Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2023 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
  60#include <net/cfg80211.h>
  61#include "core.h"
  62#include "reg.h"
  63#include "rdev-ops.h"
  64#include "nl80211.h"
  65
  66/*
  67 * Grace period we give before making sure all current interfaces reside on
  68 * channels allowed by the current regulatory domain.
  69 */
  70#define REG_ENFORCE_GRACE_MS 60000
 
  71
  72/**
  73 * enum reg_request_treatment - regulatory request treatment
  74 *
  75 * @REG_REQ_OK: continue processing the regulatory request
  76 * @REG_REQ_IGNORE: ignore the regulatory request
  77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78 *	be intersected with the current one.
  79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80 *	regulatory settings, and no further processing is required.
  81 */
  82enum reg_request_treatment {
  83	REG_REQ_OK,
  84	REG_REQ_IGNORE,
  85	REG_REQ_INTERSECT,
  86	REG_REQ_ALREADY_SET,
  87};
  88
  89static struct regulatory_request core_request_world = {
  90	.initiator = NL80211_REGDOM_SET_BY_CORE,
  91	.alpha2[0] = '0',
  92	.alpha2[1] = '0',
  93	.intersect = false,
  94	.processed = true,
  95	.country_ie_env = ENVIRON_ANY,
  96};
  97
  98/*
  99 * Receipt of information from last regulatory request,
 100 * protected by RTNL (and can be accessed with RCU protection)
 101 */
 102static struct regulatory_request __rcu *last_request =
 103	(void __force __rcu *)&core_request_world;
 104
 105/* To trigger userspace events and load firmware */
 106static struct platform_device *reg_pdev;
 107
 108/*
 109 * Central wireless core regulatory domains, we only need two,
 110 * the current one and a world regulatory domain in case we have no
 111 * information to give us an alpha2.
 112 * (protected by RTNL, can be read under RCU)
 113 */
 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115
 116/*
 117 * Number of devices that registered to the core
 118 * that support cellular base station regulatory hints
 119 * (protected by RTNL)
 120 */
 121static int reg_num_devs_support_basehint;
 122
 123/*
 124 * State variable indicating if the platform on which the devices
 125 * are attached is operating in an indoor environment. The state variable
 126 * is relevant for all registered devices.
 127 */
 128static bool reg_is_indoor;
 129static DEFINE_SPINLOCK(reg_indoor_lock);
 130
 131/* Used to track the userspace process controlling the indoor setting */
 132static u32 reg_is_indoor_portid;
 133
 134static void restore_regulatory_settings(bool reset_user, bool cached);
 135static void print_regdomain(const struct ieee80211_regdomain *rd);
 136static void reg_process_hint(struct regulatory_request *reg_request);
 137
 138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 139{
 140	return rcu_dereference_rtnl(cfg80211_regdomain);
 141}
 142
 143/*
 144 * Returns the regulatory domain associated with the wiphy.
 145 *
 146 * Requires any of RTNL, wiphy mutex or RCU protection.
 147 */
 148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 149{
 150	return rcu_dereference_check(wiphy->regd,
 151				     lockdep_is_held(&wiphy->mtx) ||
 152				     lockdep_rtnl_is_held());
 153}
 154EXPORT_SYMBOL(get_wiphy_regdom);
 155
 156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 157{
 158	switch (dfs_region) {
 159	case NL80211_DFS_UNSET:
 160		return "unset";
 161	case NL80211_DFS_FCC:
 162		return "FCC";
 163	case NL80211_DFS_ETSI:
 164		return "ETSI";
 165	case NL80211_DFS_JP:
 166		return "JP";
 167	}
 168	return "Unknown";
 169}
 170
 171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 172{
 173	const struct ieee80211_regdomain *regd = NULL;
 174	const struct ieee80211_regdomain *wiphy_regd = NULL;
 175	enum nl80211_dfs_regions dfs_region;
 176
 177	rcu_read_lock();
 178	regd = get_cfg80211_regdom();
 179	dfs_region = regd->dfs_region;
 180
 181	if (!wiphy)
 182		goto out;
 183
 184	wiphy_regd = get_wiphy_regdom(wiphy);
 185	if (!wiphy_regd)
 186		goto out;
 187
 188	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
 189		dfs_region = wiphy_regd->dfs_region;
 190		goto out;
 191	}
 192
 193	if (wiphy_regd->dfs_region == regd->dfs_region)
 194		goto out;
 195
 196	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 197		 dev_name(&wiphy->dev),
 198		 reg_dfs_region_str(wiphy_regd->dfs_region),
 199		 reg_dfs_region_str(regd->dfs_region));
 
 
 200
 201out:
 202	rcu_read_unlock();
 203
 204	return dfs_region;
 205}
 206
 207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 208{
 209	if (!r)
 210		return;
 211	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 212}
 213
 214static struct regulatory_request *get_last_request(void)
 215{
 216	return rcu_dereference_rtnl(last_request);
 217}
 218
 219/* Used to queue up regulatory hints */
 220static LIST_HEAD(reg_requests_list);
 221static DEFINE_SPINLOCK(reg_requests_lock);
 222
 223/* Used to queue up beacon hints for review */
 224static LIST_HEAD(reg_pending_beacons);
 225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
 226
 227/* Used to keep track of processed beacon hints */
 228static LIST_HEAD(reg_beacon_list);
 229
 230struct reg_beacon {
 231	struct list_head list;
 232	struct ieee80211_channel chan;
 233};
 234
 235static void reg_check_chans_work(struct work_struct *work);
 236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 237
 238static void reg_todo(struct work_struct *work);
 239static DECLARE_WORK(reg_work, reg_todo);
 240
 
 
 
 241/* We keep a static world regulatory domain in case of the absence of CRDA */
 242static const struct ieee80211_regdomain world_regdom = {
 243	.n_reg_rules = 8,
 244	.alpha2 =  "00",
 245	.reg_rules = {
 246		/* IEEE 802.11b/g, channels 1..11 */
 247		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 248		/* IEEE 802.11b/g, channels 12..13. */
 249		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 250			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 251		/* IEEE 802.11 channel 14 - Only JP enables
 252		 * this and for 802.11b only */
 253		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 254			NL80211_RRF_NO_IR |
 255			NL80211_RRF_NO_OFDM),
 256		/* IEEE 802.11a, channel 36..48 */
 257		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 258                        NL80211_RRF_NO_IR |
 259                        NL80211_RRF_AUTO_BW),
 260
 261		/* IEEE 802.11a, channel 52..64 - DFS required */
 262		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 263			NL80211_RRF_NO_IR |
 264			NL80211_RRF_AUTO_BW |
 265			NL80211_RRF_DFS),
 266
 267		/* IEEE 802.11a, channel 100..144 - DFS required */
 268		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 269			NL80211_RRF_NO_IR |
 270			NL80211_RRF_DFS),
 271
 272		/* IEEE 802.11a, channel 149..165 */
 273		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 274			NL80211_RRF_NO_IR),
 275
 276		/* IEEE 802.11ad (60GHz), channels 1..3 */
 277		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 278	}
 279};
 280
 281/* protected by RTNL */
 282static const struct ieee80211_regdomain *cfg80211_world_regdom =
 283	&world_regdom;
 284
 285static char *ieee80211_regdom = "00";
 286static char user_alpha2[2];
 287static const struct ieee80211_regdomain *cfg80211_user_regdom;
 288
 289module_param(ieee80211_regdom, charp, 0444);
 290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 291
 292static void reg_free_request(struct regulatory_request *request)
 293{
 294	if (request == &core_request_world)
 295		return;
 296
 297	if (request != get_last_request())
 298		kfree(request);
 299}
 300
 301static void reg_free_last_request(void)
 302{
 303	struct regulatory_request *lr = get_last_request();
 304
 305	if (lr != &core_request_world && lr)
 306		kfree_rcu(lr, rcu_head);
 307}
 308
 309static void reg_update_last_request(struct regulatory_request *request)
 310{
 311	struct regulatory_request *lr;
 312
 313	lr = get_last_request();
 314	if (lr == request)
 315		return;
 316
 317	reg_free_last_request();
 318	rcu_assign_pointer(last_request, request);
 319}
 320
 321static void reset_regdomains(bool full_reset,
 322			     const struct ieee80211_regdomain *new_regdom)
 323{
 324	const struct ieee80211_regdomain *r;
 325
 326	ASSERT_RTNL();
 327
 328	r = get_cfg80211_regdom();
 329
 330	/* avoid freeing static information or freeing something twice */
 331	if (r == cfg80211_world_regdom)
 332		r = NULL;
 333	if (cfg80211_world_regdom == &world_regdom)
 334		cfg80211_world_regdom = NULL;
 335	if (r == &world_regdom)
 336		r = NULL;
 337
 338	rcu_free_regdom(r);
 339	rcu_free_regdom(cfg80211_world_regdom);
 340
 341	cfg80211_world_regdom = &world_regdom;
 342	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 343
 344	if (!full_reset)
 345		return;
 346
 347	reg_update_last_request(&core_request_world);
 348}
 349
 350/*
 351 * Dynamic world regulatory domain requested by the wireless
 352 * core upon initialization
 353 */
 354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 355{
 356	struct regulatory_request *lr;
 357
 358	lr = get_last_request();
 359
 360	WARN_ON(!lr);
 361
 362	reset_regdomains(false, rd);
 363
 364	cfg80211_world_regdom = rd;
 365}
 366
 367bool is_world_regdom(const char *alpha2)
 368{
 369	if (!alpha2)
 370		return false;
 371	return alpha2[0] == '0' && alpha2[1] == '0';
 372}
 373
 374static bool is_alpha2_set(const char *alpha2)
 375{
 376	if (!alpha2)
 377		return false;
 378	return alpha2[0] && alpha2[1];
 379}
 380
 381static bool is_unknown_alpha2(const char *alpha2)
 382{
 383	if (!alpha2)
 384		return false;
 385	/*
 386	 * Special case where regulatory domain was built by driver
 387	 * but a specific alpha2 cannot be determined
 388	 */
 389	return alpha2[0] == '9' && alpha2[1] == '9';
 390}
 391
 392static bool is_intersected_alpha2(const char *alpha2)
 393{
 394	if (!alpha2)
 395		return false;
 396	/*
 397	 * Special case where regulatory domain is the
 398	 * result of an intersection between two regulatory domain
 399	 * structures
 400	 */
 401	return alpha2[0] == '9' && alpha2[1] == '8';
 402}
 403
 404static bool is_an_alpha2(const char *alpha2)
 405{
 406	if (!alpha2)
 407		return false;
 408	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 409}
 410
 411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 412{
 413	if (!alpha2_x || !alpha2_y)
 414		return false;
 415	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 416}
 417
 418static bool regdom_changes(const char *alpha2)
 419{
 420	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 421
 422	if (!r)
 423		return true;
 424	return !alpha2_equal(r->alpha2, alpha2);
 425}
 426
 427/*
 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 430 * has ever been issued.
 431 */
 432static bool is_user_regdom_saved(void)
 433{
 434	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 435		return false;
 436
 437	/* This would indicate a mistake on the design */
 438	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 439		 "Unexpected user alpha2: %c%c\n",
 440		 user_alpha2[0], user_alpha2[1]))
 441		return false;
 442
 443	return true;
 444}
 445
 446static const struct ieee80211_regdomain *
 447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 448{
 449	struct ieee80211_regdomain *regd;
 
 450	unsigned int i;
 451
 452	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 453		       GFP_KERNEL);
 
 
 
 454	if (!regd)
 455		return ERR_PTR(-ENOMEM);
 456
 457	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 458
 459	for (i = 0; i < src_regd->n_reg_rules; i++)
 460		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 461		       sizeof(struct ieee80211_reg_rule));
 462
 463	return regd;
 464}
 465
 466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 467{
 468	ASSERT_RTNL();
 469
 470	if (!IS_ERR(cfg80211_user_regdom))
 471		kfree(cfg80211_user_regdom);
 472	cfg80211_user_regdom = reg_copy_regd(rd);
 473}
 474
 475struct reg_regdb_apply_request {
 476	struct list_head list;
 477	const struct ieee80211_regdomain *regdom;
 478};
 479
 480static LIST_HEAD(reg_regdb_apply_list);
 481static DEFINE_MUTEX(reg_regdb_apply_mutex);
 482
 483static void reg_regdb_apply(struct work_struct *work)
 484{
 485	struct reg_regdb_apply_request *request;
 
 
 486
 487	rtnl_lock();
 488
 489	mutex_lock(&reg_regdb_apply_mutex);
 490	while (!list_empty(&reg_regdb_apply_list)) {
 491		request = list_first_entry(&reg_regdb_apply_list,
 492					   struct reg_regdb_apply_request,
 493					   list);
 494		list_del(&request->list);
 495
 496		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 
 
 
 
 
 
 
 
 497		kfree(request);
 498	}
 499	mutex_unlock(&reg_regdb_apply_mutex);
 
 
 
 500
 501	rtnl_unlock();
 502}
 503
 504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 505
 506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 507{
 508	struct reg_regdb_apply_request *request;
 509
 510	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 511	if (!request) {
 512		kfree(regdom);
 513		return -ENOMEM;
 514	}
 515
 516	request->regdom = regdom;
 517
 518	mutex_lock(&reg_regdb_apply_mutex);
 519	list_add_tail(&request->list, &reg_regdb_apply_list);
 520	mutex_unlock(&reg_regdb_apply_mutex);
 521
 522	schedule_work(&reg_regdb_work);
 523	return 0;
 524}
 525
 526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 527/* Max number of consecutive attempts to communicate with CRDA  */
 528#define REG_MAX_CRDA_TIMEOUTS 10
 529
 530static u32 reg_crda_timeouts;
 531
 532static void crda_timeout_work(struct work_struct *work);
 533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 
 534
 535static void crda_timeout_work(struct work_struct *work)
 536{
 537	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 538	rtnl_lock();
 539	reg_crda_timeouts++;
 540	restore_regulatory_settings(true, false);
 541	rtnl_unlock();
 542}
 543
 544static void cancel_crda_timeout(void)
 545{
 546	cancel_delayed_work(&crda_timeout);
 547}
 548
 549static void cancel_crda_timeout_sync(void)
 550{
 551	cancel_delayed_work_sync(&crda_timeout);
 552}
 553
 554static void reset_crda_timeouts(void)
 
 555{
 556	reg_crda_timeouts = 0;
 
 557}
 
 
 
 
 558
 559/*
 560 * This lets us keep regulatory code which is updated on a regulatory
 561 * basis in userspace.
 562 */
 563static int call_crda(const char *alpha2)
 564{
 565	char country[12];
 566	char *env[] = { country, NULL };
 567	int ret;
 568
 569	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 570		 alpha2[0], alpha2[1]);
 571
 572	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 573		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 574		return -EINVAL;
 575	}
 576
 577	if (!is_world_regdom((char *) alpha2))
 578		pr_debug("Calling CRDA for country: %c%c\n",
 579			 alpha2[0], alpha2[1]);
 580	else
 581		pr_debug("Calling CRDA to update world regulatory domain\n");
 582
 583	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 584	if (ret)
 585		return ret;
 586
 587	queue_delayed_work(system_power_efficient_wq,
 588			   &crda_timeout, msecs_to_jiffies(3142));
 589	return 0;
 590}
 591#else
 592static inline void cancel_crda_timeout(void) {}
 593static inline void cancel_crda_timeout_sync(void) {}
 594static inline void reset_crda_timeouts(void) {}
 595static inline int call_crda(const char *alpha2)
 596{
 597	return -ENODATA;
 598}
 599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 600
 601/* code to directly load a firmware database through request_firmware */
 602static const struct fwdb_header *regdb;
 603
 604struct fwdb_country {
 605	u8 alpha2[2];
 606	__be16 coll_ptr;
 607	/* this struct cannot be extended */
 608} __packed __aligned(4);
 609
 610struct fwdb_collection {
 611	u8 len;
 612	u8 n_rules;
 613	u8 dfs_region;
 614	/* no optional data yet */
 615	/* aligned to 2, then followed by __be16 array of rule pointers */
 616} __packed __aligned(4);
 617
 618enum fwdb_flags {
 619	FWDB_FLAG_NO_OFDM	= BIT(0),
 620	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
 621	FWDB_FLAG_DFS		= BIT(2),
 622	FWDB_FLAG_NO_IR		= BIT(3),
 623	FWDB_FLAG_AUTO_BW	= BIT(4),
 624};
 625
 626struct fwdb_wmm_ac {
 627	u8 ecw;
 628	u8 aifsn;
 629	__be16 cot;
 630} __packed;
 631
 632struct fwdb_wmm_rule {
 633	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 634	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 635} __packed;
 636
 637struct fwdb_rule {
 638	u8 len;
 639	u8 flags;
 640	__be16 max_eirp;
 641	__be32 start, end, max_bw;
 642	/* start of optional data */
 643	__be16 cac_timeout;
 644	__be16 wmm_ptr;
 645} __packed __aligned(4);
 646
 647#define FWDB_MAGIC 0x52474442
 648#define FWDB_VERSION 20
 649
 650struct fwdb_header {
 651	__be32 magic;
 652	__be32 version;
 653	struct fwdb_country country[];
 654} __packed __aligned(4);
 655
 656static int ecw2cw(int ecw)
 657{
 658	return (1 << ecw) - 1;
 659}
 660
 661static bool valid_wmm(struct fwdb_wmm_rule *rule)
 662{
 663	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 664	int i;
 665
 666	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 667		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 668		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 669		u8 aifsn = ac[i].aifsn;
 670
 671		if (cw_min >= cw_max)
 672			return false;
 673
 674		if (aifsn < 1)
 675			return false;
 676	}
 677
 678	return true;
 679}
 680
 681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 682{
 683	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 684
 685	if ((u8 *)rule + sizeof(rule->len) > data + size)
 686		return false;
 687
 688	/* mandatory fields */
 689	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 690		return false;
 691	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 692		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 693		struct fwdb_wmm_rule *wmm;
 694
 695		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 696			return false;
 697
 698		wmm = (void *)(data + wmm_ptr);
 699
 700		if (!valid_wmm(wmm))
 701			return false;
 702	}
 703	return true;
 704}
 705
 706static bool valid_country(const u8 *data, unsigned int size,
 707			  const struct fwdb_country *country)
 708{
 709	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 710	struct fwdb_collection *coll = (void *)(data + ptr);
 711	__be16 *rules_ptr;
 712	unsigned int i;
 713
 714	/* make sure we can read len/n_rules */
 715	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 716		return false;
 717
 718	/* make sure base struct and all rules fit */
 719	if ((u8 *)coll + ALIGN(coll->len, 2) +
 720	    (coll->n_rules * 2) > data + size)
 721		return false;
 722
 723	/* mandatory fields must exist */
 724	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 725		return false;
 726
 727	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 728
 729	for (i = 0; i < coll->n_rules; i++) {
 730		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 731
 732		if (!valid_rule(data, size, rule_ptr))
 733			return false;
 734	}
 735
 736	return true;
 737}
 738
 739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 740#include <keys/asymmetric-type.h>
 741
 742static struct key *builtin_regdb_keys;
 743
 744static int __init load_builtin_regdb_keys(void)
 745{
 746	builtin_regdb_keys =
 747		keyring_alloc(".builtin_regdb_keys",
 748			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 749			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 750			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 751			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 752	if (IS_ERR(builtin_regdb_keys))
 753		return PTR_ERR(builtin_regdb_keys);
 754
 755	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 756
 757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 758	x509_load_certificate_list(shipped_regdb_certs,
 759				   shipped_regdb_certs_len,
 760				   builtin_regdb_keys);
 761#endif
 762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 763	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 764		x509_load_certificate_list(extra_regdb_certs,
 765					   extra_regdb_certs_len,
 766					   builtin_regdb_keys);
 767#endif
 768
 769	return 0;
 770}
 771
 772MODULE_FIRMWARE("regulatory.db.p7s");
 773
 774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 775{
 776	const struct firmware *sig;
 777	bool result;
 778
 779	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 780		return false;
 781
 782	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 783					builtin_regdb_keys,
 784					VERIFYING_UNSPECIFIED_SIGNATURE,
 785					NULL, NULL) == 0;
 786
 787	release_firmware(sig);
 788
 789	return result;
 790}
 791
 792static void free_regdb_keyring(void)
 793{
 794	key_put(builtin_regdb_keys);
 795}
 796#else
 797static int load_builtin_regdb_keys(void)
 798{
 799	return 0;
 800}
 801
 802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 803{
 804	return true;
 805}
 806
 807static void free_regdb_keyring(void)
 808{
 809}
 810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 811
 812static bool valid_regdb(const u8 *data, unsigned int size)
 813{
 814	const struct fwdb_header *hdr = (void *)data;
 815	const struct fwdb_country *country;
 816
 817	if (size < sizeof(*hdr))
 818		return false;
 819
 820	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 821		return false;
 822
 823	if (hdr->version != cpu_to_be32(FWDB_VERSION))
 824		return false;
 825
 826	if (!regdb_has_valid_signature(data, size))
 827		return false;
 828
 829	country = &hdr->country[0];
 830	while ((u8 *)(country + 1) <= data + size) {
 831		if (!country->coll_ptr)
 832			break;
 833		if (!valid_country(data, size, country))
 834			return false;
 835		country++;
 836	}
 837
 838	return true;
 839}
 840
 841static void set_wmm_rule(const struct fwdb_header *db,
 842			 const struct fwdb_country *country,
 843			 const struct fwdb_rule *rule,
 844			 struct ieee80211_reg_rule *rrule)
 845{
 846	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 847	struct fwdb_wmm_rule *wmm;
 848	unsigned int i, wmm_ptr;
 849
 850	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 851	wmm = (void *)((u8 *)db + wmm_ptr);
 852
 853	if (!valid_wmm(wmm)) {
 854		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 855		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 856		       country->alpha2[0], country->alpha2[1]);
 857		return;
 858	}
 859
 860	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 861		wmm_rule->client[i].cw_min =
 862			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 863		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 864		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 865		wmm_rule->client[i].cot =
 866			1000 * be16_to_cpu(wmm->client[i].cot);
 867		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 868		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 869		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 870		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 871	}
 872
 873	rrule->has_wmm = true;
 874}
 875
 876static int __regdb_query_wmm(const struct fwdb_header *db,
 877			     const struct fwdb_country *country, int freq,
 878			     struct ieee80211_reg_rule *rrule)
 879{
 880	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 881	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 882	int i;
 883
 884	for (i = 0; i < coll->n_rules; i++) {
 885		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 886		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 887		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 888
 889		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 890			continue;
 891
 892		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 893		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 894			set_wmm_rule(db, country, rule, rrule);
 895			return 0;
 896		}
 897	}
 898
 899	return -ENODATA;
 900}
 901
 902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 903{
 904	const struct fwdb_header *hdr = regdb;
 905	const struct fwdb_country *country;
 906
 907	if (!regdb)
 908		return -ENODATA;
 909
 910	if (IS_ERR(regdb))
 911		return PTR_ERR(regdb);
 912
 913	country = &hdr->country[0];
 914	while (country->coll_ptr) {
 915		if (alpha2_equal(alpha2, country->alpha2))
 916			return __regdb_query_wmm(regdb, country, freq, rule);
 917
 918		country++;
 919	}
 920
 921	return -ENODATA;
 922}
 923EXPORT_SYMBOL(reg_query_regdb_wmm);
 924
 925static int regdb_query_country(const struct fwdb_header *db,
 926			       const struct fwdb_country *country)
 927{
 928	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 929	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 930	struct ieee80211_regdomain *regdom;
 931	unsigned int i;
 932
 933	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 934			 GFP_KERNEL);
 935	if (!regdom)
 936		return -ENOMEM;
 937
 938	regdom->n_reg_rules = coll->n_rules;
 939	regdom->alpha2[0] = country->alpha2[0];
 940	regdom->alpha2[1] = country->alpha2[1];
 941	regdom->dfs_region = coll->dfs_region;
 942
 943	for (i = 0; i < regdom->n_reg_rules; i++) {
 944		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 945		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 946		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 947		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 948
 949		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 950		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 951		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 952
 953		rrule->power_rule.max_antenna_gain = 0;
 954		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 955
 956		rrule->flags = 0;
 957		if (rule->flags & FWDB_FLAG_NO_OFDM)
 958			rrule->flags |= NL80211_RRF_NO_OFDM;
 959		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 960			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 961		if (rule->flags & FWDB_FLAG_DFS)
 962			rrule->flags |= NL80211_RRF_DFS;
 963		if (rule->flags & FWDB_FLAG_NO_IR)
 964			rrule->flags |= NL80211_RRF_NO_IR;
 965		if (rule->flags & FWDB_FLAG_AUTO_BW)
 966			rrule->flags |= NL80211_RRF_AUTO_BW;
 967
 968		rrule->dfs_cac_ms = 0;
 969
 970		/* handle optional data */
 971		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
 972			rrule->dfs_cac_ms =
 973				1000 * be16_to_cpu(rule->cac_timeout);
 974		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
 975			set_wmm_rule(db, country, rule, rrule);
 976	}
 977
 978	return reg_schedule_apply(regdom);
 979}
 980
 981static int query_regdb(const char *alpha2)
 982{
 983	const struct fwdb_header *hdr = regdb;
 984	const struct fwdb_country *country;
 985
 986	ASSERT_RTNL();
 987
 988	if (IS_ERR(regdb))
 989		return PTR_ERR(regdb);
 990
 991	country = &hdr->country[0];
 992	while (country->coll_ptr) {
 993		if (alpha2_equal(alpha2, country->alpha2))
 994			return regdb_query_country(regdb, country);
 995		country++;
 996	}
 997
 998	return -ENODATA;
 999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003	int set_error = 0;
1004	bool restore = true;
1005	void *db;
1006
1007	if (!fw) {
1008		pr_info("failed to load regulatory.db\n");
1009		set_error = -ENODATA;
1010	} else if (!valid_regdb(fw->data, fw->size)) {
1011		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012		set_error = -EINVAL;
1013	}
1014
1015	rtnl_lock();
1016	if (regdb && !IS_ERR(regdb)) {
1017		/* negative case - a bug
1018		 * positive case - can happen due to race in case of multiple cb's in
1019		 * queue, due to usage of asynchronous callback
1020		 *
1021		 * Either case, just restore and free new db.
1022		 */
1023	} else if (set_error) {
1024		regdb = ERR_PTR(set_error);
1025	} else if (fw) {
1026		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027		if (db) {
1028			regdb = db;
1029			restore = context && query_regdb(context);
1030		} else {
1031			restore = true;
1032		}
1033	}
1034
1035	if (restore)
1036		restore_regulatory_settings(true, false);
1037
1038	rtnl_unlock();
1039
1040	kfree(context);
1041
1042	release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049	int err;
1050
1051	ASSERT_RTNL();
1052
1053	if (regdb)
1054		return query_regdb(alpha2);
1055
1056	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057	if (!alpha2)
1058		return -ENOMEM;
1059
1060	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061				      &reg_pdev->dev, GFP_KERNEL,
1062				      (void *)alpha2, regdb_fw_cb);
1063	if (err)
1064		kfree(alpha2);
1065
1066	return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071	const struct firmware *fw;
1072	void *db;
1073	int err;
1074	const struct ieee80211_regdomain *current_regdomain;
1075	struct regulatory_request *request;
1076
1077	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078	if (err)
1079		return err;
1080
1081	if (!valid_regdb(fw->data, fw->size)) {
1082		err = -ENODATA;
1083		goto out;
1084	}
1085
1086	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087	if (!db) {
1088		err = -ENOMEM;
1089		goto out;
1090	}
1091
1092	rtnl_lock();
1093	if (!IS_ERR_OR_NULL(regdb))
1094		kfree(regdb);
1095	regdb = db;
1096
1097	/* reset regulatory domain */
1098	current_regdomain = get_cfg80211_regdom();
1099
1100	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101	if (!request) {
1102		err = -ENOMEM;
1103		goto out_unlock;
1104	}
1105
1106	request->wiphy_idx = WIPHY_IDX_INVALID;
1107	request->alpha2[0] = current_regdomain->alpha2[0];
1108	request->alpha2[1] = current_regdomain->alpha2[1];
1109	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112	reg_process_hint(request);
1113
1114out_unlock:
1115	rtnl_unlock();
1116 out:
1117	release_firmware(fw);
1118	return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123	if (query_regdb_file(request->alpha2) == 0)
1124		return true;
1125
1126	if (call_crda(request->alpha2) == 0)
1127		return true;
1128
1129	return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134	struct regulatory_request *lr = get_last_request();
1135
1136	if (!lr || lr->processed)
1137		return false;
1138
1139	return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144	struct regulatory_request *lr = get_last_request();
1145
1146	/*
1147	 * Follow the driver's regulatory domain, if present, unless a country
1148	 * IE has been processed or a user wants to help complaince further
1149	 */
1150	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152	    wiphy->regd)
1153		return get_wiphy_regdom(wiphy);
1154
1155	return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160				 const struct ieee80211_reg_rule *rule)
1161{
1162	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163	const struct ieee80211_freq_range *freq_range_tmp;
1164	const struct ieee80211_reg_rule *tmp;
1165	u32 start_freq, end_freq, idx, no;
1166
1167	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168		if (rule == &rd->reg_rules[idx])
1169			break;
1170
1171	if (idx == rd->n_reg_rules)
1172		return 0;
1173
1174	/* get start_freq */
1175	no = idx;
1176
1177	while (no) {
1178		tmp = &rd->reg_rules[--no];
1179		freq_range_tmp = &tmp->freq_range;
1180
1181		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182			break;
1183
1184		freq_range = freq_range_tmp;
1185	}
1186
1187	start_freq = freq_range->start_freq_khz;
1188
1189	/* get end_freq */
1190	freq_range = &rule->freq_range;
1191	no = idx;
1192
1193	while (no < rd->n_reg_rules - 1) {
1194		tmp = &rd->reg_rules[++no];
1195		freq_range_tmp = &tmp->freq_range;
1196
1197		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198			break;
1199
1200		freq_range = freq_range_tmp;
1201	}
1202
1203	end_freq = freq_range->end_freq_khz;
1204
1205	return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209				   const struct ieee80211_reg_rule *rule)
1210{
1211	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220	/*
1221	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222	 * are not allowed.
1223	 */
1224	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228	return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235	u32 freq_diff;
1236
1237	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238		return false;
1239
1240	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241		return false;
1242
1243	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246	    freq_range->max_bandwidth_khz > freq_diff)
1247		return false;
1248
1249	return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254	const struct ieee80211_reg_rule *reg_rule = NULL;
1255	unsigned int i;
1256
1257	if (!rd->n_reg_rules)
1258		return false;
1259
1260	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261		return false;
1262
1263	for (i = 0; i < rd->n_reg_rules; i++) {
1264		reg_rule = &rd->reg_rules[i];
1265		if (!is_valid_reg_rule(reg_rule))
1266			return false;
1267	}
1268
1269	return true;
1270}
1271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 *
1287 * Returns: whether or not the frequency is in the range
1288 */
1289static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290			      u32 freq_khz)
1291{
1292#define ONE_GHZ_IN_KHZ	1000000
1293	/*
1294	 * From 802.11ad: directional multi-gigabit (DMG):
1295	 * Pertaining to operation in a frequency band containing a channel
1296	 * with the Channel starting frequency above 45 GHz.
1297	 */
1298	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301		return true;
1302	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303		return true;
1304	return false;
1305#undef ONE_GHZ_IN_KHZ
1306}
1307
1308/*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313static enum nl80211_dfs_regions
1314reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315			 const enum nl80211_dfs_regions dfs_region2)
1316{
1317	if (dfs_region1 != dfs_region2)
1318		return NL80211_DFS_UNSET;
1319	return dfs_region1;
1320}
1321
1322static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323				    const struct ieee80211_wmm_ac *wmm_ac2,
1324				    struct ieee80211_wmm_ac *intersect)
1325{
1326	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330}
1331
1332/*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
1336static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337			       const struct ieee80211_regdomain *rd2,
1338			       const struct ieee80211_reg_rule *rule1,
1339			       const struct ieee80211_reg_rule *rule2,
1340			       struct ieee80211_reg_rule *intersected_rule)
1341{
1342	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343	struct ieee80211_freq_range *freq_range;
1344	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345	struct ieee80211_power_rule *power_rule;
1346	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347	struct ieee80211_wmm_rule *wmm_rule;
1348	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350	freq_range1 = &rule1->freq_range;
1351	freq_range2 = &rule2->freq_range;
1352	freq_range = &intersected_rule->freq_range;
1353
1354	power_rule1 = &rule1->power_rule;
1355	power_rule2 = &rule2->power_rule;
1356	power_rule = &intersected_rule->power_rule;
1357
1358	wmm_rule1 = &rule1->wmm_rule;
1359	wmm_rule2 = &rule2->wmm_rule;
1360	wmm_rule = &intersected_rule->wmm_rule;
1361
1362	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363					 freq_range2->start_freq_khz);
1364	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365				       freq_range2->end_freq_khz);
1366
1367	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370	if (rule1->flags & NL80211_RRF_AUTO_BW)
1371		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372	if (rule2->flags & NL80211_RRF_AUTO_BW)
1373		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377	intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379	/*
1380	 * In case NL80211_RRF_AUTO_BW requested for both rules
1381	 * set AUTO_BW in intersected rule also. Next we will
1382	 * calculate BW correctly in handle_channel function.
1383	 * In other case remove AUTO_BW flag while we calculate
1384	 * maximum bandwidth correctly and auto calculation is
1385	 * not required.
1386	 */
1387	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388	    (rule2->flags & NL80211_RRF_AUTO_BW))
1389		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390	else
1391		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394	if (freq_range->max_bandwidth_khz > freq_diff)
1395		freq_range->max_bandwidth_khz = freq_diff;
1396
1397	power_rule->max_eirp = min(power_rule1->max_eirp,
1398		power_rule2->max_eirp);
1399	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400		power_rule2->max_antenna_gain);
1401
1402	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403					   rule2->dfs_cac_ms);
1404
1405	if (rule1->has_wmm && rule2->has_wmm) {
1406		u8 ac;
1407
1408		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410						&wmm_rule2->client[ac],
1411						&wmm_rule->client[ac]);
1412			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413						&wmm_rule2->ap[ac],
1414						&wmm_rule->ap[ac]);
1415		}
1416
1417		intersected_rule->has_wmm = true;
1418	} else if (rule1->has_wmm) {
1419		*wmm_rule = *wmm_rule1;
1420		intersected_rule->has_wmm = true;
1421	} else if (rule2->has_wmm) {
1422		*wmm_rule = *wmm_rule2;
1423		intersected_rule->has_wmm = true;
1424	} else {
1425		intersected_rule->has_wmm = false;
1426	}
1427
1428	if (!is_valid_reg_rule(intersected_rule))
1429		return -EINVAL;
1430
1431	return 0;
1432}
1433
1434/* check whether old rule contains new rule */
1435static bool rule_contains(struct ieee80211_reg_rule *r1,
1436			  struct ieee80211_reg_rule *r2)
1437{
1438	/* for simplicity, currently consider only same flags */
1439	if (r1->flags != r2->flags)
1440		return false;
1441
1442	/* verify r1 is more restrictive */
1443	if ((r1->power_rule.max_antenna_gain >
1444	     r2->power_rule.max_antenna_gain) ||
1445	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446		return false;
1447
1448	/* make sure r2's range is contained within r1 */
1449	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451		return false;
1452
1453	/* and finally verify that r1.max_bw >= r2.max_bw */
1454	if (r1->freq_range.max_bandwidth_khz <
1455	    r2->freq_range.max_bandwidth_khz)
1456		return false;
1457
1458	return true;
1459}
1460
1461/* add or extend current rules. do nothing if rule is already contained */
1462static void add_rule(struct ieee80211_reg_rule *rule,
1463		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464{
1465	struct ieee80211_reg_rule *tmp_rule;
1466	int i;
1467
1468	for (i = 0; i < *n_rules; i++) {
1469		tmp_rule = &reg_rules[i];
1470		/* rule is already contained - do nothing */
1471		if (rule_contains(tmp_rule, rule))
1472			return;
1473
1474		/* extend rule if possible */
1475		if (rule_contains(rule, tmp_rule)) {
1476			memcpy(tmp_rule, rule, sizeof(*rule));
1477			return;
1478		}
1479	}
1480
1481	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482	(*n_rules)++;
1483}
1484
1485/**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500static struct ieee80211_regdomain *
1501regdom_intersect(const struct ieee80211_regdomain *rd1,
1502		 const struct ieee80211_regdomain *rd2)
1503{
1504	int r;
1505	unsigned int x, y;
1506	unsigned int num_rules = 0;
1507	const struct ieee80211_reg_rule *rule1, *rule2;
1508	struct ieee80211_reg_rule intersected_rule;
1509	struct ieee80211_regdomain *rd;
 
 
1510
1511	if (!rd1 || !rd2)
1512		return NULL;
1513
1514	/*
1515	 * First we get a count of the rules we'll need, then we actually
1516	 * build them. This is to so we can malloc() and free() a
1517	 * regdomain once. The reason we use reg_rules_intersect() here
1518	 * is it will return -EINVAL if the rule computed makes no sense.
1519	 * All rules that do check out OK are valid.
1520	 */
1521
1522	for (x = 0; x < rd1->n_reg_rules; x++) {
1523		rule1 = &rd1->reg_rules[x];
1524		for (y = 0; y < rd2->n_reg_rules; y++) {
1525			rule2 = &rd2->reg_rules[y];
1526			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527						 &intersected_rule))
1528				num_rules++;
1529		}
1530	}
1531
1532	if (!num_rules)
1533		return NULL;
1534
1535	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
 
 
 
1536	if (!rd)
1537		return NULL;
1538
1539	for (x = 0; x < rd1->n_reg_rules; x++) {
1540		rule1 = &rd1->reg_rules[x];
1541		for (y = 0; y < rd2->n_reg_rules; y++) {
1542			rule2 = &rd2->reg_rules[y];
 
 
 
 
 
 
1543			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544						&intersected_rule);
1545			/*
1546			 * No need to memset here the intersected rule here as
1547			 * we're not using the stack anymore
1548			 */
1549			if (r)
1550				continue;
1551
1552			add_rule(&intersected_rule, rd->reg_rules,
1553				 &rd->n_reg_rules);
1554		}
1555	}
1556
 
 
 
 
 
 
1557	rd->alpha2[0] = '9';
1558	rd->alpha2[1] = '8';
1559	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560						  rd2->dfs_region);
1561
1562	return rd;
1563}
1564
1565/*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
1569static u32 map_regdom_flags(u32 rd_flags)
1570{
1571	u32 channel_flags = 0;
1572	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573		channel_flags |= IEEE80211_CHAN_NO_IR;
1574	if (rd_flags & NL80211_RRF_DFS)
1575		channel_flags |= IEEE80211_CHAN_RADAR;
1576	if (rd_flags & NL80211_RRF_NO_OFDM)
1577		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586	if (rd_flags & NL80211_RRF_NO_80MHZ)
1587		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588	if (rd_flags & NL80211_RRF_NO_160MHZ)
1589		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590	if (rd_flags & NL80211_RRF_NO_HE)
1591		channel_flags |= IEEE80211_CHAN_NO_HE;
1592	if (rd_flags & NL80211_RRF_NO_320MHZ)
1593		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594	if (rd_flags & NL80211_RRF_NO_EHT)
1595		channel_flags |= IEEE80211_CHAN_NO_EHT;
1596	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598	if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT)
1599		channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT;
1600	if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT)
1601		channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT;
1602	if (rd_flags & NL80211_RRF_PSD)
1603		channel_flags |= IEEE80211_CHAN_PSD;
1604	return channel_flags;
1605}
1606
1607static const struct ieee80211_reg_rule *
1608freq_reg_info_regd(u32 center_freq,
1609		   const struct ieee80211_regdomain *regd, u32 bw)
1610{
1611	int i;
1612	bool band_rule_found = false;
1613	bool bw_fits = false;
1614
1615	if (!regd)
1616		return ERR_PTR(-EINVAL);
1617
1618	for (i = 0; i < regd->n_reg_rules; i++) {
1619		const struct ieee80211_reg_rule *rr;
1620		const struct ieee80211_freq_range *fr = NULL;
1621
1622		rr = &regd->reg_rules[i];
1623		fr = &rr->freq_range;
1624
1625		/*
1626		 * We only need to know if one frequency rule was
1627		 * in center_freq's band, that's enough, so let's
1628		 * not overwrite it once found
1629		 */
1630		if (!band_rule_found)
1631			band_rule_found = freq_in_rule_band(fr, center_freq);
1632
1633		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1634
1635		if (band_rule_found && bw_fits)
1636			return rr;
1637	}
1638
1639	if (!band_rule_found)
1640		return ERR_PTR(-ERANGE);
1641
1642	return ERR_PTR(-EINVAL);
1643}
1644
1645static const struct ieee80211_reg_rule *
1646__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1647{
1648	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1649	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1650	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1651	int i = ARRAY_SIZE(bws) - 1;
1652	u32 bw;
1653
1654	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1655		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1656		if (!IS_ERR(reg_rule))
1657			return reg_rule;
1658	}
1659
1660	return reg_rule;
1661}
1662
1663const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1664					       u32 center_freq)
1665{
1666	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1667
1668	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
 
 
1669}
1670EXPORT_SYMBOL(freq_reg_info);
1671
1672const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1673{
1674	switch (initiator) {
1675	case NL80211_REGDOM_SET_BY_CORE:
1676		return "core";
1677	case NL80211_REGDOM_SET_BY_USER:
1678		return "user";
1679	case NL80211_REGDOM_SET_BY_DRIVER:
1680		return "driver";
1681	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1682		return "country element";
1683	default:
1684		WARN_ON(1);
1685		return "bug";
1686	}
1687}
1688EXPORT_SYMBOL(reg_initiator_name);
1689
1690static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1691					  const struct ieee80211_reg_rule *reg_rule,
1692					  const struct ieee80211_channel *chan)
1693{
1694	const struct ieee80211_freq_range *freq_range = NULL;
1695	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1696	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
 
1697
 
1698	freq_range = &reg_rule->freq_range;
1699
1700	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1701	center_freq_khz = ieee80211_channel_to_khz(chan);
1702	/* Check if auto calculation requested */
 
 
 
1703	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1704		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
 
 
 
 
 
1705
1706	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1707	if (!cfg80211_does_bw_fit_range(freq_range,
1708					center_freq_khz,
1709					MHZ_TO_KHZ(10)))
1710		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1711	if (!cfg80211_does_bw_fit_range(freq_range,
1712					center_freq_khz,
1713					MHZ_TO_KHZ(20)))
1714		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1715
1716	if (is_s1g) {
1717		/* S1G is strict about non overlapping channels. We can
1718		 * calculate which bandwidth is allowed per channel by finding
1719		 * the largest bandwidth which cleanly divides the freq_range.
1720		 */
1721		int edge_offset;
1722		int ch_bw = max_bandwidth_khz;
1723
1724		while (ch_bw) {
1725			edge_offset = (center_freq_khz - ch_bw / 2) -
1726				      freq_range->start_freq_khz;
1727			if (edge_offset % ch_bw == 0) {
1728				switch (KHZ_TO_MHZ(ch_bw)) {
1729				case 1:
1730					bw_flags |= IEEE80211_CHAN_1MHZ;
1731					break;
1732				case 2:
1733					bw_flags |= IEEE80211_CHAN_2MHZ;
1734					break;
1735				case 4:
1736					bw_flags |= IEEE80211_CHAN_4MHZ;
1737					break;
1738				case 8:
1739					bw_flags |= IEEE80211_CHAN_8MHZ;
1740					break;
1741				case 16:
1742					bw_flags |= IEEE80211_CHAN_16MHZ;
1743					break;
1744				default:
1745					/* If we got here, no bandwidths fit on
1746					 * this frequency, ie. band edge.
1747					 */
1748					bw_flags |= IEEE80211_CHAN_DISABLED;
1749					break;
1750				}
1751				break;
1752			}
1753			ch_bw /= 2;
1754		}
1755	} else {
1756		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1757			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1759			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1760		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1761			bw_flags |= IEEE80211_CHAN_NO_HT40;
1762		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1763			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1764		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1765			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1766		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1767			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1768	}
1769	return bw_flags;
1770}
1771
1772static void handle_channel_single_rule(struct wiphy *wiphy,
1773				       enum nl80211_reg_initiator initiator,
1774				       struct ieee80211_channel *chan,
1775				       u32 flags,
1776				       struct regulatory_request *lr,
1777				       struct wiphy *request_wiphy,
1778				       const struct ieee80211_reg_rule *reg_rule)
1779{
1780	u32 bw_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	const struct ieee80211_power_rule *power_rule = NULL;
 
 
 
1782	const struct ieee80211_regdomain *regd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783
1784	regd = reg_get_regdomain(wiphy);
 
1785
1786	power_rule = &reg_rule->power_rule;
1787	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
 
 
 
 
 
 
 
 
 
 
 
 
1788
1789	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1790	    request_wiphy && request_wiphy == wiphy &&
1791	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1792		/*
1793		 * This guarantees the driver's requested regulatory domain
1794		 * will always be used as a base for further regulatory
1795		 * settings
1796		 */
1797		chan->flags = chan->orig_flags =
1798			map_regdom_flags(reg_rule->flags) | bw_flags;
1799		chan->max_antenna_gain = chan->orig_mag =
1800			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1801		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1802			(int) MBM_TO_DBM(power_rule->max_eirp);
1803
1804		if (chan->flags & IEEE80211_CHAN_RADAR) {
1805			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806			if (reg_rule->dfs_cac_ms)
1807				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1808		}
1809
1810		if (chan->flags & IEEE80211_CHAN_PSD)
1811			chan->psd = reg_rule->psd;
1812
1813		return;
1814	}
1815
1816	chan->dfs_state = NL80211_DFS_USABLE;
1817	chan->dfs_state_entered = jiffies;
1818
1819	chan->beacon_found = false;
1820	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1821	chan->max_antenna_gain =
1822		min_t(int, chan->orig_mag,
1823		      MBI_TO_DBI(power_rule->max_antenna_gain));
1824	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1825
1826	if (chan->flags & IEEE80211_CHAN_RADAR) {
1827		if (reg_rule->dfs_cac_ms)
1828			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1829		else
1830			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1831	}
1832
1833	if (chan->flags & IEEE80211_CHAN_PSD)
1834		chan->psd = reg_rule->psd;
1835
1836	if (chan->orig_mpwr) {
1837		/*
1838		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1839		 * will always follow the passed country IE power settings.
1840		 */
1841		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1842		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1843			chan->max_power = chan->max_reg_power;
1844		else
1845			chan->max_power = min(chan->orig_mpwr,
1846					      chan->max_reg_power);
1847	} else
1848		chan->max_power = chan->max_reg_power;
1849}
1850
1851static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1852					  enum nl80211_reg_initiator initiator,
1853					  struct ieee80211_channel *chan,
1854					  u32 flags,
1855					  struct regulatory_request *lr,
1856					  struct wiphy *request_wiphy,
1857					  const struct ieee80211_reg_rule *rrule1,
1858					  const struct ieee80211_reg_rule *rrule2,
1859					  struct ieee80211_freq_range *comb_range)
1860{
1861	u32 bw_flags1 = 0;
1862	u32 bw_flags2 = 0;
1863	const struct ieee80211_power_rule *power_rule1 = NULL;
1864	const struct ieee80211_power_rule *power_rule2 = NULL;
1865	const struct ieee80211_regdomain *regd;
1866
1867	regd = reg_get_regdomain(wiphy);
1868
1869	power_rule1 = &rrule1->power_rule;
1870	power_rule2 = &rrule2->power_rule;
1871	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1872	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1873
1874	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1875	    request_wiphy && request_wiphy == wiphy &&
1876	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1877		/* This guarantees the driver's requested regulatory domain
1878		 * will always be used as a base for further regulatory
1879		 * settings
1880		 */
1881		chan->flags =
1882			map_regdom_flags(rrule1->flags) |
1883			map_regdom_flags(rrule2->flags) |
1884			bw_flags1 |
1885			bw_flags2;
1886		chan->orig_flags = chan->flags;
1887		chan->max_antenna_gain =
1888			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1889			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1890		chan->orig_mag = chan->max_antenna_gain;
1891		chan->max_reg_power =
1892			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1893			      MBM_TO_DBM(power_rule2->max_eirp));
1894		chan->max_power = chan->max_reg_power;
1895		chan->orig_mpwr = chan->max_reg_power;
1896
1897		if (chan->flags & IEEE80211_CHAN_RADAR) {
1898			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1899			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1900				chan->dfs_cac_ms = max_t(unsigned int,
1901							 rrule1->dfs_cac_ms,
1902							 rrule2->dfs_cac_ms);
1903		}
1904
1905		if ((rrule1->flags & NL80211_RRF_PSD) &&
1906		    (rrule2->flags & NL80211_RRF_PSD))
1907			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1908		else
1909			chan->flags &= ~NL80211_RRF_PSD;
1910
1911		return;
1912	}
1913
1914	chan->dfs_state = NL80211_DFS_USABLE;
1915	chan->dfs_state_entered = jiffies;
1916
1917	chan->beacon_found = false;
1918	chan->flags = flags | bw_flags1 | bw_flags2 |
1919		      map_regdom_flags(rrule1->flags) |
1920		      map_regdom_flags(rrule2->flags);
1921
1922	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1923	 * (otherwise no adj. rule case), recheck therefore
1924	 */
1925	if (cfg80211_does_bw_fit_range(comb_range,
1926				       ieee80211_channel_to_khz(chan),
1927				       MHZ_TO_KHZ(10)))
1928		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1929	if (cfg80211_does_bw_fit_range(comb_range,
1930				       ieee80211_channel_to_khz(chan),
1931				       MHZ_TO_KHZ(20)))
1932		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1933
1934	chan->max_antenna_gain =
1935		min_t(int, chan->orig_mag,
1936		      min_t(int,
1937			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1938			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1939	chan->max_reg_power = min_t(int,
1940				    MBM_TO_DBM(power_rule1->max_eirp),
1941				    MBM_TO_DBM(power_rule2->max_eirp));
1942
1943	if (chan->flags & IEEE80211_CHAN_RADAR) {
1944		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1945			chan->dfs_cac_ms = max_t(unsigned int,
1946						 rrule1->dfs_cac_ms,
1947						 rrule2->dfs_cac_ms);
1948		else
1949			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1950	}
1951
1952	if (chan->orig_mpwr) {
1953		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1954		 * will always follow the passed country IE power settings.
1955		 */
1956		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1957		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1958			chan->max_power = chan->max_reg_power;
1959		else
1960			chan->max_power = min(chan->orig_mpwr,
1961					      chan->max_reg_power);
1962	} else {
1963		chan->max_power = chan->max_reg_power;
1964	}
1965}
1966
1967/* Note that right now we assume the desired channel bandwidth
1968 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1969 * per channel, the primary and the extension channel).
1970 */
1971static void handle_channel(struct wiphy *wiphy,
1972			   enum nl80211_reg_initiator initiator,
1973			   struct ieee80211_channel *chan)
1974{
1975	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1976	struct regulatory_request *lr = get_last_request();
1977	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1978	const struct ieee80211_reg_rule *rrule = NULL;
1979	const struct ieee80211_reg_rule *rrule1 = NULL;
1980	const struct ieee80211_reg_rule *rrule2 = NULL;
1981
1982	u32 flags = chan->orig_flags;
1983
1984	rrule = freq_reg_info(wiphy, orig_chan_freq);
1985	if (IS_ERR(rrule)) {
1986		/* check for adjacent match, therefore get rules for
1987		 * chan - 20 MHz and chan + 20 MHz and test
1988		 * if reg rules are adjacent
1989		 */
1990		rrule1 = freq_reg_info(wiphy,
1991				       orig_chan_freq - MHZ_TO_KHZ(20));
1992		rrule2 = freq_reg_info(wiphy,
1993				       orig_chan_freq + MHZ_TO_KHZ(20));
1994		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1995			struct ieee80211_freq_range comb_range;
1996
1997			if (rrule1->freq_range.end_freq_khz !=
1998			    rrule2->freq_range.start_freq_khz)
1999				goto disable_chan;
2000
2001			comb_range.start_freq_khz =
2002				rrule1->freq_range.start_freq_khz;
2003			comb_range.end_freq_khz =
2004				rrule2->freq_range.end_freq_khz;
2005			comb_range.max_bandwidth_khz =
2006				min_t(u32,
2007				      rrule1->freq_range.max_bandwidth_khz,
2008				      rrule2->freq_range.max_bandwidth_khz);
2009
2010			if (!cfg80211_does_bw_fit_range(&comb_range,
2011							orig_chan_freq,
2012							MHZ_TO_KHZ(20)))
2013				goto disable_chan;
2014
2015			handle_channel_adjacent_rules(wiphy, initiator, chan,
2016						      flags, lr, request_wiphy,
2017						      rrule1, rrule2,
2018						      &comb_range);
2019			return;
2020		}
2021
2022disable_chan:
2023		/* We will disable all channels that do not match our
2024		 * received regulatory rule unless the hint is coming
2025		 * from a Country IE and the Country IE had no information
2026		 * about a band. The IEEE 802.11 spec allows for an AP
2027		 * to send only a subset of the regulatory rules allowed,
2028		 * so an AP in the US that only supports 2.4 GHz may only send
2029		 * a country IE with information for the 2.4 GHz band
2030		 * while 5 GHz is still supported.
2031		 */
2032		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2033		    PTR_ERR(rrule) == -ERANGE)
2034			return;
2035
2036		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2037		    request_wiphy && request_wiphy == wiphy &&
2038		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2039			pr_debug("Disabling freq %d.%03d MHz for good\n",
2040				 chan->center_freq, chan->freq_offset);
2041			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2042			chan->flags = chan->orig_flags;
2043		} else {
2044			pr_debug("Disabling freq %d.%03d MHz\n",
2045				 chan->center_freq, chan->freq_offset);
2046			chan->flags |= IEEE80211_CHAN_DISABLED;
2047		}
2048		return;
2049	}
2050
2051	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2052				   request_wiphy, rrule);
2053}
2054
2055static void handle_band(struct wiphy *wiphy,
2056			enum nl80211_reg_initiator initiator,
2057			struct ieee80211_supported_band *sband)
2058{
2059	unsigned int i;
2060
2061	if (!sband)
2062		return;
2063
2064	for (i = 0; i < sband->n_channels; i++)
2065		handle_channel(wiphy, initiator, &sband->channels[i]);
2066}
2067
2068static bool reg_request_cell_base(struct regulatory_request *request)
2069{
2070	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2071		return false;
2072	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2073}
2074
2075bool reg_last_request_cell_base(void)
2076{
2077	return reg_request_cell_base(get_last_request());
2078}
2079
2080#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2081/* Core specific check */
2082static enum reg_request_treatment
2083reg_ignore_cell_hint(struct regulatory_request *pending_request)
2084{
2085	struct regulatory_request *lr = get_last_request();
2086
2087	if (!reg_num_devs_support_basehint)
2088		return REG_REQ_IGNORE;
2089
2090	if (reg_request_cell_base(lr) &&
2091	    !regdom_changes(pending_request->alpha2))
2092		return REG_REQ_ALREADY_SET;
2093
2094	return REG_REQ_OK;
2095}
2096
2097/* Device specific check */
2098static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2099{
2100	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2101}
2102#else
2103static enum reg_request_treatment
2104reg_ignore_cell_hint(struct regulatory_request *pending_request)
2105{
2106	return REG_REQ_IGNORE;
2107}
2108
2109static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2110{
2111	return true;
2112}
2113#endif
2114
2115static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2116{
2117	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2118	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119		return true;
2120	return false;
2121}
2122
2123static bool ignore_reg_update(struct wiphy *wiphy,
2124			      enum nl80211_reg_initiator initiator)
2125{
2126	struct regulatory_request *lr = get_last_request();
2127
2128	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2129		return true;
2130
2131	if (!lr) {
2132		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2133			 reg_initiator_name(initiator));
 
2134		return true;
2135	}
2136
2137	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2138	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2139		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2140			 reg_initiator_name(initiator));
 
 
2141		return true;
2142	}
2143
2144	/*
2145	 * wiphy->regd will be set once the device has its own
2146	 * desired regulatory domain set
2147	 */
2148	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2149	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2150	    !is_world_regdom(lr->alpha2)) {
2151		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2152			 reg_initiator_name(initiator));
 
 
2153		return true;
2154	}
2155
2156	if (reg_request_cell_base(lr))
2157		return reg_dev_ignore_cell_hint(wiphy);
2158
2159	return false;
2160}
2161
2162static bool reg_is_world_roaming(struct wiphy *wiphy)
2163{
2164	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2165	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2166	struct regulatory_request *lr = get_last_request();
2167
2168	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2169		return true;
2170
2171	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2172	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2173		return true;
2174
2175	return false;
2176}
2177
2178static void reg_call_notifier(struct wiphy *wiphy,
2179			      struct regulatory_request *request)
2180{
2181	if (wiphy->reg_notifier)
2182		wiphy->reg_notifier(wiphy, request);
2183}
2184
2185static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2186			      struct reg_beacon *reg_beacon)
2187{
2188	struct ieee80211_supported_band *sband;
2189	struct ieee80211_channel *chan;
2190	bool channel_changed = false;
2191	struct ieee80211_channel chan_before;
2192	struct regulatory_request *lr = get_last_request();
2193
2194	sband = wiphy->bands[reg_beacon->chan.band];
2195	chan = &sband->channels[chan_idx];
2196
2197	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2198		return;
2199
2200	if (chan->beacon_found)
2201		return;
2202
2203	chan->beacon_found = true;
2204
2205	if (!reg_is_world_roaming(wiphy))
2206		return;
2207
2208	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2209		return;
2210
2211	chan_before = *chan;
 
2212
2213	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2214		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2215		channel_changed = true;
2216	}
2217
2218	if (channel_changed) {
2219		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2220		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2221			reg_call_notifier(wiphy, lr);
2222	}
2223}
2224
2225/*
2226 * Called when a scan on a wiphy finds a beacon on
2227 * new channel
2228 */
2229static void wiphy_update_new_beacon(struct wiphy *wiphy,
2230				    struct reg_beacon *reg_beacon)
2231{
2232	unsigned int i;
2233	struct ieee80211_supported_band *sband;
2234
2235	if (!wiphy->bands[reg_beacon->chan.band])
2236		return;
2237
2238	sband = wiphy->bands[reg_beacon->chan.band];
2239
2240	for (i = 0; i < sband->n_channels; i++)
2241		handle_reg_beacon(wiphy, i, reg_beacon);
2242}
2243
2244/*
2245 * Called upon reg changes or a new wiphy is added
2246 */
2247static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2248{
2249	unsigned int i;
2250	struct ieee80211_supported_band *sband;
2251	struct reg_beacon *reg_beacon;
2252
2253	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2254		if (!wiphy->bands[reg_beacon->chan.band])
2255			continue;
2256		sband = wiphy->bands[reg_beacon->chan.band];
2257		for (i = 0; i < sband->n_channels; i++)
2258			handle_reg_beacon(wiphy, i, reg_beacon);
2259	}
2260}
2261
2262/* Reap the advantages of previously found beacons */
2263static void reg_process_beacons(struct wiphy *wiphy)
2264{
2265	/*
2266	 * Means we are just firing up cfg80211, so no beacons would
2267	 * have been processed yet.
2268	 */
2269	if (!last_request)
2270		return;
2271	wiphy_update_beacon_reg(wiphy);
2272}
2273
2274static bool is_ht40_allowed(struct ieee80211_channel *chan)
2275{
2276	if (!chan)
2277		return false;
2278	if (chan->flags & IEEE80211_CHAN_DISABLED)
2279		return false;
2280	/* This would happen when regulatory rules disallow HT40 completely */
2281	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2282		return false;
2283	return true;
2284}
2285
2286static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2287					 struct ieee80211_channel *channel)
2288{
2289	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2290	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2291	const struct ieee80211_regdomain *regd;
2292	unsigned int i;
2293	u32 flags;
2294
2295	if (!is_ht40_allowed(channel)) {
2296		channel->flags |= IEEE80211_CHAN_NO_HT40;
2297		return;
2298	}
2299
2300	/*
2301	 * We need to ensure the extension channels exist to
2302	 * be able to use HT40- or HT40+, this finds them (or not)
2303	 */
2304	for (i = 0; i < sband->n_channels; i++) {
2305		struct ieee80211_channel *c = &sband->channels[i];
2306
2307		if (c->center_freq == (channel->center_freq - 20))
2308			channel_before = c;
2309		if (c->center_freq == (channel->center_freq + 20))
2310			channel_after = c;
2311	}
2312
2313	flags = 0;
2314	regd = get_wiphy_regdom(wiphy);
2315	if (regd) {
2316		const struct ieee80211_reg_rule *reg_rule =
2317			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2318					   regd, MHZ_TO_KHZ(20));
2319
2320		if (!IS_ERR(reg_rule))
2321			flags = reg_rule->flags;
2322	}
2323
2324	/*
2325	 * Please note that this assumes target bandwidth is 20 MHz,
2326	 * if that ever changes we also need to change the below logic
2327	 * to include that as well.
2328	 */
2329	if (!is_ht40_allowed(channel_before) ||
2330	    flags & NL80211_RRF_NO_HT40MINUS)
2331		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2332	else
2333		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2334
2335	if (!is_ht40_allowed(channel_after) ||
2336	    flags & NL80211_RRF_NO_HT40PLUS)
2337		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2338	else
2339		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2340}
2341
2342static void reg_process_ht_flags_band(struct wiphy *wiphy,
2343				      struct ieee80211_supported_band *sband)
2344{
2345	unsigned int i;
2346
2347	if (!sband)
2348		return;
2349
2350	for (i = 0; i < sband->n_channels; i++)
2351		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2352}
2353
2354static void reg_process_ht_flags(struct wiphy *wiphy)
2355{
2356	enum nl80211_band band;
2357
2358	if (!wiphy)
2359		return;
2360
2361	for (band = 0; band < NUM_NL80211_BANDS; band++)
2362		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2363}
2364
2365static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2366{
2367	struct cfg80211_chan_def chandef = {};
2368	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2369	enum nl80211_iftype iftype;
2370	bool ret;
2371	int link;
2372
2373	iftype = wdev->iftype;
2374
2375	/* make sure the interface is active */
2376	if (!wdev->netdev || !netif_running(wdev->netdev))
2377		return true;
2378
2379	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2380		struct ieee80211_channel *chan;
2381
2382		if (!wdev->valid_links && link > 0)
2383			break;
2384		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2385			continue;
2386		switch (iftype) {
2387		case NL80211_IFTYPE_AP:
2388		case NL80211_IFTYPE_P2P_GO:
2389			if (!wdev->links[link].ap.beacon_interval)
2390				continue;
2391			chandef = wdev->links[link].ap.chandef;
2392			break;
2393		case NL80211_IFTYPE_MESH_POINT:
2394			if (!wdev->u.mesh.beacon_interval)
2395				continue;
2396			chandef = wdev->u.mesh.chandef;
2397			break;
2398		case NL80211_IFTYPE_ADHOC:
2399			if (!wdev->u.ibss.ssid_len)
2400				continue;
2401			chandef = wdev->u.ibss.chandef;
2402			break;
2403		case NL80211_IFTYPE_STATION:
2404		case NL80211_IFTYPE_P2P_CLIENT:
2405			/* Maybe we could consider disabling that link only? */
2406			if (!wdev->links[link].client.current_bss)
2407				continue;
2408
2409			chan = wdev->links[link].client.current_bss->pub.channel;
2410			if (!chan)
2411				continue;
2412
2413			if (!rdev->ops->get_channel ||
2414			    rdev_get_channel(rdev, wdev, link, &chandef))
2415				cfg80211_chandef_create(&chandef, chan,
2416							NL80211_CHAN_NO_HT);
2417			break;
2418		case NL80211_IFTYPE_MONITOR:
2419		case NL80211_IFTYPE_AP_VLAN:
2420		case NL80211_IFTYPE_P2P_DEVICE:
2421			/* no enforcement required */
2422			break;
2423		case NL80211_IFTYPE_OCB:
2424			if (!wdev->u.ocb.chandef.chan)
2425				continue;
2426			chandef = wdev->u.ocb.chandef;
2427			break;
2428		case NL80211_IFTYPE_NAN:
2429			/* we have no info, but NAN is also pretty universal */
2430			continue;
2431		default:
2432			/* others not implemented for now */
2433			WARN_ON_ONCE(1);
2434			break;
2435		}
2436
2437		switch (iftype) {
2438		case NL80211_IFTYPE_AP:
2439		case NL80211_IFTYPE_P2P_GO:
2440		case NL80211_IFTYPE_ADHOC:
2441		case NL80211_IFTYPE_MESH_POINT:
2442			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2443							    iftype);
2444			if (!ret)
2445				return ret;
2446			break;
2447		case NL80211_IFTYPE_STATION:
2448		case NL80211_IFTYPE_P2P_CLIENT:
2449			ret = cfg80211_chandef_usable(wiphy, &chandef,
2450						      IEEE80211_CHAN_DISABLED);
2451			if (!ret)
2452				return ret;
2453			break;
2454		default:
2455			break;
2456		}
2457	}
2458
2459	return true;
2460}
2461
2462static void reg_leave_invalid_chans(struct wiphy *wiphy)
2463{
2464	struct wireless_dev *wdev;
2465	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2466
2467	wiphy_lock(wiphy);
2468	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2469		if (!reg_wdev_chan_valid(wiphy, wdev))
2470			cfg80211_leave(rdev, wdev);
2471	wiphy_unlock(wiphy);
2472}
2473
2474static void reg_check_chans_work(struct work_struct *work)
2475{
2476	struct cfg80211_registered_device *rdev;
2477
2478	pr_debug("Verifying active interfaces after reg change\n");
2479	rtnl_lock();
2480
2481	for_each_rdev(rdev)
2482		reg_leave_invalid_chans(&rdev->wiphy);
2483
2484	rtnl_unlock();
2485}
2486
2487void reg_check_channels(void)
2488{
2489	/*
2490	 * Give usermode a chance to do something nicer (move to another
2491	 * channel, orderly disconnection), before forcing a disconnection.
2492	 */
2493	mod_delayed_work(system_power_efficient_wq,
2494			 &reg_check_chans,
2495			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2496}
2497
2498static void wiphy_update_regulatory(struct wiphy *wiphy,
2499				    enum nl80211_reg_initiator initiator)
2500{
2501	enum nl80211_band band;
2502	struct regulatory_request *lr = get_last_request();
2503
2504	if (ignore_reg_update(wiphy, initiator)) {
2505		/*
2506		 * Regulatory updates set by CORE are ignored for custom
2507		 * regulatory cards. Let us notify the changes to the driver,
2508		 * as some drivers used this to restore its orig_* reg domain.
2509		 */
2510		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2511		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2512		    !(wiphy->regulatory_flags &
2513		      REGULATORY_WIPHY_SELF_MANAGED))
2514			reg_call_notifier(wiphy, lr);
2515		return;
2516	}
2517
2518	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2519
2520	for (band = 0; band < NUM_NL80211_BANDS; band++)
2521		handle_band(wiphy, initiator, wiphy->bands[band]);
2522
2523	reg_process_beacons(wiphy);
2524	reg_process_ht_flags(wiphy);
2525	reg_call_notifier(wiphy, lr);
2526}
2527
2528static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2529{
2530	struct cfg80211_registered_device *rdev;
2531	struct wiphy *wiphy;
2532
2533	ASSERT_RTNL();
2534
2535	for_each_rdev(rdev) {
2536		wiphy = &rdev->wiphy;
2537		wiphy_update_regulatory(wiphy, initiator);
2538	}
2539
2540	reg_check_channels();
2541}
2542
2543static void handle_channel_custom(struct wiphy *wiphy,
2544				  struct ieee80211_channel *chan,
2545				  const struct ieee80211_regdomain *regd,
2546				  u32 min_bw)
2547{
2548	u32 bw_flags = 0;
2549	const struct ieee80211_reg_rule *reg_rule = NULL;
2550	const struct ieee80211_power_rule *power_rule = NULL;
2551	u32 bw, center_freq_khz;
 
2552
2553	center_freq_khz = ieee80211_channel_to_khz(chan);
2554	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2555		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2556		if (!IS_ERR(reg_rule))
2557			break;
2558	}
2559
2560	if (IS_ERR_OR_NULL(reg_rule)) {
2561		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2562			 chan->center_freq, chan->freq_offset);
2563		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2564			chan->flags |= IEEE80211_CHAN_DISABLED;
2565		} else {
2566			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2567			chan->flags = chan->orig_flags;
2568		}
2569		return;
2570	}
2571
2572	power_rule = &reg_rule->power_rule;
2573	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2574
2575	chan->dfs_state_entered = jiffies;
2576	chan->dfs_state = NL80211_DFS_USABLE;
2577
2578	chan->beacon_found = false;
 
 
 
2579
2580	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581		chan->flags = chan->orig_flags | bw_flags |
2582			      map_regdom_flags(reg_rule->flags);
2583	else
2584		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
 
2585
 
2586	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2587	chan->max_reg_power = chan->max_power =
2588		(int) MBM_TO_DBM(power_rule->max_eirp);
2589
2590	if (chan->flags & IEEE80211_CHAN_RADAR) {
2591		if (reg_rule->dfs_cac_ms)
2592			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2593		else
2594			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2595	}
2596
2597	if (chan->flags & IEEE80211_CHAN_PSD)
2598		chan->psd = reg_rule->psd;
2599
2600	chan->max_power = chan->max_reg_power;
2601}
2602
2603static void handle_band_custom(struct wiphy *wiphy,
2604			       struct ieee80211_supported_band *sband,
2605			       const struct ieee80211_regdomain *regd)
2606{
2607	unsigned int i;
2608
2609	if (!sband)
2610		return;
2611
2612	/*
2613	 * We currently assume that you always want at least 20 MHz,
2614	 * otherwise channel 12 might get enabled if this rule is
2615	 * compatible to US, which permits 2402 - 2472 MHz.
2616	 */
2617	for (i = 0; i < sband->n_channels; i++)
2618		handle_channel_custom(wiphy, &sband->channels[i], regd,
2619				      MHZ_TO_KHZ(20));
2620}
2621
2622/* Used by drivers prior to wiphy registration */
2623void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2624				   const struct ieee80211_regdomain *regd)
2625{
2626	const struct ieee80211_regdomain *new_regd, *tmp;
2627	enum nl80211_band band;
2628	unsigned int bands_set = 0;
2629
2630	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2631	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2632	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2633
2634	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2635		if (!wiphy->bands[band])
2636			continue;
2637		handle_band_custom(wiphy, wiphy->bands[band], regd);
2638		bands_set++;
2639	}
2640
2641	/*
2642	 * no point in calling this if it won't have any effect
2643	 * on your device's supported bands.
2644	 */
2645	WARN_ON(!bands_set);
2646	new_regd = reg_copy_regd(regd);
2647	if (IS_ERR(new_regd))
2648		return;
2649
2650	rtnl_lock();
2651	wiphy_lock(wiphy);
2652
2653	tmp = get_wiphy_regdom(wiphy);
2654	rcu_assign_pointer(wiphy->regd, new_regd);
2655	rcu_free_regdom(tmp);
2656
2657	wiphy_unlock(wiphy);
2658	rtnl_unlock();
2659}
2660EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661
2662static void reg_set_request_processed(void)
2663{
2664	bool need_more_processing = false;
2665	struct regulatory_request *lr = get_last_request();
2666
2667	lr->processed = true;
2668
2669	spin_lock(&reg_requests_lock);
2670	if (!list_empty(&reg_requests_list))
2671		need_more_processing = true;
2672	spin_unlock(&reg_requests_lock);
2673
2674	cancel_crda_timeout();
 
2675
2676	if (need_more_processing)
2677		schedule_work(&reg_work);
2678}
2679
2680/**
2681 * reg_process_hint_core - process core regulatory requests
2682 * @core_request: a pending core regulatory request
2683 *
2684 * The wireless subsystem can use this function to process
2685 * a regulatory request issued by the regulatory core.
2686 *
2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688 *	hint was processed or ignored
2689 */
2690static enum reg_request_treatment
2691reg_process_hint_core(struct regulatory_request *core_request)
2692{
2693	if (reg_query_database(core_request)) {
2694		core_request->intersect = false;
2695		core_request->processed = false;
2696		reg_update_last_request(core_request);
2697		return REG_REQ_OK;
2698	}
2699
2700	return REG_REQ_IGNORE;
 
 
 
 
 
2701}
2702
2703static enum reg_request_treatment
2704__reg_process_hint_user(struct regulatory_request *user_request)
2705{
2706	struct regulatory_request *lr = get_last_request();
2707
2708	if (reg_request_cell_base(user_request))
2709		return reg_ignore_cell_hint(user_request);
2710
2711	if (reg_request_cell_base(lr))
2712		return REG_REQ_IGNORE;
2713
2714	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715		return REG_REQ_INTERSECT;
2716	/*
2717	 * If the user knows better the user should set the regdom
2718	 * to their country before the IE is picked up
2719	 */
2720	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721	    lr->intersect)
2722		return REG_REQ_IGNORE;
2723	/*
2724	 * Process user requests only after previous user/driver/core
2725	 * requests have been processed
2726	 */
2727	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730	    regdom_changes(lr->alpha2))
2731		return REG_REQ_IGNORE;
2732
2733	if (!regdom_changes(user_request->alpha2))
2734		return REG_REQ_ALREADY_SET;
2735
2736	return REG_REQ_OK;
2737}
2738
2739/**
2740 * reg_process_hint_user - process user regulatory requests
2741 * @user_request: a pending user regulatory request
2742 *
2743 * The wireless subsystem can use this function to process
2744 * a regulatory request initiated by userspace.
2745 *
2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747 *	hint was processed or ignored
2748 */
2749static enum reg_request_treatment
2750reg_process_hint_user(struct regulatory_request *user_request)
2751{
2752	enum reg_request_treatment treatment;
2753
2754	treatment = __reg_process_hint_user(user_request);
2755	if (treatment == REG_REQ_IGNORE ||
2756	    treatment == REG_REQ_ALREADY_SET)
2757		return REG_REQ_IGNORE;
 
 
2758
2759	user_request->intersect = treatment == REG_REQ_INTERSECT;
2760	user_request->processed = false;
2761
2762	if (reg_query_database(user_request)) {
2763		reg_update_last_request(user_request);
2764		user_alpha2[0] = user_request->alpha2[0];
2765		user_alpha2[1] = user_request->alpha2[1];
2766		return REG_REQ_OK;
2767	}
2768
2769	return REG_REQ_IGNORE;
 
 
 
2770}
2771
2772static enum reg_request_treatment
2773__reg_process_hint_driver(struct regulatory_request *driver_request)
2774{
2775	struct regulatory_request *lr = get_last_request();
2776
2777	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778		if (regdom_changes(driver_request->alpha2))
2779			return REG_REQ_OK;
2780		return REG_REQ_ALREADY_SET;
2781	}
2782
2783	/*
2784	 * This would happen if you unplug and plug your card
2785	 * back in or if you add a new device for which the previously
2786	 * loaded card also agrees on the regulatory domain.
2787	 */
2788	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789	    !regdom_changes(driver_request->alpha2))
2790		return REG_REQ_ALREADY_SET;
2791
2792	return REG_REQ_INTERSECT;
2793}
2794
2795/**
2796 * reg_process_hint_driver - process driver regulatory requests
2797 * @wiphy: the wireless device for the regulatory request
2798 * @driver_request: a pending driver regulatory request
2799 *
2800 * The wireless subsystem can use this function to process
2801 * a regulatory request issued by an 802.11 driver.
2802 *
2803 * Returns: one of the different reg request treatment values.
2804 */
2805static enum reg_request_treatment
2806reg_process_hint_driver(struct wiphy *wiphy,
2807			struct regulatory_request *driver_request)
2808{
2809	const struct ieee80211_regdomain *regd, *tmp;
2810	enum reg_request_treatment treatment;
2811
2812	treatment = __reg_process_hint_driver(driver_request);
2813
2814	switch (treatment) {
2815	case REG_REQ_OK:
2816		break;
2817	case REG_REQ_IGNORE:
2818		return REG_REQ_IGNORE;
 
2819	case REG_REQ_INTERSECT:
 
2820	case REG_REQ_ALREADY_SET:
2821		regd = reg_copy_regd(get_cfg80211_regdom());
2822		if (IS_ERR(regd))
 
2823			return REG_REQ_IGNORE;
2824
2825		tmp = get_wiphy_regdom(wiphy);
2826		ASSERT_RTNL();
2827		wiphy_lock(wiphy);
2828		rcu_assign_pointer(wiphy->regd, regd);
2829		wiphy_unlock(wiphy);
2830		rcu_free_regdom(tmp);
2831	}
2832
2833
2834	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835	driver_request->processed = false;
2836
 
 
2837	/*
2838	 * Since CRDA will not be called in this case as we already
2839	 * have applied the requested regulatory domain before we just
2840	 * inform userspace we have processed the request
2841	 */
2842	if (treatment == REG_REQ_ALREADY_SET) {
2843		nl80211_send_reg_change_event(driver_request);
2844		reg_update_last_request(driver_request);
2845		reg_set_request_processed();
2846		return REG_REQ_ALREADY_SET;
2847	}
2848
2849	if (reg_query_database(driver_request)) {
2850		reg_update_last_request(driver_request);
2851		return REG_REQ_OK;
2852	}
2853
2854	return REG_REQ_IGNORE;
2855}
2856
2857static enum reg_request_treatment
2858__reg_process_hint_country_ie(struct wiphy *wiphy,
2859			      struct regulatory_request *country_ie_request)
2860{
2861	struct wiphy *last_wiphy = NULL;
2862	struct regulatory_request *lr = get_last_request();
2863
2864	if (reg_request_cell_base(lr)) {
2865		/* Trust a Cell base station over the AP's country IE */
2866		if (regdom_changes(country_ie_request->alpha2))
2867			return REG_REQ_IGNORE;
2868		return REG_REQ_ALREADY_SET;
2869	} else {
2870		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871			return REG_REQ_IGNORE;
2872	}
2873
2874	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875		return -EINVAL;
2876
2877	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878		return REG_REQ_OK;
2879
2880	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881
2882	if (last_wiphy != wiphy) {
2883		/*
2884		 * Two cards with two APs claiming different
2885		 * Country IE alpha2s. We could
2886		 * intersect them, but that seems unlikely
2887		 * to be correct. Reject second one for now.
2888		 */
2889		if (regdom_changes(country_ie_request->alpha2))
2890			return REG_REQ_IGNORE;
2891		return REG_REQ_ALREADY_SET;
2892	}
2893
2894	if (regdom_changes(country_ie_request->alpha2))
 
 
 
2895		return REG_REQ_OK;
2896	return REG_REQ_ALREADY_SET;
2897}
2898
2899/**
2900 * reg_process_hint_country_ie - process regulatory requests from country IEs
2901 * @wiphy: the wireless device for the regulatory request
2902 * @country_ie_request: a regulatory request from a country IE
2903 *
2904 * The wireless subsystem can use this function to process
2905 * a regulatory request issued by a country Information Element.
2906 *
2907 * Returns: one of the different reg request treatment values.
2908 */
2909static enum reg_request_treatment
2910reg_process_hint_country_ie(struct wiphy *wiphy,
2911			    struct regulatory_request *country_ie_request)
2912{
2913	enum reg_request_treatment treatment;
2914
2915	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916
2917	switch (treatment) {
2918	case REG_REQ_OK:
2919		break;
2920	case REG_REQ_IGNORE:
2921		return REG_REQ_IGNORE;
2922	case REG_REQ_ALREADY_SET:
2923		reg_free_request(country_ie_request);
2924		return REG_REQ_ALREADY_SET;
2925	case REG_REQ_INTERSECT:
 
2926		/*
2927		 * This doesn't happen yet, not sure we
2928		 * ever want to support it for this case.
2929		 */
2930		WARN_ONCE(1, "Unexpected intersection for country elements");
2931		return REG_REQ_IGNORE;
2932	}
2933
2934	country_ie_request->intersect = false;
2935	country_ie_request->processed = false;
2936
2937	if (reg_query_database(country_ie_request)) {
2938		reg_update_last_request(country_ie_request);
2939		return REG_REQ_OK;
2940	}
2941
2942	return REG_REQ_IGNORE;
2943}
2944
2945bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946{
2947	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950	bool dfs_domain_same;
2951
2952	rcu_read_lock();
2953
2954	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955	wiphy1_regd = rcu_dereference(wiphy1->regd);
2956	if (!wiphy1_regd)
2957		wiphy1_regd = cfg80211_regd;
2958
2959	wiphy2_regd = rcu_dereference(wiphy2->regd);
2960	if (!wiphy2_regd)
2961		wiphy2_regd = cfg80211_regd;
2962
2963	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964
2965	rcu_read_unlock();
2966
2967	return dfs_domain_same;
2968}
2969
2970static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971				    struct ieee80211_channel *src_chan)
2972{
2973	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975		return;
2976
2977	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2979		return;
2980
2981	if (src_chan->center_freq == dst_chan->center_freq &&
2982	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983		dst_chan->dfs_state = src_chan->dfs_state;
2984		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985	}
2986}
2987
2988static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989				       struct wiphy *src_wiphy)
2990{
2991	struct ieee80211_supported_band *src_sband, *dst_sband;
2992	struct ieee80211_channel *src_chan, *dst_chan;
2993	int i, j, band;
2994
2995	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996		return;
2997
2998	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999		dst_sband = dst_wiphy->bands[band];
3000		src_sband = src_wiphy->bands[band];
3001		if (!dst_sband || !src_sband)
3002			continue;
3003
3004		for (i = 0; i < dst_sband->n_channels; i++) {
3005			dst_chan = &dst_sband->channels[i];
3006			for (j = 0; j < src_sband->n_channels; j++) {
3007				src_chan = &src_sband->channels[j];
3008				reg_copy_dfs_chan_state(dst_chan, src_chan);
3009			}
3010		}
3011	}
3012}
3013
3014static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015{
3016	struct cfg80211_registered_device *rdev;
3017
3018	ASSERT_RTNL();
3019
3020	for_each_rdev(rdev) {
3021		if (wiphy == &rdev->wiphy)
3022			continue;
3023		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024	}
3025}
3026
3027/* This processes *all* regulatory hints */
3028static void reg_process_hint(struct regulatory_request *reg_request)
3029{
3030	struct wiphy *wiphy = NULL;
3031	enum reg_request_treatment treatment;
3032	enum nl80211_reg_initiator initiator = reg_request->initiator;
3033
3034	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036
3037	switch (initiator) {
3038	case NL80211_REGDOM_SET_BY_CORE:
3039		treatment = reg_process_hint_core(reg_request);
3040		break;
3041	case NL80211_REGDOM_SET_BY_USER:
3042		treatment = reg_process_hint_user(reg_request);
3043		break;
 
 
 
 
 
3044	case NL80211_REGDOM_SET_BY_DRIVER:
3045		if (!wiphy)
3046			goto out_free;
3047		treatment = reg_process_hint_driver(wiphy, reg_request);
3048		break;
3049	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050		if (!wiphy)
3051			goto out_free;
3052		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053		break;
3054	default:
3055		WARN(1, "invalid initiator %d\n", initiator);
3056		goto out_free;
3057	}
3058
3059	if (treatment == REG_REQ_IGNORE)
3060		goto out_free;
3061
3062	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063	     "unexpected treatment value %d\n", treatment);
3064
3065	/* This is required so that the orig_* parameters are saved.
3066	 * NOTE: treatment must be set for any case that reaches here!
3067	 */
3068	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070		wiphy_update_regulatory(wiphy, initiator);
3071		wiphy_all_share_dfs_chan_state(wiphy);
3072		reg_check_channels();
3073	}
3074
3075	return;
3076
3077out_free:
3078	reg_free_request(reg_request);
3079}
3080
3081static void notify_self_managed_wiphys(struct regulatory_request *request)
3082{
3083	struct cfg80211_registered_device *rdev;
3084	struct wiphy *wiphy;
3085
3086	for_each_rdev(rdev) {
3087		wiphy = &rdev->wiphy;
3088		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3090			reg_call_notifier(wiphy, request);
3091	}
3092}
3093
3094/*
3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096 * Regulatory hints come on a first come first serve basis and we
3097 * must process each one atomically.
3098 */
3099static void reg_process_pending_hints(void)
3100{
3101	struct regulatory_request *reg_request, *lr;
3102
3103	lr = get_last_request();
3104
3105	/* When last_request->processed becomes true this will be rescheduled */
3106	if (lr && !lr->processed) {
3107		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108		return;
3109	}
3110
3111	spin_lock(&reg_requests_lock);
3112
3113	if (list_empty(&reg_requests_list)) {
3114		spin_unlock(&reg_requests_lock);
3115		return;
3116	}
3117
3118	reg_request = list_first_entry(&reg_requests_list,
3119				       struct regulatory_request,
3120				       list);
3121	list_del_init(&reg_request->list);
3122
3123	spin_unlock(&reg_requests_lock);
3124
3125	notify_self_managed_wiphys(reg_request);
3126
3127	reg_process_hint(reg_request);
3128
3129	lr = get_last_request();
3130
3131	spin_lock(&reg_requests_lock);
3132	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3133		schedule_work(&reg_work);
3134	spin_unlock(&reg_requests_lock);
3135}
3136
3137/* Processes beacon hints -- this has nothing to do with country IEs */
3138static void reg_process_pending_beacon_hints(void)
3139{
3140	struct cfg80211_registered_device *rdev;
3141	struct reg_beacon *pending_beacon, *tmp;
3142
3143	/* This goes through the _pending_ beacon list */
3144	spin_lock_bh(&reg_pending_beacons_lock);
3145
3146	list_for_each_entry_safe(pending_beacon, tmp,
3147				 &reg_pending_beacons, list) {
3148		list_del_init(&pending_beacon->list);
3149
3150		/* Applies the beacon hint to current wiphys */
3151		for_each_rdev(rdev)
3152			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153
3154		/* Remembers the beacon hint for new wiphys or reg changes */
3155		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3156	}
3157
3158	spin_unlock_bh(&reg_pending_beacons_lock);
3159}
3160
3161static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162{
3163	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3164	const struct ieee80211_regdomain *tmp;
3165	const struct ieee80211_regdomain *regd;
3166	enum nl80211_band band;
3167	struct regulatory_request request = {};
3168
3169	ASSERT_RTNL();
3170	lockdep_assert_wiphy(wiphy);
3171
3172	spin_lock(&reg_requests_lock);
3173	regd = rdev->requested_regd;
3174	rdev->requested_regd = NULL;
3175	spin_unlock(&reg_requests_lock);
3176
3177	if (!regd)
3178		return;
3179
3180	tmp = get_wiphy_regdom(wiphy);
3181	rcu_assign_pointer(wiphy->regd, regd);
3182	rcu_free_regdom(tmp);
3183
3184	for (band = 0; band < NUM_NL80211_BANDS; band++)
3185		handle_band_custom(wiphy, wiphy->bands[band], regd);
3186
3187	reg_process_ht_flags(wiphy);
3188
3189	request.wiphy_idx = get_wiphy_idx(wiphy);
3190	request.alpha2[0] = regd->alpha2[0];
3191	request.alpha2[1] = regd->alpha2[1];
3192	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193
3194	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195		reg_call_notifier(wiphy, &request);
3196
3197	nl80211_send_wiphy_reg_change_event(&request);
3198}
3199
3200static void reg_process_self_managed_hints(void)
3201{
3202	struct cfg80211_registered_device *rdev;
3203
3204	ASSERT_RTNL();
3205
3206	for_each_rdev(rdev) {
3207		wiphy_lock(&rdev->wiphy);
3208		reg_process_self_managed_hint(&rdev->wiphy);
3209		wiphy_unlock(&rdev->wiphy);
3210	}
3211
3212	reg_check_channels();
3213}
3214
3215static void reg_todo(struct work_struct *work)
3216{
3217	rtnl_lock();
3218	reg_process_pending_hints();
3219	reg_process_pending_beacon_hints();
3220	reg_process_self_managed_hints();
3221	rtnl_unlock();
3222}
3223
3224static void queue_regulatory_request(struct regulatory_request *request)
3225{
3226	request->alpha2[0] = toupper(request->alpha2[0]);
3227	request->alpha2[1] = toupper(request->alpha2[1]);
3228
3229	spin_lock(&reg_requests_lock);
3230	list_add_tail(&request->list, &reg_requests_list);
3231	spin_unlock(&reg_requests_lock);
3232
3233	schedule_work(&reg_work);
3234}
3235
3236/*
3237 * Core regulatory hint -- happens during cfg80211_init()
3238 * and when we restore regulatory settings.
3239 */
3240static int regulatory_hint_core(const char *alpha2)
3241{
3242	struct regulatory_request *request;
3243
3244	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245	if (!request)
3246		return -ENOMEM;
3247
3248	request->alpha2[0] = alpha2[0];
3249	request->alpha2[1] = alpha2[1];
3250	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251	request->wiphy_idx = WIPHY_IDX_INVALID;
3252
3253	queue_regulatory_request(request);
3254
3255	return 0;
3256}
3257
3258/* User hints */
3259int regulatory_hint_user(const char *alpha2,
3260			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3261{
3262	struct regulatory_request *request;
3263
3264	if (WARN_ON(!alpha2))
3265		return -EINVAL;
3266
3267	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268		return -EINVAL;
3269
3270	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271	if (!request)
3272		return -ENOMEM;
3273
3274	request->wiphy_idx = WIPHY_IDX_INVALID;
3275	request->alpha2[0] = alpha2[0];
3276	request->alpha2[1] = alpha2[1];
3277	request->initiator = NL80211_REGDOM_SET_BY_USER;
3278	request->user_reg_hint_type = user_reg_hint_type;
3279
3280	/* Allow calling CRDA again */
3281	reset_crda_timeouts();
3282
3283	queue_regulatory_request(request);
3284
3285	return 0;
3286}
3287
3288int regulatory_hint_indoor(bool is_indoor, u32 portid)
3289{
3290	spin_lock(&reg_indoor_lock);
3291
3292	/* It is possible that more than one user space process is trying to
3293	 * configure the indoor setting. To handle such cases, clear the indoor
3294	 * setting in case that some process does not think that the device
3295	 * is operating in an indoor environment. In addition, if a user space
3296	 * process indicates that it is controlling the indoor setting, save its
3297	 * portid, i.e., make it the owner.
3298	 */
3299	reg_is_indoor = is_indoor;
3300	if (reg_is_indoor) {
3301		if (!reg_is_indoor_portid)
3302			reg_is_indoor_portid = portid;
3303	} else {
3304		reg_is_indoor_portid = 0;
3305	}
3306
3307	spin_unlock(&reg_indoor_lock);
3308
3309	if (!is_indoor)
3310		reg_check_channels();
3311
3312	return 0;
3313}
3314
3315void regulatory_netlink_notify(u32 portid)
3316{
3317	spin_lock(&reg_indoor_lock);
3318
3319	if (reg_is_indoor_portid != portid) {
3320		spin_unlock(&reg_indoor_lock);
3321		return;
3322	}
3323
3324	reg_is_indoor = false;
3325	reg_is_indoor_portid = 0;
3326
3327	spin_unlock(&reg_indoor_lock);
3328
3329	reg_check_channels();
3330}
3331
3332/* Driver hints */
3333int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334{
3335	struct regulatory_request *request;
3336
3337	if (WARN_ON(!alpha2 || !wiphy))
3338		return -EINVAL;
3339
3340	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341
3342	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343	if (!request)
3344		return -ENOMEM;
3345
3346	request->wiphy_idx = get_wiphy_idx(wiphy);
3347
3348	request->alpha2[0] = alpha2[0];
3349	request->alpha2[1] = alpha2[1];
3350	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351
3352	/* Allow calling CRDA again */
3353	reset_crda_timeouts();
3354
3355	queue_regulatory_request(request);
3356
3357	return 0;
3358}
3359EXPORT_SYMBOL(regulatory_hint);
3360
3361void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362				const u8 *country_ie, u8 country_ie_len)
3363{
3364	char alpha2[2];
3365	enum environment_cap env = ENVIRON_ANY;
3366	struct regulatory_request *request = NULL, *lr;
3367
3368	/* IE len must be evenly divisible by 2 */
3369	if (country_ie_len & 0x01)
3370		return;
3371
3372	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373		return;
3374
3375	request = kzalloc(sizeof(*request), GFP_KERNEL);
3376	if (!request)
3377		return;
3378
3379	alpha2[0] = country_ie[0];
3380	alpha2[1] = country_ie[1];
3381
3382	if (country_ie[2] == 'I')
3383		env = ENVIRON_INDOOR;
3384	else if (country_ie[2] == 'O')
3385		env = ENVIRON_OUTDOOR;
3386
3387	rcu_read_lock();
3388	lr = get_last_request();
3389
3390	if (unlikely(!lr))
3391		goto out;
3392
3393	/*
3394	 * We will run this only upon a successful connection on cfg80211.
3395	 * We leave conflict resolution to the workqueue, where can hold
3396	 * the RTNL.
3397	 */
3398	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3400		goto out;
3401
3402	request->wiphy_idx = get_wiphy_idx(wiphy);
3403	request->alpha2[0] = alpha2[0];
3404	request->alpha2[1] = alpha2[1];
3405	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406	request->country_ie_env = env;
3407
3408	/* Allow calling CRDA again */
3409	reset_crda_timeouts();
3410
3411	queue_regulatory_request(request);
3412	request = NULL;
3413out:
3414	kfree(request);
3415	rcu_read_unlock();
3416}
3417
3418static void restore_alpha2(char *alpha2, bool reset_user)
3419{
3420	/* indicates there is no alpha2 to consider for restoration */
3421	alpha2[0] = '9';
3422	alpha2[1] = '7';
3423
3424	/* The user setting has precedence over the module parameter */
3425	if (is_user_regdom_saved()) {
3426		/* Unless we're asked to ignore it and reset it */
3427		if (reset_user) {
3428			pr_debug("Restoring regulatory settings including user preference\n");
3429			user_alpha2[0] = '9';
3430			user_alpha2[1] = '7';
3431
3432			/*
3433			 * If we're ignoring user settings, we still need to
3434			 * check the module parameter to ensure we put things
3435			 * back as they were for a full restore.
3436			 */
3437			if (!is_world_regdom(ieee80211_regdom)) {
3438				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439					 ieee80211_regdom[0], ieee80211_regdom[1]);
3440				alpha2[0] = ieee80211_regdom[0];
3441				alpha2[1] = ieee80211_regdom[1];
3442			}
3443		} else {
3444			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445				 user_alpha2[0], user_alpha2[1]);
3446			alpha2[0] = user_alpha2[0];
3447			alpha2[1] = user_alpha2[1];
3448		}
3449	} else if (!is_world_regdom(ieee80211_regdom)) {
3450		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451			 ieee80211_regdom[0], ieee80211_regdom[1]);
3452		alpha2[0] = ieee80211_regdom[0];
3453		alpha2[1] = ieee80211_regdom[1];
3454	} else
3455		pr_debug("Restoring regulatory settings\n");
3456}
3457
3458static void restore_custom_reg_settings(struct wiphy *wiphy)
3459{
3460	struct ieee80211_supported_band *sband;
3461	enum nl80211_band band;
3462	struct ieee80211_channel *chan;
3463	int i;
3464
3465	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466		sband = wiphy->bands[band];
3467		if (!sband)
3468			continue;
3469		for (i = 0; i < sband->n_channels; i++) {
3470			chan = &sband->channels[i];
3471			chan->flags = chan->orig_flags;
3472			chan->max_antenna_gain = chan->orig_mag;
3473			chan->max_power = chan->orig_mpwr;
3474			chan->beacon_found = false;
3475		}
3476	}
3477}
3478
3479/*
3480 * Restoring regulatory settings involves ignoring any
3481 * possibly stale country IE information and user regulatory
3482 * settings if so desired, this includes any beacon hints
3483 * learned as we could have traveled outside to another country
3484 * after disconnection. To restore regulatory settings we do
3485 * exactly what we did at bootup:
3486 *
3487 *   - send a core regulatory hint
3488 *   - send a user regulatory hint if applicable
3489 *
3490 * Device drivers that send a regulatory hint for a specific country
3491 * keep their own regulatory domain on wiphy->regd so that does
3492 * not need to be remembered.
3493 */
3494static void restore_regulatory_settings(bool reset_user, bool cached)
3495{
3496	char alpha2[2];
3497	char world_alpha2[2];
3498	struct reg_beacon *reg_beacon, *btmp;
 
3499	LIST_HEAD(tmp_reg_req_list);
3500	struct cfg80211_registered_device *rdev;
3501
3502	ASSERT_RTNL();
3503
3504	/*
3505	 * Clear the indoor setting in case that it is not controlled by user
3506	 * space, as otherwise there is no guarantee that the device is still
3507	 * operating in an indoor environment.
3508	 */
3509	spin_lock(&reg_indoor_lock);
3510	if (reg_is_indoor && !reg_is_indoor_portid) {
3511		reg_is_indoor = false;
3512		reg_check_channels();
3513	}
3514	spin_unlock(&reg_indoor_lock);
3515
3516	reset_regdomains(true, &world_regdom);
3517	restore_alpha2(alpha2, reset_user);
3518
3519	/*
3520	 * If there's any pending requests we simply
3521	 * stash them to a temporary pending queue and
3522	 * add then after we've restored regulatory
3523	 * settings.
3524	 */
3525	spin_lock(&reg_requests_lock);
3526	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
 
 
 
 
3527	spin_unlock(&reg_requests_lock);
3528
3529	/* Clear beacon hints */
3530	spin_lock_bh(&reg_pending_beacons_lock);
3531	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3532		list_del(&reg_beacon->list);
3533		kfree(reg_beacon);
3534	}
3535	spin_unlock_bh(&reg_pending_beacons_lock);
3536
3537	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3538		list_del(&reg_beacon->list);
3539		kfree(reg_beacon);
3540	}
3541
3542	/* First restore to the basic regulatory settings */
3543	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545
3546	for_each_rdev(rdev) {
3547		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548			continue;
3549		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550			restore_custom_reg_settings(&rdev->wiphy);
3551	}
3552
3553	if (cached && (!is_an_alpha2(alpha2) ||
3554		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555		reset_regdomains(false, cfg80211_world_regdom);
3556		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557		print_regdomain(get_cfg80211_regdom());
3558		nl80211_send_reg_change_event(&core_request_world);
3559		reg_set_request_processed();
3560
3561		if (is_an_alpha2(alpha2) &&
3562		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563			struct regulatory_request *ureq;
3564
3565			spin_lock(&reg_requests_lock);
3566			ureq = list_last_entry(&reg_requests_list,
3567					       struct regulatory_request,
3568					       list);
3569			list_del(&ureq->list);
3570			spin_unlock(&reg_requests_lock);
3571
3572			notify_self_managed_wiphys(ureq);
3573			reg_update_last_request(ureq);
3574			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575				   REGD_SOURCE_CACHED);
3576		}
3577	} else {
3578		regulatory_hint_core(world_alpha2);
3579
3580		/*
3581		 * This restores the ieee80211_regdom module parameter
3582		 * preference or the last user requested regulatory
3583		 * settings, user regulatory settings takes precedence.
3584		 */
3585		if (is_an_alpha2(alpha2))
3586			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587	}
3588
3589	spin_lock(&reg_requests_lock);
3590	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3591	spin_unlock(&reg_requests_lock);
3592
3593	pr_debug("Kicking the queue\n");
3594
3595	schedule_work(&reg_work);
3596}
3597
3598static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599{
3600	struct cfg80211_registered_device *rdev;
3601	struct wireless_dev *wdev;
3602
3603	for_each_rdev(rdev) {
3604		wiphy_lock(&rdev->wiphy);
3605		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3606			if (!(wdev->wiphy->regulatory_flags & flag)) {
3607				wiphy_unlock(&rdev->wiphy);
3608				return false;
3609			}
3610		}
3611		wiphy_unlock(&rdev->wiphy);
3612	}
3613
3614	return true;
3615}
3616
3617void regulatory_hint_disconnect(void)
3618{
3619	/* Restore of regulatory settings is not required when wiphy(s)
3620	 * ignore IE from connected access point but clearance of beacon hints
3621	 * is required when wiphy(s) supports beacon hints.
3622	 */
3623	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3624		struct reg_beacon *reg_beacon, *btmp;
3625
3626		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3627			return;
3628
3629		spin_lock_bh(&reg_pending_beacons_lock);
3630		list_for_each_entry_safe(reg_beacon, btmp,
3631					 &reg_pending_beacons, list) {
3632			list_del(&reg_beacon->list);
3633			kfree(reg_beacon);
3634		}
3635		spin_unlock_bh(&reg_pending_beacons_lock);
3636
3637		list_for_each_entry_safe(reg_beacon, btmp,
3638					 &reg_beacon_list, list) {
3639			list_del(&reg_beacon->list);
3640			kfree(reg_beacon);
3641		}
3642
3643		return;
3644	}
3645
3646	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3647	restore_regulatory_settings(false, true);
3648}
3649
3650static bool freq_is_chan_12_13_14(u32 freq)
3651{
3652	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3653	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3654	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3655		return true;
3656	return false;
3657}
3658
3659static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3660{
3661	struct reg_beacon *pending_beacon;
3662
3663	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3664		if (ieee80211_channel_equal(beacon_chan,
3665					    &pending_beacon->chan))
3666			return true;
3667	return false;
3668}
3669
3670int regulatory_hint_found_beacon(struct wiphy *wiphy,
3671				 struct ieee80211_channel *beacon_chan,
3672				 gfp_t gfp)
3673{
3674	struct reg_beacon *reg_beacon;
3675	bool processing;
3676
3677	if (beacon_chan->beacon_found ||
3678	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3679	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3680	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3681		return 0;
3682
3683	spin_lock_bh(&reg_pending_beacons_lock);
3684	processing = pending_reg_beacon(beacon_chan);
3685	spin_unlock_bh(&reg_pending_beacons_lock);
3686
3687	if (processing)
3688		return 0;
3689
3690	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3691	if (!reg_beacon)
3692		return -ENOMEM;
3693
3694	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3695		 beacon_chan->center_freq, beacon_chan->freq_offset,
3696		 ieee80211_freq_khz_to_channel(
3697			 ieee80211_channel_to_khz(beacon_chan)),
3698		 wiphy_name(wiphy));
3699
3700	memcpy(&reg_beacon->chan, beacon_chan,
3701	       sizeof(struct ieee80211_channel));
3702
3703	/*
3704	 * Since we can be called from BH or and non-BH context
3705	 * we must use spin_lock_bh()
3706	 */
3707	spin_lock_bh(&reg_pending_beacons_lock);
3708	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3709	spin_unlock_bh(&reg_pending_beacons_lock);
3710
3711	schedule_work(&reg_work);
3712
3713	return 0;
3714}
3715
3716static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717{
3718	unsigned int i;
3719	const struct ieee80211_reg_rule *reg_rule = NULL;
3720	const struct ieee80211_freq_range *freq_range = NULL;
3721	const struct ieee80211_power_rule *power_rule = NULL;
3722	char bw[32], cac_time[32];
3723
3724	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725
3726	for (i = 0; i < rd->n_reg_rules; i++) {
3727		reg_rule = &rd->reg_rules[i];
3728		freq_range = &reg_rule->freq_range;
3729		power_rule = &reg_rule->power_rule;
3730
3731		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733				 freq_range->max_bandwidth_khz,
3734				 reg_get_max_bandwidth(rd, reg_rule));
3735		else
3736			snprintf(bw, sizeof(bw), "%d KHz",
3737				 freq_range->max_bandwidth_khz);
3738
3739		if (reg_rule->flags & NL80211_RRF_DFS)
3740			scnprintf(cac_time, sizeof(cac_time), "%u s",
3741				  reg_rule->dfs_cac_ms/1000);
3742		else
3743			scnprintf(cac_time, sizeof(cac_time), "N/A");
3744
3745
3746		/*
3747		 * There may not be documentation for max antenna gain
3748		 * in certain regions
3749		 */
3750		if (power_rule->max_antenna_gain)
3751			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752				freq_range->start_freq_khz,
3753				freq_range->end_freq_khz,
3754				bw,
3755				power_rule->max_antenna_gain,
3756				power_rule->max_eirp,
3757				cac_time);
3758		else
3759			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760				freq_range->start_freq_khz,
3761				freq_range->end_freq_khz,
3762				bw,
3763				power_rule->max_eirp,
3764				cac_time);
3765	}
3766}
3767
3768bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769{
3770	switch (dfs_region) {
3771	case NL80211_DFS_UNSET:
3772	case NL80211_DFS_FCC:
3773	case NL80211_DFS_ETSI:
3774	case NL80211_DFS_JP:
3775		return true;
3776	default:
3777		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
 
3778		return false;
3779	}
3780}
3781
3782static void print_regdomain(const struct ieee80211_regdomain *rd)
3783{
3784	struct regulatory_request *lr = get_last_request();
3785
3786	if (is_intersected_alpha2(rd->alpha2)) {
3787		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788			struct cfg80211_registered_device *rdev;
3789			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790			if (rdev) {
3791				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792					rdev->country_ie_alpha2[0],
3793					rdev->country_ie_alpha2[1]);
3794			} else
3795				pr_debug("Current regulatory domain intersected:\n");
3796		} else
3797			pr_debug("Current regulatory domain intersected:\n");
3798	} else if (is_world_regdom(rd->alpha2)) {
3799		pr_debug("World regulatory domain updated:\n");
3800	} else {
3801		if (is_unknown_alpha2(rd->alpha2))
3802			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803		else {
3804			if (reg_request_cell_base(lr))
3805				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806					rd->alpha2[0], rd->alpha2[1]);
3807			else
3808				pr_debug("Regulatory domain changed to country: %c%c\n",
3809					rd->alpha2[0], rd->alpha2[1]);
3810		}
3811	}
3812
3813	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814	print_rd_rules(rd);
3815}
3816
3817static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818{
3819	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820	print_rd_rules(rd);
3821}
3822
3823static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824{
3825	if (!is_world_regdom(rd->alpha2))
3826		return -EINVAL;
3827	update_world_regdomain(rd);
3828	return 0;
3829}
3830
3831static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832			   struct regulatory_request *user_request)
3833{
3834	const struct ieee80211_regdomain *intersected_rd = NULL;
3835
3836	if (!regdom_changes(rd->alpha2))
3837		return -EALREADY;
3838
3839	if (!is_valid_rd(rd)) {
3840		pr_err("Invalid regulatory domain detected: %c%c\n",
3841		       rd->alpha2[0], rd->alpha2[1]);
3842		print_regdomain_info(rd);
3843		return -EINVAL;
3844	}
3845
3846	if (!user_request->intersect) {
3847		reset_regdomains(false, rd);
3848		return 0;
3849	}
3850
3851	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852	if (!intersected_rd)
3853		return -EINVAL;
3854
3855	kfree(rd);
3856	rd = NULL;
3857	reset_regdomains(false, intersected_rd);
3858
3859	return 0;
3860}
3861
3862static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863			     struct regulatory_request *driver_request)
3864{
3865	const struct ieee80211_regdomain *regd;
3866	const struct ieee80211_regdomain *intersected_rd = NULL;
3867	const struct ieee80211_regdomain *tmp = NULL;
3868	struct wiphy *request_wiphy;
3869
3870	if (is_world_regdom(rd->alpha2))
3871		return -EINVAL;
3872
3873	if (!regdom_changes(rd->alpha2))
3874		return -EALREADY;
3875
3876	if (!is_valid_rd(rd)) {
3877		pr_err("Invalid regulatory domain detected: %c%c\n",
3878		       rd->alpha2[0], rd->alpha2[1]);
3879		print_regdomain_info(rd);
3880		return -EINVAL;
3881	}
3882
3883	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884	if (!request_wiphy)
 
 
3885		return -ENODEV;
 
3886
3887	if (!driver_request->intersect) {
3888		ASSERT_RTNL();
3889		wiphy_lock(request_wiphy);
3890		if (request_wiphy->regd)
3891			tmp = get_wiphy_regdom(request_wiphy);
3892
3893		regd = reg_copy_regd(rd);
3894		if (IS_ERR(regd)) {
3895			wiphy_unlock(request_wiphy);
3896			return PTR_ERR(regd);
3897		}
3898
3899		rcu_assign_pointer(request_wiphy->regd, regd);
3900		rcu_free_regdom(tmp);
3901		wiphy_unlock(request_wiphy);
3902		reset_regdomains(false, rd);
3903		return 0;
3904	}
3905
3906	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907	if (!intersected_rd)
3908		return -EINVAL;
3909
3910	/*
3911	 * We can trash what CRDA provided now.
3912	 * However if a driver requested this specific regulatory
3913	 * domain we keep it for its private use
3914	 */
3915	tmp = get_wiphy_regdom(request_wiphy);
3916	rcu_assign_pointer(request_wiphy->regd, rd);
3917	rcu_free_regdom(tmp);
3918
3919	rd = NULL;
3920
3921	reset_regdomains(false, intersected_rd);
3922
3923	return 0;
3924}
3925
3926static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927				 struct regulatory_request *country_ie_request)
3928{
3929	struct wiphy *request_wiphy;
3930
3931	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932	    !is_unknown_alpha2(rd->alpha2))
3933		return -EINVAL;
3934
3935	/*
3936	 * Lets only bother proceeding on the same alpha2 if the current
3937	 * rd is non static (it means CRDA was present and was used last)
3938	 * and the pending request came in from a country IE
3939	 */
3940
3941	if (!is_valid_rd(rd)) {
3942		pr_err("Invalid regulatory domain detected: %c%c\n",
3943		       rd->alpha2[0], rd->alpha2[1]);
3944		print_regdomain_info(rd);
3945		return -EINVAL;
3946	}
3947
3948	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949	if (!request_wiphy)
 
 
3950		return -ENODEV;
 
3951
3952	if (country_ie_request->intersect)
3953		return -EINVAL;
3954
3955	reset_regdomains(false, rd);
3956	return 0;
3957}
3958
3959/*
3960 * Use this call to set the current regulatory domain. Conflicts with
3961 * multiple drivers can be ironed out later. Caller must've already
3962 * kmalloc'd the rd structure.
3963 */
3964int set_regdom(const struct ieee80211_regdomain *rd,
3965	       enum ieee80211_regd_source regd_src)
3966{
3967	struct regulatory_request *lr;
3968	bool user_reset = false;
3969	int r;
3970
3971	if (IS_ERR_OR_NULL(rd))
3972		return -ENODATA;
3973
3974	if (!reg_is_valid_request(rd->alpha2)) {
3975		kfree(rd);
3976		return -EINVAL;
3977	}
3978
3979	if (regd_src == REGD_SOURCE_CRDA)
3980		reset_crda_timeouts();
3981
3982	lr = get_last_request();
3983
3984	/* Note that this doesn't update the wiphys, this is done below */
3985	switch (lr->initiator) {
3986	case NL80211_REGDOM_SET_BY_CORE:
3987		r = reg_set_rd_core(rd);
3988		break;
3989	case NL80211_REGDOM_SET_BY_USER:
3990		cfg80211_save_user_regdom(rd);
3991		r = reg_set_rd_user(rd, lr);
3992		user_reset = true;
3993		break;
3994	case NL80211_REGDOM_SET_BY_DRIVER:
3995		r = reg_set_rd_driver(rd, lr);
3996		break;
3997	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998		r = reg_set_rd_country_ie(rd, lr);
3999		break;
4000	default:
4001		WARN(1, "invalid initiator %d\n", lr->initiator);
4002		kfree(rd);
4003		return -EINVAL;
4004	}
4005
4006	if (r) {
4007		switch (r) {
4008		case -EALREADY:
4009			reg_set_request_processed();
4010			break;
4011		default:
4012			/* Back to world regulatory in case of errors */
4013			restore_regulatory_settings(user_reset, false);
4014		}
4015
4016		kfree(rd);
4017		return r;
4018	}
4019
4020	/* This would make this whole thing pointless */
4021	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022		return -EINVAL;
4023
4024	/* update all wiphys now with the new established regulatory domain */
4025	update_all_wiphy_regulatory(lr->initiator);
4026
4027	print_regdomain(get_cfg80211_regdom());
4028
4029	nl80211_send_reg_change_event(lr);
4030
4031	reg_set_request_processed();
4032
4033	return 0;
4034}
4035
4036static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037				       struct ieee80211_regdomain *rd)
4038{
4039	const struct ieee80211_regdomain *regd;
4040	const struct ieee80211_regdomain *prev_regd;
4041	struct cfg80211_registered_device *rdev;
4042
4043	if (WARN_ON(!wiphy || !rd))
4044		return -EINVAL;
4045
4046	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048		return -EPERM;
4049
4050	if (WARN(!is_valid_rd(rd),
4051		 "Invalid regulatory domain detected: %c%c\n",
4052		 rd->alpha2[0], rd->alpha2[1])) {
4053		print_regdomain_info(rd);
4054		return -EINVAL;
4055	}
4056
4057	regd = reg_copy_regd(rd);
4058	if (IS_ERR(regd))
4059		return PTR_ERR(regd);
4060
4061	rdev = wiphy_to_rdev(wiphy);
4062
4063	spin_lock(&reg_requests_lock);
4064	prev_regd = rdev->requested_regd;
4065	rdev->requested_regd = regd;
4066	spin_unlock(&reg_requests_lock);
4067
4068	kfree(prev_regd);
4069	return 0;
4070}
4071
4072int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073			      struct ieee80211_regdomain *rd)
4074{
4075	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076
4077	if (ret)
4078		return ret;
4079
4080	schedule_work(&reg_work);
4081	return 0;
4082}
4083EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084
4085int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086				   struct ieee80211_regdomain *rd)
4087{
4088	int ret;
4089
4090	ASSERT_RTNL();
4091
4092	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093	if (ret)
4094		return ret;
4095
4096	/* process the request immediately */
4097	reg_process_self_managed_hint(wiphy);
4098	reg_check_channels();
4099	return 0;
4100}
4101EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102
4103void wiphy_regulatory_register(struct wiphy *wiphy)
4104{
4105	struct regulatory_request *lr = get_last_request();
4106
4107	/* self-managed devices ignore beacon hints and country IE */
4108	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110					   REGULATORY_COUNTRY_IE_IGNORE;
4111
4112		/*
4113		 * The last request may have been received before this
4114		 * registration call. Call the driver notifier if
4115		 * initiator is USER.
4116		 */
4117		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118			reg_call_notifier(wiphy, lr);
4119	}
4120
4121	if (!reg_dev_ignore_cell_hint(wiphy))
4122		reg_num_devs_support_basehint++;
4123
 
4124	wiphy_update_regulatory(wiphy, lr->initiator);
4125	wiphy_all_share_dfs_chan_state(wiphy);
4126	reg_process_self_managed_hints();
4127}
4128
4129void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130{
4131	struct wiphy *request_wiphy = NULL;
4132	struct regulatory_request *lr;
4133
4134	lr = get_last_request();
4135
4136	if (!reg_dev_ignore_cell_hint(wiphy))
4137		reg_num_devs_support_basehint--;
4138
4139	rcu_free_regdom(get_wiphy_regdom(wiphy));
4140	RCU_INIT_POINTER(wiphy->regd, NULL);
4141
4142	if (lr)
4143		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144
4145	if (!request_wiphy || request_wiphy != wiphy)
4146		return;
4147
4148	lr->wiphy_idx = WIPHY_IDX_INVALID;
4149	lr->country_ie_env = ENVIRON_ANY;
4150}
4151
4152/*
4153 * See FCC notices for UNII band definitions
4154 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156 */
4157int cfg80211_get_unii(int freq)
4158{
4159	/* UNII-1 */
4160	if (freq >= 5150 && freq <= 5250)
4161		return 0;
4162
4163	/* UNII-2A */
4164	if (freq > 5250 && freq <= 5350)
4165		return 1;
4166
4167	/* UNII-2B */
4168	if (freq > 5350 && freq <= 5470)
4169		return 2;
4170
4171	/* UNII-2C */
4172	if (freq > 5470 && freq <= 5725)
4173		return 3;
4174
4175	/* UNII-3 */
4176	if (freq > 5725 && freq <= 5825)
4177		return 4;
4178
4179	/* UNII-5 */
4180	if (freq > 5925 && freq <= 6425)
4181		return 5;
4182
4183	/* UNII-6 */
4184	if (freq > 6425 && freq <= 6525)
4185		return 6;
4186
4187	/* UNII-7 */
4188	if (freq > 6525 && freq <= 6875)
4189		return 7;
4190
4191	/* UNII-8 */
4192	if (freq > 6875 && freq <= 7125)
4193		return 8;
4194
4195	return -EINVAL;
4196}
4197
4198bool regulatory_indoor_allowed(void)
4199{
4200	return reg_is_indoor;
4201}
4202
4203bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204{
4205	const struct ieee80211_regdomain *regd = NULL;
4206	const struct ieee80211_regdomain *wiphy_regd = NULL;
4207	bool pre_cac_allowed = false;
4208
4209	rcu_read_lock();
4210
4211	regd = rcu_dereference(cfg80211_regdomain);
4212	wiphy_regd = rcu_dereference(wiphy->regd);
4213	if (!wiphy_regd) {
4214		if (regd->dfs_region == NL80211_DFS_ETSI)
4215			pre_cac_allowed = true;
4216
4217		rcu_read_unlock();
4218
4219		return pre_cac_allowed;
4220	}
4221
4222	if (regd->dfs_region == wiphy_regd->dfs_region &&
4223	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224		pre_cac_allowed = true;
4225
4226	rcu_read_unlock();
4227
4228	return pre_cac_allowed;
4229}
4230EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231
4232static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233{
4234	struct wireless_dev *wdev;
4235	/* If we finished CAC or received radar, we should end any
4236	 * CAC running on the same channels.
4237	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4238	 * either all channels are available - those the CAC_FINISHED
4239	 * event has effected another wdev state, or there is a channel
4240	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4241	 * event has effected another wdev state.
4242	 * In both cases we should end the CAC on the wdev.
4243	 */
4244	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4245		struct cfg80211_chan_def *chandef;
4246
4247		if (!wdev->cac_started)
4248			continue;
4249
4250		/* FIXME: radar detection is tied to link 0 for now */
4251		chandef = wdev_chandef(wdev, 0);
4252		if (!chandef)
4253			continue;
4254
4255		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4256			rdev_end_cac(rdev, wdev->netdev);
4257	}
4258}
4259
4260void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261				    struct cfg80211_chan_def *chandef,
4262				    enum nl80211_dfs_state dfs_state,
4263				    enum nl80211_radar_event event)
4264{
4265	struct cfg80211_registered_device *rdev;
4266
4267	ASSERT_RTNL();
4268
4269	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270		return;
4271
4272	for_each_rdev(rdev) {
4273		if (wiphy == &rdev->wiphy)
4274			continue;
4275
4276		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277			continue;
4278
4279		if (!ieee80211_get_channel(&rdev->wiphy,
4280					   chandef->chan->center_freq))
4281			continue;
4282
4283		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285		if (event == NL80211_RADAR_DETECTED ||
4286		    event == NL80211_RADAR_CAC_FINISHED) {
4287			cfg80211_sched_dfs_chan_update(rdev);
4288			cfg80211_check_and_end_cac(rdev);
4289		}
4290
4291		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292	}
4293}
4294
4295static int __init regulatory_init_db(void)
4296{
4297	int err;
4298
4299	/*
4300	 * It's possible that - due to other bugs/issues - cfg80211
4301	 * never called regulatory_init() below, or that it failed;
4302	 * in that case, don't try to do any further work here as
4303	 * it's doomed to lead to crashes.
4304	 */
4305	if (IS_ERR_OR_NULL(reg_pdev))
4306		return -EINVAL;
4307
4308	err = load_builtin_regdb_keys();
4309	if (err) {
4310		platform_device_unregister(reg_pdev);
4311		return err;
4312	}
4313
4314	/* We always try to get an update for the static regdomain */
4315	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316	if (err) {
4317		if (err == -ENOMEM) {
4318			platform_device_unregister(reg_pdev);
4319			return err;
4320		}
4321		/*
4322		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323		 * memory which is handled and propagated appropriately above
4324		 * but it can also fail during a netlink_broadcast() or during
4325		 * early boot for call_usermodehelper(). For now treat these
4326		 * errors as non-fatal.
4327		 */
4328		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329	}
4330
4331	/*
4332	 * Finally, if the user set the module parameter treat it
4333	 * as a user hint.
4334	 */
4335	if (!is_world_regdom(ieee80211_regdom))
4336		regulatory_hint_user(ieee80211_regdom,
4337				     NL80211_USER_REG_HINT_USER);
4338
4339	return 0;
4340}
4341#ifndef MODULE
4342late_initcall(regulatory_init_db);
4343#endif
4344
4345int __init regulatory_init(void)
4346{
4347	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348	if (IS_ERR(reg_pdev))
4349		return PTR_ERR(reg_pdev);
4350
4351	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353	user_alpha2[0] = '9';
4354	user_alpha2[1] = '7';
4355
4356#ifdef MODULE
4357	return regulatory_init_db();
4358#else
4359	return 0;
4360#endif
4361}
4362
4363void regulatory_exit(void)
4364{
4365	struct regulatory_request *reg_request, *tmp;
4366	struct reg_beacon *reg_beacon, *btmp;
4367
4368	cancel_work_sync(&reg_work);
4369	cancel_crda_timeout_sync();
4370	cancel_delayed_work_sync(&reg_check_chans);
4371
4372	/* Lock to suppress warnings */
4373	rtnl_lock();
4374	reset_regdomains(true, NULL);
4375	rtnl_unlock();
4376
4377	dev_set_uevent_suppress(&reg_pdev->dev, true);
4378
4379	platform_device_unregister(reg_pdev);
4380
4381	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4382		list_del(&reg_beacon->list);
4383		kfree(reg_beacon);
4384	}
4385
4386	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4387		list_del(&reg_beacon->list);
4388		kfree(reg_beacon);
4389	}
4390
4391	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4392		list_del(&reg_request->list);
4393		kfree(reg_request);
4394	}
4395
4396	if (!IS_ERR_OR_NULL(regdb))
4397		kfree(regdb);
4398	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399		kfree(cfg80211_user_regdom);
4400
4401	free_regdb_keyring();
4402}
v3.15
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
 
 
 
   6 *
   7 * Permission to use, copy, modify, and/or distribute this software for any
   8 * purpose with or without fee is hereby granted, provided that the above
   9 * copyright notice and this permission notice appear in all copies.
  10 *
  11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18 */
  19
  20
  21/**
  22 * DOC: Wireless regulatory infrastructure
  23 *
  24 * The usual implementation is for a driver to read a device EEPROM to
  25 * determine which regulatory domain it should be operating under, then
  26 * looking up the allowable channels in a driver-local table and finally
  27 * registering those channels in the wiphy structure.
  28 *
  29 * Another set of compliance enforcement is for drivers to use their
  30 * own compliance limits which can be stored on the EEPROM. The host
  31 * driver or firmware may ensure these are used.
  32 *
  33 * In addition to all this we provide an extra layer of regulatory
  34 * conformance. For drivers which do not have any regulatory
  35 * information CRDA provides the complete regulatory solution.
  36 * For others it provides a community effort on further restrictions
  37 * to enhance compliance.
  38 *
  39 * Note: When number of rules --> infinity we will not be able to
  40 * index on alpha2 any more, instead we'll probably have to
  41 * rely on some SHA1 checksum of the regdomain for example.
  42 *
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/kernel.h>
  48#include <linux/export.h>
  49#include <linux/slab.h>
  50#include <linux/list.h>
  51#include <linux/ctype.h>
  52#include <linux/nl80211.h>
  53#include <linux/platform_device.h>
 
  54#include <linux/moduleparam.h>
 
  55#include <net/cfg80211.h>
  56#include "core.h"
  57#include "reg.h"
  58#include "regdb.h"
  59#include "nl80211.h"
  60
  61#ifdef CONFIG_CFG80211_REG_DEBUG
  62#define REG_DBG_PRINT(format, args...)			\
  63	printk(KERN_DEBUG pr_fmt(format), ##args)
  64#else
  65#define REG_DBG_PRINT(args...)
  66#endif
  67
 
 
 
 
 
 
 
 
 
 
  68enum reg_request_treatment {
  69	REG_REQ_OK,
  70	REG_REQ_IGNORE,
  71	REG_REQ_INTERSECT,
  72	REG_REQ_ALREADY_SET,
  73};
  74
  75static struct regulatory_request core_request_world = {
  76	.initiator = NL80211_REGDOM_SET_BY_CORE,
  77	.alpha2[0] = '0',
  78	.alpha2[1] = '0',
  79	.intersect = false,
  80	.processed = true,
  81	.country_ie_env = ENVIRON_ANY,
  82};
  83
  84/*
  85 * Receipt of information from last regulatory request,
  86 * protected by RTNL (and can be accessed with RCU protection)
  87 */
  88static struct regulatory_request __rcu *last_request =
  89	(void __rcu *)&core_request_world;
  90
  91/* To trigger userspace events */
  92static struct platform_device *reg_pdev;
  93
  94/*
  95 * Central wireless core regulatory domains, we only need two,
  96 * the current one and a world regulatory domain in case we have no
  97 * information to give us an alpha2.
  98 * (protected by RTNL, can be read under RCU)
  99 */
 100const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 101
 102/*
 103 * Number of devices that registered to the core
 104 * that support cellular base station regulatory hints
 105 * (protected by RTNL)
 106 */
 107static int reg_num_devs_support_basehint;
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 110{
 111	return rtnl_dereference(cfg80211_regdomain);
 112}
 113
 114static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 
 
 
 
 
 115{
 116	return rtnl_dereference(wiphy->regd);
 
 
 117}
 
 118
 119static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 120{
 121	switch (dfs_region) {
 122	case NL80211_DFS_UNSET:
 123		return "unset";
 124	case NL80211_DFS_FCC:
 125		return "FCC";
 126	case NL80211_DFS_ETSI:
 127		return "ETSI";
 128	case NL80211_DFS_JP:
 129		return "JP";
 130	}
 131	return "Unknown";
 132}
 133
 134enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 135{
 136	const struct ieee80211_regdomain *regd = NULL;
 137	const struct ieee80211_regdomain *wiphy_regd = NULL;
 
 138
 
 139	regd = get_cfg80211_regdom();
 
 
 140	if (!wiphy)
 141		goto out;
 142
 143	wiphy_regd = get_wiphy_regdom(wiphy);
 144	if (!wiphy_regd)
 145		goto out;
 146
 
 
 
 
 
 147	if (wiphy_regd->dfs_region == regd->dfs_region)
 148		goto out;
 149
 150	REG_DBG_PRINT("%s: device specific dfs_region "
 151		      "(%s) disagrees with cfg80211's "
 152		      "central dfs_region (%s)\n",
 153		      dev_name(&wiphy->dev),
 154		      reg_dfs_region_str(wiphy_regd->dfs_region),
 155		      reg_dfs_region_str(regd->dfs_region));
 156
 157out:
 158	return regd->dfs_region;
 
 
 159}
 160
 161static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 162{
 163	if (!r)
 164		return;
 165	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 166}
 167
 168static struct regulatory_request *get_last_request(void)
 169{
 170	return rcu_dereference_rtnl(last_request);
 171}
 172
 173/* Used to queue up regulatory hints */
 174static LIST_HEAD(reg_requests_list);
 175static spinlock_t reg_requests_lock;
 176
 177/* Used to queue up beacon hints for review */
 178static LIST_HEAD(reg_pending_beacons);
 179static spinlock_t reg_pending_beacons_lock;
 180
 181/* Used to keep track of processed beacon hints */
 182static LIST_HEAD(reg_beacon_list);
 183
 184struct reg_beacon {
 185	struct list_head list;
 186	struct ieee80211_channel chan;
 187};
 188
 
 
 
 189static void reg_todo(struct work_struct *work);
 190static DECLARE_WORK(reg_work, reg_todo);
 191
 192static void reg_timeout_work(struct work_struct *work);
 193static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
 194
 195/* We keep a static world regulatory domain in case of the absence of CRDA */
 196static const struct ieee80211_regdomain world_regdom = {
 197	.n_reg_rules = 6,
 198	.alpha2 =  "00",
 199	.reg_rules = {
 200		/* IEEE 802.11b/g, channels 1..11 */
 201		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 202		/* IEEE 802.11b/g, channels 12..13. */
 203		REG_RULE(2467-10, 2472+10, 40, 6, 20,
 204			NL80211_RRF_NO_IR),
 205		/* IEEE 802.11 channel 14 - Only JP enables
 206		 * this and for 802.11b only */
 207		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 208			NL80211_RRF_NO_IR |
 209			NL80211_RRF_NO_OFDM),
 210		/* IEEE 802.11a, channel 36..48 */
 211		REG_RULE(5180-10, 5240+10, 160, 6, 20,
 212                        NL80211_RRF_NO_IR),
 
 213
 214		/* IEEE 802.11a, channel 52..64 - DFS required */
 215		REG_RULE(5260-10, 5320+10, 160, 6, 20,
 216			NL80211_RRF_NO_IR |
 
 217			NL80211_RRF_DFS),
 218
 219		/* IEEE 802.11a, channel 100..144 - DFS required */
 220		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 221			NL80211_RRF_NO_IR |
 222			NL80211_RRF_DFS),
 223
 224		/* IEEE 802.11a, channel 149..165 */
 225		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 226			NL80211_RRF_NO_IR),
 227
 228		/* IEEE 802.11ad (60gHz), channels 1..3 */
 229		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 230	}
 231};
 232
 233/* protected by RTNL */
 234static const struct ieee80211_regdomain *cfg80211_world_regdom =
 235	&world_regdom;
 236
 237static char *ieee80211_regdom = "00";
 238static char user_alpha2[2];
 
 239
 240module_param(ieee80211_regdom, charp, 0444);
 241MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 242
 243static void reg_free_request(struct regulatory_request *lr)
 
 
 
 
 
 
 
 
 
 244{
 
 
 245	if (lr != &core_request_world && lr)
 246		kfree_rcu(lr, rcu_head);
 247}
 248
 249static void reg_update_last_request(struct regulatory_request *request)
 250{
 251	struct regulatory_request *lr;
 252
 253	lr = get_last_request();
 254	if (lr == request)
 255		return;
 256
 257	reg_free_request(lr);
 258	rcu_assign_pointer(last_request, request);
 259}
 260
 261static void reset_regdomains(bool full_reset,
 262			     const struct ieee80211_regdomain *new_regdom)
 263{
 264	const struct ieee80211_regdomain *r;
 265
 266	ASSERT_RTNL();
 267
 268	r = get_cfg80211_regdom();
 269
 270	/* avoid freeing static information or freeing something twice */
 271	if (r == cfg80211_world_regdom)
 272		r = NULL;
 273	if (cfg80211_world_regdom == &world_regdom)
 274		cfg80211_world_regdom = NULL;
 275	if (r == &world_regdom)
 276		r = NULL;
 277
 278	rcu_free_regdom(r);
 279	rcu_free_regdom(cfg80211_world_regdom);
 280
 281	cfg80211_world_regdom = &world_regdom;
 282	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 283
 284	if (!full_reset)
 285		return;
 286
 287	reg_update_last_request(&core_request_world);
 288}
 289
 290/*
 291 * Dynamic world regulatory domain requested by the wireless
 292 * core upon initialization
 293 */
 294static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 295{
 296	struct regulatory_request *lr;
 297
 298	lr = get_last_request();
 299
 300	WARN_ON(!lr);
 301
 302	reset_regdomains(false, rd);
 303
 304	cfg80211_world_regdom = rd;
 305}
 306
 307bool is_world_regdom(const char *alpha2)
 308{
 309	if (!alpha2)
 310		return false;
 311	return alpha2[0] == '0' && alpha2[1] == '0';
 312}
 313
 314static bool is_alpha2_set(const char *alpha2)
 315{
 316	if (!alpha2)
 317		return false;
 318	return alpha2[0] && alpha2[1];
 319}
 320
 321static bool is_unknown_alpha2(const char *alpha2)
 322{
 323	if (!alpha2)
 324		return false;
 325	/*
 326	 * Special case where regulatory domain was built by driver
 327	 * but a specific alpha2 cannot be determined
 328	 */
 329	return alpha2[0] == '9' && alpha2[1] == '9';
 330}
 331
 332static bool is_intersected_alpha2(const char *alpha2)
 333{
 334	if (!alpha2)
 335		return false;
 336	/*
 337	 * Special case where regulatory domain is the
 338	 * result of an intersection between two regulatory domain
 339	 * structures
 340	 */
 341	return alpha2[0] == '9' && alpha2[1] == '8';
 342}
 343
 344static bool is_an_alpha2(const char *alpha2)
 345{
 346	if (!alpha2)
 347		return false;
 348	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 349}
 350
 351static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 352{
 353	if (!alpha2_x || !alpha2_y)
 354		return false;
 355	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 356}
 357
 358static bool regdom_changes(const char *alpha2)
 359{
 360	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 361
 362	if (!r)
 363		return true;
 364	return !alpha2_equal(r->alpha2, alpha2);
 365}
 366
 367/*
 368 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 369 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 370 * has ever been issued.
 371 */
 372static bool is_user_regdom_saved(void)
 373{
 374	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 375		return false;
 376
 377	/* This would indicate a mistake on the design */
 378	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 379		 "Unexpected user alpha2: %c%c\n",
 380		 user_alpha2[0], user_alpha2[1]))
 381		return false;
 382
 383	return true;
 384}
 385
 386static const struct ieee80211_regdomain *
 387reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 388{
 389	struct ieee80211_regdomain *regd;
 390	int size_of_regd;
 391	unsigned int i;
 392
 393	size_of_regd =
 394		sizeof(struct ieee80211_regdomain) +
 395		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
 396
 397	regd = kzalloc(size_of_regd, GFP_KERNEL);
 398	if (!regd)
 399		return ERR_PTR(-ENOMEM);
 400
 401	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 402
 403	for (i = 0; i < src_regd->n_reg_rules; i++)
 404		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 405		       sizeof(struct ieee80211_reg_rule));
 406
 407	return regd;
 408}
 409
 410#ifdef CONFIG_CFG80211_INTERNAL_REGDB
 411struct reg_regdb_search_request {
 412	char alpha2[2];
 
 
 
 
 
 
 
 413	struct list_head list;
 
 414};
 415
 416static LIST_HEAD(reg_regdb_search_list);
 417static DEFINE_MUTEX(reg_regdb_search_mutex);
 418
 419static void reg_regdb_search(struct work_struct *work)
 420{
 421	struct reg_regdb_search_request *request;
 422	const struct ieee80211_regdomain *curdom, *regdom = NULL;
 423	int i;
 424
 425	rtnl_lock();
 426
 427	mutex_lock(&reg_regdb_search_mutex);
 428	while (!list_empty(&reg_regdb_search_list)) {
 429		request = list_first_entry(&reg_regdb_search_list,
 430					   struct reg_regdb_search_request,
 431					   list);
 432		list_del(&request->list);
 433
 434		for (i = 0; i < reg_regdb_size; i++) {
 435			curdom = reg_regdb[i];
 436
 437			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
 438				regdom = reg_copy_regd(curdom);
 439				break;
 440			}
 441		}
 442
 443		kfree(request);
 444	}
 445	mutex_unlock(&reg_regdb_search_mutex);
 446
 447	if (!IS_ERR_OR_NULL(regdom))
 448		set_regdom(regdom);
 449
 450	rtnl_unlock();
 451}
 452
 453static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
 454
 455static void reg_regdb_query(const char *alpha2)
 456{
 457	struct reg_regdb_search_request *request;
 
 
 
 
 
 
 
 
 458
 459	if (!alpha2)
 460		return;
 
 
 
 
 
 
 
 
 
 
 
 461
 462	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
 463	if (!request)
 464		return;
 465
 466	memcpy(request->alpha2, alpha2, 2);
 
 
 
 
 
 
 
 467
 468	mutex_lock(&reg_regdb_search_mutex);
 469	list_add_tail(&request->list, &reg_regdb_search_list);
 470	mutex_unlock(&reg_regdb_search_mutex);
 
 471
 472	schedule_work(&reg_regdb_work);
 
 
 473}
 474
 475/* Feel free to add any other sanity checks here */
 476static void reg_regdb_size_check(void)
 477{
 478	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
 479	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
 480}
 481#else
 482static inline void reg_regdb_size_check(void) {}
 483static inline void reg_regdb_query(const char *alpha2) {}
 484#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
 485
 486/*
 487 * This lets us keep regulatory code which is updated on a regulatory
 488 * basis in userspace.
 489 */
 490static int call_crda(const char *alpha2)
 491{
 492	char country[12];
 493	char *env[] = { country, NULL };
 
 494
 495	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 496		 alpha2[0], alpha2[1]);
 497
 
 
 
 
 
 498	if (!is_world_regdom((char *) alpha2))
 499		pr_info("Calling CRDA for country: %c%c\n",
 500			alpha2[0], alpha2[1]);
 501	else
 502		pr_info("Calling CRDA to update world regulatory domain\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503
 504	/* query internal regulatory database (if it exists) */
 505	reg_regdb_query(alpha2);
 506
 507	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508}
 509
 510static enum reg_request_treatment
 511reg_call_crda(struct regulatory_request *request)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512{
 513	if (call_crda(request->alpha2))
 514		return REG_REQ_IGNORE;
 515	return REG_REQ_OK;
 
 
 
 
 516}
 517
 518bool reg_is_valid_request(const char *alpha2)
 519{
 520	struct regulatory_request *lr = get_last_request();
 521
 522	if (!lr || lr->processed)
 523		return false;
 524
 525	return alpha2_equal(lr->alpha2, alpha2);
 526}
 527
 528static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
 529{
 530	struct regulatory_request *lr = get_last_request();
 531
 532	/*
 533	 * Follow the driver's regulatory domain, if present, unless a country
 534	 * IE has been processed or a user wants to help complaince further
 535	 */
 536	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
 537	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
 538	    wiphy->regd)
 539		return get_wiphy_regdom(wiphy);
 540
 541	return get_cfg80211_regdom();
 542}
 543
 544unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
 545				   const struct ieee80211_reg_rule *rule)
 
 546{
 547	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
 548	const struct ieee80211_freq_range *freq_range_tmp;
 549	const struct ieee80211_reg_rule *tmp;
 550	u32 start_freq, end_freq, idx, no;
 551
 552	for (idx = 0; idx < rd->n_reg_rules; idx++)
 553		if (rule == &rd->reg_rules[idx])
 554			break;
 555
 556	if (idx == rd->n_reg_rules)
 557		return 0;
 558
 559	/* get start_freq */
 560	no = idx;
 561
 562	while (no) {
 563		tmp = &rd->reg_rules[--no];
 564		freq_range_tmp = &tmp->freq_range;
 565
 566		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
 567			break;
 568
 569		freq_range = freq_range_tmp;
 570	}
 571
 572	start_freq = freq_range->start_freq_khz;
 573
 574	/* get end_freq */
 575	freq_range = &rule->freq_range;
 576	no = idx;
 577
 578	while (no < rd->n_reg_rules - 1) {
 579		tmp = &rd->reg_rules[++no];
 580		freq_range_tmp = &tmp->freq_range;
 581
 582		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
 583			break;
 584
 585		freq_range = freq_range_tmp;
 586	}
 587
 588	end_freq = freq_range->end_freq_khz;
 589
 590	return end_freq - start_freq;
 591}
 592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593/* Sanity check on a regulatory rule */
 594static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
 595{
 596	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
 597	u32 freq_diff;
 598
 599	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
 600		return false;
 601
 602	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
 603		return false;
 604
 605	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
 606
 607	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
 608	    freq_range->max_bandwidth_khz > freq_diff)
 609		return false;
 610
 611	return true;
 612}
 613
 614static bool is_valid_rd(const struct ieee80211_regdomain *rd)
 615{
 616	const struct ieee80211_reg_rule *reg_rule = NULL;
 617	unsigned int i;
 618
 619	if (!rd->n_reg_rules)
 620		return false;
 621
 622	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
 623		return false;
 624
 625	for (i = 0; i < rd->n_reg_rules; i++) {
 626		reg_rule = &rd->reg_rules[i];
 627		if (!is_valid_reg_rule(reg_rule))
 628			return false;
 629	}
 630
 631	return true;
 632}
 633
 634static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
 635			    u32 center_freq_khz, u32 bw_khz)
 636{
 637	u32 start_freq_khz, end_freq_khz;
 638
 639	start_freq_khz = center_freq_khz - (bw_khz/2);
 640	end_freq_khz = center_freq_khz + (bw_khz/2);
 641
 642	if (start_freq_khz >= freq_range->start_freq_khz &&
 643	    end_freq_khz <= freq_range->end_freq_khz)
 644		return true;
 645
 646	return false;
 647}
 648
 649/**
 650 * freq_in_rule_band - tells us if a frequency is in a frequency band
 651 * @freq_range: frequency rule we want to query
 652 * @freq_khz: frequency we are inquiring about
 653 *
 654 * This lets us know if a specific frequency rule is or is not relevant to
 655 * a specific frequency's band. Bands are device specific and artificial
 656 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
 657 * however it is safe for now to assume that a frequency rule should not be
 658 * part of a frequency's band if the start freq or end freq are off by more
 659 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
 660 * 60 GHz band.
 661 * This resolution can be lowered and should be considered as we add
 662 * regulatory rule support for other "bands".
 663 **/
 
 
 664static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
 665			      u32 freq_khz)
 666{
 667#define ONE_GHZ_IN_KHZ	1000000
 668	/*
 669	 * From 802.11ad: directional multi-gigabit (DMG):
 670	 * Pertaining to operation in a frequency band containing a channel
 671	 * with the Channel starting frequency above 45 GHz.
 672	 */
 673	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
 674			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
 675	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
 676		return true;
 677	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
 678		return true;
 679	return false;
 680#undef ONE_GHZ_IN_KHZ
 681}
 682
 683/*
 684 * Later on we can perhaps use the more restrictive DFS
 685 * region but we don't have information for that yet so
 686 * for now simply disallow conflicts.
 687 */
 688static enum nl80211_dfs_regions
 689reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
 690			 const enum nl80211_dfs_regions dfs_region2)
 691{
 692	if (dfs_region1 != dfs_region2)
 693		return NL80211_DFS_UNSET;
 694	return dfs_region1;
 695}
 696
 
 
 
 
 
 
 
 
 
 
 697/*
 698 * Helper for regdom_intersect(), this does the real
 699 * mathematical intersection fun
 700 */
 701static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
 702			       const struct ieee80211_regdomain *rd2,
 703			       const struct ieee80211_reg_rule *rule1,
 704			       const struct ieee80211_reg_rule *rule2,
 705			       struct ieee80211_reg_rule *intersected_rule)
 706{
 707	const struct ieee80211_freq_range *freq_range1, *freq_range2;
 708	struct ieee80211_freq_range *freq_range;
 709	const struct ieee80211_power_rule *power_rule1, *power_rule2;
 710	struct ieee80211_power_rule *power_rule;
 
 
 711	u32 freq_diff, max_bandwidth1, max_bandwidth2;
 712
 713	freq_range1 = &rule1->freq_range;
 714	freq_range2 = &rule2->freq_range;
 715	freq_range = &intersected_rule->freq_range;
 716
 717	power_rule1 = &rule1->power_rule;
 718	power_rule2 = &rule2->power_rule;
 719	power_rule = &intersected_rule->power_rule;
 720
 
 
 
 
 721	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
 722					 freq_range2->start_freq_khz);
 723	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
 724				       freq_range2->end_freq_khz);
 725
 726	max_bandwidth1 = freq_range1->max_bandwidth_khz;
 727	max_bandwidth2 = freq_range2->max_bandwidth_khz;
 728
 729	if (rule1->flags & NL80211_RRF_AUTO_BW)
 730		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
 731	if (rule2->flags & NL80211_RRF_AUTO_BW)
 732		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
 733
 734	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
 735
 736	intersected_rule->flags = rule1->flags | rule2->flags;
 737
 738	/*
 739	 * In case NL80211_RRF_AUTO_BW requested for both rules
 740	 * set AUTO_BW in intersected rule also. Next we will
 741	 * calculate BW correctly in handle_channel function.
 742	 * In other case remove AUTO_BW flag while we calculate
 743	 * maximum bandwidth correctly and auto calculation is
 744	 * not required.
 745	 */
 746	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
 747	    (rule2->flags & NL80211_RRF_AUTO_BW))
 748		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
 749	else
 750		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
 751
 752	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
 753	if (freq_range->max_bandwidth_khz > freq_diff)
 754		freq_range->max_bandwidth_khz = freq_diff;
 755
 756	power_rule->max_eirp = min(power_rule1->max_eirp,
 757		power_rule2->max_eirp);
 758	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
 759		power_rule2->max_antenna_gain);
 760
 761	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
 762					   rule2->dfs_cac_ms);
 763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764	if (!is_valid_reg_rule(intersected_rule))
 765		return -EINVAL;
 766
 767	return 0;
 768}
 769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770/**
 771 * regdom_intersect - do the intersection between two regulatory domains
 772 * @rd1: first regulatory domain
 773 * @rd2: second regulatory domain
 774 *
 775 * Use this function to get the intersection between two regulatory domains.
 776 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 777 * as no one single alpha2 can represent this regulatory domain.
 778 *
 779 * Returns a pointer to the regulatory domain structure which will hold the
 780 * resulting intersection of rules between rd1 and rd2. We will
 781 * kzalloc() this structure for you.
 
 
 782 */
 783static struct ieee80211_regdomain *
 784regdom_intersect(const struct ieee80211_regdomain *rd1,
 785		 const struct ieee80211_regdomain *rd2)
 786{
 787	int r, size_of_regd;
 788	unsigned int x, y;
 789	unsigned int num_rules = 0, rule_idx = 0;
 790	const struct ieee80211_reg_rule *rule1, *rule2;
 791	struct ieee80211_reg_rule *intersected_rule;
 792	struct ieee80211_regdomain *rd;
 793	/* This is just a dummy holder to help us count */
 794	struct ieee80211_reg_rule dummy_rule;
 795
 796	if (!rd1 || !rd2)
 797		return NULL;
 798
 799	/*
 800	 * First we get a count of the rules we'll need, then we actually
 801	 * build them. This is to so we can malloc() and free() a
 802	 * regdomain once. The reason we use reg_rules_intersect() here
 803	 * is it will return -EINVAL if the rule computed makes no sense.
 804	 * All rules that do check out OK are valid.
 805	 */
 806
 807	for (x = 0; x < rd1->n_reg_rules; x++) {
 808		rule1 = &rd1->reg_rules[x];
 809		for (y = 0; y < rd2->n_reg_rules; y++) {
 810			rule2 = &rd2->reg_rules[y];
 811			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
 812						 &dummy_rule))
 813				num_rules++;
 814		}
 815	}
 816
 817	if (!num_rules)
 818		return NULL;
 819
 820	size_of_regd = sizeof(struct ieee80211_regdomain) +
 821		       num_rules * sizeof(struct ieee80211_reg_rule);
 822
 823	rd = kzalloc(size_of_regd, GFP_KERNEL);
 824	if (!rd)
 825		return NULL;
 826
 827	for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
 828		rule1 = &rd1->reg_rules[x];
 829		for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
 830			rule2 = &rd2->reg_rules[y];
 831			/*
 832			 * This time around instead of using the stack lets
 833			 * write to the target rule directly saving ourselves
 834			 * a memcpy()
 835			 */
 836			intersected_rule = &rd->reg_rules[rule_idx];
 837			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
 838						intersected_rule);
 839			/*
 840			 * No need to memset here the intersected rule here as
 841			 * we're not using the stack anymore
 842			 */
 843			if (r)
 844				continue;
 845			rule_idx++;
 
 
 846		}
 847	}
 848
 849	if (rule_idx != num_rules) {
 850		kfree(rd);
 851		return NULL;
 852	}
 853
 854	rd->n_reg_rules = num_rules;
 855	rd->alpha2[0] = '9';
 856	rd->alpha2[1] = '8';
 857	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
 858						  rd2->dfs_region);
 859
 860	return rd;
 861}
 862
 863/*
 864 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 865 * want to just have the channel structure use these
 866 */
 867static u32 map_regdom_flags(u32 rd_flags)
 868{
 869	u32 channel_flags = 0;
 870	if (rd_flags & NL80211_RRF_NO_IR_ALL)
 871		channel_flags |= IEEE80211_CHAN_NO_IR;
 872	if (rd_flags & NL80211_RRF_DFS)
 873		channel_flags |= IEEE80211_CHAN_RADAR;
 874	if (rd_flags & NL80211_RRF_NO_OFDM)
 875		channel_flags |= IEEE80211_CHAN_NO_OFDM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876	return channel_flags;
 877}
 878
 879static const struct ieee80211_reg_rule *
 880freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
 881		   const struct ieee80211_regdomain *regd)
 882{
 883	int i;
 884	bool band_rule_found = false;
 885	bool bw_fits = false;
 886
 887	if (!regd)
 888		return ERR_PTR(-EINVAL);
 889
 890	for (i = 0; i < regd->n_reg_rules; i++) {
 891		const struct ieee80211_reg_rule *rr;
 892		const struct ieee80211_freq_range *fr = NULL;
 893
 894		rr = &regd->reg_rules[i];
 895		fr = &rr->freq_range;
 896
 897		/*
 898		 * We only need to know if one frequency rule was
 899		 * was in center_freq's band, that's enough, so lets
 900		 * not overwrite it once found
 901		 */
 902		if (!band_rule_found)
 903			band_rule_found = freq_in_rule_band(fr, center_freq);
 904
 905		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
 906
 907		if (band_rule_found && bw_fits)
 908			return rr;
 909	}
 910
 911	if (!band_rule_found)
 912		return ERR_PTR(-ERANGE);
 913
 914	return ERR_PTR(-EINVAL);
 915}
 916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
 918					       u32 center_freq)
 919{
 920	const struct ieee80211_regdomain *regd;
 921
 922	regd = reg_get_regdomain(wiphy);
 923
 924	return freq_reg_info_regd(wiphy, center_freq, regd);
 925}
 926EXPORT_SYMBOL(freq_reg_info);
 927
 928const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
 929{
 930	switch (initiator) {
 931	case NL80211_REGDOM_SET_BY_CORE:
 932		return "core";
 933	case NL80211_REGDOM_SET_BY_USER:
 934		return "user";
 935	case NL80211_REGDOM_SET_BY_DRIVER:
 936		return "driver";
 937	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
 938		return "country IE";
 939	default:
 940		WARN_ON(1);
 941		return "bug";
 942	}
 943}
 944EXPORT_SYMBOL(reg_initiator_name);
 945
 946#ifdef CONFIG_CFG80211_REG_DEBUG
 947static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
 948				    struct ieee80211_channel *chan,
 949				    const struct ieee80211_reg_rule *reg_rule)
 950{
 951	const struct ieee80211_power_rule *power_rule;
 952	const struct ieee80211_freq_range *freq_range;
 953	char max_antenna_gain[32], bw[32];
 954
 955	power_rule = &reg_rule->power_rule;
 956	freq_range = &reg_rule->freq_range;
 957
 958	if (!power_rule->max_antenna_gain)
 959		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
 960	else
 961		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
 962			 power_rule->max_antenna_gain);
 963
 964	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
 965		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
 966			 freq_range->max_bandwidth_khz,
 967			 reg_get_max_bandwidth(regd, reg_rule));
 968	else
 969		snprintf(bw, sizeof(bw), "%d KHz",
 970			 freq_range->max_bandwidth_khz);
 971
 972	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
 973		      chan->center_freq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975	REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
 976		      freq_range->start_freq_khz, freq_range->end_freq_khz,
 977		      bw, max_antenna_gain,
 978		      power_rule->max_eirp);
 979}
 980#else
 981static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
 982				    struct ieee80211_channel *chan,
 983				    const struct ieee80211_reg_rule *reg_rule)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984{
 985	return;
 986}
 987#endif
 988
 989/*
 990 * Note that right now we assume the desired channel bandwidth
 991 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 992 * per channel, the primary and the extension channel).
 993 */
 994static void handle_channel(struct wiphy *wiphy,
 995			   enum nl80211_reg_initiator initiator,
 996			   struct ieee80211_channel *chan)
 997{
 998	u32 flags, bw_flags = 0;
 999	const struct ieee80211_reg_rule *reg_rule = NULL;
1000	const struct ieee80211_power_rule *power_rule = NULL;
1001	const struct ieee80211_freq_range *freq_range = NULL;
1002	struct wiphy *request_wiphy = NULL;
1003	struct regulatory_request *lr = get_last_request();
1004	const struct ieee80211_regdomain *regd;
1005	u32 max_bandwidth_khz;
1006
1007	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1008
1009	flags = chan->orig_flags;
1010
1011	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1012	if (IS_ERR(reg_rule)) {
1013		/*
1014		 * We will disable all channels that do not match our
1015		 * received regulatory rule unless the hint is coming
1016		 * from a Country IE and the Country IE had no information
1017		 * about a band. The IEEE 802.11 spec allows for an AP
1018		 * to send only a subset of the regulatory rules allowed,
1019		 * so an AP in the US that only supports 2.4 GHz may only send
1020		 * a country IE with information for the 2.4 GHz band
1021		 * while 5 GHz is still supported.
1022		 */
1023		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1024		    PTR_ERR(reg_rule) == -ERANGE)
1025			return;
1026
1027		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1028		    request_wiphy && request_wiphy == wiphy &&
1029		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1030			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1031				      chan->center_freq);
1032			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1033			chan->flags = chan->orig_flags;
1034		} else {
1035			REG_DBG_PRINT("Disabling freq %d MHz\n",
1036				      chan->center_freq);
1037			chan->flags |= IEEE80211_CHAN_DISABLED;
1038		}
1039		return;
1040	}
1041
1042	regd = reg_get_regdomain(wiphy);
1043	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1044
1045	power_rule = &reg_rule->power_rule;
1046	freq_range = &reg_rule->freq_range;
1047
1048	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1049	/* Check if auto calculation requested */
1050	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1051		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1052
1053	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1054		bw_flags = IEEE80211_CHAN_NO_HT40;
1055	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1056		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1057	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1058		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1059
1060	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1061	    request_wiphy && request_wiphy == wiphy &&
1062	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1063		/*
1064		 * This guarantees the driver's requested regulatory domain
1065		 * will always be used as a base for further regulatory
1066		 * settings
1067		 */
1068		chan->flags = chan->orig_flags =
1069			map_regdom_flags(reg_rule->flags) | bw_flags;
1070		chan->max_antenna_gain = chan->orig_mag =
1071			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1072		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1073			(int) MBM_TO_DBM(power_rule->max_eirp);
 
 
 
 
 
 
 
 
 
 
1074		return;
1075	}
1076
1077	chan->dfs_state = NL80211_DFS_USABLE;
1078	chan->dfs_state_entered = jiffies;
1079
1080	chan->beacon_found = false;
1081	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1082	chan->max_antenna_gain =
1083		min_t(int, chan->orig_mag,
1084		      MBI_TO_DBI(power_rule->max_antenna_gain));
1085	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1086
1087	if (chan->flags & IEEE80211_CHAN_RADAR) {
1088		if (reg_rule->dfs_cac_ms)
1089			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1090		else
1091			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1092	}
1093
 
 
 
1094	if (chan->orig_mpwr) {
1095		/*
1096		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1097		 * will always follow the passed country IE power settings.
1098		 */
1099		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1100		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1101			chan->max_power = chan->max_reg_power;
1102		else
1103			chan->max_power = min(chan->orig_mpwr,
1104					      chan->max_reg_power);
1105	} else
1106		chan->max_power = chan->max_reg_power;
1107}
1108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109static void handle_band(struct wiphy *wiphy,
1110			enum nl80211_reg_initiator initiator,
1111			struct ieee80211_supported_band *sband)
1112{
1113	unsigned int i;
1114
1115	if (!sband)
1116		return;
1117
1118	for (i = 0; i < sband->n_channels; i++)
1119		handle_channel(wiphy, initiator, &sband->channels[i]);
1120}
1121
1122static bool reg_request_cell_base(struct regulatory_request *request)
1123{
1124	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1125		return false;
1126	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1127}
1128
1129bool reg_last_request_cell_base(void)
1130{
1131	return reg_request_cell_base(get_last_request());
1132}
1133
1134#ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1135/* Core specific check */
1136static enum reg_request_treatment
1137reg_ignore_cell_hint(struct regulatory_request *pending_request)
1138{
1139	struct regulatory_request *lr = get_last_request();
1140
1141	if (!reg_num_devs_support_basehint)
1142		return REG_REQ_IGNORE;
1143
1144	if (reg_request_cell_base(lr) &&
1145	    !regdom_changes(pending_request->alpha2))
1146		return REG_REQ_ALREADY_SET;
1147
1148	return REG_REQ_OK;
1149}
1150
1151/* Device specific check */
1152static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1153{
1154	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1155}
1156#else
1157static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
 
1158{
1159	return REG_REQ_IGNORE;
1160}
1161
1162static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1163{
1164	return true;
1165}
1166#endif
1167
1168static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1169{
1170	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1171	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1172		return true;
1173	return false;
1174}
1175
1176static bool ignore_reg_update(struct wiphy *wiphy,
1177			      enum nl80211_reg_initiator initiator)
1178{
1179	struct regulatory_request *lr = get_last_request();
1180
 
 
 
1181	if (!lr) {
1182		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1183			      "since last_request is not set\n",
1184			      reg_initiator_name(initiator));
1185		return true;
1186	}
1187
1188	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1189	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1190		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1191			      "since the driver uses its own custom "
1192			      "regulatory domain\n",
1193			      reg_initiator_name(initiator));
1194		return true;
1195	}
1196
1197	/*
1198	 * wiphy->regd will be set once the device has its own
1199	 * desired regulatory domain set
1200	 */
1201	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1202	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1203	    !is_world_regdom(lr->alpha2)) {
1204		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1205			      "since the driver requires its own regulatory "
1206			      "domain to be set first\n",
1207			      reg_initiator_name(initiator));
1208		return true;
1209	}
1210
1211	if (reg_request_cell_base(lr))
1212		return reg_dev_ignore_cell_hint(wiphy);
1213
1214	return false;
1215}
1216
1217static bool reg_is_world_roaming(struct wiphy *wiphy)
1218{
1219	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1220	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1221	struct regulatory_request *lr = get_last_request();
1222
1223	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1224		return true;
1225
1226	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1227	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1228		return true;
1229
1230	return false;
1231}
1232
 
 
 
 
 
 
 
1233static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1234			      struct reg_beacon *reg_beacon)
1235{
1236	struct ieee80211_supported_band *sband;
1237	struct ieee80211_channel *chan;
1238	bool channel_changed = false;
1239	struct ieee80211_channel chan_before;
 
1240
1241	sband = wiphy->bands[reg_beacon->chan.band];
1242	chan = &sband->channels[chan_idx];
1243
1244	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1245		return;
1246
1247	if (chan->beacon_found)
1248		return;
1249
1250	chan->beacon_found = true;
1251
1252	if (!reg_is_world_roaming(wiphy))
1253		return;
1254
1255	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1256		return;
1257
1258	chan_before.center_freq = chan->center_freq;
1259	chan_before.flags = chan->flags;
1260
1261	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1262		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1263		channel_changed = true;
1264	}
1265
1266	if (channel_changed)
1267		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
 
 
 
1268}
1269
1270/*
1271 * Called when a scan on a wiphy finds a beacon on
1272 * new channel
1273 */
1274static void wiphy_update_new_beacon(struct wiphy *wiphy,
1275				    struct reg_beacon *reg_beacon)
1276{
1277	unsigned int i;
1278	struct ieee80211_supported_band *sband;
1279
1280	if (!wiphy->bands[reg_beacon->chan.band])
1281		return;
1282
1283	sband = wiphy->bands[reg_beacon->chan.band];
1284
1285	for (i = 0; i < sband->n_channels; i++)
1286		handle_reg_beacon(wiphy, i, reg_beacon);
1287}
1288
1289/*
1290 * Called upon reg changes or a new wiphy is added
1291 */
1292static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1293{
1294	unsigned int i;
1295	struct ieee80211_supported_band *sband;
1296	struct reg_beacon *reg_beacon;
1297
1298	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1299		if (!wiphy->bands[reg_beacon->chan.band])
1300			continue;
1301		sband = wiphy->bands[reg_beacon->chan.band];
1302		for (i = 0; i < sband->n_channels; i++)
1303			handle_reg_beacon(wiphy, i, reg_beacon);
1304	}
1305}
1306
1307/* Reap the advantages of previously found beacons */
1308static void reg_process_beacons(struct wiphy *wiphy)
1309{
1310	/*
1311	 * Means we are just firing up cfg80211, so no beacons would
1312	 * have been processed yet.
1313	 */
1314	if (!last_request)
1315		return;
1316	wiphy_update_beacon_reg(wiphy);
1317}
1318
1319static bool is_ht40_allowed(struct ieee80211_channel *chan)
1320{
1321	if (!chan)
1322		return false;
1323	if (chan->flags & IEEE80211_CHAN_DISABLED)
1324		return false;
1325	/* This would happen when regulatory rules disallow HT40 completely */
1326	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1327		return false;
1328	return true;
1329}
1330
1331static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1332					 struct ieee80211_channel *channel)
1333{
1334	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1335	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
 
1336	unsigned int i;
 
1337
1338	if (!is_ht40_allowed(channel)) {
1339		channel->flags |= IEEE80211_CHAN_NO_HT40;
1340		return;
1341	}
1342
1343	/*
1344	 * We need to ensure the extension channels exist to
1345	 * be able to use HT40- or HT40+, this finds them (or not)
1346	 */
1347	for (i = 0; i < sband->n_channels; i++) {
1348		struct ieee80211_channel *c = &sband->channels[i];
1349
1350		if (c->center_freq == (channel->center_freq - 20))
1351			channel_before = c;
1352		if (c->center_freq == (channel->center_freq + 20))
1353			channel_after = c;
1354	}
1355
 
 
 
 
 
 
 
 
 
 
 
1356	/*
1357	 * Please note that this assumes target bandwidth is 20 MHz,
1358	 * if that ever changes we also need to change the below logic
1359	 * to include that as well.
1360	 */
1361	if (!is_ht40_allowed(channel_before))
 
1362		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1363	else
1364		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1365
1366	if (!is_ht40_allowed(channel_after))
 
1367		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1368	else
1369		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1370}
1371
1372static void reg_process_ht_flags_band(struct wiphy *wiphy,
1373				      struct ieee80211_supported_band *sband)
1374{
1375	unsigned int i;
1376
1377	if (!sband)
1378		return;
1379
1380	for (i = 0; i < sband->n_channels; i++)
1381		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1382}
1383
1384static void reg_process_ht_flags(struct wiphy *wiphy)
1385{
1386	enum ieee80211_band band;
1387
1388	if (!wiphy)
1389		return;
1390
1391	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1392		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1393}
1394
1395static void reg_call_notifier(struct wiphy *wiphy,
1396			      struct regulatory_request *request)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397{
1398	if (wiphy->reg_notifier)
1399		wiphy->reg_notifier(wiphy, request);
 
 
 
 
 
1400}
1401
1402static void wiphy_update_regulatory(struct wiphy *wiphy,
1403				    enum nl80211_reg_initiator initiator)
1404{
1405	enum ieee80211_band band;
1406	struct regulatory_request *lr = get_last_request();
1407
1408	if (ignore_reg_update(wiphy, initiator)) {
1409		/*
1410		 * Regulatory updates set by CORE are ignored for custom
1411		 * regulatory cards. Let us notify the changes to the driver,
1412		 * as some drivers used this to restore its orig_* reg domain.
1413		 */
1414		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1415		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
 
 
1416			reg_call_notifier(wiphy, lr);
1417		return;
1418	}
1419
1420	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1421
1422	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1423		handle_band(wiphy, initiator, wiphy->bands[band]);
1424
1425	reg_process_beacons(wiphy);
1426	reg_process_ht_flags(wiphy);
1427	reg_call_notifier(wiphy, lr);
1428}
1429
1430static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1431{
1432	struct cfg80211_registered_device *rdev;
1433	struct wiphy *wiphy;
1434
1435	ASSERT_RTNL();
1436
1437	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1438		wiphy = &rdev->wiphy;
1439		wiphy_update_regulatory(wiphy, initiator);
1440	}
 
 
1441}
1442
1443static void handle_channel_custom(struct wiphy *wiphy,
1444				  struct ieee80211_channel *chan,
1445				  const struct ieee80211_regdomain *regd)
 
1446{
1447	u32 bw_flags = 0;
1448	const struct ieee80211_reg_rule *reg_rule = NULL;
1449	const struct ieee80211_power_rule *power_rule = NULL;
1450	const struct ieee80211_freq_range *freq_range = NULL;
1451	u32 max_bandwidth_khz;
1452
1453	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1454				      regd);
 
 
 
 
1455
1456	if (IS_ERR(reg_rule)) {
1457		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1458			      chan->center_freq);
1459		chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1460		chan->flags = chan->orig_flags;
 
 
 
 
1461		return;
1462	}
1463
1464	chan_reg_rule_print_dbg(regd, chan, reg_rule);
 
1465
1466	power_rule = &reg_rule->power_rule;
1467	freq_range = &reg_rule->freq_range;
1468
1469	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1470	/* Check if auto calculation requested */
1471	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1472		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1473
1474	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1475		bw_flags = IEEE80211_CHAN_NO_HT40;
1476	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1477		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1478	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1479		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1480
1481	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1482	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1483	chan->max_reg_power = chan->max_power =
1484		(int) MBM_TO_DBM(power_rule->max_eirp);
 
 
 
 
 
 
 
 
 
 
 
 
1485}
1486
1487static void handle_band_custom(struct wiphy *wiphy,
1488			       struct ieee80211_supported_band *sband,
1489			       const struct ieee80211_regdomain *regd)
1490{
1491	unsigned int i;
1492
1493	if (!sband)
1494		return;
1495
 
 
 
 
 
1496	for (i = 0; i < sband->n_channels; i++)
1497		handle_channel_custom(wiphy, &sband->channels[i], regd);
 
1498}
1499
1500/* Used by drivers prior to wiphy registration */
1501void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1502				   const struct ieee80211_regdomain *regd)
1503{
1504	enum ieee80211_band band;
 
1505	unsigned int bands_set = 0;
1506
1507	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1508	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1509	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1510
1511	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1512		if (!wiphy->bands[band])
1513			continue;
1514		handle_band_custom(wiphy, wiphy->bands[band], regd);
1515		bands_set++;
1516	}
1517
1518	/*
1519	 * no point in calling this if it won't have any effect
1520	 * on your device's supported bands.
1521	 */
1522	WARN_ON(!bands_set);
 
 
 
 
 
 
 
 
 
 
 
 
 
1523}
1524EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1525
1526static void reg_set_request_processed(void)
1527{
1528	bool need_more_processing = false;
1529	struct regulatory_request *lr = get_last_request();
1530
1531	lr->processed = true;
1532
1533	spin_lock(&reg_requests_lock);
1534	if (!list_empty(&reg_requests_list))
1535		need_more_processing = true;
1536	spin_unlock(&reg_requests_lock);
1537
1538	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1539		cancel_delayed_work(&reg_timeout);
1540
1541	if (need_more_processing)
1542		schedule_work(&reg_work);
1543}
1544
1545/**
1546 * reg_process_hint_core - process core regulatory requests
1547 * @pending_request: a pending core regulatory request
1548 *
1549 * The wireless subsystem can use this function to process
1550 * a regulatory request issued by the regulatory core.
1551 *
1552 * Returns one of the different reg request treatment values.
 
1553 */
1554static enum reg_request_treatment
1555reg_process_hint_core(struct regulatory_request *core_request)
1556{
 
 
 
 
 
 
1557
1558	core_request->intersect = false;
1559	core_request->processed = false;
1560
1561	reg_update_last_request(core_request);
1562
1563	return reg_call_crda(core_request);
1564}
1565
1566static enum reg_request_treatment
1567__reg_process_hint_user(struct regulatory_request *user_request)
1568{
1569	struct regulatory_request *lr = get_last_request();
1570
1571	if (reg_request_cell_base(user_request))
1572		return reg_ignore_cell_hint(user_request);
1573
1574	if (reg_request_cell_base(lr))
1575		return REG_REQ_IGNORE;
1576
1577	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1578		return REG_REQ_INTERSECT;
1579	/*
1580	 * If the user knows better the user should set the regdom
1581	 * to their country before the IE is picked up
1582	 */
1583	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1584	    lr->intersect)
1585		return REG_REQ_IGNORE;
1586	/*
1587	 * Process user requests only after previous user/driver/core
1588	 * requests have been processed
1589	 */
1590	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1591	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1592	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1593	    regdom_changes(lr->alpha2))
1594		return REG_REQ_IGNORE;
1595
1596	if (!regdom_changes(user_request->alpha2))
1597		return REG_REQ_ALREADY_SET;
1598
1599	return REG_REQ_OK;
1600}
1601
1602/**
1603 * reg_process_hint_user - process user regulatory requests
1604 * @user_request: a pending user regulatory request
1605 *
1606 * The wireless subsystem can use this function to process
1607 * a regulatory request initiated by userspace.
1608 *
1609 * Returns one of the different reg request treatment values.
 
1610 */
1611static enum reg_request_treatment
1612reg_process_hint_user(struct regulatory_request *user_request)
1613{
1614	enum reg_request_treatment treatment;
1615
1616	treatment = __reg_process_hint_user(user_request);
1617	if (treatment == REG_REQ_IGNORE ||
1618	    treatment == REG_REQ_ALREADY_SET) {
1619		kfree(user_request);
1620		return treatment;
1621	}
1622
1623	user_request->intersect = treatment == REG_REQ_INTERSECT;
1624	user_request->processed = false;
1625
1626	reg_update_last_request(user_request);
 
 
 
 
 
1627
1628	user_alpha2[0] = user_request->alpha2[0];
1629	user_alpha2[1] = user_request->alpha2[1];
1630
1631	return reg_call_crda(user_request);
1632}
1633
1634static enum reg_request_treatment
1635__reg_process_hint_driver(struct regulatory_request *driver_request)
1636{
1637	struct regulatory_request *lr = get_last_request();
1638
1639	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1640		if (regdom_changes(driver_request->alpha2))
1641			return REG_REQ_OK;
1642		return REG_REQ_ALREADY_SET;
1643	}
1644
1645	/*
1646	 * This would happen if you unplug and plug your card
1647	 * back in or if you add a new device for which the previously
1648	 * loaded card also agrees on the regulatory domain.
1649	 */
1650	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1651	    !regdom_changes(driver_request->alpha2))
1652		return REG_REQ_ALREADY_SET;
1653
1654	return REG_REQ_INTERSECT;
1655}
1656
1657/**
1658 * reg_process_hint_driver - process driver regulatory requests
 
1659 * @driver_request: a pending driver regulatory request
1660 *
1661 * The wireless subsystem can use this function to process
1662 * a regulatory request issued by an 802.11 driver.
1663 *
1664 * Returns one of the different reg request treatment values.
1665 */
1666static enum reg_request_treatment
1667reg_process_hint_driver(struct wiphy *wiphy,
1668			struct regulatory_request *driver_request)
1669{
1670	const struct ieee80211_regdomain *regd;
1671	enum reg_request_treatment treatment;
1672
1673	treatment = __reg_process_hint_driver(driver_request);
1674
1675	switch (treatment) {
1676	case REG_REQ_OK:
1677		break;
1678	case REG_REQ_IGNORE:
1679		kfree(driver_request);
1680		return treatment;
1681	case REG_REQ_INTERSECT:
1682		/* fall through */
1683	case REG_REQ_ALREADY_SET:
1684		regd = reg_copy_regd(get_cfg80211_regdom());
1685		if (IS_ERR(regd)) {
1686			kfree(driver_request);
1687			return REG_REQ_IGNORE;
1688		}
 
 
 
1689		rcu_assign_pointer(wiphy->regd, regd);
 
 
1690	}
1691
1692
1693	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1694	driver_request->processed = false;
1695
1696	reg_update_last_request(driver_request);
1697
1698	/*
1699	 * Since CRDA will not be called in this case as we already
1700	 * have applied the requested regulatory domain before we just
1701	 * inform userspace we have processed the request
1702	 */
1703	if (treatment == REG_REQ_ALREADY_SET) {
1704		nl80211_send_reg_change_event(driver_request);
 
1705		reg_set_request_processed();
1706		return treatment;
 
 
 
 
 
1707	}
1708
1709	return reg_call_crda(driver_request);
1710}
1711
1712static enum reg_request_treatment
1713__reg_process_hint_country_ie(struct wiphy *wiphy,
1714			      struct regulatory_request *country_ie_request)
1715{
1716	struct wiphy *last_wiphy = NULL;
1717	struct regulatory_request *lr = get_last_request();
1718
1719	if (reg_request_cell_base(lr)) {
1720		/* Trust a Cell base station over the AP's country IE */
1721		if (regdom_changes(country_ie_request->alpha2))
1722			return REG_REQ_IGNORE;
1723		return REG_REQ_ALREADY_SET;
1724	} else {
1725		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1726			return REG_REQ_IGNORE;
1727	}
1728
1729	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1730		return -EINVAL;
1731
1732	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1733		return REG_REQ_OK;
1734
1735	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1736
1737	if (last_wiphy != wiphy) {
1738		/*
1739		 * Two cards with two APs claiming different
1740		 * Country IE alpha2s. We could
1741		 * intersect them, but that seems unlikely
1742		 * to be correct. Reject second one for now.
1743		 */
1744		if (regdom_changes(country_ie_request->alpha2))
1745			return REG_REQ_IGNORE;
1746		return REG_REQ_ALREADY_SET;
1747	}
1748	/*
1749	 * Two consecutive Country IE hints on the same wiphy.
1750	 * This should be picked up early by the driver/stack
1751	 */
1752	if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1753		return REG_REQ_OK;
1754	return REG_REQ_ALREADY_SET;
1755}
1756
1757/**
1758 * reg_process_hint_country_ie - process regulatory requests from country IEs
 
1759 * @country_ie_request: a regulatory request from a country IE
1760 *
1761 * The wireless subsystem can use this function to process
1762 * a regulatory request issued by a country Information Element.
1763 *
1764 * Returns one of the different reg request treatment values.
1765 */
1766static enum reg_request_treatment
1767reg_process_hint_country_ie(struct wiphy *wiphy,
1768			    struct regulatory_request *country_ie_request)
1769{
1770	enum reg_request_treatment treatment;
1771
1772	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1773
1774	switch (treatment) {
1775	case REG_REQ_OK:
1776		break;
1777	case REG_REQ_IGNORE:
1778		/* fall through */
1779	case REG_REQ_ALREADY_SET:
1780		kfree(country_ie_request);
1781		return treatment;
1782	case REG_REQ_INTERSECT:
1783		kfree(country_ie_request);
1784		/*
1785		 * This doesn't happen yet, not sure we
1786		 * ever want to support it for this case.
1787		 */
1788		WARN_ONCE(1, "Unexpected intersection for country IEs");
1789		return REG_REQ_IGNORE;
1790	}
1791
1792	country_ie_request->intersect = false;
1793	country_ie_request->processed = false;
1794
1795	reg_update_last_request(country_ie_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797	return reg_call_crda(country_ie_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798}
1799
1800/* This processes *all* regulatory hints */
1801static void reg_process_hint(struct regulatory_request *reg_request)
1802{
1803	struct wiphy *wiphy = NULL;
1804	enum reg_request_treatment treatment;
 
1805
1806	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1807		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1808
1809	switch (reg_request->initiator) {
1810	case NL80211_REGDOM_SET_BY_CORE:
1811		reg_process_hint_core(reg_request);
1812		return;
1813	case NL80211_REGDOM_SET_BY_USER:
1814		treatment = reg_process_hint_user(reg_request);
1815		if (treatment == REG_REQ_IGNORE ||
1816		    treatment == REG_REQ_ALREADY_SET)
1817			return;
1818		queue_delayed_work(system_power_efficient_wq,
1819				   &reg_timeout, msecs_to_jiffies(3142));
1820		return;
1821	case NL80211_REGDOM_SET_BY_DRIVER:
1822		if (!wiphy)
1823			goto out_free;
1824		treatment = reg_process_hint_driver(wiphy, reg_request);
1825		break;
1826	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1827		if (!wiphy)
1828			goto out_free;
1829		treatment = reg_process_hint_country_ie(wiphy, reg_request);
1830		break;
1831	default:
1832		WARN(1, "invalid initiator %d\n", reg_request->initiator);
1833		goto out_free;
1834	}
1835
1836	/* This is required so that the orig_* parameters are saved */
 
 
 
 
 
 
 
 
1837	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1838	    wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1839		wiphy_update_regulatory(wiphy, reg_request->initiator);
 
 
 
1840
1841	return;
1842
1843out_free:
1844	kfree(reg_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
1845}
1846
1847/*
1848 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1849 * Regulatory hints come on a first come first serve basis and we
1850 * must process each one atomically.
1851 */
1852static void reg_process_pending_hints(void)
1853{
1854	struct regulatory_request *reg_request, *lr;
1855
1856	lr = get_last_request();
1857
1858	/* When last_request->processed becomes true this will be rescheduled */
1859	if (lr && !lr->processed) {
1860		REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1861		return;
1862	}
1863
1864	spin_lock(&reg_requests_lock);
1865
1866	if (list_empty(&reg_requests_list)) {
1867		spin_unlock(&reg_requests_lock);
1868		return;
1869	}
1870
1871	reg_request = list_first_entry(&reg_requests_list,
1872				       struct regulatory_request,
1873				       list);
1874	list_del_init(&reg_request->list);
1875
1876	spin_unlock(&reg_requests_lock);
1877
 
 
1878	reg_process_hint(reg_request);
 
 
 
 
 
 
 
1879}
1880
1881/* Processes beacon hints -- this has nothing to do with country IEs */
1882static void reg_process_pending_beacon_hints(void)
1883{
1884	struct cfg80211_registered_device *rdev;
1885	struct reg_beacon *pending_beacon, *tmp;
1886
1887	/* This goes through the _pending_ beacon list */
1888	spin_lock_bh(&reg_pending_beacons_lock);
1889
1890	list_for_each_entry_safe(pending_beacon, tmp,
1891				 &reg_pending_beacons, list) {
1892		list_del_init(&pending_beacon->list);
1893
1894		/* Applies the beacon hint to current wiphys */
1895		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1896			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1897
1898		/* Remembers the beacon hint for new wiphys or reg changes */
1899		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1900	}
1901
1902	spin_unlock_bh(&reg_pending_beacons_lock);
1903}
1904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1905static void reg_todo(struct work_struct *work)
1906{
1907	rtnl_lock();
1908	reg_process_pending_hints();
1909	reg_process_pending_beacon_hints();
 
1910	rtnl_unlock();
1911}
1912
1913static void queue_regulatory_request(struct regulatory_request *request)
1914{
1915	request->alpha2[0] = toupper(request->alpha2[0]);
1916	request->alpha2[1] = toupper(request->alpha2[1]);
1917
1918	spin_lock(&reg_requests_lock);
1919	list_add_tail(&request->list, &reg_requests_list);
1920	spin_unlock(&reg_requests_lock);
1921
1922	schedule_work(&reg_work);
1923}
1924
1925/*
1926 * Core regulatory hint -- happens during cfg80211_init()
1927 * and when we restore regulatory settings.
1928 */
1929static int regulatory_hint_core(const char *alpha2)
1930{
1931	struct regulatory_request *request;
1932
1933	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1934	if (!request)
1935		return -ENOMEM;
1936
1937	request->alpha2[0] = alpha2[0];
1938	request->alpha2[1] = alpha2[1];
1939	request->initiator = NL80211_REGDOM_SET_BY_CORE;
 
1940
1941	queue_regulatory_request(request);
1942
1943	return 0;
1944}
1945
1946/* User hints */
1947int regulatory_hint_user(const char *alpha2,
1948			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1949{
1950	struct regulatory_request *request;
1951
1952	if (WARN_ON(!alpha2))
1953		return -EINVAL;
1954
 
 
 
1955	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1956	if (!request)
1957		return -ENOMEM;
1958
1959	request->wiphy_idx = WIPHY_IDX_INVALID;
1960	request->alpha2[0] = alpha2[0];
1961	request->alpha2[1] = alpha2[1];
1962	request->initiator = NL80211_REGDOM_SET_BY_USER;
1963	request->user_reg_hint_type = user_reg_hint_type;
1964
 
 
 
1965	queue_regulatory_request(request);
1966
1967	return 0;
1968}
1969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970/* Driver hints */
1971int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1972{
1973	struct regulatory_request *request;
1974
1975	if (WARN_ON(!alpha2 || !wiphy))
1976		return -EINVAL;
1977
1978	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1979
1980	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1981	if (!request)
1982		return -ENOMEM;
1983
1984	request->wiphy_idx = get_wiphy_idx(wiphy);
1985
1986	request->alpha2[0] = alpha2[0];
1987	request->alpha2[1] = alpha2[1];
1988	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1989
 
 
 
1990	queue_regulatory_request(request);
1991
1992	return 0;
1993}
1994EXPORT_SYMBOL(regulatory_hint);
1995
1996void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1997				const u8 *country_ie, u8 country_ie_len)
1998{
1999	char alpha2[2];
2000	enum environment_cap env = ENVIRON_ANY;
2001	struct regulatory_request *request = NULL, *lr;
2002
2003	/* IE len must be evenly divisible by 2 */
2004	if (country_ie_len & 0x01)
2005		return;
2006
2007	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2008		return;
2009
2010	request = kzalloc(sizeof(*request), GFP_KERNEL);
2011	if (!request)
2012		return;
2013
2014	alpha2[0] = country_ie[0];
2015	alpha2[1] = country_ie[1];
2016
2017	if (country_ie[2] == 'I')
2018		env = ENVIRON_INDOOR;
2019	else if (country_ie[2] == 'O')
2020		env = ENVIRON_OUTDOOR;
2021
2022	rcu_read_lock();
2023	lr = get_last_request();
2024
2025	if (unlikely(!lr))
2026		goto out;
2027
2028	/*
2029	 * We will run this only upon a successful connection on cfg80211.
2030	 * We leave conflict resolution to the workqueue, where can hold
2031	 * the RTNL.
2032	 */
2033	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2034	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2035		goto out;
2036
2037	request->wiphy_idx = get_wiphy_idx(wiphy);
2038	request->alpha2[0] = alpha2[0];
2039	request->alpha2[1] = alpha2[1];
2040	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2041	request->country_ie_env = env;
2042
 
 
 
2043	queue_regulatory_request(request);
2044	request = NULL;
2045out:
2046	kfree(request);
2047	rcu_read_unlock();
2048}
2049
2050static void restore_alpha2(char *alpha2, bool reset_user)
2051{
2052	/* indicates there is no alpha2 to consider for restoration */
2053	alpha2[0] = '9';
2054	alpha2[1] = '7';
2055
2056	/* The user setting has precedence over the module parameter */
2057	if (is_user_regdom_saved()) {
2058		/* Unless we're asked to ignore it and reset it */
2059		if (reset_user) {
2060			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2061			user_alpha2[0] = '9';
2062			user_alpha2[1] = '7';
2063
2064			/*
2065			 * If we're ignoring user settings, we still need to
2066			 * check the module parameter to ensure we put things
2067			 * back as they were for a full restore.
2068			 */
2069			if (!is_world_regdom(ieee80211_regdom)) {
2070				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2071					      ieee80211_regdom[0], ieee80211_regdom[1]);
2072				alpha2[0] = ieee80211_regdom[0];
2073				alpha2[1] = ieee80211_regdom[1];
2074			}
2075		} else {
2076			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2077				      user_alpha2[0], user_alpha2[1]);
2078			alpha2[0] = user_alpha2[0];
2079			alpha2[1] = user_alpha2[1];
2080		}
2081	} else if (!is_world_regdom(ieee80211_regdom)) {
2082		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2083			      ieee80211_regdom[0], ieee80211_regdom[1]);
2084		alpha2[0] = ieee80211_regdom[0];
2085		alpha2[1] = ieee80211_regdom[1];
2086	} else
2087		REG_DBG_PRINT("Restoring regulatory settings\n");
2088}
2089
2090static void restore_custom_reg_settings(struct wiphy *wiphy)
2091{
2092	struct ieee80211_supported_band *sband;
2093	enum ieee80211_band band;
2094	struct ieee80211_channel *chan;
2095	int i;
2096
2097	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2098		sband = wiphy->bands[band];
2099		if (!sband)
2100			continue;
2101		for (i = 0; i < sband->n_channels; i++) {
2102			chan = &sband->channels[i];
2103			chan->flags = chan->orig_flags;
2104			chan->max_antenna_gain = chan->orig_mag;
2105			chan->max_power = chan->orig_mpwr;
2106			chan->beacon_found = false;
2107		}
2108	}
2109}
2110
2111/*
2112 * Restoring regulatory settings involves ingoring any
2113 * possibly stale country IE information and user regulatory
2114 * settings if so desired, this includes any beacon hints
2115 * learned as we could have traveled outside to another country
2116 * after disconnection. To restore regulatory settings we do
2117 * exactly what we did at bootup:
2118 *
2119 *   - send a core regulatory hint
2120 *   - send a user regulatory hint if applicable
2121 *
2122 * Device drivers that send a regulatory hint for a specific country
2123 * keep their own regulatory domain on wiphy->regd so that does does
2124 * not need to be remembered.
2125 */
2126static void restore_regulatory_settings(bool reset_user)
2127{
2128	char alpha2[2];
2129	char world_alpha2[2];
2130	struct reg_beacon *reg_beacon, *btmp;
2131	struct regulatory_request *reg_request, *tmp;
2132	LIST_HEAD(tmp_reg_req_list);
2133	struct cfg80211_registered_device *rdev;
2134
2135	ASSERT_RTNL();
2136
 
 
 
 
 
 
 
 
 
 
 
 
2137	reset_regdomains(true, &world_regdom);
2138	restore_alpha2(alpha2, reset_user);
2139
2140	/*
2141	 * If there's any pending requests we simply
2142	 * stash them to a temporary pending queue and
2143	 * add then after we've restored regulatory
2144	 * settings.
2145	 */
2146	spin_lock(&reg_requests_lock);
2147	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2148		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2149			continue;
2150		list_move_tail(&reg_request->list, &tmp_reg_req_list);
2151	}
2152	spin_unlock(&reg_requests_lock);
2153
2154	/* Clear beacon hints */
2155	spin_lock_bh(&reg_pending_beacons_lock);
2156	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2157		list_del(&reg_beacon->list);
2158		kfree(reg_beacon);
2159	}
2160	spin_unlock_bh(&reg_pending_beacons_lock);
2161
2162	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2163		list_del(&reg_beacon->list);
2164		kfree(reg_beacon);
2165	}
2166
2167	/* First restore to the basic regulatory settings */
2168	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2169	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2170
2171	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
 
 
2172		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2173			restore_custom_reg_settings(&rdev->wiphy);
2174	}
2175
2176	regulatory_hint_core(world_alpha2);
 
 
 
 
 
 
2177
2178	/*
2179	 * This restores the ieee80211_regdom module parameter
2180	 * preference or the last user requested regulatory
2181	 * settings, user regulatory settings takes precedence.
2182	 */
2183	if (is_an_alpha2(alpha2))
2184		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185
2186	spin_lock(&reg_requests_lock);
2187	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2188	spin_unlock(&reg_requests_lock);
2189
2190	REG_DBG_PRINT("Kicking the queue\n");
2191
2192	schedule_work(&reg_work);
2193}
2194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195void regulatory_hint_disconnect(void)
2196{
2197	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2198	restore_regulatory_settings(false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2199}
2200
2201static bool freq_is_chan_12_13_14(u16 freq)
2202{
2203	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2204	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2205	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2206		return true;
2207	return false;
2208}
2209
2210static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2211{
2212	struct reg_beacon *pending_beacon;
2213
2214	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2215		if (beacon_chan->center_freq ==
2216		    pending_beacon->chan.center_freq)
2217			return true;
2218	return false;
2219}
2220
2221int regulatory_hint_found_beacon(struct wiphy *wiphy,
2222				 struct ieee80211_channel *beacon_chan,
2223				 gfp_t gfp)
2224{
2225	struct reg_beacon *reg_beacon;
2226	bool processing;
2227
2228	if (beacon_chan->beacon_found ||
2229	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2230	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2231	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2232		return 0;
2233
2234	spin_lock_bh(&reg_pending_beacons_lock);
2235	processing = pending_reg_beacon(beacon_chan);
2236	spin_unlock_bh(&reg_pending_beacons_lock);
2237
2238	if (processing)
2239		return 0;
2240
2241	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2242	if (!reg_beacon)
2243		return -ENOMEM;
2244
2245	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2246		      beacon_chan->center_freq,
2247		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2248		      wiphy_name(wiphy));
 
2249
2250	memcpy(&reg_beacon->chan, beacon_chan,
2251	       sizeof(struct ieee80211_channel));
2252
2253	/*
2254	 * Since we can be called from BH or and non-BH context
2255	 * we must use spin_lock_bh()
2256	 */
2257	spin_lock_bh(&reg_pending_beacons_lock);
2258	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2259	spin_unlock_bh(&reg_pending_beacons_lock);
2260
2261	schedule_work(&reg_work);
2262
2263	return 0;
2264}
2265
2266static void print_rd_rules(const struct ieee80211_regdomain *rd)
2267{
2268	unsigned int i;
2269	const struct ieee80211_reg_rule *reg_rule = NULL;
2270	const struct ieee80211_freq_range *freq_range = NULL;
2271	const struct ieee80211_power_rule *power_rule = NULL;
2272	char bw[32], cac_time[32];
2273
2274	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2275
2276	for (i = 0; i < rd->n_reg_rules; i++) {
2277		reg_rule = &rd->reg_rules[i];
2278		freq_range = &reg_rule->freq_range;
2279		power_rule = &reg_rule->power_rule;
2280
2281		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2282			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2283				 freq_range->max_bandwidth_khz,
2284				 reg_get_max_bandwidth(rd, reg_rule));
2285		else
2286			snprintf(bw, sizeof(bw), "%d KHz",
2287				 freq_range->max_bandwidth_khz);
2288
2289		if (reg_rule->flags & NL80211_RRF_DFS)
2290			scnprintf(cac_time, sizeof(cac_time), "%u s",
2291				  reg_rule->dfs_cac_ms/1000);
2292		else
2293			scnprintf(cac_time, sizeof(cac_time), "N/A");
2294
2295
2296		/*
2297		 * There may not be documentation for max antenna gain
2298		 * in certain regions
2299		 */
2300		if (power_rule->max_antenna_gain)
2301			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2302				freq_range->start_freq_khz,
2303				freq_range->end_freq_khz,
2304				bw,
2305				power_rule->max_antenna_gain,
2306				power_rule->max_eirp,
2307				cac_time);
2308		else
2309			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2310				freq_range->start_freq_khz,
2311				freq_range->end_freq_khz,
2312				bw,
2313				power_rule->max_eirp,
2314				cac_time);
2315	}
2316}
2317
2318bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2319{
2320	switch (dfs_region) {
2321	case NL80211_DFS_UNSET:
2322	case NL80211_DFS_FCC:
2323	case NL80211_DFS_ETSI:
2324	case NL80211_DFS_JP:
2325		return true;
2326	default:
2327		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2328			      dfs_region);
2329		return false;
2330	}
2331}
2332
2333static void print_regdomain(const struct ieee80211_regdomain *rd)
2334{
2335	struct regulatory_request *lr = get_last_request();
2336
2337	if (is_intersected_alpha2(rd->alpha2)) {
2338		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2339			struct cfg80211_registered_device *rdev;
2340			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2341			if (rdev) {
2342				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2343					rdev->country_ie_alpha2[0],
2344					rdev->country_ie_alpha2[1]);
2345			} else
2346				pr_info("Current regulatory domain intersected:\n");
2347		} else
2348			pr_info("Current regulatory domain intersected:\n");
2349	} else if (is_world_regdom(rd->alpha2)) {
2350		pr_info("World regulatory domain updated:\n");
2351	} else {
2352		if (is_unknown_alpha2(rd->alpha2))
2353			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2354		else {
2355			if (reg_request_cell_base(lr))
2356				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2357					rd->alpha2[0], rd->alpha2[1]);
2358			else
2359				pr_info("Regulatory domain changed to country: %c%c\n",
2360					rd->alpha2[0], rd->alpha2[1]);
2361		}
2362	}
2363
2364	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2365	print_rd_rules(rd);
2366}
2367
2368static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2369{
2370	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2371	print_rd_rules(rd);
2372}
2373
2374static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2375{
2376	if (!is_world_regdom(rd->alpha2))
2377		return -EINVAL;
2378	update_world_regdomain(rd);
2379	return 0;
2380}
2381
2382static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2383			   struct regulatory_request *user_request)
2384{
2385	const struct ieee80211_regdomain *intersected_rd = NULL;
2386
2387	if (!regdom_changes(rd->alpha2))
2388		return -EALREADY;
2389
2390	if (!is_valid_rd(rd)) {
2391		pr_err("Invalid regulatory domain detected:\n");
 
2392		print_regdomain_info(rd);
2393		return -EINVAL;
2394	}
2395
2396	if (!user_request->intersect) {
2397		reset_regdomains(false, rd);
2398		return 0;
2399	}
2400
2401	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2402	if (!intersected_rd)
2403		return -EINVAL;
2404
2405	kfree(rd);
2406	rd = NULL;
2407	reset_regdomains(false, intersected_rd);
2408
2409	return 0;
2410}
2411
2412static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2413			     struct regulatory_request *driver_request)
2414{
2415	const struct ieee80211_regdomain *regd;
2416	const struct ieee80211_regdomain *intersected_rd = NULL;
2417	const struct ieee80211_regdomain *tmp;
2418	struct wiphy *request_wiphy;
2419
2420	if (is_world_regdom(rd->alpha2))
2421		return -EINVAL;
2422
2423	if (!regdom_changes(rd->alpha2))
2424		return -EALREADY;
2425
2426	if (!is_valid_rd(rd)) {
2427		pr_err("Invalid regulatory domain detected:\n");
 
2428		print_regdomain_info(rd);
2429		return -EINVAL;
2430	}
2431
2432	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2433	if (!request_wiphy) {
2434		queue_delayed_work(system_power_efficient_wq,
2435				   &reg_timeout, 0);
2436		return -ENODEV;
2437	}
2438
2439	if (!driver_request->intersect) {
 
 
2440		if (request_wiphy->regd)
2441			return -EALREADY;
2442
2443		regd = reg_copy_regd(rd);
2444		if (IS_ERR(regd))
 
2445			return PTR_ERR(regd);
 
2446
2447		rcu_assign_pointer(request_wiphy->regd, regd);
 
 
2448		reset_regdomains(false, rd);
2449		return 0;
2450	}
2451
2452	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2453	if (!intersected_rd)
2454		return -EINVAL;
2455
2456	/*
2457	 * We can trash what CRDA provided now.
2458	 * However if a driver requested this specific regulatory
2459	 * domain we keep it for its private use
2460	 */
2461	tmp = get_wiphy_regdom(request_wiphy);
2462	rcu_assign_pointer(request_wiphy->regd, rd);
2463	rcu_free_regdom(tmp);
2464
2465	rd = NULL;
2466
2467	reset_regdomains(false, intersected_rd);
2468
2469	return 0;
2470}
2471
2472static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2473				 struct regulatory_request *country_ie_request)
2474{
2475	struct wiphy *request_wiphy;
2476
2477	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2478	    !is_unknown_alpha2(rd->alpha2))
2479		return -EINVAL;
2480
2481	/*
2482	 * Lets only bother proceeding on the same alpha2 if the current
2483	 * rd is non static (it means CRDA was present and was used last)
2484	 * and the pending request came in from a country IE
2485	 */
2486
2487	if (!is_valid_rd(rd)) {
2488		pr_err("Invalid regulatory domain detected:\n");
 
2489		print_regdomain_info(rd);
2490		return -EINVAL;
2491	}
2492
2493	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2494	if (!request_wiphy) {
2495		queue_delayed_work(system_power_efficient_wq,
2496				   &reg_timeout, 0);
2497		return -ENODEV;
2498	}
2499
2500	if (country_ie_request->intersect)
2501		return -EINVAL;
2502
2503	reset_regdomains(false, rd);
2504	return 0;
2505}
2506
2507/*
2508 * Use this call to set the current regulatory domain. Conflicts with
2509 * multiple drivers can be ironed out later. Caller must've already
2510 * kmalloc'd the rd structure.
2511 */
2512int set_regdom(const struct ieee80211_regdomain *rd)
 
2513{
2514	struct regulatory_request *lr;
2515	bool user_reset = false;
2516	int r;
2517
 
 
 
2518	if (!reg_is_valid_request(rd->alpha2)) {
2519		kfree(rd);
2520		return -EINVAL;
2521	}
2522
 
 
 
2523	lr = get_last_request();
2524
2525	/* Note that this doesn't update the wiphys, this is done below */
2526	switch (lr->initiator) {
2527	case NL80211_REGDOM_SET_BY_CORE:
2528		r = reg_set_rd_core(rd);
2529		break;
2530	case NL80211_REGDOM_SET_BY_USER:
 
2531		r = reg_set_rd_user(rd, lr);
2532		user_reset = true;
2533		break;
2534	case NL80211_REGDOM_SET_BY_DRIVER:
2535		r = reg_set_rd_driver(rd, lr);
2536		break;
2537	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2538		r = reg_set_rd_country_ie(rd, lr);
2539		break;
2540	default:
2541		WARN(1, "invalid initiator %d\n", lr->initiator);
 
2542		return -EINVAL;
2543	}
2544
2545	if (r) {
2546		switch (r) {
2547		case -EALREADY:
2548			reg_set_request_processed();
2549			break;
2550		default:
2551			/* Back to world regulatory in case of errors */
2552			restore_regulatory_settings(user_reset);
2553		}
2554
2555		kfree(rd);
2556		return r;
2557	}
2558
2559	/* This would make this whole thing pointless */
2560	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2561		return -EINVAL;
2562
2563	/* update all wiphys now with the new established regulatory domain */
2564	update_all_wiphy_regulatory(lr->initiator);
2565
2566	print_regdomain(get_cfg80211_regdom());
2567
2568	nl80211_send_reg_change_event(lr);
2569
2570	reg_set_request_processed();
2571
2572	return 0;
2573}
2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575void wiphy_regulatory_register(struct wiphy *wiphy)
2576{
2577	struct regulatory_request *lr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578
2579	if (!reg_dev_ignore_cell_hint(wiphy))
2580		reg_num_devs_support_basehint++;
2581
2582	lr = get_last_request();
2583	wiphy_update_regulatory(wiphy, lr->initiator);
 
 
2584}
2585
2586void wiphy_regulatory_deregister(struct wiphy *wiphy)
2587{
2588	struct wiphy *request_wiphy = NULL;
2589	struct regulatory_request *lr;
2590
2591	lr = get_last_request();
2592
2593	if (!reg_dev_ignore_cell_hint(wiphy))
2594		reg_num_devs_support_basehint--;
2595
2596	rcu_free_regdom(get_wiphy_regdom(wiphy));
2597	rcu_assign_pointer(wiphy->regd, NULL);
2598
2599	if (lr)
2600		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2601
2602	if (!request_wiphy || request_wiphy != wiphy)
2603		return;
2604
2605	lr->wiphy_idx = WIPHY_IDX_INVALID;
2606	lr->country_ie_env = ENVIRON_ANY;
2607}
2608
2609static void reg_timeout_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610{
2611	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2612	rtnl_lock();
2613	restore_regulatory_settings(true);
2614	rtnl_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2615}
2616
2617int __init regulatory_init(void)
 
 
 
2618{
2619	int err = 0;
 
 
2620
2621	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2622	if (IS_ERR(reg_pdev))
2623		return PTR_ERR(reg_pdev);
 
 
 
 
 
 
 
 
 
 
 
 
2624
2625	spin_lock_init(&reg_requests_lock);
2626	spin_lock_init(&reg_pending_beacons_lock);
 
 
 
2627
2628	reg_regdb_size_check();
 
 
2629
2630	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
 
 
 
 
 
 
 
 
 
 
 
2631
2632	user_alpha2[0] = '9';
2633	user_alpha2[1] = '7';
 
 
 
2634
2635	/* We always try to get an update for the static regdomain */
2636	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2637	if (err) {
2638		if (err == -ENOMEM)
 
2639			return err;
 
2640		/*
2641		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2642		 * memory which is handled and propagated appropriately above
2643		 * but it can also fail during a netlink_broadcast() or during
2644		 * early boot for call_usermodehelper(). For now treat these
2645		 * errors as non-fatal.
2646		 */
2647		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2648	}
2649
2650	/*
2651	 * Finally, if the user set the module parameter treat it
2652	 * as a user hint.
2653	 */
2654	if (!is_world_regdom(ieee80211_regdom))
2655		regulatory_hint_user(ieee80211_regdom,
2656				     NL80211_USER_REG_HINT_USER);
2657
2658	return 0;
2659}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660
2661void regulatory_exit(void)
2662{
2663	struct regulatory_request *reg_request, *tmp;
2664	struct reg_beacon *reg_beacon, *btmp;
2665
2666	cancel_work_sync(&reg_work);
2667	cancel_delayed_work_sync(&reg_timeout);
 
2668
2669	/* Lock to suppress warnings */
2670	rtnl_lock();
2671	reset_regdomains(true, NULL);
2672	rtnl_unlock();
2673
2674	dev_set_uevent_suppress(&reg_pdev->dev, true);
2675
2676	platform_device_unregister(reg_pdev);
2677
2678	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2679		list_del(&reg_beacon->list);
2680		kfree(reg_beacon);
2681	}
2682
2683	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2684		list_del(&reg_beacon->list);
2685		kfree(reg_beacon);
2686	}
2687
2688	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2689		list_del(&reg_request->list);
2690		kfree(reg_request);
2691	}
 
 
 
 
 
 
 
2692}