NO_IR),
213
214 /* IEEE 802.11a, channel 52..64 - DFS required */
215 REG_RULE(5260-10, 5320+10, 160, 6, 20,
216 NL80211_RRF_NO_IR |
217 NL80211_RRF_DFS),
218
219 /* IEEE 802.11a, channel 100..144 - DFS required */
220 REG_RULE(5500-10, 5720+10, 160, 6, 20,
221 NL80211_RRF_NO_IR |
222 NL80211_RRF_DFS),
223
224 /* IEEE 802.11a, channel 149..165 */
225 REG_RULE(5745-10, 5825+10, 80, 6, 20,
226 NL80211_RRF_NO_IR),
227
228 /* IEEE 802.11ad (60gHz), channels 1..3 */
229 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
230 }
231};
232
233/* protected by RTNL */
234static const struct ieee80211_regdomain *cfg80211_world_regdom =
235 &world_regdom;
236
237static char *ieee80211_regdom = "00";
238static char user_alpha2[2];
239
240module_param(ieee80211_regdom, charp, 0444);
241MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
242
243static void reg_free_request(struct regulatory_request *lr)
244{
245 if (lr != &core_request_world && lr)
246 kfree_rcu(lr, rcu_head);
247}
248
249static void reg_update_last_request(struct regulatory_request *request)
250{
251 struct regulatory_request *lr;
252
253 lr = get_last_request();
254 if (lr == request)
255 return;
256
257 reg_free_request(lr);
258 rcu_assign_pointer(last_request, request);
259}
260
261static void reset_regdomains(bool full_reset,
262 const struct ieee80211_regdomain *new_regdom)
263{
264 const struct ieee80211_regdomain *r;
265
266 ASSERT_RTNL();
267
268 r = get_cfg80211_regdom();
269
270 /* avoid freeing static information or freeing something twice */
271 if (r == cfg80211_world_regdom)
272 r = NULL;
273 if (cfg80211_world_regdom == &world_regdom)
274 cfg80211_world_regdom = NULL;
275 if (r == &world_regdom)
276 r = NULL;
277
278 rcu_free_regdom(r);
279 rcu_free_regdom(cfg80211_world_regdom);
280
281 cfg80211_world_regdom = &world_regdom;
282 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
283
284 if (!full_reset)
285 return;
286
287 reg_update_last_request(&core_request_world);
288}
289
290/*
291 * Dynamic world regulatory domain requested by the wireless
292 * core upon initialization
293 */
294static void update_world_regdomain(const struct ieee80211_regdomain *rd)
295{
296 struct regulatory_request *lr;
297
298 lr = get_last_request();
299
300 WARN_ON(!lr);
301
302 reset_regdomains(false, rd);
303
304 cfg80211_world_regdom = rd;
305}
306
307bool is_world_regdom(const char *alpha2)
308{
309 if (!alpha2)
310 return false;
311 return alpha2[0] == '0' && alpha2[1] == '0';
312}
313
314static bool is_alpha2_set(const char *alpha2)
315{
316 if (!alpha2)
317 return false;
318 return alpha2[0] && alpha2[1];
319}
320
321static bool is_unknown_alpha2(const char *alpha2)
322{
323 if (!alpha2)
324 return false;
325 /*
326 * Special case where regulatory domain was built by driver
327 * but a specific alpha2 cannot be determined
328 */
329 return alpha2[0] == '9' && alpha2[1] == '9';
330}
331
332static bool is_intersected_alpha2(const char *alpha2)
333{
334 if (!alpha2)
335 return false;
336 /*
337 * Special case where regulatory domain is the
338 * result of an intersection between two regulatory domain
339 * structures
340 */
341 return alpha2[0] == '9' && alpha2[1] == '8';
342}
343
344static bool is_an_alpha2(const char *alpha2)
345{
346 if (!alpha2)
347 return false;
348 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
349}
350
351static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
352{
353 if (!alpha2_x || !alpha2_y)
354 return false;
355 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
356}
357
358static bool regdom_changes(const char *alpha2)
359{
360 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
361
362 if (!r)
363 return true;
364 return !alpha2_equal(r->alpha2, alpha2);
365}
366
367/*
368 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
369 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
370 * has ever been issued.
371 */
372static bool is_user_regdom_saved(void)
373{
374 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
375 return false;
376
377 /* This would indicate a mistake on the design */
378 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
379 "Unexpected user alpha2: %c%c\n",
380 user_alpha2[0], user_alpha2[1]))
381 return false;
382
383 return true;
384}
385
386static const struct ieee80211_regdomain *
387reg_copy_regd(const struct ieee80211_regdomain *src_regd)
388{
389 struct ieee80211_regdomain *regd;
390 int size_of_regd;
391 unsigned int i;
392
393 size_of_regd =
394 sizeof(struct ieee80211_regdomain) +
395 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
396
397 regd = kzalloc(size_of_regd, GFP_KERNEL);
398 if (!regd)
399 return ERR_PTR(-ENOMEM);
400
401 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
402
403 for (i = 0; i < src_regd->n_reg_rules; i++)
404 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
405 sizeof(struct ieee80211_reg_rule));
406
407 return regd;
408}
409
410#ifdef CONFIG_CFG80211_INTERNAL_REGDB
411struct reg_regdb_search_request {
412 char alpha2[2];
413 struct list_head list;
414};
415
416static LIST_HEAD(reg_regdb_search_list);
417static DEFINE_MUTEX(reg_regdb_search_mutex);
418
419static void reg_regdb_search(struct work_struct *work)
420{
421 struct reg_regdb_search_request *request;
422 const struct ieee80211_regdomain *curdom, *regdom = NULL;
423 int i;
424
425 rtnl_lock();
426
427 mutex_lock(®_regdb_search_mutex);
428 while (!list_empty(®_regdb_search_list)) {
429 request = list_first_entry(®_regdb_search_list,
430 struct reg_regdb_search_request,
431 list);
432 list_del(&request->list);
433
434 for (i = 0; i < reg_regdb_size; i++) {
435 curdom = reg_regdb[i];
436
437 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
438 regdom = reg_copy_regd(curdom);
439 break;
440 }
441 }
442
443 kfree(request);
444 }
445 mutex_unlock(®_regdb_search_mutex);
446
447 if (!IS_ERR_OR_NULL(regdom))
448 set_regdom(regdom);
449
450 rtnl_unlock();
451}
452
453static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
454
455static void reg_regdb_query(const char *alpha2)
456{
457 struct reg_regdb_search_request *request;
458
459 if (!alpha2)
460 return;
461
462 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
463 if (!request)
464 return;
465
466 memcpy(request->alpha2, alpha2, 2);
467
468 mutex_lock(®_regdb_search_mutex);
469 list_add_tail(&request->list, ®_regdb_search_list);
470 mutex_unlock(®_regdb_search_mutex);
471
472 schedule_work(®_regdb_work);
473}
474
475/* Feel free to add any other sanity checks here */
476static void reg_regdb_size_check(void)
477{
478 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
479 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
480}
481#else
482static inline void reg_regdb_size_check(void) {}
483static inline void reg_regdb_query(const char *alpha2) {}
484#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
485
486/*
487 * This lets us keep regulatory code which is updated on a regulatory
488 * basis in userspace.
489 */
490static int call_crda(const char *alpha2)
491{
492 char country[12];
493 char *env[] = { country, NULL };
494
495 snprintf(country, sizeof(country), "COUNTRY=%c%c",
496 alpha2[0], alpha2[1]);
497
498 if (!is_world_regdom((char *) alpha2))
499 pr_info("Calling CRDA for country: %c%c\n",
500 alpha2[0], alpha2[1]);
501 else
502 pr_info("Calling CRDA to update world regulatory domain\n");
503
504 /* query internal regulatory database (if it exists) */
505 reg_regdb_query(alpha2);
506
507 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
508}
509
510static enum reg_request_treatment
511reg_call_crda(struct regulatory_request *request)
512{
513 if (call_crda(request->alpha2))
514 return REG_REQ_IGNORE;
515 return REG_REQ_OK;
516}
517
518bool reg_is_valid_request(const char *alpha2)
519{
520 struct regulatory_request *lr = get_last_request();
521
522 if (!lr || lr->processed)
523 return false;
524
525 return alpha2_equal(lr->alpha2, alpha2);
526}
527
528static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
529{
530 struct regulatory_request *lr = get_last_request();
531
532 /*
533 * Follow the driver's regulatory domain, if present, unless a country
534 * IE has been processed or a user wants to help complaince further
535 */
536 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
537 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
538 wiphy->regd)
539 return get_wiphy_regdom(wiphy);
540
541 return get_cfg80211_regdom();
542}
543
544unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
545 const struct ieee80211_reg_rule *rule)
546{
547 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
548 const struct ieee80211_freq_range *freq_range_tmp;
549 const struct ieee80211_reg_rule *tmp;
550 u32 start_freq, end_freq, idx, no;
551
552 for (idx = 0; idx < rd->n_reg_rules; idx++)
553 if (rule == &rd->reg_rules[idx])
554 break;
555
556 if (idx == rd->n_reg_rules)
557 return 0;
558
559 /* get start_freq */
560 no = idx;
561
562 while (no) {
563 tmp = &rd->reg_rules[--no];
564 freq_range_tmp = &tmp->freq_range;
565
566 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
567 break;
568
569 freq_range = freq_range_tmp;
570 }
571
572 start_freq = freq_range->start_freq_khz;
573
574 /* get end_freq */
575 freq_range = &rule->freq_range;
576 no = idx;
577
578 while (no < rd->n_reg_rules - 1) {
579 tmp = &rd->reg_rules[++no];
580 freq_range_tmp = &tmp->freq_range;
581
582 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
583 break;
584
585 freq_range = freq_range_tmp;
586 }
587
588 end_freq = freq_range->end_freq_khz;
589
590 return end_freq - start_freq;
591}
592
593/* Sanity check on a regulatory rule */
594static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
595{
596 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
597 u32 freq_diff;
598
599 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
600 return false;
601
602 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
603 return false;
604
605 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
606
607 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
608 freq_range->max_bandwidth_khz > freq_diff)
609 return false;
610
611 return true;
612}
613
614static bool is_valid_rd(const struct ieee80211_regdomain *rd)
615{
616 const struct ieee80211_reg_rule *reg_rule = NULL;
617 unsigned int i;
618
619 if (!rd->n_reg_rules)
620 return false;
621
622 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
623 return false;
624
625 for (i = 0; i < rd->n_reg_rules; i++) {
626 reg_rule = &rd->reg_rules[i];
627 if (!is_valid_reg_rule(reg_rule))
628 return false;
629 }
630
631 return true;
632}
633
634static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
635 u32 center_freq_khz, u32 bw_khz)
636{
637 u32 start_freq_khz, end_freq_khz;
638
639 start_freq_khz = center_freq_khz - (bw_khz/2);
640 end_freq_khz = center_freq_khz + (bw_khz/2);
641
642 if (start_freq_khz >= freq_range->start_freq_khz &&
643 end_freq_khz <= freq_range->end_freq_khz)
644 return true;
645
646 return false;
647}
648
649/**
650 * freq_in_rule_band - tells us if a frequency is in a frequency band
651 * @freq_range: frequency rule we want to query
652 * @freq_khz: frequency we are inquiring about
653 *
654 * This lets us know if a specific frequency rule is or is not relevant to
655 * a specific frequency's band. Bands are device specific and artificial
656 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
657 * however it is safe for now to assume that a frequency rule should not be
658 * part of a frequency's band if the start freq or end freq are off by more
659 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
660 * 60 GHz band.
661 * This resolution can be lowered and should be considered as we add
662 * regulatory rule support for other "bands".
663 **/
664static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
665 u32 freq_khz)
666{
667#define ONE_GHZ_IN_KHZ 1000000
668 /*
669 * From 802.11ad: directional multi-gigabit (DMG):
670 * Pertaining to operation in a frequency band containing a channel
671 * with the Channel starting frequency above 45 GHz.
672 */
673 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
674 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
675 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
676 return true;
677 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
678 return true;
679 return false;
680#undef ONE_GHZ_IN_KHZ
681}
682
683/*
684 * Later on we can perhaps use the more restrictive DFS
685 * region but we don't have information for that yet so
686 * for now simply disallow conflicts.
687 */
688static enum nl80211_dfs_regions
689reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
690 const enum nl80211_dfs_regions dfs_region2)
691{
692 if (dfs_region1 != dfs_region2)
693 return NL80211_DFS_UNSET;
694 return dfs_region1;
695}
696
697/*
698 * Helper for regdom_intersect(), this does the real
699 * mathematical intersection fun
700 */
701static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
702 const struct ieee80211_regdomain *rd2,
703 const struct ieee80211_reg_rule *rule1,
704 const struct ieee80211_reg_rule *rule2,
705 struct ieee80211_reg_rule *intersected_rule)
706{
707 const struct ieee80211_freq_range *freq_range1, *freq_range2;
708 struct ieee80211_freq_range *freq_range;
709 const struct ieee80211_power_rule *power_rule1, *power_rule2;
710 struct ieee80211_power_rule *power_rule;
711 u32 freq_diff, max_bandwidth1, max_bandwidth2;
712
713 freq_range1 = &rule1->freq_range;
714 freq_range2 = &rule2->freq_range;
715 freq_range = &intersected_rule->freq_range;
716
717 power_rule1 = &rule1->power_rule;
718 power_rule2 = &rule2->power_rule;
719 power_rule = &intersected_rule->power_rule;
720
721 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
722 freq_range2->start_freq_khz);
723 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
724 freq_range2->end_freq_khz);
725
726 max_bandwidth1 = freq_range1->max_bandwidth_khz;
727 max_bandwidth2 = freq_range2->max_bandwidth_khz;
728
729 if (rule1->flags & NL80211_RRF_AUTO_BW)
730 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
731 if (rule2->flags & NL80211_RRF_AUTO_BW)
732 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
733
734 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
735
736 intersected_rule->flags = rule1->flags | rule2->flags;
737
738 /*
739 * In case NL80211_RRF_AUTO_BW requested for both rules
740 * set AUTO_BW in intersected rule also. Next we will
741 * calculate BW correctly in handle_channel function.
742 * In other case remove AUTO_BW flag while we calculate
743 * maximum bandwidth correctly and auto calculation is
744 * not required.
745 */
746 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
747 (rule2->flags & NL80211_RRF_AUTO_BW))
748 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
749 else
750 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
751
752 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
753 if (freq_range->max_bandwidth_khz > freq_diff)
754 freq_range->max_bandwidth_khz = freq_diff;
755
756 power_rule->max_eirp = min(power_rule1->max_eirp,
757 power_rule2->max_eirp);
758 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
759 power_rule2->max_antenna_gain);
760
761 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
762 rule2->dfs_cac_ms);
763
764 if (!is_valid_reg_rule(intersected_rule))
765 return -EINVAL;
766
767 return 0;
768}
769
770/**
771 * regdom_intersect - do the intersection between two regulatory domains
772 * @rd1: first regulatory domain
773 * @rd2: second regulatory domain
774 *
775 * Use this function to get the intersection between two regulatory domains.
776 * Once completed we will mark the alpha2 for the rd as intersected, "98",
777 * as no one single alpha2 can represent this regulatory domain.
778 *
779 * Returns a pointer to the regulatory domain structure which will hold the
780 * resulting intersection of rules between rd1 and rd2. We will
781 * kzalloc() this structure for you.
782 */
783static struct ieee80211_regdomain *
784regdom_intersect(const struct ieee80211_regdomain *rd1,
785 const struct ieee80211_regdomain *rd2)
786{
787 int r, size_of_regd;
788 unsigned int x, y;
789 unsigned int num_rules = 0, rule_idx = 0;
790 const struct ieee80211_reg_rule *rule1, *rule2;
791 struct ieee80211_reg_rule *intersected_rule;
792 struct ieee80211_regdomain *rd;
793 /* This is just a dummy holder to help us count */
794 struct ieee80211_reg_rule dummy_rule;
795
796 if (!rd1 || !rd2)
797 return NULL;
798
799 /*
800 * First we get a count of the rules we'll need, then we actually
801 * build them. This is to so we can malloc() and free() a
802 * regdomain once. The reason we use reg_rules_intersect() here
803 * is it will return -EINVAL if the rule computed makes no sense.
804 * All rules that do check out OK are valid.
805 */
806
807 for (x = 0; x < rd1->n_reg_rules; x++) {
808 rule1 = &rd1->reg_rules[x];
809 for (y = 0; y < rd2->n_reg_rules; y++) {
810 rule2 = &rd2->reg_rules[y];
811 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
812 &dummy_rule))
813 num_rules++;
814 }
815 }
816
817 if (!num_rules)
818 return NULL;
819
820 size_of_regd = sizeof(struct ieee80211_regdomain) +
821 num_rules * sizeof(struct ieee80211_reg_rule);
822
823 rd = kzalloc(size_of_regd, GFP_KERNEL);
824 if (!rd)
825 return NULL;
826
827 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
828 rule1 = &rd1->reg_rules[x];
829 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
830 rule2 = &rd2->reg_rules[y];
831 /*
832 * This time around instead of using the stack lets
833 * write to the target rule directly saving ourselves
834 * a memcpy()
835 */
836 intersected_rule = &rd->reg_rules[rule_idx];
837 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
838 intersected_rule);
839 /*
840 * No need to memset here the intersected rule here as
841 * we're not using the stack anymore
842 */
843 if (r)
844 continue;
845 rule_idx++;
846 }
847 }
848
849 if (rule_idx != num_rules) {
850 kfree(rd);
851 return NULL;
852 }
853
854 rd->n_reg_rules = num_rules;
855 rd->alpha2[0] = '9';
856 rd->alpha2[1] = '8';
857 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
858 rd2->dfs_region);
859
860 return rd;
861}
862
863/*
864 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
865 * want to just have the channel structure use these
866 */
867static u32 map_regdom_flags(u32 rd_flags)
868{
869 u32 channel_flags = 0;
870 if (rd_flags & NL80211_RRF_NO_IR_ALL)
871 channel_flags |= IEEE80211_CHAN_NO_IR;
872 if (rd_flags & NL80211_RRF_DFS)
873 channel_flags |= IEEE80211_CHAN_RADAR;
874 if (rd_flags & NL80211_RRF_NO_OFDM)
875 channel_flags |= IEEE80211_CHAN_NO_OFDM;
876 return channel_flags;
877}
878
879static const struct ieee80211_reg_rule *
880freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
881 const struct ieee80211_regdomain *regd)
882{
883 int i;
884 bool band_rule_found = false;
885 bool bw_fits = false;
886
887 if (!regd)
888 return ERR_PTR(-EINVAL);
889
890 for (i = 0; i < regd->n_reg_rules; i++) {
891 const struct ieee80211_reg_rule *rr;
892 const struct ieee80211_freq_range *fr = NULL;
893
894 rr = ®d->reg_rules[i];
895 fr = &rr->freq_range;
896
897 /*
898 * We only need to know if one frequency rule was
899 * was in center_freq's band, that's enough, so lets
900 * not overwrite it once found
901 */
902 if (!band_rule_found)
903 band_rule_found = freq_in_rule_band(fr, center_freq);
904
905 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
906
907 if (band_rule_found && bw_fits)
908 return rr;
909 }
910
911 if (!band_rule_found)
912 return ERR_PTR(-ERANGE);
913
914 return ERR_PTR(-EINVAL);
915}
916
917const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
918 u32 center_freq)
919{
920 const struct ieee80211_regdomain *regd;
921
922 regd = reg_get_regdomain(wiphy);
923
924 return freq_reg_info_regd(wiphy, center_freq, regd);
925}
926EXPORT_SYMBOL(freq_reg_info);
927
928const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
929{
930 switch (initiator) {
931 case NL80211_REGDOM_SET_BY_CORE:
932 return "core";
933 case NL80211_REGDOM_SET_BY_USER:
934 return "user";
935 case NL80211_REGDOM_SET_BY_DRIVER:
936 return "driver";
937 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
938 return "country IE";
939 default:
940 WARN_ON(1);
941 return "bug";
942 }
943}
944EXPORT_SYMBOL(reg_initiator_name);
945
946#ifdef CONFIG_CFG80211_REG_DEBUG
947static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
948 struct ieee80211_channel *chan,
949 const struct ieee80211_reg_rule *reg_rule)
950{
951 const struct ieee80211_power_rule *power_rule;
952 const struct ieee80211_freq_range *freq_range;
953 char max_antenna_gain[32], bw[32];
954
955 power_rule = ®_rule->power_rule;
956 freq_range = ®_rule->freq_range;
957
958 if (!power_rule->max_antenna_gain)
959 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
960 else
961 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
962 power_rule->max_antenna_gain);
963
964 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
965 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
966 freq_range->max_bandwidth_khz,
967 reg_get_max_bandwidth(regd, reg_rule));
968 else
969 snprintf(bw, sizeof(bw), "%d KHz",
970 freq_range->max_bandwidth_khz);
971
972 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
973 chan->center_freq);
974
975 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
976 freq_range->start_freq_khz, freq_range->end_freq_khz,
977 bw, max_antenna_gain,
978 power_rule->max_eirp);
979}
980#else
981static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
982 struct ieee80211_channel *chan,
983 const struct ieee80211_reg_rule *reg_rule)
984{
985 return;
986}
987#endif
988
989/*
990 * Note that right now we assume the desired channel bandwidth
991 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
992 * per channel, the primary and the extension channel).
993 */
994static void handle_channel(struct wiphy *wiphy,
995 enum nl80211_reg_initiator initiator,
996 struct ieee80211_channel *chan)
997{
998 u32 flags, bw_flags = 0;
999 const struct ieee80211_reg_rule *reg_rule = NULL;
1000 const struct ieee80211_power_rule *power_rule = NULL;
1001 const struct ieee80211_freq_range *freq_range = NULL;
1002 struct wiphy *request_wiphy = NULL;
1003 struct regulatory_request *lr = get_last_request();
1004 const struct ieee80211_regdomain *regd;
1005 u32 max_bandwidth_khz;
1006
1007 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1008
1009 flags = chan->orig_flags;
1010
1011 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1012 if (IS_ERR(reg_rule)) {
1013 /*
1014 * We will disable all channels that do not match our
1015 * received regulatory rule unless the hint is coming
1016 * from a Country IE and the Country IE had no information
1017 * about a band. The IEEE 802.11 spec allows for an AP
1018 * to send only a subset of the regulatory rules allowed,
1019 * so an AP in the US that only supports 2.4 GHz may only send
1020 * a country IE with information for the 2.4 GHz band
1021 * while 5 GHz is still supported.
1022 */
1023 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1024 PTR_ERR(reg_rule) == -ERANGE)
1025 return;
1026
1027 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1028 request_wiphy && request_wiphy == wiphy &&
1029 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1030 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1031 chan->center_freq);
1032 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1033 chan->flags = chan->orig_flags;
1034 } else {
1035 REG_DBG_PRINT("Disabling freq %d MHz\n",
1036 chan->center_freq);
1037 chan->flags |= IEEE80211_CHAN_DISABLED;
1038 }
1039 return;
1040 }
1041
1042 regd = reg_get_regdomain(wiphy);
1043 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1044
1045 power_rule = ®_rule->power_rule;
1046 freq_range = ®_rule->freq_range;
1047
1048 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1049 /* Check if auto calculation requested */
1050 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1051 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1052
1053 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1054 bw_flags = IEEE80211_CHAN_NO_HT40;
1055 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1056 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1057 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1058 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1059
1060 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1061 request_wiphy && request_wiphy == wiphy &&
1062 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1063 /*
1064 * This guarantees the driver's requested regulatory domain
1065 * will always be used as a base for further regulatory
1066 * settings
1067 */
1068 chan->flags = chan->orig_flags =
1069 map_regdom_flags(reg_rule->flags) | bw_flags;
1070 chan->max_antenna_gain = chan->orig_mag =
1071 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1072 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1073 (int) MBM_TO_DBM(power_rule->max_eirp);
1074 return;
1075 }
1076
1077 chan->dfs_state = NL80211_DFS_USABLE;
1078 chan->dfs_state_entered = jiffies;
1079
1080 chan->beacon_found = false;
1081 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1082 chan->max_antenna_gain =
1083 min_t(int, chan->orig_mag,
1084 MBI_TO_DBI(power_rule->max_antenna_gain));
1085 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1086
1087 if (chan->flags & IEEE80211_CHAN_RADAR) {
1088 if (reg_rule->dfs_cac_ms)
1089 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1090 else
1091 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1092 }
1093
1094 if (chan->orig_mpwr) {
1095 /*
1096 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1097 * will always follow the passed country IE power settings.
1098 */
1099 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1100 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1101 chan->max_power = chan->max_reg_power;
1102 else
1103 chan->max_power = min(chan->orig_mpwr,
1104 chan->max_reg_power);
1105 } else
1106 chan->max_power = chan->max_reg_power;
1107}
1108
1109static void handle_band(struct wiphy *wiphy,
1110 enum nl80211_reg_initiator initiator,
1111 struct ieee80211_supported_band *sband)
1112{
1113 unsigned int i;
1114
1115 if (!sband)
1116 return;
1117
1118 for (i = 0; i < sband->n_channels; i++)
1119 handle_channel(wiphy, initiator, &sband->channels[i]);
1120}
1121
1122static bool reg_request_cell_base(struct regulatory_request *request)
1123{
1124 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1125 return false;
1126 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1127}
1128
1129bool reg_last_request_cell_base(void)
1130{
1131 return reg_request_cell_base(get_last_request());
1132}
1133
1134#ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1135/* Core specific check */
1136static enum reg_request_treatment
1137reg_ignore_cell_hint(struct regulatory_request *pending_request)
1138{
1139 struct regulatory_request *lr = get_last_request();
1140
1141 if (!reg_num_devs_support_basehint)
1142 return REG_REQ_IGNORE;
1143
1144 if (reg_request_cell_base(lr) &&
1145 !regdom_changes(pending_request->alpha2))
1146 return REG_REQ_ALREADY_SET;
1147
1148 return REG_REQ_OK;
1149}
1150
1151/* Device specific check */
1152static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1153{
1154 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1155}
1156#else
1157static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1158{
1159 return REG_REQ_IGNORE;
1160}
1161
1162static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1163{
1164 return true;
1165}
1166#endif
1167
1168static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1169{
1170 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1171 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1172 return true;
1173 return false;
1174}
1175
1176static bool ignore_reg_update(struct wiphy *wiphy,
1177 enum nl80211_reg_initiator initiator)
1178{
1179 struct regulatory_request *lr = get_last_request();
1180
1181 if (!lr) {
1182 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1183 "since last_request is not set\n",
1184 reg_initiator_name(initiator));
1185 return true;
1186 }
1187
1188 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1189 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1190 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1191 "since the driver uses its own custom "
1192 "regulatory domain\n",
1193 reg_initiator_name(initiator));
1194 return true;
1195 }
1196
1197 /*
1198 * wiphy->regd will be set once the device has its own
1199 * desired regulatory domain set
1200 */
1201 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1202 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1203 !is_world_regdom(lr->alpha2)) {
1204 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1205 "since the driver requires its own regulatory "
1206 "domain to be set first\n",
1207 reg_initiator_name(initiator));
1208 return true;
1209 }
1210
1211 if (reg_request_cell_base(lr))
1212 return reg_dev_ignore_cell_hint(wiphy);
1213
1214 return false;
1215}
1216
1217static bool reg_is_world_roaming(struct wiphy *wiphy)
1218{
1219 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1220 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1221 struct regulatory_request *lr = get_last_request();
1222
1223 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1224 return true;
1225
1226 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1227 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1228 return true;
1229
1230 return false;
1231}
1232
1233static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1234 struct reg_beacon *reg_beacon)
1235{
1236 struct ieee80211_supported_band *sband;
1237 struct ieee80211_channel *chan;
1238 bool channel_changed = false;
1239 struct ieee80211_channel chan_before;
1240
1241 sband = wiphy->bands[reg_beacon->chan.band];
1242 chan = &sband->channels[chan_idx];
1243
1244 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1245 return;
1246
1247 if (chan->beacon_found)
1248 return;
1249
1250 chan->beacon_found = true;
1251
1252 if (!reg_is_world_roaming(wiphy))
1253 return;
1254
1255 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1256 return;
1257
1258 chan_before.center_freq = chan->center_freq;
1259 chan_before.flags = chan->flags;
1260
1261 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1262 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1263 channel_changed = true;
1264 }
1265
1266 if (channel_changed)
1267 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1268}
1269
1270/*
1271 * Called when a scan on a wiphy finds a beacon on
1272 * new channel
1273 */
1274static void wiphy_update_new_beacon(struct wiphy *wiphy,
1275 struct reg_beacon *reg_beacon)
1276{
1277 unsigned int i;
1278 struct ieee80211_supported_band *sband;
1279
1280 if (!wiphy->bands[reg_beacon->chan.band])
1281 return;
1282
1283 sband = wiphy->bands[reg_beacon->chan.band];
1284
1285 for (i = 0; i < sband->n_channels; i++)
1286 handle_reg_beacon(wiphy, i, reg_beacon);
1287}
1288
1289/*
1290 * Called upon reg changes or a new wiphy is added
1291 */
1292static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1293{
1294 unsigned int i;
1295 struct ieee80211_supported_band *sband;
1296 struct reg_beacon *reg_beacon;
1297
1298 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1299 if (!wiphy->bands[reg_beacon->chan.band])
1300 continue;
1301 sband = wiphy->bands[reg_beacon->chan.band];
1302 for (i = 0; i < sband->n_channels; i++)
1303 handle_reg_beacon(wiphy, i, reg_beacon);
1304 }
1305}
1306
1307/* Reap the advantages of previously found beacons */
1308static void reg_process_beacons(struct wiphy *wiphy)
1309{
1310 /*
1311 * Means we are just firing up cfg80211, so no beacons would
1312 * have been processed yet.
1313 */
1314 if (!last_request)
1315 return;
1316 wiphy_update_beacon_reg(wiphy);
1317}
1318
1319static bool is_ht40_allowed(struct ieee80211_channel *chan)
1320{
1321 if (!chan)
1322 return false;
1323 if (chan->flags & IEEE80211_CHAN_DISABLED)
1324 return false;
1325 /* This would happen when regulatory rules disallow HT40 completely */
1326 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1327 return false;
1328 return true;
1329}
1330
1331static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1332 struct ieee80211_channel *channel)
1333{
1334 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1335 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1336 unsigned int i;
1337
1338 if (!is_ht40_allowed(channel)) {
1339 channel->flags |= IEEE80211_CHAN_NO_HT40;
1340 return;
1341 }
1342
1343 /*
1344 * We need to ensure the extension channels exist to
1345 * be able to use HT40- or HT40+, this finds them (or not)
1346 */
1347 for (i = 0; i < sband->n_channels; i++) {
1348 struct ieee80211_channel *c = &sband->channels[i];
1349
1350 if (c->center_freq == (channel->center_freq - 20))
1351 channel_before = c;
1352 if (c->center_freq == (channel->center_freq + 20))
1353 channel_after = c;
1354 }
1355
1356 /*
1357 * Please note that this assumes target bandwidth is 20 MHz,
1358 * if that ever changes we also need to change the below logic
1359 * to include that as well.
1360 */
1361 if (!is_ht40_allowed(channel_before))
1362 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1363 else
1364 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1365
1366 if (!is_ht40_allowed(channel_after))
1367 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1368 else
1369 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1370}
1371
1372static void reg_process_ht_flags_band(struct wiphy *wiphy,
1373 struct ieee80211_supported_band *sband)
1374{
1375 unsigned int i;
1376
1377 if (!sband)
1378 return;
1379
1380 for (i = 0; i < sband->n_channels; i++)
1381 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1382}
1383
1384static void reg_process_ht_flags(struct wiphy *wiphy)
1385{
1386 enum ieee80211_band band;
1387
1388 if (!wiphy)
1389 return;
1390
1391 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1392 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1393}
1394
1395static void reg_call_notifier(struct wiphy *wiphy,
1396 struct regulatory_request *request)
1397{
1398 if (wiphy->reg_notifier)
1399 wiphy->reg_notifier(wiphy, request);
1400}
1401
1402static void wiphy_update_regulatory(struct wiphy *wiphy,
1403 enum nl80211_reg_initiator initiator)
1404{
1405 enum ieee80211_band band;
1406 struct regulatory_request *lr = get_last_request();
1407
1408 if (ignore_reg_update(wiphy, initiator)) {
1409 /*
1410 * Regulatory updates set by CORE are ignored for custom
1411 * regulatory cards. Let us notify the changes to the driver,
1412 * as some drivers used this to restore its orig_* reg domain.
1413 */
1414 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1415 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1416 reg_call_notifier(wiphy, lr);
1417 return;
1418 }
1419
1420 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1421
1422 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1423 handle_band(wiphy, initiator, wiphy->bands[band]);
1424
1425 reg_process_beacons(wiphy);
1426 reg_process_ht_flags(wiphy);
1427 reg_call_notifier(wiphy, lr);
1428}
1429
1430static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1431{
1432 struct cfg80211_registered_device *rdev;
1433 struct wiphy *wiphy;
1434
1435 ASSERT_RTNL();
1436
1437 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1438 wiphy = &rdev->wiphy;
1439 wiphy_update_regulatory(wiphy, initiator);
1440 }
1441}
1442
1443static void handle_channel_custom(struct wiphy *wiphy,
1444 struct ieee80211_channel *chan,
1445 const struct ieee80211_regdomain *regd)
1446{
1447 u32 bw_flags = 0;
1448 const struct ieee80211_reg_rule *reg_rule = NULL;
1449 const struct ieee80211_power_rule *power_rule = NULL;
1450 const struct ieee80211_freq_range *freq_range = NULL;
1451 u32 max_bandwidth_khz;
1452
1453 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1454 regd);
1455
1456 if (IS_ERR(reg_rule)) {
1457 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1458 chan->center_freq);
1459 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1460 chan->flags = chan->orig_flags;
1461 return;
1462 }
1463
1464 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1465
1466 power_rule = ®_rule->power_rule;
1467 freq_range = ®_rule->freq_range;
1468
1469 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1470 /* Check if auto calculation requested */
1471 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1472 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1473
1474 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1475 bw_flags = IEEE80211_CHAN_NO_HT40;
1476 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1477 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1478 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1479 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1480
1481 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1482 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1483 chan->max_reg_power = chan->max_power =
1484 (int) MBM_TO_DBM(power_rule->max_eirp);
1485}
1486
1487static void handle_band_custom(struct wiphy *wiphy,
1488 struct ieee80211_supported_band *sband,
1489 const struct ieee80211_regdomain *regd)
1490{
1491 unsigned int i;
1492
1493 if (!sband)
1494 return;
1495
1496 for (i = 0; i < sband->n_channels; i++)
1497 handle_channel_custom(wiphy, &sband->channels[i], regd);
1498}
1499
1500/* Used by drivers prior to wiphy registration */
1501void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1502 const struct ieee80211_regdomain *regd)
1503{
1504 enum ieee80211_band band;
1505 unsigned int bands_set = 0;
1506
1507 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1508 "wiphy should have REGULATORY_CUSTOM_REG\n");
1509 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1510
1511 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1512 if (!wiphy->bands[band])
1513 continue;
1514 handle_band_custom(wiphy, wiphy->bands[band], regd);
1515 bands_set++;
1516 }
1517
1518 /*
1519 * no point in calling this if it won't have any effect
1520 * on your device's supported bands.
1521 */
1522 WARN_ON(!bands_set);
1523}
1524EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1525
1526static void reg_set_request_processed(void)
1527{
1528 bool need_more_processing = false;
1529 struct regulatory_request *lr = get_last_request();
1530
1531 lr->processed = true;
1532
1533 spin_lock(®_requests_lock);
1534 if (!list_empty(®_requests_list))
1535 need_more_processing = true;
1536 spin_unlock(®_requests_lock);
1537
1538 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1539 cancel_delayed_work(®_timeout);
1540
1541 if (need_more_processing)
1542 schedule_work(®_work);
1543}
1544
1545/**
1546 * reg_process_hint_core - process core regulatory requests
1547 * @pending_request: a pending core regulatory request
1548 *
1549 * The wireless subsystem can use this function to process
1550 * a regulatory request issued by the regulatory core.
1551 *
1552 * Returns one of the different reg request treatment values.
1553 */
1554static enum reg_request_treatment
1555reg_process_hint_core(struct regulatory_request *core_request)
1556{
1557
1558 core_request->intersect = false;
1559 core_request->processed = false;
1560
1561 reg_update_last_request(core_request);
1562
1563 return reg_call_crda(core_request);
1564}
1565
1566static enum reg_request_treatment
1567__reg_process_hint_user(struct regulatory_request *user_request)
1568{
1569 struct regulatory_request *lr = get_last_request();
1570
1571 if (reg_request_cell_base(user_request))
1572 return reg_ignore_cell_hint(user_request);
1573
1574 if (reg_request_cell_base(lr))
1575 return REG_REQ_IGNORE;
1576
1577 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1578 return REG_REQ_INTERSECT;
1579 /*
1580 * If the user knows better the user should set the regdom
1581 * to their country before the IE is picked up
1582 */
1583 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1584 lr->intersect)
1585 return REG_REQ_IGNORE;
1586 /*
1587 * Process user requests only after previous user/driver/core
1588 * requests have been processed
1589 */
1590 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1591 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1592 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1593 regdom_changes(lr->alpha2))
1594 return REG_REQ_IGNORE;
1595
1596 if (!regdom_changes(user_request->alpha2))
1597 return REG_REQ_ALREADY_SET;
1598
1599 return REG_REQ_OK;
1600}
1601
1602/**
1603 * reg_process_hint_user - process user regulatory requests
1604 * @user_request: a pending user regulatory request
1605 *
1606 * The wireless subsystem can use this function to process
1607 * a regulatory request initiated by userspace.
1608 *
1609 * Returns one of the different reg request treatment values.
1610 */
1611static enum reg_request_treatment
1612reg_process_hint_user(struct regulatory_request *user_request)
1613{
1614 enum reg_request_treatment treatment;
1615
1616 treatment = __reg_process_hint_user(user_request);
1617 if (treatment == REG_REQ_IGNORE ||
1618 treatment == REG_REQ_ALREADY_SET) {
1619 kfree(user_request);
1620 return treatment;
1621 }
1622
1623 user_request->intersect = treatment == REG_REQ_INTERSECT;
1624 user_request->processed = false;
1625
1626 reg_update_last_request(user_request);
1627
1628 user_alpha2[0] = user_request->alpha2[0];
1629 user_alpha2[1] = user_request->alpha2[1];
1630
1631 return reg_call_crda(user_request);
1632}
1633
1634static enum reg_request_treatment
1635__reg_process_hint_driver(struct regulatory_request *driver_request)
1636{
1637 struct regulatory_request *lr = get_last_request();
1638
1639 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1640 if (regdom_changes(driver_request->alpha2))
1641 return REG_REQ_OK;
1642 return REG_REQ_ALREADY_SET;
1643 }
1644
1645 /*
1646 * This would happen if you unplug and plug your card
1647 * back in or if you add a new device for which the previously
1648 * loaded card also agrees on the regulatory domain.
1649 */
1650 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1651 !regdom_changes(driver_request->alpha2))
1652 return REG_REQ_ALREADY_SET;
1653
1654 return REG_REQ_INTERSECT;
1655}
1656
1657/**
1658 * reg_process_hint_driver - process driver regulatory requests
1659 * @driver_request: a pending driver regulatory request
1660 *
1661 * The wireless subsystem can use this function to process
1662 * a regulatory request issued by an 802.11 driver.
1663 *
1664 * Returns one of the different reg request treatment values.
1665 */
1666static enum reg_request_treatment
1667reg_process_hint_driver(struct wiphy *wiphy,
1668 struct regulatory_request *driver_request)
1669{
1670 const struct ieee80211_regdomain *regd;
1671 enum reg_request_treatment treatment;
1672
1673 treatment = __reg_process_hint_driver(driver_request);
1674
1675 switch (treatment) {
1676 case REG_REQ_OK:
1677 break;
1678 case REG_REQ_IGNORE:
1679 kfree(driver_request);
1680 return treatment;
1681 case REG_REQ_INTERSECT:
1682 /* fall through */
1683 case REG_REQ_ALREADY_SET:
1684 regd = reg_copy_regd(get_cfg80211_regdom());
1685 if (IS_ERR(regd)) {
1686 kfree(driver_request);
1687 return REG_REQ_IGNORE;
1688 }
1689 rcu_assign_pointer(wiphy->regd, regd);
1690 }
1691
1692
1693 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1694 driver_request->processed = false;
1695
1696 reg_update_last_request(driver_request);
1697
1698 /*
1699 * Since CRDA will not be called in this case as we already
1700 * have applied the requested regulatory domain before we just
1701 * inform userspace we have processed the request
1702 */
1703 if (treatment == REG_REQ_ALREADY_SET) {
1704 nl80211_send_reg_change_event(driver_request);
1705 reg_set_request_processed();
1706 return treatment;
1707 }
1708
1709 return reg_call_crda(driver_request);
1710}
1711
1712static enum reg_request_treatment
1713__reg_process_hint_country_ie(struct wiphy *wiphy,
1714 struct regulatory_request *country_ie_request)
1715{
1716 struct wiphy *last_wiphy = NULL;
1717 struct regulatory_request *lr = get_last_request();
1718
1719 if (reg_request_cell_base(lr)) {
1720 /* Trust a Cell base station over the AP's country IE */
1721 if (regdom_changes(country_ie_request->alpha2))
1722 return REG_REQ_IGNORE;
1723 return REG_REQ_ALREADY_SET;
1724 } else {
1725 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1726 return REG_REQ_IGNORE;
1727 }
1728
1729 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1730 return -EINVAL;
1731
1732 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1733 return REG_REQ_OK;
1734
1735 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1736
1737 if (last_wiphy != wiphy) {
1738 /*
1739 * Two cards with two APs claiming different
1740 * Country IE alpha2s. We could
1741 * intersect them, but that seems unlikely
1742 * to be correct. Reject second one for now.
1743 */
1744 if (regdom_changes(country_ie_request->alpha2))
1745 return REG_REQ_IGNORE;
1746 return REG_REQ_ALREADY_SET;
1747 }
1748 /*
1749 * Two consecutive Country IE hints on the same wiphy.
1750 * This should be picked up early by the driver/stack
1751 */
1752 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1753 return REG_REQ_OK;
1754 return REG_REQ_ALREADY_SET;
1755}
1756
1757/**
1758 * reg_process_hint_country_ie - process regulatory requests from country IEs
1759 * @country_ie_request: a regulatory request from a country IE
1760 *
1761 * The wireless subsystem can use this function to process
1762 * a regulatory request issued by a country Information Element.
1763 *
1764 * Returns one of the different reg request treatment values.
1765 */
1766static enum reg_request_treatment
1767reg_process_hint_country_ie(struct wiphy *wiphy,
1768 struct regulatory_request *country_ie_request)
1769{
1770 enum reg_request_treatment treatment;
1771
1772 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1773
1774 switch (treatment) {
1775 case REG_REQ_OK:
1776 break;
1777 case REG_REQ_IGNORE:
1778 /* fall through */
1779 case REG_REQ_ALREADY_SET:
1780 kfree(country_ie_request);
1781 return treatment;
1782 case REG_REQ_INTERSECT:
1783 kfree(country_ie_request);
1784 /*
1785 * This doesn't happen yet, not sure we
1786 * ever want to support it for this case.
1787 */
1788 WARN_ONCE(1, "Unexpected intersection for country IEs");
1789 return REG_REQ_IGNORE;
1790 }
1791
1792 country_ie_request->intersect = false;
1793 country_ie_request->processed = false;
1794
1795 reg_update_last_request(country_ie_request);
1796
1797 return reg_call_crda(country_ie_request);
1798}
1799
1800/* This processes *all* regulatory hints */
1801static void reg_process_hint(struct regulatory_request *reg_request)
1802{
1803 struct wiphy *wiphy = NULL;
1804 enum reg_request_treatment treatment;
1805
1806 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1807 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1808
1809 switch (reg_request->initiator) {
1810 case NL80211_REGDOM_SET_BY_CORE:
1811 reg_process_hint_core(reg_request);
1812 return;
1813 case NL80211_REGDOM_SET_BY_USER:
1814 treatment = reg_process_hint_user(reg_request);
1815 if (treatment == REG_REQ_IGNORE ||
1816 treatment == REG_REQ_ALREADY_SET)
1817 return;
1818 queue_delayed_work(system_power_efficient_wq,
1819 ®_timeout, msecs_to_jiffies(3142));
1820 return;
1821 case NL80211_REGDOM_SET_BY_DRIVER:
1822 if (!wiphy)
1823 goto out_free;
1824 treatment = reg_process_hint_driver(wiphy, reg_request);
1825 break;
1826 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1827 if (!wiphy)
1828 goto out_free;
1829 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1830 break;
1831 default:
1832 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1833 goto out_free;
1834 }
1835
1836 /* This is required so that the orig_* parameters are saved */
1837 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1838 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1839 wiphy_update_regulatory(wiphy, reg_request->initiator);
1840
1841 return;
1842
1843out_free:
1844 kfree(reg_request);
1845}
1846
1847/*
1848 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1849 * Regulatory hints come on a first come first serve basis and we
1850 * must process each one atomically.
1851 */
1852static void reg_process_pending_hints(void)
1853{
1854 struct regulatory_request *reg_request, *lr;
1855
1856 lr = get_last_request();
1857
1858 /* When last_request->processed becomes true this will be rescheduled */
1859 if (lr && !lr->processed) {
1860 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1861 return;
1862 }
1863
1864 spin_lock(®_requests_lock);
1865
1866 if (list_empty(®_requests_list)) {
1867 spin_unlock(®_requests_lock);
1868 return;
1869 }
1870
1871 reg_request = list_first_entry(®_requests_list,
1872 struct regulatory_request,
1873 list);
1874 list_del_init(®_request->list);
1875
1876 spin_unlock(®_requests_lock);
1877
1878 reg_process_hint(reg_request);
1879}
1880
1881/* Processes beacon hints -- this has nothing to do with country IEs */
1882static void reg_process_pending_beacon_hints(void)
1883{
1884 struct cfg80211_registered_device *rdev;
1885 struct reg_beacon *pending_beacon, *tmp;
1886
1887 /* This goes through the _pending_ beacon list */
1888 spin_lock_bh(®_pending_beacons_lock);
1889
1890 list_for_each_entry_safe(pending_beacon, tmp,
1891 ®_pending_beacons, list) {
1892 list_del_init(&pending_beacon->list);
1893
1894 /* Applies the beacon hint to current wiphys */
1895 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1896 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1897
1898 /* Remembers the beacon hint for new wiphys or reg changes */
1899 list_add_tail(&pending_beacon->list, ®_beacon_list);
1900 }
1901
1902 spin_unlock_bh(®_pending_beacons_lock);
1903}
1904
1905static void reg_todo(struct work_struct *work)
1906{
1907 rtnl_lock();
1908 reg_process_pending_hints();
1909 reg_process_pending_beacon_hints();
1910 rtnl_unlock();
1911}
1912
1913static void queue_regulatory_request(struct regulatory_request *request)
1914{
1915 request->alpha2[0] = toupper(request->alpha2[0]);
1916 request->alpha2[1] = toupper(request->alpha2[1]);
1917
1918 spin_lock(®_requests_lock);
1919 list_add_tail(&request->list, ®_requests_list);
1920 spin_unlock(®_requests_lock);
1921
1922 schedule_work(®_work);
1923}
1924
1925/*
1926 * Core regulatory hint -- happens during cfg80211_init()
1927 * and when we restore regulatory settings.
1928 */
1929static int regulatory_hint_core(const char *alpha2)
1930{
1931 struct regulatory_request *request;
1932
1933 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1934 if (!request)
1935 return -ENOMEM;
1936
1937 request->alpha2[0] = alpha2[0];
1938 request->alpha2[1] = alpha2[1];
1939 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1940
1941 queue_regulatory_request(request);
1942
1943 return 0;
1944}
1945
1946/* User hints */
1947int regulatory_hint_user(const char *alpha2,
1948 enum nl80211_user_reg_hint_type user_reg_hint_type)
1949{
1950 struct regulatory_request *request;
1951
1952 if (WARN_ON(!alpha2))
1953 return -EINVAL;
1954
1955 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1956 if (!request)
1957 return -ENOMEM;
1958
1959 request->wiphy_idx = WIPHY_IDX_INVALID;
1960 request->alpha2[0] = alpha2[0];
1961 request->alpha2[1] = alpha2[1];
1962 request->initiator = NL80211_REGDOM_SET_BY_USER;
1963 request->user_reg_hint_type = user_reg_hint_type;
1964
1965 queue_regulatory_request(request);
1966
1967 return 0;
1968}
1969
1970/* Driver hints */
1971int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1972{
1973 struct regulatory_request *request;
1974
1975 if (WARN_ON(!alpha2 || !wiphy))
1976 return -EINVAL;
1977
1978 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1979
1980 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1981 if (!request)
1982 return -ENOMEM;
1983
1984 request->wiphy_idx = get_wiphy_idx(wiphy);
1985
1986 request->alpha2[0] = alpha2[0];
1987 request->alpha2[1] = alpha2[1];
1988 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1989
1990 queue_regulatory_request(request);
1991
1992 return 0;
1993}
1994EXPORT_SYMBOL(regulatory_hint);
1995
1996void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1997 const u8 *country_ie, u8 country_ie_len)
1998{
1999 char alpha2[2];
2000 enum environment_cap env = ENVIRON_ANY;
2001 struct regulatory_request *request = NULL, *lr;
2002
2003 /* IE len must be evenly divisible by 2 */
2004 if (country_ie_len & 0x01)
2005 return;
2006
2007 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2008 return;
2009
2010 request = kzalloc(sizeof(*request), GFP_KERNEL);
2011 if (!request)
2012 return;
2013
2014 alpha2[0] = country_ie[0];
2015 alpha2[1] = country_ie[1];
2016
2017 if (country_ie[2] == 'I')
2018 env = ENVIRON_INDOOR;
2019 else if (country_ie[2] == 'O')
2020 env = ENVIRON_OUTDOOR;
2021
2022 rcu_read_lock();
2023 lr = get_last_request();
2024
2025 if (unlikely(!lr))
2026 goto out;
2027
2028 /*
2029 * We will run this only upon a successful connection on cfg80211.
2030 * We leave conflict resolution to the workqueue, where can hold
2031 * the RTNL.
2032 */
2033 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2034 lr->wiphy_idx != WIPHY_IDX_INVALID)
2035 goto out;
2036
2037 request->wiphy_idx = get_wiphy_idx(wiphy);
2038 request->alpha2[0] = alpha2[0];
2039 request->alpha2[1] = alpha2[1];
2040 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2041 request->country_ie_env = env;
2042
2043 queue_regulatory_request(request);
2044 request = NULL;
2045out:
2046 kfree(request);
2047 rcu_read_unlock();
2048}
2049
2050static void restore_alpha2(char *alpha2, bool reset_user)
2051{
2052 /* indicates there is no alpha2 to consider for restoration */
2053 alpha2[0] = '9';
2054 alpha2[1] = '7';
2055
2056 /* The user setting has precedence over the module parameter */
2057 if (is_user_regdom_saved()) {
2058 /* Unless we're asked to ignore it and reset it */
2059 if (reset_user) {
2060 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2061 user_alpha2[0] = '9';
2062 user_alpha2[1] = '7';
2063
2064 /*
2065 * If we're ignoring user settings, we still need to
2066 * check the module parameter to ensure we put things
2067 * back as they were for a full restore.
2068 */
2069 if (!is_world_regdom(ieee80211_regdom)) {
2070 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2071 ieee80211_regdom[0], ieee80211_regdom[1]);
2072 alpha2[0] = ieee80211_regdom[0];
2073 alpha2[1] = ieee80211_regdom[1];
2074 }
2075 } else {
2076 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2077 user_alpha2[0], user_alpha2[1]);
2078 alpha2[0] = user_alpha2[0];
2079 alpha2[1] = user_alpha2[1];
2080 }
2081 } else if (!is_world_regdom(ieee80211_regdom)) {
2082 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2083 ieee80211_regdom[0], ieee80211_regdom[1]);
2084 alpha2[0] = ieee80211_regdom[0];
2085 alpha2[1] = ieee80211_regdom[1];
2086 } else
2087 REG_DBG_PRINT("Restoring regulatory settings\n");
2088}
2089
2090static void restore_custom_reg_settings(struct wiphy *wiphy)
2091{
2092 struct ieee80211_supported_band *sband;
2093 enum ieee80211_band band;
2094 struct ieee80211_channel *chan;
2095 int i;
2096
2097 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2098 sband = wiphy->bands[band];
2099 if (!sband)
2100 continue;
2101 for (i = 0; i < sband->n_channels; i++) {
2102 chan = &sband->channels[i];
2103 chan->flags = chan->orig_flags;
2104 chan->max_antenna_gain = chan->orig_mag;
2105 chan->max_power = chan->orig_mpwr;
2106 chan->beacon_found = false;
2107 }
2108 }
2109}
2110
2111/*
2112 * Restoring regulatory settings involves ingoring any
2113 * possibly stale country IE information and user regulatory
2114 * settings if so desired, this includes any beacon hints
2115 * learned as we could have traveled outside to another country
2116 * after disconnection. To restore regulatory settings we do
2117 * exactly what we did at bootup:
2118 *
2119 * - send a core regulatory hint
2120 * - send a user regulatory hint if applicable
2121 *
2122 * Device drivers that send a regulatory hint for a specific country
2123 * keep their own regulatory domain on wiphy->regd so that does does
2124 * not need to be remembered.
2125 */
2126static void restore_regulatory_settings(bool reset_user)
2127{
2128 char alpha2[2];
2129 char world_alpha2[2];
2130 struct reg_beacon *reg_beacon, *btmp;
2131 struct regulatory_request *reg_request, *tmp;
2132 LIST_HEAD(tmp_reg_req_list);
2133 struct cfg80211_registered_device *rdev;
2134
2135 ASSERT_RTNL();
2136
2137 reset_regdomains(true, &world_regdom);
2138 restore_alpha2(alpha2, reset_user);
2139
2140 /*
2141 * If there's any pending requests we simply
2142 * stash them to a temporary pending queue and
2143 * add then after we've restored regulatory
2144 * settings.
2145 */
2146 spin_lock(®_requests_lock);
2147 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
2148 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2149 continue;
2150 list_move_tail(®_request->list, &tmp_reg_req_list);
2151 }
2152 spin_unlock(®_requests_lock);
2153
2154 /* Clear beacon hints */
2155 spin_lock_bh(®_pending_beacons_lock);
2156 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
2157 list_del(®_beacon->list);
2158 kfree(reg_beacon);
2159 }
2160 spin_unlock_bh(®_pending_beacons_lock);
2161
2162 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
2163 list_del(®_beacon->list);
2164 kfree(reg_beacon);
2165 }
2166
2167 /* First restore to the basic regulatory settings */
2168 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2169 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2170
2171 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2172 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2173 restore_custom_reg_settings(&rdev->wiphy);
2174 }
2175
2176 regulatory_hint_core(world_alpha2);
2177
2178 /*
2179 * This restores the ieee80211_regdom module parameter
2180 * preference or the last user requested regulatory
2181 * settings, user regulatory settings takes precedence.
2182 */
2183 if (is_an_alpha2(alpha2))
2184 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2185
2186 spin_lock(®_requests_lock);
2187 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
2188 spin_unlock(®_requests_lock);
2189
2190 REG_DBG_PRINT("Kicking the queue\n");
2191
2192 schedule_work(®_work);
2193}
2194
2195void regulatory_hint_disconnect(void)
2196{
2197 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2198 restore_regulatory_settings(false);
2199}
2200
2201static bool freq_is_chan_12_13_14(u16 freq)
2202{
2203 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2204 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2205 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2206 return true;
2207 return false;
2208}
2209
2210static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2211{
2212 struct reg_beacon *pending_beacon;
2213
2214 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
2215 if (beacon_chan->center_freq ==
2216 pending_beacon->chan.center_freq)
2217 return true;
2218 return false;
2219}
2220
2221int regulatory_hint_found_beacon(struct wiphy *wiphy,
2222 struct ieee80211_channel *beacon_chan,
2223 gfp_t gfp)
2224{
2225 struct reg_beacon *reg_beacon;
2226 bool processing;
2227
2228 if (beacon_chan->beacon_found ||
2229 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2230 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2231 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2232 return 0;
2233
2234 spin_lock_bh(®_pending_beacons_lock);
2235 processing = pending_reg_beacon(beacon_chan);
2236 spin_unlock_bh(®_pending_beacons_lock);
2237
2238 if (processing)
2239 return 0;
2240
2241 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2242 if (!reg_beacon)
2243 return -ENOMEM;
2244
2245 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2246 beacon_chan->center_freq,
2247 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2248 wiphy_name(wiphy));
2249
2250 memcpy(®_beacon->chan, beacon_chan,
2251 sizeof(struct ieee80211_channel));
2252
2253 /*
2254 * Since we can be called from BH or and non-BH context
2255 * we must use spin_lock_bh()
2256 */
2257 spin_lock_bh(®_pending_beacons_lock);
2258 list_add_tail(®_beacon->list, ®_pending_beacons);
2259 spin_unlock_bh(®_pending_beacons_lock);
2260
2261 schedule_work(®_work);
2262
2263 return 0;
2264}
2265
2266static void print_rd_rules(const struct ieee80211_regdomain *rd)
2267{
2268 unsigned int i;
2269 const struct ieee80211_reg_rule *reg_rule = NULL;
2270 const struct ieee80211_freq_range *freq_range = NULL;
2271 const struct ieee80211_power_rule *power_rule = NULL;
2272 char bw[32], cac_time[32];
2273
2274 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2275
2276 for (i = 0; i < rd->n_reg_rules; i++) {
2277 reg_rule = &rd->reg_rules[i];
2278 freq_range = ®_rule->freq_range;
2279 power_rule = ®_rule->power_rule;
2280
2281 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2282 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2283 freq_range->max_bandwidth_khz,
2284 reg_get_max_bandwidth(rd, reg_rule));
2285 else
2286 snprintf(bw, sizeof(bw), "%d KHz",
2287 freq_range->max_bandwidth_khz);
2288
2289 if (reg_rule->flags & NL80211_RRF_DFS)
2290 scnprintf(cac_time, sizeof(cac_time), "%u s",
2291 reg_rule->dfs_cac_ms/1000);
2292 else
2293 scnprintf(cac_time, sizeof(cac_time), "N/A");
2294
2295
2296 /*
2297 * There may not be documentation for max antenna gain
2298 * in certain regions
2299 */
2300 if (power_rule->max_antenna_gain)
2301 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2302 freq_range->start_freq_khz,
2303 freq_range->end_freq_khz,
2304 bw,
2305 power_rule->max_antenna_gain,
2306 power_rule->max_eirp,
2307 cac_time);
2308 else
2309 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2310 freq_range->start_freq_khz,
2311 freq_range->end_freq_khz,
2312 bw,
2313 power_rule->max_eirp,
2314 cac_time);
2315 }
2316}
2317
2318bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2319{
2320 switch (dfs_region) {
2321 case NL80211_DFS_UNSET:
2322 case NL80211_DFS_FCC:
2323 case NL80211_DFS_ETSI:
2324 case NL80211_DFS_JP:
2325 return true;
2326 default:
2327 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2328 dfs_region);
2329 return false;
2330 }
2331}
2332
2333static void print_regdomain(const struct ieee80211_regdomain *rd)
2334{
2335 struct regulatory_request *lr = get_last_request();
2336
2337 if (is_intersected_alpha2(rd->alpha2)) {
2338 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2339 struct cfg80211_registered_device *rdev;
2340 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2341 if (rdev) {
2342 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2343 rdev->country_ie_alpha2[0],
2344 rdev->country_ie_alpha2[1]);
2345 } else
2346 pr_info("Current regulatory domain intersected:\n");
2347 } else
2348 pr_info("Current regulatory domain intersected:\n");
2349 } else if (is_world_regdom(rd->alpha2)) {
2350 pr_info("World regulatory domain updated:\n");
2351 } else {
2352 if (is_unknown_alpha2(rd->alpha2))
2353 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2354 else {
2355 if (reg_request_cell_base(lr))
2356 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2357 rd->alpha2[0], rd->alpha2[1]);
2358 else
2359 pr_info("Regulatory domain changed to country: %c%c\n",
2360 rd->alpha2[0], rd->alpha2[1]);
2361 }
2362 }
2363
2364 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2365 print_rd_rules(rd);
2366}
2367
2368static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2369{
2370 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2371 print_rd_rules(rd);
2372}
2373
2374static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2375{
2376 if (!is_world_regdom(rd->alpha2))
2377 return -EINVAL;
2378 update_world_regdomain(rd);
2379 return 0;
2380}
2381
2382static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2383 struct regulatory_request *user_request)
2384{
2385 const struct ieee80211_regdomain *intersected_rd = NULL;
2386
2387 if (!regdom_changes(rd->alpha2))
2388 return -EALREADY;
2389
2390 if (!is_valid_rd(rd)) {
2391 pr_err("Invalid regulatory domain detected:\n");
2392 print_regdomain_info(rd);
2393 return -EINVAL;
2394 }
2395
2396 if (!user_request->intersect) {
2397 reset_regdomains(false, rd);
2398 return 0;
2399 }
2400
2401 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2402 if (!intersected_rd)
2403 return -EINVAL;
2404
2405 kfree(rd);
2406 rd = NULL;
2407 reset_regdomains(false, intersected_rd);
2408
2409 return 0;
2410}
2411
2412static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2413 struct regulatory_request *driver_request)
2414{
2415 const struct ieee80211_regdomain *regd;
2416 const struct ieee80211_regdomain *intersected_rd = NULL;
2417 const struct ieee80211_regdomain *tmp;
2418 struct wiphy *request_wiphy;
2419
2420 if (is_world_regdom(rd->alpha2))
2421 return -EINVAL;
2422
2423 if (!regdom_changes(rd->alpha2))
2424 return -EALREADY;
2425
2426 if (!is_valid_rd(rd)) {
2427 pr_err("Invalid regulatory domain detected:\n");
2428 print_regdomain_info(rd);
2429 return -EINVAL;
2430 }
2431
2432 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2433 if (!request_wiphy) {
2434 queue_delayed_work(system_power_efficient_wq,
2435 ®_timeout, 0);
2436 return -ENODEV;
2437 }
2438
2439 if (!driver_request->intersect) {
2440 if (request_wiphy->regd)
2441 return -EALREADY;
2442
2443 regd = reg_copy_regd(rd);
2444 if (IS_ERR(regd))
2445 return PTR_ERR(regd);
2446
2447 rcu_assign_pointer(request_wiphy->regd, regd);
2448 reset_regdomains(false, rd);
2449 return 0;
2450 }
2451
2452 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2453 if (!intersected_rd)
2454 return -EINVAL;
2455
2456 /*
2457 * We can trash what CRDA provided now.
2458 * However if a driver requested this specific regulatory
2459 * domain we keep it for its private use
2460 */
2461 tmp = get_wiphy_regdom(request_wiphy);
2462 rcu_assign_pointer(request_wiphy->regd, rd);
2463 rcu_free_regdom(tmp);
2464
2465 rd = NULL;
2466
2467 reset_regdomains(false, intersected_rd);
2468
2469 return 0;
2470}
2471
2472static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2473 struct regulatory_request *country_ie_request)
2474{
2475 struct wiphy *request_wiphy;
2476
2477 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2478 !is_unknown_alpha2(rd->alpha2))
2479 return -EINVAL;
2480
2481 /*
2482 * Lets only bother proceeding on the same alpha2 if the current
2483 * rd is non static (it means CRDA was present and was used last)
2484 * and the pending request came in from a country IE
2485 */
2486
2487 if (!is_valid_rd(rd)) {
2488 pr_err("Invalid regulatory domain detected:\n");
2489 print_regdomain_info(rd);
2490 return -EINVAL;
2491 }
2492
2493 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2494 if (!request_wiphy) {
2495 queue_delayed_work(system_power_efficient_wq,
2496 ®_timeout, 0);
2497 return -ENODEV;
2498 }
2499
2500 if (country_ie_request->intersect)
2501 return -EINVAL;
2502
2503 reset_regdomains(false, rd);
2504 return 0;
2505}
2506
2507/*
2508 * Use this call to set the current regulatory domain. Conflicts with
2509 * multiple drivers can be ironed out later. Caller must've already
2510 * kmalloc'd the rd structure.
2511 */
2512int set_regdom(const struct ieee80211_regdomain *rd)
2513{
2514 struct regulatory_request *lr;
2515 bool user_reset = false;
2516 int r;
2517
2518 if (!reg_is_valid_request(rd->alpha2)) {
2519 kfree(rd);
2520 return -EINVAL;
2521 }
2522
2523 lr = get_last_request();
2524
2525 /* Note that this doesn't update the wiphys, this is done below */
2526 switch (lr->initiator) {
2527 case NL80211_REGDOM_SET_BY_CORE:
2528 r = reg_set_rd_core(rd);
2529 break;
2530 case NL80211_REGDOM_SET_BY_USER:
2531 r = reg_set_rd_user(rd, lr);
2532 user_reset = true;
2533 break;
2534 case NL80211_REGDOM_SET_BY_DRIVER:
2535 r = reg_set_rd_driver(rd, lr);
2536 break;
2537 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2538 r = reg_set_rd_country_ie(rd, lr);
2539 break;
2540 default:
2541 WARN(1, "invalid initiator %d\n", lr->initiator);
2542 return -EINVAL;
2543 }
2544
2545 if (r) {
2546 switch (r) {
2547 case -EALREADY:
2548 reg_set_request_processed();
2549 break;
2550 default:
2551 /* Back to world regulatory in case of errors */
2552 restore_regulatory_settings(user_reset);
2553 }
2554
2555 kfree(rd);
2556 return r;
2557 }
2558
2559 /* This would make this whole thing pointless */
2560 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2561 return -EINVAL;
2562
2563 /* update all wiphys now with the new established regulatory domain */
2564 update_all_wiphy_regulatory(lr->initiator);
2565
2566 print_regdomain(get_cfg80211_regdom());
2567
2568 nl80211_send_reg_change_event(lr);
2569
2570 reg_set_request_processed();
2571
2572 return 0;
2573}
2574
2575void wiphy_regulatory_register(struct wiphy *wiphy)
2576{
2577 struct regulatory_request *lr;
2578
2579 if (!reg_dev_ignore_cell_hint(wiphy))
2580 reg_num_devs_support_basehint++;
2581
2582 lr = get_last_request();
2583 wiphy_update_regulatory(wiphy, lr->initiator);
2584}
2585
2586void wiphy_regulatory_deregister(struct wiphy *wiphy)
2587{
2588 struct wiphy *request_wiphy = NULL;
2589 struct regulatory_request *lr;
2590
2591 lr = get_last_request();
2592
2593 if (!reg_dev_ignore_cell_hint(wiphy))
2594 reg_num_devs_support_basehint--;
2595
2596 rcu_free_regdom(get_wiphy_regdom(wiphy));
2597 rcu_assign_pointer(wiphy->regd, NULL);
2598
2599 if (lr)
2600 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2601
2602 if (!request_wiphy || request_wiphy != wiphy)
2603 return;
2604
2605 lr->wiphy_idx = WIPHY_IDX_INVALID;
2606 lr->country_ie_env = ENVIRON_ANY;
2607}
2608
2609static void reg_timeout_work(struct work_struct *work)
2610{
2611 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2612 rtnl_lock();
2613 restore_regulatory_settings(true);
2614 rtnl_unlock();
2615}
2616
2617int __init regulatory_init(void)
2618{
2619 int err = 0;
2620
2621 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2622 if (IS_ERR(reg_pdev))
2623 return PTR_ERR(reg_pdev);
2624
2625 spin_lock_init(®_requests_lock);
2626 spin_lock_init(®_pending_beacons_lock);
2627
2628 reg_regdb_size_check();
2629
2630 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2631
2632 user_alpha2[0] = '9';
2633 user_alpha2[1] = '7';
2634
2635 /* We always try to get an update for the static regdomain */
2636 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2637 if (err) {
2638 if (err == -ENOMEM)
2639 return err;
2640 /*
2641 * N.B. kobject_uevent_env() can fail mainly for when we're out
2642 * memory which is handled and propagated appropriately above
2643 * but it can also fail during a netlink_broadcast() or during
2644 * early boot for call_usermodehelper(). For now treat these
2645 * errors as non-fatal.
2646 */
2647 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2648 }
2649
2650 /*
2651 * Finally, if the user set the module parameter treat it
2652 * as a user hint.
2653 */
2654 if (!is_world_regdom(ieee80211_regdom))
2655 regulatory_hint_user(ieee80211_regdom,
2656 NL80211_USER_REG_HINT_USER);
2657
2658 return 0;
2659}
2660
2661void regulatory_exit(void)
2662{
2663 struct regulatory_request *reg_request, *tmp;
2664 struct reg_beacon *reg_beacon, *btmp;
2665
2666 cancel_work_sync(®_work);
2667 cancel_delayed_work_sync(®_timeout);
2668
2669 /* Lock to suppress warnings */
2670 rtnl_lock();
2671 reset_regdomains(true, NULL);
2672 rtnl_unlock();
2673
2674 dev_set_uevent_suppress(®_pdev->dev, true);
2675
2676 platform_device_unregister(reg_pdev);
2677
2678 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
2679 list_del(®_beacon->list);
2680 kfree(reg_beacon);
2681 }
2682
2683 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
2684 list_del(®_beacon->list);
2685 kfree(reg_beacon);
2686 }
2687
2688 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
2689 list_del(®_request->list);
2690 kfree(reg_request);
2691 }
2692}