Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2023 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
  60#include <net/cfg80211.h>
  61#include "core.h"
  62#include "reg.h"
  63#include "rdev-ops.h"
  64#include "nl80211.h"
  65
  66/*
  67 * Grace period we give before making sure all current interfaces reside on
  68 * channels allowed by the current regulatory domain.
  69 */
  70#define REG_ENFORCE_GRACE_MS 60000
  71
  72/**
  73 * enum reg_request_treatment - regulatory request treatment
  74 *
  75 * @REG_REQ_OK: continue processing the regulatory request
  76 * @REG_REQ_IGNORE: ignore the regulatory request
  77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78 *	be intersected with the current one.
  79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80 *	regulatory settings, and no further processing is required.
  81 */
  82enum reg_request_treatment {
  83	REG_REQ_OK,
  84	REG_REQ_IGNORE,
  85	REG_REQ_INTERSECT,
  86	REG_REQ_ALREADY_SET,
  87};
  88
  89static struct regulatory_request core_request_world = {
  90	.initiator = NL80211_REGDOM_SET_BY_CORE,
  91	.alpha2[0] = '0',
  92	.alpha2[1] = '0',
  93	.intersect = false,
  94	.processed = true,
  95	.country_ie_env = ENVIRON_ANY,
  96};
  97
  98/*
  99 * Receipt of information from last regulatory request,
 100 * protected by RTNL (and can be accessed with RCU protection)
 101 */
 102static struct regulatory_request __rcu *last_request =
 103	(void __force __rcu *)&core_request_world;
 104
 105/* To trigger userspace events and load firmware */
 106static struct platform_device *reg_pdev;
 107
 108/*
 109 * Central wireless core regulatory domains, we only need two,
 110 * the current one and a world regulatory domain in case we have no
 111 * information to give us an alpha2.
 112 * (protected by RTNL, can be read under RCU)
 113 */
 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115
 116/*
 117 * Number of devices that registered to the core
 118 * that support cellular base station regulatory hints
 119 * (protected by RTNL)
 120 */
 121static int reg_num_devs_support_basehint;
 122
 123/*
 124 * State variable indicating if the platform on which the devices
 125 * are attached is operating in an indoor environment. The state variable
 126 * is relevant for all registered devices.
 127 */
 128static bool reg_is_indoor;
 129static DEFINE_SPINLOCK(reg_indoor_lock);
 130
 131/* Used to track the userspace process controlling the indoor setting */
 132static u32 reg_is_indoor_portid;
 133
 134static void restore_regulatory_settings(bool reset_user, bool cached);
 135static void print_regdomain(const struct ieee80211_regdomain *rd);
 136static void reg_process_hint(struct regulatory_request *reg_request);
 137
 138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 139{
 140	return rcu_dereference_rtnl(cfg80211_regdomain);
 141}
 142
 143/*
 144 * Returns the regulatory domain associated with the wiphy.
 145 *
 146 * Requires any of RTNL, wiphy mutex or RCU protection.
 147 */
 148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 149{
 150	return rcu_dereference_check(wiphy->regd,
 151				     lockdep_is_held(&wiphy->mtx) ||
 152				     lockdep_rtnl_is_held());
 153}
 154EXPORT_SYMBOL(get_wiphy_regdom);
 155
 156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 157{
 158	switch (dfs_region) {
 159	case NL80211_DFS_UNSET:
 160		return "unset";
 161	case NL80211_DFS_FCC:
 162		return "FCC";
 163	case NL80211_DFS_ETSI:
 164		return "ETSI";
 165	case NL80211_DFS_JP:
 166		return "JP";
 167	}
 168	return "Unknown";
 169}
 170
 171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 172{
 173	const struct ieee80211_regdomain *regd = NULL;
 174	const struct ieee80211_regdomain *wiphy_regd = NULL;
 175	enum nl80211_dfs_regions dfs_region;
 176
 177	rcu_read_lock();
 178	regd = get_cfg80211_regdom();
 179	dfs_region = regd->dfs_region;
 180
 181	if (!wiphy)
 182		goto out;
 183
 184	wiphy_regd = get_wiphy_regdom(wiphy);
 185	if (!wiphy_regd)
 186		goto out;
 187
 188	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
 189		dfs_region = wiphy_regd->dfs_region;
 190		goto out;
 191	}
 192
 193	if (wiphy_regd->dfs_region == regd->dfs_region)
 194		goto out;
 195
 196	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 197		 dev_name(&wiphy->dev),
 198		 reg_dfs_region_str(wiphy_regd->dfs_region),
 199		 reg_dfs_region_str(regd->dfs_region));
 200
 201out:
 202	rcu_read_unlock();
 203
 204	return dfs_region;
 205}
 206
 207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 208{
 209	if (!r)
 210		return;
 211	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 212}
 213
 214static struct regulatory_request *get_last_request(void)
 215{
 216	return rcu_dereference_rtnl(last_request);
 217}
 218
 219/* Used to queue up regulatory hints */
 220static LIST_HEAD(reg_requests_list);
 221static DEFINE_SPINLOCK(reg_requests_lock);
 222
 223/* Used to queue up beacon hints for review */
 224static LIST_HEAD(reg_pending_beacons);
 225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
 226
 227/* Used to keep track of processed beacon hints */
 228static LIST_HEAD(reg_beacon_list);
 229
 230struct reg_beacon {
 231	struct list_head list;
 232	struct ieee80211_channel chan;
 233};
 234
 235static void reg_check_chans_work(struct work_struct *work);
 236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 237
 238static void reg_todo(struct work_struct *work);
 239static DECLARE_WORK(reg_work, reg_todo);
 240
 241/* We keep a static world regulatory domain in case of the absence of CRDA */
 242static const struct ieee80211_regdomain world_regdom = {
 243	.n_reg_rules = 8,
 244	.alpha2 =  "00",
 245	.reg_rules = {
 246		/* IEEE 802.11b/g, channels 1..11 */
 247		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 248		/* IEEE 802.11b/g, channels 12..13. */
 249		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 250			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 251		/* IEEE 802.11 channel 14 - Only JP enables
 252		 * this and for 802.11b only */
 253		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 254			NL80211_RRF_NO_IR |
 255			NL80211_RRF_NO_OFDM),
 256		/* IEEE 802.11a, channel 36..48 */
 257		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 258                        NL80211_RRF_NO_IR |
 259                        NL80211_RRF_AUTO_BW),
 260
 261		/* IEEE 802.11a, channel 52..64 - DFS required */
 262		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 263			NL80211_RRF_NO_IR |
 264			NL80211_RRF_AUTO_BW |
 265			NL80211_RRF_DFS),
 266
 267		/* IEEE 802.11a, channel 100..144 - DFS required */
 268		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 269			NL80211_RRF_NO_IR |
 270			NL80211_RRF_DFS),
 271
 272		/* IEEE 802.11a, channel 149..165 */
 273		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 274			NL80211_RRF_NO_IR),
 275
 276		/* IEEE 802.11ad (60GHz), channels 1..3 */
 277		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 278	}
 279};
 280
 281/* protected by RTNL */
 282static const struct ieee80211_regdomain *cfg80211_world_regdom =
 283	&world_regdom;
 284
 285static char *ieee80211_regdom = "00";
 286static char user_alpha2[2];
 287static const struct ieee80211_regdomain *cfg80211_user_regdom;
 288
 289module_param(ieee80211_regdom, charp, 0444);
 290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 291
 292static void reg_free_request(struct regulatory_request *request)
 293{
 294	if (request == &core_request_world)
 295		return;
 296
 297	if (request != get_last_request())
 298		kfree(request);
 299}
 300
 301static void reg_free_last_request(void)
 302{
 303	struct regulatory_request *lr = get_last_request();
 304
 305	if (lr != &core_request_world && lr)
 306		kfree_rcu(lr, rcu_head);
 307}
 308
 309static void reg_update_last_request(struct regulatory_request *request)
 310{
 311	struct regulatory_request *lr;
 312
 313	lr = get_last_request();
 314	if (lr == request)
 315		return;
 316
 317	reg_free_last_request();
 318	rcu_assign_pointer(last_request, request);
 319}
 320
 321static void reset_regdomains(bool full_reset,
 322			     const struct ieee80211_regdomain *new_regdom)
 323{
 324	const struct ieee80211_regdomain *r;
 325
 326	ASSERT_RTNL();
 327
 328	r = get_cfg80211_regdom();
 329
 330	/* avoid freeing static information or freeing something twice */
 331	if (r == cfg80211_world_regdom)
 332		r = NULL;
 333	if (cfg80211_world_regdom == &world_regdom)
 334		cfg80211_world_regdom = NULL;
 335	if (r == &world_regdom)
 336		r = NULL;
 337
 338	rcu_free_regdom(r);
 339	rcu_free_regdom(cfg80211_world_regdom);
 340
 341	cfg80211_world_regdom = &world_regdom;
 342	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 343
 344	if (!full_reset)
 345		return;
 346
 347	reg_update_last_request(&core_request_world);
 348}
 349
 350/*
 351 * Dynamic world regulatory domain requested by the wireless
 352 * core upon initialization
 353 */
 354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 355{
 356	struct regulatory_request *lr;
 357
 358	lr = get_last_request();
 359
 360	WARN_ON(!lr);
 361
 362	reset_regdomains(false, rd);
 363
 364	cfg80211_world_regdom = rd;
 365}
 366
 367bool is_world_regdom(const char *alpha2)
 368{
 369	if (!alpha2)
 370		return false;
 371	return alpha2[0] == '0' && alpha2[1] == '0';
 372}
 373
 374static bool is_alpha2_set(const char *alpha2)
 375{
 376	if (!alpha2)
 377		return false;
 378	return alpha2[0] && alpha2[1];
 379}
 380
 381static bool is_unknown_alpha2(const char *alpha2)
 382{
 383	if (!alpha2)
 384		return false;
 385	/*
 386	 * Special case where regulatory domain was built by driver
 387	 * but a specific alpha2 cannot be determined
 388	 */
 389	return alpha2[0] == '9' && alpha2[1] == '9';
 390}
 391
 392static bool is_intersected_alpha2(const char *alpha2)
 393{
 394	if (!alpha2)
 395		return false;
 396	/*
 397	 * Special case where regulatory domain is the
 398	 * result of an intersection between two regulatory domain
 399	 * structures
 400	 */
 401	return alpha2[0] == '9' && alpha2[1] == '8';
 402}
 403
 404static bool is_an_alpha2(const char *alpha2)
 405{
 406	if (!alpha2)
 407		return false;
 408	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 409}
 410
 411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 412{
 413	if (!alpha2_x || !alpha2_y)
 414		return false;
 415	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 416}
 417
 418static bool regdom_changes(const char *alpha2)
 419{
 420	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 421
 422	if (!r)
 423		return true;
 424	return !alpha2_equal(r->alpha2, alpha2);
 425}
 426
 427/*
 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 430 * has ever been issued.
 431 */
 432static bool is_user_regdom_saved(void)
 433{
 434	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 435		return false;
 436
 437	/* This would indicate a mistake on the design */
 438	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 439		 "Unexpected user alpha2: %c%c\n",
 440		 user_alpha2[0], user_alpha2[1]))
 441		return false;
 442
 443	return true;
 444}
 445
 446static const struct ieee80211_regdomain *
 447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 448{
 449	struct ieee80211_regdomain *regd;
 450	unsigned int i;
 451
 452	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 453		       GFP_KERNEL);
 454	if (!regd)
 455		return ERR_PTR(-ENOMEM);
 456
 457	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 458
 459	for (i = 0; i < src_regd->n_reg_rules; i++)
 460		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 461		       sizeof(struct ieee80211_reg_rule));
 462
 463	return regd;
 464}
 465
 466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 467{
 468	ASSERT_RTNL();
 469
 470	if (!IS_ERR(cfg80211_user_regdom))
 471		kfree(cfg80211_user_regdom);
 472	cfg80211_user_regdom = reg_copy_regd(rd);
 473}
 474
 475struct reg_regdb_apply_request {
 476	struct list_head list;
 477	const struct ieee80211_regdomain *regdom;
 478};
 479
 480static LIST_HEAD(reg_regdb_apply_list);
 481static DEFINE_MUTEX(reg_regdb_apply_mutex);
 482
 483static void reg_regdb_apply(struct work_struct *work)
 484{
 485	struct reg_regdb_apply_request *request;
 486
 487	rtnl_lock();
 488
 489	mutex_lock(&reg_regdb_apply_mutex);
 490	while (!list_empty(&reg_regdb_apply_list)) {
 491		request = list_first_entry(&reg_regdb_apply_list,
 492					   struct reg_regdb_apply_request,
 493					   list);
 494		list_del(&request->list);
 495
 496		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 497		kfree(request);
 498	}
 499	mutex_unlock(&reg_regdb_apply_mutex);
 500
 501	rtnl_unlock();
 502}
 503
 504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 505
 506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 507{
 508	struct reg_regdb_apply_request *request;
 509
 510	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 511	if (!request) {
 512		kfree(regdom);
 513		return -ENOMEM;
 514	}
 515
 516	request->regdom = regdom;
 517
 518	mutex_lock(&reg_regdb_apply_mutex);
 519	list_add_tail(&request->list, &reg_regdb_apply_list);
 520	mutex_unlock(&reg_regdb_apply_mutex);
 521
 522	schedule_work(&reg_regdb_work);
 523	return 0;
 524}
 525
 526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 527/* Max number of consecutive attempts to communicate with CRDA  */
 528#define REG_MAX_CRDA_TIMEOUTS 10
 529
 530static u32 reg_crda_timeouts;
 531
 532static void crda_timeout_work(struct work_struct *work);
 533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 534
 535static void crda_timeout_work(struct work_struct *work)
 536{
 537	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 538	rtnl_lock();
 539	reg_crda_timeouts++;
 540	restore_regulatory_settings(true, false);
 541	rtnl_unlock();
 542}
 543
 544static void cancel_crda_timeout(void)
 545{
 546	cancel_delayed_work(&crda_timeout);
 547}
 548
 549static void cancel_crda_timeout_sync(void)
 550{
 551	cancel_delayed_work_sync(&crda_timeout);
 552}
 553
 554static void reset_crda_timeouts(void)
 555{
 556	reg_crda_timeouts = 0;
 557}
 558
 559/*
 560 * This lets us keep regulatory code which is updated on a regulatory
 561 * basis in userspace.
 562 */
 563static int call_crda(const char *alpha2)
 564{
 565	char country[12];
 566	char *env[] = { country, NULL };
 567	int ret;
 568
 569	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 570		 alpha2[0], alpha2[1]);
 571
 572	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 573		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 574		return -EINVAL;
 575	}
 576
 577	if (!is_world_regdom((char *) alpha2))
 578		pr_debug("Calling CRDA for country: %c%c\n",
 579			 alpha2[0], alpha2[1]);
 580	else
 581		pr_debug("Calling CRDA to update world regulatory domain\n");
 582
 583	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 584	if (ret)
 585		return ret;
 586
 587	queue_delayed_work(system_power_efficient_wq,
 588			   &crda_timeout, msecs_to_jiffies(3142));
 589	return 0;
 590}
 591#else
 592static inline void cancel_crda_timeout(void) {}
 593static inline void cancel_crda_timeout_sync(void) {}
 594static inline void reset_crda_timeouts(void) {}
 595static inline int call_crda(const char *alpha2)
 596{
 597	return -ENODATA;
 598}
 599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 600
 601/* code to directly load a firmware database through request_firmware */
 602static const struct fwdb_header *regdb;
 603
 604struct fwdb_country {
 605	u8 alpha2[2];
 606	__be16 coll_ptr;
 607	/* this struct cannot be extended */
 608} __packed __aligned(4);
 609
 610struct fwdb_collection {
 611	u8 len;
 612	u8 n_rules;
 613	u8 dfs_region;
 614	/* no optional data yet */
 615	/* aligned to 2, then followed by __be16 array of rule pointers */
 616} __packed __aligned(4);
 617
 618enum fwdb_flags {
 619	FWDB_FLAG_NO_OFDM	= BIT(0),
 620	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
 621	FWDB_FLAG_DFS		= BIT(2),
 622	FWDB_FLAG_NO_IR		= BIT(3),
 623	FWDB_FLAG_AUTO_BW	= BIT(4),
 624};
 625
 626struct fwdb_wmm_ac {
 627	u8 ecw;
 628	u8 aifsn;
 629	__be16 cot;
 630} __packed;
 631
 632struct fwdb_wmm_rule {
 633	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 634	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 635} __packed;
 636
 637struct fwdb_rule {
 638	u8 len;
 639	u8 flags;
 640	__be16 max_eirp;
 641	__be32 start, end, max_bw;
 642	/* start of optional data */
 643	__be16 cac_timeout;
 644	__be16 wmm_ptr;
 645} __packed __aligned(4);
 646
 647#define FWDB_MAGIC 0x52474442
 648#define FWDB_VERSION 20
 649
 650struct fwdb_header {
 651	__be32 magic;
 652	__be32 version;
 653	struct fwdb_country country[];
 654} __packed __aligned(4);
 655
 656static int ecw2cw(int ecw)
 657{
 658	return (1 << ecw) - 1;
 659}
 660
 661static bool valid_wmm(struct fwdb_wmm_rule *rule)
 662{
 663	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 664	int i;
 665
 666	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 667		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 668		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 669		u8 aifsn = ac[i].aifsn;
 670
 671		if (cw_min >= cw_max)
 672			return false;
 673
 674		if (aifsn < 1)
 675			return false;
 676	}
 677
 678	return true;
 679}
 680
 681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 682{
 683	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 684
 685	if ((u8 *)rule + sizeof(rule->len) > data + size)
 686		return false;
 687
 688	/* mandatory fields */
 689	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 690		return false;
 691	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 692		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 693		struct fwdb_wmm_rule *wmm;
 694
 695		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 696			return false;
 697
 698		wmm = (void *)(data + wmm_ptr);
 699
 700		if (!valid_wmm(wmm))
 701			return false;
 702	}
 703	return true;
 704}
 705
 706static bool valid_country(const u8 *data, unsigned int size,
 707			  const struct fwdb_country *country)
 708{
 709	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 710	struct fwdb_collection *coll = (void *)(data + ptr);
 711	__be16 *rules_ptr;
 712	unsigned int i;
 713
 714	/* make sure we can read len/n_rules */
 715	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 716		return false;
 717
 718	/* make sure base struct and all rules fit */
 719	if ((u8 *)coll + ALIGN(coll->len, 2) +
 720	    (coll->n_rules * 2) > data + size)
 721		return false;
 722
 723	/* mandatory fields must exist */
 724	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 725		return false;
 726
 727	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 728
 729	for (i = 0; i < coll->n_rules; i++) {
 730		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 731
 732		if (!valid_rule(data, size, rule_ptr))
 733			return false;
 734	}
 735
 736	return true;
 737}
 738
 739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 740#include <keys/asymmetric-type.h>
 741
 742static struct key *builtin_regdb_keys;
 743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744static int __init load_builtin_regdb_keys(void)
 745{
 746	builtin_regdb_keys =
 747		keyring_alloc(".builtin_regdb_keys",
 748			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 749			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 750			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 751			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 752	if (IS_ERR(builtin_regdb_keys))
 753		return PTR_ERR(builtin_regdb_keys);
 754
 755	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 756
 757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 758	x509_load_certificate_list(shipped_regdb_certs,
 759				   shipped_regdb_certs_len,
 760				   builtin_regdb_keys);
 761#endif
 762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 763	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 764		x509_load_certificate_list(extra_regdb_certs,
 765					   extra_regdb_certs_len,
 766					   builtin_regdb_keys);
 767#endif
 768
 769	return 0;
 770}
 771
 772MODULE_FIRMWARE("regulatory.db.p7s");
 773
 774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 775{
 776	const struct firmware *sig;
 777	bool result;
 778
 779	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 780		return false;
 781
 782	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 783					builtin_regdb_keys,
 784					VERIFYING_UNSPECIFIED_SIGNATURE,
 785					NULL, NULL) == 0;
 786
 787	release_firmware(sig);
 788
 789	return result;
 790}
 791
 792static void free_regdb_keyring(void)
 793{
 794	key_put(builtin_regdb_keys);
 795}
 796#else
 797static int load_builtin_regdb_keys(void)
 798{
 799	return 0;
 800}
 801
 802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 803{
 804	return true;
 805}
 806
 807static void free_regdb_keyring(void)
 808{
 809}
 810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 811
 812static bool valid_regdb(const u8 *data, unsigned int size)
 813{
 814	const struct fwdb_header *hdr = (void *)data;
 815	const struct fwdb_country *country;
 816
 817	if (size < sizeof(*hdr))
 818		return false;
 819
 820	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 821		return false;
 822
 823	if (hdr->version != cpu_to_be32(FWDB_VERSION))
 824		return false;
 825
 826	if (!regdb_has_valid_signature(data, size))
 827		return false;
 828
 829	country = &hdr->country[0];
 830	while ((u8 *)(country + 1) <= data + size) {
 831		if (!country->coll_ptr)
 832			break;
 833		if (!valid_country(data, size, country))
 834			return false;
 835		country++;
 836	}
 837
 838	return true;
 839}
 840
 841static void set_wmm_rule(const struct fwdb_header *db,
 842			 const struct fwdb_country *country,
 843			 const struct fwdb_rule *rule,
 844			 struct ieee80211_reg_rule *rrule)
 845{
 846	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 847	struct fwdb_wmm_rule *wmm;
 848	unsigned int i, wmm_ptr;
 849
 850	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 851	wmm = (void *)((u8 *)db + wmm_ptr);
 852
 853	if (!valid_wmm(wmm)) {
 854		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 855		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 856		       country->alpha2[0], country->alpha2[1]);
 857		return;
 858	}
 859
 860	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 861		wmm_rule->client[i].cw_min =
 862			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 863		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 864		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 865		wmm_rule->client[i].cot =
 866			1000 * be16_to_cpu(wmm->client[i].cot);
 867		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 868		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 869		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 870		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 871	}
 872
 873	rrule->has_wmm = true;
 874}
 875
 876static int __regdb_query_wmm(const struct fwdb_header *db,
 877			     const struct fwdb_country *country, int freq,
 878			     struct ieee80211_reg_rule *rrule)
 879{
 880	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 881	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 882	int i;
 883
 884	for (i = 0; i < coll->n_rules; i++) {
 885		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 886		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 887		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 888
 889		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 890			continue;
 891
 892		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 893		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 894			set_wmm_rule(db, country, rule, rrule);
 895			return 0;
 896		}
 897	}
 898
 899	return -ENODATA;
 900}
 901
 902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 903{
 904	const struct fwdb_header *hdr = regdb;
 905	const struct fwdb_country *country;
 906
 907	if (!regdb)
 908		return -ENODATA;
 909
 910	if (IS_ERR(regdb))
 911		return PTR_ERR(regdb);
 912
 913	country = &hdr->country[0];
 914	while (country->coll_ptr) {
 915		if (alpha2_equal(alpha2, country->alpha2))
 916			return __regdb_query_wmm(regdb, country, freq, rule);
 917
 918		country++;
 919	}
 920
 921	return -ENODATA;
 922}
 923EXPORT_SYMBOL(reg_query_regdb_wmm);
 924
 925static int regdb_query_country(const struct fwdb_header *db,
 926			       const struct fwdb_country *country)
 927{
 928	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 929	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 930	struct ieee80211_regdomain *regdom;
 931	unsigned int i;
 932
 933	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 934			 GFP_KERNEL);
 935	if (!regdom)
 936		return -ENOMEM;
 937
 938	regdom->n_reg_rules = coll->n_rules;
 939	regdom->alpha2[0] = country->alpha2[0];
 940	regdom->alpha2[1] = country->alpha2[1];
 941	regdom->dfs_region = coll->dfs_region;
 942
 943	for (i = 0; i < regdom->n_reg_rules; i++) {
 944		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 945		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 946		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 947		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 948
 949		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 950		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 951		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 952
 953		rrule->power_rule.max_antenna_gain = 0;
 954		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 955
 956		rrule->flags = 0;
 957		if (rule->flags & FWDB_FLAG_NO_OFDM)
 958			rrule->flags |= NL80211_RRF_NO_OFDM;
 959		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 960			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 961		if (rule->flags & FWDB_FLAG_DFS)
 962			rrule->flags |= NL80211_RRF_DFS;
 963		if (rule->flags & FWDB_FLAG_NO_IR)
 964			rrule->flags |= NL80211_RRF_NO_IR;
 965		if (rule->flags & FWDB_FLAG_AUTO_BW)
 966			rrule->flags |= NL80211_RRF_AUTO_BW;
 967
 968		rrule->dfs_cac_ms = 0;
 969
 970		/* handle optional data */
 971		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
 972			rrule->dfs_cac_ms =
 973				1000 * be16_to_cpu(rule->cac_timeout);
 974		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
 975			set_wmm_rule(db, country, rule, rrule);
 976	}
 977
 978	return reg_schedule_apply(regdom);
 979}
 980
 981static int query_regdb(const char *alpha2)
 982{
 983	const struct fwdb_header *hdr = regdb;
 984	const struct fwdb_country *country;
 985
 986	ASSERT_RTNL();
 987
 988	if (IS_ERR(regdb))
 989		return PTR_ERR(regdb);
 990
 991	country = &hdr->country[0];
 992	while (country->coll_ptr) {
 993		if (alpha2_equal(alpha2, country->alpha2))
 994			return regdb_query_country(regdb, country);
 995		country++;
 996	}
 997
 998	return -ENODATA;
 999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003	int set_error = 0;
1004	bool restore = true;
1005	void *db;
1006
1007	if (!fw) {
1008		pr_info("failed to load regulatory.db\n");
1009		set_error = -ENODATA;
1010	} else if (!valid_regdb(fw->data, fw->size)) {
1011		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012		set_error = -EINVAL;
1013	}
1014
1015	rtnl_lock();
1016	if (regdb && !IS_ERR(regdb)) {
1017		/* negative case - a bug
1018		 * positive case - can happen due to race in case of multiple cb's in
1019		 * queue, due to usage of asynchronous callback
1020		 *
1021		 * Either case, just restore and free new db.
1022		 */
1023	} else if (set_error) {
1024		regdb = ERR_PTR(set_error);
1025	} else if (fw) {
1026		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027		if (db) {
1028			regdb = db;
1029			restore = context && query_regdb(context);
1030		} else {
1031			restore = true;
1032		}
1033	}
1034
1035	if (restore)
1036		restore_regulatory_settings(true, false);
1037
1038	rtnl_unlock();
1039
1040	kfree(context);
1041
1042	release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049	int err;
1050
1051	ASSERT_RTNL();
1052
1053	if (regdb)
1054		return query_regdb(alpha2);
1055
1056	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057	if (!alpha2)
1058		return -ENOMEM;
1059
1060	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061				      &reg_pdev->dev, GFP_KERNEL,
1062				      (void *)alpha2, regdb_fw_cb);
1063	if (err)
1064		kfree(alpha2);
1065
1066	return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071	const struct firmware *fw;
1072	void *db;
1073	int err;
1074	const struct ieee80211_regdomain *current_regdomain;
1075	struct regulatory_request *request;
1076
1077	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078	if (err)
1079		return err;
1080
1081	if (!valid_regdb(fw->data, fw->size)) {
1082		err = -ENODATA;
1083		goto out;
1084	}
1085
1086	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087	if (!db) {
1088		err = -ENOMEM;
1089		goto out;
1090	}
1091
1092	rtnl_lock();
1093	if (!IS_ERR_OR_NULL(regdb))
1094		kfree(regdb);
1095	regdb = db;
1096
1097	/* reset regulatory domain */
1098	current_regdomain = get_cfg80211_regdom();
1099
1100	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101	if (!request) {
1102		err = -ENOMEM;
1103		goto out_unlock;
1104	}
1105
1106	request->wiphy_idx = WIPHY_IDX_INVALID;
1107	request->alpha2[0] = current_regdomain->alpha2[0];
1108	request->alpha2[1] = current_regdomain->alpha2[1];
1109	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112	reg_process_hint(request);
1113
1114out_unlock:
1115	rtnl_unlock();
 
1116 out:
1117	release_firmware(fw);
1118	return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123	if (query_regdb_file(request->alpha2) == 0)
1124		return true;
1125
1126	if (call_crda(request->alpha2) == 0)
1127		return true;
1128
1129	return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134	struct regulatory_request *lr = get_last_request();
1135
1136	if (!lr || lr->processed)
1137		return false;
1138
1139	return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144	struct regulatory_request *lr = get_last_request();
1145
1146	/*
1147	 * Follow the driver's regulatory domain, if present, unless a country
1148	 * IE has been processed or a user wants to help complaince further
1149	 */
1150	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152	    wiphy->regd)
1153		return get_wiphy_regdom(wiphy);
1154
1155	return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160				 const struct ieee80211_reg_rule *rule)
1161{
1162	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163	const struct ieee80211_freq_range *freq_range_tmp;
1164	const struct ieee80211_reg_rule *tmp;
1165	u32 start_freq, end_freq, idx, no;
1166
1167	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168		if (rule == &rd->reg_rules[idx])
1169			break;
1170
1171	if (idx == rd->n_reg_rules)
1172		return 0;
1173
1174	/* get start_freq */
1175	no = idx;
1176
1177	while (no) {
1178		tmp = &rd->reg_rules[--no];
1179		freq_range_tmp = &tmp->freq_range;
1180
1181		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182			break;
1183
1184		freq_range = freq_range_tmp;
1185	}
1186
1187	start_freq = freq_range->start_freq_khz;
1188
1189	/* get end_freq */
1190	freq_range = &rule->freq_range;
1191	no = idx;
1192
1193	while (no < rd->n_reg_rules - 1) {
1194		tmp = &rd->reg_rules[++no];
1195		freq_range_tmp = &tmp->freq_range;
1196
1197		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198			break;
1199
1200		freq_range = freq_range_tmp;
1201	}
1202
1203	end_freq = freq_range->end_freq_khz;
1204
1205	return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209				   const struct ieee80211_reg_rule *rule)
1210{
1211	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220	/*
1221	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222	 * are not allowed.
1223	 */
1224	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228	return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235	u32 freq_diff;
1236
1237	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238		return false;
1239
1240	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241		return false;
1242
1243	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246	    freq_range->max_bandwidth_khz > freq_diff)
1247		return false;
1248
1249	return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254	const struct ieee80211_reg_rule *reg_rule = NULL;
1255	unsigned int i;
1256
1257	if (!rd->n_reg_rules)
1258		return false;
1259
1260	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261		return false;
1262
1263	for (i = 0; i < rd->n_reg_rules; i++) {
1264		reg_rule = &rd->reg_rules[i];
1265		if (!is_valid_reg_rule(reg_rule))
1266			return false;
1267	}
1268
1269	return true;
1270}
1271
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 *
1287 * Returns: whether or not the frequency is in the range
1288 */
1289static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290			      u32 freq_khz)
1291{
1292#define ONE_GHZ_IN_KHZ	1000000
1293	/*
1294	 * From 802.11ad: directional multi-gigabit (DMG):
1295	 * Pertaining to operation in a frequency band containing a channel
1296	 * with the Channel starting frequency above 45 GHz.
1297	 */
1298	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301		return true;
1302	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303		return true;
1304	return false;
1305#undef ONE_GHZ_IN_KHZ
1306}
1307
1308/*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313static enum nl80211_dfs_regions
1314reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315			 const enum nl80211_dfs_regions dfs_region2)
1316{
1317	if (dfs_region1 != dfs_region2)
1318		return NL80211_DFS_UNSET;
1319	return dfs_region1;
1320}
1321
1322static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323				    const struct ieee80211_wmm_ac *wmm_ac2,
1324				    struct ieee80211_wmm_ac *intersect)
1325{
1326	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330}
1331
1332/*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
1336static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337			       const struct ieee80211_regdomain *rd2,
1338			       const struct ieee80211_reg_rule *rule1,
1339			       const struct ieee80211_reg_rule *rule2,
1340			       struct ieee80211_reg_rule *intersected_rule)
1341{
1342	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343	struct ieee80211_freq_range *freq_range;
1344	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345	struct ieee80211_power_rule *power_rule;
1346	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347	struct ieee80211_wmm_rule *wmm_rule;
1348	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350	freq_range1 = &rule1->freq_range;
1351	freq_range2 = &rule2->freq_range;
1352	freq_range = &intersected_rule->freq_range;
1353
1354	power_rule1 = &rule1->power_rule;
1355	power_rule2 = &rule2->power_rule;
1356	power_rule = &intersected_rule->power_rule;
1357
1358	wmm_rule1 = &rule1->wmm_rule;
1359	wmm_rule2 = &rule2->wmm_rule;
1360	wmm_rule = &intersected_rule->wmm_rule;
1361
1362	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363					 freq_range2->start_freq_khz);
1364	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365				       freq_range2->end_freq_khz);
1366
1367	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370	if (rule1->flags & NL80211_RRF_AUTO_BW)
1371		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372	if (rule2->flags & NL80211_RRF_AUTO_BW)
1373		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377	intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379	/*
1380	 * In case NL80211_RRF_AUTO_BW requested for both rules
1381	 * set AUTO_BW in intersected rule also. Next we will
1382	 * calculate BW correctly in handle_channel function.
1383	 * In other case remove AUTO_BW flag while we calculate
1384	 * maximum bandwidth correctly and auto calculation is
1385	 * not required.
1386	 */
1387	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388	    (rule2->flags & NL80211_RRF_AUTO_BW))
1389		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390	else
1391		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394	if (freq_range->max_bandwidth_khz > freq_diff)
1395		freq_range->max_bandwidth_khz = freq_diff;
1396
1397	power_rule->max_eirp = min(power_rule1->max_eirp,
1398		power_rule2->max_eirp);
1399	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400		power_rule2->max_antenna_gain);
1401
1402	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403					   rule2->dfs_cac_ms);
1404
1405	if (rule1->has_wmm && rule2->has_wmm) {
1406		u8 ac;
1407
1408		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410						&wmm_rule2->client[ac],
1411						&wmm_rule->client[ac]);
1412			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413						&wmm_rule2->ap[ac],
1414						&wmm_rule->ap[ac]);
1415		}
1416
1417		intersected_rule->has_wmm = true;
1418	} else if (rule1->has_wmm) {
1419		*wmm_rule = *wmm_rule1;
1420		intersected_rule->has_wmm = true;
1421	} else if (rule2->has_wmm) {
1422		*wmm_rule = *wmm_rule2;
1423		intersected_rule->has_wmm = true;
1424	} else {
1425		intersected_rule->has_wmm = false;
1426	}
1427
1428	if (!is_valid_reg_rule(intersected_rule))
1429		return -EINVAL;
1430
1431	return 0;
1432}
1433
1434/* check whether old rule contains new rule */
1435static bool rule_contains(struct ieee80211_reg_rule *r1,
1436			  struct ieee80211_reg_rule *r2)
1437{
1438	/* for simplicity, currently consider only same flags */
1439	if (r1->flags != r2->flags)
1440		return false;
1441
1442	/* verify r1 is more restrictive */
1443	if ((r1->power_rule.max_antenna_gain >
1444	     r2->power_rule.max_antenna_gain) ||
1445	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446		return false;
1447
1448	/* make sure r2's range is contained within r1 */
1449	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451		return false;
1452
1453	/* and finally verify that r1.max_bw >= r2.max_bw */
1454	if (r1->freq_range.max_bandwidth_khz <
1455	    r2->freq_range.max_bandwidth_khz)
1456		return false;
1457
1458	return true;
1459}
1460
1461/* add or extend current rules. do nothing if rule is already contained */
1462static void add_rule(struct ieee80211_reg_rule *rule,
1463		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464{
1465	struct ieee80211_reg_rule *tmp_rule;
1466	int i;
1467
1468	for (i = 0; i < *n_rules; i++) {
1469		tmp_rule = &reg_rules[i];
1470		/* rule is already contained - do nothing */
1471		if (rule_contains(tmp_rule, rule))
1472			return;
1473
1474		/* extend rule if possible */
1475		if (rule_contains(rule, tmp_rule)) {
1476			memcpy(tmp_rule, rule, sizeof(*rule));
1477			return;
1478		}
1479	}
1480
1481	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482	(*n_rules)++;
1483}
1484
1485/**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500static struct ieee80211_regdomain *
1501regdom_intersect(const struct ieee80211_regdomain *rd1,
1502		 const struct ieee80211_regdomain *rd2)
1503{
1504	int r;
1505	unsigned int x, y;
1506	unsigned int num_rules = 0;
1507	const struct ieee80211_reg_rule *rule1, *rule2;
1508	struct ieee80211_reg_rule intersected_rule;
1509	struct ieee80211_regdomain *rd;
1510
1511	if (!rd1 || !rd2)
1512		return NULL;
1513
1514	/*
1515	 * First we get a count of the rules we'll need, then we actually
1516	 * build them. This is to so we can malloc() and free() a
1517	 * regdomain once. The reason we use reg_rules_intersect() here
1518	 * is it will return -EINVAL if the rule computed makes no sense.
1519	 * All rules that do check out OK are valid.
1520	 */
1521
1522	for (x = 0; x < rd1->n_reg_rules; x++) {
1523		rule1 = &rd1->reg_rules[x];
1524		for (y = 0; y < rd2->n_reg_rules; y++) {
1525			rule2 = &rd2->reg_rules[y];
1526			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527						 &intersected_rule))
1528				num_rules++;
1529		}
1530	}
1531
1532	if (!num_rules)
1533		return NULL;
1534
1535	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536	if (!rd)
1537		return NULL;
1538
1539	for (x = 0; x < rd1->n_reg_rules; x++) {
1540		rule1 = &rd1->reg_rules[x];
1541		for (y = 0; y < rd2->n_reg_rules; y++) {
1542			rule2 = &rd2->reg_rules[y];
1543			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544						&intersected_rule);
1545			/*
1546			 * No need to memset here the intersected rule here as
1547			 * we're not using the stack anymore
1548			 */
1549			if (r)
1550				continue;
1551
1552			add_rule(&intersected_rule, rd->reg_rules,
1553				 &rd->n_reg_rules);
1554		}
1555	}
1556
1557	rd->alpha2[0] = '9';
1558	rd->alpha2[1] = '8';
1559	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560						  rd2->dfs_region);
1561
1562	return rd;
1563}
1564
1565/*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
1569static u32 map_regdom_flags(u32 rd_flags)
1570{
1571	u32 channel_flags = 0;
1572	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573		channel_flags |= IEEE80211_CHAN_NO_IR;
1574	if (rd_flags & NL80211_RRF_DFS)
1575		channel_flags |= IEEE80211_CHAN_RADAR;
1576	if (rd_flags & NL80211_RRF_NO_OFDM)
1577		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586	if (rd_flags & NL80211_RRF_NO_80MHZ)
1587		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588	if (rd_flags & NL80211_RRF_NO_160MHZ)
1589		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590	if (rd_flags & NL80211_RRF_NO_HE)
1591		channel_flags |= IEEE80211_CHAN_NO_HE;
1592	if (rd_flags & NL80211_RRF_NO_320MHZ)
1593		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594	if (rd_flags & NL80211_RRF_NO_EHT)
1595		channel_flags |= IEEE80211_CHAN_NO_EHT;
1596	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598	if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT)
1599		channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT;
1600	if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT)
1601		channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT;
1602	if (rd_flags & NL80211_RRF_PSD)
1603		channel_flags |= IEEE80211_CHAN_PSD;
1604	return channel_flags;
1605}
1606
1607static const struct ieee80211_reg_rule *
1608freq_reg_info_regd(u32 center_freq,
1609		   const struct ieee80211_regdomain *regd, u32 bw)
1610{
1611	int i;
1612	bool band_rule_found = false;
1613	bool bw_fits = false;
1614
1615	if (!regd)
1616		return ERR_PTR(-EINVAL);
1617
1618	for (i = 0; i < regd->n_reg_rules; i++) {
1619		const struct ieee80211_reg_rule *rr;
1620		const struct ieee80211_freq_range *fr = NULL;
1621
1622		rr = &regd->reg_rules[i];
1623		fr = &rr->freq_range;
1624
1625		/*
1626		 * We only need to know if one frequency rule was
1627		 * in center_freq's band, that's enough, so let's
1628		 * not overwrite it once found
1629		 */
1630		if (!band_rule_found)
1631			band_rule_found = freq_in_rule_band(fr, center_freq);
1632
1633		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1634
1635		if (band_rule_found && bw_fits)
1636			return rr;
1637	}
1638
1639	if (!band_rule_found)
1640		return ERR_PTR(-ERANGE);
1641
1642	return ERR_PTR(-EINVAL);
1643}
1644
1645static const struct ieee80211_reg_rule *
1646__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1647{
1648	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1649	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1650	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1651	int i = ARRAY_SIZE(bws) - 1;
1652	u32 bw;
1653
1654	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1655		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1656		if (!IS_ERR(reg_rule))
1657			return reg_rule;
1658	}
1659
1660	return reg_rule;
1661}
1662
1663const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1664					       u32 center_freq)
1665{
1666	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1667
1668	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1669}
1670EXPORT_SYMBOL(freq_reg_info);
1671
1672const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1673{
1674	switch (initiator) {
1675	case NL80211_REGDOM_SET_BY_CORE:
1676		return "core";
1677	case NL80211_REGDOM_SET_BY_USER:
1678		return "user";
1679	case NL80211_REGDOM_SET_BY_DRIVER:
1680		return "driver";
1681	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1682		return "country element";
1683	default:
1684		WARN_ON(1);
1685		return "bug";
1686	}
1687}
1688EXPORT_SYMBOL(reg_initiator_name);
1689
1690static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1691					  const struct ieee80211_reg_rule *reg_rule,
1692					  const struct ieee80211_channel *chan)
1693{
1694	const struct ieee80211_freq_range *freq_range = NULL;
1695	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1696	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1697
1698	freq_range = &reg_rule->freq_range;
1699
1700	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1701	center_freq_khz = ieee80211_channel_to_khz(chan);
1702	/* Check if auto calculation requested */
1703	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1704		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1705
1706	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1707	if (!cfg80211_does_bw_fit_range(freq_range,
1708					center_freq_khz,
1709					MHZ_TO_KHZ(10)))
1710		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1711	if (!cfg80211_does_bw_fit_range(freq_range,
1712					center_freq_khz,
1713					MHZ_TO_KHZ(20)))
1714		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1715
1716	if (is_s1g) {
1717		/* S1G is strict about non overlapping channels. We can
1718		 * calculate which bandwidth is allowed per channel by finding
1719		 * the largest bandwidth which cleanly divides the freq_range.
1720		 */
1721		int edge_offset;
1722		int ch_bw = max_bandwidth_khz;
1723
1724		while (ch_bw) {
1725			edge_offset = (center_freq_khz - ch_bw / 2) -
1726				      freq_range->start_freq_khz;
1727			if (edge_offset % ch_bw == 0) {
1728				switch (KHZ_TO_MHZ(ch_bw)) {
1729				case 1:
1730					bw_flags |= IEEE80211_CHAN_1MHZ;
1731					break;
1732				case 2:
1733					bw_flags |= IEEE80211_CHAN_2MHZ;
1734					break;
1735				case 4:
1736					bw_flags |= IEEE80211_CHAN_4MHZ;
1737					break;
1738				case 8:
1739					bw_flags |= IEEE80211_CHAN_8MHZ;
1740					break;
1741				case 16:
1742					bw_flags |= IEEE80211_CHAN_16MHZ;
1743					break;
1744				default:
1745					/* If we got here, no bandwidths fit on
1746					 * this frequency, ie. band edge.
1747					 */
1748					bw_flags |= IEEE80211_CHAN_DISABLED;
1749					break;
1750				}
1751				break;
1752			}
1753			ch_bw /= 2;
1754		}
1755	} else {
1756		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1757			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1759			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1760		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1761			bw_flags |= IEEE80211_CHAN_NO_HT40;
1762		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1763			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1764		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1765			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1766		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1767			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1768	}
1769	return bw_flags;
1770}
1771
1772static void handle_channel_single_rule(struct wiphy *wiphy,
1773				       enum nl80211_reg_initiator initiator,
1774				       struct ieee80211_channel *chan,
1775				       u32 flags,
1776				       struct regulatory_request *lr,
1777				       struct wiphy *request_wiphy,
1778				       const struct ieee80211_reg_rule *reg_rule)
 
1779{
1780	u32 bw_flags = 0;
 
1781	const struct ieee80211_power_rule *power_rule = NULL;
 
 
1782	const struct ieee80211_regdomain *regd;
1783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	regd = reg_get_regdomain(wiphy);
1785
1786	power_rule = &reg_rule->power_rule;
1787	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1788
1789	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1790	    request_wiphy && request_wiphy == wiphy &&
1791	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1792		/*
1793		 * This guarantees the driver's requested regulatory domain
1794		 * will always be used as a base for further regulatory
1795		 * settings
1796		 */
1797		chan->flags = chan->orig_flags =
1798			map_regdom_flags(reg_rule->flags) | bw_flags;
1799		chan->max_antenna_gain = chan->orig_mag =
1800			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1801		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1802			(int) MBM_TO_DBM(power_rule->max_eirp);
1803
1804		if (chan->flags & IEEE80211_CHAN_RADAR) {
1805			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806			if (reg_rule->dfs_cac_ms)
1807				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1808		}
1809
1810		if (chan->flags & IEEE80211_CHAN_PSD)
1811			chan->psd = reg_rule->psd;
1812
1813		return;
1814	}
1815
1816	chan->dfs_state = NL80211_DFS_USABLE;
1817	chan->dfs_state_entered = jiffies;
1818
1819	chan->beacon_found = false;
1820	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1821	chan->max_antenna_gain =
1822		min_t(int, chan->orig_mag,
1823		      MBI_TO_DBI(power_rule->max_antenna_gain));
1824	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1825
1826	if (chan->flags & IEEE80211_CHAN_RADAR) {
1827		if (reg_rule->dfs_cac_ms)
1828			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1829		else
1830			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1831	}
1832
1833	if (chan->flags & IEEE80211_CHAN_PSD)
1834		chan->psd = reg_rule->psd;
1835
1836	if (chan->orig_mpwr) {
1837		/*
1838		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1839		 * will always follow the passed country IE power settings.
1840		 */
1841		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1842		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1843			chan->max_power = chan->max_reg_power;
1844		else
1845			chan->max_power = min(chan->orig_mpwr,
1846					      chan->max_reg_power);
1847	} else
1848		chan->max_power = chan->max_reg_power;
1849}
1850
1851static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1852					  enum nl80211_reg_initiator initiator,
1853					  struct ieee80211_channel *chan,
1854					  u32 flags,
1855					  struct regulatory_request *lr,
1856					  struct wiphy *request_wiphy,
1857					  const struct ieee80211_reg_rule *rrule1,
1858					  const struct ieee80211_reg_rule *rrule2,
1859					  struct ieee80211_freq_range *comb_range)
1860{
1861	u32 bw_flags1 = 0;
1862	u32 bw_flags2 = 0;
1863	const struct ieee80211_power_rule *power_rule1 = NULL;
1864	const struct ieee80211_power_rule *power_rule2 = NULL;
1865	const struct ieee80211_regdomain *regd;
1866
1867	regd = reg_get_regdomain(wiphy);
1868
1869	power_rule1 = &rrule1->power_rule;
1870	power_rule2 = &rrule2->power_rule;
1871	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1872	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1873
1874	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1875	    request_wiphy && request_wiphy == wiphy &&
1876	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1877		/* This guarantees the driver's requested regulatory domain
1878		 * will always be used as a base for further regulatory
1879		 * settings
1880		 */
1881		chan->flags =
1882			map_regdom_flags(rrule1->flags) |
1883			map_regdom_flags(rrule2->flags) |
1884			bw_flags1 |
1885			bw_flags2;
1886		chan->orig_flags = chan->flags;
1887		chan->max_antenna_gain =
1888			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1889			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1890		chan->orig_mag = chan->max_antenna_gain;
1891		chan->max_reg_power =
1892			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1893			      MBM_TO_DBM(power_rule2->max_eirp));
1894		chan->max_power = chan->max_reg_power;
1895		chan->orig_mpwr = chan->max_reg_power;
1896
1897		if (chan->flags & IEEE80211_CHAN_RADAR) {
1898			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1899			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1900				chan->dfs_cac_ms = max_t(unsigned int,
1901							 rrule1->dfs_cac_ms,
1902							 rrule2->dfs_cac_ms);
1903		}
1904
1905		if ((rrule1->flags & NL80211_RRF_PSD) &&
1906		    (rrule2->flags & NL80211_RRF_PSD))
1907			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1908		else
1909			chan->flags &= ~NL80211_RRF_PSD;
1910
1911		return;
1912	}
1913
1914	chan->dfs_state = NL80211_DFS_USABLE;
1915	chan->dfs_state_entered = jiffies;
1916
1917	chan->beacon_found = false;
1918	chan->flags = flags | bw_flags1 | bw_flags2 |
1919		      map_regdom_flags(rrule1->flags) |
1920		      map_regdom_flags(rrule2->flags);
1921
1922	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1923	 * (otherwise no adj. rule case), recheck therefore
1924	 */
1925	if (cfg80211_does_bw_fit_range(comb_range,
1926				       ieee80211_channel_to_khz(chan),
1927				       MHZ_TO_KHZ(10)))
1928		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1929	if (cfg80211_does_bw_fit_range(comb_range,
1930				       ieee80211_channel_to_khz(chan),
1931				       MHZ_TO_KHZ(20)))
1932		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1933
1934	chan->max_antenna_gain =
1935		min_t(int, chan->orig_mag,
1936		      min_t(int,
1937			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1938			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1939	chan->max_reg_power = min_t(int,
1940				    MBM_TO_DBM(power_rule1->max_eirp),
1941				    MBM_TO_DBM(power_rule2->max_eirp));
1942
1943	if (chan->flags & IEEE80211_CHAN_RADAR) {
1944		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1945			chan->dfs_cac_ms = max_t(unsigned int,
1946						 rrule1->dfs_cac_ms,
1947						 rrule2->dfs_cac_ms);
1948		else
1949			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1950	}
1951
1952	if (chan->orig_mpwr) {
1953		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1954		 * will always follow the passed country IE power settings.
1955		 */
1956		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1957		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1958			chan->max_power = chan->max_reg_power;
1959		else
1960			chan->max_power = min(chan->orig_mpwr,
1961					      chan->max_reg_power);
1962	} else {
1963		chan->max_power = chan->max_reg_power;
1964	}
1965}
1966
1967/* Note that right now we assume the desired channel bandwidth
1968 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1969 * per channel, the primary and the extension channel).
1970 */
1971static void handle_channel(struct wiphy *wiphy,
1972			   enum nl80211_reg_initiator initiator,
1973			   struct ieee80211_channel *chan)
1974{
1975	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1976	struct regulatory_request *lr = get_last_request();
1977	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1978	const struct ieee80211_reg_rule *rrule = NULL;
1979	const struct ieee80211_reg_rule *rrule1 = NULL;
1980	const struct ieee80211_reg_rule *rrule2 = NULL;
1981
1982	u32 flags = chan->orig_flags;
1983
1984	rrule = freq_reg_info(wiphy, orig_chan_freq);
1985	if (IS_ERR(rrule)) {
1986		/* check for adjacent match, therefore get rules for
1987		 * chan - 20 MHz and chan + 20 MHz and test
1988		 * if reg rules are adjacent
1989		 */
1990		rrule1 = freq_reg_info(wiphy,
1991				       orig_chan_freq - MHZ_TO_KHZ(20));
1992		rrule2 = freq_reg_info(wiphy,
1993				       orig_chan_freq + MHZ_TO_KHZ(20));
1994		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1995			struct ieee80211_freq_range comb_range;
1996
1997			if (rrule1->freq_range.end_freq_khz !=
1998			    rrule2->freq_range.start_freq_khz)
1999				goto disable_chan;
2000
2001			comb_range.start_freq_khz =
2002				rrule1->freq_range.start_freq_khz;
2003			comb_range.end_freq_khz =
2004				rrule2->freq_range.end_freq_khz;
2005			comb_range.max_bandwidth_khz =
2006				min_t(u32,
2007				      rrule1->freq_range.max_bandwidth_khz,
2008				      rrule2->freq_range.max_bandwidth_khz);
2009
2010			if (!cfg80211_does_bw_fit_range(&comb_range,
2011							orig_chan_freq,
2012							MHZ_TO_KHZ(20)))
2013				goto disable_chan;
2014
2015			handle_channel_adjacent_rules(wiphy, initiator, chan,
2016						      flags, lr, request_wiphy,
2017						      rrule1, rrule2,
2018						      &comb_range);
2019			return;
2020		}
2021
2022disable_chan:
2023		/* We will disable all channels that do not match our
2024		 * received regulatory rule unless the hint is coming
2025		 * from a Country IE and the Country IE had no information
2026		 * about a band. The IEEE 802.11 spec allows for an AP
2027		 * to send only a subset of the regulatory rules allowed,
2028		 * so an AP in the US that only supports 2.4 GHz may only send
2029		 * a country IE with information for the 2.4 GHz band
2030		 * while 5 GHz is still supported.
2031		 */
2032		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2033		    PTR_ERR(rrule) == -ERANGE)
2034			return;
2035
2036		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2037		    request_wiphy && request_wiphy == wiphy &&
2038		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2039			pr_debug("Disabling freq %d.%03d MHz for good\n",
2040				 chan->center_freq, chan->freq_offset);
2041			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2042			chan->flags = chan->orig_flags;
2043		} else {
2044			pr_debug("Disabling freq %d.%03d MHz\n",
2045				 chan->center_freq, chan->freq_offset);
2046			chan->flags |= IEEE80211_CHAN_DISABLED;
2047		}
2048		return;
2049	}
2050
2051	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2052				   request_wiphy, rrule);
2053}
2054
2055static void handle_band(struct wiphy *wiphy,
2056			enum nl80211_reg_initiator initiator,
2057			struct ieee80211_supported_band *sband)
2058{
2059	unsigned int i;
2060
2061	if (!sband)
2062		return;
2063
2064	for (i = 0; i < sband->n_channels; i++)
2065		handle_channel(wiphy, initiator, &sband->channels[i]);
2066}
2067
2068static bool reg_request_cell_base(struct regulatory_request *request)
2069{
2070	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2071		return false;
2072	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2073}
2074
2075bool reg_last_request_cell_base(void)
2076{
2077	return reg_request_cell_base(get_last_request());
2078}
2079
2080#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2081/* Core specific check */
2082static enum reg_request_treatment
2083reg_ignore_cell_hint(struct regulatory_request *pending_request)
2084{
2085	struct regulatory_request *lr = get_last_request();
2086
2087	if (!reg_num_devs_support_basehint)
2088		return REG_REQ_IGNORE;
2089
2090	if (reg_request_cell_base(lr) &&
2091	    !regdom_changes(pending_request->alpha2))
2092		return REG_REQ_ALREADY_SET;
2093
2094	return REG_REQ_OK;
2095}
2096
2097/* Device specific check */
2098static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2099{
2100	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2101}
2102#else
2103static enum reg_request_treatment
2104reg_ignore_cell_hint(struct regulatory_request *pending_request)
2105{
2106	return REG_REQ_IGNORE;
2107}
2108
2109static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2110{
2111	return true;
2112}
2113#endif
2114
2115static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2116{
2117	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2118	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119		return true;
2120	return false;
2121}
2122
2123static bool ignore_reg_update(struct wiphy *wiphy,
2124			      enum nl80211_reg_initiator initiator)
2125{
2126	struct regulatory_request *lr = get_last_request();
2127
2128	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2129		return true;
2130
2131	if (!lr) {
2132		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2133			 reg_initiator_name(initiator));
2134		return true;
2135	}
2136
2137	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2138	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2139		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2140			 reg_initiator_name(initiator));
2141		return true;
2142	}
2143
2144	/*
2145	 * wiphy->regd will be set once the device has its own
2146	 * desired regulatory domain set
2147	 */
2148	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2149	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2150	    !is_world_regdom(lr->alpha2)) {
2151		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2152			 reg_initiator_name(initiator));
2153		return true;
2154	}
2155
2156	if (reg_request_cell_base(lr))
2157		return reg_dev_ignore_cell_hint(wiphy);
2158
2159	return false;
2160}
2161
2162static bool reg_is_world_roaming(struct wiphy *wiphy)
2163{
2164	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2165	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2166	struct regulatory_request *lr = get_last_request();
2167
2168	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2169		return true;
2170
2171	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2172	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2173		return true;
2174
2175	return false;
2176}
2177
2178static void reg_call_notifier(struct wiphy *wiphy,
2179			      struct regulatory_request *request)
2180{
2181	if (wiphy->reg_notifier)
2182		wiphy->reg_notifier(wiphy, request);
2183}
2184
2185static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2186			      struct reg_beacon *reg_beacon)
2187{
2188	struct ieee80211_supported_band *sband;
2189	struct ieee80211_channel *chan;
2190	bool channel_changed = false;
2191	struct ieee80211_channel chan_before;
2192	struct regulatory_request *lr = get_last_request();
2193
2194	sband = wiphy->bands[reg_beacon->chan.band];
2195	chan = &sband->channels[chan_idx];
2196
2197	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2198		return;
2199
2200	if (chan->beacon_found)
2201		return;
2202
2203	chan->beacon_found = true;
2204
2205	if (!reg_is_world_roaming(wiphy))
2206		return;
2207
2208	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2209		return;
2210
2211	chan_before = *chan;
2212
2213	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2214		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2215		channel_changed = true;
2216	}
2217
2218	if (channel_changed) {
2219		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2220		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2221			reg_call_notifier(wiphy, lr);
2222	}
2223}
2224
2225/*
2226 * Called when a scan on a wiphy finds a beacon on
2227 * new channel
2228 */
2229static void wiphy_update_new_beacon(struct wiphy *wiphy,
2230				    struct reg_beacon *reg_beacon)
2231{
2232	unsigned int i;
2233	struct ieee80211_supported_band *sband;
2234
2235	if (!wiphy->bands[reg_beacon->chan.band])
2236		return;
2237
2238	sband = wiphy->bands[reg_beacon->chan.band];
2239
2240	for (i = 0; i < sband->n_channels; i++)
2241		handle_reg_beacon(wiphy, i, reg_beacon);
2242}
2243
2244/*
2245 * Called upon reg changes or a new wiphy is added
2246 */
2247static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2248{
2249	unsigned int i;
2250	struct ieee80211_supported_band *sband;
2251	struct reg_beacon *reg_beacon;
2252
2253	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2254		if (!wiphy->bands[reg_beacon->chan.band])
2255			continue;
2256		sband = wiphy->bands[reg_beacon->chan.band];
2257		for (i = 0; i < sband->n_channels; i++)
2258			handle_reg_beacon(wiphy, i, reg_beacon);
2259	}
2260}
2261
2262/* Reap the advantages of previously found beacons */
2263static void reg_process_beacons(struct wiphy *wiphy)
2264{
2265	/*
2266	 * Means we are just firing up cfg80211, so no beacons would
2267	 * have been processed yet.
2268	 */
2269	if (!last_request)
2270		return;
2271	wiphy_update_beacon_reg(wiphy);
2272}
2273
2274static bool is_ht40_allowed(struct ieee80211_channel *chan)
2275{
2276	if (!chan)
2277		return false;
2278	if (chan->flags & IEEE80211_CHAN_DISABLED)
2279		return false;
2280	/* This would happen when regulatory rules disallow HT40 completely */
2281	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2282		return false;
2283	return true;
2284}
2285
2286static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2287					 struct ieee80211_channel *channel)
2288{
2289	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2290	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2291	const struct ieee80211_regdomain *regd;
2292	unsigned int i;
2293	u32 flags;
2294
2295	if (!is_ht40_allowed(channel)) {
2296		channel->flags |= IEEE80211_CHAN_NO_HT40;
2297		return;
2298	}
2299
2300	/*
2301	 * We need to ensure the extension channels exist to
2302	 * be able to use HT40- or HT40+, this finds them (or not)
2303	 */
2304	for (i = 0; i < sband->n_channels; i++) {
2305		struct ieee80211_channel *c = &sband->channels[i];
2306
2307		if (c->center_freq == (channel->center_freq - 20))
2308			channel_before = c;
2309		if (c->center_freq == (channel->center_freq + 20))
2310			channel_after = c;
2311	}
2312
2313	flags = 0;
2314	regd = get_wiphy_regdom(wiphy);
2315	if (regd) {
2316		const struct ieee80211_reg_rule *reg_rule =
2317			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2318					   regd, MHZ_TO_KHZ(20));
2319
2320		if (!IS_ERR(reg_rule))
2321			flags = reg_rule->flags;
2322	}
2323
2324	/*
2325	 * Please note that this assumes target bandwidth is 20 MHz,
2326	 * if that ever changes we also need to change the below logic
2327	 * to include that as well.
2328	 */
2329	if (!is_ht40_allowed(channel_before) ||
2330	    flags & NL80211_RRF_NO_HT40MINUS)
2331		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2332	else
2333		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2334
2335	if (!is_ht40_allowed(channel_after) ||
2336	    flags & NL80211_RRF_NO_HT40PLUS)
2337		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2338	else
2339		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2340}
2341
2342static void reg_process_ht_flags_band(struct wiphy *wiphy,
2343				      struct ieee80211_supported_band *sband)
2344{
2345	unsigned int i;
2346
2347	if (!sband)
2348		return;
2349
2350	for (i = 0; i < sband->n_channels; i++)
2351		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2352}
2353
2354static void reg_process_ht_flags(struct wiphy *wiphy)
2355{
2356	enum nl80211_band band;
2357
2358	if (!wiphy)
2359		return;
2360
2361	for (band = 0; band < NUM_NL80211_BANDS; band++)
2362		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2363}
2364
 
 
 
 
 
 
 
2365static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2366{
2367	struct cfg80211_chan_def chandef = {};
2368	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2369	enum nl80211_iftype iftype;
2370	bool ret;
2371	int link;
2372
 
2373	iftype = wdev->iftype;
2374
2375	/* make sure the interface is active */
2376	if (!wdev->netdev || !netif_running(wdev->netdev))
2377		return true;
2378
2379	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2380		struct ieee80211_channel *chan;
2381
2382		if (!wdev->valid_links && link > 0)
2383			break;
2384		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2385			continue;
2386		switch (iftype) {
2387		case NL80211_IFTYPE_AP:
2388		case NL80211_IFTYPE_P2P_GO:
2389			if (!wdev->links[link].ap.beacon_interval)
2390				continue;
2391			chandef = wdev->links[link].ap.chandef;
2392			break;
2393		case NL80211_IFTYPE_MESH_POINT:
2394			if (!wdev->u.mesh.beacon_interval)
2395				continue;
2396			chandef = wdev->u.mesh.chandef;
2397			break;
2398		case NL80211_IFTYPE_ADHOC:
2399			if (!wdev->u.ibss.ssid_len)
2400				continue;
2401			chandef = wdev->u.ibss.chandef;
2402			break;
2403		case NL80211_IFTYPE_STATION:
2404		case NL80211_IFTYPE_P2P_CLIENT:
2405			/* Maybe we could consider disabling that link only? */
2406			if (!wdev->links[link].client.current_bss)
2407				continue;
2408
2409			chan = wdev->links[link].client.current_bss->pub.channel;
2410			if (!chan)
2411				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2412
2413			if (!rdev->ops->get_channel ||
2414			    rdev_get_channel(rdev, wdev, link, &chandef))
2415				cfg80211_chandef_create(&chandef, chan,
2416							NL80211_CHAN_NO_HT);
2417			break;
2418		case NL80211_IFTYPE_MONITOR:
2419		case NL80211_IFTYPE_AP_VLAN:
2420		case NL80211_IFTYPE_P2P_DEVICE:
2421			/* no enforcement required */
2422			break;
2423		case NL80211_IFTYPE_OCB:
2424			if (!wdev->u.ocb.chandef.chan)
2425				continue;
2426			chandef = wdev->u.ocb.chandef;
2427			break;
2428		case NL80211_IFTYPE_NAN:
2429			/* we have no info, but NAN is also pretty universal */
2430			continue;
2431		default:
2432			/* others not implemented for now */
2433			WARN_ON_ONCE(1);
2434			break;
2435		}
2436
2437		switch (iftype) {
2438		case NL80211_IFTYPE_AP:
2439		case NL80211_IFTYPE_P2P_GO:
2440		case NL80211_IFTYPE_ADHOC:
2441		case NL80211_IFTYPE_MESH_POINT:
2442			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2443							    iftype);
2444			if (!ret)
2445				return ret;
2446			break;
2447		case NL80211_IFTYPE_STATION:
2448		case NL80211_IFTYPE_P2P_CLIENT:
2449			ret = cfg80211_chandef_usable(wiphy, &chandef,
2450						      IEEE80211_CHAN_DISABLED);
2451			if (!ret)
2452				return ret;
2453			break;
2454		default:
2455			break;
2456		}
2457	}
2458
2459	return true;
 
 
 
 
2460}
2461
2462static void reg_leave_invalid_chans(struct wiphy *wiphy)
2463{
2464	struct wireless_dev *wdev;
2465	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2466
2467	wiphy_lock(wiphy);
 
2468	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2469		if (!reg_wdev_chan_valid(wiphy, wdev))
2470			cfg80211_leave(rdev, wdev);
2471	wiphy_unlock(wiphy);
2472}
2473
2474static void reg_check_chans_work(struct work_struct *work)
2475{
2476	struct cfg80211_registered_device *rdev;
2477
2478	pr_debug("Verifying active interfaces after reg change\n");
2479	rtnl_lock();
2480
2481	for_each_rdev(rdev)
2482		reg_leave_invalid_chans(&rdev->wiphy);
 
 
2483
2484	rtnl_unlock();
2485}
2486
2487void reg_check_channels(void)
2488{
2489	/*
2490	 * Give usermode a chance to do something nicer (move to another
2491	 * channel, orderly disconnection), before forcing a disconnection.
2492	 */
2493	mod_delayed_work(system_power_efficient_wq,
2494			 &reg_check_chans,
2495			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2496}
2497
2498static void wiphy_update_regulatory(struct wiphy *wiphy,
2499				    enum nl80211_reg_initiator initiator)
2500{
2501	enum nl80211_band band;
2502	struct regulatory_request *lr = get_last_request();
2503
2504	if (ignore_reg_update(wiphy, initiator)) {
2505		/*
2506		 * Regulatory updates set by CORE are ignored for custom
2507		 * regulatory cards. Let us notify the changes to the driver,
2508		 * as some drivers used this to restore its orig_* reg domain.
2509		 */
2510		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2511		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2512		    !(wiphy->regulatory_flags &
2513		      REGULATORY_WIPHY_SELF_MANAGED))
2514			reg_call_notifier(wiphy, lr);
2515		return;
2516	}
2517
2518	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2519
2520	for (band = 0; band < NUM_NL80211_BANDS; band++)
2521		handle_band(wiphy, initiator, wiphy->bands[band]);
2522
2523	reg_process_beacons(wiphy);
2524	reg_process_ht_flags(wiphy);
2525	reg_call_notifier(wiphy, lr);
2526}
2527
2528static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2529{
2530	struct cfg80211_registered_device *rdev;
2531	struct wiphy *wiphy;
2532
2533	ASSERT_RTNL();
2534
2535	for_each_rdev(rdev) {
2536		wiphy = &rdev->wiphy;
2537		wiphy_update_regulatory(wiphy, initiator);
2538	}
2539
2540	reg_check_channels();
2541}
2542
2543static void handle_channel_custom(struct wiphy *wiphy,
2544				  struct ieee80211_channel *chan,
2545				  const struct ieee80211_regdomain *regd,
2546				  u32 min_bw)
2547{
2548	u32 bw_flags = 0;
2549	const struct ieee80211_reg_rule *reg_rule = NULL;
2550	const struct ieee80211_power_rule *power_rule = NULL;
2551	u32 bw, center_freq_khz;
2552
2553	center_freq_khz = ieee80211_channel_to_khz(chan);
2554	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2555		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2556		if (!IS_ERR(reg_rule))
2557			break;
2558	}
2559
2560	if (IS_ERR_OR_NULL(reg_rule)) {
2561		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2562			 chan->center_freq, chan->freq_offset);
2563		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2564			chan->flags |= IEEE80211_CHAN_DISABLED;
2565		} else {
2566			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2567			chan->flags = chan->orig_flags;
2568		}
2569		return;
2570	}
2571
2572	power_rule = &reg_rule->power_rule;
2573	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2574
2575	chan->dfs_state_entered = jiffies;
2576	chan->dfs_state = NL80211_DFS_USABLE;
2577
2578	chan->beacon_found = false;
2579
2580	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581		chan->flags = chan->orig_flags | bw_flags |
2582			      map_regdom_flags(reg_rule->flags);
2583	else
2584		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2585
2586	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2587	chan->max_reg_power = chan->max_power =
2588		(int) MBM_TO_DBM(power_rule->max_eirp);
2589
2590	if (chan->flags & IEEE80211_CHAN_RADAR) {
2591		if (reg_rule->dfs_cac_ms)
2592			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2593		else
2594			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2595	}
2596
2597	if (chan->flags & IEEE80211_CHAN_PSD)
2598		chan->psd = reg_rule->psd;
2599
2600	chan->max_power = chan->max_reg_power;
2601}
2602
2603static void handle_band_custom(struct wiphy *wiphy,
2604			       struct ieee80211_supported_band *sband,
2605			       const struct ieee80211_regdomain *regd)
2606{
2607	unsigned int i;
2608
2609	if (!sband)
2610		return;
2611
2612	/*
2613	 * We currently assume that you always want at least 20 MHz,
2614	 * otherwise channel 12 might get enabled if this rule is
2615	 * compatible to US, which permits 2402 - 2472 MHz.
2616	 */
2617	for (i = 0; i < sband->n_channels; i++)
2618		handle_channel_custom(wiphy, &sband->channels[i], regd,
2619				      MHZ_TO_KHZ(20));
2620}
2621
2622/* Used by drivers prior to wiphy registration */
2623void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2624				   const struct ieee80211_regdomain *regd)
2625{
2626	const struct ieee80211_regdomain *new_regd, *tmp;
2627	enum nl80211_band band;
2628	unsigned int bands_set = 0;
2629
2630	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2631	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2632	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2633
2634	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2635		if (!wiphy->bands[band])
2636			continue;
2637		handle_band_custom(wiphy, wiphy->bands[band], regd);
2638		bands_set++;
2639	}
2640
2641	/*
2642	 * no point in calling this if it won't have any effect
2643	 * on your device's supported bands.
2644	 */
2645	WARN_ON(!bands_set);
2646	new_regd = reg_copy_regd(regd);
2647	if (IS_ERR(new_regd))
2648		return;
2649
2650	rtnl_lock();
2651	wiphy_lock(wiphy);
2652
2653	tmp = get_wiphy_regdom(wiphy);
2654	rcu_assign_pointer(wiphy->regd, new_regd);
2655	rcu_free_regdom(tmp);
2656
2657	wiphy_unlock(wiphy);
2658	rtnl_unlock();
2659}
2660EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661
2662static void reg_set_request_processed(void)
2663{
2664	bool need_more_processing = false;
2665	struct regulatory_request *lr = get_last_request();
2666
2667	lr->processed = true;
2668
2669	spin_lock(&reg_requests_lock);
2670	if (!list_empty(&reg_requests_list))
2671		need_more_processing = true;
2672	spin_unlock(&reg_requests_lock);
2673
2674	cancel_crda_timeout();
2675
2676	if (need_more_processing)
2677		schedule_work(&reg_work);
2678}
2679
2680/**
2681 * reg_process_hint_core - process core regulatory requests
2682 * @core_request: a pending core regulatory request
2683 *
2684 * The wireless subsystem can use this function to process
2685 * a regulatory request issued by the regulatory core.
2686 *
2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688 *	hint was processed or ignored
2689 */
2690static enum reg_request_treatment
2691reg_process_hint_core(struct regulatory_request *core_request)
2692{
2693	if (reg_query_database(core_request)) {
2694		core_request->intersect = false;
2695		core_request->processed = false;
2696		reg_update_last_request(core_request);
2697		return REG_REQ_OK;
2698	}
2699
2700	return REG_REQ_IGNORE;
2701}
2702
2703static enum reg_request_treatment
2704__reg_process_hint_user(struct regulatory_request *user_request)
2705{
2706	struct regulatory_request *lr = get_last_request();
2707
2708	if (reg_request_cell_base(user_request))
2709		return reg_ignore_cell_hint(user_request);
2710
2711	if (reg_request_cell_base(lr))
2712		return REG_REQ_IGNORE;
2713
2714	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715		return REG_REQ_INTERSECT;
2716	/*
2717	 * If the user knows better the user should set the regdom
2718	 * to their country before the IE is picked up
2719	 */
2720	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721	    lr->intersect)
2722		return REG_REQ_IGNORE;
2723	/*
2724	 * Process user requests only after previous user/driver/core
2725	 * requests have been processed
2726	 */
2727	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730	    regdom_changes(lr->alpha2))
2731		return REG_REQ_IGNORE;
2732
2733	if (!regdom_changes(user_request->alpha2))
2734		return REG_REQ_ALREADY_SET;
2735
2736	return REG_REQ_OK;
2737}
2738
2739/**
2740 * reg_process_hint_user - process user regulatory requests
2741 * @user_request: a pending user regulatory request
2742 *
2743 * The wireless subsystem can use this function to process
2744 * a regulatory request initiated by userspace.
2745 *
2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747 *	hint was processed or ignored
2748 */
2749static enum reg_request_treatment
2750reg_process_hint_user(struct regulatory_request *user_request)
2751{
2752	enum reg_request_treatment treatment;
2753
2754	treatment = __reg_process_hint_user(user_request);
2755	if (treatment == REG_REQ_IGNORE ||
2756	    treatment == REG_REQ_ALREADY_SET)
2757		return REG_REQ_IGNORE;
2758
2759	user_request->intersect = treatment == REG_REQ_INTERSECT;
2760	user_request->processed = false;
2761
2762	if (reg_query_database(user_request)) {
2763		reg_update_last_request(user_request);
2764		user_alpha2[0] = user_request->alpha2[0];
2765		user_alpha2[1] = user_request->alpha2[1];
2766		return REG_REQ_OK;
2767	}
2768
2769	return REG_REQ_IGNORE;
2770}
2771
2772static enum reg_request_treatment
2773__reg_process_hint_driver(struct regulatory_request *driver_request)
2774{
2775	struct regulatory_request *lr = get_last_request();
2776
2777	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778		if (regdom_changes(driver_request->alpha2))
2779			return REG_REQ_OK;
2780		return REG_REQ_ALREADY_SET;
2781	}
2782
2783	/*
2784	 * This would happen if you unplug and plug your card
2785	 * back in or if you add a new device for which the previously
2786	 * loaded card also agrees on the regulatory domain.
2787	 */
2788	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789	    !regdom_changes(driver_request->alpha2))
2790		return REG_REQ_ALREADY_SET;
2791
2792	return REG_REQ_INTERSECT;
2793}
2794
2795/**
2796 * reg_process_hint_driver - process driver regulatory requests
2797 * @wiphy: the wireless device for the regulatory request
2798 * @driver_request: a pending driver regulatory request
2799 *
2800 * The wireless subsystem can use this function to process
2801 * a regulatory request issued by an 802.11 driver.
2802 *
2803 * Returns: one of the different reg request treatment values.
2804 */
2805static enum reg_request_treatment
2806reg_process_hint_driver(struct wiphy *wiphy,
2807			struct regulatory_request *driver_request)
2808{
2809	const struct ieee80211_regdomain *regd, *tmp;
2810	enum reg_request_treatment treatment;
2811
2812	treatment = __reg_process_hint_driver(driver_request);
2813
2814	switch (treatment) {
2815	case REG_REQ_OK:
2816		break;
2817	case REG_REQ_IGNORE:
2818		return REG_REQ_IGNORE;
2819	case REG_REQ_INTERSECT:
2820	case REG_REQ_ALREADY_SET:
2821		regd = reg_copy_regd(get_cfg80211_regdom());
2822		if (IS_ERR(regd))
2823			return REG_REQ_IGNORE;
2824
2825		tmp = get_wiphy_regdom(wiphy);
2826		ASSERT_RTNL();
2827		wiphy_lock(wiphy);
2828		rcu_assign_pointer(wiphy->regd, regd);
2829		wiphy_unlock(wiphy);
2830		rcu_free_regdom(tmp);
2831	}
2832
2833
2834	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835	driver_request->processed = false;
2836
2837	/*
2838	 * Since CRDA will not be called in this case as we already
2839	 * have applied the requested regulatory domain before we just
2840	 * inform userspace we have processed the request
2841	 */
2842	if (treatment == REG_REQ_ALREADY_SET) {
2843		nl80211_send_reg_change_event(driver_request);
2844		reg_update_last_request(driver_request);
2845		reg_set_request_processed();
2846		return REG_REQ_ALREADY_SET;
2847	}
2848
2849	if (reg_query_database(driver_request)) {
2850		reg_update_last_request(driver_request);
2851		return REG_REQ_OK;
2852	}
2853
2854	return REG_REQ_IGNORE;
2855}
2856
2857static enum reg_request_treatment
2858__reg_process_hint_country_ie(struct wiphy *wiphy,
2859			      struct regulatory_request *country_ie_request)
2860{
2861	struct wiphy *last_wiphy = NULL;
2862	struct regulatory_request *lr = get_last_request();
2863
2864	if (reg_request_cell_base(lr)) {
2865		/* Trust a Cell base station over the AP's country IE */
2866		if (regdom_changes(country_ie_request->alpha2))
2867			return REG_REQ_IGNORE;
2868		return REG_REQ_ALREADY_SET;
2869	} else {
2870		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871			return REG_REQ_IGNORE;
2872	}
2873
2874	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875		return -EINVAL;
2876
2877	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878		return REG_REQ_OK;
2879
2880	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881
2882	if (last_wiphy != wiphy) {
2883		/*
2884		 * Two cards with two APs claiming different
2885		 * Country IE alpha2s. We could
2886		 * intersect them, but that seems unlikely
2887		 * to be correct. Reject second one for now.
2888		 */
2889		if (regdom_changes(country_ie_request->alpha2))
2890			return REG_REQ_IGNORE;
2891		return REG_REQ_ALREADY_SET;
2892	}
2893
2894	if (regdom_changes(country_ie_request->alpha2))
2895		return REG_REQ_OK;
2896	return REG_REQ_ALREADY_SET;
2897}
2898
2899/**
2900 * reg_process_hint_country_ie - process regulatory requests from country IEs
2901 * @wiphy: the wireless device for the regulatory request
2902 * @country_ie_request: a regulatory request from a country IE
2903 *
2904 * The wireless subsystem can use this function to process
2905 * a regulatory request issued by a country Information Element.
2906 *
2907 * Returns: one of the different reg request treatment values.
2908 */
2909static enum reg_request_treatment
2910reg_process_hint_country_ie(struct wiphy *wiphy,
2911			    struct regulatory_request *country_ie_request)
2912{
2913	enum reg_request_treatment treatment;
2914
2915	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916
2917	switch (treatment) {
2918	case REG_REQ_OK:
2919		break;
2920	case REG_REQ_IGNORE:
2921		return REG_REQ_IGNORE;
2922	case REG_REQ_ALREADY_SET:
2923		reg_free_request(country_ie_request);
2924		return REG_REQ_ALREADY_SET;
2925	case REG_REQ_INTERSECT:
2926		/*
2927		 * This doesn't happen yet, not sure we
2928		 * ever want to support it for this case.
2929		 */
2930		WARN_ONCE(1, "Unexpected intersection for country elements");
2931		return REG_REQ_IGNORE;
2932	}
2933
2934	country_ie_request->intersect = false;
2935	country_ie_request->processed = false;
2936
2937	if (reg_query_database(country_ie_request)) {
2938		reg_update_last_request(country_ie_request);
2939		return REG_REQ_OK;
2940	}
2941
2942	return REG_REQ_IGNORE;
2943}
2944
2945bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946{
2947	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950	bool dfs_domain_same;
2951
2952	rcu_read_lock();
2953
2954	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955	wiphy1_regd = rcu_dereference(wiphy1->regd);
2956	if (!wiphy1_regd)
2957		wiphy1_regd = cfg80211_regd;
2958
2959	wiphy2_regd = rcu_dereference(wiphy2->regd);
2960	if (!wiphy2_regd)
2961		wiphy2_regd = cfg80211_regd;
2962
2963	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964
2965	rcu_read_unlock();
2966
2967	return dfs_domain_same;
2968}
2969
2970static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971				    struct ieee80211_channel *src_chan)
2972{
2973	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975		return;
2976
2977	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2979		return;
2980
2981	if (src_chan->center_freq == dst_chan->center_freq &&
2982	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983		dst_chan->dfs_state = src_chan->dfs_state;
2984		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985	}
2986}
2987
2988static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989				       struct wiphy *src_wiphy)
2990{
2991	struct ieee80211_supported_band *src_sband, *dst_sband;
2992	struct ieee80211_channel *src_chan, *dst_chan;
2993	int i, j, band;
2994
2995	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996		return;
2997
2998	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999		dst_sband = dst_wiphy->bands[band];
3000		src_sband = src_wiphy->bands[band];
3001		if (!dst_sband || !src_sband)
3002			continue;
3003
3004		for (i = 0; i < dst_sband->n_channels; i++) {
3005			dst_chan = &dst_sband->channels[i];
3006			for (j = 0; j < src_sband->n_channels; j++) {
3007				src_chan = &src_sband->channels[j];
3008				reg_copy_dfs_chan_state(dst_chan, src_chan);
3009			}
3010		}
3011	}
3012}
3013
3014static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015{
3016	struct cfg80211_registered_device *rdev;
3017
3018	ASSERT_RTNL();
3019
3020	for_each_rdev(rdev) {
3021		if (wiphy == &rdev->wiphy)
3022			continue;
3023		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024	}
3025}
3026
3027/* This processes *all* regulatory hints */
3028static void reg_process_hint(struct regulatory_request *reg_request)
3029{
3030	struct wiphy *wiphy = NULL;
3031	enum reg_request_treatment treatment;
3032	enum nl80211_reg_initiator initiator = reg_request->initiator;
3033
3034	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036
3037	switch (initiator) {
3038	case NL80211_REGDOM_SET_BY_CORE:
3039		treatment = reg_process_hint_core(reg_request);
3040		break;
3041	case NL80211_REGDOM_SET_BY_USER:
3042		treatment = reg_process_hint_user(reg_request);
3043		break;
3044	case NL80211_REGDOM_SET_BY_DRIVER:
3045		if (!wiphy)
3046			goto out_free;
3047		treatment = reg_process_hint_driver(wiphy, reg_request);
3048		break;
3049	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050		if (!wiphy)
3051			goto out_free;
3052		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053		break;
3054	default:
3055		WARN(1, "invalid initiator %d\n", initiator);
3056		goto out_free;
3057	}
3058
3059	if (treatment == REG_REQ_IGNORE)
3060		goto out_free;
3061
3062	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063	     "unexpected treatment value %d\n", treatment);
3064
3065	/* This is required so that the orig_* parameters are saved.
3066	 * NOTE: treatment must be set for any case that reaches here!
3067	 */
3068	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070		wiphy_update_regulatory(wiphy, initiator);
3071		wiphy_all_share_dfs_chan_state(wiphy);
3072		reg_check_channels();
3073	}
3074
3075	return;
3076
3077out_free:
3078	reg_free_request(reg_request);
3079}
3080
3081static void notify_self_managed_wiphys(struct regulatory_request *request)
3082{
3083	struct cfg80211_registered_device *rdev;
3084	struct wiphy *wiphy;
3085
3086	for_each_rdev(rdev) {
3087		wiphy = &rdev->wiphy;
3088		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3090			reg_call_notifier(wiphy, request);
3091	}
3092}
3093
3094/*
3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096 * Regulatory hints come on a first come first serve basis and we
3097 * must process each one atomically.
3098 */
3099static void reg_process_pending_hints(void)
3100{
3101	struct regulatory_request *reg_request, *lr;
3102
3103	lr = get_last_request();
3104
3105	/* When last_request->processed becomes true this will be rescheduled */
3106	if (lr && !lr->processed) {
3107		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108		return;
3109	}
3110
3111	spin_lock(&reg_requests_lock);
3112
3113	if (list_empty(&reg_requests_list)) {
3114		spin_unlock(&reg_requests_lock);
3115		return;
3116	}
3117
3118	reg_request = list_first_entry(&reg_requests_list,
3119				       struct regulatory_request,
3120				       list);
3121	list_del_init(&reg_request->list);
3122
3123	spin_unlock(&reg_requests_lock);
3124
3125	notify_self_managed_wiphys(reg_request);
3126
3127	reg_process_hint(reg_request);
3128
3129	lr = get_last_request();
3130
3131	spin_lock(&reg_requests_lock);
3132	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3133		schedule_work(&reg_work);
3134	spin_unlock(&reg_requests_lock);
3135}
3136
3137/* Processes beacon hints -- this has nothing to do with country IEs */
3138static void reg_process_pending_beacon_hints(void)
3139{
3140	struct cfg80211_registered_device *rdev;
3141	struct reg_beacon *pending_beacon, *tmp;
3142
3143	/* This goes through the _pending_ beacon list */
3144	spin_lock_bh(&reg_pending_beacons_lock);
3145
3146	list_for_each_entry_safe(pending_beacon, tmp,
3147				 &reg_pending_beacons, list) {
3148		list_del_init(&pending_beacon->list);
3149
3150		/* Applies the beacon hint to current wiphys */
3151		for_each_rdev(rdev)
3152			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153
3154		/* Remembers the beacon hint for new wiphys or reg changes */
3155		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3156	}
3157
3158	spin_unlock_bh(&reg_pending_beacons_lock);
3159}
3160
3161static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162{
3163	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
 
3164	const struct ieee80211_regdomain *tmp;
3165	const struct ieee80211_regdomain *regd;
3166	enum nl80211_band band;
3167	struct regulatory_request request = {};
3168
3169	ASSERT_RTNL();
3170	lockdep_assert_wiphy(wiphy);
3171
3172	spin_lock(&reg_requests_lock);
3173	regd = rdev->requested_regd;
3174	rdev->requested_regd = NULL;
3175	spin_unlock(&reg_requests_lock);
3176
3177	if (!regd)
3178		return;
3179
3180	tmp = get_wiphy_regdom(wiphy);
3181	rcu_assign_pointer(wiphy->regd, regd);
3182	rcu_free_regdom(tmp);
3183
3184	for (band = 0; band < NUM_NL80211_BANDS; band++)
3185		handle_band_custom(wiphy, wiphy->bands[band], regd);
3186
3187	reg_process_ht_flags(wiphy);
 
 
 
3188
3189	request.wiphy_idx = get_wiphy_idx(wiphy);
3190	request.alpha2[0] = regd->alpha2[0];
3191	request.alpha2[1] = regd->alpha2[1];
3192	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193
3194	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195		reg_call_notifier(wiphy, &request);
 
3196
3197	nl80211_send_wiphy_reg_change_event(&request);
3198}
3199
3200static void reg_process_self_managed_hints(void)
3201{
3202	struct cfg80211_registered_device *rdev;
3203
3204	ASSERT_RTNL();
 
 
 
3205
3206	for_each_rdev(rdev) {
3207		wiphy_lock(&rdev->wiphy);
3208		reg_process_self_managed_hint(&rdev->wiphy);
3209		wiphy_unlock(&rdev->wiphy);
3210	}
3211
3212	reg_check_channels();
3213}
3214
3215static void reg_todo(struct work_struct *work)
3216{
3217	rtnl_lock();
3218	reg_process_pending_hints();
3219	reg_process_pending_beacon_hints();
3220	reg_process_self_managed_hints();
3221	rtnl_unlock();
3222}
3223
3224static void queue_regulatory_request(struct regulatory_request *request)
3225{
3226	request->alpha2[0] = toupper(request->alpha2[0]);
3227	request->alpha2[1] = toupper(request->alpha2[1]);
3228
3229	spin_lock(&reg_requests_lock);
3230	list_add_tail(&request->list, &reg_requests_list);
3231	spin_unlock(&reg_requests_lock);
3232
3233	schedule_work(&reg_work);
3234}
3235
3236/*
3237 * Core regulatory hint -- happens during cfg80211_init()
3238 * and when we restore regulatory settings.
3239 */
3240static int regulatory_hint_core(const char *alpha2)
3241{
3242	struct regulatory_request *request;
3243
3244	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245	if (!request)
3246		return -ENOMEM;
3247
3248	request->alpha2[0] = alpha2[0];
3249	request->alpha2[1] = alpha2[1];
3250	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251	request->wiphy_idx = WIPHY_IDX_INVALID;
3252
3253	queue_regulatory_request(request);
3254
3255	return 0;
3256}
3257
3258/* User hints */
3259int regulatory_hint_user(const char *alpha2,
3260			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3261{
3262	struct regulatory_request *request;
3263
3264	if (WARN_ON(!alpha2))
3265		return -EINVAL;
3266
3267	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268		return -EINVAL;
3269
3270	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271	if (!request)
3272		return -ENOMEM;
3273
3274	request->wiphy_idx = WIPHY_IDX_INVALID;
3275	request->alpha2[0] = alpha2[0];
3276	request->alpha2[1] = alpha2[1];
3277	request->initiator = NL80211_REGDOM_SET_BY_USER;
3278	request->user_reg_hint_type = user_reg_hint_type;
3279
3280	/* Allow calling CRDA again */
3281	reset_crda_timeouts();
3282
3283	queue_regulatory_request(request);
3284
3285	return 0;
3286}
3287
3288int regulatory_hint_indoor(bool is_indoor, u32 portid)
3289{
3290	spin_lock(&reg_indoor_lock);
3291
3292	/* It is possible that more than one user space process is trying to
3293	 * configure the indoor setting. To handle such cases, clear the indoor
3294	 * setting in case that some process does not think that the device
3295	 * is operating in an indoor environment. In addition, if a user space
3296	 * process indicates that it is controlling the indoor setting, save its
3297	 * portid, i.e., make it the owner.
3298	 */
3299	reg_is_indoor = is_indoor;
3300	if (reg_is_indoor) {
3301		if (!reg_is_indoor_portid)
3302			reg_is_indoor_portid = portid;
3303	} else {
3304		reg_is_indoor_portid = 0;
3305	}
3306
3307	spin_unlock(&reg_indoor_lock);
3308
3309	if (!is_indoor)
3310		reg_check_channels();
3311
3312	return 0;
3313}
3314
3315void regulatory_netlink_notify(u32 portid)
3316{
3317	spin_lock(&reg_indoor_lock);
3318
3319	if (reg_is_indoor_portid != portid) {
3320		spin_unlock(&reg_indoor_lock);
3321		return;
3322	}
3323
3324	reg_is_indoor = false;
3325	reg_is_indoor_portid = 0;
3326
3327	spin_unlock(&reg_indoor_lock);
3328
3329	reg_check_channels();
3330}
3331
3332/* Driver hints */
3333int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334{
3335	struct regulatory_request *request;
3336
3337	if (WARN_ON(!alpha2 || !wiphy))
3338		return -EINVAL;
3339
3340	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341
3342	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343	if (!request)
3344		return -ENOMEM;
3345
3346	request->wiphy_idx = get_wiphy_idx(wiphy);
3347
3348	request->alpha2[0] = alpha2[0];
3349	request->alpha2[1] = alpha2[1];
3350	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351
3352	/* Allow calling CRDA again */
3353	reset_crda_timeouts();
3354
3355	queue_regulatory_request(request);
3356
3357	return 0;
3358}
3359EXPORT_SYMBOL(regulatory_hint);
3360
3361void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362				const u8 *country_ie, u8 country_ie_len)
3363{
3364	char alpha2[2];
3365	enum environment_cap env = ENVIRON_ANY;
3366	struct regulatory_request *request = NULL, *lr;
3367
3368	/* IE len must be evenly divisible by 2 */
3369	if (country_ie_len & 0x01)
3370		return;
3371
3372	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373		return;
3374
3375	request = kzalloc(sizeof(*request), GFP_KERNEL);
3376	if (!request)
3377		return;
3378
3379	alpha2[0] = country_ie[0];
3380	alpha2[1] = country_ie[1];
3381
3382	if (country_ie[2] == 'I')
3383		env = ENVIRON_INDOOR;
3384	else if (country_ie[2] == 'O')
3385		env = ENVIRON_OUTDOOR;
3386
3387	rcu_read_lock();
3388	lr = get_last_request();
3389
3390	if (unlikely(!lr))
3391		goto out;
3392
3393	/*
3394	 * We will run this only upon a successful connection on cfg80211.
3395	 * We leave conflict resolution to the workqueue, where can hold
3396	 * the RTNL.
3397	 */
3398	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3400		goto out;
3401
3402	request->wiphy_idx = get_wiphy_idx(wiphy);
3403	request->alpha2[0] = alpha2[0];
3404	request->alpha2[1] = alpha2[1];
3405	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406	request->country_ie_env = env;
3407
3408	/* Allow calling CRDA again */
3409	reset_crda_timeouts();
3410
3411	queue_regulatory_request(request);
3412	request = NULL;
3413out:
3414	kfree(request);
3415	rcu_read_unlock();
3416}
3417
3418static void restore_alpha2(char *alpha2, bool reset_user)
3419{
3420	/* indicates there is no alpha2 to consider for restoration */
3421	alpha2[0] = '9';
3422	alpha2[1] = '7';
3423
3424	/* The user setting has precedence over the module parameter */
3425	if (is_user_regdom_saved()) {
3426		/* Unless we're asked to ignore it and reset it */
3427		if (reset_user) {
3428			pr_debug("Restoring regulatory settings including user preference\n");
3429			user_alpha2[0] = '9';
3430			user_alpha2[1] = '7';
3431
3432			/*
3433			 * If we're ignoring user settings, we still need to
3434			 * check the module parameter to ensure we put things
3435			 * back as they were for a full restore.
3436			 */
3437			if (!is_world_regdom(ieee80211_regdom)) {
3438				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439					 ieee80211_regdom[0], ieee80211_regdom[1]);
3440				alpha2[0] = ieee80211_regdom[0];
3441				alpha2[1] = ieee80211_regdom[1];
3442			}
3443		} else {
3444			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445				 user_alpha2[0], user_alpha2[1]);
3446			alpha2[0] = user_alpha2[0];
3447			alpha2[1] = user_alpha2[1];
3448		}
3449	} else if (!is_world_regdom(ieee80211_regdom)) {
3450		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451			 ieee80211_regdom[0], ieee80211_regdom[1]);
3452		alpha2[0] = ieee80211_regdom[0];
3453		alpha2[1] = ieee80211_regdom[1];
3454	} else
3455		pr_debug("Restoring regulatory settings\n");
3456}
3457
3458static void restore_custom_reg_settings(struct wiphy *wiphy)
3459{
3460	struct ieee80211_supported_band *sband;
3461	enum nl80211_band band;
3462	struct ieee80211_channel *chan;
3463	int i;
3464
3465	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466		sband = wiphy->bands[band];
3467		if (!sband)
3468			continue;
3469		for (i = 0; i < sband->n_channels; i++) {
3470			chan = &sband->channels[i];
3471			chan->flags = chan->orig_flags;
3472			chan->max_antenna_gain = chan->orig_mag;
3473			chan->max_power = chan->orig_mpwr;
3474			chan->beacon_found = false;
3475		}
3476	}
3477}
3478
3479/*
3480 * Restoring regulatory settings involves ignoring any
3481 * possibly stale country IE information and user regulatory
3482 * settings if so desired, this includes any beacon hints
3483 * learned as we could have traveled outside to another country
3484 * after disconnection. To restore regulatory settings we do
3485 * exactly what we did at bootup:
3486 *
3487 *   - send a core regulatory hint
3488 *   - send a user regulatory hint if applicable
3489 *
3490 * Device drivers that send a regulatory hint for a specific country
3491 * keep their own regulatory domain on wiphy->regd so that does
3492 * not need to be remembered.
3493 */
3494static void restore_regulatory_settings(bool reset_user, bool cached)
3495{
3496	char alpha2[2];
3497	char world_alpha2[2];
3498	struct reg_beacon *reg_beacon, *btmp;
3499	LIST_HEAD(tmp_reg_req_list);
3500	struct cfg80211_registered_device *rdev;
3501
3502	ASSERT_RTNL();
3503
3504	/*
3505	 * Clear the indoor setting in case that it is not controlled by user
3506	 * space, as otherwise there is no guarantee that the device is still
3507	 * operating in an indoor environment.
3508	 */
3509	spin_lock(&reg_indoor_lock);
3510	if (reg_is_indoor && !reg_is_indoor_portid) {
3511		reg_is_indoor = false;
3512		reg_check_channels();
3513	}
3514	spin_unlock(&reg_indoor_lock);
3515
3516	reset_regdomains(true, &world_regdom);
3517	restore_alpha2(alpha2, reset_user);
3518
3519	/*
3520	 * If there's any pending requests we simply
3521	 * stash them to a temporary pending queue and
3522	 * add then after we've restored regulatory
3523	 * settings.
3524	 */
3525	spin_lock(&reg_requests_lock);
3526	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3527	spin_unlock(&reg_requests_lock);
3528
3529	/* Clear beacon hints */
3530	spin_lock_bh(&reg_pending_beacons_lock);
3531	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3532		list_del(&reg_beacon->list);
3533		kfree(reg_beacon);
3534	}
3535	spin_unlock_bh(&reg_pending_beacons_lock);
3536
3537	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3538		list_del(&reg_beacon->list);
3539		kfree(reg_beacon);
3540	}
3541
3542	/* First restore to the basic regulatory settings */
3543	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545
3546	for_each_rdev(rdev) {
3547		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548			continue;
3549		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550			restore_custom_reg_settings(&rdev->wiphy);
3551	}
3552
3553	if (cached && (!is_an_alpha2(alpha2) ||
3554		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555		reset_regdomains(false, cfg80211_world_regdom);
3556		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557		print_regdomain(get_cfg80211_regdom());
3558		nl80211_send_reg_change_event(&core_request_world);
3559		reg_set_request_processed();
3560
3561		if (is_an_alpha2(alpha2) &&
3562		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563			struct regulatory_request *ureq;
3564
3565			spin_lock(&reg_requests_lock);
3566			ureq = list_last_entry(&reg_requests_list,
3567					       struct regulatory_request,
3568					       list);
3569			list_del(&ureq->list);
3570			spin_unlock(&reg_requests_lock);
3571
3572			notify_self_managed_wiphys(ureq);
3573			reg_update_last_request(ureq);
3574			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575				   REGD_SOURCE_CACHED);
3576		}
3577	} else {
3578		regulatory_hint_core(world_alpha2);
3579
3580		/*
3581		 * This restores the ieee80211_regdom module parameter
3582		 * preference or the last user requested regulatory
3583		 * settings, user regulatory settings takes precedence.
3584		 */
3585		if (is_an_alpha2(alpha2))
3586			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587	}
3588
3589	spin_lock(&reg_requests_lock);
3590	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3591	spin_unlock(&reg_requests_lock);
3592
3593	pr_debug("Kicking the queue\n");
3594
3595	schedule_work(&reg_work);
3596}
3597
3598static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599{
3600	struct cfg80211_registered_device *rdev;
3601	struct wireless_dev *wdev;
3602
3603	for_each_rdev(rdev) {
3604		wiphy_lock(&rdev->wiphy);
3605		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
 
3606			if (!(wdev->wiphy->regulatory_flags & flag)) {
3607				wiphy_unlock(&rdev->wiphy);
3608				return false;
3609			}
 
3610		}
3611		wiphy_unlock(&rdev->wiphy);
3612	}
3613
3614	return true;
3615}
3616
3617void regulatory_hint_disconnect(void)
3618{
3619	/* Restore of regulatory settings is not required when wiphy(s)
3620	 * ignore IE from connected access point but clearance of beacon hints
3621	 * is required when wiphy(s) supports beacon hints.
3622	 */
3623	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3624		struct reg_beacon *reg_beacon, *btmp;
3625
3626		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3627			return;
3628
3629		spin_lock_bh(&reg_pending_beacons_lock);
3630		list_for_each_entry_safe(reg_beacon, btmp,
3631					 &reg_pending_beacons, list) {
3632			list_del(&reg_beacon->list);
3633			kfree(reg_beacon);
3634		}
3635		spin_unlock_bh(&reg_pending_beacons_lock);
3636
3637		list_for_each_entry_safe(reg_beacon, btmp,
3638					 &reg_beacon_list, list) {
3639			list_del(&reg_beacon->list);
3640			kfree(reg_beacon);
3641		}
3642
3643		return;
3644	}
3645
3646	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3647	restore_regulatory_settings(false, true);
3648}
3649
3650static bool freq_is_chan_12_13_14(u32 freq)
3651{
3652	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3653	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3654	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3655		return true;
3656	return false;
3657}
3658
3659static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3660{
3661	struct reg_beacon *pending_beacon;
3662
3663	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3664		if (ieee80211_channel_equal(beacon_chan,
3665					    &pending_beacon->chan))
3666			return true;
3667	return false;
3668}
3669
3670int regulatory_hint_found_beacon(struct wiphy *wiphy,
3671				 struct ieee80211_channel *beacon_chan,
3672				 gfp_t gfp)
3673{
3674	struct reg_beacon *reg_beacon;
3675	bool processing;
3676
3677	if (beacon_chan->beacon_found ||
3678	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3679	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3680	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3681		return 0;
3682
3683	spin_lock_bh(&reg_pending_beacons_lock);
3684	processing = pending_reg_beacon(beacon_chan);
3685	spin_unlock_bh(&reg_pending_beacons_lock);
3686
3687	if (processing)
3688		return 0;
3689
3690	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3691	if (!reg_beacon)
3692		return -ENOMEM;
3693
3694	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3695		 beacon_chan->center_freq, beacon_chan->freq_offset,
3696		 ieee80211_freq_khz_to_channel(
3697			 ieee80211_channel_to_khz(beacon_chan)),
3698		 wiphy_name(wiphy));
3699
3700	memcpy(&reg_beacon->chan, beacon_chan,
3701	       sizeof(struct ieee80211_channel));
3702
3703	/*
3704	 * Since we can be called from BH or and non-BH context
3705	 * we must use spin_lock_bh()
3706	 */
3707	spin_lock_bh(&reg_pending_beacons_lock);
3708	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3709	spin_unlock_bh(&reg_pending_beacons_lock);
3710
3711	schedule_work(&reg_work);
3712
3713	return 0;
3714}
3715
3716static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717{
3718	unsigned int i;
3719	const struct ieee80211_reg_rule *reg_rule = NULL;
3720	const struct ieee80211_freq_range *freq_range = NULL;
3721	const struct ieee80211_power_rule *power_rule = NULL;
3722	char bw[32], cac_time[32];
3723
3724	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725
3726	for (i = 0; i < rd->n_reg_rules; i++) {
3727		reg_rule = &rd->reg_rules[i];
3728		freq_range = &reg_rule->freq_range;
3729		power_rule = &reg_rule->power_rule;
3730
3731		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733				 freq_range->max_bandwidth_khz,
3734				 reg_get_max_bandwidth(rd, reg_rule));
3735		else
3736			snprintf(bw, sizeof(bw), "%d KHz",
3737				 freq_range->max_bandwidth_khz);
3738
3739		if (reg_rule->flags & NL80211_RRF_DFS)
3740			scnprintf(cac_time, sizeof(cac_time), "%u s",
3741				  reg_rule->dfs_cac_ms/1000);
3742		else
3743			scnprintf(cac_time, sizeof(cac_time), "N/A");
3744
3745
3746		/*
3747		 * There may not be documentation for max antenna gain
3748		 * in certain regions
3749		 */
3750		if (power_rule->max_antenna_gain)
3751			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752				freq_range->start_freq_khz,
3753				freq_range->end_freq_khz,
3754				bw,
3755				power_rule->max_antenna_gain,
3756				power_rule->max_eirp,
3757				cac_time);
3758		else
3759			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760				freq_range->start_freq_khz,
3761				freq_range->end_freq_khz,
3762				bw,
3763				power_rule->max_eirp,
3764				cac_time);
3765	}
3766}
3767
3768bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769{
3770	switch (dfs_region) {
3771	case NL80211_DFS_UNSET:
3772	case NL80211_DFS_FCC:
3773	case NL80211_DFS_ETSI:
3774	case NL80211_DFS_JP:
3775		return true;
3776	default:
3777		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3778		return false;
3779	}
3780}
3781
3782static void print_regdomain(const struct ieee80211_regdomain *rd)
3783{
3784	struct regulatory_request *lr = get_last_request();
3785
3786	if (is_intersected_alpha2(rd->alpha2)) {
3787		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788			struct cfg80211_registered_device *rdev;
3789			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790			if (rdev) {
3791				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792					rdev->country_ie_alpha2[0],
3793					rdev->country_ie_alpha2[1]);
3794			} else
3795				pr_debug("Current regulatory domain intersected:\n");
3796		} else
3797			pr_debug("Current regulatory domain intersected:\n");
3798	} else if (is_world_regdom(rd->alpha2)) {
3799		pr_debug("World regulatory domain updated:\n");
3800	} else {
3801		if (is_unknown_alpha2(rd->alpha2))
3802			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803		else {
3804			if (reg_request_cell_base(lr))
3805				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806					rd->alpha2[0], rd->alpha2[1]);
3807			else
3808				pr_debug("Regulatory domain changed to country: %c%c\n",
3809					rd->alpha2[0], rd->alpha2[1]);
3810		}
3811	}
3812
3813	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814	print_rd_rules(rd);
3815}
3816
3817static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818{
3819	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820	print_rd_rules(rd);
3821}
3822
3823static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824{
3825	if (!is_world_regdom(rd->alpha2))
3826		return -EINVAL;
3827	update_world_regdomain(rd);
3828	return 0;
3829}
3830
3831static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832			   struct regulatory_request *user_request)
3833{
3834	const struct ieee80211_regdomain *intersected_rd = NULL;
3835
3836	if (!regdom_changes(rd->alpha2))
3837		return -EALREADY;
3838
3839	if (!is_valid_rd(rd)) {
3840		pr_err("Invalid regulatory domain detected: %c%c\n",
3841		       rd->alpha2[0], rd->alpha2[1]);
3842		print_regdomain_info(rd);
3843		return -EINVAL;
3844	}
3845
3846	if (!user_request->intersect) {
3847		reset_regdomains(false, rd);
3848		return 0;
3849	}
3850
3851	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852	if (!intersected_rd)
3853		return -EINVAL;
3854
3855	kfree(rd);
3856	rd = NULL;
3857	reset_regdomains(false, intersected_rd);
3858
3859	return 0;
3860}
3861
3862static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863			     struct regulatory_request *driver_request)
3864{
3865	const struct ieee80211_regdomain *regd;
3866	const struct ieee80211_regdomain *intersected_rd = NULL;
3867	const struct ieee80211_regdomain *tmp = NULL;
3868	struct wiphy *request_wiphy;
3869
3870	if (is_world_regdom(rd->alpha2))
3871		return -EINVAL;
3872
3873	if (!regdom_changes(rd->alpha2))
3874		return -EALREADY;
3875
3876	if (!is_valid_rd(rd)) {
3877		pr_err("Invalid regulatory domain detected: %c%c\n",
3878		       rd->alpha2[0], rd->alpha2[1]);
3879		print_regdomain_info(rd);
3880		return -EINVAL;
3881	}
3882
3883	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884	if (!request_wiphy)
3885		return -ENODEV;
3886
3887	if (!driver_request->intersect) {
3888		ASSERT_RTNL();
3889		wiphy_lock(request_wiphy);
3890		if (request_wiphy->regd)
3891			tmp = get_wiphy_regdom(request_wiphy);
3892
3893		regd = reg_copy_regd(rd);
3894		if (IS_ERR(regd)) {
3895			wiphy_unlock(request_wiphy);
3896			return PTR_ERR(regd);
3897		}
3898
3899		rcu_assign_pointer(request_wiphy->regd, regd);
3900		rcu_free_regdom(tmp);
3901		wiphy_unlock(request_wiphy);
3902		reset_regdomains(false, rd);
3903		return 0;
3904	}
3905
3906	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907	if (!intersected_rd)
3908		return -EINVAL;
3909
3910	/*
3911	 * We can trash what CRDA provided now.
3912	 * However if a driver requested this specific regulatory
3913	 * domain we keep it for its private use
3914	 */
3915	tmp = get_wiphy_regdom(request_wiphy);
3916	rcu_assign_pointer(request_wiphy->regd, rd);
3917	rcu_free_regdom(tmp);
3918
3919	rd = NULL;
3920
3921	reset_regdomains(false, intersected_rd);
3922
3923	return 0;
3924}
3925
3926static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927				 struct regulatory_request *country_ie_request)
3928{
3929	struct wiphy *request_wiphy;
3930
3931	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932	    !is_unknown_alpha2(rd->alpha2))
3933		return -EINVAL;
3934
3935	/*
3936	 * Lets only bother proceeding on the same alpha2 if the current
3937	 * rd is non static (it means CRDA was present and was used last)
3938	 * and the pending request came in from a country IE
3939	 */
3940
3941	if (!is_valid_rd(rd)) {
3942		pr_err("Invalid regulatory domain detected: %c%c\n",
3943		       rd->alpha2[0], rd->alpha2[1]);
3944		print_regdomain_info(rd);
3945		return -EINVAL;
3946	}
3947
3948	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949	if (!request_wiphy)
3950		return -ENODEV;
3951
3952	if (country_ie_request->intersect)
3953		return -EINVAL;
3954
3955	reset_regdomains(false, rd);
3956	return 0;
3957}
3958
3959/*
3960 * Use this call to set the current regulatory domain. Conflicts with
3961 * multiple drivers can be ironed out later. Caller must've already
3962 * kmalloc'd the rd structure.
3963 */
3964int set_regdom(const struct ieee80211_regdomain *rd,
3965	       enum ieee80211_regd_source regd_src)
3966{
3967	struct regulatory_request *lr;
3968	bool user_reset = false;
3969	int r;
3970
3971	if (IS_ERR_OR_NULL(rd))
3972		return -ENODATA;
3973
3974	if (!reg_is_valid_request(rd->alpha2)) {
3975		kfree(rd);
3976		return -EINVAL;
3977	}
3978
3979	if (regd_src == REGD_SOURCE_CRDA)
3980		reset_crda_timeouts();
3981
3982	lr = get_last_request();
3983
3984	/* Note that this doesn't update the wiphys, this is done below */
3985	switch (lr->initiator) {
3986	case NL80211_REGDOM_SET_BY_CORE:
3987		r = reg_set_rd_core(rd);
3988		break;
3989	case NL80211_REGDOM_SET_BY_USER:
3990		cfg80211_save_user_regdom(rd);
3991		r = reg_set_rd_user(rd, lr);
3992		user_reset = true;
3993		break;
3994	case NL80211_REGDOM_SET_BY_DRIVER:
3995		r = reg_set_rd_driver(rd, lr);
3996		break;
3997	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998		r = reg_set_rd_country_ie(rd, lr);
3999		break;
4000	default:
4001		WARN(1, "invalid initiator %d\n", lr->initiator);
4002		kfree(rd);
4003		return -EINVAL;
4004	}
4005
4006	if (r) {
4007		switch (r) {
4008		case -EALREADY:
4009			reg_set_request_processed();
4010			break;
4011		default:
4012			/* Back to world regulatory in case of errors */
4013			restore_regulatory_settings(user_reset, false);
4014		}
4015
4016		kfree(rd);
4017		return r;
4018	}
4019
4020	/* This would make this whole thing pointless */
4021	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022		return -EINVAL;
4023
4024	/* update all wiphys now with the new established regulatory domain */
4025	update_all_wiphy_regulatory(lr->initiator);
4026
4027	print_regdomain(get_cfg80211_regdom());
4028
4029	nl80211_send_reg_change_event(lr);
4030
4031	reg_set_request_processed();
4032
4033	return 0;
4034}
4035
4036static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037				       struct ieee80211_regdomain *rd)
4038{
4039	const struct ieee80211_regdomain *regd;
4040	const struct ieee80211_regdomain *prev_regd;
4041	struct cfg80211_registered_device *rdev;
4042
4043	if (WARN_ON(!wiphy || !rd))
4044		return -EINVAL;
4045
4046	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048		return -EPERM;
4049
4050	if (WARN(!is_valid_rd(rd),
4051		 "Invalid regulatory domain detected: %c%c\n",
4052		 rd->alpha2[0], rd->alpha2[1])) {
4053		print_regdomain_info(rd);
4054		return -EINVAL;
4055	}
4056
4057	regd = reg_copy_regd(rd);
4058	if (IS_ERR(regd))
4059		return PTR_ERR(regd);
4060
4061	rdev = wiphy_to_rdev(wiphy);
4062
4063	spin_lock(&reg_requests_lock);
4064	prev_regd = rdev->requested_regd;
4065	rdev->requested_regd = regd;
4066	spin_unlock(&reg_requests_lock);
4067
4068	kfree(prev_regd);
4069	return 0;
4070}
4071
4072int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073			      struct ieee80211_regdomain *rd)
4074{
4075	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076
4077	if (ret)
4078		return ret;
4079
4080	schedule_work(&reg_work);
4081	return 0;
4082}
4083EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084
4085int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086				   struct ieee80211_regdomain *rd)
4087{
4088	int ret;
4089
4090	ASSERT_RTNL();
4091
4092	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093	if (ret)
4094		return ret;
4095
4096	/* process the request immediately */
4097	reg_process_self_managed_hint(wiphy);
4098	reg_check_channels();
4099	return 0;
4100}
4101EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102
4103void wiphy_regulatory_register(struct wiphy *wiphy)
4104{
4105	struct regulatory_request *lr = get_last_request();
4106
4107	/* self-managed devices ignore beacon hints and country IE */
4108	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110					   REGULATORY_COUNTRY_IE_IGNORE;
4111
4112		/*
4113		 * The last request may have been received before this
4114		 * registration call. Call the driver notifier if
4115		 * initiator is USER.
4116		 */
4117		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118			reg_call_notifier(wiphy, lr);
4119	}
4120
4121	if (!reg_dev_ignore_cell_hint(wiphy))
4122		reg_num_devs_support_basehint++;
4123
4124	wiphy_update_regulatory(wiphy, lr->initiator);
4125	wiphy_all_share_dfs_chan_state(wiphy);
4126	reg_process_self_managed_hints();
4127}
4128
4129void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130{
4131	struct wiphy *request_wiphy = NULL;
4132	struct regulatory_request *lr;
4133
4134	lr = get_last_request();
4135
4136	if (!reg_dev_ignore_cell_hint(wiphy))
4137		reg_num_devs_support_basehint--;
4138
4139	rcu_free_regdom(get_wiphy_regdom(wiphy));
4140	RCU_INIT_POINTER(wiphy->regd, NULL);
4141
4142	if (lr)
4143		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144
4145	if (!request_wiphy || request_wiphy != wiphy)
4146		return;
4147
4148	lr->wiphy_idx = WIPHY_IDX_INVALID;
4149	lr->country_ie_env = ENVIRON_ANY;
4150}
4151
4152/*
4153 * See FCC notices for UNII band definitions
4154 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156 */
4157int cfg80211_get_unii(int freq)
4158{
4159	/* UNII-1 */
4160	if (freq >= 5150 && freq <= 5250)
4161		return 0;
4162
4163	/* UNII-2A */
4164	if (freq > 5250 && freq <= 5350)
4165		return 1;
4166
4167	/* UNII-2B */
4168	if (freq > 5350 && freq <= 5470)
4169		return 2;
4170
4171	/* UNII-2C */
4172	if (freq > 5470 && freq <= 5725)
4173		return 3;
4174
4175	/* UNII-3 */
4176	if (freq > 5725 && freq <= 5825)
4177		return 4;
4178
4179	/* UNII-5 */
4180	if (freq > 5925 && freq <= 6425)
4181		return 5;
4182
4183	/* UNII-6 */
4184	if (freq > 6425 && freq <= 6525)
4185		return 6;
4186
4187	/* UNII-7 */
4188	if (freq > 6525 && freq <= 6875)
4189		return 7;
4190
4191	/* UNII-8 */
4192	if (freq > 6875 && freq <= 7125)
4193		return 8;
4194
4195	return -EINVAL;
4196}
4197
4198bool regulatory_indoor_allowed(void)
4199{
4200	return reg_is_indoor;
4201}
4202
4203bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204{
4205	const struct ieee80211_regdomain *regd = NULL;
4206	const struct ieee80211_regdomain *wiphy_regd = NULL;
4207	bool pre_cac_allowed = false;
4208
4209	rcu_read_lock();
4210
4211	regd = rcu_dereference(cfg80211_regdomain);
4212	wiphy_regd = rcu_dereference(wiphy->regd);
4213	if (!wiphy_regd) {
4214		if (regd->dfs_region == NL80211_DFS_ETSI)
4215			pre_cac_allowed = true;
4216
4217		rcu_read_unlock();
4218
4219		return pre_cac_allowed;
4220	}
4221
4222	if (regd->dfs_region == wiphy_regd->dfs_region &&
4223	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224		pre_cac_allowed = true;
4225
4226	rcu_read_unlock();
4227
4228	return pre_cac_allowed;
4229}
4230EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231
4232static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233{
4234	struct wireless_dev *wdev;
4235	/* If we finished CAC or received radar, we should end any
4236	 * CAC running on the same channels.
4237	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4238	 * either all channels are available - those the CAC_FINISHED
4239	 * event has effected another wdev state, or there is a channel
4240	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4241	 * event has effected another wdev state.
4242	 * In both cases we should end the CAC on the wdev.
4243	 */
4244	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4245		struct cfg80211_chan_def *chandef;
4246
4247		if (!wdev->cac_started)
4248			continue;
4249
4250		/* FIXME: radar detection is tied to link 0 for now */
4251		chandef = wdev_chandef(wdev, 0);
4252		if (!chandef)
4253			continue;
4254
4255		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4256			rdev_end_cac(rdev, wdev->netdev);
4257	}
4258}
4259
4260void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261				    struct cfg80211_chan_def *chandef,
4262				    enum nl80211_dfs_state dfs_state,
4263				    enum nl80211_radar_event event)
4264{
4265	struct cfg80211_registered_device *rdev;
4266
4267	ASSERT_RTNL();
4268
4269	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270		return;
4271
4272	for_each_rdev(rdev) {
4273		if (wiphy == &rdev->wiphy)
4274			continue;
4275
4276		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277			continue;
4278
4279		if (!ieee80211_get_channel(&rdev->wiphy,
4280					   chandef->chan->center_freq))
4281			continue;
4282
4283		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285		if (event == NL80211_RADAR_DETECTED ||
4286		    event == NL80211_RADAR_CAC_FINISHED) {
4287			cfg80211_sched_dfs_chan_update(rdev);
4288			cfg80211_check_and_end_cac(rdev);
4289		}
4290
4291		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292	}
4293}
4294
4295static int __init regulatory_init_db(void)
4296{
4297	int err;
4298
4299	/*
4300	 * It's possible that - due to other bugs/issues - cfg80211
4301	 * never called regulatory_init() below, or that it failed;
4302	 * in that case, don't try to do any further work here as
4303	 * it's doomed to lead to crashes.
4304	 */
4305	if (IS_ERR_OR_NULL(reg_pdev))
4306		return -EINVAL;
4307
4308	err = load_builtin_regdb_keys();
4309	if (err) {
4310		platform_device_unregister(reg_pdev);
4311		return err;
4312	}
4313
4314	/* We always try to get an update for the static regdomain */
4315	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316	if (err) {
4317		if (err == -ENOMEM) {
4318			platform_device_unregister(reg_pdev);
4319			return err;
4320		}
4321		/*
4322		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323		 * memory which is handled and propagated appropriately above
4324		 * but it can also fail during a netlink_broadcast() or during
4325		 * early boot for call_usermodehelper(). For now treat these
4326		 * errors as non-fatal.
4327		 */
4328		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329	}
4330
4331	/*
4332	 * Finally, if the user set the module parameter treat it
4333	 * as a user hint.
4334	 */
4335	if (!is_world_regdom(ieee80211_regdom))
4336		regulatory_hint_user(ieee80211_regdom,
4337				     NL80211_USER_REG_HINT_USER);
4338
4339	return 0;
4340}
4341#ifndef MODULE
4342late_initcall(regulatory_init_db);
4343#endif
4344
4345int __init regulatory_init(void)
4346{
4347	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348	if (IS_ERR(reg_pdev))
4349		return PTR_ERR(reg_pdev);
 
 
 
 
4350
4351	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353	user_alpha2[0] = '9';
4354	user_alpha2[1] = '7';
4355
4356#ifdef MODULE
4357	return regulatory_init_db();
4358#else
4359	return 0;
4360#endif
4361}
4362
4363void regulatory_exit(void)
4364{
4365	struct regulatory_request *reg_request, *tmp;
4366	struct reg_beacon *reg_beacon, *btmp;
4367
4368	cancel_work_sync(&reg_work);
4369	cancel_crda_timeout_sync();
4370	cancel_delayed_work_sync(&reg_check_chans);
4371
4372	/* Lock to suppress warnings */
4373	rtnl_lock();
4374	reset_regdomains(true, NULL);
4375	rtnl_unlock();
4376
4377	dev_set_uevent_suppress(&reg_pdev->dev, true);
4378
4379	platform_device_unregister(reg_pdev);
4380
4381	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4382		list_del(&reg_beacon->list);
4383		kfree(reg_beacon);
4384	}
4385
4386	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4387		list_del(&reg_beacon->list);
4388		kfree(reg_beacon);
4389	}
4390
4391	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4392		list_del(&reg_request->list);
4393		kfree(reg_request);
4394	}
4395
4396	if (!IS_ERR_OR_NULL(regdb))
4397		kfree(regdb);
4398	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399		kfree(cfg80211_user_regdom);
4400
4401	free_regdb_keyring();
4402}
v5.4
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2019 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
  60#include <net/cfg80211.h>
  61#include "core.h"
  62#include "reg.h"
  63#include "rdev-ops.h"
  64#include "nl80211.h"
  65
  66/*
  67 * Grace period we give before making sure all current interfaces reside on
  68 * channels allowed by the current regulatory domain.
  69 */
  70#define REG_ENFORCE_GRACE_MS 60000
  71
  72/**
  73 * enum reg_request_treatment - regulatory request treatment
  74 *
  75 * @REG_REQ_OK: continue processing the regulatory request
  76 * @REG_REQ_IGNORE: ignore the regulatory request
  77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78 *	be intersected with the current one.
  79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80 *	regulatory settings, and no further processing is required.
  81 */
  82enum reg_request_treatment {
  83	REG_REQ_OK,
  84	REG_REQ_IGNORE,
  85	REG_REQ_INTERSECT,
  86	REG_REQ_ALREADY_SET,
  87};
  88
  89static struct regulatory_request core_request_world = {
  90	.initiator = NL80211_REGDOM_SET_BY_CORE,
  91	.alpha2[0] = '0',
  92	.alpha2[1] = '0',
  93	.intersect = false,
  94	.processed = true,
  95	.country_ie_env = ENVIRON_ANY,
  96};
  97
  98/*
  99 * Receipt of information from last regulatory request,
 100 * protected by RTNL (and can be accessed with RCU protection)
 101 */
 102static struct regulatory_request __rcu *last_request =
 103	(void __force __rcu *)&core_request_world;
 104
 105/* To trigger userspace events and load firmware */
 106static struct platform_device *reg_pdev;
 107
 108/*
 109 * Central wireless core regulatory domains, we only need two,
 110 * the current one and a world regulatory domain in case we have no
 111 * information to give us an alpha2.
 112 * (protected by RTNL, can be read under RCU)
 113 */
 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115
 116/*
 117 * Number of devices that registered to the core
 118 * that support cellular base station regulatory hints
 119 * (protected by RTNL)
 120 */
 121static int reg_num_devs_support_basehint;
 122
 123/*
 124 * State variable indicating if the platform on which the devices
 125 * are attached is operating in an indoor environment. The state variable
 126 * is relevant for all registered devices.
 127 */
 128static bool reg_is_indoor;
 129static spinlock_t reg_indoor_lock;
 130
 131/* Used to track the userspace process controlling the indoor setting */
 132static u32 reg_is_indoor_portid;
 133
 134static void restore_regulatory_settings(bool reset_user, bool cached);
 135static void print_regdomain(const struct ieee80211_regdomain *rd);
 
 136
 137static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 138{
 139	return rcu_dereference_rtnl(cfg80211_regdomain);
 140}
 141
 
 
 
 
 
 142const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 143{
 144	return rcu_dereference_rtnl(wiphy->regd);
 
 
 145}
 
 146
 147static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 148{
 149	switch (dfs_region) {
 150	case NL80211_DFS_UNSET:
 151		return "unset";
 152	case NL80211_DFS_FCC:
 153		return "FCC";
 154	case NL80211_DFS_ETSI:
 155		return "ETSI";
 156	case NL80211_DFS_JP:
 157		return "JP";
 158	}
 159	return "Unknown";
 160}
 161
 162enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 163{
 164	const struct ieee80211_regdomain *regd = NULL;
 165	const struct ieee80211_regdomain *wiphy_regd = NULL;
 
 166
 
 167	regd = get_cfg80211_regdom();
 
 
 168	if (!wiphy)
 169		goto out;
 170
 171	wiphy_regd = get_wiphy_regdom(wiphy);
 172	if (!wiphy_regd)
 173		goto out;
 174
 
 
 
 
 
 175	if (wiphy_regd->dfs_region == regd->dfs_region)
 176		goto out;
 177
 178	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 179		 dev_name(&wiphy->dev),
 180		 reg_dfs_region_str(wiphy_regd->dfs_region),
 181		 reg_dfs_region_str(regd->dfs_region));
 182
 183out:
 184	return regd->dfs_region;
 
 
 185}
 186
 187static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 188{
 189	if (!r)
 190		return;
 191	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 192}
 193
 194static struct regulatory_request *get_last_request(void)
 195{
 196	return rcu_dereference_rtnl(last_request);
 197}
 198
 199/* Used to queue up regulatory hints */
 200static LIST_HEAD(reg_requests_list);
 201static spinlock_t reg_requests_lock;
 202
 203/* Used to queue up beacon hints for review */
 204static LIST_HEAD(reg_pending_beacons);
 205static spinlock_t reg_pending_beacons_lock;
 206
 207/* Used to keep track of processed beacon hints */
 208static LIST_HEAD(reg_beacon_list);
 209
 210struct reg_beacon {
 211	struct list_head list;
 212	struct ieee80211_channel chan;
 213};
 214
 215static void reg_check_chans_work(struct work_struct *work);
 216static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 217
 218static void reg_todo(struct work_struct *work);
 219static DECLARE_WORK(reg_work, reg_todo);
 220
 221/* We keep a static world regulatory domain in case of the absence of CRDA */
 222static const struct ieee80211_regdomain world_regdom = {
 223	.n_reg_rules = 8,
 224	.alpha2 =  "00",
 225	.reg_rules = {
 226		/* IEEE 802.11b/g, channels 1..11 */
 227		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 228		/* IEEE 802.11b/g, channels 12..13. */
 229		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 230			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 231		/* IEEE 802.11 channel 14 - Only JP enables
 232		 * this and for 802.11b only */
 233		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 234			NL80211_RRF_NO_IR |
 235			NL80211_RRF_NO_OFDM),
 236		/* IEEE 802.11a, channel 36..48 */
 237		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 238                        NL80211_RRF_NO_IR |
 239                        NL80211_RRF_AUTO_BW),
 240
 241		/* IEEE 802.11a, channel 52..64 - DFS required */
 242		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 243			NL80211_RRF_NO_IR |
 244			NL80211_RRF_AUTO_BW |
 245			NL80211_RRF_DFS),
 246
 247		/* IEEE 802.11a, channel 100..144 - DFS required */
 248		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 249			NL80211_RRF_NO_IR |
 250			NL80211_RRF_DFS),
 251
 252		/* IEEE 802.11a, channel 149..165 */
 253		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 254			NL80211_RRF_NO_IR),
 255
 256		/* IEEE 802.11ad (60GHz), channels 1..3 */
 257		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 258	}
 259};
 260
 261/* protected by RTNL */
 262static const struct ieee80211_regdomain *cfg80211_world_regdom =
 263	&world_regdom;
 264
 265static char *ieee80211_regdom = "00";
 266static char user_alpha2[2];
 267static const struct ieee80211_regdomain *cfg80211_user_regdom;
 268
 269module_param(ieee80211_regdom, charp, 0444);
 270MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 271
 272static void reg_free_request(struct regulatory_request *request)
 273{
 274	if (request == &core_request_world)
 275		return;
 276
 277	if (request != get_last_request())
 278		kfree(request);
 279}
 280
 281static void reg_free_last_request(void)
 282{
 283	struct regulatory_request *lr = get_last_request();
 284
 285	if (lr != &core_request_world && lr)
 286		kfree_rcu(lr, rcu_head);
 287}
 288
 289static void reg_update_last_request(struct regulatory_request *request)
 290{
 291	struct regulatory_request *lr;
 292
 293	lr = get_last_request();
 294	if (lr == request)
 295		return;
 296
 297	reg_free_last_request();
 298	rcu_assign_pointer(last_request, request);
 299}
 300
 301static void reset_regdomains(bool full_reset,
 302			     const struct ieee80211_regdomain *new_regdom)
 303{
 304	const struct ieee80211_regdomain *r;
 305
 306	ASSERT_RTNL();
 307
 308	r = get_cfg80211_regdom();
 309
 310	/* avoid freeing static information or freeing something twice */
 311	if (r == cfg80211_world_regdom)
 312		r = NULL;
 313	if (cfg80211_world_regdom == &world_regdom)
 314		cfg80211_world_regdom = NULL;
 315	if (r == &world_regdom)
 316		r = NULL;
 317
 318	rcu_free_regdom(r);
 319	rcu_free_regdom(cfg80211_world_regdom);
 320
 321	cfg80211_world_regdom = &world_regdom;
 322	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 323
 324	if (!full_reset)
 325		return;
 326
 327	reg_update_last_request(&core_request_world);
 328}
 329
 330/*
 331 * Dynamic world regulatory domain requested by the wireless
 332 * core upon initialization
 333 */
 334static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 335{
 336	struct regulatory_request *lr;
 337
 338	lr = get_last_request();
 339
 340	WARN_ON(!lr);
 341
 342	reset_regdomains(false, rd);
 343
 344	cfg80211_world_regdom = rd;
 345}
 346
 347bool is_world_regdom(const char *alpha2)
 348{
 349	if (!alpha2)
 350		return false;
 351	return alpha2[0] == '0' && alpha2[1] == '0';
 352}
 353
 354static bool is_alpha2_set(const char *alpha2)
 355{
 356	if (!alpha2)
 357		return false;
 358	return alpha2[0] && alpha2[1];
 359}
 360
 361static bool is_unknown_alpha2(const char *alpha2)
 362{
 363	if (!alpha2)
 364		return false;
 365	/*
 366	 * Special case where regulatory domain was built by driver
 367	 * but a specific alpha2 cannot be determined
 368	 */
 369	return alpha2[0] == '9' && alpha2[1] == '9';
 370}
 371
 372static bool is_intersected_alpha2(const char *alpha2)
 373{
 374	if (!alpha2)
 375		return false;
 376	/*
 377	 * Special case where regulatory domain is the
 378	 * result of an intersection between two regulatory domain
 379	 * structures
 380	 */
 381	return alpha2[0] == '9' && alpha2[1] == '8';
 382}
 383
 384static bool is_an_alpha2(const char *alpha2)
 385{
 386	if (!alpha2)
 387		return false;
 388	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 389}
 390
 391static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 392{
 393	if (!alpha2_x || !alpha2_y)
 394		return false;
 395	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 396}
 397
 398static bool regdom_changes(const char *alpha2)
 399{
 400	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 401
 402	if (!r)
 403		return true;
 404	return !alpha2_equal(r->alpha2, alpha2);
 405}
 406
 407/*
 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 410 * has ever been issued.
 411 */
 412static bool is_user_regdom_saved(void)
 413{
 414	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 415		return false;
 416
 417	/* This would indicate a mistake on the design */
 418	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 419		 "Unexpected user alpha2: %c%c\n",
 420		 user_alpha2[0], user_alpha2[1]))
 421		return false;
 422
 423	return true;
 424}
 425
 426static const struct ieee80211_regdomain *
 427reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 428{
 429	struct ieee80211_regdomain *regd;
 430	unsigned int i;
 431
 432	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 433		       GFP_KERNEL);
 434	if (!regd)
 435		return ERR_PTR(-ENOMEM);
 436
 437	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 438
 439	for (i = 0; i < src_regd->n_reg_rules; i++)
 440		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 441		       sizeof(struct ieee80211_reg_rule));
 442
 443	return regd;
 444}
 445
 446static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 447{
 448	ASSERT_RTNL();
 449
 450	if (!IS_ERR(cfg80211_user_regdom))
 451		kfree(cfg80211_user_regdom);
 452	cfg80211_user_regdom = reg_copy_regd(rd);
 453}
 454
 455struct reg_regdb_apply_request {
 456	struct list_head list;
 457	const struct ieee80211_regdomain *regdom;
 458};
 459
 460static LIST_HEAD(reg_regdb_apply_list);
 461static DEFINE_MUTEX(reg_regdb_apply_mutex);
 462
 463static void reg_regdb_apply(struct work_struct *work)
 464{
 465	struct reg_regdb_apply_request *request;
 466
 467	rtnl_lock();
 468
 469	mutex_lock(&reg_regdb_apply_mutex);
 470	while (!list_empty(&reg_regdb_apply_list)) {
 471		request = list_first_entry(&reg_regdb_apply_list,
 472					   struct reg_regdb_apply_request,
 473					   list);
 474		list_del(&request->list);
 475
 476		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 477		kfree(request);
 478	}
 479	mutex_unlock(&reg_regdb_apply_mutex);
 480
 481	rtnl_unlock();
 482}
 483
 484static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 485
 486static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 487{
 488	struct reg_regdb_apply_request *request;
 489
 490	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 491	if (!request) {
 492		kfree(regdom);
 493		return -ENOMEM;
 494	}
 495
 496	request->regdom = regdom;
 497
 498	mutex_lock(&reg_regdb_apply_mutex);
 499	list_add_tail(&request->list, &reg_regdb_apply_list);
 500	mutex_unlock(&reg_regdb_apply_mutex);
 501
 502	schedule_work(&reg_regdb_work);
 503	return 0;
 504}
 505
 506#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 507/* Max number of consecutive attempts to communicate with CRDA  */
 508#define REG_MAX_CRDA_TIMEOUTS 10
 509
 510static u32 reg_crda_timeouts;
 511
 512static void crda_timeout_work(struct work_struct *work);
 513static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 514
 515static void crda_timeout_work(struct work_struct *work)
 516{
 517	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 518	rtnl_lock();
 519	reg_crda_timeouts++;
 520	restore_regulatory_settings(true, false);
 521	rtnl_unlock();
 522}
 523
 524static void cancel_crda_timeout(void)
 525{
 526	cancel_delayed_work(&crda_timeout);
 527}
 528
 529static void cancel_crda_timeout_sync(void)
 530{
 531	cancel_delayed_work_sync(&crda_timeout);
 532}
 533
 534static void reset_crda_timeouts(void)
 535{
 536	reg_crda_timeouts = 0;
 537}
 538
 539/*
 540 * This lets us keep regulatory code which is updated on a regulatory
 541 * basis in userspace.
 542 */
 543static int call_crda(const char *alpha2)
 544{
 545	char country[12];
 546	char *env[] = { country, NULL };
 547	int ret;
 548
 549	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 550		 alpha2[0], alpha2[1]);
 551
 552	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 553		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 554		return -EINVAL;
 555	}
 556
 557	if (!is_world_regdom((char *) alpha2))
 558		pr_debug("Calling CRDA for country: %c%c\n",
 559			 alpha2[0], alpha2[1]);
 560	else
 561		pr_debug("Calling CRDA to update world regulatory domain\n");
 562
 563	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 564	if (ret)
 565		return ret;
 566
 567	queue_delayed_work(system_power_efficient_wq,
 568			   &crda_timeout, msecs_to_jiffies(3142));
 569	return 0;
 570}
 571#else
 572static inline void cancel_crda_timeout(void) {}
 573static inline void cancel_crda_timeout_sync(void) {}
 574static inline void reset_crda_timeouts(void) {}
 575static inline int call_crda(const char *alpha2)
 576{
 577	return -ENODATA;
 578}
 579#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 580
 581/* code to directly load a firmware database through request_firmware */
 582static const struct fwdb_header *regdb;
 583
 584struct fwdb_country {
 585	u8 alpha2[2];
 586	__be16 coll_ptr;
 587	/* this struct cannot be extended */
 588} __packed __aligned(4);
 589
 590struct fwdb_collection {
 591	u8 len;
 592	u8 n_rules;
 593	u8 dfs_region;
 594	/* no optional data yet */
 595	/* aligned to 2, then followed by __be16 array of rule pointers */
 596} __packed __aligned(4);
 597
 598enum fwdb_flags {
 599	FWDB_FLAG_NO_OFDM	= BIT(0),
 600	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
 601	FWDB_FLAG_DFS		= BIT(2),
 602	FWDB_FLAG_NO_IR		= BIT(3),
 603	FWDB_FLAG_AUTO_BW	= BIT(4),
 604};
 605
 606struct fwdb_wmm_ac {
 607	u8 ecw;
 608	u8 aifsn;
 609	__be16 cot;
 610} __packed;
 611
 612struct fwdb_wmm_rule {
 613	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 614	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 615} __packed;
 616
 617struct fwdb_rule {
 618	u8 len;
 619	u8 flags;
 620	__be16 max_eirp;
 621	__be32 start, end, max_bw;
 622	/* start of optional data */
 623	__be16 cac_timeout;
 624	__be16 wmm_ptr;
 625} __packed __aligned(4);
 626
 627#define FWDB_MAGIC 0x52474442
 628#define FWDB_VERSION 20
 629
 630struct fwdb_header {
 631	__be32 magic;
 632	__be32 version;
 633	struct fwdb_country country[];
 634} __packed __aligned(4);
 635
 636static int ecw2cw(int ecw)
 637{
 638	return (1 << ecw) - 1;
 639}
 640
 641static bool valid_wmm(struct fwdb_wmm_rule *rule)
 642{
 643	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 644	int i;
 645
 646	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 647		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 648		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 649		u8 aifsn = ac[i].aifsn;
 650
 651		if (cw_min >= cw_max)
 652			return false;
 653
 654		if (aifsn < 1)
 655			return false;
 656	}
 657
 658	return true;
 659}
 660
 661static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 662{
 663	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 664
 665	if ((u8 *)rule + sizeof(rule->len) > data + size)
 666		return false;
 667
 668	/* mandatory fields */
 669	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 670		return false;
 671	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 672		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 673		struct fwdb_wmm_rule *wmm;
 674
 675		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 676			return false;
 677
 678		wmm = (void *)(data + wmm_ptr);
 679
 680		if (!valid_wmm(wmm))
 681			return false;
 682	}
 683	return true;
 684}
 685
 686static bool valid_country(const u8 *data, unsigned int size,
 687			  const struct fwdb_country *country)
 688{
 689	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 690	struct fwdb_collection *coll = (void *)(data + ptr);
 691	__be16 *rules_ptr;
 692	unsigned int i;
 693
 694	/* make sure we can read len/n_rules */
 695	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 696		return false;
 697
 698	/* make sure base struct and all rules fit */
 699	if ((u8 *)coll + ALIGN(coll->len, 2) +
 700	    (coll->n_rules * 2) > data + size)
 701		return false;
 702
 703	/* mandatory fields must exist */
 704	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 705		return false;
 706
 707	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 708
 709	for (i = 0; i < coll->n_rules; i++) {
 710		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 711
 712		if (!valid_rule(data, size, rule_ptr))
 713			return false;
 714	}
 715
 716	return true;
 717}
 718
 719#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 
 
 720static struct key *builtin_regdb_keys;
 721
 722static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
 723{
 724	const u8 *end = p + buflen;
 725	size_t plen;
 726	key_ref_t key;
 727
 728	while (p < end) {
 729		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
 730		 * than 256 bytes in size.
 731		 */
 732		if (end - p < 4)
 733			goto dodgy_cert;
 734		if (p[0] != 0x30 &&
 735		    p[1] != 0x82)
 736			goto dodgy_cert;
 737		plen = (p[2] << 8) | p[3];
 738		plen += 4;
 739		if (plen > end - p)
 740			goto dodgy_cert;
 741
 742		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
 743					   "asymmetric", NULL, p, plen,
 744					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 745					    KEY_USR_VIEW | KEY_USR_READ),
 746					   KEY_ALLOC_NOT_IN_QUOTA |
 747					   KEY_ALLOC_BUILT_IN |
 748					   KEY_ALLOC_BYPASS_RESTRICTION);
 749		if (IS_ERR(key)) {
 750			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
 751			       PTR_ERR(key));
 752		} else {
 753			pr_notice("Loaded X.509 cert '%s'\n",
 754				  key_ref_to_ptr(key)->description);
 755			key_ref_put(key);
 756		}
 757		p += plen;
 758	}
 759
 760	return;
 761
 762dodgy_cert:
 763	pr_err("Problem parsing in-kernel X.509 certificate list\n");
 764}
 765
 766static int __init load_builtin_regdb_keys(void)
 767{
 768	builtin_regdb_keys =
 769		keyring_alloc(".builtin_regdb_keys",
 770			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 771			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 772			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 773			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 774	if (IS_ERR(builtin_regdb_keys))
 775		return PTR_ERR(builtin_regdb_keys);
 776
 777	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 778
 779#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 780	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
 
 
 781#endif
 782#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 783	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 784		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
 
 
 785#endif
 786
 787	return 0;
 788}
 789
 
 
 790static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 791{
 792	const struct firmware *sig;
 793	bool result;
 794
 795	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 796		return false;
 797
 798	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 799					builtin_regdb_keys,
 800					VERIFYING_UNSPECIFIED_SIGNATURE,
 801					NULL, NULL) == 0;
 802
 803	release_firmware(sig);
 804
 805	return result;
 806}
 807
 808static void free_regdb_keyring(void)
 809{
 810	key_put(builtin_regdb_keys);
 811}
 812#else
 813static int load_builtin_regdb_keys(void)
 814{
 815	return 0;
 816}
 817
 818static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 819{
 820	return true;
 821}
 822
 823static void free_regdb_keyring(void)
 824{
 825}
 826#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 827
 828static bool valid_regdb(const u8 *data, unsigned int size)
 829{
 830	const struct fwdb_header *hdr = (void *)data;
 831	const struct fwdb_country *country;
 832
 833	if (size < sizeof(*hdr))
 834		return false;
 835
 836	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 837		return false;
 838
 839	if (hdr->version != cpu_to_be32(FWDB_VERSION))
 840		return false;
 841
 842	if (!regdb_has_valid_signature(data, size))
 843		return false;
 844
 845	country = &hdr->country[0];
 846	while ((u8 *)(country + 1) <= data + size) {
 847		if (!country->coll_ptr)
 848			break;
 849		if (!valid_country(data, size, country))
 850			return false;
 851		country++;
 852	}
 853
 854	return true;
 855}
 856
 857static void set_wmm_rule(const struct fwdb_header *db,
 858			 const struct fwdb_country *country,
 859			 const struct fwdb_rule *rule,
 860			 struct ieee80211_reg_rule *rrule)
 861{
 862	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 863	struct fwdb_wmm_rule *wmm;
 864	unsigned int i, wmm_ptr;
 865
 866	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 867	wmm = (void *)((u8 *)db + wmm_ptr);
 868
 869	if (!valid_wmm(wmm)) {
 870		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 871		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 872		       country->alpha2[0], country->alpha2[1]);
 873		return;
 874	}
 875
 876	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 877		wmm_rule->client[i].cw_min =
 878			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 879		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 880		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 881		wmm_rule->client[i].cot =
 882			1000 * be16_to_cpu(wmm->client[i].cot);
 883		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 884		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 885		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 886		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 887	}
 888
 889	rrule->has_wmm = true;
 890}
 891
 892static int __regdb_query_wmm(const struct fwdb_header *db,
 893			     const struct fwdb_country *country, int freq,
 894			     struct ieee80211_reg_rule *rrule)
 895{
 896	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 897	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 898	int i;
 899
 900	for (i = 0; i < coll->n_rules; i++) {
 901		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 902		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 903		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 904
 905		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 906			continue;
 907
 908		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 909		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 910			set_wmm_rule(db, country, rule, rrule);
 911			return 0;
 912		}
 913	}
 914
 915	return -ENODATA;
 916}
 917
 918int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 919{
 920	const struct fwdb_header *hdr = regdb;
 921	const struct fwdb_country *country;
 922
 923	if (!regdb)
 924		return -ENODATA;
 925
 926	if (IS_ERR(regdb))
 927		return PTR_ERR(regdb);
 928
 929	country = &hdr->country[0];
 930	while (country->coll_ptr) {
 931		if (alpha2_equal(alpha2, country->alpha2))
 932			return __regdb_query_wmm(regdb, country, freq, rule);
 933
 934		country++;
 935	}
 936
 937	return -ENODATA;
 938}
 939EXPORT_SYMBOL(reg_query_regdb_wmm);
 940
 941static int regdb_query_country(const struct fwdb_header *db,
 942			       const struct fwdb_country *country)
 943{
 944	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 945	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 946	struct ieee80211_regdomain *regdom;
 947	unsigned int i;
 948
 949	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 950			 GFP_KERNEL);
 951	if (!regdom)
 952		return -ENOMEM;
 953
 954	regdom->n_reg_rules = coll->n_rules;
 955	regdom->alpha2[0] = country->alpha2[0];
 956	regdom->alpha2[1] = country->alpha2[1];
 957	regdom->dfs_region = coll->dfs_region;
 958
 959	for (i = 0; i < regdom->n_reg_rules; i++) {
 960		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 961		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 962		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 963		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 964
 965		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 966		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 967		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 968
 969		rrule->power_rule.max_antenna_gain = 0;
 970		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 971
 972		rrule->flags = 0;
 973		if (rule->flags & FWDB_FLAG_NO_OFDM)
 974			rrule->flags |= NL80211_RRF_NO_OFDM;
 975		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 976			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 977		if (rule->flags & FWDB_FLAG_DFS)
 978			rrule->flags |= NL80211_RRF_DFS;
 979		if (rule->flags & FWDB_FLAG_NO_IR)
 980			rrule->flags |= NL80211_RRF_NO_IR;
 981		if (rule->flags & FWDB_FLAG_AUTO_BW)
 982			rrule->flags |= NL80211_RRF_AUTO_BW;
 983
 984		rrule->dfs_cac_ms = 0;
 985
 986		/* handle optional data */
 987		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
 988			rrule->dfs_cac_ms =
 989				1000 * be16_to_cpu(rule->cac_timeout);
 990		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
 991			set_wmm_rule(db, country, rule, rrule);
 992	}
 993
 994	return reg_schedule_apply(regdom);
 995}
 996
 997static int query_regdb(const char *alpha2)
 998{
 999	const struct fwdb_header *hdr = regdb;
1000	const struct fwdb_country *country;
1001
1002	ASSERT_RTNL();
1003
1004	if (IS_ERR(regdb))
1005		return PTR_ERR(regdb);
1006
1007	country = &hdr->country[0];
1008	while (country->coll_ptr) {
1009		if (alpha2_equal(alpha2, country->alpha2))
1010			return regdb_query_country(regdb, country);
1011		country++;
1012	}
1013
1014	return -ENODATA;
1015}
1016
1017static void regdb_fw_cb(const struct firmware *fw, void *context)
1018{
1019	int set_error = 0;
1020	bool restore = true;
1021	void *db;
1022
1023	if (!fw) {
1024		pr_info("failed to load regulatory.db\n");
1025		set_error = -ENODATA;
1026	} else if (!valid_regdb(fw->data, fw->size)) {
1027		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028		set_error = -EINVAL;
1029	}
1030
1031	rtnl_lock();
1032	if (regdb && !IS_ERR(regdb)) {
1033		/* negative case - a bug
1034		 * positive case - can happen due to race in case of multiple cb's in
1035		 * queue, due to usage of asynchronous callback
1036		 *
1037		 * Either case, just restore and free new db.
1038		 */
1039	} else if (set_error) {
1040		regdb = ERR_PTR(set_error);
1041	} else if (fw) {
1042		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043		if (db) {
1044			regdb = db;
1045			restore = context && query_regdb(context);
1046		} else {
1047			restore = true;
1048		}
1049	}
1050
1051	if (restore)
1052		restore_regulatory_settings(true, false);
1053
1054	rtnl_unlock();
1055
1056	kfree(context);
1057
1058	release_firmware(fw);
1059}
1060
 
 
1061static int query_regdb_file(const char *alpha2)
1062{
 
 
1063	ASSERT_RTNL();
1064
1065	if (regdb)
1066		return query_regdb(alpha2);
1067
1068	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069	if (!alpha2)
1070		return -ENOMEM;
1071
1072	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073				       &reg_pdev->dev, GFP_KERNEL,
1074				       (void *)alpha2, regdb_fw_cb);
 
 
 
 
1075}
1076
1077int reg_reload_regdb(void)
1078{
1079	const struct firmware *fw;
1080	void *db;
1081	int err;
 
 
1082
1083	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084	if (err)
1085		return err;
1086
1087	if (!valid_regdb(fw->data, fw->size)) {
1088		err = -ENODATA;
1089		goto out;
1090	}
1091
1092	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093	if (!db) {
1094		err = -ENOMEM;
1095		goto out;
1096	}
1097
1098	rtnl_lock();
1099	if (!IS_ERR_OR_NULL(regdb))
1100		kfree(regdb);
1101	regdb = db;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1102	rtnl_unlock();
1103
1104 out:
1105	release_firmware(fw);
1106	return err;
1107}
1108
1109static bool reg_query_database(struct regulatory_request *request)
1110{
1111	if (query_regdb_file(request->alpha2) == 0)
1112		return true;
1113
1114	if (call_crda(request->alpha2) == 0)
1115		return true;
1116
1117	return false;
1118}
1119
1120bool reg_is_valid_request(const char *alpha2)
1121{
1122	struct regulatory_request *lr = get_last_request();
1123
1124	if (!lr || lr->processed)
1125		return false;
1126
1127	return alpha2_equal(lr->alpha2, alpha2);
1128}
1129
1130static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131{
1132	struct regulatory_request *lr = get_last_request();
1133
1134	/*
1135	 * Follow the driver's regulatory domain, if present, unless a country
1136	 * IE has been processed or a user wants to help complaince further
1137	 */
1138	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140	    wiphy->regd)
1141		return get_wiphy_regdom(wiphy);
1142
1143	return get_cfg80211_regdom();
1144}
1145
1146static unsigned int
1147reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148				 const struct ieee80211_reg_rule *rule)
1149{
1150	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151	const struct ieee80211_freq_range *freq_range_tmp;
1152	const struct ieee80211_reg_rule *tmp;
1153	u32 start_freq, end_freq, idx, no;
1154
1155	for (idx = 0; idx < rd->n_reg_rules; idx++)
1156		if (rule == &rd->reg_rules[idx])
1157			break;
1158
1159	if (idx == rd->n_reg_rules)
1160		return 0;
1161
1162	/* get start_freq */
1163	no = idx;
1164
1165	while (no) {
1166		tmp = &rd->reg_rules[--no];
1167		freq_range_tmp = &tmp->freq_range;
1168
1169		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170			break;
1171
1172		freq_range = freq_range_tmp;
1173	}
1174
1175	start_freq = freq_range->start_freq_khz;
1176
1177	/* get end_freq */
1178	freq_range = &rule->freq_range;
1179	no = idx;
1180
1181	while (no < rd->n_reg_rules - 1) {
1182		tmp = &rd->reg_rules[++no];
1183		freq_range_tmp = &tmp->freq_range;
1184
1185		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186			break;
1187
1188		freq_range = freq_range_tmp;
1189	}
1190
1191	end_freq = freq_range->end_freq_khz;
1192
1193	return end_freq - start_freq;
1194}
1195
1196unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197				   const struct ieee80211_reg_rule *rule)
1198{
1199	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
 
 
1201	if (rule->flags & NL80211_RRF_NO_160MHZ)
1202		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203	if (rule->flags & NL80211_RRF_NO_80MHZ)
1204		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206	/*
1207	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208	 * are not allowed.
1209	 */
1210	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1212		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214	return bw;
1215}
1216
1217/* Sanity check on a regulatory rule */
1218static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219{
1220	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221	u32 freq_diff;
1222
1223	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224		return false;
1225
1226	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227		return false;
1228
1229	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232	    freq_range->max_bandwidth_khz > freq_diff)
1233		return false;
1234
1235	return true;
1236}
1237
1238static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239{
1240	const struct ieee80211_reg_rule *reg_rule = NULL;
1241	unsigned int i;
1242
1243	if (!rd->n_reg_rules)
1244		return false;
1245
1246	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247		return false;
1248
1249	for (i = 0; i < rd->n_reg_rules; i++) {
1250		reg_rule = &rd->reg_rules[i];
1251		if (!is_valid_reg_rule(reg_rule))
1252			return false;
1253	}
1254
1255	return true;
1256}
1257
1258/**
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1262 *
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269 * 60 GHz band.
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1272 **/
 
 
1273static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274			      u32 freq_khz)
1275{
1276#define ONE_GHZ_IN_KHZ	1000000
1277	/*
1278	 * From 802.11ad: directional multi-gigabit (DMG):
1279	 * Pertaining to operation in a frequency band containing a channel
1280	 * with the Channel starting frequency above 45 GHz.
1281	 */
1282	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285		return true;
1286	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287		return true;
1288	return false;
1289#undef ONE_GHZ_IN_KHZ
1290}
1291
1292/*
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1296 */
1297static enum nl80211_dfs_regions
1298reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299			 const enum nl80211_dfs_regions dfs_region2)
1300{
1301	if (dfs_region1 != dfs_region2)
1302		return NL80211_DFS_UNSET;
1303	return dfs_region1;
1304}
1305
1306static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307				    const struct ieee80211_wmm_ac *wmm_ac2,
1308				    struct ieee80211_wmm_ac *intersect)
1309{
1310	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314}
1315
1316/*
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1319 */
1320static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321			       const struct ieee80211_regdomain *rd2,
1322			       const struct ieee80211_reg_rule *rule1,
1323			       const struct ieee80211_reg_rule *rule2,
1324			       struct ieee80211_reg_rule *intersected_rule)
1325{
1326	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327	struct ieee80211_freq_range *freq_range;
1328	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329	struct ieee80211_power_rule *power_rule;
1330	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331	struct ieee80211_wmm_rule *wmm_rule;
1332	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334	freq_range1 = &rule1->freq_range;
1335	freq_range2 = &rule2->freq_range;
1336	freq_range = &intersected_rule->freq_range;
1337
1338	power_rule1 = &rule1->power_rule;
1339	power_rule2 = &rule2->power_rule;
1340	power_rule = &intersected_rule->power_rule;
1341
1342	wmm_rule1 = &rule1->wmm_rule;
1343	wmm_rule2 = &rule2->wmm_rule;
1344	wmm_rule = &intersected_rule->wmm_rule;
1345
1346	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347					 freq_range2->start_freq_khz);
1348	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349				       freq_range2->end_freq_khz);
1350
1351	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354	if (rule1->flags & NL80211_RRF_AUTO_BW)
1355		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356	if (rule2->flags & NL80211_RRF_AUTO_BW)
1357		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361	intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363	/*
1364	 * In case NL80211_RRF_AUTO_BW requested for both rules
1365	 * set AUTO_BW in intersected rule also. Next we will
1366	 * calculate BW correctly in handle_channel function.
1367	 * In other case remove AUTO_BW flag while we calculate
1368	 * maximum bandwidth correctly and auto calculation is
1369	 * not required.
1370	 */
1371	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372	    (rule2->flags & NL80211_RRF_AUTO_BW))
1373		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374	else
1375		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378	if (freq_range->max_bandwidth_khz > freq_diff)
1379		freq_range->max_bandwidth_khz = freq_diff;
1380
1381	power_rule->max_eirp = min(power_rule1->max_eirp,
1382		power_rule2->max_eirp);
1383	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384		power_rule2->max_antenna_gain);
1385
1386	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387					   rule2->dfs_cac_ms);
1388
1389	if (rule1->has_wmm && rule2->has_wmm) {
1390		u8 ac;
1391
1392		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394						&wmm_rule2->client[ac],
1395						&wmm_rule->client[ac]);
1396			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397						&wmm_rule2->ap[ac],
1398						&wmm_rule->ap[ac]);
1399		}
1400
1401		intersected_rule->has_wmm = true;
1402	} else if (rule1->has_wmm) {
1403		*wmm_rule = *wmm_rule1;
1404		intersected_rule->has_wmm = true;
1405	} else if (rule2->has_wmm) {
1406		*wmm_rule = *wmm_rule2;
1407		intersected_rule->has_wmm = true;
1408	} else {
1409		intersected_rule->has_wmm = false;
1410	}
1411
1412	if (!is_valid_reg_rule(intersected_rule))
1413		return -EINVAL;
1414
1415	return 0;
1416}
1417
1418/* check whether old rule contains new rule */
1419static bool rule_contains(struct ieee80211_reg_rule *r1,
1420			  struct ieee80211_reg_rule *r2)
1421{
1422	/* for simplicity, currently consider only same flags */
1423	if (r1->flags != r2->flags)
1424		return false;
1425
1426	/* verify r1 is more restrictive */
1427	if ((r1->power_rule.max_antenna_gain >
1428	     r2->power_rule.max_antenna_gain) ||
1429	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430		return false;
1431
1432	/* make sure r2's range is contained within r1 */
1433	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435		return false;
1436
1437	/* and finally verify that r1.max_bw >= r2.max_bw */
1438	if (r1->freq_range.max_bandwidth_khz <
1439	    r2->freq_range.max_bandwidth_khz)
1440		return false;
1441
1442	return true;
1443}
1444
1445/* add or extend current rules. do nothing if rule is already contained */
1446static void add_rule(struct ieee80211_reg_rule *rule,
1447		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448{
1449	struct ieee80211_reg_rule *tmp_rule;
1450	int i;
1451
1452	for (i = 0; i < *n_rules; i++) {
1453		tmp_rule = &reg_rules[i];
1454		/* rule is already contained - do nothing */
1455		if (rule_contains(tmp_rule, rule))
1456			return;
1457
1458		/* extend rule if possible */
1459		if (rule_contains(rule, tmp_rule)) {
1460			memcpy(tmp_rule, rule, sizeof(*rule));
1461			return;
1462		}
1463	}
1464
1465	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466	(*n_rules)++;
1467}
1468
1469/**
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1473 *
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1477 *
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
 
 
1481 */
1482static struct ieee80211_regdomain *
1483regdom_intersect(const struct ieee80211_regdomain *rd1,
1484		 const struct ieee80211_regdomain *rd2)
1485{
1486	int r;
1487	unsigned int x, y;
1488	unsigned int num_rules = 0;
1489	const struct ieee80211_reg_rule *rule1, *rule2;
1490	struct ieee80211_reg_rule intersected_rule;
1491	struct ieee80211_regdomain *rd;
1492
1493	if (!rd1 || !rd2)
1494		return NULL;
1495
1496	/*
1497	 * First we get a count of the rules we'll need, then we actually
1498	 * build them. This is to so we can malloc() and free() a
1499	 * regdomain once. The reason we use reg_rules_intersect() here
1500	 * is it will return -EINVAL if the rule computed makes no sense.
1501	 * All rules that do check out OK are valid.
1502	 */
1503
1504	for (x = 0; x < rd1->n_reg_rules; x++) {
1505		rule1 = &rd1->reg_rules[x];
1506		for (y = 0; y < rd2->n_reg_rules; y++) {
1507			rule2 = &rd2->reg_rules[y];
1508			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509						 &intersected_rule))
1510				num_rules++;
1511		}
1512	}
1513
1514	if (!num_rules)
1515		return NULL;
1516
1517	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518	if (!rd)
1519		return NULL;
1520
1521	for (x = 0; x < rd1->n_reg_rules; x++) {
1522		rule1 = &rd1->reg_rules[x];
1523		for (y = 0; y < rd2->n_reg_rules; y++) {
1524			rule2 = &rd2->reg_rules[y];
1525			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526						&intersected_rule);
1527			/*
1528			 * No need to memset here the intersected rule here as
1529			 * we're not using the stack anymore
1530			 */
1531			if (r)
1532				continue;
1533
1534			add_rule(&intersected_rule, rd->reg_rules,
1535				 &rd->n_reg_rules);
1536		}
1537	}
1538
1539	rd->alpha2[0] = '9';
1540	rd->alpha2[1] = '8';
1541	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542						  rd2->dfs_region);
1543
1544	return rd;
1545}
1546
1547/*
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1550 */
1551static u32 map_regdom_flags(u32 rd_flags)
1552{
1553	u32 channel_flags = 0;
1554	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555		channel_flags |= IEEE80211_CHAN_NO_IR;
1556	if (rd_flags & NL80211_RRF_DFS)
1557		channel_flags |= IEEE80211_CHAN_RADAR;
1558	if (rd_flags & NL80211_RRF_NO_OFDM)
1559		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568	if (rd_flags & NL80211_RRF_NO_80MHZ)
1569		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570	if (rd_flags & NL80211_RRF_NO_160MHZ)
1571		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572	return channel_flags;
1573}
1574
1575static const struct ieee80211_reg_rule *
1576freq_reg_info_regd(u32 center_freq,
1577		   const struct ieee80211_regdomain *regd, u32 bw)
1578{
1579	int i;
1580	bool band_rule_found = false;
1581	bool bw_fits = false;
1582
1583	if (!regd)
1584		return ERR_PTR(-EINVAL);
1585
1586	for (i = 0; i < regd->n_reg_rules; i++) {
1587		const struct ieee80211_reg_rule *rr;
1588		const struct ieee80211_freq_range *fr = NULL;
1589
1590		rr = &regd->reg_rules[i];
1591		fr = &rr->freq_range;
1592
1593		/*
1594		 * We only need to know if one frequency rule was
1595		 * was in center_freq's band, that's enough, so lets
1596		 * not overwrite it once found
1597		 */
1598		if (!band_rule_found)
1599			band_rule_found = freq_in_rule_band(fr, center_freq);
1600
1601		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1602
1603		if (band_rule_found && bw_fits)
1604			return rr;
1605	}
1606
1607	if (!band_rule_found)
1608		return ERR_PTR(-ERANGE);
1609
1610	return ERR_PTR(-EINVAL);
1611}
1612
1613static const struct ieee80211_reg_rule *
1614__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1615{
1616	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1617	const struct ieee80211_reg_rule *reg_rule = NULL;
 
 
1618	u32 bw;
1619
1620	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1621		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1622		if (!IS_ERR(reg_rule))
1623			return reg_rule;
1624	}
1625
1626	return reg_rule;
1627}
1628
1629const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1630					       u32 center_freq)
1631{
1632	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
 
 
1633}
1634EXPORT_SYMBOL(freq_reg_info);
1635
1636const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1637{
1638	switch (initiator) {
1639	case NL80211_REGDOM_SET_BY_CORE:
1640		return "core";
1641	case NL80211_REGDOM_SET_BY_USER:
1642		return "user";
1643	case NL80211_REGDOM_SET_BY_DRIVER:
1644		return "driver";
1645	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1646		return "country element";
1647	default:
1648		WARN_ON(1);
1649		return "bug";
1650	}
1651}
1652EXPORT_SYMBOL(reg_initiator_name);
1653
1654static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1655					  const struct ieee80211_reg_rule *reg_rule,
1656					  const struct ieee80211_channel *chan)
1657{
1658	const struct ieee80211_freq_range *freq_range = NULL;
1659	u32 max_bandwidth_khz, bw_flags = 0;
 
1660
1661	freq_range = &reg_rule->freq_range;
1662
1663	max_bandwidth_khz = freq_range->max_bandwidth_khz;
 
1664	/* Check if auto calculation requested */
1665	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1666		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1667
1668	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1669	if (!cfg80211_does_bw_fit_range(freq_range,
1670					MHZ_TO_KHZ(chan->center_freq),
1671					MHZ_TO_KHZ(10)))
1672		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1673	if (!cfg80211_does_bw_fit_range(freq_range,
1674					MHZ_TO_KHZ(chan->center_freq),
1675					MHZ_TO_KHZ(20)))
1676		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1677
1678	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1679		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1680	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1681		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1682	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1683		bw_flags |= IEEE80211_CHAN_NO_HT40;
1684	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1685		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1686	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1687		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688	return bw_flags;
1689}
1690
1691/*
1692 * Note that right now we assume the desired channel bandwidth
1693 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1694 * per channel, the primary and the extension channel).
1695 */
1696static void handle_channel(struct wiphy *wiphy,
1697			   enum nl80211_reg_initiator initiator,
1698			   struct ieee80211_channel *chan)
1699{
1700	u32 flags, bw_flags = 0;
1701	const struct ieee80211_reg_rule *reg_rule = NULL;
1702	const struct ieee80211_power_rule *power_rule = NULL;
1703	struct wiphy *request_wiphy = NULL;
1704	struct regulatory_request *lr = get_last_request();
1705	const struct ieee80211_regdomain *regd;
1706
1707	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1708
1709	flags = chan->orig_flags;
1710
1711	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1712	if (IS_ERR(reg_rule)) {
1713		/*
1714		 * We will disable all channels that do not match our
1715		 * received regulatory rule unless the hint is coming
1716		 * from a Country IE and the Country IE had no information
1717		 * about a band. The IEEE 802.11 spec allows for an AP
1718		 * to send only a subset of the regulatory rules allowed,
1719		 * so an AP in the US that only supports 2.4 GHz may only send
1720		 * a country IE with information for the 2.4 GHz band
1721		 * while 5 GHz is still supported.
1722		 */
1723		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1724		    PTR_ERR(reg_rule) == -ERANGE)
1725			return;
1726
1727		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1728		    request_wiphy && request_wiphy == wiphy &&
1729		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1730			pr_debug("Disabling freq %d MHz for good\n",
1731				 chan->center_freq);
1732			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1733			chan->flags = chan->orig_flags;
1734		} else {
1735			pr_debug("Disabling freq %d MHz\n",
1736				 chan->center_freq);
1737			chan->flags |= IEEE80211_CHAN_DISABLED;
1738		}
1739		return;
1740	}
1741
1742	regd = reg_get_regdomain(wiphy);
1743
1744	power_rule = &reg_rule->power_rule;
1745	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746
1747	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1748	    request_wiphy && request_wiphy == wiphy &&
1749	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1750		/*
1751		 * This guarantees the driver's requested regulatory domain
1752		 * will always be used as a base for further regulatory
1753		 * settings
1754		 */
1755		chan->flags = chan->orig_flags =
1756			map_regdom_flags(reg_rule->flags) | bw_flags;
1757		chan->max_antenna_gain = chan->orig_mag =
1758			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1760			(int) MBM_TO_DBM(power_rule->max_eirp);
1761
1762		if (chan->flags & IEEE80211_CHAN_RADAR) {
1763			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1764			if (reg_rule->dfs_cac_ms)
1765				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1766		}
1767
 
 
 
1768		return;
1769	}
1770
1771	chan->dfs_state = NL80211_DFS_USABLE;
1772	chan->dfs_state_entered = jiffies;
1773
1774	chan->beacon_found = false;
1775	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1776	chan->max_antenna_gain =
1777		min_t(int, chan->orig_mag,
1778		      MBI_TO_DBI(power_rule->max_antenna_gain));
1779	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1780
1781	if (chan->flags & IEEE80211_CHAN_RADAR) {
1782		if (reg_rule->dfs_cac_ms)
1783			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1784		else
1785			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786	}
1787
 
 
 
1788	if (chan->orig_mpwr) {
1789		/*
1790		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1791		 * will always follow the passed country IE power settings.
1792		 */
1793		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1794		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1795			chan->max_power = chan->max_reg_power;
1796		else
1797			chan->max_power = min(chan->orig_mpwr,
1798					      chan->max_reg_power);
1799	} else
1800		chan->max_power = chan->max_reg_power;
1801}
1802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803static void handle_band(struct wiphy *wiphy,
1804			enum nl80211_reg_initiator initiator,
1805			struct ieee80211_supported_band *sband)
1806{
1807	unsigned int i;
1808
1809	if (!sband)
1810		return;
1811
1812	for (i = 0; i < sband->n_channels; i++)
1813		handle_channel(wiphy, initiator, &sband->channels[i]);
1814}
1815
1816static bool reg_request_cell_base(struct regulatory_request *request)
1817{
1818	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1819		return false;
1820	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1821}
1822
1823bool reg_last_request_cell_base(void)
1824{
1825	return reg_request_cell_base(get_last_request());
1826}
1827
1828#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1829/* Core specific check */
1830static enum reg_request_treatment
1831reg_ignore_cell_hint(struct regulatory_request *pending_request)
1832{
1833	struct regulatory_request *lr = get_last_request();
1834
1835	if (!reg_num_devs_support_basehint)
1836		return REG_REQ_IGNORE;
1837
1838	if (reg_request_cell_base(lr) &&
1839	    !regdom_changes(pending_request->alpha2))
1840		return REG_REQ_ALREADY_SET;
1841
1842	return REG_REQ_OK;
1843}
1844
1845/* Device specific check */
1846static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1847{
1848	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1849}
1850#else
1851static enum reg_request_treatment
1852reg_ignore_cell_hint(struct regulatory_request *pending_request)
1853{
1854	return REG_REQ_IGNORE;
1855}
1856
1857static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1858{
1859	return true;
1860}
1861#endif
1862
1863static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1864{
1865	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1866	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1867		return true;
1868	return false;
1869}
1870
1871static bool ignore_reg_update(struct wiphy *wiphy,
1872			      enum nl80211_reg_initiator initiator)
1873{
1874	struct regulatory_request *lr = get_last_request();
1875
1876	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1877		return true;
1878
1879	if (!lr) {
1880		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1881			 reg_initiator_name(initiator));
1882		return true;
1883	}
1884
1885	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1886	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1887		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1888			 reg_initiator_name(initiator));
1889		return true;
1890	}
1891
1892	/*
1893	 * wiphy->regd will be set once the device has its own
1894	 * desired regulatory domain set
1895	 */
1896	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1897	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1898	    !is_world_regdom(lr->alpha2)) {
1899		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1900			 reg_initiator_name(initiator));
1901		return true;
1902	}
1903
1904	if (reg_request_cell_base(lr))
1905		return reg_dev_ignore_cell_hint(wiphy);
1906
1907	return false;
1908}
1909
1910static bool reg_is_world_roaming(struct wiphy *wiphy)
1911{
1912	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1913	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1914	struct regulatory_request *lr = get_last_request();
1915
1916	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1917		return true;
1918
1919	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1920	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1921		return true;
1922
1923	return false;
1924}
1925
 
 
 
 
 
 
 
1926static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1927			      struct reg_beacon *reg_beacon)
1928{
1929	struct ieee80211_supported_band *sband;
1930	struct ieee80211_channel *chan;
1931	bool channel_changed = false;
1932	struct ieee80211_channel chan_before;
 
1933
1934	sband = wiphy->bands[reg_beacon->chan.band];
1935	chan = &sband->channels[chan_idx];
1936
1937	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1938		return;
1939
1940	if (chan->beacon_found)
1941		return;
1942
1943	chan->beacon_found = true;
1944
1945	if (!reg_is_world_roaming(wiphy))
1946		return;
1947
1948	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1949		return;
1950
1951	chan_before = *chan;
1952
1953	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1954		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1955		channel_changed = true;
1956	}
1957
1958	if (channel_changed)
1959		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
 
 
 
1960}
1961
1962/*
1963 * Called when a scan on a wiphy finds a beacon on
1964 * new channel
1965 */
1966static void wiphy_update_new_beacon(struct wiphy *wiphy,
1967				    struct reg_beacon *reg_beacon)
1968{
1969	unsigned int i;
1970	struct ieee80211_supported_band *sband;
1971
1972	if (!wiphy->bands[reg_beacon->chan.band])
1973		return;
1974
1975	sband = wiphy->bands[reg_beacon->chan.band];
1976
1977	for (i = 0; i < sband->n_channels; i++)
1978		handle_reg_beacon(wiphy, i, reg_beacon);
1979}
1980
1981/*
1982 * Called upon reg changes or a new wiphy is added
1983 */
1984static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1985{
1986	unsigned int i;
1987	struct ieee80211_supported_band *sband;
1988	struct reg_beacon *reg_beacon;
1989
1990	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1991		if (!wiphy->bands[reg_beacon->chan.band])
1992			continue;
1993		sband = wiphy->bands[reg_beacon->chan.band];
1994		for (i = 0; i < sband->n_channels; i++)
1995			handle_reg_beacon(wiphy, i, reg_beacon);
1996	}
1997}
1998
1999/* Reap the advantages of previously found beacons */
2000static void reg_process_beacons(struct wiphy *wiphy)
2001{
2002	/*
2003	 * Means we are just firing up cfg80211, so no beacons would
2004	 * have been processed yet.
2005	 */
2006	if (!last_request)
2007		return;
2008	wiphy_update_beacon_reg(wiphy);
2009}
2010
2011static bool is_ht40_allowed(struct ieee80211_channel *chan)
2012{
2013	if (!chan)
2014		return false;
2015	if (chan->flags & IEEE80211_CHAN_DISABLED)
2016		return false;
2017	/* This would happen when regulatory rules disallow HT40 completely */
2018	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2019		return false;
2020	return true;
2021}
2022
2023static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2024					 struct ieee80211_channel *channel)
2025{
2026	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2027	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2028	const struct ieee80211_regdomain *regd;
2029	unsigned int i;
2030	u32 flags;
2031
2032	if (!is_ht40_allowed(channel)) {
2033		channel->flags |= IEEE80211_CHAN_NO_HT40;
2034		return;
2035	}
2036
2037	/*
2038	 * We need to ensure the extension channels exist to
2039	 * be able to use HT40- or HT40+, this finds them (or not)
2040	 */
2041	for (i = 0; i < sband->n_channels; i++) {
2042		struct ieee80211_channel *c = &sband->channels[i];
2043
2044		if (c->center_freq == (channel->center_freq - 20))
2045			channel_before = c;
2046		if (c->center_freq == (channel->center_freq + 20))
2047			channel_after = c;
2048	}
2049
2050	flags = 0;
2051	regd = get_wiphy_regdom(wiphy);
2052	if (regd) {
2053		const struct ieee80211_reg_rule *reg_rule =
2054			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2055					   regd, MHZ_TO_KHZ(20));
2056
2057		if (!IS_ERR(reg_rule))
2058			flags = reg_rule->flags;
2059	}
2060
2061	/*
2062	 * Please note that this assumes target bandwidth is 20 MHz,
2063	 * if that ever changes we also need to change the below logic
2064	 * to include that as well.
2065	 */
2066	if (!is_ht40_allowed(channel_before) ||
2067	    flags & NL80211_RRF_NO_HT40MINUS)
2068		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2069	else
2070		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2071
2072	if (!is_ht40_allowed(channel_after) ||
2073	    flags & NL80211_RRF_NO_HT40PLUS)
2074		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2075	else
2076		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2077}
2078
2079static void reg_process_ht_flags_band(struct wiphy *wiphy,
2080				      struct ieee80211_supported_band *sband)
2081{
2082	unsigned int i;
2083
2084	if (!sband)
2085		return;
2086
2087	for (i = 0; i < sband->n_channels; i++)
2088		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2089}
2090
2091static void reg_process_ht_flags(struct wiphy *wiphy)
2092{
2093	enum nl80211_band band;
2094
2095	if (!wiphy)
2096		return;
2097
2098	for (band = 0; band < NUM_NL80211_BANDS; band++)
2099		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2100}
2101
2102static void reg_call_notifier(struct wiphy *wiphy,
2103			      struct regulatory_request *request)
2104{
2105	if (wiphy->reg_notifier)
2106		wiphy->reg_notifier(wiphy, request);
2107}
2108
2109static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2110{
2111	struct cfg80211_chan_def chandef = {};
2112	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2113	enum nl80211_iftype iftype;
 
 
2114
2115	wdev_lock(wdev);
2116	iftype = wdev->iftype;
2117
2118	/* make sure the interface is active */
2119	if (!wdev->netdev || !netif_running(wdev->netdev))
2120		goto wdev_inactive_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2121
2122	switch (iftype) {
2123	case NL80211_IFTYPE_AP:
2124	case NL80211_IFTYPE_P2P_GO:
2125		if (!wdev->beacon_interval)
2126			goto wdev_inactive_unlock;
2127		chandef = wdev->chandef;
2128		break;
2129	case NL80211_IFTYPE_ADHOC:
2130		if (!wdev->ssid_len)
2131			goto wdev_inactive_unlock;
2132		chandef = wdev->chandef;
2133		break;
2134	case NL80211_IFTYPE_STATION:
2135	case NL80211_IFTYPE_P2P_CLIENT:
2136		if (!wdev->current_bss ||
2137		    !wdev->current_bss->pub.channel)
2138			goto wdev_inactive_unlock;
2139
2140		if (!rdev->ops->get_channel ||
2141		    rdev_get_channel(rdev, wdev, &chandef))
2142			cfg80211_chandef_create(&chandef,
2143						wdev->current_bss->pub.channel,
2144						NL80211_CHAN_NO_HT);
2145		break;
2146	case NL80211_IFTYPE_MONITOR:
2147	case NL80211_IFTYPE_AP_VLAN:
2148	case NL80211_IFTYPE_P2P_DEVICE:
2149		/* no enforcement required */
2150		break;
2151	default:
2152		/* others not implemented for now */
2153		WARN_ON(1);
2154		break;
2155	}
2156
2157	wdev_unlock(wdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158
2159	switch (iftype) {
2160	case NL80211_IFTYPE_AP:
2161	case NL80211_IFTYPE_P2P_GO:
2162	case NL80211_IFTYPE_ADHOC:
2163		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2164	case NL80211_IFTYPE_STATION:
2165	case NL80211_IFTYPE_P2P_CLIENT:
2166		return cfg80211_chandef_usable(wiphy, &chandef,
2167					       IEEE80211_CHAN_DISABLED);
2168	default:
2169		break;
 
 
 
 
 
 
 
 
 
2170	}
2171
2172	return true;
2173
2174wdev_inactive_unlock:
2175	wdev_unlock(wdev);
2176	return true;
2177}
2178
2179static void reg_leave_invalid_chans(struct wiphy *wiphy)
2180{
2181	struct wireless_dev *wdev;
2182	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2183
2184	ASSERT_RTNL();
2185
2186	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2187		if (!reg_wdev_chan_valid(wiphy, wdev))
2188			cfg80211_leave(rdev, wdev);
 
2189}
2190
2191static void reg_check_chans_work(struct work_struct *work)
2192{
2193	struct cfg80211_registered_device *rdev;
2194
2195	pr_debug("Verifying active interfaces after reg change\n");
2196	rtnl_lock();
2197
2198	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2199		if (!(rdev->wiphy.regulatory_flags &
2200		      REGULATORY_IGNORE_STALE_KICKOFF))
2201			reg_leave_invalid_chans(&rdev->wiphy);
2202
2203	rtnl_unlock();
2204}
2205
2206static void reg_check_channels(void)
2207{
2208	/*
2209	 * Give usermode a chance to do something nicer (move to another
2210	 * channel, orderly disconnection), before forcing a disconnection.
2211	 */
2212	mod_delayed_work(system_power_efficient_wq,
2213			 &reg_check_chans,
2214			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2215}
2216
2217static void wiphy_update_regulatory(struct wiphy *wiphy,
2218				    enum nl80211_reg_initiator initiator)
2219{
2220	enum nl80211_band band;
2221	struct regulatory_request *lr = get_last_request();
2222
2223	if (ignore_reg_update(wiphy, initiator)) {
2224		/*
2225		 * Regulatory updates set by CORE are ignored for custom
2226		 * regulatory cards. Let us notify the changes to the driver,
2227		 * as some drivers used this to restore its orig_* reg domain.
2228		 */
2229		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2230		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2231		    !(wiphy->regulatory_flags &
2232		      REGULATORY_WIPHY_SELF_MANAGED))
2233			reg_call_notifier(wiphy, lr);
2234		return;
2235	}
2236
2237	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2238
2239	for (band = 0; band < NUM_NL80211_BANDS; band++)
2240		handle_band(wiphy, initiator, wiphy->bands[band]);
2241
2242	reg_process_beacons(wiphy);
2243	reg_process_ht_flags(wiphy);
2244	reg_call_notifier(wiphy, lr);
2245}
2246
2247static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2248{
2249	struct cfg80211_registered_device *rdev;
2250	struct wiphy *wiphy;
2251
2252	ASSERT_RTNL();
2253
2254	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2255		wiphy = &rdev->wiphy;
2256		wiphy_update_regulatory(wiphy, initiator);
2257	}
2258
2259	reg_check_channels();
2260}
2261
2262static void handle_channel_custom(struct wiphy *wiphy,
2263				  struct ieee80211_channel *chan,
2264				  const struct ieee80211_regdomain *regd)
 
2265{
2266	u32 bw_flags = 0;
2267	const struct ieee80211_reg_rule *reg_rule = NULL;
2268	const struct ieee80211_power_rule *power_rule = NULL;
2269	u32 bw;
2270
2271	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2272		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2273					      regd, bw);
2274		if (!IS_ERR(reg_rule))
2275			break;
2276	}
2277
2278	if (IS_ERR(reg_rule)) {
2279		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2280			 chan->center_freq);
2281		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2282			chan->flags |= IEEE80211_CHAN_DISABLED;
2283		} else {
2284			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2285			chan->flags = chan->orig_flags;
2286		}
2287		return;
2288	}
2289
2290	power_rule = &reg_rule->power_rule;
2291	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2292
2293	chan->dfs_state_entered = jiffies;
2294	chan->dfs_state = NL80211_DFS_USABLE;
2295
2296	chan->beacon_found = false;
2297
2298	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2299		chan->flags = chan->orig_flags | bw_flags |
2300			      map_regdom_flags(reg_rule->flags);
2301	else
2302		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2303
2304	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2305	chan->max_reg_power = chan->max_power =
2306		(int) MBM_TO_DBM(power_rule->max_eirp);
2307
2308	if (chan->flags & IEEE80211_CHAN_RADAR) {
2309		if (reg_rule->dfs_cac_ms)
2310			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2311		else
2312			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2313	}
2314
 
 
 
2315	chan->max_power = chan->max_reg_power;
2316}
2317
2318static void handle_band_custom(struct wiphy *wiphy,
2319			       struct ieee80211_supported_band *sband,
2320			       const struct ieee80211_regdomain *regd)
2321{
2322	unsigned int i;
2323
2324	if (!sband)
2325		return;
2326
 
 
 
 
 
2327	for (i = 0; i < sband->n_channels; i++)
2328		handle_channel_custom(wiphy, &sband->channels[i], regd);
 
2329}
2330
2331/* Used by drivers prior to wiphy registration */
2332void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2333				   const struct ieee80211_regdomain *regd)
2334{
 
2335	enum nl80211_band band;
2336	unsigned int bands_set = 0;
2337
2338	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2339	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2340	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2341
2342	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2343		if (!wiphy->bands[band])
2344			continue;
2345		handle_band_custom(wiphy, wiphy->bands[band], regd);
2346		bands_set++;
2347	}
2348
2349	/*
2350	 * no point in calling this if it won't have any effect
2351	 * on your device's supported bands.
2352	 */
2353	WARN_ON(!bands_set);
 
 
 
 
 
 
 
 
 
 
 
 
 
2354}
2355EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2356
2357static void reg_set_request_processed(void)
2358{
2359	bool need_more_processing = false;
2360	struct regulatory_request *lr = get_last_request();
2361
2362	lr->processed = true;
2363
2364	spin_lock(&reg_requests_lock);
2365	if (!list_empty(&reg_requests_list))
2366		need_more_processing = true;
2367	spin_unlock(&reg_requests_lock);
2368
2369	cancel_crda_timeout();
2370
2371	if (need_more_processing)
2372		schedule_work(&reg_work);
2373}
2374
2375/**
2376 * reg_process_hint_core - process core regulatory requests
2377 * @pending_request: a pending core regulatory request
2378 *
2379 * The wireless subsystem can use this function to process
2380 * a regulatory request issued by the regulatory core.
 
 
 
2381 */
2382static enum reg_request_treatment
2383reg_process_hint_core(struct regulatory_request *core_request)
2384{
2385	if (reg_query_database(core_request)) {
2386		core_request->intersect = false;
2387		core_request->processed = false;
2388		reg_update_last_request(core_request);
2389		return REG_REQ_OK;
2390	}
2391
2392	return REG_REQ_IGNORE;
2393}
2394
2395static enum reg_request_treatment
2396__reg_process_hint_user(struct regulatory_request *user_request)
2397{
2398	struct regulatory_request *lr = get_last_request();
2399
2400	if (reg_request_cell_base(user_request))
2401		return reg_ignore_cell_hint(user_request);
2402
2403	if (reg_request_cell_base(lr))
2404		return REG_REQ_IGNORE;
2405
2406	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2407		return REG_REQ_INTERSECT;
2408	/*
2409	 * If the user knows better the user should set the regdom
2410	 * to their country before the IE is picked up
2411	 */
2412	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2413	    lr->intersect)
2414		return REG_REQ_IGNORE;
2415	/*
2416	 * Process user requests only after previous user/driver/core
2417	 * requests have been processed
2418	 */
2419	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2420	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2421	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2422	    regdom_changes(lr->alpha2))
2423		return REG_REQ_IGNORE;
2424
2425	if (!regdom_changes(user_request->alpha2))
2426		return REG_REQ_ALREADY_SET;
2427
2428	return REG_REQ_OK;
2429}
2430
2431/**
2432 * reg_process_hint_user - process user regulatory requests
2433 * @user_request: a pending user regulatory request
2434 *
2435 * The wireless subsystem can use this function to process
2436 * a regulatory request initiated by userspace.
 
 
 
2437 */
2438static enum reg_request_treatment
2439reg_process_hint_user(struct regulatory_request *user_request)
2440{
2441	enum reg_request_treatment treatment;
2442
2443	treatment = __reg_process_hint_user(user_request);
2444	if (treatment == REG_REQ_IGNORE ||
2445	    treatment == REG_REQ_ALREADY_SET)
2446		return REG_REQ_IGNORE;
2447
2448	user_request->intersect = treatment == REG_REQ_INTERSECT;
2449	user_request->processed = false;
2450
2451	if (reg_query_database(user_request)) {
2452		reg_update_last_request(user_request);
2453		user_alpha2[0] = user_request->alpha2[0];
2454		user_alpha2[1] = user_request->alpha2[1];
2455		return REG_REQ_OK;
2456	}
2457
2458	return REG_REQ_IGNORE;
2459}
2460
2461static enum reg_request_treatment
2462__reg_process_hint_driver(struct regulatory_request *driver_request)
2463{
2464	struct regulatory_request *lr = get_last_request();
2465
2466	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2467		if (regdom_changes(driver_request->alpha2))
2468			return REG_REQ_OK;
2469		return REG_REQ_ALREADY_SET;
2470	}
2471
2472	/*
2473	 * This would happen if you unplug and plug your card
2474	 * back in or if you add a new device for which the previously
2475	 * loaded card also agrees on the regulatory domain.
2476	 */
2477	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2478	    !regdom_changes(driver_request->alpha2))
2479		return REG_REQ_ALREADY_SET;
2480
2481	return REG_REQ_INTERSECT;
2482}
2483
2484/**
2485 * reg_process_hint_driver - process driver regulatory requests
 
2486 * @driver_request: a pending driver regulatory request
2487 *
2488 * The wireless subsystem can use this function to process
2489 * a regulatory request issued by an 802.11 driver.
2490 *
2491 * Returns one of the different reg request treatment values.
2492 */
2493static enum reg_request_treatment
2494reg_process_hint_driver(struct wiphy *wiphy,
2495			struct regulatory_request *driver_request)
2496{
2497	const struct ieee80211_regdomain *regd, *tmp;
2498	enum reg_request_treatment treatment;
2499
2500	treatment = __reg_process_hint_driver(driver_request);
2501
2502	switch (treatment) {
2503	case REG_REQ_OK:
2504		break;
2505	case REG_REQ_IGNORE:
2506		return REG_REQ_IGNORE;
2507	case REG_REQ_INTERSECT:
2508	case REG_REQ_ALREADY_SET:
2509		regd = reg_copy_regd(get_cfg80211_regdom());
2510		if (IS_ERR(regd))
2511			return REG_REQ_IGNORE;
2512
2513		tmp = get_wiphy_regdom(wiphy);
 
 
2514		rcu_assign_pointer(wiphy->regd, regd);
 
2515		rcu_free_regdom(tmp);
2516	}
2517
2518
2519	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2520	driver_request->processed = false;
2521
2522	/*
2523	 * Since CRDA will not be called in this case as we already
2524	 * have applied the requested regulatory domain before we just
2525	 * inform userspace we have processed the request
2526	 */
2527	if (treatment == REG_REQ_ALREADY_SET) {
2528		nl80211_send_reg_change_event(driver_request);
2529		reg_update_last_request(driver_request);
2530		reg_set_request_processed();
2531		return REG_REQ_ALREADY_SET;
2532	}
2533
2534	if (reg_query_database(driver_request)) {
2535		reg_update_last_request(driver_request);
2536		return REG_REQ_OK;
2537	}
2538
2539	return REG_REQ_IGNORE;
2540}
2541
2542static enum reg_request_treatment
2543__reg_process_hint_country_ie(struct wiphy *wiphy,
2544			      struct regulatory_request *country_ie_request)
2545{
2546	struct wiphy *last_wiphy = NULL;
2547	struct regulatory_request *lr = get_last_request();
2548
2549	if (reg_request_cell_base(lr)) {
2550		/* Trust a Cell base station over the AP's country IE */
2551		if (regdom_changes(country_ie_request->alpha2))
2552			return REG_REQ_IGNORE;
2553		return REG_REQ_ALREADY_SET;
2554	} else {
2555		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2556			return REG_REQ_IGNORE;
2557	}
2558
2559	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2560		return -EINVAL;
2561
2562	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2563		return REG_REQ_OK;
2564
2565	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2566
2567	if (last_wiphy != wiphy) {
2568		/*
2569		 * Two cards with two APs claiming different
2570		 * Country IE alpha2s. We could
2571		 * intersect them, but that seems unlikely
2572		 * to be correct. Reject second one for now.
2573		 */
2574		if (regdom_changes(country_ie_request->alpha2))
2575			return REG_REQ_IGNORE;
2576		return REG_REQ_ALREADY_SET;
2577	}
2578
2579	if (regdom_changes(country_ie_request->alpha2))
2580		return REG_REQ_OK;
2581	return REG_REQ_ALREADY_SET;
2582}
2583
2584/**
2585 * reg_process_hint_country_ie - process regulatory requests from country IEs
 
2586 * @country_ie_request: a regulatory request from a country IE
2587 *
2588 * The wireless subsystem can use this function to process
2589 * a regulatory request issued by a country Information Element.
2590 *
2591 * Returns one of the different reg request treatment values.
2592 */
2593static enum reg_request_treatment
2594reg_process_hint_country_ie(struct wiphy *wiphy,
2595			    struct regulatory_request *country_ie_request)
2596{
2597	enum reg_request_treatment treatment;
2598
2599	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2600
2601	switch (treatment) {
2602	case REG_REQ_OK:
2603		break;
2604	case REG_REQ_IGNORE:
2605		return REG_REQ_IGNORE;
2606	case REG_REQ_ALREADY_SET:
2607		reg_free_request(country_ie_request);
2608		return REG_REQ_ALREADY_SET;
2609	case REG_REQ_INTERSECT:
2610		/*
2611		 * This doesn't happen yet, not sure we
2612		 * ever want to support it for this case.
2613		 */
2614		WARN_ONCE(1, "Unexpected intersection for country elements");
2615		return REG_REQ_IGNORE;
2616	}
2617
2618	country_ie_request->intersect = false;
2619	country_ie_request->processed = false;
2620
2621	if (reg_query_database(country_ie_request)) {
2622		reg_update_last_request(country_ie_request);
2623		return REG_REQ_OK;
2624	}
2625
2626	return REG_REQ_IGNORE;
2627}
2628
2629bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2630{
2631	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2632	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2633	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2634	bool dfs_domain_same;
2635
2636	rcu_read_lock();
2637
2638	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2639	wiphy1_regd = rcu_dereference(wiphy1->regd);
2640	if (!wiphy1_regd)
2641		wiphy1_regd = cfg80211_regd;
2642
2643	wiphy2_regd = rcu_dereference(wiphy2->regd);
2644	if (!wiphy2_regd)
2645		wiphy2_regd = cfg80211_regd;
2646
2647	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2648
2649	rcu_read_unlock();
2650
2651	return dfs_domain_same;
2652}
2653
2654static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2655				    struct ieee80211_channel *src_chan)
2656{
2657	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2658	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2659		return;
2660
2661	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2662	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2663		return;
2664
2665	if (src_chan->center_freq == dst_chan->center_freq &&
2666	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2667		dst_chan->dfs_state = src_chan->dfs_state;
2668		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2669	}
2670}
2671
2672static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2673				       struct wiphy *src_wiphy)
2674{
2675	struct ieee80211_supported_band *src_sband, *dst_sband;
2676	struct ieee80211_channel *src_chan, *dst_chan;
2677	int i, j, band;
2678
2679	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2680		return;
2681
2682	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2683		dst_sband = dst_wiphy->bands[band];
2684		src_sband = src_wiphy->bands[band];
2685		if (!dst_sband || !src_sband)
2686			continue;
2687
2688		for (i = 0; i < dst_sband->n_channels; i++) {
2689			dst_chan = &dst_sband->channels[i];
2690			for (j = 0; j < src_sband->n_channels; j++) {
2691				src_chan = &src_sband->channels[j];
2692				reg_copy_dfs_chan_state(dst_chan, src_chan);
2693			}
2694		}
2695	}
2696}
2697
2698static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2699{
2700	struct cfg80211_registered_device *rdev;
2701
2702	ASSERT_RTNL();
2703
2704	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2705		if (wiphy == &rdev->wiphy)
2706			continue;
2707		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2708	}
2709}
2710
2711/* This processes *all* regulatory hints */
2712static void reg_process_hint(struct regulatory_request *reg_request)
2713{
2714	struct wiphy *wiphy = NULL;
2715	enum reg_request_treatment treatment;
2716	enum nl80211_reg_initiator initiator = reg_request->initiator;
2717
2718	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2719		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2720
2721	switch (initiator) {
2722	case NL80211_REGDOM_SET_BY_CORE:
2723		treatment = reg_process_hint_core(reg_request);
2724		break;
2725	case NL80211_REGDOM_SET_BY_USER:
2726		treatment = reg_process_hint_user(reg_request);
2727		break;
2728	case NL80211_REGDOM_SET_BY_DRIVER:
2729		if (!wiphy)
2730			goto out_free;
2731		treatment = reg_process_hint_driver(wiphy, reg_request);
2732		break;
2733	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2734		if (!wiphy)
2735			goto out_free;
2736		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2737		break;
2738	default:
2739		WARN(1, "invalid initiator %d\n", initiator);
2740		goto out_free;
2741	}
2742
2743	if (treatment == REG_REQ_IGNORE)
2744		goto out_free;
2745
2746	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2747	     "unexpected treatment value %d\n", treatment);
2748
2749	/* This is required so that the orig_* parameters are saved.
2750	 * NOTE: treatment must be set for any case that reaches here!
2751	 */
2752	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2753	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2754		wiphy_update_regulatory(wiphy, initiator);
2755		wiphy_all_share_dfs_chan_state(wiphy);
2756		reg_check_channels();
2757	}
2758
2759	return;
2760
2761out_free:
2762	reg_free_request(reg_request);
2763}
2764
2765static void notify_self_managed_wiphys(struct regulatory_request *request)
2766{
2767	struct cfg80211_registered_device *rdev;
2768	struct wiphy *wiphy;
2769
2770	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2771		wiphy = &rdev->wiphy;
2772		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2773		    request->initiator == NL80211_REGDOM_SET_BY_USER)
2774			reg_call_notifier(wiphy, request);
2775	}
2776}
2777
2778/*
2779 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2780 * Regulatory hints come on a first come first serve basis and we
2781 * must process each one atomically.
2782 */
2783static void reg_process_pending_hints(void)
2784{
2785	struct regulatory_request *reg_request, *lr;
2786
2787	lr = get_last_request();
2788
2789	/* When last_request->processed becomes true this will be rescheduled */
2790	if (lr && !lr->processed) {
2791		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2792		return;
2793	}
2794
2795	spin_lock(&reg_requests_lock);
2796
2797	if (list_empty(&reg_requests_list)) {
2798		spin_unlock(&reg_requests_lock);
2799		return;
2800	}
2801
2802	reg_request = list_first_entry(&reg_requests_list,
2803				       struct regulatory_request,
2804				       list);
2805	list_del_init(&reg_request->list);
2806
2807	spin_unlock(&reg_requests_lock);
2808
2809	notify_self_managed_wiphys(reg_request);
2810
2811	reg_process_hint(reg_request);
2812
2813	lr = get_last_request();
2814
2815	spin_lock(&reg_requests_lock);
2816	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2817		schedule_work(&reg_work);
2818	spin_unlock(&reg_requests_lock);
2819}
2820
2821/* Processes beacon hints -- this has nothing to do with country IEs */
2822static void reg_process_pending_beacon_hints(void)
2823{
2824	struct cfg80211_registered_device *rdev;
2825	struct reg_beacon *pending_beacon, *tmp;
2826
2827	/* This goes through the _pending_ beacon list */
2828	spin_lock_bh(&reg_pending_beacons_lock);
2829
2830	list_for_each_entry_safe(pending_beacon, tmp,
2831				 &reg_pending_beacons, list) {
2832		list_del_init(&pending_beacon->list);
2833
2834		/* Applies the beacon hint to current wiphys */
2835		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2836			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2837
2838		/* Remembers the beacon hint for new wiphys or reg changes */
2839		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2840	}
2841
2842	spin_unlock_bh(&reg_pending_beacons_lock);
2843}
2844
2845static void reg_process_self_managed_hints(void)
2846{
2847	struct cfg80211_registered_device *rdev;
2848	struct wiphy *wiphy;
2849	const struct ieee80211_regdomain *tmp;
2850	const struct ieee80211_regdomain *regd;
2851	enum nl80211_band band;
2852	struct regulatory_request request = {};
2853
2854	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2855		wiphy = &rdev->wiphy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2856
2857		spin_lock(&reg_requests_lock);
2858		regd = rdev->requested_regd;
2859		rdev->requested_regd = NULL;
2860		spin_unlock(&reg_requests_lock);
2861
2862		if (regd == NULL)
2863			continue;
 
 
2864
2865		tmp = get_wiphy_regdom(wiphy);
2866		rcu_assign_pointer(wiphy->regd, regd);
2867		rcu_free_regdom(tmp);
2868
2869		for (band = 0; band < NUM_NL80211_BANDS; band++)
2870			handle_band_custom(wiphy, wiphy->bands[band], regd);
2871
2872		reg_process_ht_flags(wiphy);
 
 
2873
2874		request.wiphy_idx = get_wiphy_idx(wiphy);
2875		request.alpha2[0] = regd->alpha2[0];
2876		request.alpha2[1] = regd->alpha2[1];
2877		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2878
2879		nl80211_send_wiphy_reg_change_event(&request);
 
 
 
2880	}
2881
2882	reg_check_channels();
2883}
2884
2885static void reg_todo(struct work_struct *work)
2886{
2887	rtnl_lock();
2888	reg_process_pending_hints();
2889	reg_process_pending_beacon_hints();
2890	reg_process_self_managed_hints();
2891	rtnl_unlock();
2892}
2893
2894static void queue_regulatory_request(struct regulatory_request *request)
2895{
2896	request->alpha2[0] = toupper(request->alpha2[0]);
2897	request->alpha2[1] = toupper(request->alpha2[1]);
2898
2899	spin_lock(&reg_requests_lock);
2900	list_add_tail(&request->list, &reg_requests_list);
2901	spin_unlock(&reg_requests_lock);
2902
2903	schedule_work(&reg_work);
2904}
2905
2906/*
2907 * Core regulatory hint -- happens during cfg80211_init()
2908 * and when we restore regulatory settings.
2909 */
2910static int regulatory_hint_core(const char *alpha2)
2911{
2912	struct regulatory_request *request;
2913
2914	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2915	if (!request)
2916		return -ENOMEM;
2917
2918	request->alpha2[0] = alpha2[0];
2919	request->alpha2[1] = alpha2[1];
2920	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2921	request->wiphy_idx = WIPHY_IDX_INVALID;
2922
2923	queue_regulatory_request(request);
2924
2925	return 0;
2926}
2927
2928/* User hints */
2929int regulatory_hint_user(const char *alpha2,
2930			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2931{
2932	struct regulatory_request *request;
2933
2934	if (WARN_ON(!alpha2))
2935		return -EINVAL;
2936
 
 
 
2937	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2938	if (!request)
2939		return -ENOMEM;
2940
2941	request->wiphy_idx = WIPHY_IDX_INVALID;
2942	request->alpha2[0] = alpha2[0];
2943	request->alpha2[1] = alpha2[1];
2944	request->initiator = NL80211_REGDOM_SET_BY_USER;
2945	request->user_reg_hint_type = user_reg_hint_type;
2946
2947	/* Allow calling CRDA again */
2948	reset_crda_timeouts();
2949
2950	queue_regulatory_request(request);
2951
2952	return 0;
2953}
2954
2955int regulatory_hint_indoor(bool is_indoor, u32 portid)
2956{
2957	spin_lock(&reg_indoor_lock);
2958
2959	/* It is possible that more than one user space process is trying to
2960	 * configure the indoor setting. To handle such cases, clear the indoor
2961	 * setting in case that some process does not think that the device
2962	 * is operating in an indoor environment. In addition, if a user space
2963	 * process indicates that it is controlling the indoor setting, save its
2964	 * portid, i.e., make it the owner.
2965	 */
2966	reg_is_indoor = is_indoor;
2967	if (reg_is_indoor) {
2968		if (!reg_is_indoor_portid)
2969			reg_is_indoor_portid = portid;
2970	} else {
2971		reg_is_indoor_portid = 0;
2972	}
2973
2974	spin_unlock(&reg_indoor_lock);
2975
2976	if (!is_indoor)
2977		reg_check_channels();
2978
2979	return 0;
2980}
2981
2982void regulatory_netlink_notify(u32 portid)
2983{
2984	spin_lock(&reg_indoor_lock);
2985
2986	if (reg_is_indoor_portid != portid) {
2987		spin_unlock(&reg_indoor_lock);
2988		return;
2989	}
2990
2991	reg_is_indoor = false;
2992	reg_is_indoor_portid = 0;
2993
2994	spin_unlock(&reg_indoor_lock);
2995
2996	reg_check_channels();
2997}
2998
2999/* Driver hints */
3000int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3001{
3002	struct regulatory_request *request;
3003
3004	if (WARN_ON(!alpha2 || !wiphy))
3005		return -EINVAL;
3006
3007	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3008
3009	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3010	if (!request)
3011		return -ENOMEM;
3012
3013	request->wiphy_idx = get_wiphy_idx(wiphy);
3014
3015	request->alpha2[0] = alpha2[0];
3016	request->alpha2[1] = alpha2[1];
3017	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3018
3019	/* Allow calling CRDA again */
3020	reset_crda_timeouts();
3021
3022	queue_regulatory_request(request);
3023
3024	return 0;
3025}
3026EXPORT_SYMBOL(regulatory_hint);
3027
3028void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3029				const u8 *country_ie, u8 country_ie_len)
3030{
3031	char alpha2[2];
3032	enum environment_cap env = ENVIRON_ANY;
3033	struct regulatory_request *request = NULL, *lr;
3034
3035	/* IE len must be evenly divisible by 2 */
3036	if (country_ie_len & 0x01)
3037		return;
3038
3039	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3040		return;
3041
3042	request = kzalloc(sizeof(*request), GFP_KERNEL);
3043	if (!request)
3044		return;
3045
3046	alpha2[0] = country_ie[0];
3047	alpha2[1] = country_ie[1];
3048
3049	if (country_ie[2] == 'I')
3050		env = ENVIRON_INDOOR;
3051	else if (country_ie[2] == 'O')
3052		env = ENVIRON_OUTDOOR;
3053
3054	rcu_read_lock();
3055	lr = get_last_request();
3056
3057	if (unlikely(!lr))
3058		goto out;
3059
3060	/*
3061	 * We will run this only upon a successful connection on cfg80211.
3062	 * We leave conflict resolution to the workqueue, where can hold
3063	 * the RTNL.
3064	 */
3065	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3066	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3067		goto out;
3068
3069	request->wiphy_idx = get_wiphy_idx(wiphy);
3070	request->alpha2[0] = alpha2[0];
3071	request->alpha2[1] = alpha2[1];
3072	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3073	request->country_ie_env = env;
3074
3075	/* Allow calling CRDA again */
3076	reset_crda_timeouts();
3077
3078	queue_regulatory_request(request);
3079	request = NULL;
3080out:
3081	kfree(request);
3082	rcu_read_unlock();
3083}
3084
3085static void restore_alpha2(char *alpha2, bool reset_user)
3086{
3087	/* indicates there is no alpha2 to consider for restoration */
3088	alpha2[0] = '9';
3089	alpha2[1] = '7';
3090
3091	/* The user setting has precedence over the module parameter */
3092	if (is_user_regdom_saved()) {
3093		/* Unless we're asked to ignore it and reset it */
3094		if (reset_user) {
3095			pr_debug("Restoring regulatory settings including user preference\n");
3096			user_alpha2[0] = '9';
3097			user_alpha2[1] = '7';
3098
3099			/*
3100			 * If we're ignoring user settings, we still need to
3101			 * check the module parameter to ensure we put things
3102			 * back as they were for a full restore.
3103			 */
3104			if (!is_world_regdom(ieee80211_regdom)) {
3105				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3106					 ieee80211_regdom[0], ieee80211_regdom[1]);
3107				alpha2[0] = ieee80211_regdom[0];
3108				alpha2[1] = ieee80211_regdom[1];
3109			}
3110		} else {
3111			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3112				 user_alpha2[0], user_alpha2[1]);
3113			alpha2[0] = user_alpha2[0];
3114			alpha2[1] = user_alpha2[1];
3115		}
3116	} else if (!is_world_regdom(ieee80211_regdom)) {
3117		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3118			 ieee80211_regdom[0], ieee80211_regdom[1]);
3119		alpha2[0] = ieee80211_regdom[0];
3120		alpha2[1] = ieee80211_regdom[1];
3121	} else
3122		pr_debug("Restoring regulatory settings\n");
3123}
3124
3125static void restore_custom_reg_settings(struct wiphy *wiphy)
3126{
3127	struct ieee80211_supported_band *sband;
3128	enum nl80211_band band;
3129	struct ieee80211_channel *chan;
3130	int i;
3131
3132	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3133		sband = wiphy->bands[band];
3134		if (!sband)
3135			continue;
3136		for (i = 0; i < sband->n_channels; i++) {
3137			chan = &sband->channels[i];
3138			chan->flags = chan->orig_flags;
3139			chan->max_antenna_gain = chan->orig_mag;
3140			chan->max_power = chan->orig_mpwr;
3141			chan->beacon_found = false;
3142		}
3143	}
3144}
3145
3146/*
3147 * Restoring regulatory settings involves ingoring any
3148 * possibly stale country IE information and user regulatory
3149 * settings if so desired, this includes any beacon hints
3150 * learned as we could have traveled outside to another country
3151 * after disconnection. To restore regulatory settings we do
3152 * exactly what we did at bootup:
3153 *
3154 *   - send a core regulatory hint
3155 *   - send a user regulatory hint if applicable
3156 *
3157 * Device drivers that send a regulatory hint for a specific country
3158 * keep their own regulatory domain on wiphy->regd so that does does
3159 * not need to be remembered.
3160 */
3161static void restore_regulatory_settings(bool reset_user, bool cached)
3162{
3163	char alpha2[2];
3164	char world_alpha2[2];
3165	struct reg_beacon *reg_beacon, *btmp;
3166	LIST_HEAD(tmp_reg_req_list);
3167	struct cfg80211_registered_device *rdev;
3168
3169	ASSERT_RTNL();
3170
3171	/*
3172	 * Clear the indoor setting in case that it is not controlled by user
3173	 * space, as otherwise there is no guarantee that the device is still
3174	 * operating in an indoor environment.
3175	 */
3176	spin_lock(&reg_indoor_lock);
3177	if (reg_is_indoor && !reg_is_indoor_portid) {
3178		reg_is_indoor = false;
3179		reg_check_channels();
3180	}
3181	spin_unlock(&reg_indoor_lock);
3182
3183	reset_regdomains(true, &world_regdom);
3184	restore_alpha2(alpha2, reset_user);
3185
3186	/*
3187	 * If there's any pending requests we simply
3188	 * stash them to a temporary pending queue and
3189	 * add then after we've restored regulatory
3190	 * settings.
3191	 */
3192	spin_lock(&reg_requests_lock);
3193	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3194	spin_unlock(&reg_requests_lock);
3195
3196	/* Clear beacon hints */
3197	spin_lock_bh(&reg_pending_beacons_lock);
3198	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3199		list_del(&reg_beacon->list);
3200		kfree(reg_beacon);
3201	}
3202	spin_unlock_bh(&reg_pending_beacons_lock);
3203
3204	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3205		list_del(&reg_beacon->list);
3206		kfree(reg_beacon);
3207	}
3208
3209	/* First restore to the basic regulatory settings */
3210	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3211	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3212
3213	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3214		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3215			continue;
3216		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3217			restore_custom_reg_settings(&rdev->wiphy);
3218	}
3219
3220	if (cached && (!is_an_alpha2(alpha2) ||
3221		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3222		reset_regdomains(false, cfg80211_world_regdom);
3223		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3224		print_regdomain(get_cfg80211_regdom());
3225		nl80211_send_reg_change_event(&core_request_world);
3226		reg_set_request_processed();
3227
3228		if (is_an_alpha2(alpha2) &&
3229		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3230			struct regulatory_request *ureq;
3231
3232			spin_lock(&reg_requests_lock);
3233			ureq = list_last_entry(&reg_requests_list,
3234					       struct regulatory_request,
3235					       list);
3236			list_del(&ureq->list);
3237			spin_unlock(&reg_requests_lock);
3238
3239			notify_self_managed_wiphys(ureq);
3240			reg_update_last_request(ureq);
3241			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3242				   REGD_SOURCE_CACHED);
3243		}
3244	} else {
3245		regulatory_hint_core(world_alpha2);
3246
3247		/*
3248		 * This restores the ieee80211_regdom module parameter
3249		 * preference or the last user requested regulatory
3250		 * settings, user regulatory settings takes precedence.
3251		 */
3252		if (is_an_alpha2(alpha2))
3253			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3254	}
3255
3256	spin_lock(&reg_requests_lock);
3257	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3258	spin_unlock(&reg_requests_lock);
3259
3260	pr_debug("Kicking the queue\n");
3261
3262	schedule_work(&reg_work);
3263}
3264
3265static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3266{
3267	struct cfg80211_registered_device *rdev;
3268	struct wireless_dev *wdev;
3269
3270	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
 
3271		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3272			wdev_lock(wdev);
3273			if (!(wdev->wiphy->regulatory_flags & flag)) {
3274				wdev_unlock(wdev);
3275				return false;
3276			}
3277			wdev_unlock(wdev);
3278		}
 
3279	}
3280
3281	return true;
3282}
3283
3284void regulatory_hint_disconnect(void)
3285{
3286	/* Restore of regulatory settings is not required when wiphy(s)
3287	 * ignore IE from connected access point but clearance of beacon hints
3288	 * is required when wiphy(s) supports beacon hints.
3289	 */
3290	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3291		struct reg_beacon *reg_beacon, *btmp;
3292
3293		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3294			return;
3295
3296		spin_lock_bh(&reg_pending_beacons_lock);
3297		list_for_each_entry_safe(reg_beacon, btmp,
3298					 &reg_pending_beacons, list) {
3299			list_del(&reg_beacon->list);
3300			kfree(reg_beacon);
3301		}
3302		spin_unlock_bh(&reg_pending_beacons_lock);
3303
3304		list_for_each_entry_safe(reg_beacon, btmp,
3305					 &reg_beacon_list, list) {
3306			list_del(&reg_beacon->list);
3307			kfree(reg_beacon);
3308		}
3309
3310		return;
3311	}
3312
3313	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3314	restore_regulatory_settings(false, true);
3315}
3316
3317static bool freq_is_chan_12_13_14(u32 freq)
3318{
3319	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3320	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3321	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3322		return true;
3323	return false;
3324}
3325
3326static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3327{
3328	struct reg_beacon *pending_beacon;
3329
3330	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3331		if (beacon_chan->center_freq ==
3332		    pending_beacon->chan.center_freq)
3333			return true;
3334	return false;
3335}
3336
3337int regulatory_hint_found_beacon(struct wiphy *wiphy,
3338				 struct ieee80211_channel *beacon_chan,
3339				 gfp_t gfp)
3340{
3341	struct reg_beacon *reg_beacon;
3342	bool processing;
3343
3344	if (beacon_chan->beacon_found ||
3345	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3346	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3347	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3348		return 0;
3349
3350	spin_lock_bh(&reg_pending_beacons_lock);
3351	processing = pending_reg_beacon(beacon_chan);
3352	spin_unlock_bh(&reg_pending_beacons_lock);
3353
3354	if (processing)
3355		return 0;
3356
3357	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3358	if (!reg_beacon)
3359		return -ENOMEM;
3360
3361	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3362		 beacon_chan->center_freq,
3363		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
 
3364		 wiphy_name(wiphy));
3365
3366	memcpy(&reg_beacon->chan, beacon_chan,
3367	       sizeof(struct ieee80211_channel));
3368
3369	/*
3370	 * Since we can be called from BH or and non-BH context
3371	 * we must use spin_lock_bh()
3372	 */
3373	spin_lock_bh(&reg_pending_beacons_lock);
3374	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3375	spin_unlock_bh(&reg_pending_beacons_lock);
3376
3377	schedule_work(&reg_work);
3378
3379	return 0;
3380}
3381
3382static void print_rd_rules(const struct ieee80211_regdomain *rd)
3383{
3384	unsigned int i;
3385	const struct ieee80211_reg_rule *reg_rule = NULL;
3386	const struct ieee80211_freq_range *freq_range = NULL;
3387	const struct ieee80211_power_rule *power_rule = NULL;
3388	char bw[32], cac_time[32];
3389
3390	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3391
3392	for (i = 0; i < rd->n_reg_rules; i++) {
3393		reg_rule = &rd->reg_rules[i];
3394		freq_range = &reg_rule->freq_range;
3395		power_rule = &reg_rule->power_rule;
3396
3397		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3398			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3399				 freq_range->max_bandwidth_khz,
3400				 reg_get_max_bandwidth(rd, reg_rule));
3401		else
3402			snprintf(bw, sizeof(bw), "%d KHz",
3403				 freq_range->max_bandwidth_khz);
3404
3405		if (reg_rule->flags & NL80211_RRF_DFS)
3406			scnprintf(cac_time, sizeof(cac_time), "%u s",
3407				  reg_rule->dfs_cac_ms/1000);
3408		else
3409			scnprintf(cac_time, sizeof(cac_time), "N/A");
3410
3411
3412		/*
3413		 * There may not be documentation for max antenna gain
3414		 * in certain regions
3415		 */
3416		if (power_rule->max_antenna_gain)
3417			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3418				freq_range->start_freq_khz,
3419				freq_range->end_freq_khz,
3420				bw,
3421				power_rule->max_antenna_gain,
3422				power_rule->max_eirp,
3423				cac_time);
3424		else
3425			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3426				freq_range->start_freq_khz,
3427				freq_range->end_freq_khz,
3428				bw,
3429				power_rule->max_eirp,
3430				cac_time);
3431	}
3432}
3433
3434bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3435{
3436	switch (dfs_region) {
3437	case NL80211_DFS_UNSET:
3438	case NL80211_DFS_FCC:
3439	case NL80211_DFS_ETSI:
3440	case NL80211_DFS_JP:
3441		return true;
3442	default:
3443		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3444		return false;
3445	}
3446}
3447
3448static void print_regdomain(const struct ieee80211_regdomain *rd)
3449{
3450	struct regulatory_request *lr = get_last_request();
3451
3452	if (is_intersected_alpha2(rd->alpha2)) {
3453		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3454			struct cfg80211_registered_device *rdev;
3455			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3456			if (rdev) {
3457				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3458					rdev->country_ie_alpha2[0],
3459					rdev->country_ie_alpha2[1]);
3460			} else
3461				pr_debug("Current regulatory domain intersected:\n");
3462		} else
3463			pr_debug("Current regulatory domain intersected:\n");
3464	} else if (is_world_regdom(rd->alpha2)) {
3465		pr_debug("World regulatory domain updated:\n");
3466	} else {
3467		if (is_unknown_alpha2(rd->alpha2))
3468			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3469		else {
3470			if (reg_request_cell_base(lr))
3471				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3472					rd->alpha2[0], rd->alpha2[1]);
3473			else
3474				pr_debug("Regulatory domain changed to country: %c%c\n",
3475					rd->alpha2[0], rd->alpha2[1]);
3476		}
3477	}
3478
3479	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3480	print_rd_rules(rd);
3481}
3482
3483static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3484{
3485	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3486	print_rd_rules(rd);
3487}
3488
3489static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3490{
3491	if (!is_world_regdom(rd->alpha2))
3492		return -EINVAL;
3493	update_world_regdomain(rd);
3494	return 0;
3495}
3496
3497static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3498			   struct regulatory_request *user_request)
3499{
3500	const struct ieee80211_regdomain *intersected_rd = NULL;
3501
3502	if (!regdom_changes(rd->alpha2))
3503		return -EALREADY;
3504
3505	if (!is_valid_rd(rd)) {
3506		pr_err("Invalid regulatory domain detected: %c%c\n",
3507		       rd->alpha2[0], rd->alpha2[1]);
3508		print_regdomain_info(rd);
3509		return -EINVAL;
3510	}
3511
3512	if (!user_request->intersect) {
3513		reset_regdomains(false, rd);
3514		return 0;
3515	}
3516
3517	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3518	if (!intersected_rd)
3519		return -EINVAL;
3520
3521	kfree(rd);
3522	rd = NULL;
3523	reset_regdomains(false, intersected_rd);
3524
3525	return 0;
3526}
3527
3528static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3529			     struct regulatory_request *driver_request)
3530{
3531	const struct ieee80211_regdomain *regd;
3532	const struct ieee80211_regdomain *intersected_rd = NULL;
3533	const struct ieee80211_regdomain *tmp;
3534	struct wiphy *request_wiphy;
3535
3536	if (is_world_regdom(rd->alpha2))
3537		return -EINVAL;
3538
3539	if (!regdom_changes(rd->alpha2))
3540		return -EALREADY;
3541
3542	if (!is_valid_rd(rd)) {
3543		pr_err("Invalid regulatory domain detected: %c%c\n",
3544		       rd->alpha2[0], rd->alpha2[1]);
3545		print_regdomain_info(rd);
3546		return -EINVAL;
3547	}
3548
3549	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3550	if (!request_wiphy)
3551		return -ENODEV;
3552
3553	if (!driver_request->intersect) {
 
 
3554		if (request_wiphy->regd)
3555			return -EALREADY;
3556
3557		regd = reg_copy_regd(rd);
3558		if (IS_ERR(regd))
 
3559			return PTR_ERR(regd);
 
3560
3561		rcu_assign_pointer(request_wiphy->regd, regd);
 
 
3562		reset_regdomains(false, rd);
3563		return 0;
3564	}
3565
3566	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3567	if (!intersected_rd)
3568		return -EINVAL;
3569
3570	/*
3571	 * We can trash what CRDA provided now.
3572	 * However if a driver requested this specific regulatory
3573	 * domain we keep it for its private use
3574	 */
3575	tmp = get_wiphy_regdom(request_wiphy);
3576	rcu_assign_pointer(request_wiphy->regd, rd);
3577	rcu_free_regdom(tmp);
3578
3579	rd = NULL;
3580
3581	reset_regdomains(false, intersected_rd);
3582
3583	return 0;
3584}
3585
3586static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3587				 struct regulatory_request *country_ie_request)
3588{
3589	struct wiphy *request_wiphy;
3590
3591	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3592	    !is_unknown_alpha2(rd->alpha2))
3593		return -EINVAL;
3594
3595	/*
3596	 * Lets only bother proceeding on the same alpha2 if the current
3597	 * rd is non static (it means CRDA was present and was used last)
3598	 * and the pending request came in from a country IE
3599	 */
3600
3601	if (!is_valid_rd(rd)) {
3602		pr_err("Invalid regulatory domain detected: %c%c\n",
3603		       rd->alpha2[0], rd->alpha2[1]);
3604		print_regdomain_info(rd);
3605		return -EINVAL;
3606	}
3607
3608	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3609	if (!request_wiphy)
3610		return -ENODEV;
3611
3612	if (country_ie_request->intersect)
3613		return -EINVAL;
3614
3615	reset_regdomains(false, rd);
3616	return 0;
3617}
3618
3619/*
3620 * Use this call to set the current regulatory domain. Conflicts with
3621 * multiple drivers can be ironed out later. Caller must've already
3622 * kmalloc'd the rd structure.
3623 */
3624int set_regdom(const struct ieee80211_regdomain *rd,
3625	       enum ieee80211_regd_source regd_src)
3626{
3627	struct regulatory_request *lr;
3628	bool user_reset = false;
3629	int r;
3630
3631	if (IS_ERR_OR_NULL(rd))
3632		return -ENODATA;
3633
3634	if (!reg_is_valid_request(rd->alpha2)) {
3635		kfree(rd);
3636		return -EINVAL;
3637	}
3638
3639	if (regd_src == REGD_SOURCE_CRDA)
3640		reset_crda_timeouts();
3641
3642	lr = get_last_request();
3643
3644	/* Note that this doesn't update the wiphys, this is done below */
3645	switch (lr->initiator) {
3646	case NL80211_REGDOM_SET_BY_CORE:
3647		r = reg_set_rd_core(rd);
3648		break;
3649	case NL80211_REGDOM_SET_BY_USER:
3650		cfg80211_save_user_regdom(rd);
3651		r = reg_set_rd_user(rd, lr);
3652		user_reset = true;
3653		break;
3654	case NL80211_REGDOM_SET_BY_DRIVER:
3655		r = reg_set_rd_driver(rd, lr);
3656		break;
3657	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3658		r = reg_set_rd_country_ie(rd, lr);
3659		break;
3660	default:
3661		WARN(1, "invalid initiator %d\n", lr->initiator);
3662		kfree(rd);
3663		return -EINVAL;
3664	}
3665
3666	if (r) {
3667		switch (r) {
3668		case -EALREADY:
3669			reg_set_request_processed();
3670			break;
3671		default:
3672			/* Back to world regulatory in case of errors */
3673			restore_regulatory_settings(user_reset, false);
3674		}
3675
3676		kfree(rd);
3677		return r;
3678	}
3679
3680	/* This would make this whole thing pointless */
3681	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3682		return -EINVAL;
3683
3684	/* update all wiphys now with the new established regulatory domain */
3685	update_all_wiphy_regulatory(lr->initiator);
3686
3687	print_regdomain(get_cfg80211_regdom());
3688
3689	nl80211_send_reg_change_event(lr);
3690
3691	reg_set_request_processed();
3692
3693	return 0;
3694}
3695
3696static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3697				       struct ieee80211_regdomain *rd)
3698{
3699	const struct ieee80211_regdomain *regd;
3700	const struct ieee80211_regdomain *prev_regd;
3701	struct cfg80211_registered_device *rdev;
3702
3703	if (WARN_ON(!wiphy || !rd))
3704		return -EINVAL;
3705
3706	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3707		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3708		return -EPERM;
3709
3710	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
 
 
3711		print_regdomain_info(rd);
3712		return -EINVAL;
3713	}
3714
3715	regd = reg_copy_regd(rd);
3716	if (IS_ERR(regd))
3717		return PTR_ERR(regd);
3718
3719	rdev = wiphy_to_rdev(wiphy);
3720
3721	spin_lock(&reg_requests_lock);
3722	prev_regd = rdev->requested_regd;
3723	rdev->requested_regd = regd;
3724	spin_unlock(&reg_requests_lock);
3725
3726	kfree(prev_regd);
3727	return 0;
3728}
3729
3730int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3731			      struct ieee80211_regdomain *rd)
3732{
3733	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3734
3735	if (ret)
3736		return ret;
3737
3738	schedule_work(&reg_work);
3739	return 0;
3740}
3741EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3742
3743int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3744					struct ieee80211_regdomain *rd)
3745{
3746	int ret;
3747
3748	ASSERT_RTNL();
3749
3750	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3751	if (ret)
3752		return ret;
3753
3754	/* process the request immediately */
3755	reg_process_self_managed_hints();
 
3756	return 0;
3757}
3758EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3759
3760void wiphy_regulatory_register(struct wiphy *wiphy)
3761{
3762	struct regulatory_request *lr = get_last_request();
3763
3764	/* self-managed devices ignore beacon hints and country IE */
3765	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3766		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3767					   REGULATORY_COUNTRY_IE_IGNORE;
3768
3769		/*
3770		 * The last request may have been received before this
3771		 * registration call. Call the driver notifier if
3772		 * initiator is USER.
3773		 */
3774		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3775			reg_call_notifier(wiphy, lr);
3776	}
3777
3778	if (!reg_dev_ignore_cell_hint(wiphy))
3779		reg_num_devs_support_basehint++;
3780
3781	wiphy_update_regulatory(wiphy, lr->initiator);
3782	wiphy_all_share_dfs_chan_state(wiphy);
 
3783}
3784
3785void wiphy_regulatory_deregister(struct wiphy *wiphy)
3786{
3787	struct wiphy *request_wiphy = NULL;
3788	struct regulatory_request *lr;
3789
3790	lr = get_last_request();
3791
3792	if (!reg_dev_ignore_cell_hint(wiphy))
3793		reg_num_devs_support_basehint--;
3794
3795	rcu_free_regdom(get_wiphy_regdom(wiphy));
3796	RCU_INIT_POINTER(wiphy->regd, NULL);
3797
3798	if (lr)
3799		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3800
3801	if (!request_wiphy || request_wiphy != wiphy)
3802		return;
3803
3804	lr->wiphy_idx = WIPHY_IDX_INVALID;
3805	lr->country_ie_env = ENVIRON_ANY;
3806}
3807
3808/*
3809 * See FCC notices for UNII band definitions
3810 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3811 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3812 */
3813int cfg80211_get_unii(int freq)
3814{
3815	/* UNII-1 */
3816	if (freq >= 5150 && freq <= 5250)
3817		return 0;
3818
3819	/* UNII-2A */
3820	if (freq > 5250 && freq <= 5350)
3821		return 1;
3822
3823	/* UNII-2B */
3824	if (freq > 5350 && freq <= 5470)
3825		return 2;
3826
3827	/* UNII-2C */
3828	if (freq > 5470 && freq <= 5725)
3829		return 3;
3830
3831	/* UNII-3 */
3832	if (freq > 5725 && freq <= 5825)
3833		return 4;
3834
3835	/* UNII-5 */
3836	if (freq > 5925 && freq <= 6425)
3837		return 5;
3838
3839	/* UNII-6 */
3840	if (freq > 6425 && freq <= 6525)
3841		return 6;
3842
3843	/* UNII-7 */
3844	if (freq > 6525 && freq <= 6875)
3845		return 7;
3846
3847	/* UNII-8 */
3848	if (freq > 6875 && freq <= 7125)
3849		return 8;
3850
3851	return -EINVAL;
3852}
3853
3854bool regulatory_indoor_allowed(void)
3855{
3856	return reg_is_indoor;
3857}
3858
3859bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3860{
3861	const struct ieee80211_regdomain *regd = NULL;
3862	const struct ieee80211_regdomain *wiphy_regd = NULL;
3863	bool pre_cac_allowed = false;
3864
3865	rcu_read_lock();
3866
3867	regd = rcu_dereference(cfg80211_regdomain);
3868	wiphy_regd = rcu_dereference(wiphy->regd);
3869	if (!wiphy_regd) {
3870		if (regd->dfs_region == NL80211_DFS_ETSI)
3871			pre_cac_allowed = true;
3872
3873		rcu_read_unlock();
3874
3875		return pre_cac_allowed;
3876	}
3877
3878	if (regd->dfs_region == wiphy_regd->dfs_region &&
3879	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3880		pre_cac_allowed = true;
3881
3882	rcu_read_unlock();
3883
3884	return pre_cac_allowed;
3885}
3886EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3888void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3889				    struct cfg80211_chan_def *chandef,
3890				    enum nl80211_dfs_state dfs_state,
3891				    enum nl80211_radar_event event)
3892{
3893	struct cfg80211_registered_device *rdev;
3894
3895	ASSERT_RTNL();
3896
3897	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3898		return;
3899
3900	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3901		if (wiphy == &rdev->wiphy)
3902			continue;
3903
3904		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3905			continue;
3906
3907		if (!ieee80211_get_channel(&rdev->wiphy,
3908					   chandef->chan->center_freq))
3909			continue;
3910
3911		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3912
3913		if (event == NL80211_RADAR_DETECTED ||
3914		    event == NL80211_RADAR_CAC_FINISHED)
3915			cfg80211_sched_dfs_chan_update(rdev);
 
 
3916
3917		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3918	}
3919}
3920
3921static int __init regulatory_init_db(void)
3922{
3923	int err;
3924
3925	/*
3926	 * It's possible that - due to other bugs/issues - cfg80211
3927	 * never called regulatory_init() below, or that it failed;
3928	 * in that case, don't try to do any further work here as
3929	 * it's doomed to lead to crashes.
3930	 */
3931	if (IS_ERR_OR_NULL(reg_pdev))
3932		return -EINVAL;
3933
3934	err = load_builtin_regdb_keys();
3935	if (err)
 
3936		return err;
 
3937
3938	/* We always try to get an update for the static regdomain */
3939	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3940	if (err) {
3941		if (err == -ENOMEM) {
3942			platform_device_unregister(reg_pdev);
3943			return err;
3944		}
3945		/*
3946		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3947		 * memory which is handled and propagated appropriately above
3948		 * but it can also fail during a netlink_broadcast() or during
3949		 * early boot for call_usermodehelper(). For now treat these
3950		 * errors as non-fatal.
3951		 */
3952		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3953	}
3954
3955	/*
3956	 * Finally, if the user set the module parameter treat it
3957	 * as a user hint.
3958	 */
3959	if (!is_world_regdom(ieee80211_regdom))
3960		regulatory_hint_user(ieee80211_regdom,
3961				     NL80211_USER_REG_HINT_USER);
3962
3963	return 0;
3964}
3965#ifndef MODULE
3966late_initcall(regulatory_init_db);
3967#endif
3968
3969int __init regulatory_init(void)
3970{
3971	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3972	if (IS_ERR(reg_pdev))
3973		return PTR_ERR(reg_pdev);
3974
3975	spin_lock_init(&reg_requests_lock);
3976	spin_lock_init(&reg_pending_beacons_lock);
3977	spin_lock_init(&reg_indoor_lock);
3978
3979	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3980
3981	user_alpha2[0] = '9';
3982	user_alpha2[1] = '7';
3983
3984#ifdef MODULE
3985	return regulatory_init_db();
3986#else
3987	return 0;
3988#endif
3989}
3990
3991void regulatory_exit(void)
3992{
3993	struct regulatory_request *reg_request, *tmp;
3994	struct reg_beacon *reg_beacon, *btmp;
3995
3996	cancel_work_sync(&reg_work);
3997	cancel_crda_timeout_sync();
3998	cancel_delayed_work_sync(&reg_check_chans);
3999
4000	/* Lock to suppress warnings */
4001	rtnl_lock();
4002	reset_regdomains(true, NULL);
4003	rtnl_unlock();
4004
4005	dev_set_uevent_suppress(&reg_pdev->dev, true);
4006
4007	platform_device_unregister(reg_pdev);
4008
4009	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4010		list_del(&reg_beacon->list);
4011		kfree(reg_beacon);
4012	}
4013
4014	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4015		list_del(&reg_beacon->list);
4016		kfree(reg_beacon);
4017	}
4018
4019	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4020		list_del(&reg_request->list);
4021		kfree(reg_request);
4022	}
4023
4024	if (!IS_ERR_OR_NULL(regdb))
4025		kfree(regdb);
4026	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4027		kfree(cfg80211_user_regdom);
4028
4029	free_regdb_keyring();
4030}