Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2023 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
 
 
  60#include <net/cfg80211.h>
  61#include "core.h"
  62#include "reg.h"
  63#include "rdev-ops.h"
  64#include "nl80211.h"
  65
  66/*
  67 * Grace period we give before making sure all current interfaces reside on
  68 * channels allowed by the current regulatory domain.
  69 */
  70#define REG_ENFORCE_GRACE_MS 60000
  71
  72/**
  73 * enum reg_request_treatment - regulatory request treatment
  74 *
  75 * @REG_REQ_OK: continue processing the regulatory request
  76 * @REG_REQ_IGNORE: ignore the regulatory request
  77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78 *	be intersected with the current one.
  79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80 *	regulatory settings, and no further processing is required.
  81 */
  82enum reg_request_treatment {
  83	REG_REQ_OK,
  84	REG_REQ_IGNORE,
  85	REG_REQ_INTERSECT,
  86	REG_REQ_ALREADY_SET,
  87};
  88
  89static struct regulatory_request core_request_world = {
  90	.initiator = NL80211_REGDOM_SET_BY_CORE,
  91	.alpha2[0] = '0',
  92	.alpha2[1] = '0',
  93	.intersect = false,
  94	.processed = true,
  95	.country_ie_env = ENVIRON_ANY,
  96};
  97
  98/*
  99 * Receipt of information from last regulatory request,
 100 * protected by RTNL (and can be accessed with RCU protection)
 101 */
 102static struct regulatory_request __rcu *last_request =
 103	(void __force __rcu *)&core_request_world;
 104
 105/* To trigger userspace events and load firmware */
 106static struct platform_device *reg_pdev;
 107
 108/*
 109 * Central wireless core regulatory domains, we only need two,
 110 * the current one and a world regulatory domain in case we have no
 111 * information to give us an alpha2.
 112 * (protected by RTNL, can be read under RCU)
 113 */
 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115
 116/*
 117 * Number of devices that registered to the core
 118 * that support cellular base station regulatory hints
 119 * (protected by RTNL)
 120 */
 121static int reg_num_devs_support_basehint;
 122
 123/*
 124 * State variable indicating if the platform on which the devices
 125 * are attached is operating in an indoor environment. The state variable
 126 * is relevant for all registered devices.
 127 */
 128static bool reg_is_indoor;
 129static DEFINE_SPINLOCK(reg_indoor_lock);
 130
 131/* Used to track the userspace process controlling the indoor setting */
 132static u32 reg_is_indoor_portid;
 133
 134static void restore_regulatory_settings(bool reset_user, bool cached);
 135static void print_regdomain(const struct ieee80211_regdomain *rd);
 136static void reg_process_hint(struct regulatory_request *reg_request);
 137
 138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 139{
 140	return rcu_dereference_rtnl(cfg80211_regdomain);
 141}
 142
 143/*
 144 * Returns the regulatory domain associated with the wiphy.
 145 *
 146 * Requires any of RTNL, wiphy mutex or RCU protection.
 147 */
 148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 149{
 150	return rcu_dereference_check(wiphy->regd,
 151				     lockdep_is_held(&wiphy->mtx) ||
 152				     lockdep_rtnl_is_held());
 153}
 154EXPORT_SYMBOL(get_wiphy_regdom);
 155
 156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 157{
 158	switch (dfs_region) {
 159	case NL80211_DFS_UNSET:
 160		return "unset";
 161	case NL80211_DFS_FCC:
 162		return "FCC";
 163	case NL80211_DFS_ETSI:
 164		return "ETSI";
 165	case NL80211_DFS_JP:
 166		return "JP";
 167	}
 168	return "Unknown";
 169}
 170
 171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 172{
 173	const struct ieee80211_regdomain *regd = NULL;
 174	const struct ieee80211_regdomain *wiphy_regd = NULL;
 175	enum nl80211_dfs_regions dfs_region;
 176
 177	rcu_read_lock();
 178	regd = get_cfg80211_regdom();
 179	dfs_region = regd->dfs_region;
 180
 181	if (!wiphy)
 182		goto out;
 183
 184	wiphy_regd = get_wiphy_regdom(wiphy);
 185	if (!wiphy_regd)
 186		goto out;
 187
 188	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
 189		dfs_region = wiphy_regd->dfs_region;
 190		goto out;
 191	}
 192
 193	if (wiphy_regd->dfs_region == regd->dfs_region)
 194		goto out;
 195
 196	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 197		 dev_name(&wiphy->dev),
 198		 reg_dfs_region_str(wiphy_regd->dfs_region),
 199		 reg_dfs_region_str(regd->dfs_region));
 200
 201out:
 202	rcu_read_unlock();
 203
 204	return dfs_region;
 205}
 206
 207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 208{
 209	if (!r)
 210		return;
 211	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 212}
 213
 214static struct regulatory_request *get_last_request(void)
 215{
 216	return rcu_dereference_rtnl(last_request);
 217}
 218
 219/* Used to queue up regulatory hints */
 220static LIST_HEAD(reg_requests_list);
 221static DEFINE_SPINLOCK(reg_requests_lock);
 222
 223/* Used to queue up beacon hints for review */
 224static LIST_HEAD(reg_pending_beacons);
 225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
 226
 227/* Used to keep track of processed beacon hints */
 228static LIST_HEAD(reg_beacon_list);
 229
 230struct reg_beacon {
 231	struct list_head list;
 232	struct ieee80211_channel chan;
 233};
 234
 235static void reg_check_chans_work(struct work_struct *work);
 236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 237
 238static void reg_todo(struct work_struct *work);
 239static DECLARE_WORK(reg_work, reg_todo);
 240
 241/* We keep a static world regulatory domain in case of the absence of CRDA */
 242static const struct ieee80211_regdomain world_regdom = {
 243	.n_reg_rules = 8,
 244	.alpha2 =  "00",
 245	.reg_rules = {
 246		/* IEEE 802.11b/g, channels 1..11 */
 247		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 248		/* IEEE 802.11b/g, channels 12..13. */
 249		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 250			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 251		/* IEEE 802.11 channel 14 - Only JP enables
 252		 * this and for 802.11b only */
 253		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 254			NL80211_RRF_NO_IR |
 255			NL80211_RRF_NO_OFDM),
 256		/* IEEE 802.11a, channel 36..48 */
 257		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 258                        NL80211_RRF_NO_IR |
 259                        NL80211_RRF_AUTO_BW),
 260
 261		/* IEEE 802.11a, channel 52..64 - DFS required */
 262		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 263			NL80211_RRF_NO_IR |
 264			NL80211_RRF_AUTO_BW |
 265			NL80211_RRF_DFS),
 266
 267		/* IEEE 802.11a, channel 100..144 - DFS required */
 268		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 269			NL80211_RRF_NO_IR |
 270			NL80211_RRF_DFS),
 271
 272		/* IEEE 802.11a, channel 149..165 */
 273		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 274			NL80211_RRF_NO_IR),
 275
 276		/* IEEE 802.11ad (60GHz), channels 1..3 */
 277		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 278	}
 279};
 280
 281/* protected by RTNL */
 282static const struct ieee80211_regdomain *cfg80211_world_regdom =
 283	&world_regdom;
 284
 285static char *ieee80211_regdom = "00";
 286static char user_alpha2[2];
 287static const struct ieee80211_regdomain *cfg80211_user_regdom;
 288
 289module_param(ieee80211_regdom, charp, 0444);
 290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 291
 292static void reg_free_request(struct regulatory_request *request)
 293{
 294	if (request == &core_request_world)
 295		return;
 296
 297	if (request != get_last_request())
 298		kfree(request);
 299}
 300
 301static void reg_free_last_request(void)
 302{
 303	struct regulatory_request *lr = get_last_request();
 304
 305	if (lr != &core_request_world && lr)
 306		kfree_rcu(lr, rcu_head);
 307}
 308
 309static void reg_update_last_request(struct regulatory_request *request)
 310{
 311	struct regulatory_request *lr;
 312
 313	lr = get_last_request();
 314	if (lr == request)
 315		return;
 316
 317	reg_free_last_request();
 318	rcu_assign_pointer(last_request, request);
 319}
 320
 321static void reset_regdomains(bool full_reset,
 322			     const struct ieee80211_regdomain *new_regdom)
 323{
 324	const struct ieee80211_regdomain *r;
 325
 326	ASSERT_RTNL();
 327
 328	r = get_cfg80211_regdom();
 329
 330	/* avoid freeing static information or freeing something twice */
 331	if (r == cfg80211_world_regdom)
 332		r = NULL;
 333	if (cfg80211_world_regdom == &world_regdom)
 334		cfg80211_world_regdom = NULL;
 335	if (r == &world_regdom)
 336		r = NULL;
 337
 338	rcu_free_regdom(r);
 339	rcu_free_regdom(cfg80211_world_regdom);
 340
 341	cfg80211_world_regdom = &world_regdom;
 342	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 343
 344	if (!full_reset)
 345		return;
 346
 347	reg_update_last_request(&core_request_world);
 348}
 349
 350/*
 351 * Dynamic world regulatory domain requested by the wireless
 352 * core upon initialization
 353 */
 354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 355{
 356	struct regulatory_request *lr;
 357
 358	lr = get_last_request();
 359
 360	WARN_ON(!lr);
 361
 362	reset_regdomains(false, rd);
 363
 364	cfg80211_world_regdom = rd;
 365}
 366
 367bool is_world_regdom(const char *alpha2)
 368{
 369	if (!alpha2)
 370		return false;
 371	return alpha2[0] == '0' && alpha2[1] == '0';
 372}
 373
 374static bool is_alpha2_set(const char *alpha2)
 375{
 376	if (!alpha2)
 377		return false;
 378	return alpha2[0] && alpha2[1];
 379}
 380
 381static bool is_unknown_alpha2(const char *alpha2)
 382{
 383	if (!alpha2)
 384		return false;
 385	/*
 386	 * Special case where regulatory domain was built by driver
 387	 * but a specific alpha2 cannot be determined
 388	 */
 389	return alpha2[0] == '9' && alpha2[1] == '9';
 390}
 391
 392static bool is_intersected_alpha2(const char *alpha2)
 393{
 394	if (!alpha2)
 395		return false;
 396	/*
 397	 * Special case where regulatory domain is the
 398	 * result of an intersection between two regulatory domain
 399	 * structures
 400	 */
 401	return alpha2[0] == '9' && alpha2[1] == '8';
 402}
 403
 404static bool is_an_alpha2(const char *alpha2)
 405{
 406	if (!alpha2)
 407		return false;
 408	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 409}
 410
 411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 412{
 413	if (!alpha2_x || !alpha2_y)
 414		return false;
 415	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 416}
 417
 418static bool regdom_changes(const char *alpha2)
 419{
 420	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 421
 422	if (!r)
 423		return true;
 424	return !alpha2_equal(r->alpha2, alpha2);
 425}
 426
 427/*
 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 430 * has ever been issued.
 431 */
 432static bool is_user_regdom_saved(void)
 433{
 434	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 435		return false;
 436
 437	/* This would indicate a mistake on the design */
 438	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 439		 "Unexpected user alpha2: %c%c\n",
 440		 user_alpha2[0], user_alpha2[1]))
 441		return false;
 442
 443	return true;
 444}
 445
 446static const struct ieee80211_regdomain *
 447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 448{
 449	struct ieee80211_regdomain *regd;
 450	unsigned int i;
 451
 452	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 453		       GFP_KERNEL);
 454	if (!regd)
 455		return ERR_PTR(-ENOMEM);
 456
 457	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 458
 459	for (i = 0; i < src_regd->n_reg_rules; i++)
 460		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 461		       sizeof(struct ieee80211_reg_rule));
 462
 463	return regd;
 464}
 465
 466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 467{
 468	ASSERT_RTNL();
 469
 470	if (!IS_ERR(cfg80211_user_regdom))
 471		kfree(cfg80211_user_regdom);
 472	cfg80211_user_regdom = reg_copy_regd(rd);
 473}
 474
 475struct reg_regdb_apply_request {
 476	struct list_head list;
 477	const struct ieee80211_regdomain *regdom;
 478};
 479
 480static LIST_HEAD(reg_regdb_apply_list);
 481static DEFINE_MUTEX(reg_regdb_apply_mutex);
 482
 483static void reg_regdb_apply(struct work_struct *work)
 484{
 485	struct reg_regdb_apply_request *request;
 486
 487	rtnl_lock();
 488
 489	mutex_lock(&reg_regdb_apply_mutex);
 490	while (!list_empty(&reg_regdb_apply_list)) {
 491		request = list_first_entry(&reg_regdb_apply_list,
 492					   struct reg_regdb_apply_request,
 493					   list);
 494		list_del(&request->list);
 495
 496		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 497		kfree(request);
 498	}
 499	mutex_unlock(&reg_regdb_apply_mutex);
 500
 501	rtnl_unlock();
 502}
 503
 504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 505
 506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 507{
 508	struct reg_regdb_apply_request *request;
 509
 510	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 511	if (!request) {
 512		kfree(regdom);
 513		return -ENOMEM;
 514	}
 515
 516	request->regdom = regdom;
 517
 518	mutex_lock(&reg_regdb_apply_mutex);
 519	list_add_tail(&request->list, &reg_regdb_apply_list);
 520	mutex_unlock(&reg_regdb_apply_mutex);
 521
 522	schedule_work(&reg_regdb_work);
 523	return 0;
 524}
 525
 526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 527/* Max number of consecutive attempts to communicate with CRDA  */
 528#define REG_MAX_CRDA_TIMEOUTS 10
 529
 530static u32 reg_crda_timeouts;
 531
 532static void crda_timeout_work(struct work_struct *work);
 533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 534
 535static void crda_timeout_work(struct work_struct *work)
 536{
 537	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 538	rtnl_lock();
 539	reg_crda_timeouts++;
 540	restore_regulatory_settings(true, false);
 541	rtnl_unlock();
 542}
 543
 544static void cancel_crda_timeout(void)
 545{
 546	cancel_delayed_work(&crda_timeout);
 547}
 548
 549static void cancel_crda_timeout_sync(void)
 550{
 551	cancel_delayed_work_sync(&crda_timeout);
 552}
 553
 554static void reset_crda_timeouts(void)
 555{
 556	reg_crda_timeouts = 0;
 557}
 558
 559/*
 560 * This lets us keep regulatory code which is updated on a regulatory
 561 * basis in userspace.
 562 */
 563static int call_crda(const char *alpha2)
 564{
 565	char country[12];
 566	char *env[] = { country, NULL };
 567	int ret;
 568
 569	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 570		 alpha2[0], alpha2[1]);
 571
 572	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 573		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 574		return -EINVAL;
 575	}
 576
 577	if (!is_world_regdom((char *) alpha2))
 578		pr_debug("Calling CRDA for country: %c%c\n",
 579			 alpha2[0], alpha2[1]);
 580	else
 581		pr_debug("Calling CRDA to update world regulatory domain\n");
 582
 583	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 584	if (ret)
 585		return ret;
 586
 587	queue_delayed_work(system_power_efficient_wq,
 588			   &crda_timeout, msecs_to_jiffies(3142));
 589	return 0;
 590}
 591#else
 592static inline void cancel_crda_timeout(void) {}
 593static inline void cancel_crda_timeout_sync(void) {}
 594static inline void reset_crda_timeouts(void) {}
 595static inline int call_crda(const char *alpha2)
 596{
 597	return -ENODATA;
 598}
 599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 600
 601/* code to directly load a firmware database through request_firmware */
 602static const struct fwdb_header *regdb;
 603
 604struct fwdb_country {
 605	u8 alpha2[2];
 606	__be16 coll_ptr;
 607	/* this struct cannot be extended */
 608} __packed __aligned(4);
 609
 610struct fwdb_collection {
 611	u8 len;
 612	u8 n_rules;
 613	u8 dfs_region;
 614	/* no optional data yet */
 615	/* aligned to 2, then followed by __be16 array of rule pointers */
 616} __packed __aligned(4);
 617
 618enum fwdb_flags {
 619	FWDB_FLAG_NO_OFDM	= BIT(0),
 620	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
 621	FWDB_FLAG_DFS		= BIT(2),
 622	FWDB_FLAG_NO_IR		= BIT(3),
 623	FWDB_FLAG_AUTO_BW	= BIT(4),
 624};
 625
 626struct fwdb_wmm_ac {
 627	u8 ecw;
 628	u8 aifsn;
 629	__be16 cot;
 630} __packed;
 631
 632struct fwdb_wmm_rule {
 633	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 634	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 635} __packed;
 636
 637struct fwdb_rule {
 638	u8 len;
 639	u8 flags;
 640	__be16 max_eirp;
 641	__be32 start, end, max_bw;
 642	/* start of optional data */
 643	__be16 cac_timeout;
 644	__be16 wmm_ptr;
 645} __packed __aligned(4);
 646
 647#define FWDB_MAGIC 0x52474442
 648#define FWDB_VERSION 20
 649
 650struct fwdb_header {
 651	__be32 magic;
 652	__be32 version;
 653	struct fwdb_country country[];
 654} __packed __aligned(4);
 655
 656static int ecw2cw(int ecw)
 657{
 658	return (1 << ecw) - 1;
 659}
 660
 661static bool valid_wmm(struct fwdb_wmm_rule *rule)
 662{
 663	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 664	int i;
 665
 666	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 667		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 668		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 669		u8 aifsn = ac[i].aifsn;
 670
 671		if (cw_min >= cw_max)
 672			return false;
 673
 674		if (aifsn < 1)
 675			return false;
 676	}
 677
 678	return true;
 679}
 680
 681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 682{
 683	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 684
 685	if ((u8 *)rule + sizeof(rule->len) > data + size)
 686		return false;
 687
 688	/* mandatory fields */
 689	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 690		return false;
 691	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 692		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 693		struct fwdb_wmm_rule *wmm;
 694
 695		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 696			return false;
 697
 698		wmm = (void *)(data + wmm_ptr);
 699
 700		if (!valid_wmm(wmm))
 701			return false;
 702	}
 703	return true;
 704}
 705
 706static bool valid_country(const u8 *data, unsigned int size,
 707			  const struct fwdb_country *country)
 708{
 709	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 710	struct fwdb_collection *coll = (void *)(data + ptr);
 711	__be16 *rules_ptr;
 712	unsigned int i;
 713
 714	/* make sure we can read len/n_rules */
 715	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 716		return false;
 717
 718	/* make sure base struct and all rules fit */
 719	if ((u8 *)coll + ALIGN(coll->len, 2) +
 720	    (coll->n_rules * 2) > data + size)
 721		return false;
 722
 723	/* mandatory fields must exist */
 724	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 725		return false;
 726
 727	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 728
 729	for (i = 0; i < coll->n_rules; i++) {
 730		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 731
 732		if (!valid_rule(data, size, rule_ptr))
 733			return false;
 734	}
 735
 736	return true;
 737}
 738
 739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 740#include <keys/asymmetric-type.h>
 741
 742static struct key *builtin_regdb_keys;
 743
 744static int __init load_builtin_regdb_keys(void)
 745{
 746	builtin_regdb_keys =
 747		keyring_alloc(".builtin_regdb_keys",
 748			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 749			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 750			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 751			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 752	if (IS_ERR(builtin_regdb_keys))
 753		return PTR_ERR(builtin_regdb_keys);
 754
 755	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 756
 757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 758	x509_load_certificate_list(shipped_regdb_certs,
 759				   shipped_regdb_certs_len,
 760				   builtin_regdb_keys);
 761#endif
 762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 763	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 764		x509_load_certificate_list(extra_regdb_certs,
 765					   extra_regdb_certs_len,
 766					   builtin_regdb_keys);
 767#endif
 768
 769	return 0;
 770}
 771
 772MODULE_FIRMWARE("regulatory.db.p7s");
 773
 774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 775{
 776	const struct firmware *sig;
 777	bool result;
 778
 779	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 780		return false;
 781
 782	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 783					builtin_regdb_keys,
 784					VERIFYING_UNSPECIFIED_SIGNATURE,
 785					NULL, NULL) == 0;
 786
 787	release_firmware(sig);
 788
 789	return result;
 790}
 791
 792static void free_regdb_keyring(void)
 793{
 794	key_put(builtin_regdb_keys);
 795}
 796#else
 797static int load_builtin_regdb_keys(void)
 798{
 799	return 0;
 800}
 801
 802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 803{
 804	return true;
 805}
 806
 807static void free_regdb_keyring(void)
 808{
 809}
 810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 811
 812static bool valid_regdb(const u8 *data, unsigned int size)
 813{
 814	const struct fwdb_header *hdr = (void *)data;
 815	const struct fwdb_country *country;
 816
 817	if (size < sizeof(*hdr))
 818		return false;
 819
 820	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 821		return false;
 822
 823	if (hdr->version != cpu_to_be32(FWDB_VERSION))
 824		return false;
 825
 826	if (!regdb_has_valid_signature(data, size))
 827		return false;
 828
 829	country = &hdr->country[0];
 830	while ((u8 *)(country + 1) <= data + size) {
 831		if (!country->coll_ptr)
 832			break;
 833		if (!valid_country(data, size, country))
 834			return false;
 835		country++;
 836	}
 837
 838	return true;
 839}
 840
 841static void set_wmm_rule(const struct fwdb_header *db,
 842			 const struct fwdb_country *country,
 843			 const struct fwdb_rule *rule,
 844			 struct ieee80211_reg_rule *rrule)
 845{
 846	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 847	struct fwdb_wmm_rule *wmm;
 848	unsigned int i, wmm_ptr;
 849
 850	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 851	wmm = (void *)((u8 *)db + wmm_ptr);
 852
 853	if (!valid_wmm(wmm)) {
 854		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 855		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 856		       country->alpha2[0], country->alpha2[1]);
 857		return;
 858	}
 859
 860	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 861		wmm_rule->client[i].cw_min =
 862			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 863		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 864		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 865		wmm_rule->client[i].cot =
 866			1000 * be16_to_cpu(wmm->client[i].cot);
 867		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 868		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 869		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 870		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 871	}
 872
 873	rrule->has_wmm = true;
 874}
 875
 876static int __regdb_query_wmm(const struct fwdb_header *db,
 877			     const struct fwdb_country *country, int freq,
 878			     struct ieee80211_reg_rule *rrule)
 879{
 880	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 881	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 882	int i;
 883
 884	for (i = 0; i < coll->n_rules; i++) {
 885		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 886		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 887		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 888
 889		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 890			continue;
 891
 892		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 893		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 894			set_wmm_rule(db, country, rule, rrule);
 895			return 0;
 896		}
 897	}
 898
 899	return -ENODATA;
 900}
 901
 902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 903{
 904	const struct fwdb_header *hdr = regdb;
 905	const struct fwdb_country *country;
 906
 907	if (!regdb)
 908		return -ENODATA;
 909
 910	if (IS_ERR(regdb))
 911		return PTR_ERR(regdb);
 912
 913	country = &hdr->country[0];
 914	while (country->coll_ptr) {
 915		if (alpha2_equal(alpha2, country->alpha2))
 916			return __regdb_query_wmm(regdb, country, freq, rule);
 917
 918		country++;
 919	}
 920
 921	return -ENODATA;
 922}
 923EXPORT_SYMBOL(reg_query_regdb_wmm);
 924
 925static int regdb_query_country(const struct fwdb_header *db,
 926			       const struct fwdb_country *country)
 927{
 928	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 929	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 930	struct ieee80211_regdomain *regdom;
 931	unsigned int i;
 932
 933	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 934			 GFP_KERNEL);
 935	if (!regdom)
 936		return -ENOMEM;
 937
 938	regdom->n_reg_rules = coll->n_rules;
 939	regdom->alpha2[0] = country->alpha2[0];
 940	regdom->alpha2[1] = country->alpha2[1];
 941	regdom->dfs_region = coll->dfs_region;
 942
 943	for (i = 0; i < regdom->n_reg_rules; i++) {
 944		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 945		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 946		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 947		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 948
 949		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 950		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 951		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 952
 953		rrule->power_rule.max_antenna_gain = 0;
 954		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 955
 956		rrule->flags = 0;
 957		if (rule->flags & FWDB_FLAG_NO_OFDM)
 958			rrule->flags |= NL80211_RRF_NO_OFDM;
 959		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 960			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 961		if (rule->flags & FWDB_FLAG_DFS)
 962			rrule->flags |= NL80211_RRF_DFS;
 963		if (rule->flags & FWDB_FLAG_NO_IR)
 964			rrule->flags |= NL80211_RRF_NO_IR;
 965		if (rule->flags & FWDB_FLAG_AUTO_BW)
 966			rrule->flags |= NL80211_RRF_AUTO_BW;
 967
 968		rrule->dfs_cac_ms = 0;
 969
 970		/* handle optional data */
 971		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
 972			rrule->dfs_cac_ms =
 973				1000 * be16_to_cpu(rule->cac_timeout);
 974		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
 975			set_wmm_rule(db, country, rule, rrule);
 976	}
 977
 978	return reg_schedule_apply(regdom);
 979}
 980
 981static int query_regdb(const char *alpha2)
 982{
 983	const struct fwdb_header *hdr = regdb;
 984	const struct fwdb_country *country;
 985
 986	ASSERT_RTNL();
 987
 988	if (IS_ERR(regdb))
 989		return PTR_ERR(regdb);
 990
 991	country = &hdr->country[0];
 992	while (country->coll_ptr) {
 993		if (alpha2_equal(alpha2, country->alpha2))
 994			return regdb_query_country(regdb, country);
 995		country++;
 996	}
 997
 998	return -ENODATA;
 999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003	int set_error = 0;
1004	bool restore = true;
1005	void *db;
1006
1007	if (!fw) {
1008		pr_info("failed to load regulatory.db\n");
1009		set_error = -ENODATA;
1010	} else if (!valid_regdb(fw->data, fw->size)) {
1011		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012		set_error = -EINVAL;
1013	}
1014
1015	rtnl_lock();
1016	if (regdb && !IS_ERR(regdb)) {
1017		/* negative case - a bug
1018		 * positive case - can happen due to race in case of multiple cb's in
1019		 * queue, due to usage of asynchronous callback
1020		 *
1021		 * Either case, just restore and free new db.
1022		 */
1023	} else if (set_error) {
1024		regdb = ERR_PTR(set_error);
1025	} else if (fw) {
1026		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027		if (db) {
1028			regdb = db;
1029			restore = context && query_regdb(context);
1030		} else {
1031			restore = true;
1032		}
1033	}
1034
1035	if (restore)
1036		restore_regulatory_settings(true, false);
1037
1038	rtnl_unlock();
1039
1040	kfree(context);
1041
1042	release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049	int err;
1050
1051	ASSERT_RTNL();
1052
1053	if (regdb)
1054		return query_regdb(alpha2);
1055
1056	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057	if (!alpha2)
1058		return -ENOMEM;
1059
1060	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061				      &reg_pdev->dev, GFP_KERNEL,
1062				      (void *)alpha2, regdb_fw_cb);
1063	if (err)
1064		kfree(alpha2);
1065
1066	return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071	const struct firmware *fw;
1072	void *db;
1073	int err;
1074	const struct ieee80211_regdomain *current_regdomain;
1075	struct regulatory_request *request;
1076
1077	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078	if (err)
1079		return err;
1080
1081	if (!valid_regdb(fw->data, fw->size)) {
1082		err = -ENODATA;
1083		goto out;
1084	}
1085
1086	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087	if (!db) {
1088		err = -ENOMEM;
1089		goto out;
1090	}
1091
1092	rtnl_lock();
1093	if (!IS_ERR_OR_NULL(regdb))
1094		kfree(regdb);
1095	regdb = db;
1096
1097	/* reset regulatory domain */
1098	current_regdomain = get_cfg80211_regdom();
1099
1100	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101	if (!request) {
1102		err = -ENOMEM;
1103		goto out_unlock;
1104	}
1105
1106	request->wiphy_idx = WIPHY_IDX_INVALID;
1107	request->alpha2[0] = current_regdomain->alpha2[0];
1108	request->alpha2[1] = current_regdomain->alpha2[1];
1109	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112	reg_process_hint(request);
1113
1114out_unlock:
1115	rtnl_unlock();
1116 out:
1117	release_firmware(fw);
1118	return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123	if (query_regdb_file(request->alpha2) == 0)
1124		return true;
1125
1126	if (call_crda(request->alpha2) == 0)
1127		return true;
1128
1129	return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134	struct regulatory_request *lr = get_last_request();
1135
1136	if (!lr || lr->processed)
1137		return false;
1138
1139	return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144	struct regulatory_request *lr = get_last_request();
1145
1146	/*
1147	 * Follow the driver's regulatory domain, if present, unless a country
1148	 * IE has been processed or a user wants to help complaince further
1149	 */
1150	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152	    wiphy->regd)
1153		return get_wiphy_regdom(wiphy);
1154
1155	return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160				 const struct ieee80211_reg_rule *rule)
1161{
1162	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163	const struct ieee80211_freq_range *freq_range_tmp;
1164	const struct ieee80211_reg_rule *tmp;
1165	u32 start_freq, end_freq, idx, no;
1166
1167	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168		if (rule == &rd->reg_rules[idx])
1169			break;
1170
1171	if (idx == rd->n_reg_rules)
1172		return 0;
1173
1174	/* get start_freq */
1175	no = idx;
1176
1177	while (no) {
1178		tmp = &rd->reg_rules[--no];
1179		freq_range_tmp = &tmp->freq_range;
1180
1181		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182			break;
1183
1184		freq_range = freq_range_tmp;
1185	}
1186
1187	start_freq = freq_range->start_freq_khz;
1188
1189	/* get end_freq */
1190	freq_range = &rule->freq_range;
1191	no = idx;
1192
1193	while (no < rd->n_reg_rules - 1) {
1194		tmp = &rd->reg_rules[++no];
1195		freq_range_tmp = &tmp->freq_range;
1196
1197		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198			break;
1199
1200		freq_range = freq_range_tmp;
1201	}
1202
1203	end_freq = freq_range->end_freq_khz;
1204
1205	return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209				   const struct ieee80211_reg_rule *rule)
1210{
1211	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220	/*
1221	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222	 * are not allowed.
1223	 */
1224	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228	return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235	u32 freq_diff;
1236
1237	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238		return false;
1239
1240	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241		return false;
1242
1243	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246	    freq_range->max_bandwidth_khz > freq_diff)
1247		return false;
1248
1249	return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254	const struct ieee80211_reg_rule *reg_rule = NULL;
1255	unsigned int i;
1256
1257	if (!rd->n_reg_rules)
1258		return false;
1259
1260	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261		return false;
1262
1263	for (i = 0; i < rd->n_reg_rules; i++) {
1264		reg_rule = &rd->reg_rules[i];
1265		if (!is_valid_reg_rule(reg_rule))
1266			return false;
1267	}
1268
1269	return true;
1270}
1271
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 *
1287 * Returns: whether or not the frequency is in the range
1288 */
1289static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290			      u32 freq_khz)
1291{
1292#define ONE_GHZ_IN_KHZ	1000000
1293	/*
1294	 * From 802.11ad: directional multi-gigabit (DMG):
1295	 * Pertaining to operation in a frequency band containing a channel
1296	 * with the Channel starting frequency above 45 GHz.
1297	 */
1298	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301		return true;
1302	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303		return true;
1304	return false;
1305#undef ONE_GHZ_IN_KHZ
1306}
1307
1308/*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313static enum nl80211_dfs_regions
1314reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315			 const enum nl80211_dfs_regions dfs_region2)
1316{
1317	if (dfs_region1 != dfs_region2)
1318		return NL80211_DFS_UNSET;
1319	return dfs_region1;
1320}
1321
1322static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323				    const struct ieee80211_wmm_ac *wmm_ac2,
1324				    struct ieee80211_wmm_ac *intersect)
1325{
1326	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330}
1331
1332/*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
1336static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337			       const struct ieee80211_regdomain *rd2,
1338			       const struct ieee80211_reg_rule *rule1,
1339			       const struct ieee80211_reg_rule *rule2,
1340			       struct ieee80211_reg_rule *intersected_rule)
1341{
1342	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343	struct ieee80211_freq_range *freq_range;
1344	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345	struct ieee80211_power_rule *power_rule;
1346	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347	struct ieee80211_wmm_rule *wmm_rule;
1348	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350	freq_range1 = &rule1->freq_range;
1351	freq_range2 = &rule2->freq_range;
1352	freq_range = &intersected_rule->freq_range;
1353
1354	power_rule1 = &rule1->power_rule;
1355	power_rule2 = &rule2->power_rule;
1356	power_rule = &intersected_rule->power_rule;
1357
1358	wmm_rule1 = &rule1->wmm_rule;
1359	wmm_rule2 = &rule2->wmm_rule;
1360	wmm_rule = &intersected_rule->wmm_rule;
1361
1362	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363					 freq_range2->start_freq_khz);
1364	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365				       freq_range2->end_freq_khz);
1366
1367	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370	if (rule1->flags & NL80211_RRF_AUTO_BW)
1371		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372	if (rule2->flags & NL80211_RRF_AUTO_BW)
1373		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377	intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379	/*
1380	 * In case NL80211_RRF_AUTO_BW requested for both rules
1381	 * set AUTO_BW in intersected rule also. Next we will
1382	 * calculate BW correctly in handle_channel function.
1383	 * In other case remove AUTO_BW flag while we calculate
1384	 * maximum bandwidth correctly and auto calculation is
1385	 * not required.
1386	 */
1387	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388	    (rule2->flags & NL80211_RRF_AUTO_BW))
1389		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390	else
1391		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394	if (freq_range->max_bandwidth_khz > freq_diff)
1395		freq_range->max_bandwidth_khz = freq_diff;
1396
1397	power_rule->max_eirp = min(power_rule1->max_eirp,
1398		power_rule2->max_eirp);
1399	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400		power_rule2->max_antenna_gain);
1401
1402	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403					   rule2->dfs_cac_ms);
1404
1405	if (rule1->has_wmm && rule2->has_wmm) {
1406		u8 ac;
1407
1408		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410						&wmm_rule2->client[ac],
1411						&wmm_rule->client[ac]);
1412			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413						&wmm_rule2->ap[ac],
1414						&wmm_rule->ap[ac]);
1415		}
1416
1417		intersected_rule->has_wmm = true;
1418	} else if (rule1->has_wmm) {
1419		*wmm_rule = *wmm_rule1;
1420		intersected_rule->has_wmm = true;
1421	} else if (rule2->has_wmm) {
1422		*wmm_rule = *wmm_rule2;
1423		intersected_rule->has_wmm = true;
1424	} else {
1425		intersected_rule->has_wmm = false;
1426	}
1427
1428	if (!is_valid_reg_rule(intersected_rule))
1429		return -EINVAL;
1430
1431	return 0;
1432}
1433
1434/* check whether old rule contains new rule */
1435static bool rule_contains(struct ieee80211_reg_rule *r1,
1436			  struct ieee80211_reg_rule *r2)
1437{
1438	/* for simplicity, currently consider only same flags */
1439	if (r1->flags != r2->flags)
1440		return false;
1441
1442	/* verify r1 is more restrictive */
1443	if ((r1->power_rule.max_antenna_gain >
1444	     r2->power_rule.max_antenna_gain) ||
1445	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446		return false;
1447
1448	/* make sure r2's range is contained within r1 */
1449	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451		return false;
1452
1453	/* and finally verify that r1.max_bw >= r2.max_bw */
1454	if (r1->freq_range.max_bandwidth_khz <
1455	    r2->freq_range.max_bandwidth_khz)
1456		return false;
1457
1458	return true;
1459}
1460
1461/* add or extend current rules. do nothing if rule is already contained */
1462static void add_rule(struct ieee80211_reg_rule *rule,
1463		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464{
1465	struct ieee80211_reg_rule *tmp_rule;
1466	int i;
1467
1468	for (i = 0; i < *n_rules; i++) {
1469		tmp_rule = &reg_rules[i];
1470		/* rule is already contained - do nothing */
1471		if (rule_contains(tmp_rule, rule))
1472			return;
1473
1474		/* extend rule if possible */
1475		if (rule_contains(rule, tmp_rule)) {
1476			memcpy(tmp_rule, rule, sizeof(*rule));
1477			return;
1478		}
1479	}
1480
1481	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482	(*n_rules)++;
1483}
1484
1485/**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500static struct ieee80211_regdomain *
1501regdom_intersect(const struct ieee80211_regdomain *rd1,
1502		 const struct ieee80211_regdomain *rd2)
1503{
1504	int r;
1505	unsigned int x, y;
1506	unsigned int num_rules = 0;
1507	const struct ieee80211_reg_rule *rule1, *rule2;
1508	struct ieee80211_reg_rule intersected_rule;
1509	struct ieee80211_regdomain *rd;
1510
1511	if (!rd1 || !rd2)
1512		return NULL;
1513
1514	/*
1515	 * First we get a count of the rules we'll need, then we actually
1516	 * build them. This is to so we can malloc() and free() a
1517	 * regdomain once. The reason we use reg_rules_intersect() here
1518	 * is it will return -EINVAL if the rule computed makes no sense.
1519	 * All rules that do check out OK are valid.
1520	 */
1521
1522	for (x = 0; x < rd1->n_reg_rules; x++) {
1523		rule1 = &rd1->reg_rules[x];
1524		for (y = 0; y < rd2->n_reg_rules; y++) {
1525			rule2 = &rd2->reg_rules[y];
1526			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527						 &intersected_rule))
1528				num_rules++;
1529		}
1530	}
1531
1532	if (!num_rules)
1533		return NULL;
1534
1535	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536	if (!rd)
1537		return NULL;
1538
1539	for (x = 0; x < rd1->n_reg_rules; x++) {
1540		rule1 = &rd1->reg_rules[x];
1541		for (y = 0; y < rd2->n_reg_rules; y++) {
1542			rule2 = &rd2->reg_rules[y];
1543			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544						&intersected_rule);
1545			/*
1546			 * No need to memset here the intersected rule here as
1547			 * we're not using the stack anymore
1548			 */
1549			if (r)
1550				continue;
1551
1552			add_rule(&intersected_rule, rd->reg_rules,
1553				 &rd->n_reg_rules);
1554		}
1555	}
1556
1557	rd->alpha2[0] = '9';
1558	rd->alpha2[1] = '8';
1559	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560						  rd2->dfs_region);
1561
1562	return rd;
1563}
1564
1565/*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
1569static u32 map_regdom_flags(u32 rd_flags)
1570{
1571	u32 channel_flags = 0;
1572	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573		channel_flags |= IEEE80211_CHAN_NO_IR;
1574	if (rd_flags & NL80211_RRF_DFS)
1575		channel_flags |= IEEE80211_CHAN_RADAR;
1576	if (rd_flags & NL80211_RRF_NO_OFDM)
1577		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586	if (rd_flags & NL80211_RRF_NO_80MHZ)
1587		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588	if (rd_flags & NL80211_RRF_NO_160MHZ)
1589		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590	if (rd_flags & NL80211_RRF_NO_HE)
1591		channel_flags |= IEEE80211_CHAN_NO_HE;
1592	if (rd_flags & NL80211_RRF_NO_320MHZ)
1593		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594	if (rd_flags & NL80211_RRF_NO_EHT)
1595		channel_flags |= IEEE80211_CHAN_NO_EHT;
1596	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598	if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT)
1599		channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT;
1600	if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT)
1601		channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT;
1602	if (rd_flags & NL80211_RRF_PSD)
1603		channel_flags |= IEEE80211_CHAN_PSD;
1604	return channel_flags;
1605}
1606
1607static const struct ieee80211_reg_rule *
1608freq_reg_info_regd(u32 center_freq,
1609		   const struct ieee80211_regdomain *regd, u32 bw)
1610{
1611	int i;
1612	bool band_rule_found = false;
1613	bool bw_fits = false;
1614
1615	if (!regd)
1616		return ERR_PTR(-EINVAL);
1617
1618	for (i = 0; i < regd->n_reg_rules; i++) {
1619		const struct ieee80211_reg_rule *rr;
1620		const struct ieee80211_freq_range *fr = NULL;
1621
1622		rr = &regd->reg_rules[i];
1623		fr = &rr->freq_range;
1624
1625		/*
1626		 * We only need to know if one frequency rule was
1627		 * in center_freq's band, that's enough, so let's
1628		 * not overwrite it once found
1629		 */
1630		if (!band_rule_found)
1631			band_rule_found = freq_in_rule_band(fr, center_freq);
1632
1633		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1634
1635		if (band_rule_found && bw_fits)
1636			return rr;
1637	}
1638
1639	if (!band_rule_found)
1640		return ERR_PTR(-ERANGE);
1641
1642	return ERR_PTR(-EINVAL);
1643}
1644
1645static const struct ieee80211_reg_rule *
1646__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1647{
1648	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1649	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1650	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1651	int i = ARRAY_SIZE(bws) - 1;
1652	u32 bw;
1653
1654	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1655		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1656		if (!IS_ERR(reg_rule))
1657			return reg_rule;
1658	}
1659
1660	return reg_rule;
1661}
1662
1663const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1664					       u32 center_freq)
1665{
1666	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1667
1668	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1669}
1670EXPORT_SYMBOL(freq_reg_info);
1671
1672const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1673{
1674	switch (initiator) {
1675	case NL80211_REGDOM_SET_BY_CORE:
1676		return "core";
1677	case NL80211_REGDOM_SET_BY_USER:
1678		return "user";
1679	case NL80211_REGDOM_SET_BY_DRIVER:
1680		return "driver";
1681	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1682		return "country element";
1683	default:
1684		WARN_ON(1);
1685		return "bug";
1686	}
1687}
1688EXPORT_SYMBOL(reg_initiator_name);
1689
1690static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1691					  const struct ieee80211_reg_rule *reg_rule,
1692					  const struct ieee80211_channel *chan)
1693{
1694	const struct ieee80211_freq_range *freq_range = NULL;
1695	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1696	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1697
1698	freq_range = &reg_rule->freq_range;
1699
1700	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1701	center_freq_khz = ieee80211_channel_to_khz(chan);
1702	/* Check if auto calculation requested */
1703	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1704		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1705
1706	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1707	if (!cfg80211_does_bw_fit_range(freq_range,
1708					center_freq_khz,
1709					MHZ_TO_KHZ(10)))
1710		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1711	if (!cfg80211_does_bw_fit_range(freq_range,
1712					center_freq_khz,
1713					MHZ_TO_KHZ(20)))
1714		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1715
1716	if (is_s1g) {
1717		/* S1G is strict about non overlapping channels. We can
1718		 * calculate which bandwidth is allowed per channel by finding
1719		 * the largest bandwidth which cleanly divides the freq_range.
1720		 */
1721		int edge_offset;
1722		int ch_bw = max_bandwidth_khz;
1723
1724		while (ch_bw) {
1725			edge_offset = (center_freq_khz - ch_bw / 2) -
1726				      freq_range->start_freq_khz;
1727			if (edge_offset % ch_bw == 0) {
1728				switch (KHZ_TO_MHZ(ch_bw)) {
1729				case 1:
1730					bw_flags |= IEEE80211_CHAN_1MHZ;
1731					break;
1732				case 2:
1733					bw_flags |= IEEE80211_CHAN_2MHZ;
1734					break;
1735				case 4:
1736					bw_flags |= IEEE80211_CHAN_4MHZ;
1737					break;
1738				case 8:
1739					bw_flags |= IEEE80211_CHAN_8MHZ;
1740					break;
1741				case 16:
1742					bw_flags |= IEEE80211_CHAN_16MHZ;
1743					break;
1744				default:
1745					/* If we got here, no bandwidths fit on
1746					 * this frequency, ie. band edge.
1747					 */
1748					bw_flags |= IEEE80211_CHAN_DISABLED;
1749					break;
1750				}
1751				break;
1752			}
1753			ch_bw /= 2;
1754		}
1755	} else {
1756		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1757			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1759			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1760		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1761			bw_flags |= IEEE80211_CHAN_NO_HT40;
1762		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1763			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1764		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1765			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1766		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1767			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1768	}
1769	return bw_flags;
1770}
1771
1772static void handle_channel_single_rule(struct wiphy *wiphy,
1773				       enum nl80211_reg_initiator initiator,
1774				       struct ieee80211_channel *chan,
1775				       u32 flags,
1776				       struct regulatory_request *lr,
1777				       struct wiphy *request_wiphy,
1778				       const struct ieee80211_reg_rule *reg_rule)
1779{
1780	u32 bw_flags = 0;
1781	const struct ieee80211_power_rule *power_rule = NULL;
1782	const struct ieee80211_regdomain *regd;
1783
1784	regd = reg_get_regdomain(wiphy);
1785
1786	power_rule = &reg_rule->power_rule;
1787	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1788
1789	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1790	    request_wiphy && request_wiphy == wiphy &&
1791	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1792		/*
1793		 * This guarantees the driver's requested regulatory domain
1794		 * will always be used as a base for further regulatory
1795		 * settings
1796		 */
1797		chan->flags = chan->orig_flags =
1798			map_regdom_flags(reg_rule->flags) | bw_flags;
1799		chan->max_antenna_gain = chan->orig_mag =
1800			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1801		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1802			(int) MBM_TO_DBM(power_rule->max_eirp);
1803
1804		if (chan->flags & IEEE80211_CHAN_RADAR) {
1805			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806			if (reg_rule->dfs_cac_ms)
1807				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1808		}
1809
1810		if (chan->flags & IEEE80211_CHAN_PSD)
1811			chan->psd = reg_rule->psd;
1812
1813		return;
1814	}
1815
1816	chan->dfs_state = NL80211_DFS_USABLE;
1817	chan->dfs_state_entered = jiffies;
1818
1819	chan->beacon_found = false;
1820	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1821	chan->max_antenna_gain =
1822		min_t(int, chan->orig_mag,
1823		      MBI_TO_DBI(power_rule->max_antenna_gain));
1824	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1825
1826	if (chan->flags & IEEE80211_CHAN_RADAR) {
1827		if (reg_rule->dfs_cac_ms)
1828			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1829		else
1830			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1831	}
1832
1833	if (chan->flags & IEEE80211_CHAN_PSD)
1834		chan->psd = reg_rule->psd;
1835
1836	if (chan->orig_mpwr) {
1837		/*
1838		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1839		 * will always follow the passed country IE power settings.
1840		 */
1841		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1842		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1843			chan->max_power = chan->max_reg_power;
1844		else
1845			chan->max_power = min(chan->orig_mpwr,
1846					      chan->max_reg_power);
1847	} else
1848		chan->max_power = chan->max_reg_power;
1849}
1850
1851static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1852					  enum nl80211_reg_initiator initiator,
1853					  struct ieee80211_channel *chan,
1854					  u32 flags,
1855					  struct regulatory_request *lr,
1856					  struct wiphy *request_wiphy,
1857					  const struct ieee80211_reg_rule *rrule1,
1858					  const struct ieee80211_reg_rule *rrule2,
1859					  struct ieee80211_freq_range *comb_range)
1860{
1861	u32 bw_flags1 = 0;
1862	u32 bw_flags2 = 0;
1863	const struct ieee80211_power_rule *power_rule1 = NULL;
1864	const struct ieee80211_power_rule *power_rule2 = NULL;
1865	const struct ieee80211_regdomain *regd;
1866
1867	regd = reg_get_regdomain(wiphy);
1868
1869	power_rule1 = &rrule1->power_rule;
1870	power_rule2 = &rrule2->power_rule;
1871	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1872	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1873
1874	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1875	    request_wiphy && request_wiphy == wiphy &&
1876	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1877		/* This guarantees the driver's requested regulatory domain
1878		 * will always be used as a base for further regulatory
1879		 * settings
1880		 */
1881		chan->flags =
1882			map_regdom_flags(rrule1->flags) |
1883			map_regdom_flags(rrule2->flags) |
1884			bw_flags1 |
1885			bw_flags2;
1886		chan->orig_flags = chan->flags;
1887		chan->max_antenna_gain =
1888			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1889			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1890		chan->orig_mag = chan->max_antenna_gain;
1891		chan->max_reg_power =
1892			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1893			      MBM_TO_DBM(power_rule2->max_eirp));
1894		chan->max_power = chan->max_reg_power;
1895		chan->orig_mpwr = chan->max_reg_power;
1896
1897		if (chan->flags & IEEE80211_CHAN_RADAR) {
1898			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1899			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1900				chan->dfs_cac_ms = max_t(unsigned int,
1901							 rrule1->dfs_cac_ms,
1902							 rrule2->dfs_cac_ms);
1903		}
1904
1905		if ((rrule1->flags & NL80211_RRF_PSD) &&
1906		    (rrule2->flags & NL80211_RRF_PSD))
1907			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1908		else
1909			chan->flags &= ~NL80211_RRF_PSD;
1910
1911		return;
1912	}
1913
1914	chan->dfs_state = NL80211_DFS_USABLE;
1915	chan->dfs_state_entered = jiffies;
1916
1917	chan->beacon_found = false;
1918	chan->flags = flags | bw_flags1 | bw_flags2 |
1919		      map_regdom_flags(rrule1->flags) |
1920		      map_regdom_flags(rrule2->flags);
1921
1922	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1923	 * (otherwise no adj. rule case), recheck therefore
1924	 */
1925	if (cfg80211_does_bw_fit_range(comb_range,
1926				       ieee80211_channel_to_khz(chan),
1927				       MHZ_TO_KHZ(10)))
1928		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1929	if (cfg80211_does_bw_fit_range(comb_range,
1930				       ieee80211_channel_to_khz(chan),
1931				       MHZ_TO_KHZ(20)))
1932		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1933
1934	chan->max_antenna_gain =
1935		min_t(int, chan->orig_mag,
1936		      min_t(int,
1937			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1938			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1939	chan->max_reg_power = min_t(int,
1940				    MBM_TO_DBM(power_rule1->max_eirp),
1941				    MBM_TO_DBM(power_rule2->max_eirp));
1942
1943	if (chan->flags & IEEE80211_CHAN_RADAR) {
1944		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1945			chan->dfs_cac_ms = max_t(unsigned int,
1946						 rrule1->dfs_cac_ms,
1947						 rrule2->dfs_cac_ms);
1948		else
1949			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1950	}
1951
1952	if (chan->orig_mpwr) {
1953		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1954		 * will always follow the passed country IE power settings.
1955		 */
1956		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1957		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1958			chan->max_power = chan->max_reg_power;
1959		else
1960			chan->max_power = min(chan->orig_mpwr,
1961					      chan->max_reg_power);
1962	} else {
1963		chan->max_power = chan->max_reg_power;
1964	}
1965}
1966
1967/* Note that right now we assume the desired channel bandwidth
1968 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1969 * per channel, the primary and the extension channel).
1970 */
1971static void handle_channel(struct wiphy *wiphy,
1972			   enum nl80211_reg_initiator initiator,
1973			   struct ieee80211_channel *chan)
1974{
1975	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1976	struct regulatory_request *lr = get_last_request();
1977	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1978	const struct ieee80211_reg_rule *rrule = NULL;
1979	const struct ieee80211_reg_rule *rrule1 = NULL;
1980	const struct ieee80211_reg_rule *rrule2 = NULL;
1981
1982	u32 flags = chan->orig_flags;
1983
1984	rrule = freq_reg_info(wiphy, orig_chan_freq);
1985	if (IS_ERR(rrule)) {
1986		/* check for adjacent match, therefore get rules for
1987		 * chan - 20 MHz and chan + 20 MHz and test
1988		 * if reg rules are adjacent
1989		 */
1990		rrule1 = freq_reg_info(wiphy,
1991				       orig_chan_freq - MHZ_TO_KHZ(20));
1992		rrule2 = freq_reg_info(wiphy,
1993				       orig_chan_freq + MHZ_TO_KHZ(20));
1994		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1995			struct ieee80211_freq_range comb_range;
1996
1997			if (rrule1->freq_range.end_freq_khz !=
1998			    rrule2->freq_range.start_freq_khz)
1999				goto disable_chan;
2000
2001			comb_range.start_freq_khz =
2002				rrule1->freq_range.start_freq_khz;
2003			comb_range.end_freq_khz =
2004				rrule2->freq_range.end_freq_khz;
2005			comb_range.max_bandwidth_khz =
2006				min_t(u32,
2007				      rrule1->freq_range.max_bandwidth_khz,
2008				      rrule2->freq_range.max_bandwidth_khz);
2009
2010			if (!cfg80211_does_bw_fit_range(&comb_range,
2011							orig_chan_freq,
2012							MHZ_TO_KHZ(20)))
2013				goto disable_chan;
2014
2015			handle_channel_adjacent_rules(wiphy, initiator, chan,
2016						      flags, lr, request_wiphy,
2017						      rrule1, rrule2,
2018						      &comb_range);
2019			return;
2020		}
2021
2022disable_chan:
2023		/* We will disable all channels that do not match our
2024		 * received regulatory rule unless the hint is coming
2025		 * from a Country IE and the Country IE had no information
2026		 * about a band. The IEEE 802.11 spec allows for an AP
2027		 * to send only a subset of the regulatory rules allowed,
2028		 * so an AP in the US that only supports 2.4 GHz may only send
2029		 * a country IE with information for the 2.4 GHz band
2030		 * while 5 GHz is still supported.
2031		 */
2032		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2033		    PTR_ERR(rrule) == -ERANGE)
2034			return;
2035
2036		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2037		    request_wiphy && request_wiphy == wiphy &&
2038		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2039			pr_debug("Disabling freq %d.%03d MHz for good\n",
2040				 chan->center_freq, chan->freq_offset);
2041			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2042			chan->flags = chan->orig_flags;
2043		} else {
2044			pr_debug("Disabling freq %d.%03d MHz\n",
2045				 chan->center_freq, chan->freq_offset);
2046			chan->flags |= IEEE80211_CHAN_DISABLED;
2047		}
2048		return;
2049	}
2050
2051	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2052				   request_wiphy, rrule);
2053}
2054
2055static void handle_band(struct wiphy *wiphy,
2056			enum nl80211_reg_initiator initiator,
2057			struct ieee80211_supported_band *sband)
2058{
2059	unsigned int i;
2060
2061	if (!sband)
2062		return;
2063
2064	for (i = 0; i < sband->n_channels; i++)
2065		handle_channel(wiphy, initiator, &sband->channels[i]);
2066}
2067
2068static bool reg_request_cell_base(struct regulatory_request *request)
2069{
2070	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2071		return false;
2072	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2073}
2074
2075bool reg_last_request_cell_base(void)
2076{
2077	return reg_request_cell_base(get_last_request());
2078}
2079
2080#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2081/* Core specific check */
2082static enum reg_request_treatment
2083reg_ignore_cell_hint(struct regulatory_request *pending_request)
2084{
2085	struct regulatory_request *lr = get_last_request();
2086
2087	if (!reg_num_devs_support_basehint)
2088		return REG_REQ_IGNORE;
2089
2090	if (reg_request_cell_base(lr) &&
2091	    !regdom_changes(pending_request->alpha2))
2092		return REG_REQ_ALREADY_SET;
2093
2094	return REG_REQ_OK;
2095}
2096
2097/* Device specific check */
2098static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2099{
2100	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2101}
2102#else
2103static enum reg_request_treatment
2104reg_ignore_cell_hint(struct regulatory_request *pending_request)
2105{
2106	return REG_REQ_IGNORE;
2107}
2108
2109static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2110{
2111	return true;
2112}
2113#endif
2114
2115static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2116{
2117	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2118	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119		return true;
2120	return false;
2121}
2122
2123static bool ignore_reg_update(struct wiphy *wiphy,
2124			      enum nl80211_reg_initiator initiator)
2125{
2126	struct regulatory_request *lr = get_last_request();
2127
2128	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2129		return true;
2130
2131	if (!lr) {
2132		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2133			 reg_initiator_name(initiator));
2134		return true;
2135	}
2136
2137	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2138	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2139		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2140			 reg_initiator_name(initiator));
2141		return true;
2142	}
2143
2144	/*
2145	 * wiphy->regd will be set once the device has its own
2146	 * desired regulatory domain set
2147	 */
2148	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2149	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2150	    !is_world_regdom(lr->alpha2)) {
2151		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2152			 reg_initiator_name(initiator));
2153		return true;
2154	}
2155
2156	if (reg_request_cell_base(lr))
2157		return reg_dev_ignore_cell_hint(wiphy);
2158
2159	return false;
2160}
2161
2162static bool reg_is_world_roaming(struct wiphy *wiphy)
2163{
2164	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2165	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2166	struct regulatory_request *lr = get_last_request();
2167
2168	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2169		return true;
2170
2171	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2172	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2173		return true;
2174
2175	return false;
2176}
2177
2178static void reg_call_notifier(struct wiphy *wiphy,
2179			      struct regulatory_request *request)
2180{
2181	if (wiphy->reg_notifier)
2182		wiphy->reg_notifier(wiphy, request);
2183}
2184
2185static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2186			      struct reg_beacon *reg_beacon)
2187{
2188	struct ieee80211_supported_band *sband;
2189	struct ieee80211_channel *chan;
2190	bool channel_changed = false;
2191	struct ieee80211_channel chan_before;
2192	struct regulatory_request *lr = get_last_request();
2193
2194	sband = wiphy->bands[reg_beacon->chan.band];
2195	chan = &sband->channels[chan_idx];
2196
2197	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2198		return;
2199
2200	if (chan->beacon_found)
2201		return;
2202
2203	chan->beacon_found = true;
2204
2205	if (!reg_is_world_roaming(wiphy))
2206		return;
2207
2208	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2209		return;
2210
2211	chan_before = *chan;
2212
2213	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2214		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2215		channel_changed = true;
2216	}
2217
2218	if (channel_changed) {
2219		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2220		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2221			reg_call_notifier(wiphy, lr);
2222	}
2223}
2224
2225/*
2226 * Called when a scan on a wiphy finds a beacon on
2227 * new channel
2228 */
2229static void wiphy_update_new_beacon(struct wiphy *wiphy,
2230				    struct reg_beacon *reg_beacon)
2231{
2232	unsigned int i;
2233	struct ieee80211_supported_band *sband;
2234
2235	if (!wiphy->bands[reg_beacon->chan.band])
2236		return;
2237
2238	sband = wiphy->bands[reg_beacon->chan.band];
2239
2240	for (i = 0; i < sband->n_channels; i++)
2241		handle_reg_beacon(wiphy, i, reg_beacon);
2242}
2243
2244/*
2245 * Called upon reg changes or a new wiphy is added
2246 */
2247static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2248{
2249	unsigned int i;
2250	struct ieee80211_supported_band *sband;
2251	struct reg_beacon *reg_beacon;
2252
2253	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2254		if (!wiphy->bands[reg_beacon->chan.band])
2255			continue;
2256		sband = wiphy->bands[reg_beacon->chan.band];
2257		for (i = 0; i < sband->n_channels; i++)
2258			handle_reg_beacon(wiphy, i, reg_beacon);
2259	}
2260}
2261
2262/* Reap the advantages of previously found beacons */
2263static void reg_process_beacons(struct wiphy *wiphy)
2264{
2265	/*
2266	 * Means we are just firing up cfg80211, so no beacons would
2267	 * have been processed yet.
2268	 */
2269	if (!last_request)
2270		return;
2271	wiphy_update_beacon_reg(wiphy);
2272}
2273
2274static bool is_ht40_allowed(struct ieee80211_channel *chan)
2275{
2276	if (!chan)
2277		return false;
2278	if (chan->flags & IEEE80211_CHAN_DISABLED)
2279		return false;
2280	/* This would happen when regulatory rules disallow HT40 completely */
2281	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2282		return false;
2283	return true;
2284}
2285
2286static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2287					 struct ieee80211_channel *channel)
2288{
2289	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2290	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2291	const struct ieee80211_regdomain *regd;
2292	unsigned int i;
2293	u32 flags;
2294
2295	if (!is_ht40_allowed(channel)) {
2296		channel->flags |= IEEE80211_CHAN_NO_HT40;
2297		return;
2298	}
2299
2300	/*
2301	 * We need to ensure the extension channels exist to
2302	 * be able to use HT40- or HT40+, this finds them (or not)
2303	 */
2304	for (i = 0; i < sband->n_channels; i++) {
2305		struct ieee80211_channel *c = &sband->channels[i];
2306
2307		if (c->center_freq == (channel->center_freq - 20))
2308			channel_before = c;
2309		if (c->center_freq == (channel->center_freq + 20))
2310			channel_after = c;
2311	}
2312
2313	flags = 0;
2314	regd = get_wiphy_regdom(wiphy);
2315	if (regd) {
2316		const struct ieee80211_reg_rule *reg_rule =
2317			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2318					   regd, MHZ_TO_KHZ(20));
2319
2320		if (!IS_ERR(reg_rule))
2321			flags = reg_rule->flags;
2322	}
2323
2324	/*
2325	 * Please note that this assumes target bandwidth is 20 MHz,
2326	 * if that ever changes we also need to change the below logic
2327	 * to include that as well.
2328	 */
2329	if (!is_ht40_allowed(channel_before) ||
2330	    flags & NL80211_RRF_NO_HT40MINUS)
2331		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2332	else
2333		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2334
2335	if (!is_ht40_allowed(channel_after) ||
2336	    flags & NL80211_RRF_NO_HT40PLUS)
2337		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2338	else
2339		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2340}
2341
2342static void reg_process_ht_flags_band(struct wiphy *wiphy,
2343				      struct ieee80211_supported_band *sband)
2344{
2345	unsigned int i;
2346
2347	if (!sband)
2348		return;
2349
2350	for (i = 0; i < sband->n_channels; i++)
2351		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2352}
2353
2354static void reg_process_ht_flags(struct wiphy *wiphy)
2355{
2356	enum nl80211_band band;
2357
2358	if (!wiphy)
2359		return;
2360
2361	for (band = 0; band < NUM_NL80211_BANDS; band++)
2362		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2363}
2364
2365static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2366{
2367	struct cfg80211_chan_def chandef = {};
2368	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2369	enum nl80211_iftype iftype;
2370	bool ret;
2371	int link;
2372
2373	iftype = wdev->iftype;
2374
2375	/* make sure the interface is active */
2376	if (!wdev->netdev || !netif_running(wdev->netdev))
2377		return true;
2378
2379	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2380		struct ieee80211_channel *chan;
2381
2382		if (!wdev->valid_links && link > 0)
2383			break;
2384		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2385			continue;
2386		switch (iftype) {
2387		case NL80211_IFTYPE_AP:
2388		case NL80211_IFTYPE_P2P_GO:
2389			if (!wdev->links[link].ap.beacon_interval)
2390				continue;
2391			chandef = wdev->links[link].ap.chandef;
2392			break;
2393		case NL80211_IFTYPE_MESH_POINT:
2394			if (!wdev->u.mesh.beacon_interval)
2395				continue;
2396			chandef = wdev->u.mesh.chandef;
2397			break;
2398		case NL80211_IFTYPE_ADHOC:
2399			if (!wdev->u.ibss.ssid_len)
2400				continue;
2401			chandef = wdev->u.ibss.chandef;
2402			break;
2403		case NL80211_IFTYPE_STATION:
2404		case NL80211_IFTYPE_P2P_CLIENT:
2405			/* Maybe we could consider disabling that link only? */
2406			if (!wdev->links[link].client.current_bss)
2407				continue;
2408
2409			chan = wdev->links[link].client.current_bss->pub.channel;
2410			if (!chan)
2411				continue;
2412
2413			if (!rdev->ops->get_channel ||
2414			    rdev_get_channel(rdev, wdev, link, &chandef))
2415				cfg80211_chandef_create(&chandef, chan,
2416							NL80211_CHAN_NO_HT);
2417			break;
2418		case NL80211_IFTYPE_MONITOR:
2419		case NL80211_IFTYPE_AP_VLAN:
2420		case NL80211_IFTYPE_P2P_DEVICE:
2421			/* no enforcement required */
2422			break;
2423		case NL80211_IFTYPE_OCB:
2424			if (!wdev->u.ocb.chandef.chan)
2425				continue;
2426			chandef = wdev->u.ocb.chandef;
2427			break;
2428		case NL80211_IFTYPE_NAN:
2429			/* we have no info, but NAN is also pretty universal */
2430			continue;
2431		default:
2432			/* others not implemented for now */
2433			WARN_ON_ONCE(1);
2434			break;
2435		}
2436
2437		switch (iftype) {
2438		case NL80211_IFTYPE_AP:
2439		case NL80211_IFTYPE_P2P_GO:
2440		case NL80211_IFTYPE_ADHOC:
2441		case NL80211_IFTYPE_MESH_POINT:
2442			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2443							    iftype);
2444			if (!ret)
2445				return ret;
2446			break;
2447		case NL80211_IFTYPE_STATION:
2448		case NL80211_IFTYPE_P2P_CLIENT:
2449			ret = cfg80211_chandef_usable(wiphy, &chandef,
2450						      IEEE80211_CHAN_DISABLED);
2451			if (!ret)
2452				return ret;
2453			break;
2454		default:
2455			break;
2456		}
2457	}
2458
2459	return true;
2460}
2461
2462static void reg_leave_invalid_chans(struct wiphy *wiphy)
2463{
2464	struct wireless_dev *wdev;
2465	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2466
2467	wiphy_lock(wiphy);
2468	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2469		if (!reg_wdev_chan_valid(wiphy, wdev))
2470			cfg80211_leave(rdev, wdev);
2471	wiphy_unlock(wiphy);
2472}
2473
2474static void reg_check_chans_work(struct work_struct *work)
2475{
2476	struct cfg80211_registered_device *rdev;
2477
2478	pr_debug("Verifying active interfaces after reg change\n");
2479	rtnl_lock();
2480
2481	for_each_rdev(rdev)
2482		reg_leave_invalid_chans(&rdev->wiphy);
2483
2484	rtnl_unlock();
2485}
2486
2487void reg_check_channels(void)
2488{
2489	/*
2490	 * Give usermode a chance to do something nicer (move to another
2491	 * channel, orderly disconnection), before forcing a disconnection.
2492	 */
2493	mod_delayed_work(system_power_efficient_wq,
2494			 &reg_check_chans,
2495			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2496}
2497
2498static void wiphy_update_regulatory(struct wiphy *wiphy,
2499				    enum nl80211_reg_initiator initiator)
2500{
2501	enum nl80211_band band;
2502	struct regulatory_request *lr = get_last_request();
2503
2504	if (ignore_reg_update(wiphy, initiator)) {
2505		/*
2506		 * Regulatory updates set by CORE are ignored for custom
2507		 * regulatory cards. Let us notify the changes to the driver,
2508		 * as some drivers used this to restore its orig_* reg domain.
2509		 */
2510		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2511		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2512		    !(wiphy->regulatory_flags &
2513		      REGULATORY_WIPHY_SELF_MANAGED))
2514			reg_call_notifier(wiphy, lr);
2515		return;
2516	}
2517
2518	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2519
2520	for (band = 0; band < NUM_NL80211_BANDS; band++)
2521		handle_band(wiphy, initiator, wiphy->bands[band]);
2522
2523	reg_process_beacons(wiphy);
2524	reg_process_ht_flags(wiphy);
2525	reg_call_notifier(wiphy, lr);
2526}
2527
2528static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2529{
2530	struct cfg80211_registered_device *rdev;
2531	struct wiphy *wiphy;
2532
2533	ASSERT_RTNL();
2534
2535	for_each_rdev(rdev) {
2536		wiphy = &rdev->wiphy;
2537		wiphy_update_regulatory(wiphy, initiator);
2538	}
2539
2540	reg_check_channels();
2541}
2542
2543static void handle_channel_custom(struct wiphy *wiphy,
2544				  struct ieee80211_channel *chan,
2545				  const struct ieee80211_regdomain *regd,
2546				  u32 min_bw)
2547{
2548	u32 bw_flags = 0;
2549	const struct ieee80211_reg_rule *reg_rule = NULL;
2550	const struct ieee80211_power_rule *power_rule = NULL;
2551	u32 bw, center_freq_khz;
2552
2553	center_freq_khz = ieee80211_channel_to_khz(chan);
2554	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2555		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2556		if (!IS_ERR(reg_rule))
2557			break;
2558	}
2559
2560	if (IS_ERR_OR_NULL(reg_rule)) {
2561		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2562			 chan->center_freq, chan->freq_offset);
2563		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2564			chan->flags |= IEEE80211_CHAN_DISABLED;
2565		} else {
2566			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2567			chan->flags = chan->orig_flags;
2568		}
2569		return;
2570	}
2571
2572	power_rule = &reg_rule->power_rule;
2573	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2574
2575	chan->dfs_state_entered = jiffies;
2576	chan->dfs_state = NL80211_DFS_USABLE;
2577
2578	chan->beacon_found = false;
2579
2580	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581		chan->flags = chan->orig_flags | bw_flags |
2582			      map_regdom_flags(reg_rule->flags);
2583	else
2584		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2585
2586	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2587	chan->max_reg_power = chan->max_power =
2588		(int) MBM_TO_DBM(power_rule->max_eirp);
2589
2590	if (chan->flags & IEEE80211_CHAN_RADAR) {
2591		if (reg_rule->dfs_cac_ms)
2592			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2593		else
2594			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2595	}
2596
2597	if (chan->flags & IEEE80211_CHAN_PSD)
2598		chan->psd = reg_rule->psd;
2599
2600	chan->max_power = chan->max_reg_power;
2601}
2602
2603static void handle_band_custom(struct wiphy *wiphy,
2604			       struct ieee80211_supported_band *sband,
2605			       const struct ieee80211_regdomain *regd)
2606{
2607	unsigned int i;
2608
2609	if (!sband)
2610		return;
2611
2612	/*
2613	 * We currently assume that you always want at least 20 MHz,
2614	 * otherwise channel 12 might get enabled if this rule is
2615	 * compatible to US, which permits 2402 - 2472 MHz.
2616	 */
2617	for (i = 0; i < sband->n_channels; i++)
2618		handle_channel_custom(wiphy, &sband->channels[i], regd,
2619				      MHZ_TO_KHZ(20));
2620}
2621
2622/* Used by drivers prior to wiphy registration */
2623void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2624				   const struct ieee80211_regdomain *regd)
2625{
2626	const struct ieee80211_regdomain *new_regd, *tmp;
2627	enum nl80211_band band;
2628	unsigned int bands_set = 0;
2629
2630	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2631	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2632	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2633
2634	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2635		if (!wiphy->bands[band])
2636			continue;
2637		handle_band_custom(wiphy, wiphy->bands[band], regd);
2638		bands_set++;
2639	}
2640
2641	/*
2642	 * no point in calling this if it won't have any effect
2643	 * on your device's supported bands.
2644	 */
2645	WARN_ON(!bands_set);
2646	new_regd = reg_copy_regd(regd);
2647	if (IS_ERR(new_regd))
2648		return;
2649
2650	rtnl_lock();
2651	wiphy_lock(wiphy);
2652
2653	tmp = get_wiphy_regdom(wiphy);
2654	rcu_assign_pointer(wiphy->regd, new_regd);
2655	rcu_free_regdom(tmp);
2656
2657	wiphy_unlock(wiphy);
2658	rtnl_unlock();
2659}
2660EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661
2662static void reg_set_request_processed(void)
2663{
2664	bool need_more_processing = false;
2665	struct regulatory_request *lr = get_last_request();
2666
2667	lr->processed = true;
2668
2669	spin_lock(&reg_requests_lock);
2670	if (!list_empty(&reg_requests_list))
2671		need_more_processing = true;
2672	spin_unlock(&reg_requests_lock);
2673
2674	cancel_crda_timeout();
2675
2676	if (need_more_processing)
2677		schedule_work(&reg_work);
2678}
2679
2680/**
2681 * reg_process_hint_core - process core regulatory requests
2682 * @core_request: a pending core regulatory request
2683 *
2684 * The wireless subsystem can use this function to process
2685 * a regulatory request issued by the regulatory core.
2686 *
2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688 *	hint was processed or ignored
2689 */
2690static enum reg_request_treatment
2691reg_process_hint_core(struct regulatory_request *core_request)
2692{
2693	if (reg_query_database(core_request)) {
2694		core_request->intersect = false;
2695		core_request->processed = false;
2696		reg_update_last_request(core_request);
2697		return REG_REQ_OK;
2698	}
2699
2700	return REG_REQ_IGNORE;
2701}
2702
2703static enum reg_request_treatment
2704__reg_process_hint_user(struct regulatory_request *user_request)
2705{
2706	struct regulatory_request *lr = get_last_request();
2707
2708	if (reg_request_cell_base(user_request))
2709		return reg_ignore_cell_hint(user_request);
2710
2711	if (reg_request_cell_base(lr))
2712		return REG_REQ_IGNORE;
2713
2714	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715		return REG_REQ_INTERSECT;
2716	/*
2717	 * If the user knows better the user should set the regdom
2718	 * to their country before the IE is picked up
2719	 */
2720	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721	    lr->intersect)
2722		return REG_REQ_IGNORE;
2723	/*
2724	 * Process user requests only after previous user/driver/core
2725	 * requests have been processed
2726	 */
2727	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730	    regdom_changes(lr->alpha2))
2731		return REG_REQ_IGNORE;
2732
2733	if (!regdom_changes(user_request->alpha2))
2734		return REG_REQ_ALREADY_SET;
2735
2736	return REG_REQ_OK;
2737}
2738
2739/**
2740 * reg_process_hint_user - process user regulatory requests
2741 * @user_request: a pending user regulatory request
2742 *
2743 * The wireless subsystem can use this function to process
2744 * a regulatory request initiated by userspace.
2745 *
2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747 *	hint was processed or ignored
2748 */
2749static enum reg_request_treatment
2750reg_process_hint_user(struct regulatory_request *user_request)
2751{
2752	enum reg_request_treatment treatment;
2753
2754	treatment = __reg_process_hint_user(user_request);
2755	if (treatment == REG_REQ_IGNORE ||
2756	    treatment == REG_REQ_ALREADY_SET)
2757		return REG_REQ_IGNORE;
2758
2759	user_request->intersect = treatment == REG_REQ_INTERSECT;
2760	user_request->processed = false;
2761
2762	if (reg_query_database(user_request)) {
2763		reg_update_last_request(user_request);
2764		user_alpha2[0] = user_request->alpha2[0];
2765		user_alpha2[1] = user_request->alpha2[1];
2766		return REG_REQ_OK;
2767	}
2768
2769	return REG_REQ_IGNORE;
2770}
2771
2772static enum reg_request_treatment
2773__reg_process_hint_driver(struct regulatory_request *driver_request)
2774{
2775	struct regulatory_request *lr = get_last_request();
2776
2777	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778		if (regdom_changes(driver_request->alpha2))
2779			return REG_REQ_OK;
2780		return REG_REQ_ALREADY_SET;
2781	}
2782
2783	/*
2784	 * This would happen if you unplug and plug your card
2785	 * back in or if you add a new device for which the previously
2786	 * loaded card also agrees on the regulatory domain.
2787	 */
2788	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789	    !regdom_changes(driver_request->alpha2))
2790		return REG_REQ_ALREADY_SET;
2791
2792	return REG_REQ_INTERSECT;
2793}
2794
2795/**
2796 * reg_process_hint_driver - process driver regulatory requests
2797 * @wiphy: the wireless device for the regulatory request
2798 * @driver_request: a pending driver regulatory request
2799 *
2800 * The wireless subsystem can use this function to process
2801 * a regulatory request issued by an 802.11 driver.
2802 *
2803 * Returns: one of the different reg request treatment values.
2804 */
2805static enum reg_request_treatment
2806reg_process_hint_driver(struct wiphy *wiphy,
2807			struct regulatory_request *driver_request)
2808{
2809	const struct ieee80211_regdomain *regd, *tmp;
2810	enum reg_request_treatment treatment;
2811
2812	treatment = __reg_process_hint_driver(driver_request);
2813
2814	switch (treatment) {
2815	case REG_REQ_OK:
2816		break;
2817	case REG_REQ_IGNORE:
2818		return REG_REQ_IGNORE;
2819	case REG_REQ_INTERSECT:
2820	case REG_REQ_ALREADY_SET:
2821		regd = reg_copy_regd(get_cfg80211_regdom());
2822		if (IS_ERR(regd))
2823			return REG_REQ_IGNORE;
2824
2825		tmp = get_wiphy_regdom(wiphy);
2826		ASSERT_RTNL();
2827		wiphy_lock(wiphy);
2828		rcu_assign_pointer(wiphy->regd, regd);
2829		wiphy_unlock(wiphy);
2830		rcu_free_regdom(tmp);
2831	}
2832
2833
2834	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835	driver_request->processed = false;
2836
2837	/*
2838	 * Since CRDA will not be called in this case as we already
2839	 * have applied the requested regulatory domain before we just
2840	 * inform userspace we have processed the request
2841	 */
2842	if (treatment == REG_REQ_ALREADY_SET) {
2843		nl80211_send_reg_change_event(driver_request);
2844		reg_update_last_request(driver_request);
2845		reg_set_request_processed();
2846		return REG_REQ_ALREADY_SET;
2847	}
2848
2849	if (reg_query_database(driver_request)) {
2850		reg_update_last_request(driver_request);
2851		return REG_REQ_OK;
2852	}
2853
2854	return REG_REQ_IGNORE;
2855}
2856
2857static enum reg_request_treatment
2858__reg_process_hint_country_ie(struct wiphy *wiphy,
2859			      struct regulatory_request *country_ie_request)
2860{
2861	struct wiphy *last_wiphy = NULL;
2862	struct regulatory_request *lr = get_last_request();
2863
2864	if (reg_request_cell_base(lr)) {
2865		/* Trust a Cell base station over the AP's country IE */
2866		if (regdom_changes(country_ie_request->alpha2))
2867			return REG_REQ_IGNORE;
2868		return REG_REQ_ALREADY_SET;
2869	} else {
2870		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871			return REG_REQ_IGNORE;
2872	}
2873
2874	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875		return -EINVAL;
2876
2877	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878		return REG_REQ_OK;
2879
2880	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881
2882	if (last_wiphy != wiphy) {
2883		/*
2884		 * Two cards with two APs claiming different
2885		 * Country IE alpha2s. We could
2886		 * intersect them, but that seems unlikely
2887		 * to be correct. Reject second one for now.
2888		 */
2889		if (regdom_changes(country_ie_request->alpha2))
2890			return REG_REQ_IGNORE;
2891		return REG_REQ_ALREADY_SET;
2892	}
2893
2894	if (regdom_changes(country_ie_request->alpha2))
2895		return REG_REQ_OK;
2896	return REG_REQ_ALREADY_SET;
2897}
2898
2899/**
2900 * reg_process_hint_country_ie - process regulatory requests from country IEs
2901 * @wiphy: the wireless device for the regulatory request
2902 * @country_ie_request: a regulatory request from a country IE
2903 *
2904 * The wireless subsystem can use this function to process
2905 * a regulatory request issued by a country Information Element.
2906 *
2907 * Returns: one of the different reg request treatment values.
2908 */
2909static enum reg_request_treatment
2910reg_process_hint_country_ie(struct wiphy *wiphy,
2911			    struct regulatory_request *country_ie_request)
2912{
2913	enum reg_request_treatment treatment;
2914
2915	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916
2917	switch (treatment) {
2918	case REG_REQ_OK:
2919		break;
2920	case REG_REQ_IGNORE:
2921		return REG_REQ_IGNORE;
2922	case REG_REQ_ALREADY_SET:
2923		reg_free_request(country_ie_request);
2924		return REG_REQ_ALREADY_SET;
2925	case REG_REQ_INTERSECT:
2926		/*
2927		 * This doesn't happen yet, not sure we
2928		 * ever want to support it for this case.
2929		 */
2930		WARN_ONCE(1, "Unexpected intersection for country elements");
2931		return REG_REQ_IGNORE;
2932	}
2933
2934	country_ie_request->intersect = false;
2935	country_ie_request->processed = false;
2936
2937	if (reg_query_database(country_ie_request)) {
2938		reg_update_last_request(country_ie_request);
2939		return REG_REQ_OK;
2940	}
2941
2942	return REG_REQ_IGNORE;
2943}
2944
2945bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946{
2947	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950	bool dfs_domain_same;
2951
2952	rcu_read_lock();
2953
2954	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955	wiphy1_regd = rcu_dereference(wiphy1->regd);
2956	if (!wiphy1_regd)
2957		wiphy1_regd = cfg80211_regd;
2958
2959	wiphy2_regd = rcu_dereference(wiphy2->regd);
2960	if (!wiphy2_regd)
2961		wiphy2_regd = cfg80211_regd;
2962
2963	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964
2965	rcu_read_unlock();
2966
2967	return dfs_domain_same;
2968}
2969
2970static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971				    struct ieee80211_channel *src_chan)
2972{
2973	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975		return;
2976
2977	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2979		return;
2980
2981	if (src_chan->center_freq == dst_chan->center_freq &&
2982	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983		dst_chan->dfs_state = src_chan->dfs_state;
2984		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985	}
2986}
2987
2988static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989				       struct wiphy *src_wiphy)
2990{
2991	struct ieee80211_supported_band *src_sband, *dst_sband;
2992	struct ieee80211_channel *src_chan, *dst_chan;
2993	int i, j, band;
2994
2995	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996		return;
2997
2998	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999		dst_sband = dst_wiphy->bands[band];
3000		src_sband = src_wiphy->bands[band];
3001		if (!dst_sband || !src_sband)
3002			continue;
3003
3004		for (i = 0; i < dst_sband->n_channels; i++) {
3005			dst_chan = &dst_sband->channels[i];
3006			for (j = 0; j < src_sband->n_channels; j++) {
3007				src_chan = &src_sband->channels[j];
3008				reg_copy_dfs_chan_state(dst_chan, src_chan);
3009			}
3010		}
3011	}
3012}
3013
3014static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015{
3016	struct cfg80211_registered_device *rdev;
3017
3018	ASSERT_RTNL();
3019
3020	for_each_rdev(rdev) {
3021		if (wiphy == &rdev->wiphy)
3022			continue;
3023		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024	}
3025}
3026
3027/* This processes *all* regulatory hints */
3028static void reg_process_hint(struct regulatory_request *reg_request)
3029{
3030	struct wiphy *wiphy = NULL;
3031	enum reg_request_treatment treatment;
3032	enum nl80211_reg_initiator initiator = reg_request->initiator;
3033
3034	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036
3037	switch (initiator) {
3038	case NL80211_REGDOM_SET_BY_CORE:
3039		treatment = reg_process_hint_core(reg_request);
3040		break;
3041	case NL80211_REGDOM_SET_BY_USER:
3042		treatment = reg_process_hint_user(reg_request);
3043		break;
3044	case NL80211_REGDOM_SET_BY_DRIVER:
3045		if (!wiphy)
3046			goto out_free;
3047		treatment = reg_process_hint_driver(wiphy, reg_request);
3048		break;
3049	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050		if (!wiphy)
3051			goto out_free;
3052		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053		break;
3054	default:
3055		WARN(1, "invalid initiator %d\n", initiator);
3056		goto out_free;
3057	}
3058
3059	if (treatment == REG_REQ_IGNORE)
3060		goto out_free;
3061
3062	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063	     "unexpected treatment value %d\n", treatment);
3064
3065	/* This is required so that the orig_* parameters are saved.
3066	 * NOTE: treatment must be set for any case that reaches here!
3067	 */
3068	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070		wiphy_update_regulatory(wiphy, initiator);
3071		wiphy_all_share_dfs_chan_state(wiphy);
3072		reg_check_channels();
3073	}
3074
3075	return;
3076
3077out_free:
3078	reg_free_request(reg_request);
3079}
3080
3081static void notify_self_managed_wiphys(struct regulatory_request *request)
3082{
3083	struct cfg80211_registered_device *rdev;
3084	struct wiphy *wiphy;
3085
3086	for_each_rdev(rdev) {
3087		wiphy = &rdev->wiphy;
3088		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3090			reg_call_notifier(wiphy, request);
3091	}
3092}
3093
3094/*
3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096 * Regulatory hints come on a first come first serve basis and we
3097 * must process each one atomically.
3098 */
3099static void reg_process_pending_hints(void)
3100{
3101	struct regulatory_request *reg_request, *lr;
3102
3103	lr = get_last_request();
3104
3105	/* When last_request->processed becomes true this will be rescheduled */
3106	if (lr && !lr->processed) {
3107		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108		return;
3109	}
3110
3111	spin_lock(&reg_requests_lock);
3112
3113	if (list_empty(&reg_requests_list)) {
3114		spin_unlock(&reg_requests_lock);
3115		return;
3116	}
3117
3118	reg_request = list_first_entry(&reg_requests_list,
3119				       struct regulatory_request,
3120				       list);
3121	list_del_init(&reg_request->list);
3122
3123	spin_unlock(&reg_requests_lock);
3124
3125	notify_self_managed_wiphys(reg_request);
3126
3127	reg_process_hint(reg_request);
3128
3129	lr = get_last_request();
3130
3131	spin_lock(&reg_requests_lock);
3132	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3133		schedule_work(&reg_work);
3134	spin_unlock(&reg_requests_lock);
3135}
3136
3137/* Processes beacon hints -- this has nothing to do with country IEs */
3138static void reg_process_pending_beacon_hints(void)
3139{
3140	struct cfg80211_registered_device *rdev;
3141	struct reg_beacon *pending_beacon, *tmp;
3142
3143	/* This goes through the _pending_ beacon list */
3144	spin_lock_bh(&reg_pending_beacons_lock);
3145
3146	list_for_each_entry_safe(pending_beacon, tmp,
3147				 &reg_pending_beacons, list) {
3148		list_del_init(&pending_beacon->list);
3149
3150		/* Applies the beacon hint to current wiphys */
3151		for_each_rdev(rdev)
3152			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153
3154		/* Remembers the beacon hint for new wiphys or reg changes */
3155		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3156	}
3157
3158	spin_unlock_bh(&reg_pending_beacons_lock);
3159}
3160
3161static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162{
3163	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3164	const struct ieee80211_regdomain *tmp;
3165	const struct ieee80211_regdomain *regd;
3166	enum nl80211_band band;
3167	struct regulatory_request request = {};
3168
3169	ASSERT_RTNL();
3170	lockdep_assert_wiphy(wiphy);
3171
3172	spin_lock(&reg_requests_lock);
3173	regd = rdev->requested_regd;
3174	rdev->requested_regd = NULL;
3175	spin_unlock(&reg_requests_lock);
3176
3177	if (!regd)
3178		return;
3179
3180	tmp = get_wiphy_regdom(wiphy);
3181	rcu_assign_pointer(wiphy->regd, regd);
3182	rcu_free_regdom(tmp);
3183
3184	for (band = 0; band < NUM_NL80211_BANDS; band++)
3185		handle_band_custom(wiphy, wiphy->bands[band], regd);
3186
3187	reg_process_ht_flags(wiphy);
3188
3189	request.wiphy_idx = get_wiphy_idx(wiphy);
3190	request.alpha2[0] = regd->alpha2[0];
3191	request.alpha2[1] = regd->alpha2[1];
3192	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193
3194	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195		reg_call_notifier(wiphy, &request);
3196
3197	nl80211_send_wiphy_reg_change_event(&request);
3198}
3199
3200static void reg_process_self_managed_hints(void)
3201{
3202	struct cfg80211_registered_device *rdev;
3203
3204	ASSERT_RTNL();
3205
3206	for_each_rdev(rdev) {
3207		wiphy_lock(&rdev->wiphy);
3208		reg_process_self_managed_hint(&rdev->wiphy);
3209		wiphy_unlock(&rdev->wiphy);
3210	}
3211
3212	reg_check_channels();
3213}
3214
3215static void reg_todo(struct work_struct *work)
3216{
3217	rtnl_lock();
3218	reg_process_pending_hints();
3219	reg_process_pending_beacon_hints();
3220	reg_process_self_managed_hints();
3221	rtnl_unlock();
3222}
3223
3224static void queue_regulatory_request(struct regulatory_request *request)
3225{
3226	request->alpha2[0] = toupper(request->alpha2[0]);
3227	request->alpha2[1] = toupper(request->alpha2[1]);
3228
3229	spin_lock(&reg_requests_lock);
3230	list_add_tail(&request->list, &reg_requests_list);
3231	spin_unlock(&reg_requests_lock);
3232
3233	schedule_work(&reg_work);
3234}
3235
3236/*
3237 * Core regulatory hint -- happens during cfg80211_init()
3238 * and when we restore regulatory settings.
3239 */
3240static int regulatory_hint_core(const char *alpha2)
3241{
3242	struct regulatory_request *request;
3243
3244	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245	if (!request)
3246		return -ENOMEM;
3247
3248	request->alpha2[0] = alpha2[0];
3249	request->alpha2[1] = alpha2[1];
3250	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251	request->wiphy_idx = WIPHY_IDX_INVALID;
3252
3253	queue_regulatory_request(request);
3254
3255	return 0;
3256}
3257
3258/* User hints */
3259int regulatory_hint_user(const char *alpha2,
3260			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3261{
3262	struct regulatory_request *request;
3263
3264	if (WARN_ON(!alpha2))
3265		return -EINVAL;
3266
3267	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268		return -EINVAL;
3269
3270	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271	if (!request)
3272		return -ENOMEM;
3273
3274	request->wiphy_idx = WIPHY_IDX_INVALID;
3275	request->alpha2[0] = alpha2[0];
3276	request->alpha2[1] = alpha2[1];
3277	request->initiator = NL80211_REGDOM_SET_BY_USER;
3278	request->user_reg_hint_type = user_reg_hint_type;
3279
3280	/* Allow calling CRDA again */
3281	reset_crda_timeouts();
3282
3283	queue_regulatory_request(request);
3284
3285	return 0;
3286}
3287
3288int regulatory_hint_indoor(bool is_indoor, u32 portid)
3289{
3290	spin_lock(&reg_indoor_lock);
3291
3292	/* It is possible that more than one user space process is trying to
3293	 * configure the indoor setting. To handle such cases, clear the indoor
3294	 * setting in case that some process does not think that the device
3295	 * is operating in an indoor environment. In addition, if a user space
3296	 * process indicates that it is controlling the indoor setting, save its
3297	 * portid, i.e., make it the owner.
3298	 */
3299	reg_is_indoor = is_indoor;
3300	if (reg_is_indoor) {
3301		if (!reg_is_indoor_portid)
3302			reg_is_indoor_portid = portid;
3303	} else {
3304		reg_is_indoor_portid = 0;
3305	}
3306
3307	spin_unlock(&reg_indoor_lock);
3308
3309	if (!is_indoor)
3310		reg_check_channels();
3311
3312	return 0;
3313}
3314
3315void regulatory_netlink_notify(u32 portid)
3316{
3317	spin_lock(&reg_indoor_lock);
3318
3319	if (reg_is_indoor_portid != portid) {
3320		spin_unlock(&reg_indoor_lock);
3321		return;
3322	}
3323
3324	reg_is_indoor = false;
3325	reg_is_indoor_portid = 0;
3326
3327	spin_unlock(&reg_indoor_lock);
3328
3329	reg_check_channels();
3330}
3331
3332/* Driver hints */
3333int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334{
3335	struct regulatory_request *request;
3336
3337	if (WARN_ON(!alpha2 || !wiphy))
3338		return -EINVAL;
3339
3340	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341
3342	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343	if (!request)
3344		return -ENOMEM;
3345
3346	request->wiphy_idx = get_wiphy_idx(wiphy);
3347
3348	request->alpha2[0] = alpha2[0];
3349	request->alpha2[1] = alpha2[1];
3350	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351
3352	/* Allow calling CRDA again */
3353	reset_crda_timeouts();
3354
3355	queue_regulatory_request(request);
3356
3357	return 0;
3358}
3359EXPORT_SYMBOL(regulatory_hint);
3360
3361void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362				const u8 *country_ie, u8 country_ie_len)
3363{
3364	char alpha2[2];
3365	enum environment_cap env = ENVIRON_ANY;
3366	struct regulatory_request *request = NULL, *lr;
3367
3368	/* IE len must be evenly divisible by 2 */
3369	if (country_ie_len & 0x01)
3370		return;
3371
3372	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373		return;
3374
3375	request = kzalloc(sizeof(*request), GFP_KERNEL);
3376	if (!request)
3377		return;
3378
3379	alpha2[0] = country_ie[0];
3380	alpha2[1] = country_ie[1];
3381
3382	if (country_ie[2] == 'I')
3383		env = ENVIRON_INDOOR;
3384	else if (country_ie[2] == 'O')
3385		env = ENVIRON_OUTDOOR;
3386
3387	rcu_read_lock();
3388	lr = get_last_request();
3389
3390	if (unlikely(!lr))
3391		goto out;
3392
3393	/*
3394	 * We will run this only upon a successful connection on cfg80211.
3395	 * We leave conflict resolution to the workqueue, where can hold
3396	 * the RTNL.
3397	 */
3398	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3400		goto out;
3401
3402	request->wiphy_idx = get_wiphy_idx(wiphy);
3403	request->alpha2[0] = alpha2[0];
3404	request->alpha2[1] = alpha2[1];
3405	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406	request->country_ie_env = env;
3407
3408	/* Allow calling CRDA again */
3409	reset_crda_timeouts();
3410
3411	queue_regulatory_request(request);
3412	request = NULL;
3413out:
3414	kfree(request);
3415	rcu_read_unlock();
3416}
3417
3418static void restore_alpha2(char *alpha2, bool reset_user)
3419{
3420	/* indicates there is no alpha2 to consider for restoration */
3421	alpha2[0] = '9';
3422	alpha2[1] = '7';
3423
3424	/* The user setting has precedence over the module parameter */
3425	if (is_user_regdom_saved()) {
3426		/* Unless we're asked to ignore it and reset it */
3427		if (reset_user) {
3428			pr_debug("Restoring regulatory settings including user preference\n");
3429			user_alpha2[0] = '9';
3430			user_alpha2[1] = '7';
3431
3432			/*
3433			 * If we're ignoring user settings, we still need to
3434			 * check the module parameter to ensure we put things
3435			 * back as they were for a full restore.
3436			 */
3437			if (!is_world_regdom(ieee80211_regdom)) {
3438				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439					 ieee80211_regdom[0], ieee80211_regdom[1]);
3440				alpha2[0] = ieee80211_regdom[0];
3441				alpha2[1] = ieee80211_regdom[1];
3442			}
3443		} else {
3444			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445				 user_alpha2[0], user_alpha2[1]);
3446			alpha2[0] = user_alpha2[0];
3447			alpha2[1] = user_alpha2[1];
3448		}
3449	} else if (!is_world_regdom(ieee80211_regdom)) {
3450		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451			 ieee80211_regdom[0], ieee80211_regdom[1]);
3452		alpha2[0] = ieee80211_regdom[0];
3453		alpha2[1] = ieee80211_regdom[1];
3454	} else
3455		pr_debug("Restoring regulatory settings\n");
3456}
3457
3458static void restore_custom_reg_settings(struct wiphy *wiphy)
3459{
3460	struct ieee80211_supported_band *sband;
3461	enum nl80211_band band;
3462	struct ieee80211_channel *chan;
3463	int i;
3464
3465	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466		sband = wiphy->bands[band];
3467		if (!sband)
3468			continue;
3469		for (i = 0; i < sband->n_channels; i++) {
3470			chan = &sband->channels[i];
3471			chan->flags = chan->orig_flags;
3472			chan->max_antenna_gain = chan->orig_mag;
3473			chan->max_power = chan->orig_mpwr;
3474			chan->beacon_found = false;
3475		}
3476	}
3477}
3478
3479/*
3480 * Restoring regulatory settings involves ignoring any
3481 * possibly stale country IE information and user regulatory
3482 * settings if so desired, this includes any beacon hints
3483 * learned as we could have traveled outside to another country
3484 * after disconnection. To restore regulatory settings we do
3485 * exactly what we did at bootup:
3486 *
3487 *   - send a core regulatory hint
3488 *   - send a user regulatory hint if applicable
3489 *
3490 * Device drivers that send a regulatory hint for a specific country
3491 * keep their own regulatory domain on wiphy->regd so that does
3492 * not need to be remembered.
3493 */
3494static void restore_regulatory_settings(bool reset_user, bool cached)
3495{
3496	char alpha2[2];
3497	char world_alpha2[2];
3498	struct reg_beacon *reg_beacon, *btmp;
3499	LIST_HEAD(tmp_reg_req_list);
3500	struct cfg80211_registered_device *rdev;
3501
3502	ASSERT_RTNL();
3503
3504	/*
3505	 * Clear the indoor setting in case that it is not controlled by user
3506	 * space, as otherwise there is no guarantee that the device is still
3507	 * operating in an indoor environment.
3508	 */
3509	spin_lock(&reg_indoor_lock);
3510	if (reg_is_indoor && !reg_is_indoor_portid) {
3511		reg_is_indoor = false;
3512		reg_check_channels();
3513	}
3514	spin_unlock(&reg_indoor_lock);
3515
3516	reset_regdomains(true, &world_regdom);
3517	restore_alpha2(alpha2, reset_user);
3518
3519	/*
3520	 * If there's any pending requests we simply
3521	 * stash them to a temporary pending queue and
3522	 * add then after we've restored regulatory
3523	 * settings.
3524	 */
3525	spin_lock(&reg_requests_lock);
3526	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3527	spin_unlock(&reg_requests_lock);
3528
3529	/* Clear beacon hints */
3530	spin_lock_bh(&reg_pending_beacons_lock);
3531	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3532		list_del(&reg_beacon->list);
3533		kfree(reg_beacon);
3534	}
3535	spin_unlock_bh(&reg_pending_beacons_lock);
3536
3537	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3538		list_del(&reg_beacon->list);
3539		kfree(reg_beacon);
3540	}
3541
3542	/* First restore to the basic regulatory settings */
3543	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545
3546	for_each_rdev(rdev) {
3547		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548			continue;
3549		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550			restore_custom_reg_settings(&rdev->wiphy);
3551	}
3552
3553	if (cached && (!is_an_alpha2(alpha2) ||
3554		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555		reset_regdomains(false, cfg80211_world_regdom);
3556		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557		print_regdomain(get_cfg80211_regdom());
3558		nl80211_send_reg_change_event(&core_request_world);
3559		reg_set_request_processed();
3560
3561		if (is_an_alpha2(alpha2) &&
3562		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563			struct regulatory_request *ureq;
3564
3565			spin_lock(&reg_requests_lock);
3566			ureq = list_last_entry(&reg_requests_list,
3567					       struct regulatory_request,
3568					       list);
3569			list_del(&ureq->list);
3570			spin_unlock(&reg_requests_lock);
3571
3572			notify_self_managed_wiphys(ureq);
3573			reg_update_last_request(ureq);
3574			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575				   REGD_SOURCE_CACHED);
3576		}
3577	} else {
3578		regulatory_hint_core(world_alpha2);
3579
3580		/*
3581		 * This restores the ieee80211_regdom module parameter
3582		 * preference or the last user requested regulatory
3583		 * settings, user regulatory settings takes precedence.
3584		 */
3585		if (is_an_alpha2(alpha2))
3586			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587	}
3588
3589	spin_lock(&reg_requests_lock);
3590	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3591	spin_unlock(&reg_requests_lock);
3592
3593	pr_debug("Kicking the queue\n");
3594
3595	schedule_work(&reg_work);
3596}
3597
3598static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599{
3600	struct cfg80211_registered_device *rdev;
3601	struct wireless_dev *wdev;
3602
3603	for_each_rdev(rdev) {
3604		wiphy_lock(&rdev->wiphy);
3605		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3606			if (!(wdev->wiphy->regulatory_flags & flag)) {
3607				wiphy_unlock(&rdev->wiphy);
3608				return false;
3609			}
3610		}
3611		wiphy_unlock(&rdev->wiphy);
3612	}
3613
3614	return true;
3615}
3616
3617void regulatory_hint_disconnect(void)
3618{
3619	/* Restore of regulatory settings is not required when wiphy(s)
3620	 * ignore IE from connected access point but clearance of beacon hints
3621	 * is required when wiphy(s) supports beacon hints.
3622	 */
3623	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3624		struct reg_beacon *reg_beacon, *btmp;
3625
3626		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3627			return;
3628
3629		spin_lock_bh(&reg_pending_beacons_lock);
3630		list_for_each_entry_safe(reg_beacon, btmp,
3631					 &reg_pending_beacons, list) {
3632			list_del(&reg_beacon->list);
3633			kfree(reg_beacon);
3634		}
3635		spin_unlock_bh(&reg_pending_beacons_lock);
3636
3637		list_for_each_entry_safe(reg_beacon, btmp,
3638					 &reg_beacon_list, list) {
3639			list_del(&reg_beacon->list);
3640			kfree(reg_beacon);
3641		}
3642
3643		return;
3644	}
3645
3646	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3647	restore_regulatory_settings(false, true);
3648}
3649
3650static bool freq_is_chan_12_13_14(u32 freq)
3651{
3652	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3653	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3654	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3655		return true;
3656	return false;
3657}
3658
3659static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3660{
3661	struct reg_beacon *pending_beacon;
3662
3663	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3664		if (ieee80211_channel_equal(beacon_chan,
3665					    &pending_beacon->chan))
3666			return true;
3667	return false;
3668}
3669
3670int regulatory_hint_found_beacon(struct wiphy *wiphy,
3671				 struct ieee80211_channel *beacon_chan,
3672				 gfp_t gfp)
3673{
3674	struct reg_beacon *reg_beacon;
3675	bool processing;
3676
3677	if (beacon_chan->beacon_found ||
3678	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3679	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3680	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3681		return 0;
3682
3683	spin_lock_bh(&reg_pending_beacons_lock);
3684	processing = pending_reg_beacon(beacon_chan);
3685	spin_unlock_bh(&reg_pending_beacons_lock);
3686
3687	if (processing)
3688		return 0;
3689
3690	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3691	if (!reg_beacon)
3692		return -ENOMEM;
3693
3694	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3695		 beacon_chan->center_freq, beacon_chan->freq_offset,
3696		 ieee80211_freq_khz_to_channel(
3697			 ieee80211_channel_to_khz(beacon_chan)),
3698		 wiphy_name(wiphy));
3699
3700	memcpy(&reg_beacon->chan, beacon_chan,
3701	       sizeof(struct ieee80211_channel));
3702
3703	/*
3704	 * Since we can be called from BH or and non-BH context
3705	 * we must use spin_lock_bh()
3706	 */
3707	spin_lock_bh(&reg_pending_beacons_lock);
3708	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3709	spin_unlock_bh(&reg_pending_beacons_lock);
3710
3711	schedule_work(&reg_work);
3712
3713	return 0;
3714}
3715
3716static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717{
3718	unsigned int i;
3719	const struct ieee80211_reg_rule *reg_rule = NULL;
3720	const struct ieee80211_freq_range *freq_range = NULL;
3721	const struct ieee80211_power_rule *power_rule = NULL;
3722	char bw[32], cac_time[32];
3723
3724	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725
3726	for (i = 0; i < rd->n_reg_rules; i++) {
3727		reg_rule = &rd->reg_rules[i];
3728		freq_range = &reg_rule->freq_range;
3729		power_rule = &reg_rule->power_rule;
3730
3731		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733				 freq_range->max_bandwidth_khz,
3734				 reg_get_max_bandwidth(rd, reg_rule));
3735		else
3736			snprintf(bw, sizeof(bw), "%d KHz",
3737				 freq_range->max_bandwidth_khz);
3738
3739		if (reg_rule->flags & NL80211_RRF_DFS)
3740			scnprintf(cac_time, sizeof(cac_time), "%u s",
3741				  reg_rule->dfs_cac_ms/1000);
3742		else
3743			scnprintf(cac_time, sizeof(cac_time), "N/A");
3744
3745
3746		/*
3747		 * There may not be documentation for max antenna gain
3748		 * in certain regions
3749		 */
3750		if (power_rule->max_antenna_gain)
3751			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752				freq_range->start_freq_khz,
3753				freq_range->end_freq_khz,
3754				bw,
3755				power_rule->max_antenna_gain,
3756				power_rule->max_eirp,
3757				cac_time);
3758		else
3759			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760				freq_range->start_freq_khz,
3761				freq_range->end_freq_khz,
3762				bw,
3763				power_rule->max_eirp,
3764				cac_time);
3765	}
3766}
3767
3768bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769{
3770	switch (dfs_region) {
3771	case NL80211_DFS_UNSET:
3772	case NL80211_DFS_FCC:
3773	case NL80211_DFS_ETSI:
3774	case NL80211_DFS_JP:
3775		return true;
3776	default:
3777		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3778		return false;
3779	}
3780}
3781
3782static void print_regdomain(const struct ieee80211_regdomain *rd)
3783{
3784	struct regulatory_request *lr = get_last_request();
3785
3786	if (is_intersected_alpha2(rd->alpha2)) {
3787		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788			struct cfg80211_registered_device *rdev;
3789			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790			if (rdev) {
3791				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792					rdev->country_ie_alpha2[0],
3793					rdev->country_ie_alpha2[1]);
3794			} else
3795				pr_debug("Current regulatory domain intersected:\n");
3796		} else
3797			pr_debug("Current regulatory domain intersected:\n");
3798	} else if (is_world_regdom(rd->alpha2)) {
3799		pr_debug("World regulatory domain updated:\n");
3800	} else {
3801		if (is_unknown_alpha2(rd->alpha2))
3802			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803		else {
3804			if (reg_request_cell_base(lr))
3805				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806					rd->alpha2[0], rd->alpha2[1]);
3807			else
3808				pr_debug("Regulatory domain changed to country: %c%c\n",
3809					rd->alpha2[0], rd->alpha2[1]);
3810		}
3811	}
3812
3813	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814	print_rd_rules(rd);
3815}
3816
3817static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818{
3819	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820	print_rd_rules(rd);
3821}
3822
3823static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824{
3825	if (!is_world_regdom(rd->alpha2))
3826		return -EINVAL;
3827	update_world_regdomain(rd);
3828	return 0;
3829}
3830
3831static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832			   struct regulatory_request *user_request)
3833{
3834	const struct ieee80211_regdomain *intersected_rd = NULL;
3835
3836	if (!regdom_changes(rd->alpha2))
3837		return -EALREADY;
3838
3839	if (!is_valid_rd(rd)) {
3840		pr_err("Invalid regulatory domain detected: %c%c\n",
3841		       rd->alpha2[0], rd->alpha2[1]);
3842		print_regdomain_info(rd);
3843		return -EINVAL;
3844	}
3845
3846	if (!user_request->intersect) {
3847		reset_regdomains(false, rd);
3848		return 0;
3849	}
3850
3851	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852	if (!intersected_rd)
3853		return -EINVAL;
3854
3855	kfree(rd);
3856	rd = NULL;
3857	reset_regdomains(false, intersected_rd);
3858
3859	return 0;
3860}
3861
3862static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863			     struct regulatory_request *driver_request)
3864{
3865	const struct ieee80211_regdomain *regd;
3866	const struct ieee80211_regdomain *intersected_rd = NULL;
3867	const struct ieee80211_regdomain *tmp = NULL;
3868	struct wiphy *request_wiphy;
3869
3870	if (is_world_regdom(rd->alpha2))
3871		return -EINVAL;
3872
3873	if (!regdom_changes(rd->alpha2))
3874		return -EALREADY;
3875
3876	if (!is_valid_rd(rd)) {
3877		pr_err("Invalid regulatory domain detected: %c%c\n",
3878		       rd->alpha2[0], rd->alpha2[1]);
3879		print_regdomain_info(rd);
3880		return -EINVAL;
3881	}
3882
3883	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884	if (!request_wiphy)
3885		return -ENODEV;
3886
3887	if (!driver_request->intersect) {
3888		ASSERT_RTNL();
3889		wiphy_lock(request_wiphy);
3890		if (request_wiphy->regd)
3891			tmp = get_wiphy_regdom(request_wiphy);
3892
3893		regd = reg_copy_regd(rd);
3894		if (IS_ERR(regd)) {
3895			wiphy_unlock(request_wiphy);
3896			return PTR_ERR(regd);
3897		}
3898
3899		rcu_assign_pointer(request_wiphy->regd, regd);
3900		rcu_free_regdom(tmp);
3901		wiphy_unlock(request_wiphy);
3902		reset_regdomains(false, rd);
3903		return 0;
3904	}
3905
3906	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907	if (!intersected_rd)
3908		return -EINVAL;
3909
3910	/*
3911	 * We can trash what CRDA provided now.
3912	 * However if a driver requested this specific regulatory
3913	 * domain we keep it for its private use
3914	 */
3915	tmp = get_wiphy_regdom(request_wiphy);
3916	rcu_assign_pointer(request_wiphy->regd, rd);
3917	rcu_free_regdom(tmp);
3918
3919	rd = NULL;
3920
3921	reset_regdomains(false, intersected_rd);
3922
3923	return 0;
3924}
3925
3926static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927				 struct regulatory_request *country_ie_request)
3928{
3929	struct wiphy *request_wiphy;
3930
3931	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932	    !is_unknown_alpha2(rd->alpha2))
3933		return -EINVAL;
3934
3935	/*
3936	 * Lets only bother proceeding on the same alpha2 if the current
3937	 * rd is non static (it means CRDA was present and was used last)
3938	 * and the pending request came in from a country IE
3939	 */
3940
3941	if (!is_valid_rd(rd)) {
3942		pr_err("Invalid regulatory domain detected: %c%c\n",
3943		       rd->alpha2[0], rd->alpha2[1]);
3944		print_regdomain_info(rd);
3945		return -EINVAL;
3946	}
3947
3948	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949	if (!request_wiphy)
3950		return -ENODEV;
3951
3952	if (country_ie_request->intersect)
3953		return -EINVAL;
3954
3955	reset_regdomains(false, rd);
3956	return 0;
3957}
3958
3959/*
3960 * Use this call to set the current regulatory domain. Conflicts with
3961 * multiple drivers can be ironed out later. Caller must've already
3962 * kmalloc'd the rd structure.
3963 */
3964int set_regdom(const struct ieee80211_regdomain *rd,
3965	       enum ieee80211_regd_source regd_src)
3966{
3967	struct regulatory_request *lr;
3968	bool user_reset = false;
3969	int r;
3970
3971	if (IS_ERR_OR_NULL(rd))
3972		return -ENODATA;
3973
3974	if (!reg_is_valid_request(rd->alpha2)) {
3975		kfree(rd);
3976		return -EINVAL;
3977	}
3978
3979	if (regd_src == REGD_SOURCE_CRDA)
3980		reset_crda_timeouts();
3981
3982	lr = get_last_request();
3983
3984	/* Note that this doesn't update the wiphys, this is done below */
3985	switch (lr->initiator) {
3986	case NL80211_REGDOM_SET_BY_CORE:
3987		r = reg_set_rd_core(rd);
3988		break;
3989	case NL80211_REGDOM_SET_BY_USER:
3990		cfg80211_save_user_regdom(rd);
3991		r = reg_set_rd_user(rd, lr);
3992		user_reset = true;
3993		break;
3994	case NL80211_REGDOM_SET_BY_DRIVER:
3995		r = reg_set_rd_driver(rd, lr);
3996		break;
3997	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998		r = reg_set_rd_country_ie(rd, lr);
3999		break;
4000	default:
4001		WARN(1, "invalid initiator %d\n", lr->initiator);
4002		kfree(rd);
4003		return -EINVAL;
4004	}
4005
4006	if (r) {
4007		switch (r) {
4008		case -EALREADY:
4009			reg_set_request_processed();
4010			break;
4011		default:
4012			/* Back to world regulatory in case of errors */
4013			restore_regulatory_settings(user_reset, false);
4014		}
4015
4016		kfree(rd);
4017		return r;
4018	}
4019
4020	/* This would make this whole thing pointless */
4021	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022		return -EINVAL;
4023
4024	/* update all wiphys now with the new established regulatory domain */
4025	update_all_wiphy_regulatory(lr->initiator);
4026
4027	print_regdomain(get_cfg80211_regdom());
4028
4029	nl80211_send_reg_change_event(lr);
4030
4031	reg_set_request_processed();
4032
4033	return 0;
4034}
4035
4036static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037				       struct ieee80211_regdomain *rd)
4038{
4039	const struct ieee80211_regdomain *regd;
4040	const struct ieee80211_regdomain *prev_regd;
4041	struct cfg80211_registered_device *rdev;
4042
4043	if (WARN_ON(!wiphy || !rd))
4044		return -EINVAL;
4045
4046	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048		return -EPERM;
4049
4050	if (WARN(!is_valid_rd(rd),
4051		 "Invalid regulatory domain detected: %c%c\n",
4052		 rd->alpha2[0], rd->alpha2[1])) {
4053		print_regdomain_info(rd);
4054		return -EINVAL;
4055	}
4056
4057	regd = reg_copy_regd(rd);
4058	if (IS_ERR(regd))
4059		return PTR_ERR(regd);
4060
4061	rdev = wiphy_to_rdev(wiphy);
4062
4063	spin_lock(&reg_requests_lock);
4064	prev_regd = rdev->requested_regd;
4065	rdev->requested_regd = regd;
4066	spin_unlock(&reg_requests_lock);
4067
4068	kfree(prev_regd);
4069	return 0;
4070}
4071
4072int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073			      struct ieee80211_regdomain *rd)
4074{
4075	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076
4077	if (ret)
4078		return ret;
4079
4080	schedule_work(&reg_work);
4081	return 0;
4082}
4083EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084
4085int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086				   struct ieee80211_regdomain *rd)
4087{
4088	int ret;
4089
4090	ASSERT_RTNL();
4091
4092	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093	if (ret)
4094		return ret;
4095
4096	/* process the request immediately */
4097	reg_process_self_managed_hint(wiphy);
4098	reg_check_channels();
4099	return 0;
4100}
4101EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102
4103void wiphy_regulatory_register(struct wiphy *wiphy)
4104{
4105	struct regulatory_request *lr = get_last_request();
4106
4107	/* self-managed devices ignore beacon hints and country IE */
4108	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110					   REGULATORY_COUNTRY_IE_IGNORE;
4111
4112		/*
4113		 * The last request may have been received before this
4114		 * registration call. Call the driver notifier if
4115		 * initiator is USER.
4116		 */
4117		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118			reg_call_notifier(wiphy, lr);
4119	}
4120
4121	if (!reg_dev_ignore_cell_hint(wiphy))
4122		reg_num_devs_support_basehint++;
4123
4124	wiphy_update_regulatory(wiphy, lr->initiator);
4125	wiphy_all_share_dfs_chan_state(wiphy);
4126	reg_process_self_managed_hints();
4127}
4128
4129void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130{
4131	struct wiphy *request_wiphy = NULL;
4132	struct regulatory_request *lr;
4133
4134	lr = get_last_request();
4135
4136	if (!reg_dev_ignore_cell_hint(wiphy))
4137		reg_num_devs_support_basehint--;
4138
4139	rcu_free_regdom(get_wiphy_regdom(wiphy));
4140	RCU_INIT_POINTER(wiphy->regd, NULL);
4141
4142	if (lr)
4143		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144
4145	if (!request_wiphy || request_wiphy != wiphy)
4146		return;
4147
4148	lr->wiphy_idx = WIPHY_IDX_INVALID;
4149	lr->country_ie_env = ENVIRON_ANY;
4150}
4151
4152/*
4153 * See FCC notices for UNII band definitions
4154 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156 */
4157int cfg80211_get_unii(int freq)
4158{
4159	/* UNII-1 */
4160	if (freq >= 5150 && freq <= 5250)
4161		return 0;
4162
4163	/* UNII-2A */
4164	if (freq > 5250 && freq <= 5350)
4165		return 1;
4166
4167	/* UNII-2B */
4168	if (freq > 5350 && freq <= 5470)
4169		return 2;
4170
4171	/* UNII-2C */
4172	if (freq > 5470 && freq <= 5725)
4173		return 3;
4174
4175	/* UNII-3 */
4176	if (freq > 5725 && freq <= 5825)
4177		return 4;
4178
4179	/* UNII-5 */
4180	if (freq > 5925 && freq <= 6425)
4181		return 5;
4182
4183	/* UNII-6 */
4184	if (freq > 6425 && freq <= 6525)
4185		return 6;
4186
4187	/* UNII-7 */
4188	if (freq > 6525 && freq <= 6875)
4189		return 7;
4190
4191	/* UNII-8 */
4192	if (freq > 6875 && freq <= 7125)
4193		return 8;
4194
4195	return -EINVAL;
4196}
4197
4198bool regulatory_indoor_allowed(void)
4199{
4200	return reg_is_indoor;
4201}
4202
4203bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204{
4205	const struct ieee80211_regdomain *regd = NULL;
4206	const struct ieee80211_regdomain *wiphy_regd = NULL;
4207	bool pre_cac_allowed = false;
4208
4209	rcu_read_lock();
4210
4211	regd = rcu_dereference(cfg80211_regdomain);
4212	wiphy_regd = rcu_dereference(wiphy->regd);
4213	if (!wiphy_regd) {
4214		if (regd->dfs_region == NL80211_DFS_ETSI)
4215			pre_cac_allowed = true;
4216
4217		rcu_read_unlock();
4218
4219		return pre_cac_allowed;
4220	}
4221
4222	if (regd->dfs_region == wiphy_regd->dfs_region &&
4223	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224		pre_cac_allowed = true;
4225
4226	rcu_read_unlock();
4227
4228	return pre_cac_allowed;
4229}
4230EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231
4232static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233{
4234	struct wireless_dev *wdev;
4235	/* If we finished CAC or received radar, we should end any
4236	 * CAC running on the same channels.
4237	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4238	 * either all channels are available - those the CAC_FINISHED
4239	 * event has effected another wdev state, or there is a channel
4240	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4241	 * event has effected another wdev state.
4242	 * In both cases we should end the CAC on the wdev.
4243	 */
4244	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4245		struct cfg80211_chan_def *chandef;
4246
4247		if (!wdev->cac_started)
4248			continue;
4249
4250		/* FIXME: radar detection is tied to link 0 for now */
4251		chandef = wdev_chandef(wdev, 0);
4252		if (!chandef)
4253			continue;
4254
4255		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4256			rdev_end_cac(rdev, wdev->netdev);
4257	}
4258}
4259
4260void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261				    struct cfg80211_chan_def *chandef,
4262				    enum nl80211_dfs_state dfs_state,
4263				    enum nl80211_radar_event event)
4264{
4265	struct cfg80211_registered_device *rdev;
4266
4267	ASSERT_RTNL();
4268
4269	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270		return;
4271
4272	for_each_rdev(rdev) {
4273		if (wiphy == &rdev->wiphy)
4274			continue;
4275
4276		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277			continue;
4278
4279		if (!ieee80211_get_channel(&rdev->wiphy,
4280					   chandef->chan->center_freq))
4281			continue;
4282
4283		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285		if (event == NL80211_RADAR_DETECTED ||
4286		    event == NL80211_RADAR_CAC_FINISHED) {
4287			cfg80211_sched_dfs_chan_update(rdev);
4288			cfg80211_check_and_end_cac(rdev);
4289		}
4290
4291		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292	}
4293}
4294
4295static int __init regulatory_init_db(void)
4296{
4297	int err;
4298
4299	/*
4300	 * It's possible that - due to other bugs/issues - cfg80211
4301	 * never called regulatory_init() below, or that it failed;
4302	 * in that case, don't try to do any further work here as
4303	 * it's doomed to lead to crashes.
4304	 */
4305	if (IS_ERR_OR_NULL(reg_pdev))
4306		return -EINVAL;
4307
4308	err = load_builtin_regdb_keys();
4309	if (err) {
4310		platform_device_unregister(reg_pdev);
4311		return err;
4312	}
4313
4314	/* We always try to get an update for the static regdomain */
4315	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316	if (err) {
4317		if (err == -ENOMEM) {
4318			platform_device_unregister(reg_pdev);
4319			return err;
4320		}
4321		/*
4322		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323		 * memory which is handled and propagated appropriately above
4324		 * but it can also fail during a netlink_broadcast() or during
4325		 * early boot for call_usermodehelper(). For now treat these
4326		 * errors as non-fatal.
4327		 */
4328		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329	}
4330
4331	/*
4332	 * Finally, if the user set the module parameter treat it
4333	 * as a user hint.
4334	 */
4335	if (!is_world_regdom(ieee80211_regdom))
4336		regulatory_hint_user(ieee80211_regdom,
4337				     NL80211_USER_REG_HINT_USER);
4338
4339	return 0;
4340}
4341#ifndef MODULE
4342late_initcall(regulatory_init_db);
4343#endif
4344
4345int __init regulatory_init(void)
4346{
4347	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348	if (IS_ERR(reg_pdev))
4349		return PTR_ERR(reg_pdev);
4350
4351	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353	user_alpha2[0] = '9';
4354	user_alpha2[1] = '7';
4355
4356#ifdef MODULE
4357	return regulatory_init_db();
4358#else
4359	return 0;
4360#endif
4361}
4362
4363void regulatory_exit(void)
4364{
4365	struct regulatory_request *reg_request, *tmp;
4366	struct reg_beacon *reg_beacon, *btmp;
4367
4368	cancel_work_sync(&reg_work);
4369	cancel_crda_timeout_sync();
4370	cancel_delayed_work_sync(&reg_check_chans);
4371
4372	/* Lock to suppress warnings */
4373	rtnl_lock();
4374	reset_regdomains(true, NULL);
4375	rtnl_unlock();
4376
4377	dev_set_uevent_suppress(&reg_pdev->dev, true);
4378
4379	platform_device_unregister(reg_pdev);
4380
4381	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4382		list_del(&reg_beacon->list);
4383		kfree(reg_beacon);
4384	}
4385
4386	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4387		list_del(&reg_beacon->list);
4388		kfree(reg_beacon);
4389	}
4390
4391	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4392		list_del(&reg_request->list);
4393		kfree(reg_request);
4394	}
4395
4396	if (!IS_ERR_OR_NULL(regdb))
4397		kfree(regdb);
4398	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399		kfree(cfg80211_user_regdom);
4400
4401	free_regdb_keyring();
4402}
v6.9.4
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2024 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
  60#include <linux/units.h>
  61
  62#include <net/cfg80211.h>
  63#include "core.h"
  64#include "reg.h"
  65#include "rdev-ops.h"
  66#include "nl80211.h"
  67
  68/*
  69 * Grace period we give before making sure all current interfaces reside on
  70 * channels allowed by the current regulatory domain.
  71 */
  72#define REG_ENFORCE_GRACE_MS 60000
  73
  74/**
  75 * enum reg_request_treatment - regulatory request treatment
  76 *
  77 * @REG_REQ_OK: continue processing the regulatory request
  78 * @REG_REQ_IGNORE: ignore the regulatory request
  79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  80 *	be intersected with the current one.
  81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  82 *	regulatory settings, and no further processing is required.
  83 */
  84enum reg_request_treatment {
  85	REG_REQ_OK,
  86	REG_REQ_IGNORE,
  87	REG_REQ_INTERSECT,
  88	REG_REQ_ALREADY_SET,
  89};
  90
  91static struct regulatory_request core_request_world = {
  92	.initiator = NL80211_REGDOM_SET_BY_CORE,
  93	.alpha2[0] = '0',
  94	.alpha2[1] = '0',
  95	.intersect = false,
  96	.processed = true,
  97	.country_ie_env = ENVIRON_ANY,
  98};
  99
 100/*
 101 * Receipt of information from last regulatory request,
 102 * protected by RTNL (and can be accessed with RCU protection)
 103 */
 104static struct regulatory_request __rcu *last_request =
 105	(void __force __rcu *)&core_request_world;
 106
 107/* To trigger userspace events and load firmware */
 108static struct platform_device *reg_pdev;
 109
 110/*
 111 * Central wireless core regulatory domains, we only need two,
 112 * the current one and a world regulatory domain in case we have no
 113 * information to give us an alpha2.
 114 * (protected by RTNL, can be read under RCU)
 115 */
 116const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 117
 118/*
 119 * Number of devices that registered to the core
 120 * that support cellular base station regulatory hints
 121 * (protected by RTNL)
 122 */
 123static int reg_num_devs_support_basehint;
 124
 125/*
 126 * State variable indicating if the platform on which the devices
 127 * are attached is operating in an indoor environment. The state variable
 128 * is relevant for all registered devices.
 129 */
 130static bool reg_is_indoor;
 131static DEFINE_SPINLOCK(reg_indoor_lock);
 132
 133/* Used to track the userspace process controlling the indoor setting */
 134static u32 reg_is_indoor_portid;
 135
 136static void restore_regulatory_settings(bool reset_user, bool cached);
 137static void print_regdomain(const struct ieee80211_regdomain *rd);
 138static void reg_process_hint(struct regulatory_request *reg_request);
 139
 140static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 141{
 142	return rcu_dereference_rtnl(cfg80211_regdomain);
 143}
 144
 145/*
 146 * Returns the regulatory domain associated with the wiphy.
 147 *
 148 * Requires any of RTNL, wiphy mutex or RCU protection.
 149 */
 150const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 151{
 152	return rcu_dereference_check(wiphy->regd,
 153				     lockdep_is_held(&wiphy->mtx) ||
 154				     lockdep_rtnl_is_held());
 155}
 156EXPORT_SYMBOL(get_wiphy_regdom);
 157
 158static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 159{
 160	switch (dfs_region) {
 161	case NL80211_DFS_UNSET:
 162		return "unset";
 163	case NL80211_DFS_FCC:
 164		return "FCC";
 165	case NL80211_DFS_ETSI:
 166		return "ETSI";
 167	case NL80211_DFS_JP:
 168		return "JP";
 169	}
 170	return "Unknown";
 171}
 172
 173enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 174{
 175	const struct ieee80211_regdomain *regd = NULL;
 176	const struct ieee80211_regdomain *wiphy_regd = NULL;
 177	enum nl80211_dfs_regions dfs_region;
 178
 179	rcu_read_lock();
 180	regd = get_cfg80211_regdom();
 181	dfs_region = regd->dfs_region;
 182
 183	if (!wiphy)
 184		goto out;
 185
 186	wiphy_regd = get_wiphy_regdom(wiphy);
 187	if (!wiphy_regd)
 188		goto out;
 189
 190	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
 191		dfs_region = wiphy_regd->dfs_region;
 192		goto out;
 193	}
 194
 195	if (wiphy_regd->dfs_region == regd->dfs_region)
 196		goto out;
 197
 198	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 199		 dev_name(&wiphy->dev),
 200		 reg_dfs_region_str(wiphy_regd->dfs_region),
 201		 reg_dfs_region_str(regd->dfs_region));
 202
 203out:
 204	rcu_read_unlock();
 205
 206	return dfs_region;
 207}
 208
 209static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 210{
 211	if (!r)
 212		return;
 213	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 214}
 215
 216static struct regulatory_request *get_last_request(void)
 217{
 218	return rcu_dereference_rtnl(last_request);
 219}
 220
 221/* Used to queue up regulatory hints */
 222static LIST_HEAD(reg_requests_list);
 223static DEFINE_SPINLOCK(reg_requests_lock);
 224
 225/* Used to queue up beacon hints for review */
 226static LIST_HEAD(reg_pending_beacons);
 227static DEFINE_SPINLOCK(reg_pending_beacons_lock);
 228
 229/* Used to keep track of processed beacon hints */
 230static LIST_HEAD(reg_beacon_list);
 231
 232struct reg_beacon {
 233	struct list_head list;
 234	struct ieee80211_channel chan;
 235};
 236
 237static void reg_check_chans_work(struct work_struct *work);
 238static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 239
 240static void reg_todo(struct work_struct *work);
 241static DECLARE_WORK(reg_work, reg_todo);
 242
 243/* We keep a static world regulatory domain in case of the absence of CRDA */
 244static const struct ieee80211_regdomain world_regdom = {
 245	.n_reg_rules = 8,
 246	.alpha2 =  "00",
 247	.reg_rules = {
 248		/* IEEE 802.11b/g, channels 1..11 */
 249		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 250		/* IEEE 802.11b/g, channels 12..13. */
 251		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 252			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 253		/* IEEE 802.11 channel 14 - Only JP enables
 254		 * this and for 802.11b only */
 255		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 256			NL80211_RRF_NO_IR |
 257			NL80211_RRF_NO_OFDM),
 258		/* IEEE 802.11a, channel 36..48 */
 259		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 260                        NL80211_RRF_NO_IR |
 261                        NL80211_RRF_AUTO_BW),
 262
 263		/* IEEE 802.11a, channel 52..64 - DFS required */
 264		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 265			NL80211_RRF_NO_IR |
 266			NL80211_RRF_AUTO_BW |
 267			NL80211_RRF_DFS),
 268
 269		/* IEEE 802.11a, channel 100..144 - DFS required */
 270		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 271			NL80211_RRF_NO_IR |
 272			NL80211_RRF_DFS),
 273
 274		/* IEEE 802.11a, channel 149..165 */
 275		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 276			NL80211_RRF_NO_IR),
 277
 278		/* IEEE 802.11ad (60GHz), channels 1..3 */
 279		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 280	}
 281};
 282
 283/* protected by RTNL */
 284static const struct ieee80211_regdomain *cfg80211_world_regdom =
 285	&world_regdom;
 286
 287static char *ieee80211_regdom = "00";
 288static char user_alpha2[2];
 289static const struct ieee80211_regdomain *cfg80211_user_regdom;
 290
 291module_param(ieee80211_regdom, charp, 0444);
 292MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 293
 294static void reg_free_request(struct regulatory_request *request)
 295{
 296	if (request == &core_request_world)
 297		return;
 298
 299	if (request != get_last_request())
 300		kfree(request);
 301}
 302
 303static void reg_free_last_request(void)
 304{
 305	struct regulatory_request *lr = get_last_request();
 306
 307	if (lr != &core_request_world && lr)
 308		kfree_rcu(lr, rcu_head);
 309}
 310
 311static void reg_update_last_request(struct regulatory_request *request)
 312{
 313	struct regulatory_request *lr;
 314
 315	lr = get_last_request();
 316	if (lr == request)
 317		return;
 318
 319	reg_free_last_request();
 320	rcu_assign_pointer(last_request, request);
 321}
 322
 323static void reset_regdomains(bool full_reset,
 324			     const struct ieee80211_regdomain *new_regdom)
 325{
 326	const struct ieee80211_regdomain *r;
 327
 328	ASSERT_RTNL();
 329
 330	r = get_cfg80211_regdom();
 331
 332	/* avoid freeing static information or freeing something twice */
 333	if (r == cfg80211_world_regdom)
 334		r = NULL;
 335	if (cfg80211_world_regdom == &world_regdom)
 336		cfg80211_world_regdom = NULL;
 337	if (r == &world_regdom)
 338		r = NULL;
 339
 340	rcu_free_regdom(r);
 341	rcu_free_regdom(cfg80211_world_regdom);
 342
 343	cfg80211_world_regdom = &world_regdom;
 344	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 345
 346	if (!full_reset)
 347		return;
 348
 349	reg_update_last_request(&core_request_world);
 350}
 351
 352/*
 353 * Dynamic world regulatory domain requested by the wireless
 354 * core upon initialization
 355 */
 356static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 357{
 358	struct regulatory_request *lr;
 359
 360	lr = get_last_request();
 361
 362	WARN_ON(!lr);
 363
 364	reset_regdomains(false, rd);
 365
 366	cfg80211_world_regdom = rd;
 367}
 368
 369bool is_world_regdom(const char *alpha2)
 370{
 371	if (!alpha2)
 372		return false;
 373	return alpha2[0] == '0' && alpha2[1] == '0';
 374}
 375
 376static bool is_alpha2_set(const char *alpha2)
 377{
 378	if (!alpha2)
 379		return false;
 380	return alpha2[0] && alpha2[1];
 381}
 382
 383static bool is_unknown_alpha2(const char *alpha2)
 384{
 385	if (!alpha2)
 386		return false;
 387	/*
 388	 * Special case where regulatory domain was built by driver
 389	 * but a specific alpha2 cannot be determined
 390	 */
 391	return alpha2[0] == '9' && alpha2[1] == '9';
 392}
 393
 394static bool is_intersected_alpha2(const char *alpha2)
 395{
 396	if (!alpha2)
 397		return false;
 398	/*
 399	 * Special case where regulatory domain is the
 400	 * result of an intersection between two regulatory domain
 401	 * structures
 402	 */
 403	return alpha2[0] == '9' && alpha2[1] == '8';
 404}
 405
 406static bool is_an_alpha2(const char *alpha2)
 407{
 408	if (!alpha2)
 409		return false;
 410	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 411}
 412
 413static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 414{
 415	if (!alpha2_x || !alpha2_y)
 416		return false;
 417	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 418}
 419
 420static bool regdom_changes(const char *alpha2)
 421{
 422	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 423
 424	if (!r)
 425		return true;
 426	return !alpha2_equal(r->alpha2, alpha2);
 427}
 428
 429/*
 430 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 431 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 432 * has ever been issued.
 433 */
 434static bool is_user_regdom_saved(void)
 435{
 436	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 437		return false;
 438
 439	/* This would indicate a mistake on the design */
 440	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 441		 "Unexpected user alpha2: %c%c\n",
 442		 user_alpha2[0], user_alpha2[1]))
 443		return false;
 444
 445	return true;
 446}
 447
 448static const struct ieee80211_regdomain *
 449reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 450{
 451	struct ieee80211_regdomain *regd;
 452	unsigned int i;
 453
 454	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 455		       GFP_KERNEL);
 456	if (!regd)
 457		return ERR_PTR(-ENOMEM);
 458
 459	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 460
 461	for (i = 0; i < src_regd->n_reg_rules; i++)
 462		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 463		       sizeof(struct ieee80211_reg_rule));
 464
 465	return regd;
 466}
 467
 468static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 469{
 470	ASSERT_RTNL();
 471
 472	if (!IS_ERR(cfg80211_user_regdom))
 473		kfree(cfg80211_user_regdom);
 474	cfg80211_user_regdom = reg_copy_regd(rd);
 475}
 476
 477struct reg_regdb_apply_request {
 478	struct list_head list;
 479	const struct ieee80211_regdomain *regdom;
 480};
 481
 482static LIST_HEAD(reg_regdb_apply_list);
 483static DEFINE_MUTEX(reg_regdb_apply_mutex);
 484
 485static void reg_regdb_apply(struct work_struct *work)
 486{
 487	struct reg_regdb_apply_request *request;
 488
 489	rtnl_lock();
 490
 491	mutex_lock(&reg_regdb_apply_mutex);
 492	while (!list_empty(&reg_regdb_apply_list)) {
 493		request = list_first_entry(&reg_regdb_apply_list,
 494					   struct reg_regdb_apply_request,
 495					   list);
 496		list_del(&request->list);
 497
 498		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 499		kfree(request);
 500	}
 501	mutex_unlock(&reg_regdb_apply_mutex);
 502
 503	rtnl_unlock();
 504}
 505
 506static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 507
 508static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 509{
 510	struct reg_regdb_apply_request *request;
 511
 512	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 513	if (!request) {
 514		kfree(regdom);
 515		return -ENOMEM;
 516	}
 517
 518	request->regdom = regdom;
 519
 520	mutex_lock(&reg_regdb_apply_mutex);
 521	list_add_tail(&request->list, &reg_regdb_apply_list);
 522	mutex_unlock(&reg_regdb_apply_mutex);
 523
 524	schedule_work(&reg_regdb_work);
 525	return 0;
 526}
 527
 528#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 529/* Max number of consecutive attempts to communicate with CRDA  */
 530#define REG_MAX_CRDA_TIMEOUTS 10
 531
 532static u32 reg_crda_timeouts;
 533
 534static void crda_timeout_work(struct work_struct *work);
 535static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 536
 537static void crda_timeout_work(struct work_struct *work)
 538{
 539	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 540	rtnl_lock();
 541	reg_crda_timeouts++;
 542	restore_regulatory_settings(true, false);
 543	rtnl_unlock();
 544}
 545
 546static void cancel_crda_timeout(void)
 547{
 548	cancel_delayed_work(&crda_timeout);
 549}
 550
 551static void cancel_crda_timeout_sync(void)
 552{
 553	cancel_delayed_work_sync(&crda_timeout);
 554}
 555
 556static void reset_crda_timeouts(void)
 557{
 558	reg_crda_timeouts = 0;
 559}
 560
 561/*
 562 * This lets us keep regulatory code which is updated on a regulatory
 563 * basis in userspace.
 564 */
 565static int call_crda(const char *alpha2)
 566{
 567	char country[12];
 568	char *env[] = { country, NULL };
 569	int ret;
 570
 571	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 572		 alpha2[0], alpha2[1]);
 573
 574	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 575		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 576		return -EINVAL;
 577	}
 578
 579	if (!is_world_regdom((char *) alpha2))
 580		pr_debug("Calling CRDA for country: %c%c\n",
 581			 alpha2[0], alpha2[1]);
 582	else
 583		pr_debug("Calling CRDA to update world regulatory domain\n");
 584
 585	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 586	if (ret)
 587		return ret;
 588
 589	queue_delayed_work(system_power_efficient_wq,
 590			   &crda_timeout, msecs_to_jiffies(3142));
 591	return 0;
 592}
 593#else
 594static inline void cancel_crda_timeout(void) {}
 595static inline void cancel_crda_timeout_sync(void) {}
 596static inline void reset_crda_timeouts(void) {}
 597static inline int call_crda(const char *alpha2)
 598{
 599	return -ENODATA;
 600}
 601#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 602
 603/* code to directly load a firmware database through request_firmware */
 604static const struct fwdb_header *regdb;
 605
 606struct fwdb_country {
 607	u8 alpha2[2];
 608	__be16 coll_ptr;
 609	/* this struct cannot be extended */
 610} __packed __aligned(4);
 611
 612struct fwdb_collection {
 613	u8 len;
 614	u8 n_rules;
 615	u8 dfs_region;
 616	/* no optional data yet */
 617	/* aligned to 2, then followed by __be16 array of rule pointers */
 618} __packed __aligned(4);
 619
 620enum fwdb_flags {
 621	FWDB_FLAG_NO_OFDM	= BIT(0),
 622	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
 623	FWDB_FLAG_DFS		= BIT(2),
 624	FWDB_FLAG_NO_IR		= BIT(3),
 625	FWDB_FLAG_AUTO_BW	= BIT(4),
 626};
 627
 628struct fwdb_wmm_ac {
 629	u8 ecw;
 630	u8 aifsn;
 631	__be16 cot;
 632} __packed;
 633
 634struct fwdb_wmm_rule {
 635	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 636	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 637} __packed;
 638
 639struct fwdb_rule {
 640	u8 len;
 641	u8 flags;
 642	__be16 max_eirp;
 643	__be32 start, end, max_bw;
 644	/* start of optional data */
 645	__be16 cac_timeout;
 646	__be16 wmm_ptr;
 647} __packed __aligned(4);
 648
 649#define FWDB_MAGIC 0x52474442
 650#define FWDB_VERSION 20
 651
 652struct fwdb_header {
 653	__be32 magic;
 654	__be32 version;
 655	struct fwdb_country country[];
 656} __packed __aligned(4);
 657
 658static int ecw2cw(int ecw)
 659{
 660	return (1 << ecw) - 1;
 661}
 662
 663static bool valid_wmm(struct fwdb_wmm_rule *rule)
 664{
 665	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 666	int i;
 667
 668	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 669		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 670		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 671		u8 aifsn = ac[i].aifsn;
 672
 673		if (cw_min >= cw_max)
 674			return false;
 675
 676		if (aifsn < 1)
 677			return false;
 678	}
 679
 680	return true;
 681}
 682
 683static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 684{
 685	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 686
 687	if ((u8 *)rule + sizeof(rule->len) > data + size)
 688		return false;
 689
 690	/* mandatory fields */
 691	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 692		return false;
 693	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 694		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 695		struct fwdb_wmm_rule *wmm;
 696
 697		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 698			return false;
 699
 700		wmm = (void *)(data + wmm_ptr);
 701
 702		if (!valid_wmm(wmm))
 703			return false;
 704	}
 705	return true;
 706}
 707
 708static bool valid_country(const u8 *data, unsigned int size,
 709			  const struct fwdb_country *country)
 710{
 711	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 712	struct fwdb_collection *coll = (void *)(data + ptr);
 713	__be16 *rules_ptr;
 714	unsigned int i;
 715
 716	/* make sure we can read len/n_rules */
 717	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 718		return false;
 719
 720	/* make sure base struct and all rules fit */
 721	if ((u8 *)coll + ALIGN(coll->len, 2) +
 722	    (coll->n_rules * 2) > data + size)
 723		return false;
 724
 725	/* mandatory fields must exist */
 726	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 727		return false;
 728
 729	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 730
 731	for (i = 0; i < coll->n_rules; i++) {
 732		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 733
 734		if (!valid_rule(data, size, rule_ptr))
 735			return false;
 736	}
 737
 738	return true;
 739}
 740
 741#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 742#include <keys/asymmetric-type.h>
 743
 744static struct key *builtin_regdb_keys;
 745
 746static int __init load_builtin_regdb_keys(void)
 747{
 748	builtin_regdb_keys =
 749		keyring_alloc(".builtin_regdb_keys",
 750			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 751			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 752			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 753			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 754	if (IS_ERR(builtin_regdb_keys))
 755		return PTR_ERR(builtin_regdb_keys);
 756
 757	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 758
 759#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 760	x509_load_certificate_list(shipped_regdb_certs,
 761				   shipped_regdb_certs_len,
 762				   builtin_regdb_keys);
 763#endif
 764#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 765	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 766		x509_load_certificate_list(extra_regdb_certs,
 767					   extra_regdb_certs_len,
 768					   builtin_regdb_keys);
 769#endif
 770
 771	return 0;
 772}
 773
 774MODULE_FIRMWARE("regulatory.db.p7s");
 775
 776static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 777{
 778	const struct firmware *sig;
 779	bool result;
 780
 781	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 782		return false;
 783
 784	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 785					builtin_regdb_keys,
 786					VERIFYING_UNSPECIFIED_SIGNATURE,
 787					NULL, NULL) == 0;
 788
 789	release_firmware(sig);
 790
 791	return result;
 792}
 793
 794static void free_regdb_keyring(void)
 795{
 796	key_put(builtin_regdb_keys);
 797}
 798#else
 799static int load_builtin_regdb_keys(void)
 800{
 801	return 0;
 802}
 803
 804static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 805{
 806	return true;
 807}
 808
 809static void free_regdb_keyring(void)
 810{
 811}
 812#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 813
 814static bool valid_regdb(const u8 *data, unsigned int size)
 815{
 816	const struct fwdb_header *hdr = (void *)data;
 817	const struct fwdb_country *country;
 818
 819	if (size < sizeof(*hdr))
 820		return false;
 821
 822	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 823		return false;
 824
 825	if (hdr->version != cpu_to_be32(FWDB_VERSION))
 826		return false;
 827
 828	if (!regdb_has_valid_signature(data, size))
 829		return false;
 830
 831	country = &hdr->country[0];
 832	while ((u8 *)(country + 1) <= data + size) {
 833		if (!country->coll_ptr)
 834			break;
 835		if (!valid_country(data, size, country))
 836			return false;
 837		country++;
 838	}
 839
 840	return true;
 841}
 842
 843static void set_wmm_rule(const struct fwdb_header *db,
 844			 const struct fwdb_country *country,
 845			 const struct fwdb_rule *rule,
 846			 struct ieee80211_reg_rule *rrule)
 847{
 848	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 849	struct fwdb_wmm_rule *wmm;
 850	unsigned int i, wmm_ptr;
 851
 852	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 853	wmm = (void *)((u8 *)db + wmm_ptr);
 854
 855	if (!valid_wmm(wmm)) {
 856		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 857		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 858		       country->alpha2[0], country->alpha2[1]);
 859		return;
 860	}
 861
 862	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 863		wmm_rule->client[i].cw_min =
 864			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 865		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 866		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 867		wmm_rule->client[i].cot =
 868			1000 * be16_to_cpu(wmm->client[i].cot);
 869		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 870		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 871		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 872		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 873	}
 874
 875	rrule->has_wmm = true;
 876}
 877
 878static int __regdb_query_wmm(const struct fwdb_header *db,
 879			     const struct fwdb_country *country, int freq,
 880			     struct ieee80211_reg_rule *rrule)
 881{
 882	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 883	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 884	int i;
 885
 886	for (i = 0; i < coll->n_rules; i++) {
 887		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 888		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 889		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 890
 891		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 892			continue;
 893
 894		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 895		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 896			set_wmm_rule(db, country, rule, rrule);
 897			return 0;
 898		}
 899	}
 900
 901	return -ENODATA;
 902}
 903
 904int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 905{
 906	const struct fwdb_header *hdr = regdb;
 907	const struct fwdb_country *country;
 908
 909	if (!regdb)
 910		return -ENODATA;
 911
 912	if (IS_ERR(regdb))
 913		return PTR_ERR(regdb);
 914
 915	country = &hdr->country[0];
 916	while (country->coll_ptr) {
 917		if (alpha2_equal(alpha2, country->alpha2))
 918			return __regdb_query_wmm(regdb, country, freq, rule);
 919
 920		country++;
 921	}
 922
 923	return -ENODATA;
 924}
 925EXPORT_SYMBOL(reg_query_regdb_wmm);
 926
 927static int regdb_query_country(const struct fwdb_header *db,
 928			       const struct fwdb_country *country)
 929{
 930	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 931	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 932	struct ieee80211_regdomain *regdom;
 933	unsigned int i;
 934
 935	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 936			 GFP_KERNEL);
 937	if (!regdom)
 938		return -ENOMEM;
 939
 940	regdom->n_reg_rules = coll->n_rules;
 941	regdom->alpha2[0] = country->alpha2[0];
 942	regdom->alpha2[1] = country->alpha2[1];
 943	regdom->dfs_region = coll->dfs_region;
 944
 945	for (i = 0; i < regdom->n_reg_rules; i++) {
 946		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 947		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 948		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 949		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 950
 951		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 952		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 953		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 954
 955		rrule->power_rule.max_antenna_gain = 0;
 956		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 957
 958		rrule->flags = 0;
 959		if (rule->flags & FWDB_FLAG_NO_OFDM)
 960			rrule->flags |= NL80211_RRF_NO_OFDM;
 961		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 962			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 963		if (rule->flags & FWDB_FLAG_DFS)
 964			rrule->flags |= NL80211_RRF_DFS;
 965		if (rule->flags & FWDB_FLAG_NO_IR)
 966			rrule->flags |= NL80211_RRF_NO_IR;
 967		if (rule->flags & FWDB_FLAG_AUTO_BW)
 968			rrule->flags |= NL80211_RRF_AUTO_BW;
 969
 970		rrule->dfs_cac_ms = 0;
 971
 972		/* handle optional data */
 973		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
 974			rrule->dfs_cac_ms =
 975				1000 * be16_to_cpu(rule->cac_timeout);
 976		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
 977			set_wmm_rule(db, country, rule, rrule);
 978	}
 979
 980	return reg_schedule_apply(regdom);
 981}
 982
 983static int query_regdb(const char *alpha2)
 984{
 985	const struct fwdb_header *hdr = regdb;
 986	const struct fwdb_country *country;
 987
 988	ASSERT_RTNL();
 989
 990	if (IS_ERR(regdb))
 991		return PTR_ERR(regdb);
 992
 993	country = &hdr->country[0];
 994	while (country->coll_ptr) {
 995		if (alpha2_equal(alpha2, country->alpha2))
 996			return regdb_query_country(regdb, country);
 997		country++;
 998	}
 999
1000	return -ENODATA;
1001}
1002
1003static void regdb_fw_cb(const struct firmware *fw, void *context)
1004{
1005	int set_error = 0;
1006	bool restore = true;
1007	void *db;
1008
1009	if (!fw) {
1010		pr_info("failed to load regulatory.db\n");
1011		set_error = -ENODATA;
1012	} else if (!valid_regdb(fw->data, fw->size)) {
1013		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014		set_error = -EINVAL;
1015	}
1016
1017	rtnl_lock();
1018	if (regdb && !IS_ERR(regdb)) {
1019		/* negative case - a bug
1020		 * positive case - can happen due to race in case of multiple cb's in
1021		 * queue, due to usage of asynchronous callback
1022		 *
1023		 * Either case, just restore and free new db.
1024		 */
1025	} else if (set_error) {
1026		regdb = ERR_PTR(set_error);
1027	} else if (fw) {
1028		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1029		if (db) {
1030			regdb = db;
1031			restore = context && query_regdb(context);
1032		} else {
1033			restore = true;
1034		}
1035	}
1036
1037	if (restore)
1038		restore_regulatory_settings(true, false);
1039
1040	rtnl_unlock();
1041
1042	kfree(context);
1043
1044	release_firmware(fw);
1045}
1046
1047MODULE_FIRMWARE("regulatory.db");
1048
1049static int query_regdb_file(const char *alpha2)
1050{
1051	int err;
1052
1053	ASSERT_RTNL();
1054
1055	if (regdb)
1056		return query_regdb(alpha2);
1057
1058	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059	if (!alpha2)
1060		return -ENOMEM;
1061
1062	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063				      &reg_pdev->dev, GFP_KERNEL,
1064				      (void *)alpha2, regdb_fw_cb);
1065	if (err)
1066		kfree(alpha2);
1067
1068	return err;
1069}
1070
1071int reg_reload_regdb(void)
1072{
1073	const struct firmware *fw;
1074	void *db;
1075	int err;
1076	const struct ieee80211_regdomain *current_regdomain;
1077	struct regulatory_request *request;
1078
1079	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1080	if (err)
1081		return err;
1082
1083	if (!valid_regdb(fw->data, fw->size)) {
1084		err = -ENODATA;
1085		goto out;
1086	}
1087
1088	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089	if (!db) {
1090		err = -ENOMEM;
1091		goto out;
1092	}
1093
1094	rtnl_lock();
1095	if (!IS_ERR_OR_NULL(regdb))
1096		kfree(regdb);
1097	regdb = db;
1098
1099	/* reset regulatory domain */
1100	current_regdomain = get_cfg80211_regdom();
1101
1102	request = kzalloc(sizeof(*request), GFP_KERNEL);
1103	if (!request) {
1104		err = -ENOMEM;
1105		goto out_unlock;
1106	}
1107
1108	request->wiphy_idx = WIPHY_IDX_INVALID;
1109	request->alpha2[0] = current_regdomain->alpha2[0];
1110	request->alpha2[1] = current_regdomain->alpha2[1];
1111	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1112	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1113
1114	reg_process_hint(request);
1115
1116out_unlock:
1117	rtnl_unlock();
1118 out:
1119	release_firmware(fw);
1120	return err;
1121}
1122
1123static bool reg_query_database(struct regulatory_request *request)
1124{
1125	if (query_regdb_file(request->alpha2) == 0)
1126		return true;
1127
1128	if (call_crda(request->alpha2) == 0)
1129		return true;
1130
1131	return false;
1132}
1133
1134bool reg_is_valid_request(const char *alpha2)
1135{
1136	struct regulatory_request *lr = get_last_request();
1137
1138	if (!lr || lr->processed)
1139		return false;
1140
1141	return alpha2_equal(lr->alpha2, alpha2);
1142}
1143
1144static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1145{
1146	struct regulatory_request *lr = get_last_request();
1147
1148	/*
1149	 * Follow the driver's regulatory domain, if present, unless a country
1150	 * IE has been processed or a user wants to help complaince further
1151	 */
1152	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1153	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1154	    wiphy->regd)
1155		return get_wiphy_regdom(wiphy);
1156
1157	return get_cfg80211_regdom();
1158}
1159
1160static unsigned int
1161reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1162				 const struct ieee80211_reg_rule *rule)
1163{
1164	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1165	const struct ieee80211_freq_range *freq_range_tmp;
1166	const struct ieee80211_reg_rule *tmp;
1167	u32 start_freq, end_freq, idx, no;
1168
1169	for (idx = 0; idx < rd->n_reg_rules; idx++)
1170		if (rule == &rd->reg_rules[idx])
1171			break;
1172
1173	if (idx == rd->n_reg_rules)
1174		return 0;
1175
1176	/* get start_freq */
1177	no = idx;
1178
1179	while (no) {
1180		tmp = &rd->reg_rules[--no];
1181		freq_range_tmp = &tmp->freq_range;
1182
1183		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184			break;
1185
1186		freq_range = freq_range_tmp;
1187	}
1188
1189	start_freq = freq_range->start_freq_khz;
1190
1191	/* get end_freq */
1192	freq_range = &rule->freq_range;
1193	no = idx;
1194
1195	while (no < rd->n_reg_rules - 1) {
1196		tmp = &rd->reg_rules[++no];
1197		freq_range_tmp = &tmp->freq_range;
1198
1199		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200			break;
1201
1202		freq_range = freq_range_tmp;
1203	}
1204
1205	end_freq = freq_range->end_freq_khz;
1206
1207	return end_freq - start_freq;
1208}
1209
1210unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1211				   const struct ieee80211_reg_rule *rule)
1212{
1213	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1214
1215	if (rule->flags & NL80211_RRF_NO_320MHZ)
1216		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1217	if (rule->flags & NL80211_RRF_NO_160MHZ)
1218		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1219	if (rule->flags & NL80211_RRF_NO_80MHZ)
1220		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221
1222	/*
1223	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224	 * are not allowed.
1225	 */
1226	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1227	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1228		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1229
1230	return bw;
1231}
1232
1233/* Sanity check on a regulatory rule */
1234static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1235{
1236	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237	u32 freq_diff;
1238
1239	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240		return false;
1241
1242	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243		return false;
1244
1245	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1246
1247	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1248	    freq_range->max_bandwidth_khz > freq_diff)
1249		return false;
1250
1251	return true;
1252}
1253
1254static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1255{
1256	const struct ieee80211_reg_rule *reg_rule = NULL;
1257	unsigned int i;
1258
1259	if (!rd->n_reg_rules)
1260		return false;
1261
1262	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263		return false;
1264
1265	for (i = 0; i < rd->n_reg_rules; i++) {
1266		reg_rule = &rd->reg_rules[i];
1267		if (!is_valid_reg_rule(reg_rule))
1268			return false;
1269	}
1270
1271	return true;
1272}
1273
1274/**
1275 * freq_in_rule_band - tells us if a frequency is in a frequency band
1276 * @freq_range: frequency rule we want to query
1277 * @freq_khz: frequency we are inquiring about
1278 *
1279 * This lets us know if a specific frequency rule is or is not relevant to
1280 * a specific frequency's band. Bands are device specific and artificial
1281 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282 * however it is safe for now to assume that a frequency rule should not be
1283 * part of a frequency's band if the start freq or end freq are off by more
1284 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1285 * 60 GHz band.
1286 * This resolution can be lowered and should be considered as we add
1287 * regulatory rule support for other "bands".
1288 *
1289 * Returns: whether or not the frequency is in the range
1290 */
1291static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1292			      u32 freq_khz)
1293{
 
1294	/*
1295	 * From 802.11ad: directional multi-gigabit (DMG):
1296	 * Pertaining to operation in a frequency band containing a channel
1297	 * with the Channel starting frequency above 45 GHz.
1298	 */
1299	u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
 
1300	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301		return true;
1302	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303		return true;
1304	return false;
 
1305}
1306
1307/*
1308 * Later on we can perhaps use the more restrictive DFS
1309 * region but we don't have information for that yet so
1310 * for now simply disallow conflicts.
1311 */
1312static enum nl80211_dfs_regions
1313reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314			 const enum nl80211_dfs_regions dfs_region2)
1315{
1316	if (dfs_region1 != dfs_region2)
1317		return NL80211_DFS_UNSET;
1318	return dfs_region1;
1319}
1320
1321static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322				    const struct ieee80211_wmm_ac *wmm_ac2,
1323				    struct ieee80211_wmm_ac *intersect)
1324{
1325	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329}
1330
1331/*
1332 * Helper for regdom_intersect(), this does the real
1333 * mathematical intersection fun
1334 */
1335static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336			       const struct ieee80211_regdomain *rd2,
1337			       const struct ieee80211_reg_rule *rule1,
1338			       const struct ieee80211_reg_rule *rule2,
1339			       struct ieee80211_reg_rule *intersected_rule)
1340{
1341	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342	struct ieee80211_freq_range *freq_range;
1343	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344	struct ieee80211_power_rule *power_rule;
1345	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346	struct ieee80211_wmm_rule *wmm_rule;
1347	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348
1349	freq_range1 = &rule1->freq_range;
1350	freq_range2 = &rule2->freq_range;
1351	freq_range = &intersected_rule->freq_range;
1352
1353	power_rule1 = &rule1->power_rule;
1354	power_rule2 = &rule2->power_rule;
1355	power_rule = &intersected_rule->power_rule;
1356
1357	wmm_rule1 = &rule1->wmm_rule;
1358	wmm_rule2 = &rule2->wmm_rule;
1359	wmm_rule = &intersected_rule->wmm_rule;
1360
1361	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362					 freq_range2->start_freq_khz);
1363	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364				       freq_range2->end_freq_khz);
1365
1366	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368
1369	if (rule1->flags & NL80211_RRF_AUTO_BW)
1370		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1371	if (rule2->flags & NL80211_RRF_AUTO_BW)
1372		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373
1374	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375
1376	intersected_rule->flags = rule1->flags | rule2->flags;
1377
1378	/*
1379	 * In case NL80211_RRF_AUTO_BW requested for both rules
1380	 * set AUTO_BW in intersected rule also. Next we will
1381	 * calculate BW correctly in handle_channel function.
1382	 * In other case remove AUTO_BW flag while we calculate
1383	 * maximum bandwidth correctly and auto calculation is
1384	 * not required.
1385	 */
1386	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387	    (rule2->flags & NL80211_RRF_AUTO_BW))
1388		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389	else
1390		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391
1392	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393	if (freq_range->max_bandwidth_khz > freq_diff)
1394		freq_range->max_bandwidth_khz = freq_diff;
1395
1396	power_rule->max_eirp = min(power_rule1->max_eirp,
1397		power_rule2->max_eirp);
1398	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399		power_rule2->max_antenna_gain);
1400
1401	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402					   rule2->dfs_cac_ms);
1403
1404	if (rule1->has_wmm && rule2->has_wmm) {
1405		u8 ac;
1406
1407		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1409						&wmm_rule2->client[ac],
1410						&wmm_rule->client[ac]);
1411			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1412						&wmm_rule2->ap[ac],
1413						&wmm_rule->ap[ac]);
1414		}
1415
1416		intersected_rule->has_wmm = true;
1417	} else if (rule1->has_wmm) {
1418		*wmm_rule = *wmm_rule1;
1419		intersected_rule->has_wmm = true;
1420	} else if (rule2->has_wmm) {
1421		*wmm_rule = *wmm_rule2;
1422		intersected_rule->has_wmm = true;
1423	} else {
1424		intersected_rule->has_wmm = false;
1425	}
1426
1427	if (!is_valid_reg_rule(intersected_rule))
1428		return -EINVAL;
1429
1430	return 0;
1431}
1432
1433/* check whether old rule contains new rule */
1434static bool rule_contains(struct ieee80211_reg_rule *r1,
1435			  struct ieee80211_reg_rule *r2)
1436{
1437	/* for simplicity, currently consider only same flags */
1438	if (r1->flags != r2->flags)
1439		return false;
1440
1441	/* verify r1 is more restrictive */
1442	if ((r1->power_rule.max_antenna_gain >
1443	     r2->power_rule.max_antenna_gain) ||
1444	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445		return false;
1446
1447	/* make sure r2's range is contained within r1 */
1448	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450		return false;
1451
1452	/* and finally verify that r1.max_bw >= r2.max_bw */
1453	if (r1->freq_range.max_bandwidth_khz <
1454	    r2->freq_range.max_bandwidth_khz)
1455		return false;
1456
1457	return true;
1458}
1459
1460/* add or extend current rules. do nothing if rule is already contained */
1461static void add_rule(struct ieee80211_reg_rule *rule,
1462		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463{
1464	struct ieee80211_reg_rule *tmp_rule;
1465	int i;
1466
1467	for (i = 0; i < *n_rules; i++) {
1468		tmp_rule = &reg_rules[i];
1469		/* rule is already contained - do nothing */
1470		if (rule_contains(tmp_rule, rule))
1471			return;
1472
1473		/* extend rule if possible */
1474		if (rule_contains(rule, tmp_rule)) {
1475			memcpy(tmp_rule, rule, sizeof(*rule));
1476			return;
1477		}
1478	}
1479
1480	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1481	(*n_rules)++;
1482}
1483
1484/**
1485 * regdom_intersect - do the intersection between two regulatory domains
1486 * @rd1: first regulatory domain
1487 * @rd2: second regulatory domain
1488 *
1489 * Use this function to get the intersection between two regulatory domains.
1490 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491 * as no one single alpha2 can represent this regulatory domain.
1492 *
1493 * Returns a pointer to the regulatory domain structure which will hold the
1494 * resulting intersection of rules between rd1 and rd2. We will
1495 * kzalloc() this structure for you.
1496 *
1497 * Returns: the intersected regdomain
1498 */
1499static struct ieee80211_regdomain *
1500regdom_intersect(const struct ieee80211_regdomain *rd1,
1501		 const struct ieee80211_regdomain *rd2)
1502{
1503	int r;
1504	unsigned int x, y;
1505	unsigned int num_rules = 0;
1506	const struct ieee80211_reg_rule *rule1, *rule2;
1507	struct ieee80211_reg_rule intersected_rule;
1508	struct ieee80211_regdomain *rd;
1509
1510	if (!rd1 || !rd2)
1511		return NULL;
1512
1513	/*
1514	 * First we get a count of the rules we'll need, then we actually
1515	 * build them. This is to so we can malloc() and free() a
1516	 * regdomain once. The reason we use reg_rules_intersect() here
1517	 * is it will return -EINVAL if the rule computed makes no sense.
1518	 * All rules that do check out OK are valid.
1519	 */
1520
1521	for (x = 0; x < rd1->n_reg_rules; x++) {
1522		rule1 = &rd1->reg_rules[x];
1523		for (y = 0; y < rd2->n_reg_rules; y++) {
1524			rule2 = &rd2->reg_rules[y];
1525			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1526						 &intersected_rule))
1527				num_rules++;
1528		}
1529	}
1530
1531	if (!num_rules)
1532		return NULL;
1533
1534	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535	if (!rd)
1536		return NULL;
1537
1538	for (x = 0; x < rd1->n_reg_rules; x++) {
1539		rule1 = &rd1->reg_rules[x];
1540		for (y = 0; y < rd2->n_reg_rules; y++) {
1541			rule2 = &rd2->reg_rules[y];
1542			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1543						&intersected_rule);
1544			/*
1545			 * No need to memset here the intersected rule here as
1546			 * we're not using the stack anymore
1547			 */
1548			if (r)
1549				continue;
1550
1551			add_rule(&intersected_rule, rd->reg_rules,
1552				 &rd->n_reg_rules);
1553		}
1554	}
1555
1556	rd->alpha2[0] = '9';
1557	rd->alpha2[1] = '8';
1558	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1559						  rd2->dfs_region);
1560
1561	return rd;
1562}
1563
1564/*
1565 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566 * want to just have the channel structure use these
1567 */
1568static u32 map_regdom_flags(u32 rd_flags)
1569{
1570	u32 channel_flags = 0;
1571	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1572		channel_flags |= IEEE80211_CHAN_NO_IR;
1573	if (rd_flags & NL80211_RRF_DFS)
1574		channel_flags |= IEEE80211_CHAN_RADAR;
1575	if (rd_flags & NL80211_RRF_NO_OFDM)
1576		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1577	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1578		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1579	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1580		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1581	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1582		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1583	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1584		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1585	if (rd_flags & NL80211_RRF_NO_80MHZ)
1586		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1587	if (rd_flags & NL80211_RRF_NO_160MHZ)
1588		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1589	if (rd_flags & NL80211_RRF_NO_HE)
1590		channel_flags |= IEEE80211_CHAN_NO_HE;
1591	if (rd_flags & NL80211_RRF_NO_320MHZ)
1592		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1593	if (rd_flags & NL80211_RRF_NO_EHT)
1594		channel_flags |= IEEE80211_CHAN_NO_EHT;
1595	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1596		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1597	if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1598		channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1599	if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1600		channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1601	if (rd_flags & NL80211_RRF_PSD)
1602		channel_flags |= IEEE80211_CHAN_PSD;
1603	return channel_flags;
1604}
1605
1606static const struct ieee80211_reg_rule *
1607freq_reg_info_regd(u32 center_freq,
1608		   const struct ieee80211_regdomain *regd, u32 bw)
1609{
1610	int i;
1611	bool band_rule_found = false;
1612	bool bw_fits = false;
1613
1614	if (!regd)
1615		return ERR_PTR(-EINVAL);
1616
1617	for (i = 0; i < regd->n_reg_rules; i++) {
1618		const struct ieee80211_reg_rule *rr;
1619		const struct ieee80211_freq_range *fr = NULL;
1620
1621		rr = &regd->reg_rules[i];
1622		fr = &rr->freq_range;
1623
1624		/*
1625		 * We only need to know if one frequency rule was
1626		 * in center_freq's band, that's enough, so let's
1627		 * not overwrite it once found
1628		 */
1629		if (!band_rule_found)
1630			band_rule_found = freq_in_rule_band(fr, center_freq);
1631
1632		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1633
1634		if (band_rule_found && bw_fits)
1635			return rr;
1636	}
1637
1638	if (!band_rule_found)
1639		return ERR_PTR(-ERANGE);
1640
1641	return ERR_PTR(-EINVAL);
1642}
1643
1644static const struct ieee80211_reg_rule *
1645__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1646{
1647	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1648	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1649	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1650	int i = ARRAY_SIZE(bws) - 1;
1651	u32 bw;
1652
1653	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1654		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1655		if (!IS_ERR(reg_rule))
1656			return reg_rule;
1657	}
1658
1659	return reg_rule;
1660}
1661
1662const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1663					       u32 center_freq)
1664{
1665	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1666
1667	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1668}
1669EXPORT_SYMBOL(freq_reg_info);
1670
1671const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1672{
1673	switch (initiator) {
1674	case NL80211_REGDOM_SET_BY_CORE:
1675		return "core";
1676	case NL80211_REGDOM_SET_BY_USER:
1677		return "user";
1678	case NL80211_REGDOM_SET_BY_DRIVER:
1679		return "driver";
1680	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1681		return "country element";
1682	default:
1683		WARN_ON(1);
1684		return "bug";
1685	}
1686}
1687EXPORT_SYMBOL(reg_initiator_name);
1688
1689static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1690					  const struct ieee80211_reg_rule *reg_rule,
1691					  const struct ieee80211_channel *chan)
1692{
1693	const struct ieee80211_freq_range *freq_range = NULL;
1694	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1695	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1696
1697	freq_range = &reg_rule->freq_range;
1698
1699	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1700	center_freq_khz = ieee80211_channel_to_khz(chan);
1701	/* Check if auto calculation requested */
1702	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1703		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1704
1705	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1706	if (!cfg80211_does_bw_fit_range(freq_range,
1707					center_freq_khz,
1708					MHZ_TO_KHZ(10)))
1709		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1710	if (!cfg80211_does_bw_fit_range(freq_range,
1711					center_freq_khz,
1712					MHZ_TO_KHZ(20)))
1713		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1714
1715	if (is_s1g) {
1716		/* S1G is strict about non overlapping channels. We can
1717		 * calculate which bandwidth is allowed per channel by finding
1718		 * the largest bandwidth which cleanly divides the freq_range.
1719		 */
1720		int edge_offset;
1721		int ch_bw = max_bandwidth_khz;
1722
1723		while (ch_bw) {
1724			edge_offset = (center_freq_khz - ch_bw / 2) -
1725				      freq_range->start_freq_khz;
1726			if (edge_offset % ch_bw == 0) {
1727				switch (KHZ_TO_MHZ(ch_bw)) {
1728				case 1:
1729					bw_flags |= IEEE80211_CHAN_1MHZ;
1730					break;
1731				case 2:
1732					bw_flags |= IEEE80211_CHAN_2MHZ;
1733					break;
1734				case 4:
1735					bw_flags |= IEEE80211_CHAN_4MHZ;
1736					break;
1737				case 8:
1738					bw_flags |= IEEE80211_CHAN_8MHZ;
1739					break;
1740				case 16:
1741					bw_flags |= IEEE80211_CHAN_16MHZ;
1742					break;
1743				default:
1744					/* If we got here, no bandwidths fit on
1745					 * this frequency, ie. band edge.
1746					 */
1747					bw_flags |= IEEE80211_CHAN_DISABLED;
1748					break;
1749				}
1750				break;
1751			}
1752			ch_bw /= 2;
1753		}
1754	} else {
1755		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1756			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1757		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1758			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1759		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1760			bw_flags |= IEEE80211_CHAN_NO_HT40;
1761		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1762			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1763		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1764			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1765		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1766			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1767	}
1768	return bw_flags;
1769}
1770
1771static void handle_channel_single_rule(struct wiphy *wiphy,
1772				       enum nl80211_reg_initiator initiator,
1773				       struct ieee80211_channel *chan,
1774				       u32 flags,
1775				       struct regulatory_request *lr,
1776				       struct wiphy *request_wiphy,
1777				       const struct ieee80211_reg_rule *reg_rule)
1778{
1779	u32 bw_flags = 0;
1780	const struct ieee80211_power_rule *power_rule = NULL;
1781	const struct ieee80211_regdomain *regd;
1782
1783	regd = reg_get_regdomain(wiphy);
1784
1785	power_rule = &reg_rule->power_rule;
1786	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1787
1788	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1789	    request_wiphy && request_wiphy == wiphy &&
1790	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1791		/*
1792		 * This guarantees the driver's requested regulatory domain
1793		 * will always be used as a base for further regulatory
1794		 * settings
1795		 */
1796		chan->flags = chan->orig_flags =
1797			map_regdom_flags(reg_rule->flags) | bw_flags;
1798		chan->max_antenna_gain = chan->orig_mag =
1799			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1800		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1801			(int) MBM_TO_DBM(power_rule->max_eirp);
1802
1803		if (chan->flags & IEEE80211_CHAN_RADAR) {
1804			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1805			if (reg_rule->dfs_cac_ms)
1806				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1807		}
1808
1809		if (chan->flags & IEEE80211_CHAN_PSD)
1810			chan->psd = reg_rule->psd;
1811
1812		return;
1813	}
1814
1815	chan->dfs_state = NL80211_DFS_USABLE;
1816	chan->dfs_state_entered = jiffies;
1817
1818	chan->beacon_found = false;
1819	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1820	chan->max_antenna_gain =
1821		min_t(int, chan->orig_mag,
1822		      MBI_TO_DBI(power_rule->max_antenna_gain));
1823	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1824
1825	if (chan->flags & IEEE80211_CHAN_RADAR) {
1826		if (reg_rule->dfs_cac_ms)
1827			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1828		else
1829			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830	}
1831
1832	if (chan->flags & IEEE80211_CHAN_PSD)
1833		chan->psd = reg_rule->psd;
1834
1835	if (chan->orig_mpwr) {
1836		/*
1837		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1838		 * will always follow the passed country IE power settings.
1839		 */
1840		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1841		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1842			chan->max_power = chan->max_reg_power;
1843		else
1844			chan->max_power = min(chan->orig_mpwr,
1845					      chan->max_reg_power);
1846	} else
1847		chan->max_power = chan->max_reg_power;
1848}
1849
1850static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1851					  enum nl80211_reg_initiator initiator,
1852					  struct ieee80211_channel *chan,
1853					  u32 flags,
1854					  struct regulatory_request *lr,
1855					  struct wiphy *request_wiphy,
1856					  const struct ieee80211_reg_rule *rrule1,
1857					  const struct ieee80211_reg_rule *rrule2,
1858					  struct ieee80211_freq_range *comb_range)
1859{
1860	u32 bw_flags1 = 0;
1861	u32 bw_flags2 = 0;
1862	const struct ieee80211_power_rule *power_rule1 = NULL;
1863	const struct ieee80211_power_rule *power_rule2 = NULL;
1864	const struct ieee80211_regdomain *regd;
1865
1866	regd = reg_get_regdomain(wiphy);
1867
1868	power_rule1 = &rrule1->power_rule;
1869	power_rule2 = &rrule2->power_rule;
1870	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1871	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1872
1873	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1874	    request_wiphy && request_wiphy == wiphy &&
1875	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1876		/* This guarantees the driver's requested regulatory domain
1877		 * will always be used as a base for further regulatory
1878		 * settings
1879		 */
1880		chan->flags =
1881			map_regdom_flags(rrule1->flags) |
1882			map_regdom_flags(rrule2->flags) |
1883			bw_flags1 |
1884			bw_flags2;
1885		chan->orig_flags = chan->flags;
1886		chan->max_antenna_gain =
1887			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1888			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1889		chan->orig_mag = chan->max_antenna_gain;
1890		chan->max_reg_power =
1891			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1892			      MBM_TO_DBM(power_rule2->max_eirp));
1893		chan->max_power = chan->max_reg_power;
1894		chan->orig_mpwr = chan->max_reg_power;
1895
1896		if (chan->flags & IEEE80211_CHAN_RADAR) {
1897			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1898			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1899				chan->dfs_cac_ms = max_t(unsigned int,
1900							 rrule1->dfs_cac_ms,
1901							 rrule2->dfs_cac_ms);
1902		}
1903
1904		if ((rrule1->flags & NL80211_RRF_PSD) &&
1905		    (rrule2->flags & NL80211_RRF_PSD))
1906			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1907		else
1908			chan->flags &= ~NL80211_RRF_PSD;
1909
1910		return;
1911	}
1912
1913	chan->dfs_state = NL80211_DFS_USABLE;
1914	chan->dfs_state_entered = jiffies;
1915
1916	chan->beacon_found = false;
1917	chan->flags = flags | bw_flags1 | bw_flags2 |
1918		      map_regdom_flags(rrule1->flags) |
1919		      map_regdom_flags(rrule2->flags);
1920
1921	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1922	 * (otherwise no adj. rule case), recheck therefore
1923	 */
1924	if (cfg80211_does_bw_fit_range(comb_range,
1925				       ieee80211_channel_to_khz(chan),
1926				       MHZ_TO_KHZ(10)))
1927		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1928	if (cfg80211_does_bw_fit_range(comb_range,
1929				       ieee80211_channel_to_khz(chan),
1930				       MHZ_TO_KHZ(20)))
1931		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1932
1933	chan->max_antenna_gain =
1934		min_t(int, chan->orig_mag,
1935		      min_t(int,
1936			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1937			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1938	chan->max_reg_power = min_t(int,
1939				    MBM_TO_DBM(power_rule1->max_eirp),
1940				    MBM_TO_DBM(power_rule2->max_eirp));
1941
1942	if (chan->flags & IEEE80211_CHAN_RADAR) {
1943		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1944			chan->dfs_cac_ms = max_t(unsigned int,
1945						 rrule1->dfs_cac_ms,
1946						 rrule2->dfs_cac_ms);
1947		else
1948			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1949	}
1950
1951	if (chan->orig_mpwr) {
1952		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1953		 * will always follow the passed country IE power settings.
1954		 */
1955		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1956		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1957			chan->max_power = chan->max_reg_power;
1958		else
1959			chan->max_power = min(chan->orig_mpwr,
1960					      chan->max_reg_power);
1961	} else {
1962		chan->max_power = chan->max_reg_power;
1963	}
1964}
1965
1966/* Note that right now we assume the desired channel bandwidth
1967 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1968 * per channel, the primary and the extension channel).
1969 */
1970static void handle_channel(struct wiphy *wiphy,
1971			   enum nl80211_reg_initiator initiator,
1972			   struct ieee80211_channel *chan)
1973{
1974	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1975	struct regulatory_request *lr = get_last_request();
1976	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1977	const struct ieee80211_reg_rule *rrule = NULL;
1978	const struct ieee80211_reg_rule *rrule1 = NULL;
1979	const struct ieee80211_reg_rule *rrule2 = NULL;
1980
1981	u32 flags = chan->orig_flags;
1982
1983	rrule = freq_reg_info(wiphy, orig_chan_freq);
1984	if (IS_ERR(rrule)) {
1985		/* check for adjacent match, therefore get rules for
1986		 * chan - 20 MHz and chan + 20 MHz and test
1987		 * if reg rules are adjacent
1988		 */
1989		rrule1 = freq_reg_info(wiphy,
1990				       orig_chan_freq - MHZ_TO_KHZ(20));
1991		rrule2 = freq_reg_info(wiphy,
1992				       orig_chan_freq + MHZ_TO_KHZ(20));
1993		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1994			struct ieee80211_freq_range comb_range;
1995
1996			if (rrule1->freq_range.end_freq_khz !=
1997			    rrule2->freq_range.start_freq_khz)
1998				goto disable_chan;
1999
2000			comb_range.start_freq_khz =
2001				rrule1->freq_range.start_freq_khz;
2002			comb_range.end_freq_khz =
2003				rrule2->freq_range.end_freq_khz;
2004			comb_range.max_bandwidth_khz =
2005				min_t(u32,
2006				      rrule1->freq_range.max_bandwidth_khz,
2007				      rrule2->freq_range.max_bandwidth_khz);
2008
2009			if (!cfg80211_does_bw_fit_range(&comb_range,
2010							orig_chan_freq,
2011							MHZ_TO_KHZ(20)))
2012				goto disable_chan;
2013
2014			handle_channel_adjacent_rules(wiphy, initiator, chan,
2015						      flags, lr, request_wiphy,
2016						      rrule1, rrule2,
2017						      &comb_range);
2018			return;
2019		}
2020
2021disable_chan:
2022		/* We will disable all channels that do not match our
2023		 * received regulatory rule unless the hint is coming
2024		 * from a Country IE and the Country IE had no information
2025		 * about a band. The IEEE 802.11 spec allows for an AP
2026		 * to send only a subset of the regulatory rules allowed,
2027		 * so an AP in the US that only supports 2.4 GHz may only send
2028		 * a country IE with information for the 2.4 GHz band
2029		 * while 5 GHz is still supported.
2030		 */
2031		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2032		    PTR_ERR(rrule) == -ERANGE)
2033			return;
2034
2035		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2036		    request_wiphy && request_wiphy == wiphy &&
2037		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2038			pr_debug("Disabling freq %d.%03d MHz for good\n",
2039				 chan->center_freq, chan->freq_offset);
2040			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2041			chan->flags = chan->orig_flags;
2042		} else {
2043			pr_debug("Disabling freq %d.%03d MHz\n",
2044				 chan->center_freq, chan->freq_offset);
2045			chan->flags |= IEEE80211_CHAN_DISABLED;
2046		}
2047		return;
2048	}
2049
2050	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2051				   request_wiphy, rrule);
2052}
2053
2054static void handle_band(struct wiphy *wiphy,
2055			enum nl80211_reg_initiator initiator,
2056			struct ieee80211_supported_band *sband)
2057{
2058	unsigned int i;
2059
2060	if (!sband)
2061		return;
2062
2063	for (i = 0; i < sband->n_channels; i++)
2064		handle_channel(wiphy, initiator, &sband->channels[i]);
2065}
2066
2067static bool reg_request_cell_base(struct regulatory_request *request)
2068{
2069	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2070		return false;
2071	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2072}
2073
2074bool reg_last_request_cell_base(void)
2075{
2076	return reg_request_cell_base(get_last_request());
2077}
2078
2079#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2080/* Core specific check */
2081static enum reg_request_treatment
2082reg_ignore_cell_hint(struct regulatory_request *pending_request)
2083{
2084	struct regulatory_request *lr = get_last_request();
2085
2086	if (!reg_num_devs_support_basehint)
2087		return REG_REQ_IGNORE;
2088
2089	if (reg_request_cell_base(lr) &&
2090	    !regdom_changes(pending_request->alpha2))
2091		return REG_REQ_ALREADY_SET;
2092
2093	return REG_REQ_OK;
2094}
2095
2096/* Device specific check */
2097static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2098{
2099	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2100}
2101#else
2102static enum reg_request_treatment
2103reg_ignore_cell_hint(struct regulatory_request *pending_request)
2104{
2105	return REG_REQ_IGNORE;
2106}
2107
2108static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2109{
2110	return true;
2111}
2112#endif
2113
2114static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2115{
2116	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2117	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2118		return true;
2119	return false;
2120}
2121
2122static bool ignore_reg_update(struct wiphy *wiphy,
2123			      enum nl80211_reg_initiator initiator)
2124{
2125	struct regulatory_request *lr = get_last_request();
2126
2127	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2128		return true;
2129
2130	if (!lr) {
2131		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2132			 reg_initiator_name(initiator));
2133		return true;
2134	}
2135
2136	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2137	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2138		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2139			 reg_initiator_name(initiator));
2140		return true;
2141	}
2142
2143	/*
2144	 * wiphy->regd will be set once the device has its own
2145	 * desired regulatory domain set
2146	 */
2147	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2148	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2149	    !is_world_regdom(lr->alpha2)) {
2150		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2151			 reg_initiator_name(initiator));
2152		return true;
2153	}
2154
2155	if (reg_request_cell_base(lr))
2156		return reg_dev_ignore_cell_hint(wiphy);
2157
2158	return false;
2159}
2160
2161static bool reg_is_world_roaming(struct wiphy *wiphy)
2162{
2163	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2164	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2165	struct regulatory_request *lr = get_last_request();
2166
2167	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2168		return true;
2169
2170	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2171	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2172		return true;
2173
2174	return false;
2175}
2176
2177static void reg_call_notifier(struct wiphy *wiphy,
2178			      struct regulatory_request *request)
2179{
2180	if (wiphy->reg_notifier)
2181		wiphy->reg_notifier(wiphy, request);
2182}
2183
2184static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185			      struct reg_beacon *reg_beacon)
2186{
2187	struct ieee80211_supported_band *sband;
2188	struct ieee80211_channel *chan;
2189	bool channel_changed = false;
2190	struct ieee80211_channel chan_before;
2191	struct regulatory_request *lr = get_last_request();
2192
2193	sband = wiphy->bands[reg_beacon->chan.band];
2194	chan = &sband->channels[chan_idx];
2195
2196	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2197		return;
2198
2199	if (chan->beacon_found)
2200		return;
2201
2202	chan->beacon_found = true;
2203
2204	if (!reg_is_world_roaming(wiphy))
2205		return;
2206
2207	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2208		return;
2209
2210	chan_before = *chan;
2211
2212	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2213		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2214		channel_changed = true;
2215	}
2216
2217	if (channel_changed) {
2218		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2219		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2220			reg_call_notifier(wiphy, lr);
2221	}
2222}
2223
2224/*
2225 * Called when a scan on a wiphy finds a beacon on
2226 * new channel
2227 */
2228static void wiphy_update_new_beacon(struct wiphy *wiphy,
2229				    struct reg_beacon *reg_beacon)
2230{
2231	unsigned int i;
2232	struct ieee80211_supported_band *sband;
2233
2234	if (!wiphy->bands[reg_beacon->chan.band])
2235		return;
2236
2237	sband = wiphy->bands[reg_beacon->chan.band];
2238
2239	for (i = 0; i < sband->n_channels; i++)
2240		handle_reg_beacon(wiphy, i, reg_beacon);
2241}
2242
2243/*
2244 * Called upon reg changes or a new wiphy is added
2245 */
2246static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2247{
2248	unsigned int i;
2249	struct ieee80211_supported_band *sband;
2250	struct reg_beacon *reg_beacon;
2251
2252	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2253		if (!wiphy->bands[reg_beacon->chan.band])
2254			continue;
2255		sband = wiphy->bands[reg_beacon->chan.band];
2256		for (i = 0; i < sband->n_channels; i++)
2257			handle_reg_beacon(wiphy, i, reg_beacon);
2258	}
2259}
2260
2261/* Reap the advantages of previously found beacons */
2262static void reg_process_beacons(struct wiphy *wiphy)
2263{
2264	/*
2265	 * Means we are just firing up cfg80211, so no beacons would
2266	 * have been processed yet.
2267	 */
2268	if (!last_request)
2269		return;
2270	wiphy_update_beacon_reg(wiphy);
2271}
2272
2273static bool is_ht40_allowed(struct ieee80211_channel *chan)
2274{
2275	if (!chan)
2276		return false;
2277	if (chan->flags & IEEE80211_CHAN_DISABLED)
2278		return false;
2279	/* This would happen when regulatory rules disallow HT40 completely */
2280	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2281		return false;
2282	return true;
2283}
2284
2285static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2286					 struct ieee80211_channel *channel)
2287{
2288	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2289	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2290	const struct ieee80211_regdomain *regd;
2291	unsigned int i;
2292	u32 flags;
2293
2294	if (!is_ht40_allowed(channel)) {
2295		channel->flags |= IEEE80211_CHAN_NO_HT40;
2296		return;
2297	}
2298
2299	/*
2300	 * We need to ensure the extension channels exist to
2301	 * be able to use HT40- or HT40+, this finds them (or not)
2302	 */
2303	for (i = 0; i < sband->n_channels; i++) {
2304		struct ieee80211_channel *c = &sband->channels[i];
2305
2306		if (c->center_freq == (channel->center_freq - 20))
2307			channel_before = c;
2308		if (c->center_freq == (channel->center_freq + 20))
2309			channel_after = c;
2310	}
2311
2312	flags = 0;
2313	regd = get_wiphy_regdom(wiphy);
2314	if (regd) {
2315		const struct ieee80211_reg_rule *reg_rule =
2316			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2317					   regd, MHZ_TO_KHZ(20));
2318
2319		if (!IS_ERR(reg_rule))
2320			flags = reg_rule->flags;
2321	}
2322
2323	/*
2324	 * Please note that this assumes target bandwidth is 20 MHz,
2325	 * if that ever changes we also need to change the below logic
2326	 * to include that as well.
2327	 */
2328	if (!is_ht40_allowed(channel_before) ||
2329	    flags & NL80211_RRF_NO_HT40MINUS)
2330		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2331	else
2332		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2333
2334	if (!is_ht40_allowed(channel_after) ||
2335	    flags & NL80211_RRF_NO_HT40PLUS)
2336		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2337	else
2338		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2339}
2340
2341static void reg_process_ht_flags_band(struct wiphy *wiphy,
2342				      struct ieee80211_supported_band *sband)
2343{
2344	unsigned int i;
2345
2346	if (!sband)
2347		return;
2348
2349	for (i = 0; i < sband->n_channels; i++)
2350		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2351}
2352
2353static void reg_process_ht_flags(struct wiphy *wiphy)
2354{
2355	enum nl80211_band band;
2356
2357	if (!wiphy)
2358		return;
2359
2360	for (band = 0; band < NUM_NL80211_BANDS; band++)
2361		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2362}
2363
2364static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2365{
2366	struct cfg80211_chan_def chandef = {};
2367	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2368	enum nl80211_iftype iftype;
2369	bool ret;
2370	int link;
2371
2372	iftype = wdev->iftype;
2373
2374	/* make sure the interface is active */
2375	if (!wdev->netdev || !netif_running(wdev->netdev))
2376		return true;
2377
2378	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2379		struct ieee80211_channel *chan;
2380
2381		if (!wdev->valid_links && link > 0)
2382			break;
2383		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2384			continue;
2385		switch (iftype) {
2386		case NL80211_IFTYPE_AP:
2387		case NL80211_IFTYPE_P2P_GO:
2388			if (!wdev->links[link].ap.beacon_interval)
2389				continue;
2390			chandef = wdev->links[link].ap.chandef;
2391			break;
2392		case NL80211_IFTYPE_MESH_POINT:
2393			if (!wdev->u.mesh.beacon_interval)
2394				continue;
2395			chandef = wdev->u.mesh.chandef;
2396			break;
2397		case NL80211_IFTYPE_ADHOC:
2398			if (!wdev->u.ibss.ssid_len)
2399				continue;
2400			chandef = wdev->u.ibss.chandef;
2401			break;
2402		case NL80211_IFTYPE_STATION:
2403		case NL80211_IFTYPE_P2P_CLIENT:
2404			/* Maybe we could consider disabling that link only? */
2405			if (!wdev->links[link].client.current_bss)
2406				continue;
2407
2408			chan = wdev->links[link].client.current_bss->pub.channel;
2409			if (!chan)
2410				continue;
2411
2412			if (!rdev->ops->get_channel ||
2413			    rdev_get_channel(rdev, wdev, link, &chandef))
2414				cfg80211_chandef_create(&chandef, chan,
2415							NL80211_CHAN_NO_HT);
2416			break;
2417		case NL80211_IFTYPE_MONITOR:
2418		case NL80211_IFTYPE_AP_VLAN:
2419		case NL80211_IFTYPE_P2P_DEVICE:
2420			/* no enforcement required */
2421			break;
2422		case NL80211_IFTYPE_OCB:
2423			if (!wdev->u.ocb.chandef.chan)
2424				continue;
2425			chandef = wdev->u.ocb.chandef;
2426			break;
2427		case NL80211_IFTYPE_NAN:
2428			/* we have no info, but NAN is also pretty universal */
2429			continue;
2430		default:
2431			/* others not implemented for now */
2432			WARN_ON_ONCE(1);
2433			break;
2434		}
2435
2436		switch (iftype) {
2437		case NL80211_IFTYPE_AP:
2438		case NL80211_IFTYPE_P2P_GO:
2439		case NL80211_IFTYPE_ADHOC:
2440		case NL80211_IFTYPE_MESH_POINT:
2441			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2442							    iftype);
2443			if (!ret)
2444				return ret;
2445			break;
2446		case NL80211_IFTYPE_STATION:
2447		case NL80211_IFTYPE_P2P_CLIENT:
2448			ret = cfg80211_chandef_usable(wiphy, &chandef,
2449						      IEEE80211_CHAN_DISABLED);
2450			if (!ret)
2451				return ret;
2452			break;
2453		default:
2454			break;
2455		}
2456	}
2457
2458	return true;
2459}
2460
2461static void reg_leave_invalid_chans(struct wiphy *wiphy)
2462{
2463	struct wireless_dev *wdev;
2464	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2465
2466	wiphy_lock(wiphy);
2467	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2468		if (!reg_wdev_chan_valid(wiphy, wdev))
2469			cfg80211_leave(rdev, wdev);
2470	wiphy_unlock(wiphy);
2471}
2472
2473static void reg_check_chans_work(struct work_struct *work)
2474{
2475	struct cfg80211_registered_device *rdev;
2476
2477	pr_debug("Verifying active interfaces after reg change\n");
2478	rtnl_lock();
2479
2480	for_each_rdev(rdev)
2481		reg_leave_invalid_chans(&rdev->wiphy);
2482
2483	rtnl_unlock();
2484}
2485
2486void reg_check_channels(void)
2487{
2488	/*
2489	 * Give usermode a chance to do something nicer (move to another
2490	 * channel, orderly disconnection), before forcing a disconnection.
2491	 */
2492	mod_delayed_work(system_power_efficient_wq,
2493			 &reg_check_chans,
2494			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2495}
2496
2497static void wiphy_update_regulatory(struct wiphy *wiphy,
2498				    enum nl80211_reg_initiator initiator)
2499{
2500	enum nl80211_band band;
2501	struct regulatory_request *lr = get_last_request();
2502
2503	if (ignore_reg_update(wiphy, initiator)) {
2504		/*
2505		 * Regulatory updates set by CORE are ignored for custom
2506		 * regulatory cards. Let us notify the changes to the driver,
2507		 * as some drivers used this to restore its orig_* reg domain.
2508		 */
2509		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2510		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2511		    !(wiphy->regulatory_flags &
2512		      REGULATORY_WIPHY_SELF_MANAGED))
2513			reg_call_notifier(wiphy, lr);
2514		return;
2515	}
2516
2517	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2518
2519	for (band = 0; band < NUM_NL80211_BANDS; band++)
2520		handle_band(wiphy, initiator, wiphy->bands[band]);
2521
2522	reg_process_beacons(wiphy);
2523	reg_process_ht_flags(wiphy);
2524	reg_call_notifier(wiphy, lr);
2525}
2526
2527static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2528{
2529	struct cfg80211_registered_device *rdev;
2530	struct wiphy *wiphy;
2531
2532	ASSERT_RTNL();
2533
2534	for_each_rdev(rdev) {
2535		wiphy = &rdev->wiphy;
2536		wiphy_update_regulatory(wiphy, initiator);
2537	}
2538
2539	reg_check_channels();
2540}
2541
2542static void handle_channel_custom(struct wiphy *wiphy,
2543				  struct ieee80211_channel *chan,
2544				  const struct ieee80211_regdomain *regd,
2545				  u32 min_bw)
2546{
2547	u32 bw_flags = 0;
2548	const struct ieee80211_reg_rule *reg_rule = NULL;
2549	const struct ieee80211_power_rule *power_rule = NULL;
2550	u32 bw, center_freq_khz;
2551
2552	center_freq_khz = ieee80211_channel_to_khz(chan);
2553	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2554		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2555		if (!IS_ERR(reg_rule))
2556			break;
2557	}
2558
2559	if (IS_ERR_OR_NULL(reg_rule)) {
2560		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2561			 chan->center_freq, chan->freq_offset);
2562		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2563			chan->flags |= IEEE80211_CHAN_DISABLED;
2564		} else {
2565			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2566			chan->flags = chan->orig_flags;
2567		}
2568		return;
2569	}
2570
2571	power_rule = &reg_rule->power_rule;
2572	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2573
2574	chan->dfs_state_entered = jiffies;
2575	chan->dfs_state = NL80211_DFS_USABLE;
2576
2577	chan->beacon_found = false;
2578
2579	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2580		chan->flags = chan->orig_flags | bw_flags |
2581			      map_regdom_flags(reg_rule->flags);
2582	else
2583		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2584
2585	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2586	chan->max_reg_power = chan->max_power =
2587		(int) MBM_TO_DBM(power_rule->max_eirp);
2588
2589	if (chan->flags & IEEE80211_CHAN_RADAR) {
2590		if (reg_rule->dfs_cac_ms)
2591			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2592		else
2593			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2594	}
2595
2596	if (chan->flags & IEEE80211_CHAN_PSD)
2597		chan->psd = reg_rule->psd;
2598
2599	chan->max_power = chan->max_reg_power;
2600}
2601
2602static void handle_band_custom(struct wiphy *wiphy,
2603			       struct ieee80211_supported_band *sband,
2604			       const struct ieee80211_regdomain *regd)
2605{
2606	unsigned int i;
2607
2608	if (!sband)
2609		return;
2610
2611	/*
2612	 * We currently assume that you always want at least 20 MHz,
2613	 * otherwise channel 12 might get enabled if this rule is
2614	 * compatible to US, which permits 2402 - 2472 MHz.
2615	 */
2616	for (i = 0; i < sband->n_channels; i++)
2617		handle_channel_custom(wiphy, &sband->channels[i], regd,
2618				      MHZ_TO_KHZ(20));
2619}
2620
2621/* Used by drivers prior to wiphy registration */
2622void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2623				   const struct ieee80211_regdomain *regd)
2624{
2625	const struct ieee80211_regdomain *new_regd, *tmp;
2626	enum nl80211_band band;
2627	unsigned int bands_set = 0;
2628
2629	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2630	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2631	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2632
2633	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2634		if (!wiphy->bands[band])
2635			continue;
2636		handle_band_custom(wiphy, wiphy->bands[band], regd);
2637		bands_set++;
2638	}
2639
2640	/*
2641	 * no point in calling this if it won't have any effect
2642	 * on your device's supported bands.
2643	 */
2644	WARN_ON(!bands_set);
2645	new_regd = reg_copy_regd(regd);
2646	if (IS_ERR(new_regd))
2647		return;
2648
2649	rtnl_lock();
2650	wiphy_lock(wiphy);
2651
2652	tmp = get_wiphy_regdom(wiphy);
2653	rcu_assign_pointer(wiphy->regd, new_regd);
2654	rcu_free_regdom(tmp);
2655
2656	wiphy_unlock(wiphy);
2657	rtnl_unlock();
2658}
2659EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2660
2661static void reg_set_request_processed(void)
2662{
2663	bool need_more_processing = false;
2664	struct regulatory_request *lr = get_last_request();
2665
2666	lr->processed = true;
2667
2668	spin_lock(&reg_requests_lock);
2669	if (!list_empty(&reg_requests_list))
2670		need_more_processing = true;
2671	spin_unlock(&reg_requests_lock);
2672
2673	cancel_crda_timeout();
2674
2675	if (need_more_processing)
2676		schedule_work(&reg_work);
2677}
2678
2679/**
2680 * reg_process_hint_core - process core regulatory requests
2681 * @core_request: a pending core regulatory request
2682 *
2683 * The wireless subsystem can use this function to process
2684 * a regulatory request issued by the regulatory core.
2685 *
2686 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2687 *	hint was processed or ignored
2688 */
2689static enum reg_request_treatment
2690reg_process_hint_core(struct regulatory_request *core_request)
2691{
2692	if (reg_query_database(core_request)) {
2693		core_request->intersect = false;
2694		core_request->processed = false;
2695		reg_update_last_request(core_request);
2696		return REG_REQ_OK;
2697	}
2698
2699	return REG_REQ_IGNORE;
2700}
2701
2702static enum reg_request_treatment
2703__reg_process_hint_user(struct regulatory_request *user_request)
2704{
2705	struct regulatory_request *lr = get_last_request();
2706
2707	if (reg_request_cell_base(user_request))
2708		return reg_ignore_cell_hint(user_request);
2709
2710	if (reg_request_cell_base(lr))
2711		return REG_REQ_IGNORE;
2712
2713	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2714		return REG_REQ_INTERSECT;
2715	/*
2716	 * If the user knows better the user should set the regdom
2717	 * to their country before the IE is picked up
2718	 */
2719	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2720	    lr->intersect)
2721		return REG_REQ_IGNORE;
2722	/*
2723	 * Process user requests only after previous user/driver/core
2724	 * requests have been processed
2725	 */
2726	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2727	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2728	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2729	    regdom_changes(lr->alpha2))
2730		return REG_REQ_IGNORE;
2731
2732	if (!regdom_changes(user_request->alpha2))
2733		return REG_REQ_ALREADY_SET;
2734
2735	return REG_REQ_OK;
2736}
2737
2738/**
2739 * reg_process_hint_user - process user regulatory requests
2740 * @user_request: a pending user regulatory request
2741 *
2742 * The wireless subsystem can use this function to process
2743 * a regulatory request initiated by userspace.
2744 *
2745 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2746 *	hint was processed or ignored
2747 */
2748static enum reg_request_treatment
2749reg_process_hint_user(struct regulatory_request *user_request)
2750{
2751	enum reg_request_treatment treatment;
2752
2753	treatment = __reg_process_hint_user(user_request);
2754	if (treatment == REG_REQ_IGNORE ||
2755	    treatment == REG_REQ_ALREADY_SET)
2756		return REG_REQ_IGNORE;
2757
2758	user_request->intersect = treatment == REG_REQ_INTERSECT;
2759	user_request->processed = false;
2760
2761	if (reg_query_database(user_request)) {
2762		reg_update_last_request(user_request);
2763		user_alpha2[0] = user_request->alpha2[0];
2764		user_alpha2[1] = user_request->alpha2[1];
2765		return REG_REQ_OK;
2766	}
2767
2768	return REG_REQ_IGNORE;
2769}
2770
2771static enum reg_request_treatment
2772__reg_process_hint_driver(struct regulatory_request *driver_request)
2773{
2774	struct regulatory_request *lr = get_last_request();
2775
2776	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2777		if (regdom_changes(driver_request->alpha2))
2778			return REG_REQ_OK;
2779		return REG_REQ_ALREADY_SET;
2780	}
2781
2782	/*
2783	 * This would happen if you unplug and plug your card
2784	 * back in or if you add a new device for which the previously
2785	 * loaded card also agrees on the regulatory domain.
2786	 */
2787	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2788	    !regdom_changes(driver_request->alpha2))
2789		return REG_REQ_ALREADY_SET;
2790
2791	return REG_REQ_INTERSECT;
2792}
2793
2794/**
2795 * reg_process_hint_driver - process driver regulatory requests
2796 * @wiphy: the wireless device for the regulatory request
2797 * @driver_request: a pending driver regulatory request
2798 *
2799 * The wireless subsystem can use this function to process
2800 * a regulatory request issued by an 802.11 driver.
2801 *
2802 * Returns: one of the different reg request treatment values.
2803 */
2804static enum reg_request_treatment
2805reg_process_hint_driver(struct wiphy *wiphy,
2806			struct regulatory_request *driver_request)
2807{
2808	const struct ieee80211_regdomain *regd, *tmp;
2809	enum reg_request_treatment treatment;
2810
2811	treatment = __reg_process_hint_driver(driver_request);
2812
2813	switch (treatment) {
2814	case REG_REQ_OK:
2815		break;
2816	case REG_REQ_IGNORE:
2817		return REG_REQ_IGNORE;
2818	case REG_REQ_INTERSECT:
2819	case REG_REQ_ALREADY_SET:
2820		regd = reg_copy_regd(get_cfg80211_regdom());
2821		if (IS_ERR(regd))
2822			return REG_REQ_IGNORE;
2823
2824		tmp = get_wiphy_regdom(wiphy);
2825		ASSERT_RTNL();
2826		wiphy_lock(wiphy);
2827		rcu_assign_pointer(wiphy->regd, regd);
2828		wiphy_unlock(wiphy);
2829		rcu_free_regdom(tmp);
2830	}
2831
2832
2833	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2834	driver_request->processed = false;
2835
2836	/*
2837	 * Since CRDA will not be called in this case as we already
2838	 * have applied the requested regulatory domain before we just
2839	 * inform userspace we have processed the request
2840	 */
2841	if (treatment == REG_REQ_ALREADY_SET) {
2842		nl80211_send_reg_change_event(driver_request);
2843		reg_update_last_request(driver_request);
2844		reg_set_request_processed();
2845		return REG_REQ_ALREADY_SET;
2846	}
2847
2848	if (reg_query_database(driver_request)) {
2849		reg_update_last_request(driver_request);
2850		return REG_REQ_OK;
2851	}
2852
2853	return REG_REQ_IGNORE;
2854}
2855
2856static enum reg_request_treatment
2857__reg_process_hint_country_ie(struct wiphy *wiphy,
2858			      struct regulatory_request *country_ie_request)
2859{
2860	struct wiphy *last_wiphy = NULL;
2861	struct regulatory_request *lr = get_last_request();
2862
2863	if (reg_request_cell_base(lr)) {
2864		/* Trust a Cell base station over the AP's country IE */
2865		if (regdom_changes(country_ie_request->alpha2))
2866			return REG_REQ_IGNORE;
2867		return REG_REQ_ALREADY_SET;
2868	} else {
2869		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2870			return REG_REQ_IGNORE;
2871	}
2872
2873	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2874		return -EINVAL;
2875
2876	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2877		return REG_REQ_OK;
2878
2879	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2880
2881	if (last_wiphy != wiphy) {
2882		/*
2883		 * Two cards with two APs claiming different
2884		 * Country IE alpha2s. We could
2885		 * intersect them, but that seems unlikely
2886		 * to be correct. Reject second one for now.
2887		 */
2888		if (regdom_changes(country_ie_request->alpha2))
2889			return REG_REQ_IGNORE;
2890		return REG_REQ_ALREADY_SET;
2891	}
2892
2893	if (regdom_changes(country_ie_request->alpha2))
2894		return REG_REQ_OK;
2895	return REG_REQ_ALREADY_SET;
2896}
2897
2898/**
2899 * reg_process_hint_country_ie - process regulatory requests from country IEs
2900 * @wiphy: the wireless device for the regulatory request
2901 * @country_ie_request: a regulatory request from a country IE
2902 *
2903 * The wireless subsystem can use this function to process
2904 * a regulatory request issued by a country Information Element.
2905 *
2906 * Returns: one of the different reg request treatment values.
2907 */
2908static enum reg_request_treatment
2909reg_process_hint_country_ie(struct wiphy *wiphy,
2910			    struct regulatory_request *country_ie_request)
2911{
2912	enum reg_request_treatment treatment;
2913
2914	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2915
2916	switch (treatment) {
2917	case REG_REQ_OK:
2918		break;
2919	case REG_REQ_IGNORE:
2920		return REG_REQ_IGNORE;
2921	case REG_REQ_ALREADY_SET:
2922		reg_free_request(country_ie_request);
2923		return REG_REQ_ALREADY_SET;
2924	case REG_REQ_INTERSECT:
2925		/*
2926		 * This doesn't happen yet, not sure we
2927		 * ever want to support it for this case.
2928		 */
2929		WARN_ONCE(1, "Unexpected intersection for country elements");
2930		return REG_REQ_IGNORE;
2931	}
2932
2933	country_ie_request->intersect = false;
2934	country_ie_request->processed = false;
2935
2936	if (reg_query_database(country_ie_request)) {
2937		reg_update_last_request(country_ie_request);
2938		return REG_REQ_OK;
2939	}
2940
2941	return REG_REQ_IGNORE;
2942}
2943
2944bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2945{
2946	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2947	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2948	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2949	bool dfs_domain_same;
2950
2951	rcu_read_lock();
2952
2953	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2954	wiphy1_regd = rcu_dereference(wiphy1->regd);
2955	if (!wiphy1_regd)
2956		wiphy1_regd = cfg80211_regd;
2957
2958	wiphy2_regd = rcu_dereference(wiphy2->regd);
2959	if (!wiphy2_regd)
2960		wiphy2_regd = cfg80211_regd;
2961
2962	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2963
2964	rcu_read_unlock();
2965
2966	return dfs_domain_same;
2967}
2968
2969static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2970				    struct ieee80211_channel *src_chan)
2971{
2972	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2973	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2974		return;
2975
2976	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2977	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2978		return;
2979
2980	if (src_chan->center_freq == dst_chan->center_freq &&
2981	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2982		dst_chan->dfs_state = src_chan->dfs_state;
2983		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2984	}
2985}
2986
2987static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2988				       struct wiphy *src_wiphy)
2989{
2990	struct ieee80211_supported_band *src_sband, *dst_sband;
2991	struct ieee80211_channel *src_chan, *dst_chan;
2992	int i, j, band;
2993
2994	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2995		return;
2996
2997	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2998		dst_sband = dst_wiphy->bands[band];
2999		src_sband = src_wiphy->bands[band];
3000		if (!dst_sband || !src_sband)
3001			continue;
3002
3003		for (i = 0; i < dst_sband->n_channels; i++) {
3004			dst_chan = &dst_sband->channels[i];
3005			for (j = 0; j < src_sband->n_channels; j++) {
3006				src_chan = &src_sband->channels[j];
3007				reg_copy_dfs_chan_state(dst_chan, src_chan);
3008			}
3009		}
3010	}
3011}
3012
3013static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3014{
3015	struct cfg80211_registered_device *rdev;
3016
3017	ASSERT_RTNL();
3018
3019	for_each_rdev(rdev) {
3020		if (wiphy == &rdev->wiphy)
3021			continue;
3022		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3023	}
3024}
3025
3026/* This processes *all* regulatory hints */
3027static void reg_process_hint(struct regulatory_request *reg_request)
3028{
3029	struct wiphy *wiphy = NULL;
3030	enum reg_request_treatment treatment;
3031	enum nl80211_reg_initiator initiator = reg_request->initiator;
3032
3033	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3034		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3035
3036	switch (initiator) {
3037	case NL80211_REGDOM_SET_BY_CORE:
3038		treatment = reg_process_hint_core(reg_request);
3039		break;
3040	case NL80211_REGDOM_SET_BY_USER:
3041		treatment = reg_process_hint_user(reg_request);
3042		break;
3043	case NL80211_REGDOM_SET_BY_DRIVER:
3044		if (!wiphy)
3045			goto out_free;
3046		treatment = reg_process_hint_driver(wiphy, reg_request);
3047		break;
3048	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3049		if (!wiphy)
3050			goto out_free;
3051		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3052		break;
3053	default:
3054		WARN(1, "invalid initiator %d\n", initiator);
3055		goto out_free;
3056	}
3057
3058	if (treatment == REG_REQ_IGNORE)
3059		goto out_free;
3060
3061	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3062	     "unexpected treatment value %d\n", treatment);
3063
3064	/* This is required so that the orig_* parameters are saved.
3065	 * NOTE: treatment must be set for any case that reaches here!
3066	 */
3067	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3068	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3069		wiphy_update_regulatory(wiphy, initiator);
3070		wiphy_all_share_dfs_chan_state(wiphy);
3071		reg_check_channels();
3072	}
3073
3074	return;
3075
3076out_free:
3077	reg_free_request(reg_request);
3078}
3079
3080static void notify_self_managed_wiphys(struct regulatory_request *request)
3081{
3082	struct cfg80211_registered_device *rdev;
3083	struct wiphy *wiphy;
3084
3085	for_each_rdev(rdev) {
3086		wiphy = &rdev->wiphy;
3087		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3088		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3089			reg_call_notifier(wiphy, request);
3090	}
3091}
3092
3093/*
3094 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3095 * Regulatory hints come on a first come first serve basis and we
3096 * must process each one atomically.
3097 */
3098static void reg_process_pending_hints(void)
3099{
3100	struct regulatory_request *reg_request, *lr;
3101
3102	lr = get_last_request();
3103
3104	/* When last_request->processed becomes true this will be rescheduled */
3105	if (lr && !lr->processed) {
3106		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3107		return;
3108	}
3109
3110	spin_lock(&reg_requests_lock);
3111
3112	if (list_empty(&reg_requests_list)) {
3113		spin_unlock(&reg_requests_lock);
3114		return;
3115	}
3116
3117	reg_request = list_first_entry(&reg_requests_list,
3118				       struct regulatory_request,
3119				       list);
3120	list_del_init(&reg_request->list);
3121
3122	spin_unlock(&reg_requests_lock);
3123
3124	notify_self_managed_wiphys(reg_request);
3125
3126	reg_process_hint(reg_request);
3127
3128	lr = get_last_request();
3129
3130	spin_lock(&reg_requests_lock);
3131	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3132		schedule_work(&reg_work);
3133	spin_unlock(&reg_requests_lock);
3134}
3135
3136/* Processes beacon hints -- this has nothing to do with country IEs */
3137static void reg_process_pending_beacon_hints(void)
3138{
3139	struct cfg80211_registered_device *rdev;
3140	struct reg_beacon *pending_beacon, *tmp;
3141
3142	/* This goes through the _pending_ beacon list */
3143	spin_lock_bh(&reg_pending_beacons_lock);
3144
3145	list_for_each_entry_safe(pending_beacon, tmp,
3146				 &reg_pending_beacons, list) {
3147		list_del_init(&pending_beacon->list);
3148
3149		/* Applies the beacon hint to current wiphys */
3150		for_each_rdev(rdev)
3151			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3152
3153		/* Remembers the beacon hint for new wiphys or reg changes */
3154		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3155	}
3156
3157	spin_unlock_bh(&reg_pending_beacons_lock);
3158}
3159
3160static void reg_process_self_managed_hint(struct wiphy *wiphy)
3161{
3162	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3163	const struct ieee80211_regdomain *tmp;
3164	const struct ieee80211_regdomain *regd;
3165	enum nl80211_band band;
3166	struct regulatory_request request = {};
3167
3168	ASSERT_RTNL();
3169	lockdep_assert_wiphy(wiphy);
3170
3171	spin_lock(&reg_requests_lock);
3172	regd = rdev->requested_regd;
3173	rdev->requested_regd = NULL;
3174	spin_unlock(&reg_requests_lock);
3175
3176	if (!regd)
3177		return;
3178
3179	tmp = get_wiphy_regdom(wiphy);
3180	rcu_assign_pointer(wiphy->regd, regd);
3181	rcu_free_regdom(tmp);
3182
3183	for (band = 0; band < NUM_NL80211_BANDS; band++)
3184		handle_band_custom(wiphy, wiphy->bands[band], regd);
3185
3186	reg_process_ht_flags(wiphy);
3187
3188	request.wiphy_idx = get_wiphy_idx(wiphy);
3189	request.alpha2[0] = regd->alpha2[0];
3190	request.alpha2[1] = regd->alpha2[1];
3191	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3192
3193	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3194		reg_call_notifier(wiphy, &request);
3195
3196	nl80211_send_wiphy_reg_change_event(&request);
3197}
3198
3199static void reg_process_self_managed_hints(void)
3200{
3201	struct cfg80211_registered_device *rdev;
3202
3203	ASSERT_RTNL();
3204
3205	for_each_rdev(rdev) {
3206		wiphy_lock(&rdev->wiphy);
3207		reg_process_self_managed_hint(&rdev->wiphy);
3208		wiphy_unlock(&rdev->wiphy);
3209	}
3210
3211	reg_check_channels();
3212}
3213
3214static void reg_todo(struct work_struct *work)
3215{
3216	rtnl_lock();
3217	reg_process_pending_hints();
3218	reg_process_pending_beacon_hints();
3219	reg_process_self_managed_hints();
3220	rtnl_unlock();
3221}
3222
3223static void queue_regulatory_request(struct regulatory_request *request)
3224{
3225	request->alpha2[0] = toupper(request->alpha2[0]);
3226	request->alpha2[1] = toupper(request->alpha2[1]);
3227
3228	spin_lock(&reg_requests_lock);
3229	list_add_tail(&request->list, &reg_requests_list);
3230	spin_unlock(&reg_requests_lock);
3231
3232	schedule_work(&reg_work);
3233}
3234
3235/*
3236 * Core regulatory hint -- happens during cfg80211_init()
3237 * and when we restore regulatory settings.
3238 */
3239static int regulatory_hint_core(const char *alpha2)
3240{
3241	struct regulatory_request *request;
3242
3243	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3244	if (!request)
3245		return -ENOMEM;
3246
3247	request->alpha2[0] = alpha2[0];
3248	request->alpha2[1] = alpha2[1];
3249	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3250	request->wiphy_idx = WIPHY_IDX_INVALID;
3251
3252	queue_regulatory_request(request);
3253
3254	return 0;
3255}
3256
3257/* User hints */
3258int regulatory_hint_user(const char *alpha2,
3259			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3260{
3261	struct regulatory_request *request;
3262
3263	if (WARN_ON(!alpha2))
3264		return -EINVAL;
3265
3266	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3267		return -EINVAL;
3268
3269	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3270	if (!request)
3271		return -ENOMEM;
3272
3273	request->wiphy_idx = WIPHY_IDX_INVALID;
3274	request->alpha2[0] = alpha2[0];
3275	request->alpha2[1] = alpha2[1];
3276	request->initiator = NL80211_REGDOM_SET_BY_USER;
3277	request->user_reg_hint_type = user_reg_hint_type;
3278
3279	/* Allow calling CRDA again */
3280	reset_crda_timeouts();
3281
3282	queue_regulatory_request(request);
3283
3284	return 0;
3285}
3286
3287int regulatory_hint_indoor(bool is_indoor, u32 portid)
3288{
3289	spin_lock(&reg_indoor_lock);
3290
3291	/* It is possible that more than one user space process is trying to
3292	 * configure the indoor setting. To handle such cases, clear the indoor
3293	 * setting in case that some process does not think that the device
3294	 * is operating in an indoor environment. In addition, if a user space
3295	 * process indicates that it is controlling the indoor setting, save its
3296	 * portid, i.e., make it the owner.
3297	 */
3298	reg_is_indoor = is_indoor;
3299	if (reg_is_indoor) {
3300		if (!reg_is_indoor_portid)
3301			reg_is_indoor_portid = portid;
3302	} else {
3303		reg_is_indoor_portid = 0;
3304	}
3305
3306	spin_unlock(&reg_indoor_lock);
3307
3308	if (!is_indoor)
3309		reg_check_channels();
3310
3311	return 0;
3312}
3313
3314void regulatory_netlink_notify(u32 portid)
3315{
3316	spin_lock(&reg_indoor_lock);
3317
3318	if (reg_is_indoor_portid != portid) {
3319		spin_unlock(&reg_indoor_lock);
3320		return;
3321	}
3322
3323	reg_is_indoor = false;
3324	reg_is_indoor_portid = 0;
3325
3326	spin_unlock(&reg_indoor_lock);
3327
3328	reg_check_channels();
3329}
3330
3331/* Driver hints */
3332int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3333{
3334	struct regulatory_request *request;
3335
3336	if (WARN_ON(!alpha2 || !wiphy))
3337		return -EINVAL;
3338
3339	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3340
3341	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3342	if (!request)
3343		return -ENOMEM;
3344
3345	request->wiphy_idx = get_wiphy_idx(wiphy);
3346
3347	request->alpha2[0] = alpha2[0];
3348	request->alpha2[1] = alpha2[1];
3349	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3350
3351	/* Allow calling CRDA again */
3352	reset_crda_timeouts();
3353
3354	queue_regulatory_request(request);
3355
3356	return 0;
3357}
3358EXPORT_SYMBOL(regulatory_hint);
3359
3360void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3361				const u8 *country_ie, u8 country_ie_len)
3362{
3363	char alpha2[2];
3364	enum environment_cap env = ENVIRON_ANY;
3365	struct regulatory_request *request = NULL, *lr;
3366
3367	/* IE len must be evenly divisible by 2 */
3368	if (country_ie_len & 0x01)
3369		return;
3370
3371	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3372		return;
3373
3374	request = kzalloc(sizeof(*request), GFP_KERNEL);
3375	if (!request)
3376		return;
3377
3378	alpha2[0] = country_ie[0];
3379	alpha2[1] = country_ie[1];
3380
3381	if (country_ie[2] == 'I')
3382		env = ENVIRON_INDOOR;
3383	else if (country_ie[2] == 'O')
3384		env = ENVIRON_OUTDOOR;
3385
3386	rcu_read_lock();
3387	lr = get_last_request();
3388
3389	if (unlikely(!lr))
3390		goto out;
3391
3392	/*
3393	 * We will run this only upon a successful connection on cfg80211.
3394	 * We leave conflict resolution to the workqueue, where can hold
3395	 * the RTNL.
3396	 */
3397	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3398	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3399		goto out;
3400
3401	request->wiphy_idx = get_wiphy_idx(wiphy);
3402	request->alpha2[0] = alpha2[0];
3403	request->alpha2[1] = alpha2[1];
3404	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3405	request->country_ie_env = env;
3406
3407	/* Allow calling CRDA again */
3408	reset_crda_timeouts();
3409
3410	queue_regulatory_request(request);
3411	request = NULL;
3412out:
3413	kfree(request);
3414	rcu_read_unlock();
3415}
3416
3417static void restore_alpha2(char *alpha2, bool reset_user)
3418{
3419	/* indicates there is no alpha2 to consider for restoration */
3420	alpha2[0] = '9';
3421	alpha2[1] = '7';
3422
3423	/* The user setting has precedence over the module parameter */
3424	if (is_user_regdom_saved()) {
3425		/* Unless we're asked to ignore it and reset it */
3426		if (reset_user) {
3427			pr_debug("Restoring regulatory settings including user preference\n");
3428			user_alpha2[0] = '9';
3429			user_alpha2[1] = '7';
3430
3431			/*
3432			 * If we're ignoring user settings, we still need to
3433			 * check the module parameter to ensure we put things
3434			 * back as they were for a full restore.
3435			 */
3436			if (!is_world_regdom(ieee80211_regdom)) {
3437				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3438					 ieee80211_regdom[0], ieee80211_regdom[1]);
3439				alpha2[0] = ieee80211_regdom[0];
3440				alpha2[1] = ieee80211_regdom[1];
3441			}
3442		} else {
3443			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3444				 user_alpha2[0], user_alpha2[1]);
3445			alpha2[0] = user_alpha2[0];
3446			alpha2[1] = user_alpha2[1];
3447		}
3448	} else if (!is_world_regdom(ieee80211_regdom)) {
3449		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3450			 ieee80211_regdom[0], ieee80211_regdom[1]);
3451		alpha2[0] = ieee80211_regdom[0];
3452		alpha2[1] = ieee80211_regdom[1];
3453	} else
3454		pr_debug("Restoring regulatory settings\n");
3455}
3456
3457static void restore_custom_reg_settings(struct wiphy *wiphy)
3458{
3459	struct ieee80211_supported_band *sband;
3460	enum nl80211_band band;
3461	struct ieee80211_channel *chan;
3462	int i;
3463
3464	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3465		sband = wiphy->bands[band];
3466		if (!sband)
3467			continue;
3468		for (i = 0; i < sband->n_channels; i++) {
3469			chan = &sband->channels[i];
3470			chan->flags = chan->orig_flags;
3471			chan->max_antenna_gain = chan->orig_mag;
3472			chan->max_power = chan->orig_mpwr;
3473			chan->beacon_found = false;
3474		}
3475	}
3476}
3477
3478/*
3479 * Restoring regulatory settings involves ignoring any
3480 * possibly stale country IE information and user regulatory
3481 * settings if so desired, this includes any beacon hints
3482 * learned as we could have traveled outside to another country
3483 * after disconnection. To restore regulatory settings we do
3484 * exactly what we did at bootup:
3485 *
3486 *   - send a core regulatory hint
3487 *   - send a user regulatory hint if applicable
3488 *
3489 * Device drivers that send a regulatory hint for a specific country
3490 * keep their own regulatory domain on wiphy->regd so that does
3491 * not need to be remembered.
3492 */
3493static void restore_regulatory_settings(bool reset_user, bool cached)
3494{
3495	char alpha2[2];
3496	char world_alpha2[2];
3497	struct reg_beacon *reg_beacon, *btmp;
3498	LIST_HEAD(tmp_reg_req_list);
3499	struct cfg80211_registered_device *rdev;
3500
3501	ASSERT_RTNL();
3502
3503	/*
3504	 * Clear the indoor setting in case that it is not controlled by user
3505	 * space, as otherwise there is no guarantee that the device is still
3506	 * operating in an indoor environment.
3507	 */
3508	spin_lock(&reg_indoor_lock);
3509	if (reg_is_indoor && !reg_is_indoor_portid) {
3510		reg_is_indoor = false;
3511		reg_check_channels();
3512	}
3513	spin_unlock(&reg_indoor_lock);
3514
3515	reset_regdomains(true, &world_regdom);
3516	restore_alpha2(alpha2, reset_user);
3517
3518	/*
3519	 * If there's any pending requests we simply
3520	 * stash them to a temporary pending queue and
3521	 * add then after we've restored regulatory
3522	 * settings.
3523	 */
3524	spin_lock(&reg_requests_lock);
3525	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3526	spin_unlock(&reg_requests_lock);
3527
3528	/* Clear beacon hints */
3529	spin_lock_bh(&reg_pending_beacons_lock);
3530	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3531		list_del(&reg_beacon->list);
3532		kfree(reg_beacon);
3533	}
3534	spin_unlock_bh(&reg_pending_beacons_lock);
3535
3536	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3537		list_del(&reg_beacon->list);
3538		kfree(reg_beacon);
3539	}
3540
3541	/* First restore to the basic regulatory settings */
3542	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3543	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3544
3545	for_each_rdev(rdev) {
3546		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3547			continue;
3548		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3549			restore_custom_reg_settings(&rdev->wiphy);
3550	}
3551
3552	if (cached && (!is_an_alpha2(alpha2) ||
3553		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3554		reset_regdomains(false, cfg80211_world_regdom);
3555		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3556		print_regdomain(get_cfg80211_regdom());
3557		nl80211_send_reg_change_event(&core_request_world);
3558		reg_set_request_processed();
3559
3560		if (is_an_alpha2(alpha2) &&
3561		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3562			struct regulatory_request *ureq;
3563
3564			spin_lock(&reg_requests_lock);
3565			ureq = list_last_entry(&reg_requests_list,
3566					       struct regulatory_request,
3567					       list);
3568			list_del(&ureq->list);
3569			spin_unlock(&reg_requests_lock);
3570
3571			notify_self_managed_wiphys(ureq);
3572			reg_update_last_request(ureq);
3573			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3574				   REGD_SOURCE_CACHED);
3575		}
3576	} else {
3577		regulatory_hint_core(world_alpha2);
3578
3579		/*
3580		 * This restores the ieee80211_regdom module parameter
3581		 * preference or the last user requested regulatory
3582		 * settings, user regulatory settings takes precedence.
3583		 */
3584		if (is_an_alpha2(alpha2))
3585			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3586	}
3587
3588	spin_lock(&reg_requests_lock);
3589	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3590	spin_unlock(&reg_requests_lock);
3591
3592	pr_debug("Kicking the queue\n");
3593
3594	schedule_work(&reg_work);
3595}
3596
3597static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3598{
3599	struct cfg80211_registered_device *rdev;
3600	struct wireless_dev *wdev;
3601
3602	for_each_rdev(rdev) {
3603		wiphy_lock(&rdev->wiphy);
3604		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3605			if (!(wdev->wiphy->regulatory_flags & flag)) {
3606				wiphy_unlock(&rdev->wiphy);
3607				return false;
3608			}
3609		}
3610		wiphy_unlock(&rdev->wiphy);
3611	}
3612
3613	return true;
3614}
3615
3616void regulatory_hint_disconnect(void)
3617{
3618	/* Restore of regulatory settings is not required when wiphy(s)
3619	 * ignore IE from connected access point but clearance of beacon hints
3620	 * is required when wiphy(s) supports beacon hints.
3621	 */
3622	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3623		struct reg_beacon *reg_beacon, *btmp;
3624
3625		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3626			return;
3627
3628		spin_lock_bh(&reg_pending_beacons_lock);
3629		list_for_each_entry_safe(reg_beacon, btmp,
3630					 &reg_pending_beacons, list) {
3631			list_del(&reg_beacon->list);
3632			kfree(reg_beacon);
3633		}
3634		spin_unlock_bh(&reg_pending_beacons_lock);
3635
3636		list_for_each_entry_safe(reg_beacon, btmp,
3637					 &reg_beacon_list, list) {
3638			list_del(&reg_beacon->list);
3639			kfree(reg_beacon);
3640		}
3641
3642		return;
3643	}
3644
3645	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3646	restore_regulatory_settings(false, true);
3647}
3648
3649static bool freq_is_chan_12_13_14(u32 freq)
3650{
3651	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3652	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3653	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3654		return true;
3655	return false;
3656}
3657
3658static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3659{
3660	struct reg_beacon *pending_beacon;
3661
3662	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3663		if (ieee80211_channel_equal(beacon_chan,
3664					    &pending_beacon->chan))
3665			return true;
3666	return false;
3667}
3668
3669int regulatory_hint_found_beacon(struct wiphy *wiphy,
3670				 struct ieee80211_channel *beacon_chan,
3671				 gfp_t gfp)
3672{
3673	struct reg_beacon *reg_beacon;
3674	bool processing;
3675
3676	if (beacon_chan->beacon_found ||
3677	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3678	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3679	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3680		return 0;
3681
3682	spin_lock_bh(&reg_pending_beacons_lock);
3683	processing = pending_reg_beacon(beacon_chan);
3684	spin_unlock_bh(&reg_pending_beacons_lock);
3685
3686	if (processing)
3687		return 0;
3688
3689	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3690	if (!reg_beacon)
3691		return -ENOMEM;
3692
3693	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3694		 beacon_chan->center_freq, beacon_chan->freq_offset,
3695		 ieee80211_freq_khz_to_channel(
3696			 ieee80211_channel_to_khz(beacon_chan)),
3697		 wiphy_name(wiphy));
3698
3699	memcpy(&reg_beacon->chan, beacon_chan,
3700	       sizeof(struct ieee80211_channel));
3701
3702	/*
3703	 * Since we can be called from BH or and non-BH context
3704	 * we must use spin_lock_bh()
3705	 */
3706	spin_lock_bh(&reg_pending_beacons_lock);
3707	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3708	spin_unlock_bh(&reg_pending_beacons_lock);
3709
3710	schedule_work(&reg_work);
3711
3712	return 0;
3713}
3714
3715static void print_rd_rules(const struct ieee80211_regdomain *rd)
3716{
3717	unsigned int i;
3718	const struct ieee80211_reg_rule *reg_rule = NULL;
3719	const struct ieee80211_freq_range *freq_range = NULL;
3720	const struct ieee80211_power_rule *power_rule = NULL;
3721	char bw[32], cac_time[32];
3722
3723	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3724
3725	for (i = 0; i < rd->n_reg_rules; i++) {
3726		reg_rule = &rd->reg_rules[i];
3727		freq_range = &reg_rule->freq_range;
3728		power_rule = &reg_rule->power_rule;
3729
3730		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3731			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3732				 freq_range->max_bandwidth_khz,
3733				 reg_get_max_bandwidth(rd, reg_rule));
3734		else
3735			snprintf(bw, sizeof(bw), "%d KHz",
3736				 freq_range->max_bandwidth_khz);
3737
3738		if (reg_rule->flags & NL80211_RRF_DFS)
3739			scnprintf(cac_time, sizeof(cac_time), "%u s",
3740				  reg_rule->dfs_cac_ms/1000);
3741		else
3742			scnprintf(cac_time, sizeof(cac_time), "N/A");
3743
3744
3745		/*
3746		 * There may not be documentation for max antenna gain
3747		 * in certain regions
3748		 */
3749		if (power_rule->max_antenna_gain)
3750			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3751				freq_range->start_freq_khz,
3752				freq_range->end_freq_khz,
3753				bw,
3754				power_rule->max_antenna_gain,
3755				power_rule->max_eirp,
3756				cac_time);
3757		else
3758			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3759				freq_range->start_freq_khz,
3760				freq_range->end_freq_khz,
3761				bw,
3762				power_rule->max_eirp,
3763				cac_time);
3764	}
3765}
3766
3767bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3768{
3769	switch (dfs_region) {
3770	case NL80211_DFS_UNSET:
3771	case NL80211_DFS_FCC:
3772	case NL80211_DFS_ETSI:
3773	case NL80211_DFS_JP:
3774		return true;
3775	default:
3776		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3777		return false;
3778	}
3779}
3780
3781static void print_regdomain(const struct ieee80211_regdomain *rd)
3782{
3783	struct regulatory_request *lr = get_last_request();
3784
3785	if (is_intersected_alpha2(rd->alpha2)) {
3786		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3787			struct cfg80211_registered_device *rdev;
3788			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3789			if (rdev) {
3790				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3791					rdev->country_ie_alpha2[0],
3792					rdev->country_ie_alpha2[1]);
3793			} else
3794				pr_debug("Current regulatory domain intersected:\n");
3795		} else
3796			pr_debug("Current regulatory domain intersected:\n");
3797	} else if (is_world_regdom(rd->alpha2)) {
3798		pr_debug("World regulatory domain updated:\n");
3799	} else {
3800		if (is_unknown_alpha2(rd->alpha2))
3801			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3802		else {
3803			if (reg_request_cell_base(lr))
3804				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3805					rd->alpha2[0], rd->alpha2[1]);
3806			else
3807				pr_debug("Regulatory domain changed to country: %c%c\n",
3808					rd->alpha2[0], rd->alpha2[1]);
3809		}
3810	}
3811
3812	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3813	print_rd_rules(rd);
3814}
3815
3816static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3817{
3818	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3819	print_rd_rules(rd);
3820}
3821
3822static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3823{
3824	if (!is_world_regdom(rd->alpha2))
3825		return -EINVAL;
3826	update_world_regdomain(rd);
3827	return 0;
3828}
3829
3830static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3831			   struct regulatory_request *user_request)
3832{
3833	const struct ieee80211_regdomain *intersected_rd = NULL;
3834
3835	if (!regdom_changes(rd->alpha2))
3836		return -EALREADY;
3837
3838	if (!is_valid_rd(rd)) {
3839		pr_err("Invalid regulatory domain detected: %c%c\n",
3840		       rd->alpha2[0], rd->alpha2[1]);
3841		print_regdomain_info(rd);
3842		return -EINVAL;
3843	}
3844
3845	if (!user_request->intersect) {
3846		reset_regdomains(false, rd);
3847		return 0;
3848	}
3849
3850	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3851	if (!intersected_rd)
3852		return -EINVAL;
3853
3854	kfree(rd);
3855	rd = NULL;
3856	reset_regdomains(false, intersected_rd);
3857
3858	return 0;
3859}
3860
3861static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3862			     struct regulatory_request *driver_request)
3863{
3864	const struct ieee80211_regdomain *regd;
3865	const struct ieee80211_regdomain *intersected_rd = NULL;
3866	const struct ieee80211_regdomain *tmp = NULL;
3867	struct wiphy *request_wiphy;
3868
3869	if (is_world_regdom(rd->alpha2))
3870		return -EINVAL;
3871
3872	if (!regdom_changes(rd->alpha2))
3873		return -EALREADY;
3874
3875	if (!is_valid_rd(rd)) {
3876		pr_err("Invalid regulatory domain detected: %c%c\n",
3877		       rd->alpha2[0], rd->alpha2[1]);
3878		print_regdomain_info(rd);
3879		return -EINVAL;
3880	}
3881
3882	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3883	if (!request_wiphy)
3884		return -ENODEV;
3885
3886	if (!driver_request->intersect) {
3887		ASSERT_RTNL();
3888		wiphy_lock(request_wiphy);
3889		if (request_wiphy->regd)
3890			tmp = get_wiphy_regdom(request_wiphy);
3891
3892		regd = reg_copy_regd(rd);
3893		if (IS_ERR(regd)) {
3894			wiphy_unlock(request_wiphy);
3895			return PTR_ERR(regd);
3896		}
3897
3898		rcu_assign_pointer(request_wiphy->regd, regd);
3899		rcu_free_regdom(tmp);
3900		wiphy_unlock(request_wiphy);
3901		reset_regdomains(false, rd);
3902		return 0;
3903	}
3904
3905	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3906	if (!intersected_rd)
3907		return -EINVAL;
3908
3909	/*
3910	 * We can trash what CRDA provided now.
3911	 * However if a driver requested this specific regulatory
3912	 * domain we keep it for its private use
3913	 */
3914	tmp = get_wiphy_regdom(request_wiphy);
3915	rcu_assign_pointer(request_wiphy->regd, rd);
3916	rcu_free_regdom(tmp);
3917
3918	rd = NULL;
3919
3920	reset_regdomains(false, intersected_rd);
3921
3922	return 0;
3923}
3924
3925static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3926				 struct regulatory_request *country_ie_request)
3927{
3928	struct wiphy *request_wiphy;
3929
3930	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3931	    !is_unknown_alpha2(rd->alpha2))
3932		return -EINVAL;
3933
3934	/*
3935	 * Lets only bother proceeding on the same alpha2 if the current
3936	 * rd is non static (it means CRDA was present and was used last)
3937	 * and the pending request came in from a country IE
3938	 */
3939
3940	if (!is_valid_rd(rd)) {
3941		pr_err("Invalid regulatory domain detected: %c%c\n",
3942		       rd->alpha2[0], rd->alpha2[1]);
3943		print_regdomain_info(rd);
3944		return -EINVAL;
3945	}
3946
3947	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3948	if (!request_wiphy)
3949		return -ENODEV;
3950
3951	if (country_ie_request->intersect)
3952		return -EINVAL;
3953
3954	reset_regdomains(false, rd);
3955	return 0;
3956}
3957
3958/*
3959 * Use this call to set the current regulatory domain. Conflicts with
3960 * multiple drivers can be ironed out later. Caller must've already
3961 * kmalloc'd the rd structure.
3962 */
3963int set_regdom(const struct ieee80211_regdomain *rd,
3964	       enum ieee80211_regd_source regd_src)
3965{
3966	struct regulatory_request *lr;
3967	bool user_reset = false;
3968	int r;
3969
3970	if (IS_ERR_OR_NULL(rd))
3971		return -ENODATA;
3972
3973	if (!reg_is_valid_request(rd->alpha2)) {
3974		kfree(rd);
3975		return -EINVAL;
3976	}
3977
3978	if (regd_src == REGD_SOURCE_CRDA)
3979		reset_crda_timeouts();
3980
3981	lr = get_last_request();
3982
3983	/* Note that this doesn't update the wiphys, this is done below */
3984	switch (lr->initiator) {
3985	case NL80211_REGDOM_SET_BY_CORE:
3986		r = reg_set_rd_core(rd);
3987		break;
3988	case NL80211_REGDOM_SET_BY_USER:
3989		cfg80211_save_user_regdom(rd);
3990		r = reg_set_rd_user(rd, lr);
3991		user_reset = true;
3992		break;
3993	case NL80211_REGDOM_SET_BY_DRIVER:
3994		r = reg_set_rd_driver(rd, lr);
3995		break;
3996	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3997		r = reg_set_rd_country_ie(rd, lr);
3998		break;
3999	default:
4000		WARN(1, "invalid initiator %d\n", lr->initiator);
4001		kfree(rd);
4002		return -EINVAL;
4003	}
4004
4005	if (r) {
4006		switch (r) {
4007		case -EALREADY:
4008			reg_set_request_processed();
4009			break;
4010		default:
4011			/* Back to world regulatory in case of errors */
4012			restore_regulatory_settings(user_reset, false);
4013		}
4014
4015		kfree(rd);
4016		return r;
4017	}
4018
4019	/* This would make this whole thing pointless */
4020	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4021		return -EINVAL;
4022
4023	/* update all wiphys now with the new established regulatory domain */
4024	update_all_wiphy_regulatory(lr->initiator);
4025
4026	print_regdomain(get_cfg80211_regdom());
4027
4028	nl80211_send_reg_change_event(lr);
4029
4030	reg_set_request_processed();
4031
4032	return 0;
4033}
4034
4035static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4036				       struct ieee80211_regdomain *rd)
4037{
4038	const struct ieee80211_regdomain *regd;
4039	const struct ieee80211_regdomain *prev_regd;
4040	struct cfg80211_registered_device *rdev;
4041
4042	if (WARN_ON(!wiphy || !rd))
4043		return -EINVAL;
4044
4045	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4046		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4047		return -EPERM;
4048
4049	if (WARN(!is_valid_rd(rd),
4050		 "Invalid regulatory domain detected: %c%c\n",
4051		 rd->alpha2[0], rd->alpha2[1])) {
4052		print_regdomain_info(rd);
4053		return -EINVAL;
4054	}
4055
4056	regd = reg_copy_regd(rd);
4057	if (IS_ERR(regd))
4058		return PTR_ERR(regd);
4059
4060	rdev = wiphy_to_rdev(wiphy);
4061
4062	spin_lock(&reg_requests_lock);
4063	prev_regd = rdev->requested_regd;
4064	rdev->requested_regd = regd;
4065	spin_unlock(&reg_requests_lock);
4066
4067	kfree(prev_regd);
4068	return 0;
4069}
4070
4071int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4072			      struct ieee80211_regdomain *rd)
4073{
4074	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4075
4076	if (ret)
4077		return ret;
4078
4079	schedule_work(&reg_work);
4080	return 0;
4081}
4082EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4083
4084int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4085				   struct ieee80211_regdomain *rd)
4086{
4087	int ret;
4088
4089	ASSERT_RTNL();
4090
4091	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4092	if (ret)
4093		return ret;
4094
4095	/* process the request immediately */
4096	reg_process_self_managed_hint(wiphy);
4097	reg_check_channels();
4098	return 0;
4099}
4100EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4101
4102void wiphy_regulatory_register(struct wiphy *wiphy)
4103{
4104	struct regulatory_request *lr = get_last_request();
4105
4106	/* self-managed devices ignore beacon hints and country IE */
4107	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4108		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4109					   REGULATORY_COUNTRY_IE_IGNORE;
4110
4111		/*
4112		 * The last request may have been received before this
4113		 * registration call. Call the driver notifier if
4114		 * initiator is USER.
4115		 */
4116		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4117			reg_call_notifier(wiphy, lr);
4118	}
4119
4120	if (!reg_dev_ignore_cell_hint(wiphy))
4121		reg_num_devs_support_basehint++;
4122
4123	wiphy_update_regulatory(wiphy, lr->initiator);
4124	wiphy_all_share_dfs_chan_state(wiphy);
4125	reg_process_self_managed_hints();
4126}
4127
4128void wiphy_regulatory_deregister(struct wiphy *wiphy)
4129{
4130	struct wiphy *request_wiphy = NULL;
4131	struct regulatory_request *lr;
4132
4133	lr = get_last_request();
4134
4135	if (!reg_dev_ignore_cell_hint(wiphy))
4136		reg_num_devs_support_basehint--;
4137
4138	rcu_free_regdom(get_wiphy_regdom(wiphy));
4139	RCU_INIT_POINTER(wiphy->regd, NULL);
4140
4141	if (lr)
4142		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4143
4144	if (!request_wiphy || request_wiphy != wiphy)
4145		return;
4146
4147	lr->wiphy_idx = WIPHY_IDX_INVALID;
4148	lr->country_ie_env = ENVIRON_ANY;
4149}
4150
4151/*
4152 * See FCC notices for UNII band definitions
4153 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4154 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4155 */
4156int cfg80211_get_unii(int freq)
4157{
4158	/* UNII-1 */
4159	if (freq >= 5150 && freq <= 5250)
4160		return 0;
4161
4162	/* UNII-2A */
4163	if (freq > 5250 && freq <= 5350)
4164		return 1;
4165
4166	/* UNII-2B */
4167	if (freq > 5350 && freq <= 5470)
4168		return 2;
4169
4170	/* UNII-2C */
4171	if (freq > 5470 && freq <= 5725)
4172		return 3;
4173
4174	/* UNII-3 */
4175	if (freq > 5725 && freq <= 5825)
4176		return 4;
4177
4178	/* UNII-5 */
4179	if (freq > 5925 && freq <= 6425)
4180		return 5;
4181
4182	/* UNII-6 */
4183	if (freq > 6425 && freq <= 6525)
4184		return 6;
4185
4186	/* UNII-7 */
4187	if (freq > 6525 && freq <= 6875)
4188		return 7;
4189
4190	/* UNII-8 */
4191	if (freq > 6875 && freq <= 7125)
4192		return 8;
4193
4194	return -EINVAL;
4195}
4196
4197bool regulatory_indoor_allowed(void)
4198{
4199	return reg_is_indoor;
4200}
4201
4202bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4203{
4204	const struct ieee80211_regdomain *regd = NULL;
4205	const struct ieee80211_regdomain *wiphy_regd = NULL;
4206	bool pre_cac_allowed = false;
4207
4208	rcu_read_lock();
4209
4210	regd = rcu_dereference(cfg80211_regdomain);
4211	wiphy_regd = rcu_dereference(wiphy->regd);
4212	if (!wiphy_regd) {
4213		if (regd->dfs_region == NL80211_DFS_ETSI)
4214			pre_cac_allowed = true;
4215
4216		rcu_read_unlock();
4217
4218		return pre_cac_allowed;
4219	}
4220
4221	if (regd->dfs_region == wiphy_regd->dfs_region &&
4222	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4223		pre_cac_allowed = true;
4224
4225	rcu_read_unlock();
4226
4227	return pre_cac_allowed;
4228}
4229EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4230
4231static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4232{
4233	struct wireless_dev *wdev;
4234	/* If we finished CAC or received radar, we should end any
4235	 * CAC running on the same channels.
4236	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237	 * either all channels are available - those the CAC_FINISHED
4238	 * event has effected another wdev state, or there is a channel
4239	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240	 * event has effected another wdev state.
4241	 * In both cases we should end the CAC on the wdev.
4242	 */
4243	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244		struct cfg80211_chan_def *chandef;
4245
4246		if (!wdev->cac_started)
4247			continue;
4248
4249		/* FIXME: radar detection is tied to link 0 for now */
4250		chandef = wdev_chandef(wdev, 0);
4251		if (!chandef)
4252			continue;
4253
4254		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4255			rdev_end_cac(rdev, wdev->netdev);
4256	}
4257}
4258
4259void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4260				    struct cfg80211_chan_def *chandef,
4261				    enum nl80211_dfs_state dfs_state,
4262				    enum nl80211_radar_event event)
4263{
4264	struct cfg80211_registered_device *rdev;
4265
4266	ASSERT_RTNL();
4267
4268	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4269		return;
4270
4271	for_each_rdev(rdev) {
4272		if (wiphy == &rdev->wiphy)
4273			continue;
4274
4275		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4276			continue;
4277
4278		if (!ieee80211_get_channel(&rdev->wiphy,
4279					   chandef->chan->center_freq))
4280			continue;
4281
4282		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4283
4284		if (event == NL80211_RADAR_DETECTED ||
4285		    event == NL80211_RADAR_CAC_FINISHED) {
4286			cfg80211_sched_dfs_chan_update(rdev);
4287			cfg80211_check_and_end_cac(rdev);
4288		}
4289
4290		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4291	}
4292}
4293
4294static int __init regulatory_init_db(void)
4295{
4296	int err;
4297
4298	/*
4299	 * It's possible that - due to other bugs/issues - cfg80211
4300	 * never called regulatory_init() below, or that it failed;
4301	 * in that case, don't try to do any further work here as
4302	 * it's doomed to lead to crashes.
4303	 */
4304	if (IS_ERR_OR_NULL(reg_pdev))
4305		return -EINVAL;
4306
4307	err = load_builtin_regdb_keys();
4308	if (err) {
4309		platform_device_unregister(reg_pdev);
4310		return err;
4311	}
4312
4313	/* We always try to get an update for the static regdomain */
4314	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4315	if (err) {
4316		if (err == -ENOMEM) {
4317			platform_device_unregister(reg_pdev);
4318			return err;
4319		}
4320		/*
4321		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4322		 * memory which is handled and propagated appropriately above
4323		 * but it can also fail during a netlink_broadcast() or during
4324		 * early boot for call_usermodehelper(). For now treat these
4325		 * errors as non-fatal.
4326		 */
4327		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4328	}
4329
4330	/*
4331	 * Finally, if the user set the module parameter treat it
4332	 * as a user hint.
4333	 */
4334	if (!is_world_regdom(ieee80211_regdom))
4335		regulatory_hint_user(ieee80211_regdom,
4336				     NL80211_USER_REG_HINT_USER);
4337
4338	return 0;
4339}
4340#ifndef MODULE
4341late_initcall(regulatory_init_db);
4342#endif
4343
4344int __init regulatory_init(void)
4345{
4346	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4347	if (IS_ERR(reg_pdev))
4348		return PTR_ERR(reg_pdev);
4349
4350	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4351
4352	user_alpha2[0] = '9';
4353	user_alpha2[1] = '7';
4354
4355#ifdef MODULE
4356	return regulatory_init_db();
4357#else
4358	return 0;
4359#endif
4360}
4361
4362void regulatory_exit(void)
4363{
4364	struct regulatory_request *reg_request, *tmp;
4365	struct reg_beacon *reg_beacon, *btmp;
4366
4367	cancel_work_sync(&reg_work);
4368	cancel_crda_timeout_sync();
4369	cancel_delayed_work_sync(&reg_check_chans);
4370
4371	/* Lock to suppress warnings */
4372	rtnl_lock();
4373	reset_regdomains(true, NULL);
4374	rtnl_unlock();
4375
4376	dev_set_uevent_suppress(&reg_pdev->dev, true);
4377
4378	platform_device_unregister(reg_pdev);
4379
4380	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4381		list_del(&reg_beacon->list);
4382		kfree(reg_beacon);
4383	}
4384
4385	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4386		list_del(&reg_beacon->list);
4387		kfree(reg_beacon);
4388	}
4389
4390	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4391		list_del(&reg_request->list);
4392		kfree(reg_request);
4393	}
4394
4395	if (!IS_ERR_OR_NULL(regdb))
4396		kfree(regdb);
4397	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4398		kfree(cfg80211_user_regdom);
4399
4400	free_regdb_keyring();
4401}