Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2023 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
  60#include <net/cfg80211.h>
  61#include "core.h"
  62#include "reg.h"
  63#include "rdev-ops.h"
  64#include "nl80211.h"
  65
  66/*
  67 * Grace period we give before making sure all current interfaces reside on
  68 * channels allowed by the current regulatory domain.
  69 */
  70#define REG_ENFORCE_GRACE_MS 60000
  71
  72/**
  73 * enum reg_request_treatment - regulatory request treatment
  74 *
  75 * @REG_REQ_OK: continue processing the regulatory request
  76 * @REG_REQ_IGNORE: ignore the regulatory request
  77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78 *	be intersected with the current one.
  79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80 *	regulatory settings, and no further processing is required.
  81 */
  82enum reg_request_treatment {
  83	REG_REQ_OK,
  84	REG_REQ_IGNORE,
  85	REG_REQ_INTERSECT,
  86	REG_REQ_ALREADY_SET,
  87};
  88
  89static struct regulatory_request core_request_world = {
  90	.initiator = NL80211_REGDOM_SET_BY_CORE,
  91	.alpha2[0] = '0',
  92	.alpha2[1] = '0',
  93	.intersect = false,
  94	.processed = true,
  95	.country_ie_env = ENVIRON_ANY,
  96};
  97
  98/*
  99 * Receipt of information from last regulatory request,
 100 * protected by RTNL (and can be accessed with RCU protection)
 101 */
 102static struct regulatory_request __rcu *last_request =
 103	(void __force __rcu *)&core_request_world;
 104
 105/* To trigger userspace events and load firmware */
 106static struct platform_device *reg_pdev;
 107
 108/*
 109 * Central wireless core regulatory domains, we only need two,
 110 * the current one and a world regulatory domain in case we have no
 111 * information to give us an alpha2.
 112 * (protected by RTNL, can be read under RCU)
 113 */
 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115
 116/*
 117 * Number of devices that registered to the core
 118 * that support cellular base station regulatory hints
 119 * (protected by RTNL)
 120 */
 121static int reg_num_devs_support_basehint;
 122
 123/*
 124 * State variable indicating if the platform on which the devices
 125 * are attached is operating in an indoor environment. The state variable
 126 * is relevant for all registered devices.
 127 */
 128static bool reg_is_indoor;
 129static DEFINE_SPINLOCK(reg_indoor_lock);
 130
 131/* Used to track the userspace process controlling the indoor setting */
 132static u32 reg_is_indoor_portid;
 133
 134static void restore_regulatory_settings(bool reset_user, bool cached);
 135static void print_regdomain(const struct ieee80211_regdomain *rd);
 136static void reg_process_hint(struct regulatory_request *reg_request);
 137
 138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 139{
 140	return rcu_dereference_rtnl(cfg80211_regdomain);
 141}
 142
 143/*
 144 * Returns the regulatory domain associated with the wiphy.
 145 *
 146 * Requires any of RTNL, wiphy mutex or RCU protection.
 147 */
 148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 149{
 150	return rcu_dereference_check(wiphy->regd,
 151				     lockdep_is_held(&wiphy->mtx) ||
 152				     lockdep_rtnl_is_held());
 153}
 154EXPORT_SYMBOL(get_wiphy_regdom);
 155
 156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 157{
 158	switch (dfs_region) {
 159	case NL80211_DFS_UNSET:
 160		return "unset";
 161	case NL80211_DFS_FCC:
 162		return "FCC";
 163	case NL80211_DFS_ETSI:
 164		return "ETSI";
 165	case NL80211_DFS_JP:
 166		return "JP";
 167	}
 168	return "Unknown";
 169}
 170
 171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 172{
 173	const struct ieee80211_regdomain *regd = NULL;
 174	const struct ieee80211_regdomain *wiphy_regd = NULL;
 175	enum nl80211_dfs_regions dfs_region;
 176
 177	rcu_read_lock();
 178	regd = get_cfg80211_regdom();
 179	dfs_region = regd->dfs_region;
 180
 181	if (!wiphy)
 182		goto out;
 183
 184	wiphy_regd = get_wiphy_regdom(wiphy);
 185	if (!wiphy_regd)
 186		goto out;
 187
 188	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
 189		dfs_region = wiphy_regd->dfs_region;
 190		goto out;
 191	}
 192
 193	if (wiphy_regd->dfs_region == regd->dfs_region)
 194		goto out;
 195
 196	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 197		 dev_name(&wiphy->dev),
 198		 reg_dfs_region_str(wiphy_regd->dfs_region),
 199		 reg_dfs_region_str(regd->dfs_region));
 200
 201out:
 202	rcu_read_unlock();
 203
 204	return dfs_region;
 205}
 206
 207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 208{
 209	if (!r)
 210		return;
 211	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 212}
 213
 214static struct regulatory_request *get_last_request(void)
 215{
 216	return rcu_dereference_rtnl(last_request);
 217}
 218
 219/* Used to queue up regulatory hints */
 220static LIST_HEAD(reg_requests_list);
 221static DEFINE_SPINLOCK(reg_requests_lock);
 222
 223/* Used to queue up beacon hints for review */
 224static LIST_HEAD(reg_pending_beacons);
 225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
 226
 227/* Used to keep track of processed beacon hints */
 228static LIST_HEAD(reg_beacon_list);
 229
 230struct reg_beacon {
 231	struct list_head list;
 232	struct ieee80211_channel chan;
 233};
 234
 235static void reg_check_chans_work(struct work_struct *work);
 236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 237
 238static void reg_todo(struct work_struct *work);
 239static DECLARE_WORK(reg_work, reg_todo);
 240
 241/* We keep a static world regulatory domain in case of the absence of CRDA */
 242static const struct ieee80211_regdomain world_regdom = {
 243	.n_reg_rules = 8,
 244	.alpha2 =  "00",
 245	.reg_rules = {
 246		/* IEEE 802.11b/g, channels 1..11 */
 247		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 248		/* IEEE 802.11b/g, channels 12..13. */
 249		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 250			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 251		/* IEEE 802.11 channel 14 - Only JP enables
 252		 * this and for 802.11b only */
 253		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 254			NL80211_RRF_NO_IR |
 255			NL80211_RRF_NO_OFDM),
 256		/* IEEE 802.11a, channel 36..48 */
 257		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 258                        NL80211_RRF_NO_IR |
 259                        NL80211_RRF_AUTO_BW),
 260
 261		/* IEEE 802.11a, channel 52..64 - DFS required */
 262		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 263			NL80211_RRF_NO_IR |
 264			NL80211_RRF_AUTO_BW |
 265			NL80211_RRF_DFS),
 266
 267		/* IEEE 802.11a, channel 100..144 - DFS required */
 268		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 269			NL80211_RRF_NO_IR |
 270			NL80211_RRF_DFS),
 271
 272		/* IEEE 802.11a, channel 149..165 */
 273		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 274			NL80211_RRF_NO_IR),
 275
 276		/* IEEE 802.11ad (60GHz), channels 1..3 */
 277		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 278	}
 279};
 280
 281/* protected by RTNL */
 282static const struct ieee80211_regdomain *cfg80211_world_regdom =
 283	&world_regdom;
 284
 285static char *ieee80211_regdom = "00";
 286static char user_alpha2[2];
 287static const struct ieee80211_regdomain *cfg80211_user_regdom;
 288
 289module_param(ieee80211_regdom, charp, 0444);
 290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 291
 292static void reg_free_request(struct regulatory_request *request)
 293{
 294	if (request == &core_request_world)
 295		return;
 296
 297	if (request != get_last_request())
 298		kfree(request);
 299}
 300
 301static void reg_free_last_request(void)
 302{
 303	struct regulatory_request *lr = get_last_request();
 304
 305	if (lr != &core_request_world && lr)
 306		kfree_rcu(lr, rcu_head);
 307}
 308
 309static void reg_update_last_request(struct regulatory_request *request)
 310{
 311	struct regulatory_request *lr;
 312
 313	lr = get_last_request();
 314	if (lr == request)
 315		return;
 316
 317	reg_free_last_request();
 318	rcu_assign_pointer(last_request, request);
 319}
 320
 321static void reset_regdomains(bool full_reset,
 322			     const struct ieee80211_regdomain *new_regdom)
 323{
 324	const struct ieee80211_regdomain *r;
 325
 326	ASSERT_RTNL();
 327
 328	r = get_cfg80211_regdom();
 329
 330	/* avoid freeing static information or freeing something twice */
 331	if (r == cfg80211_world_regdom)
 332		r = NULL;
 333	if (cfg80211_world_regdom == &world_regdom)
 334		cfg80211_world_regdom = NULL;
 335	if (r == &world_regdom)
 336		r = NULL;
 337
 338	rcu_free_regdom(r);
 339	rcu_free_regdom(cfg80211_world_regdom);
 340
 341	cfg80211_world_regdom = &world_regdom;
 342	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 343
 344	if (!full_reset)
 345		return;
 346
 347	reg_update_last_request(&core_request_world);
 348}
 349
 350/*
 351 * Dynamic world regulatory domain requested by the wireless
 352 * core upon initialization
 353 */
 354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 355{
 356	struct regulatory_request *lr;
 357
 358	lr = get_last_request();
 359
 360	WARN_ON(!lr);
 361
 362	reset_regdomains(false, rd);
 363
 364	cfg80211_world_regdom = rd;
 365}
 366
 367bool is_world_regdom(const char *alpha2)
 368{
 369	if (!alpha2)
 370		return false;
 371	return alpha2[0] == '0' && alpha2[1] == '0';
 372}
 373
 374static bool is_alpha2_set(const char *alpha2)
 375{
 376	if (!alpha2)
 377		return false;
 378	return alpha2[0] && alpha2[1];
 379}
 380
 381static bool is_unknown_alpha2(const char *alpha2)
 382{
 383	if (!alpha2)
 384		return false;
 385	/*
 386	 * Special case where regulatory domain was built by driver
 387	 * but a specific alpha2 cannot be determined
 388	 */
 389	return alpha2[0] == '9' && alpha2[1] == '9';
 390}
 391
 392static bool is_intersected_alpha2(const char *alpha2)
 393{
 394	if (!alpha2)
 395		return false;
 396	/*
 397	 * Special case where regulatory domain is the
 398	 * result of an intersection between two regulatory domain
 399	 * structures
 400	 */
 401	return alpha2[0] == '9' && alpha2[1] == '8';
 402}
 403
 404static bool is_an_alpha2(const char *alpha2)
 405{
 406	if (!alpha2)
 407		return false;
 408	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 409}
 410
 411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 412{
 413	if (!alpha2_x || !alpha2_y)
 414		return false;
 415	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 416}
 417
 418static bool regdom_changes(const char *alpha2)
 419{
 420	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 421
 422	if (!r)
 423		return true;
 424	return !alpha2_equal(r->alpha2, alpha2);
 425}
 426
 427/*
 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 430 * has ever been issued.
 431 */
 432static bool is_user_regdom_saved(void)
 433{
 434	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 435		return false;
 436
 437	/* This would indicate a mistake on the design */
 438	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 439		 "Unexpected user alpha2: %c%c\n",
 440		 user_alpha2[0], user_alpha2[1]))
 441		return false;
 442
 443	return true;
 444}
 445
 446static const struct ieee80211_regdomain *
 447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 448{
 449	struct ieee80211_regdomain *regd;
 450	unsigned int i;
 451
 452	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 453		       GFP_KERNEL);
 454	if (!regd)
 455		return ERR_PTR(-ENOMEM);
 456
 457	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 458
 459	for (i = 0; i < src_regd->n_reg_rules; i++)
 460		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 461		       sizeof(struct ieee80211_reg_rule));
 462
 463	return regd;
 464}
 465
 466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 467{
 468	ASSERT_RTNL();
 469
 470	if (!IS_ERR(cfg80211_user_regdom))
 471		kfree(cfg80211_user_regdom);
 472	cfg80211_user_regdom = reg_copy_regd(rd);
 473}
 474
 475struct reg_regdb_apply_request {
 476	struct list_head list;
 477	const struct ieee80211_regdomain *regdom;
 478};
 479
 480static LIST_HEAD(reg_regdb_apply_list);
 481static DEFINE_MUTEX(reg_regdb_apply_mutex);
 482
 483static void reg_regdb_apply(struct work_struct *work)
 484{
 485	struct reg_regdb_apply_request *request;
 486
 487	rtnl_lock();
 488
 489	mutex_lock(&reg_regdb_apply_mutex);
 490	while (!list_empty(&reg_regdb_apply_list)) {
 491		request = list_first_entry(&reg_regdb_apply_list,
 492					   struct reg_regdb_apply_request,
 493					   list);
 494		list_del(&request->list);
 495
 496		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 497		kfree(request);
 498	}
 499	mutex_unlock(&reg_regdb_apply_mutex);
 500
 501	rtnl_unlock();
 502}
 503
 504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 505
 506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 507{
 508	struct reg_regdb_apply_request *request;
 509
 510	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 511	if (!request) {
 512		kfree(regdom);
 513		return -ENOMEM;
 514	}
 515
 516	request->regdom = regdom;
 517
 518	mutex_lock(&reg_regdb_apply_mutex);
 519	list_add_tail(&request->list, &reg_regdb_apply_list);
 520	mutex_unlock(&reg_regdb_apply_mutex);
 521
 522	schedule_work(&reg_regdb_work);
 523	return 0;
 524}
 525
 526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 527/* Max number of consecutive attempts to communicate with CRDA  */
 528#define REG_MAX_CRDA_TIMEOUTS 10
 529
 530static u32 reg_crda_timeouts;
 531
 532static void crda_timeout_work(struct work_struct *work);
 533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 534
 535static void crda_timeout_work(struct work_struct *work)
 536{
 537	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 538	rtnl_lock();
 539	reg_crda_timeouts++;
 540	restore_regulatory_settings(true, false);
 541	rtnl_unlock();
 542}
 543
 544static void cancel_crda_timeout(void)
 545{
 546	cancel_delayed_work(&crda_timeout);
 547}
 548
 549static void cancel_crda_timeout_sync(void)
 550{
 551	cancel_delayed_work_sync(&crda_timeout);
 552}
 553
 554static void reset_crda_timeouts(void)
 555{
 556	reg_crda_timeouts = 0;
 557}
 558
 559/*
 560 * This lets us keep regulatory code which is updated on a regulatory
 561 * basis in userspace.
 562 */
 563static int call_crda(const char *alpha2)
 564{
 565	char country[12];
 566	char *env[] = { country, NULL };
 567	int ret;
 568
 569	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 570		 alpha2[0], alpha2[1]);
 571
 572	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 573		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 574		return -EINVAL;
 575	}
 576
 577	if (!is_world_regdom((char *) alpha2))
 578		pr_debug("Calling CRDA for country: %c%c\n",
 579			 alpha2[0], alpha2[1]);
 580	else
 581		pr_debug("Calling CRDA to update world regulatory domain\n");
 582
 583	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 584	if (ret)
 585		return ret;
 586
 587	queue_delayed_work(system_power_efficient_wq,
 588			   &crda_timeout, msecs_to_jiffies(3142));
 589	return 0;
 590}
 591#else
 592static inline void cancel_crda_timeout(void) {}
 593static inline void cancel_crda_timeout_sync(void) {}
 594static inline void reset_crda_timeouts(void) {}
 595static inline int call_crda(const char *alpha2)
 596{
 597	return -ENODATA;
 598}
 599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 600
 601/* code to directly load a firmware database through request_firmware */
 602static const struct fwdb_header *regdb;
 603
 604struct fwdb_country {
 605	u8 alpha2[2];
 606	__be16 coll_ptr;
 607	/* this struct cannot be extended */
 608} __packed __aligned(4);
 609
 610struct fwdb_collection {
 611	u8 len;
 612	u8 n_rules;
 613	u8 dfs_region;
 614	/* no optional data yet */
 615	/* aligned to 2, then followed by __be16 array of rule pointers */
 616} __packed __aligned(4);
 617
 618enum fwdb_flags {
 619	FWDB_FLAG_NO_OFDM	= BIT(0),
 620	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
 621	FWDB_FLAG_DFS		= BIT(2),
 622	FWDB_FLAG_NO_IR		= BIT(3),
 623	FWDB_FLAG_AUTO_BW	= BIT(4),
 624};
 625
 626struct fwdb_wmm_ac {
 627	u8 ecw;
 628	u8 aifsn;
 629	__be16 cot;
 630} __packed;
 631
 632struct fwdb_wmm_rule {
 633	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 634	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 635} __packed;
 636
 637struct fwdb_rule {
 638	u8 len;
 639	u8 flags;
 640	__be16 max_eirp;
 641	__be32 start, end, max_bw;
 642	/* start of optional data */
 643	__be16 cac_timeout;
 644	__be16 wmm_ptr;
 645} __packed __aligned(4);
 646
 647#define FWDB_MAGIC 0x52474442
 648#define FWDB_VERSION 20
 649
 650struct fwdb_header {
 651	__be32 magic;
 652	__be32 version;
 653	struct fwdb_country country[];
 654} __packed __aligned(4);
 655
 656static int ecw2cw(int ecw)
 657{
 658	return (1 << ecw) - 1;
 659}
 660
 661static bool valid_wmm(struct fwdb_wmm_rule *rule)
 662{
 663	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 664	int i;
 665
 666	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 667		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 668		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 669		u8 aifsn = ac[i].aifsn;
 670
 671		if (cw_min >= cw_max)
 672			return false;
 673
 674		if (aifsn < 1)
 675			return false;
 676	}
 677
 678	return true;
 679}
 680
 681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 682{
 683	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 684
 685	if ((u8 *)rule + sizeof(rule->len) > data + size)
 686		return false;
 687
 688	/* mandatory fields */
 689	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 690		return false;
 691	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 692		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 693		struct fwdb_wmm_rule *wmm;
 694
 695		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 696			return false;
 697
 698		wmm = (void *)(data + wmm_ptr);
 699
 700		if (!valid_wmm(wmm))
 701			return false;
 702	}
 703	return true;
 704}
 705
 706static bool valid_country(const u8 *data, unsigned int size,
 707			  const struct fwdb_country *country)
 708{
 709	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 710	struct fwdb_collection *coll = (void *)(data + ptr);
 711	__be16 *rules_ptr;
 712	unsigned int i;
 713
 714	/* make sure we can read len/n_rules */
 715	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 716		return false;
 717
 718	/* make sure base struct and all rules fit */
 719	if ((u8 *)coll + ALIGN(coll->len, 2) +
 720	    (coll->n_rules * 2) > data + size)
 721		return false;
 722
 723	/* mandatory fields must exist */
 724	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 725		return false;
 726
 727	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 728
 729	for (i = 0; i < coll->n_rules; i++) {
 730		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 731
 732		if (!valid_rule(data, size, rule_ptr))
 733			return false;
 734	}
 735
 736	return true;
 737}
 738
 739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 740#include <keys/asymmetric-type.h>
 741
 742static struct key *builtin_regdb_keys;
 743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744static int __init load_builtin_regdb_keys(void)
 745{
 746	builtin_regdb_keys =
 747		keyring_alloc(".builtin_regdb_keys",
 748			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 749			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 750			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 751			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 752	if (IS_ERR(builtin_regdb_keys))
 753		return PTR_ERR(builtin_regdb_keys);
 754
 755	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 756
 757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 758	x509_load_certificate_list(shipped_regdb_certs,
 759				   shipped_regdb_certs_len,
 760				   builtin_regdb_keys);
 761#endif
 762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 763	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 764		x509_load_certificate_list(extra_regdb_certs,
 765					   extra_regdb_certs_len,
 766					   builtin_regdb_keys);
 767#endif
 768
 769	return 0;
 770}
 771
 772MODULE_FIRMWARE("regulatory.db.p7s");
 773
 774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 775{
 776	const struct firmware *sig;
 777	bool result;
 778
 779	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 780		return false;
 781
 782	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 783					builtin_regdb_keys,
 784					VERIFYING_UNSPECIFIED_SIGNATURE,
 785					NULL, NULL) == 0;
 786
 787	release_firmware(sig);
 788
 789	return result;
 790}
 791
 792static void free_regdb_keyring(void)
 793{
 794	key_put(builtin_regdb_keys);
 795}
 796#else
 797static int load_builtin_regdb_keys(void)
 798{
 799	return 0;
 800}
 801
 802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 803{
 804	return true;
 805}
 806
 807static void free_regdb_keyring(void)
 808{
 809}
 810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 811
 812static bool valid_regdb(const u8 *data, unsigned int size)
 813{
 814	const struct fwdb_header *hdr = (void *)data;
 815	const struct fwdb_country *country;
 816
 817	if (size < sizeof(*hdr))
 818		return false;
 819
 820	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 821		return false;
 822
 823	if (hdr->version != cpu_to_be32(FWDB_VERSION))
 824		return false;
 825
 826	if (!regdb_has_valid_signature(data, size))
 827		return false;
 828
 829	country = &hdr->country[0];
 830	while ((u8 *)(country + 1) <= data + size) {
 831		if (!country->coll_ptr)
 832			break;
 833		if (!valid_country(data, size, country))
 834			return false;
 835		country++;
 836	}
 837
 838	return true;
 839}
 840
 841static void set_wmm_rule(const struct fwdb_header *db,
 842			 const struct fwdb_country *country,
 843			 const struct fwdb_rule *rule,
 844			 struct ieee80211_reg_rule *rrule)
 845{
 846	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 847	struct fwdb_wmm_rule *wmm;
 848	unsigned int i, wmm_ptr;
 849
 850	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 851	wmm = (void *)((u8 *)db + wmm_ptr);
 852
 853	if (!valid_wmm(wmm)) {
 854		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 855		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 856		       country->alpha2[0], country->alpha2[1]);
 857		return;
 858	}
 859
 860	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 861		wmm_rule->client[i].cw_min =
 862			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 863		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 864		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 865		wmm_rule->client[i].cot =
 866			1000 * be16_to_cpu(wmm->client[i].cot);
 867		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 868		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 869		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 870		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 871	}
 872
 873	rrule->has_wmm = true;
 874}
 875
 876static int __regdb_query_wmm(const struct fwdb_header *db,
 877			     const struct fwdb_country *country, int freq,
 878			     struct ieee80211_reg_rule *rrule)
 879{
 880	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 881	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 882	int i;
 883
 884	for (i = 0; i < coll->n_rules; i++) {
 885		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 886		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 887		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 888
 889		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 890			continue;
 891
 892		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 893		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 894			set_wmm_rule(db, country, rule, rrule);
 895			return 0;
 896		}
 897	}
 898
 899	return -ENODATA;
 900}
 901
 902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 903{
 904	const struct fwdb_header *hdr = regdb;
 905	const struct fwdb_country *country;
 906
 907	if (!regdb)
 908		return -ENODATA;
 909
 910	if (IS_ERR(regdb))
 911		return PTR_ERR(regdb);
 912
 913	country = &hdr->country[0];
 914	while (country->coll_ptr) {
 915		if (alpha2_equal(alpha2, country->alpha2))
 916			return __regdb_query_wmm(regdb, country, freq, rule);
 917
 918		country++;
 919	}
 920
 921	return -ENODATA;
 922}
 923EXPORT_SYMBOL(reg_query_regdb_wmm);
 924
 925static int regdb_query_country(const struct fwdb_header *db,
 926			       const struct fwdb_country *country)
 927{
 928	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 929	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 930	struct ieee80211_regdomain *regdom;
 931	unsigned int i;
 932
 933	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 934			 GFP_KERNEL);
 935	if (!regdom)
 936		return -ENOMEM;
 937
 938	regdom->n_reg_rules = coll->n_rules;
 939	regdom->alpha2[0] = country->alpha2[0];
 940	regdom->alpha2[1] = country->alpha2[1];
 941	regdom->dfs_region = coll->dfs_region;
 942
 943	for (i = 0; i < regdom->n_reg_rules; i++) {
 944		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 945		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 946		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 947		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 948
 949		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 950		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 951		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 952
 953		rrule->power_rule.max_antenna_gain = 0;
 954		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 955
 956		rrule->flags = 0;
 957		if (rule->flags & FWDB_FLAG_NO_OFDM)
 958			rrule->flags |= NL80211_RRF_NO_OFDM;
 959		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 960			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 961		if (rule->flags & FWDB_FLAG_DFS)
 962			rrule->flags |= NL80211_RRF_DFS;
 963		if (rule->flags & FWDB_FLAG_NO_IR)
 964			rrule->flags |= NL80211_RRF_NO_IR;
 965		if (rule->flags & FWDB_FLAG_AUTO_BW)
 966			rrule->flags |= NL80211_RRF_AUTO_BW;
 967
 968		rrule->dfs_cac_ms = 0;
 969
 970		/* handle optional data */
 971		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
 972			rrule->dfs_cac_ms =
 973				1000 * be16_to_cpu(rule->cac_timeout);
 974		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
 975			set_wmm_rule(db, country, rule, rrule);
 976	}
 977
 978	return reg_schedule_apply(regdom);
 979}
 980
 981static int query_regdb(const char *alpha2)
 982{
 983	const struct fwdb_header *hdr = regdb;
 984	const struct fwdb_country *country;
 985
 986	ASSERT_RTNL();
 987
 988	if (IS_ERR(regdb))
 989		return PTR_ERR(regdb);
 990
 991	country = &hdr->country[0];
 992	while (country->coll_ptr) {
 993		if (alpha2_equal(alpha2, country->alpha2))
 994			return regdb_query_country(regdb, country);
 995		country++;
 996	}
 997
 998	return -ENODATA;
 999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003	int set_error = 0;
1004	bool restore = true;
1005	void *db;
1006
1007	if (!fw) {
1008		pr_info("failed to load regulatory.db\n");
1009		set_error = -ENODATA;
1010	} else if (!valid_regdb(fw->data, fw->size)) {
1011		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012		set_error = -EINVAL;
1013	}
1014
1015	rtnl_lock();
1016	if (regdb && !IS_ERR(regdb)) {
1017		/* negative case - a bug
1018		 * positive case - can happen due to race in case of multiple cb's in
1019		 * queue, due to usage of asynchronous callback
1020		 *
1021		 * Either case, just restore and free new db.
1022		 */
1023	} else if (set_error) {
1024		regdb = ERR_PTR(set_error);
1025	} else if (fw) {
1026		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027		if (db) {
1028			regdb = db;
1029			restore = context && query_regdb(context);
1030		} else {
1031			restore = true;
1032		}
1033	}
1034
1035	if (restore)
1036		restore_regulatory_settings(true, false);
1037
1038	rtnl_unlock();
1039
1040	kfree(context);
1041
1042	release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049	int err;
1050
1051	ASSERT_RTNL();
1052
1053	if (regdb)
1054		return query_regdb(alpha2);
1055
1056	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057	if (!alpha2)
1058		return -ENOMEM;
1059
1060	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061				      &reg_pdev->dev, GFP_KERNEL,
1062				      (void *)alpha2, regdb_fw_cb);
1063	if (err)
1064		kfree(alpha2);
1065
1066	return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071	const struct firmware *fw;
1072	void *db;
1073	int err;
1074	const struct ieee80211_regdomain *current_regdomain;
1075	struct regulatory_request *request;
1076
1077	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078	if (err)
1079		return err;
1080
1081	if (!valid_regdb(fw->data, fw->size)) {
1082		err = -ENODATA;
1083		goto out;
1084	}
1085
1086	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087	if (!db) {
1088		err = -ENOMEM;
1089		goto out;
1090	}
1091
1092	rtnl_lock();
1093	if (!IS_ERR_OR_NULL(regdb))
1094		kfree(regdb);
1095	regdb = db;
1096
1097	/* reset regulatory domain */
1098	current_regdomain = get_cfg80211_regdom();
1099
1100	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101	if (!request) {
1102		err = -ENOMEM;
1103		goto out_unlock;
1104	}
1105
1106	request->wiphy_idx = WIPHY_IDX_INVALID;
1107	request->alpha2[0] = current_regdomain->alpha2[0];
1108	request->alpha2[1] = current_regdomain->alpha2[1];
1109	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112	reg_process_hint(request);
1113
1114out_unlock:
1115	rtnl_unlock();
 
1116 out:
1117	release_firmware(fw);
1118	return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123	if (query_regdb_file(request->alpha2) == 0)
1124		return true;
1125
1126	if (call_crda(request->alpha2) == 0)
1127		return true;
1128
1129	return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134	struct regulatory_request *lr = get_last_request();
1135
1136	if (!lr || lr->processed)
1137		return false;
1138
1139	return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144	struct regulatory_request *lr = get_last_request();
1145
1146	/*
1147	 * Follow the driver's regulatory domain, if present, unless a country
1148	 * IE has been processed or a user wants to help complaince further
1149	 */
1150	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152	    wiphy->regd)
1153		return get_wiphy_regdom(wiphy);
1154
1155	return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160				 const struct ieee80211_reg_rule *rule)
1161{
1162	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163	const struct ieee80211_freq_range *freq_range_tmp;
1164	const struct ieee80211_reg_rule *tmp;
1165	u32 start_freq, end_freq, idx, no;
1166
1167	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168		if (rule == &rd->reg_rules[idx])
1169			break;
1170
1171	if (idx == rd->n_reg_rules)
1172		return 0;
1173
1174	/* get start_freq */
1175	no = idx;
1176
1177	while (no) {
1178		tmp = &rd->reg_rules[--no];
1179		freq_range_tmp = &tmp->freq_range;
1180
1181		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182			break;
1183
1184		freq_range = freq_range_tmp;
1185	}
1186
1187	start_freq = freq_range->start_freq_khz;
1188
1189	/* get end_freq */
1190	freq_range = &rule->freq_range;
1191	no = idx;
1192
1193	while (no < rd->n_reg_rules - 1) {
1194		tmp = &rd->reg_rules[++no];
1195		freq_range_tmp = &tmp->freq_range;
1196
1197		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198			break;
1199
1200		freq_range = freq_range_tmp;
1201	}
1202
1203	end_freq = freq_range->end_freq_khz;
1204
1205	return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209				   const struct ieee80211_reg_rule *rule)
1210{
1211	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220	/*
1221	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222	 * are not allowed.
1223	 */
1224	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228	return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235	u32 freq_diff;
1236
1237	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238		return false;
1239
1240	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241		return false;
1242
1243	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246	    freq_range->max_bandwidth_khz > freq_diff)
1247		return false;
1248
1249	return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254	const struct ieee80211_reg_rule *reg_rule = NULL;
1255	unsigned int i;
1256
1257	if (!rd->n_reg_rules)
1258		return false;
1259
1260	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261		return false;
1262
1263	for (i = 0; i < rd->n_reg_rules; i++) {
1264		reg_rule = &rd->reg_rules[i];
1265		if (!is_valid_reg_rule(reg_rule))
1266			return false;
1267	}
1268
1269	return true;
1270}
1271
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 *
1287 * Returns: whether or not the frequency is in the range
1288 */
1289static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290			      u32 freq_khz)
1291{
1292#define ONE_GHZ_IN_KHZ	1000000
1293	/*
1294	 * From 802.11ad: directional multi-gigabit (DMG):
1295	 * Pertaining to operation in a frequency band containing a channel
1296	 * with the Channel starting frequency above 45 GHz.
1297	 */
1298	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301		return true;
1302	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303		return true;
1304	return false;
1305#undef ONE_GHZ_IN_KHZ
1306}
1307
1308/*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313static enum nl80211_dfs_regions
1314reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315			 const enum nl80211_dfs_regions dfs_region2)
1316{
1317	if (dfs_region1 != dfs_region2)
1318		return NL80211_DFS_UNSET;
1319	return dfs_region1;
1320}
1321
1322static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323				    const struct ieee80211_wmm_ac *wmm_ac2,
1324				    struct ieee80211_wmm_ac *intersect)
1325{
1326	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330}
1331
1332/*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
1336static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337			       const struct ieee80211_regdomain *rd2,
1338			       const struct ieee80211_reg_rule *rule1,
1339			       const struct ieee80211_reg_rule *rule2,
1340			       struct ieee80211_reg_rule *intersected_rule)
1341{
1342	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343	struct ieee80211_freq_range *freq_range;
1344	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345	struct ieee80211_power_rule *power_rule;
1346	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347	struct ieee80211_wmm_rule *wmm_rule;
1348	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350	freq_range1 = &rule1->freq_range;
1351	freq_range2 = &rule2->freq_range;
1352	freq_range = &intersected_rule->freq_range;
1353
1354	power_rule1 = &rule1->power_rule;
1355	power_rule2 = &rule2->power_rule;
1356	power_rule = &intersected_rule->power_rule;
1357
1358	wmm_rule1 = &rule1->wmm_rule;
1359	wmm_rule2 = &rule2->wmm_rule;
1360	wmm_rule = &intersected_rule->wmm_rule;
1361
1362	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363					 freq_range2->start_freq_khz);
1364	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365				       freq_range2->end_freq_khz);
1366
1367	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370	if (rule1->flags & NL80211_RRF_AUTO_BW)
1371		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372	if (rule2->flags & NL80211_RRF_AUTO_BW)
1373		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377	intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379	/*
1380	 * In case NL80211_RRF_AUTO_BW requested for both rules
1381	 * set AUTO_BW in intersected rule also. Next we will
1382	 * calculate BW correctly in handle_channel function.
1383	 * In other case remove AUTO_BW flag while we calculate
1384	 * maximum bandwidth correctly and auto calculation is
1385	 * not required.
1386	 */
1387	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388	    (rule2->flags & NL80211_RRF_AUTO_BW))
1389		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390	else
1391		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394	if (freq_range->max_bandwidth_khz > freq_diff)
1395		freq_range->max_bandwidth_khz = freq_diff;
1396
1397	power_rule->max_eirp = min(power_rule1->max_eirp,
1398		power_rule2->max_eirp);
1399	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400		power_rule2->max_antenna_gain);
1401
1402	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403					   rule2->dfs_cac_ms);
1404
1405	if (rule1->has_wmm && rule2->has_wmm) {
1406		u8 ac;
1407
1408		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410						&wmm_rule2->client[ac],
1411						&wmm_rule->client[ac]);
1412			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413						&wmm_rule2->ap[ac],
1414						&wmm_rule->ap[ac]);
1415		}
1416
1417		intersected_rule->has_wmm = true;
1418	} else if (rule1->has_wmm) {
1419		*wmm_rule = *wmm_rule1;
1420		intersected_rule->has_wmm = true;
1421	} else if (rule2->has_wmm) {
1422		*wmm_rule = *wmm_rule2;
1423		intersected_rule->has_wmm = true;
1424	} else {
1425		intersected_rule->has_wmm = false;
1426	}
1427
1428	if (!is_valid_reg_rule(intersected_rule))
1429		return -EINVAL;
1430
1431	return 0;
1432}
1433
1434/* check whether old rule contains new rule */
1435static bool rule_contains(struct ieee80211_reg_rule *r1,
1436			  struct ieee80211_reg_rule *r2)
1437{
1438	/* for simplicity, currently consider only same flags */
1439	if (r1->flags != r2->flags)
1440		return false;
1441
1442	/* verify r1 is more restrictive */
1443	if ((r1->power_rule.max_antenna_gain >
1444	     r2->power_rule.max_antenna_gain) ||
1445	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446		return false;
1447
1448	/* make sure r2's range is contained within r1 */
1449	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451		return false;
1452
1453	/* and finally verify that r1.max_bw >= r2.max_bw */
1454	if (r1->freq_range.max_bandwidth_khz <
1455	    r2->freq_range.max_bandwidth_khz)
1456		return false;
1457
1458	return true;
1459}
1460
1461/* add or extend current rules. do nothing if rule is already contained */
1462static void add_rule(struct ieee80211_reg_rule *rule,
1463		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464{
1465	struct ieee80211_reg_rule *tmp_rule;
1466	int i;
1467
1468	for (i = 0; i < *n_rules; i++) {
1469		tmp_rule = &reg_rules[i];
1470		/* rule is already contained - do nothing */
1471		if (rule_contains(tmp_rule, rule))
1472			return;
1473
1474		/* extend rule if possible */
1475		if (rule_contains(rule, tmp_rule)) {
1476			memcpy(tmp_rule, rule, sizeof(*rule));
1477			return;
1478		}
1479	}
1480
1481	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482	(*n_rules)++;
1483}
1484
1485/**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500static struct ieee80211_regdomain *
1501regdom_intersect(const struct ieee80211_regdomain *rd1,
1502		 const struct ieee80211_regdomain *rd2)
1503{
1504	int r;
1505	unsigned int x, y;
1506	unsigned int num_rules = 0;
1507	const struct ieee80211_reg_rule *rule1, *rule2;
1508	struct ieee80211_reg_rule intersected_rule;
1509	struct ieee80211_regdomain *rd;
1510
1511	if (!rd1 || !rd2)
1512		return NULL;
1513
1514	/*
1515	 * First we get a count of the rules we'll need, then we actually
1516	 * build them. This is to so we can malloc() and free() a
1517	 * regdomain once. The reason we use reg_rules_intersect() here
1518	 * is it will return -EINVAL if the rule computed makes no sense.
1519	 * All rules that do check out OK are valid.
1520	 */
1521
1522	for (x = 0; x < rd1->n_reg_rules; x++) {
1523		rule1 = &rd1->reg_rules[x];
1524		for (y = 0; y < rd2->n_reg_rules; y++) {
1525			rule2 = &rd2->reg_rules[y];
1526			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527						 &intersected_rule))
1528				num_rules++;
1529		}
1530	}
1531
1532	if (!num_rules)
1533		return NULL;
1534
1535	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536	if (!rd)
1537		return NULL;
1538
1539	for (x = 0; x < rd1->n_reg_rules; x++) {
1540		rule1 = &rd1->reg_rules[x];
1541		for (y = 0; y < rd2->n_reg_rules; y++) {
1542			rule2 = &rd2->reg_rules[y];
1543			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544						&intersected_rule);
1545			/*
1546			 * No need to memset here the intersected rule here as
1547			 * we're not using the stack anymore
1548			 */
1549			if (r)
1550				continue;
1551
1552			add_rule(&intersected_rule, rd->reg_rules,
1553				 &rd->n_reg_rules);
1554		}
1555	}
1556
1557	rd->alpha2[0] = '9';
1558	rd->alpha2[1] = '8';
1559	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560						  rd2->dfs_region);
1561
1562	return rd;
1563}
1564
1565/*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
1569static u32 map_regdom_flags(u32 rd_flags)
1570{
1571	u32 channel_flags = 0;
1572	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573		channel_flags |= IEEE80211_CHAN_NO_IR;
1574	if (rd_flags & NL80211_RRF_DFS)
1575		channel_flags |= IEEE80211_CHAN_RADAR;
1576	if (rd_flags & NL80211_RRF_NO_OFDM)
1577		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586	if (rd_flags & NL80211_RRF_NO_80MHZ)
1587		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588	if (rd_flags & NL80211_RRF_NO_160MHZ)
1589		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590	if (rd_flags & NL80211_RRF_NO_HE)
1591		channel_flags |= IEEE80211_CHAN_NO_HE;
1592	if (rd_flags & NL80211_RRF_NO_320MHZ)
1593		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594	if (rd_flags & NL80211_RRF_NO_EHT)
1595		channel_flags |= IEEE80211_CHAN_NO_EHT;
1596	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598	if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT)
1599		channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT;
1600	if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT)
1601		channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT;
1602	if (rd_flags & NL80211_RRF_PSD)
1603		channel_flags |= IEEE80211_CHAN_PSD;
1604	return channel_flags;
1605}
1606
1607static const struct ieee80211_reg_rule *
1608freq_reg_info_regd(u32 center_freq,
1609		   const struct ieee80211_regdomain *regd, u32 bw)
1610{
1611	int i;
1612	bool band_rule_found = false;
1613	bool bw_fits = false;
1614
1615	if (!regd)
1616		return ERR_PTR(-EINVAL);
1617
1618	for (i = 0; i < regd->n_reg_rules; i++) {
1619		const struct ieee80211_reg_rule *rr;
1620		const struct ieee80211_freq_range *fr = NULL;
1621
1622		rr = &regd->reg_rules[i];
1623		fr = &rr->freq_range;
1624
1625		/*
1626		 * We only need to know if one frequency rule was
1627		 * in center_freq's band, that's enough, so let's
1628		 * not overwrite it once found
1629		 */
1630		if (!band_rule_found)
1631			band_rule_found = freq_in_rule_band(fr, center_freq);
1632
1633		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1634
1635		if (band_rule_found && bw_fits)
1636			return rr;
1637	}
1638
1639	if (!band_rule_found)
1640		return ERR_PTR(-ERANGE);
1641
1642	return ERR_PTR(-EINVAL);
1643}
1644
1645static const struct ieee80211_reg_rule *
1646__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1647{
1648	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1649	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1650	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1651	int i = ARRAY_SIZE(bws) - 1;
1652	u32 bw;
1653
1654	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1655		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1656		if (!IS_ERR(reg_rule))
1657			return reg_rule;
1658	}
1659
1660	return reg_rule;
1661}
1662
1663const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1664					       u32 center_freq)
1665{
1666	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1667
1668	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1669}
1670EXPORT_SYMBOL(freq_reg_info);
1671
1672const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1673{
1674	switch (initiator) {
1675	case NL80211_REGDOM_SET_BY_CORE:
1676		return "core";
1677	case NL80211_REGDOM_SET_BY_USER:
1678		return "user";
1679	case NL80211_REGDOM_SET_BY_DRIVER:
1680		return "driver";
1681	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1682		return "country element";
1683	default:
1684		WARN_ON(1);
1685		return "bug";
1686	}
1687}
1688EXPORT_SYMBOL(reg_initiator_name);
1689
1690static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1691					  const struct ieee80211_reg_rule *reg_rule,
1692					  const struct ieee80211_channel *chan)
1693{
1694	const struct ieee80211_freq_range *freq_range = NULL;
1695	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1696	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1697
1698	freq_range = &reg_rule->freq_range;
1699
1700	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1701	center_freq_khz = ieee80211_channel_to_khz(chan);
1702	/* Check if auto calculation requested */
1703	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1704		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1705
1706	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1707	if (!cfg80211_does_bw_fit_range(freq_range,
1708					center_freq_khz,
1709					MHZ_TO_KHZ(10)))
1710		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1711	if (!cfg80211_does_bw_fit_range(freq_range,
1712					center_freq_khz,
1713					MHZ_TO_KHZ(20)))
1714		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1715
1716	if (is_s1g) {
1717		/* S1G is strict about non overlapping channels. We can
1718		 * calculate which bandwidth is allowed per channel by finding
1719		 * the largest bandwidth which cleanly divides the freq_range.
1720		 */
1721		int edge_offset;
1722		int ch_bw = max_bandwidth_khz;
1723
1724		while (ch_bw) {
1725			edge_offset = (center_freq_khz - ch_bw / 2) -
1726				      freq_range->start_freq_khz;
1727			if (edge_offset % ch_bw == 0) {
1728				switch (KHZ_TO_MHZ(ch_bw)) {
1729				case 1:
1730					bw_flags |= IEEE80211_CHAN_1MHZ;
1731					break;
1732				case 2:
1733					bw_flags |= IEEE80211_CHAN_2MHZ;
1734					break;
1735				case 4:
1736					bw_flags |= IEEE80211_CHAN_4MHZ;
1737					break;
1738				case 8:
1739					bw_flags |= IEEE80211_CHAN_8MHZ;
1740					break;
1741				case 16:
1742					bw_flags |= IEEE80211_CHAN_16MHZ;
1743					break;
1744				default:
1745					/* If we got here, no bandwidths fit on
1746					 * this frequency, ie. band edge.
1747					 */
1748					bw_flags |= IEEE80211_CHAN_DISABLED;
1749					break;
1750				}
1751				break;
1752			}
1753			ch_bw /= 2;
1754		}
1755	} else {
1756		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1757			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1759			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1760		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1761			bw_flags |= IEEE80211_CHAN_NO_HT40;
1762		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1763			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1764		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1765			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1766		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1767			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1768	}
1769	return bw_flags;
1770}
1771
1772static void handle_channel_single_rule(struct wiphy *wiphy,
1773				       enum nl80211_reg_initiator initiator,
1774				       struct ieee80211_channel *chan,
1775				       u32 flags,
1776				       struct regulatory_request *lr,
1777				       struct wiphy *request_wiphy,
1778				       const struct ieee80211_reg_rule *reg_rule)
1779{
1780	u32 bw_flags = 0;
1781	const struct ieee80211_power_rule *power_rule = NULL;
1782	const struct ieee80211_regdomain *regd;
1783
1784	regd = reg_get_regdomain(wiphy);
1785
1786	power_rule = &reg_rule->power_rule;
1787	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1788
1789	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1790	    request_wiphy && request_wiphy == wiphy &&
1791	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1792		/*
1793		 * This guarantees the driver's requested regulatory domain
1794		 * will always be used as a base for further regulatory
1795		 * settings
1796		 */
1797		chan->flags = chan->orig_flags =
1798			map_regdom_flags(reg_rule->flags) | bw_flags;
1799		chan->max_antenna_gain = chan->orig_mag =
1800			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1801		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1802			(int) MBM_TO_DBM(power_rule->max_eirp);
1803
1804		if (chan->flags & IEEE80211_CHAN_RADAR) {
1805			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806			if (reg_rule->dfs_cac_ms)
1807				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1808		}
1809
1810		if (chan->flags & IEEE80211_CHAN_PSD)
1811			chan->psd = reg_rule->psd;
1812
1813		return;
1814	}
1815
1816	chan->dfs_state = NL80211_DFS_USABLE;
1817	chan->dfs_state_entered = jiffies;
1818
1819	chan->beacon_found = false;
1820	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1821	chan->max_antenna_gain =
1822		min_t(int, chan->orig_mag,
1823		      MBI_TO_DBI(power_rule->max_antenna_gain));
1824	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1825
1826	if (chan->flags & IEEE80211_CHAN_RADAR) {
1827		if (reg_rule->dfs_cac_ms)
1828			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1829		else
1830			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1831	}
1832
1833	if (chan->flags & IEEE80211_CHAN_PSD)
1834		chan->psd = reg_rule->psd;
1835
1836	if (chan->orig_mpwr) {
1837		/*
1838		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1839		 * will always follow the passed country IE power settings.
1840		 */
1841		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1842		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1843			chan->max_power = chan->max_reg_power;
1844		else
1845			chan->max_power = min(chan->orig_mpwr,
1846					      chan->max_reg_power);
1847	} else
1848		chan->max_power = chan->max_reg_power;
1849}
1850
1851static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1852					  enum nl80211_reg_initiator initiator,
1853					  struct ieee80211_channel *chan,
1854					  u32 flags,
1855					  struct regulatory_request *lr,
1856					  struct wiphy *request_wiphy,
1857					  const struct ieee80211_reg_rule *rrule1,
1858					  const struct ieee80211_reg_rule *rrule2,
1859					  struct ieee80211_freq_range *comb_range)
1860{
1861	u32 bw_flags1 = 0;
1862	u32 bw_flags2 = 0;
1863	const struct ieee80211_power_rule *power_rule1 = NULL;
1864	const struct ieee80211_power_rule *power_rule2 = NULL;
1865	const struct ieee80211_regdomain *regd;
1866
1867	regd = reg_get_regdomain(wiphy);
1868
1869	power_rule1 = &rrule1->power_rule;
1870	power_rule2 = &rrule2->power_rule;
1871	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1872	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1873
1874	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1875	    request_wiphy && request_wiphy == wiphy &&
1876	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1877		/* This guarantees the driver's requested regulatory domain
1878		 * will always be used as a base for further regulatory
1879		 * settings
1880		 */
1881		chan->flags =
1882			map_regdom_flags(rrule1->flags) |
1883			map_regdom_flags(rrule2->flags) |
1884			bw_flags1 |
1885			bw_flags2;
1886		chan->orig_flags = chan->flags;
1887		chan->max_antenna_gain =
1888			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1889			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1890		chan->orig_mag = chan->max_antenna_gain;
1891		chan->max_reg_power =
1892			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1893			      MBM_TO_DBM(power_rule2->max_eirp));
1894		chan->max_power = chan->max_reg_power;
1895		chan->orig_mpwr = chan->max_reg_power;
1896
1897		if (chan->flags & IEEE80211_CHAN_RADAR) {
1898			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1899			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1900				chan->dfs_cac_ms = max_t(unsigned int,
1901							 rrule1->dfs_cac_ms,
1902							 rrule2->dfs_cac_ms);
1903		}
1904
1905		if ((rrule1->flags & NL80211_RRF_PSD) &&
1906		    (rrule2->flags & NL80211_RRF_PSD))
1907			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1908		else
1909			chan->flags &= ~NL80211_RRF_PSD;
1910
1911		return;
1912	}
1913
1914	chan->dfs_state = NL80211_DFS_USABLE;
1915	chan->dfs_state_entered = jiffies;
1916
1917	chan->beacon_found = false;
1918	chan->flags = flags | bw_flags1 | bw_flags2 |
1919		      map_regdom_flags(rrule1->flags) |
1920		      map_regdom_flags(rrule2->flags);
1921
1922	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1923	 * (otherwise no adj. rule case), recheck therefore
1924	 */
1925	if (cfg80211_does_bw_fit_range(comb_range,
1926				       ieee80211_channel_to_khz(chan),
1927				       MHZ_TO_KHZ(10)))
1928		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1929	if (cfg80211_does_bw_fit_range(comb_range,
1930				       ieee80211_channel_to_khz(chan),
1931				       MHZ_TO_KHZ(20)))
1932		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1933
1934	chan->max_antenna_gain =
1935		min_t(int, chan->orig_mag,
1936		      min_t(int,
1937			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1938			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1939	chan->max_reg_power = min_t(int,
1940				    MBM_TO_DBM(power_rule1->max_eirp),
1941				    MBM_TO_DBM(power_rule2->max_eirp));
1942
1943	if (chan->flags & IEEE80211_CHAN_RADAR) {
1944		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1945			chan->dfs_cac_ms = max_t(unsigned int,
1946						 rrule1->dfs_cac_ms,
1947						 rrule2->dfs_cac_ms);
1948		else
1949			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1950	}
1951
1952	if (chan->orig_mpwr) {
1953		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1954		 * will always follow the passed country IE power settings.
1955		 */
1956		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1957		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1958			chan->max_power = chan->max_reg_power;
1959		else
1960			chan->max_power = min(chan->orig_mpwr,
1961					      chan->max_reg_power);
1962	} else {
1963		chan->max_power = chan->max_reg_power;
1964	}
1965}
1966
1967/* Note that right now we assume the desired channel bandwidth
1968 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1969 * per channel, the primary and the extension channel).
1970 */
1971static void handle_channel(struct wiphy *wiphy,
1972			   enum nl80211_reg_initiator initiator,
1973			   struct ieee80211_channel *chan)
1974{
1975	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1976	struct regulatory_request *lr = get_last_request();
1977	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1978	const struct ieee80211_reg_rule *rrule = NULL;
1979	const struct ieee80211_reg_rule *rrule1 = NULL;
1980	const struct ieee80211_reg_rule *rrule2 = NULL;
1981
1982	u32 flags = chan->orig_flags;
1983
1984	rrule = freq_reg_info(wiphy, orig_chan_freq);
1985	if (IS_ERR(rrule)) {
1986		/* check for adjacent match, therefore get rules for
1987		 * chan - 20 MHz and chan + 20 MHz and test
1988		 * if reg rules are adjacent
1989		 */
1990		rrule1 = freq_reg_info(wiphy,
1991				       orig_chan_freq - MHZ_TO_KHZ(20));
1992		rrule2 = freq_reg_info(wiphy,
1993				       orig_chan_freq + MHZ_TO_KHZ(20));
1994		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1995			struct ieee80211_freq_range comb_range;
1996
1997			if (rrule1->freq_range.end_freq_khz !=
1998			    rrule2->freq_range.start_freq_khz)
1999				goto disable_chan;
2000
2001			comb_range.start_freq_khz =
2002				rrule1->freq_range.start_freq_khz;
2003			comb_range.end_freq_khz =
2004				rrule2->freq_range.end_freq_khz;
2005			comb_range.max_bandwidth_khz =
2006				min_t(u32,
2007				      rrule1->freq_range.max_bandwidth_khz,
2008				      rrule2->freq_range.max_bandwidth_khz);
2009
2010			if (!cfg80211_does_bw_fit_range(&comb_range,
2011							orig_chan_freq,
2012							MHZ_TO_KHZ(20)))
2013				goto disable_chan;
2014
2015			handle_channel_adjacent_rules(wiphy, initiator, chan,
2016						      flags, lr, request_wiphy,
2017						      rrule1, rrule2,
2018						      &comb_range);
2019			return;
2020		}
2021
2022disable_chan:
2023		/* We will disable all channels that do not match our
2024		 * received regulatory rule unless the hint is coming
2025		 * from a Country IE and the Country IE had no information
2026		 * about a band. The IEEE 802.11 spec allows for an AP
2027		 * to send only a subset of the regulatory rules allowed,
2028		 * so an AP in the US that only supports 2.4 GHz may only send
2029		 * a country IE with information for the 2.4 GHz band
2030		 * while 5 GHz is still supported.
2031		 */
2032		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2033		    PTR_ERR(rrule) == -ERANGE)
2034			return;
2035
2036		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2037		    request_wiphy && request_wiphy == wiphy &&
2038		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2039			pr_debug("Disabling freq %d.%03d MHz for good\n",
2040				 chan->center_freq, chan->freq_offset);
2041			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2042			chan->flags = chan->orig_flags;
2043		} else {
2044			pr_debug("Disabling freq %d.%03d MHz\n",
2045				 chan->center_freq, chan->freq_offset);
2046			chan->flags |= IEEE80211_CHAN_DISABLED;
2047		}
2048		return;
2049	}
2050
2051	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2052				   request_wiphy, rrule);
2053}
2054
2055static void handle_band(struct wiphy *wiphy,
2056			enum nl80211_reg_initiator initiator,
2057			struct ieee80211_supported_band *sband)
2058{
2059	unsigned int i;
2060
2061	if (!sband)
2062		return;
2063
2064	for (i = 0; i < sband->n_channels; i++)
2065		handle_channel(wiphy, initiator, &sband->channels[i]);
2066}
2067
2068static bool reg_request_cell_base(struct regulatory_request *request)
2069{
2070	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2071		return false;
2072	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2073}
2074
2075bool reg_last_request_cell_base(void)
2076{
2077	return reg_request_cell_base(get_last_request());
2078}
2079
2080#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2081/* Core specific check */
2082static enum reg_request_treatment
2083reg_ignore_cell_hint(struct regulatory_request *pending_request)
2084{
2085	struct regulatory_request *lr = get_last_request();
2086
2087	if (!reg_num_devs_support_basehint)
2088		return REG_REQ_IGNORE;
2089
2090	if (reg_request_cell_base(lr) &&
2091	    !regdom_changes(pending_request->alpha2))
2092		return REG_REQ_ALREADY_SET;
2093
2094	return REG_REQ_OK;
2095}
2096
2097/* Device specific check */
2098static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2099{
2100	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2101}
2102#else
2103static enum reg_request_treatment
2104reg_ignore_cell_hint(struct regulatory_request *pending_request)
2105{
2106	return REG_REQ_IGNORE;
2107}
2108
2109static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2110{
2111	return true;
2112}
2113#endif
2114
2115static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2116{
2117	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2118	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119		return true;
2120	return false;
2121}
2122
2123static bool ignore_reg_update(struct wiphy *wiphy,
2124			      enum nl80211_reg_initiator initiator)
2125{
2126	struct regulatory_request *lr = get_last_request();
2127
2128	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2129		return true;
2130
2131	if (!lr) {
2132		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2133			 reg_initiator_name(initiator));
2134		return true;
2135	}
2136
2137	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2138	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2139		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2140			 reg_initiator_name(initiator));
2141		return true;
2142	}
2143
2144	/*
2145	 * wiphy->regd will be set once the device has its own
2146	 * desired regulatory domain set
2147	 */
2148	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2149	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2150	    !is_world_regdom(lr->alpha2)) {
2151		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2152			 reg_initiator_name(initiator));
2153		return true;
2154	}
2155
2156	if (reg_request_cell_base(lr))
2157		return reg_dev_ignore_cell_hint(wiphy);
2158
2159	return false;
2160}
2161
2162static bool reg_is_world_roaming(struct wiphy *wiphy)
2163{
2164	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2165	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2166	struct regulatory_request *lr = get_last_request();
2167
2168	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2169		return true;
2170
2171	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2172	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2173		return true;
2174
2175	return false;
2176}
2177
2178static void reg_call_notifier(struct wiphy *wiphy,
2179			      struct regulatory_request *request)
2180{
2181	if (wiphy->reg_notifier)
2182		wiphy->reg_notifier(wiphy, request);
2183}
2184
2185static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2186			      struct reg_beacon *reg_beacon)
2187{
2188	struct ieee80211_supported_band *sband;
2189	struct ieee80211_channel *chan;
2190	bool channel_changed = false;
2191	struct ieee80211_channel chan_before;
2192	struct regulatory_request *lr = get_last_request();
2193
2194	sband = wiphy->bands[reg_beacon->chan.band];
2195	chan = &sband->channels[chan_idx];
2196
2197	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2198		return;
2199
2200	if (chan->beacon_found)
2201		return;
2202
2203	chan->beacon_found = true;
2204
2205	if (!reg_is_world_roaming(wiphy))
2206		return;
2207
2208	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2209		return;
2210
2211	chan_before = *chan;
2212
2213	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2214		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2215		channel_changed = true;
2216	}
2217
2218	if (channel_changed) {
2219		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2220		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2221			reg_call_notifier(wiphy, lr);
2222	}
2223}
2224
2225/*
2226 * Called when a scan on a wiphy finds a beacon on
2227 * new channel
2228 */
2229static void wiphy_update_new_beacon(struct wiphy *wiphy,
2230				    struct reg_beacon *reg_beacon)
2231{
2232	unsigned int i;
2233	struct ieee80211_supported_band *sband;
2234
2235	if (!wiphy->bands[reg_beacon->chan.band])
2236		return;
2237
2238	sband = wiphy->bands[reg_beacon->chan.band];
2239
2240	for (i = 0; i < sband->n_channels; i++)
2241		handle_reg_beacon(wiphy, i, reg_beacon);
2242}
2243
2244/*
2245 * Called upon reg changes or a new wiphy is added
2246 */
2247static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2248{
2249	unsigned int i;
2250	struct ieee80211_supported_band *sband;
2251	struct reg_beacon *reg_beacon;
2252
2253	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2254		if (!wiphy->bands[reg_beacon->chan.band])
2255			continue;
2256		sband = wiphy->bands[reg_beacon->chan.band];
2257		for (i = 0; i < sband->n_channels; i++)
2258			handle_reg_beacon(wiphy, i, reg_beacon);
2259	}
2260}
2261
2262/* Reap the advantages of previously found beacons */
2263static void reg_process_beacons(struct wiphy *wiphy)
2264{
2265	/*
2266	 * Means we are just firing up cfg80211, so no beacons would
2267	 * have been processed yet.
2268	 */
2269	if (!last_request)
2270		return;
2271	wiphy_update_beacon_reg(wiphy);
2272}
2273
2274static bool is_ht40_allowed(struct ieee80211_channel *chan)
2275{
2276	if (!chan)
2277		return false;
2278	if (chan->flags & IEEE80211_CHAN_DISABLED)
2279		return false;
2280	/* This would happen when regulatory rules disallow HT40 completely */
2281	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2282		return false;
2283	return true;
2284}
2285
2286static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2287					 struct ieee80211_channel *channel)
2288{
2289	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2290	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2291	const struct ieee80211_regdomain *regd;
2292	unsigned int i;
2293	u32 flags;
2294
2295	if (!is_ht40_allowed(channel)) {
2296		channel->flags |= IEEE80211_CHAN_NO_HT40;
2297		return;
2298	}
2299
2300	/*
2301	 * We need to ensure the extension channels exist to
2302	 * be able to use HT40- or HT40+, this finds them (or not)
2303	 */
2304	for (i = 0; i < sband->n_channels; i++) {
2305		struct ieee80211_channel *c = &sband->channels[i];
2306
2307		if (c->center_freq == (channel->center_freq - 20))
2308			channel_before = c;
2309		if (c->center_freq == (channel->center_freq + 20))
2310			channel_after = c;
2311	}
2312
2313	flags = 0;
2314	regd = get_wiphy_regdom(wiphy);
2315	if (regd) {
2316		const struct ieee80211_reg_rule *reg_rule =
2317			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2318					   regd, MHZ_TO_KHZ(20));
2319
2320		if (!IS_ERR(reg_rule))
2321			flags = reg_rule->flags;
2322	}
2323
2324	/*
2325	 * Please note that this assumes target bandwidth is 20 MHz,
2326	 * if that ever changes we also need to change the below logic
2327	 * to include that as well.
2328	 */
2329	if (!is_ht40_allowed(channel_before) ||
2330	    flags & NL80211_RRF_NO_HT40MINUS)
2331		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2332	else
2333		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2334
2335	if (!is_ht40_allowed(channel_after) ||
2336	    flags & NL80211_RRF_NO_HT40PLUS)
2337		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2338	else
2339		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2340}
2341
2342static void reg_process_ht_flags_band(struct wiphy *wiphy,
2343				      struct ieee80211_supported_band *sband)
2344{
2345	unsigned int i;
2346
2347	if (!sband)
2348		return;
2349
2350	for (i = 0; i < sband->n_channels; i++)
2351		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2352}
2353
2354static void reg_process_ht_flags(struct wiphy *wiphy)
2355{
2356	enum nl80211_band band;
2357
2358	if (!wiphy)
2359		return;
2360
2361	for (band = 0; band < NUM_NL80211_BANDS; band++)
2362		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2363}
2364
 
 
 
 
 
 
 
2365static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2366{
2367	struct cfg80211_chan_def chandef = {};
2368	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2369	enum nl80211_iftype iftype;
2370	bool ret;
2371	int link;
2372
 
2373	iftype = wdev->iftype;
2374
2375	/* make sure the interface is active */
2376	if (!wdev->netdev || !netif_running(wdev->netdev))
2377		return true;
2378
2379	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2380		struct ieee80211_channel *chan;
2381
2382		if (!wdev->valid_links && link > 0)
2383			break;
2384		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2385			continue;
2386		switch (iftype) {
2387		case NL80211_IFTYPE_AP:
2388		case NL80211_IFTYPE_P2P_GO:
2389			if (!wdev->links[link].ap.beacon_interval)
2390				continue;
2391			chandef = wdev->links[link].ap.chandef;
2392			break;
2393		case NL80211_IFTYPE_MESH_POINT:
2394			if (!wdev->u.mesh.beacon_interval)
2395				continue;
2396			chandef = wdev->u.mesh.chandef;
2397			break;
2398		case NL80211_IFTYPE_ADHOC:
2399			if (!wdev->u.ibss.ssid_len)
2400				continue;
2401			chandef = wdev->u.ibss.chandef;
2402			break;
2403		case NL80211_IFTYPE_STATION:
2404		case NL80211_IFTYPE_P2P_CLIENT:
2405			/* Maybe we could consider disabling that link only? */
2406			if (!wdev->links[link].client.current_bss)
2407				continue;
2408
2409			chan = wdev->links[link].client.current_bss->pub.channel;
2410			if (!chan)
2411				continue;
 
 
 
 
2412
2413			if (!rdev->ops->get_channel ||
2414			    rdev_get_channel(rdev, wdev, link, &chandef))
2415				cfg80211_chandef_create(&chandef, chan,
2416							NL80211_CHAN_NO_HT);
2417			break;
2418		case NL80211_IFTYPE_MONITOR:
2419		case NL80211_IFTYPE_AP_VLAN:
2420		case NL80211_IFTYPE_P2P_DEVICE:
2421			/* no enforcement required */
2422			break;
2423		case NL80211_IFTYPE_OCB:
2424			if (!wdev->u.ocb.chandef.chan)
2425				continue;
2426			chandef = wdev->u.ocb.chandef;
2427			break;
2428		case NL80211_IFTYPE_NAN:
2429			/* we have no info, but NAN is also pretty universal */
2430			continue;
2431		default:
2432			/* others not implemented for now */
2433			WARN_ON_ONCE(1);
2434			break;
2435		}
2436
2437		switch (iftype) {
2438		case NL80211_IFTYPE_AP:
2439		case NL80211_IFTYPE_P2P_GO:
2440		case NL80211_IFTYPE_ADHOC:
2441		case NL80211_IFTYPE_MESH_POINT:
2442			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2443							    iftype);
2444			if (!ret)
2445				return ret;
2446			break;
2447		case NL80211_IFTYPE_STATION:
2448		case NL80211_IFTYPE_P2P_CLIENT:
2449			ret = cfg80211_chandef_usable(wiphy, &chandef,
2450						      IEEE80211_CHAN_DISABLED);
2451			if (!ret)
2452				return ret;
2453			break;
2454		default:
2455			break;
2456		}
2457	}
2458
2459	return true;
 
 
 
 
2460}
2461
2462static void reg_leave_invalid_chans(struct wiphy *wiphy)
2463{
2464	struct wireless_dev *wdev;
2465	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2466
2467	wiphy_lock(wiphy);
 
2468	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2469		if (!reg_wdev_chan_valid(wiphy, wdev))
2470			cfg80211_leave(rdev, wdev);
2471	wiphy_unlock(wiphy);
2472}
2473
2474static void reg_check_chans_work(struct work_struct *work)
2475{
2476	struct cfg80211_registered_device *rdev;
2477
2478	pr_debug("Verifying active interfaces after reg change\n");
2479	rtnl_lock();
2480
2481	for_each_rdev(rdev)
2482		reg_leave_invalid_chans(&rdev->wiphy);
 
 
2483
2484	rtnl_unlock();
2485}
2486
2487void reg_check_channels(void)
2488{
2489	/*
2490	 * Give usermode a chance to do something nicer (move to another
2491	 * channel, orderly disconnection), before forcing a disconnection.
2492	 */
2493	mod_delayed_work(system_power_efficient_wq,
2494			 &reg_check_chans,
2495			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2496}
2497
2498static void wiphy_update_regulatory(struct wiphy *wiphy,
2499				    enum nl80211_reg_initiator initiator)
2500{
2501	enum nl80211_band band;
2502	struct regulatory_request *lr = get_last_request();
2503
2504	if (ignore_reg_update(wiphy, initiator)) {
2505		/*
2506		 * Regulatory updates set by CORE are ignored for custom
2507		 * regulatory cards. Let us notify the changes to the driver,
2508		 * as some drivers used this to restore its orig_* reg domain.
2509		 */
2510		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2511		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2512		    !(wiphy->regulatory_flags &
2513		      REGULATORY_WIPHY_SELF_MANAGED))
2514			reg_call_notifier(wiphy, lr);
2515		return;
2516	}
2517
2518	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2519
2520	for (band = 0; band < NUM_NL80211_BANDS; band++)
2521		handle_band(wiphy, initiator, wiphy->bands[band]);
2522
2523	reg_process_beacons(wiphy);
2524	reg_process_ht_flags(wiphy);
2525	reg_call_notifier(wiphy, lr);
2526}
2527
2528static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2529{
2530	struct cfg80211_registered_device *rdev;
2531	struct wiphy *wiphy;
2532
2533	ASSERT_RTNL();
2534
2535	for_each_rdev(rdev) {
2536		wiphy = &rdev->wiphy;
2537		wiphy_update_regulatory(wiphy, initiator);
2538	}
2539
2540	reg_check_channels();
2541}
2542
2543static void handle_channel_custom(struct wiphy *wiphy,
2544				  struct ieee80211_channel *chan,
2545				  const struct ieee80211_regdomain *regd,
2546				  u32 min_bw)
2547{
2548	u32 bw_flags = 0;
2549	const struct ieee80211_reg_rule *reg_rule = NULL;
2550	const struct ieee80211_power_rule *power_rule = NULL;
2551	u32 bw, center_freq_khz;
2552
2553	center_freq_khz = ieee80211_channel_to_khz(chan);
2554	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2555		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2556		if (!IS_ERR(reg_rule))
2557			break;
2558	}
2559
2560	if (IS_ERR_OR_NULL(reg_rule)) {
2561		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2562			 chan->center_freq, chan->freq_offset);
2563		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2564			chan->flags |= IEEE80211_CHAN_DISABLED;
2565		} else {
2566			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2567			chan->flags = chan->orig_flags;
2568		}
2569		return;
2570	}
2571
2572	power_rule = &reg_rule->power_rule;
2573	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2574
2575	chan->dfs_state_entered = jiffies;
2576	chan->dfs_state = NL80211_DFS_USABLE;
2577
2578	chan->beacon_found = false;
2579
2580	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581		chan->flags = chan->orig_flags | bw_flags |
2582			      map_regdom_flags(reg_rule->flags);
2583	else
2584		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2585
2586	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2587	chan->max_reg_power = chan->max_power =
2588		(int) MBM_TO_DBM(power_rule->max_eirp);
2589
2590	if (chan->flags & IEEE80211_CHAN_RADAR) {
2591		if (reg_rule->dfs_cac_ms)
2592			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2593		else
2594			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2595	}
2596
2597	if (chan->flags & IEEE80211_CHAN_PSD)
2598		chan->psd = reg_rule->psd;
2599
2600	chan->max_power = chan->max_reg_power;
2601}
2602
2603static void handle_band_custom(struct wiphy *wiphy,
2604			       struct ieee80211_supported_band *sband,
2605			       const struct ieee80211_regdomain *regd)
2606{
2607	unsigned int i;
2608
2609	if (!sband)
2610		return;
2611
2612	/*
2613	 * We currently assume that you always want at least 20 MHz,
2614	 * otherwise channel 12 might get enabled if this rule is
2615	 * compatible to US, which permits 2402 - 2472 MHz.
2616	 */
2617	for (i = 0; i < sband->n_channels; i++)
2618		handle_channel_custom(wiphy, &sband->channels[i], regd,
2619				      MHZ_TO_KHZ(20));
2620}
2621
2622/* Used by drivers prior to wiphy registration */
2623void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2624				   const struct ieee80211_regdomain *regd)
2625{
2626	const struct ieee80211_regdomain *new_regd, *tmp;
2627	enum nl80211_band band;
2628	unsigned int bands_set = 0;
2629
2630	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2631	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2632	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2633
2634	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2635		if (!wiphy->bands[band])
2636			continue;
2637		handle_band_custom(wiphy, wiphy->bands[band], regd);
2638		bands_set++;
2639	}
2640
2641	/*
2642	 * no point in calling this if it won't have any effect
2643	 * on your device's supported bands.
2644	 */
2645	WARN_ON(!bands_set);
2646	new_regd = reg_copy_regd(regd);
2647	if (IS_ERR(new_regd))
2648		return;
2649
2650	rtnl_lock();
2651	wiphy_lock(wiphy);
2652
2653	tmp = get_wiphy_regdom(wiphy);
2654	rcu_assign_pointer(wiphy->regd, new_regd);
2655	rcu_free_regdom(tmp);
2656
2657	wiphy_unlock(wiphy);
2658	rtnl_unlock();
2659}
2660EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661
2662static void reg_set_request_processed(void)
2663{
2664	bool need_more_processing = false;
2665	struct regulatory_request *lr = get_last_request();
2666
2667	lr->processed = true;
2668
2669	spin_lock(&reg_requests_lock);
2670	if (!list_empty(&reg_requests_list))
2671		need_more_processing = true;
2672	spin_unlock(&reg_requests_lock);
2673
2674	cancel_crda_timeout();
2675
2676	if (need_more_processing)
2677		schedule_work(&reg_work);
2678}
2679
2680/**
2681 * reg_process_hint_core - process core regulatory requests
2682 * @core_request: a pending core regulatory request
2683 *
2684 * The wireless subsystem can use this function to process
2685 * a regulatory request issued by the regulatory core.
2686 *
2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688 *	hint was processed or ignored
2689 */
2690static enum reg_request_treatment
2691reg_process_hint_core(struct regulatory_request *core_request)
2692{
2693	if (reg_query_database(core_request)) {
2694		core_request->intersect = false;
2695		core_request->processed = false;
2696		reg_update_last_request(core_request);
2697		return REG_REQ_OK;
2698	}
2699
2700	return REG_REQ_IGNORE;
2701}
2702
2703static enum reg_request_treatment
2704__reg_process_hint_user(struct regulatory_request *user_request)
2705{
2706	struct regulatory_request *lr = get_last_request();
2707
2708	if (reg_request_cell_base(user_request))
2709		return reg_ignore_cell_hint(user_request);
2710
2711	if (reg_request_cell_base(lr))
2712		return REG_REQ_IGNORE;
2713
2714	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715		return REG_REQ_INTERSECT;
2716	/*
2717	 * If the user knows better the user should set the regdom
2718	 * to their country before the IE is picked up
2719	 */
2720	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721	    lr->intersect)
2722		return REG_REQ_IGNORE;
2723	/*
2724	 * Process user requests only after previous user/driver/core
2725	 * requests have been processed
2726	 */
2727	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730	    regdom_changes(lr->alpha2))
2731		return REG_REQ_IGNORE;
2732
2733	if (!regdom_changes(user_request->alpha2))
2734		return REG_REQ_ALREADY_SET;
2735
2736	return REG_REQ_OK;
2737}
2738
2739/**
2740 * reg_process_hint_user - process user regulatory requests
2741 * @user_request: a pending user regulatory request
2742 *
2743 * The wireless subsystem can use this function to process
2744 * a regulatory request initiated by userspace.
2745 *
2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747 *	hint was processed or ignored
2748 */
2749static enum reg_request_treatment
2750reg_process_hint_user(struct regulatory_request *user_request)
2751{
2752	enum reg_request_treatment treatment;
2753
2754	treatment = __reg_process_hint_user(user_request);
2755	if (treatment == REG_REQ_IGNORE ||
2756	    treatment == REG_REQ_ALREADY_SET)
2757		return REG_REQ_IGNORE;
2758
2759	user_request->intersect = treatment == REG_REQ_INTERSECT;
2760	user_request->processed = false;
2761
2762	if (reg_query_database(user_request)) {
2763		reg_update_last_request(user_request);
2764		user_alpha2[0] = user_request->alpha2[0];
2765		user_alpha2[1] = user_request->alpha2[1];
2766		return REG_REQ_OK;
2767	}
2768
2769	return REG_REQ_IGNORE;
2770}
2771
2772static enum reg_request_treatment
2773__reg_process_hint_driver(struct regulatory_request *driver_request)
2774{
2775	struct regulatory_request *lr = get_last_request();
2776
2777	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778		if (regdom_changes(driver_request->alpha2))
2779			return REG_REQ_OK;
2780		return REG_REQ_ALREADY_SET;
2781	}
2782
2783	/*
2784	 * This would happen if you unplug and plug your card
2785	 * back in or if you add a new device for which the previously
2786	 * loaded card also agrees on the regulatory domain.
2787	 */
2788	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789	    !regdom_changes(driver_request->alpha2))
2790		return REG_REQ_ALREADY_SET;
2791
2792	return REG_REQ_INTERSECT;
2793}
2794
2795/**
2796 * reg_process_hint_driver - process driver regulatory requests
2797 * @wiphy: the wireless device for the regulatory request
2798 * @driver_request: a pending driver regulatory request
2799 *
2800 * The wireless subsystem can use this function to process
2801 * a regulatory request issued by an 802.11 driver.
2802 *
2803 * Returns: one of the different reg request treatment values.
2804 */
2805static enum reg_request_treatment
2806reg_process_hint_driver(struct wiphy *wiphy,
2807			struct regulatory_request *driver_request)
2808{
2809	const struct ieee80211_regdomain *regd, *tmp;
2810	enum reg_request_treatment treatment;
2811
2812	treatment = __reg_process_hint_driver(driver_request);
2813
2814	switch (treatment) {
2815	case REG_REQ_OK:
2816		break;
2817	case REG_REQ_IGNORE:
2818		return REG_REQ_IGNORE;
2819	case REG_REQ_INTERSECT:
2820	case REG_REQ_ALREADY_SET:
2821		regd = reg_copy_regd(get_cfg80211_regdom());
2822		if (IS_ERR(regd))
2823			return REG_REQ_IGNORE;
2824
2825		tmp = get_wiphy_regdom(wiphy);
2826		ASSERT_RTNL();
2827		wiphy_lock(wiphy);
2828		rcu_assign_pointer(wiphy->regd, regd);
2829		wiphy_unlock(wiphy);
2830		rcu_free_regdom(tmp);
2831	}
2832
2833
2834	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835	driver_request->processed = false;
2836
2837	/*
2838	 * Since CRDA will not be called in this case as we already
2839	 * have applied the requested regulatory domain before we just
2840	 * inform userspace we have processed the request
2841	 */
2842	if (treatment == REG_REQ_ALREADY_SET) {
2843		nl80211_send_reg_change_event(driver_request);
2844		reg_update_last_request(driver_request);
2845		reg_set_request_processed();
2846		return REG_REQ_ALREADY_SET;
2847	}
2848
2849	if (reg_query_database(driver_request)) {
2850		reg_update_last_request(driver_request);
2851		return REG_REQ_OK;
2852	}
2853
2854	return REG_REQ_IGNORE;
2855}
2856
2857static enum reg_request_treatment
2858__reg_process_hint_country_ie(struct wiphy *wiphy,
2859			      struct regulatory_request *country_ie_request)
2860{
2861	struct wiphy *last_wiphy = NULL;
2862	struct regulatory_request *lr = get_last_request();
2863
2864	if (reg_request_cell_base(lr)) {
2865		/* Trust a Cell base station over the AP's country IE */
2866		if (regdom_changes(country_ie_request->alpha2))
2867			return REG_REQ_IGNORE;
2868		return REG_REQ_ALREADY_SET;
2869	} else {
2870		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871			return REG_REQ_IGNORE;
2872	}
2873
2874	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875		return -EINVAL;
2876
2877	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878		return REG_REQ_OK;
2879
2880	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881
2882	if (last_wiphy != wiphy) {
2883		/*
2884		 * Two cards with two APs claiming different
2885		 * Country IE alpha2s. We could
2886		 * intersect them, but that seems unlikely
2887		 * to be correct. Reject second one for now.
2888		 */
2889		if (regdom_changes(country_ie_request->alpha2))
2890			return REG_REQ_IGNORE;
2891		return REG_REQ_ALREADY_SET;
2892	}
2893
2894	if (regdom_changes(country_ie_request->alpha2))
2895		return REG_REQ_OK;
2896	return REG_REQ_ALREADY_SET;
2897}
2898
2899/**
2900 * reg_process_hint_country_ie - process regulatory requests from country IEs
2901 * @wiphy: the wireless device for the regulatory request
2902 * @country_ie_request: a regulatory request from a country IE
2903 *
2904 * The wireless subsystem can use this function to process
2905 * a regulatory request issued by a country Information Element.
2906 *
2907 * Returns: one of the different reg request treatment values.
2908 */
2909static enum reg_request_treatment
2910reg_process_hint_country_ie(struct wiphy *wiphy,
2911			    struct regulatory_request *country_ie_request)
2912{
2913	enum reg_request_treatment treatment;
2914
2915	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916
2917	switch (treatment) {
2918	case REG_REQ_OK:
2919		break;
2920	case REG_REQ_IGNORE:
2921		return REG_REQ_IGNORE;
2922	case REG_REQ_ALREADY_SET:
2923		reg_free_request(country_ie_request);
2924		return REG_REQ_ALREADY_SET;
2925	case REG_REQ_INTERSECT:
2926		/*
2927		 * This doesn't happen yet, not sure we
2928		 * ever want to support it for this case.
2929		 */
2930		WARN_ONCE(1, "Unexpected intersection for country elements");
2931		return REG_REQ_IGNORE;
2932	}
2933
2934	country_ie_request->intersect = false;
2935	country_ie_request->processed = false;
2936
2937	if (reg_query_database(country_ie_request)) {
2938		reg_update_last_request(country_ie_request);
2939		return REG_REQ_OK;
2940	}
2941
2942	return REG_REQ_IGNORE;
2943}
2944
2945bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946{
2947	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950	bool dfs_domain_same;
2951
2952	rcu_read_lock();
2953
2954	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955	wiphy1_regd = rcu_dereference(wiphy1->regd);
2956	if (!wiphy1_regd)
2957		wiphy1_regd = cfg80211_regd;
2958
2959	wiphy2_regd = rcu_dereference(wiphy2->regd);
2960	if (!wiphy2_regd)
2961		wiphy2_regd = cfg80211_regd;
2962
2963	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964
2965	rcu_read_unlock();
2966
2967	return dfs_domain_same;
2968}
2969
2970static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971				    struct ieee80211_channel *src_chan)
2972{
2973	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975		return;
2976
2977	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2979		return;
2980
2981	if (src_chan->center_freq == dst_chan->center_freq &&
2982	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983		dst_chan->dfs_state = src_chan->dfs_state;
2984		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985	}
2986}
2987
2988static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989				       struct wiphy *src_wiphy)
2990{
2991	struct ieee80211_supported_band *src_sband, *dst_sband;
2992	struct ieee80211_channel *src_chan, *dst_chan;
2993	int i, j, band;
2994
2995	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996		return;
2997
2998	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999		dst_sband = dst_wiphy->bands[band];
3000		src_sband = src_wiphy->bands[band];
3001		if (!dst_sband || !src_sband)
3002			continue;
3003
3004		for (i = 0; i < dst_sband->n_channels; i++) {
3005			dst_chan = &dst_sband->channels[i];
3006			for (j = 0; j < src_sband->n_channels; j++) {
3007				src_chan = &src_sband->channels[j];
3008				reg_copy_dfs_chan_state(dst_chan, src_chan);
3009			}
3010		}
3011	}
3012}
3013
3014static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015{
3016	struct cfg80211_registered_device *rdev;
3017
3018	ASSERT_RTNL();
3019
3020	for_each_rdev(rdev) {
3021		if (wiphy == &rdev->wiphy)
3022			continue;
3023		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024	}
3025}
3026
3027/* This processes *all* regulatory hints */
3028static void reg_process_hint(struct regulatory_request *reg_request)
3029{
3030	struct wiphy *wiphy = NULL;
3031	enum reg_request_treatment treatment;
3032	enum nl80211_reg_initiator initiator = reg_request->initiator;
3033
3034	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036
3037	switch (initiator) {
3038	case NL80211_REGDOM_SET_BY_CORE:
3039		treatment = reg_process_hint_core(reg_request);
3040		break;
3041	case NL80211_REGDOM_SET_BY_USER:
3042		treatment = reg_process_hint_user(reg_request);
3043		break;
3044	case NL80211_REGDOM_SET_BY_DRIVER:
3045		if (!wiphy)
3046			goto out_free;
3047		treatment = reg_process_hint_driver(wiphy, reg_request);
3048		break;
3049	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050		if (!wiphy)
3051			goto out_free;
3052		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053		break;
3054	default:
3055		WARN(1, "invalid initiator %d\n", initiator);
3056		goto out_free;
3057	}
3058
3059	if (treatment == REG_REQ_IGNORE)
3060		goto out_free;
3061
3062	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063	     "unexpected treatment value %d\n", treatment);
3064
3065	/* This is required so that the orig_* parameters are saved.
3066	 * NOTE: treatment must be set for any case that reaches here!
3067	 */
3068	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070		wiphy_update_regulatory(wiphy, initiator);
3071		wiphy_all_share_dfs_chan_state(wiphy);
3072		reg_check_channels();
3073	}
3074
3075	return;
3076
3077out_free:
3078	reg_free_request(reg_request);
3079}
3080
3081static void notify_self_managed_wiphys(struct regulatory_request *request)
3082{
3083	struct cfg80211_registered_device *rdev;
3084	struct wiphy *wiphy;
3085
3086	for_each_rdev(rdev) {
3087		wiphy = &rdev->wiphy;
3088		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3090			reg_call_notifier(wiphy, request);
3091	}
3092}
3093
3094/*
3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096 * Regulatory hints come on a first come first serve basis and we
3097 * must process each one atomically.
3098 */
3099static void reg_process_pending_hints(void)
3100{
3101	struct regulatory_request *reg_request, *lr;
3102
3103	lr = get_last_request();
3104
3105	/* When last_request->processed becomes true this will be rescheduled */
3106	if (lr && !lr->processed) {
3107		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108		return;
3109	}
3110
3111	spin_lock(&reg_requests_lock);
3112
3113	if (list_empty(&reg_requests_list)) {
3114		spin_unlock(&reg_requests_lock);
3115		return;
3116	}
3117
3118	reg_request = list_first_entry(&reg_requests_list,
3119				       struct regulatory_request,
3120				       list);
3121	list_del_init(&reg_request->list);
3122
3123	spin_unlock(&reg_requests_lock);
3124
3125	notify_self_managed_wiphys(reg_request);
3126
3127	reg_process_hint(reg_request);
3128
3129	lr = get_last_request();
3130
3131	spin_lock(&reg_requests_lock);
3132	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3133		schedule_work(&reg_work);
3134	spin_unlock(&reg_requests_lock);
3135}
3136
3137/* Processes beacon hints -- this has nothing to do with country IEs */
3138static void reg_process_pending_beacon_hints(void)
3139{
3140	struct cfg80211_registered_device *rdev;
3141	struct reg_beacon *pending_beacon, *tmp;
3142
3143	/* This goes through the _pending_ beacon list */
3144	spin_lock_bh(&reg_pending_beacons_lock);
3145
3146	list_for_each_entry_safe(pending_beacon, tmp,
3147				 &reg_pending_beacons, list) {
3148		list_del_init(&pending_beacon->list);
3149
3150		/* Applies the beacon hint to current wiphys */
3151		for_each_rdev(rdev)
3152			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153
3154		/* Remembers the beacon hint for new wiphys or reg changes */
3155		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3156	}
3157
3158	spin_unlock_bh(&reg_pending_beacons_lock);
3159}
3160
3161static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162{
3163	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3164	const struct ieee80211_regdomain *tmp;
3165	const struct ieee80211_regdomain *regd;
3166	enum nl80211_band band;
3167	struct regulatory_request request = {};
3168
3169	ASSERT_RTNL();
3170	lockdep_assert_wiphy(wiphy);
3171
3172	spin_lock(&reg_requests_lock);
3173	regd = rdev->requested_regd;
3174	rdev->requested_regd = NULL;
3175	spin_unlock(&reg_requests_lock);
3176
3177	if (!regd)
3178		return;
3179
3180	tmp = get_wiphy_regdom(wiphy);
3181	rcu_assign_pointer(wiphy->regd, regd);
3182	rcu_free_regdom(tmp);
3183
3184	for (band = 0; band < NUM_NL80211_BANDS; band++)
3185		handle_band_custom(wiphy, wiphy->bands[band], regd);
3186
3187	reg_process_ht_flags(wiphy);
3188
3189	request.wiphy_idx = get_wiphy_idx(wiphy);
3190	request.alpha2[0] = regd->alpha2[0];
3191	request.alpha2[1] = regd->alpha2[1];
3192	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193
3194	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195		reg_call_notifier(wiphy, &request);
3196
3197	nl80211_send_wiphy_reg_change_event(&request);
3198}
3199
3200static void reg_process_self_managed_hints(void)
3201{
3202	struct cfg80211_registered_device *rdev;
3203
3204	ASSERT_RTNL();
3205
3206	for_each_rdev(rdev) {
3207		wiphy_lock(&rdev->wiphy);
3208		reg_process_self_managed_hint(&rdev->wiphy);
3209		wiphy_unlock(&rdev->wiphy);
3210	}
3211
3212	reg_check_channels();
3213}
3214
3215static void reg_todo(struct work_struct *work)
3216{
3217	rtnl_lock();
3218	reg_process_pending_hints();
3219	reg_process_pending_beacon_hints();
3220	reg_process_self_managed_hints();
3221	rtnl_unlock();
3222}
3223
3224static void queue_regulatory_request(struct regulatory_request *request)
3225{
3226	request->alpha2[0] = toupper(request->alpha2[0]);
3227	request->alpha2[1] = toupper(request->alpha2[1]);
3228
3229	spin_lock(&reg_requests_lock);
3230	list_add_tail(&request->list, &reg_requests_list);
3231	spin_unlock(&reg_requests_lock);
3232
3233	schedule_work(&reg_work);
3234}
3235
3236/*
3237 * Core regulatory hint -- happens during cfg80211_init()
3238 * and when we restore regulatory settings.
3239 */
3240static int regulatory_hint_core(const char *alpha2)
3241{
3242	struct regulatory_request *request;
3243
3244	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245	if (!request)
3246		return -ENOMEM;
3247
3248	request->alpha2[0] = alpha2[0];
3249	request->alpha2[1] = alpha2[1];
3250	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251	request->wiphy_idx = WIPHY_IDX_INVALID;
3252
3253	queue_regulatory_request(request);
3254
3255	return 0;
3256}
3257
3258/* User hints */
3259int regulatory_hint_user(const char *alpha2,
3260			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3261{
3262	struct regulatory_request *request;
3263
3264	if (WARN_ON(!alpha2))
3265		return -EINVAL;
3266
3267	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268		return -EINVAL;
3269
3270	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271	if (!request)
3272		return -ENOMEM;
3273
3274	request->wiphy_idx = WIPHY_IDX_INVALID;
3275	request->alpha2[0] = alpha2[0];
3276	request->alpha2[1] = alpha2[1];
3277	request->initiator = NL80211_REGDOM_SET_BY_USER;
3278	request->user_reg_hint_type = user_reg_hint_type;
3279
3280	/* Allow calling CRDA again */
3281	reset_crda_timeouts();
3282
3283	queue_regulatory_request(request);
3284
3285	return 0;
3286}
3287
3288int regulatory_hint_indoor(bool is_indoor, u32 portid)
3289{
3290	spin_lock(&reg_indoor_lock);
3291
3292	/* It is possible that more than one user space process is trying to
3293	 * configure the indoor setting. To handle such cases, clear the indoor
3294	 * setting in case that some process does not think that the device
3295	 * is operating in an indoor environment. In addition, if a user space
3296	 * process indicates that it is controlling the indoor setting, save its
3297	 * portid, i.e., make it the owner.
3298	 */
3299	reg_is_indoor = is_indoor;
3300	if (reg_is_indoor) {
3301		if (!reg_is_indoor_portid)
3302			reg_is_indoor_portid = portid;
3303	} else {
3304		reg_is_indoor_portid = 0;
3305	}
3306
3307	spin_unlock(&reg_indoor_lock);
3308
3309	if (!is_indoor)
3310		reg_check_channels();
3311
3312	return 0;
3313}
3314
3315void regulatory_netlink_notify(u32 portid)
3316{
3317	spin_lock(&reg_indoor_lock);
3318
3319	if (reg_is_indoor_portid != portid) {
3320		spin_unlock(&reg_indoor_lock);
3321		return;
3322	}
3323
3324	reg_is_indoor = false;
3325	reg_is_indoor_portid = 0;
3326
3327	spin_unlock(&reg_indoor_lock);
3328
3329	reg_check_channels();
3330}
3331
3332/* Driver hints */
3333int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334{
3335	struct regulatory_request *request;
3336
3337	if (WARN_ON(!alpha2 || !wiphy))
3338		return -EINVAL;
3339
3340	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341
3342	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343	if (!request)
3344		return -ENOMEM;
3345
3346	request->wiphy_idx = get_wiphy_idx(wiphy);
3347
3348	request->alpha2[0] = alpha2[0];
3349	request->alpha2[1] = alpha2[1];
3350	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351
3352	/* Allow calling CRDA again */
3353	reset_crda_timeouts();
3354
3355	queue_regulatory_request(request);
3356
3357	return 0;
3358}
3359EXPORT_SYMBOL(regulatory_hint);
3360
3361void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362				const u8 *country_ie, u8 country_ie_len)
3363{
3364	char alpha2[2];
3365	enum environment_cap env = ENVIRON_ANY;
3366	struct regulatory_request *request = NULL, *lr;
3367
3368	/* IE len must be evenly divisible by 2 */
3369	if (country_ie_len & 0x01)
3370		return;
3371
3372	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373		return;
3374
3375	request = kzalloc(sizeof(*request), GFP_KERNEL);
3376	if (!request)
3377		return;
3378
3379	alpha2[0] = country_ie[0];
3380	alpha2[1] = country_ie[1];
3381
3382	if (country_ie[2] == 'I')
3383		env = ENVIRON_INDOOR;
3384	else if (country_ie[2] == 'O')
3385		env = ENVIRON_OUTDOOR;
3386
3387	rcu_read_lock();
3388	lr = get_last_request();
3389
3390	if (unlikely(!lr))
3391		goto out;
3392
3393	/*
3394	 * We will run this only upon a successful connection on cfg80211.
3395	 * We leave conflict resolution to the workqueue, where can hold
3396	 * the RTNL.
3397	 */
3398	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3400		goto out;
3401
3402	request->wiphy_idx = get_wiphy_idx(wiphy);
3403	request->alpha2[0] = alpha2[0];
3404	request->alpha2[1] = alpha2[1];
3405	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406	request->country_ie_env = env;
3407
3408	/* Allow calling CRDA again */
3409	reset_crda_timeouts();
3410
3411	queue_regulatory_request(request);
3412	request = NULL;
3413out:
3414	kfree(request);
3415	rcu_read_unlock();
3416}
3417
3418static void restore_alpha2(char *alpha2, bool reset_user)
3419{
3420	/* indicates there is no alpha2 to consider for restoration */
3421	alpha2[0] = '9';
3422	alpha2[1] = '7';
3423
3424	/* The user setting has precedence over the module parameter */
3425	if (is_user_regdom_saved()) {
3426		/* Unless we're asked to ignore it and reset it */
3427		if (reset_user) {
3428			pr_debug("Restoring regulatory settings including user preference\n");
3429			user_alpha2[0] = '9';
3430			user_alpha2[1] = '7';
3431
3432			/*
3433			 * If we're ignoring user settings, we still need to
3434			 * check the module parameter to ensure we put things
3435			 * back as they were for a full restore.
3436			 */
3437			if (!is_world_regdom(ieee80211_regdom)) {
3438				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439					 ieee80211_regdom[0], ieee80211_regdom[1]);
3440				alpha2[0] = ieee80211_regdom[0];
3441				alpha2[1] = ieee80211_regdom[1];
3442			}
3443		} else {
3444			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445				 user_alpha2[0], user_alpha2[1]);
3446			alpha2[0] = user_alpha2[0];
3447			alpha2[1] = user_alpha2[1];
3448		}
3449	} else if (!is_world_regdom(ieee80211_regdom)) {
3450		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451			 ieee80211_regdom[0], ieee80211_regdom[1]);
3452		alpha2[0] = ieee80211_regdom[0];
3453		alpha2[1] = ieee80211_regdom[1];
3454	} else
3455		pr_debug("Restoring regulatory settings\n");
3456}
3457
3458static void restore_custom_reg_settings(struct wiphy *wiphy)
3459{
3460	struct ieee80211_supported_band *sband;
3461	enum nl80211_band band;
3462	struct ieee80211_channel *chan;
3463	int i;
3464
3465	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466		sband = wiphy->bands[band];
3467		if (!sband)
3468			continue;
3469		for (i = 0; i < sband->n_channels; i++) {
3470			chan = &sband->channels[i];
3471			chan->flags = chan->orig_flags;
3472			chan->max_antenna_gain = chan->orig_mag;
3473			chan->max_power = chan->orig_mpwr;
3474			chan->beacon_found = false;
3475		}
3476	}
3477}
3478
3479/*
3480 * Restoring regulatory settings involves ignoring any
3481 * possibly stale country IE information and user regulatory
3482 * settings if so desired, this includes any beacon hints
3483 * learned as we could have traveled outside to another country
3484 * after disconnection. To restore regulatory settings we do
3485 * exactly what we did at bootup:
3486 *
3487 *   - send a core regulatory hint
3488 *   - send a user regulatory hint if applicable
3489 *
3490 * Device drivers that send a regulatory hint for a specific country
3491 * keep their own regulatory domain on wiphy->regd so that does
3492 * not need to be remembered.
3493 */
3494static void restore_regulatory_settings(bool reset_user, bool cached)
3495{
3496	char alpha2[2];
3497	char world_alpha2[2];
3498	struct reg_beacon *reg_beacon, *btmp;
3499	LIST_HEAD(tmp_reg_req_list);
3500	struct cfg80211_registered_device *rdev;
3501
3502	ASSERT_RTNL();
3503
3504	/*
3505	 * Clear the indoor setting in case that it is not controlled by user
3506	 * space, as otherwise there is no guarantee that the device is still
3507	 * operating in an indoor environment.
3508	 */
3509	spin_lock(&reg_indoor_lock);
3510	if (reg_is_indoor && !reg_is_indoor_portid) {
3511		reg_is_indoor = false;
3512		reg_check_channels();
3513	}
3514	spin_unlock(&reg_indoor_lock);
3515
3516	reset_regdomains(true, &world_regdom);
3517	restore_alpha2(alpha2, reset_user);
3518
3519	/*
3520	 * If there's any pending requests we simply
3521	 * stash them to a temporary pending queue and
3522	 * add then after we've restored regulatory
3523	 * settings.
3524	 */
3525	spin_lock(&reg_requests_lock);
3526	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3527	spin_unlock(&reg_requests_lock);
3528
3529	/* Clear beacon hints */
3530	spin_lock_bh(&reg_pending_beacons_lock);
3531	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3532		list_del(&reg_beacon->list);
3533		kfree(reg_beacon);
3534	}
3535	spin_unlock_bh(&reg_pending_beacons_lock);
3536
3537	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3538		list_del(&reg_beacon->list);
3539		kfree(reg_beacon);
3540	}
3541
3542	/* First restore to the basic regulatory settings */
3543	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545
3546	for_each_rdev(rdev) {
3547		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548			continue;
3549		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550			restore_custom_reg_settings(&rdev->wiphy);
3551	}
3552
3553	if (cached && (!is_an_alpha2(alpha2) ||
3554		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555		reset_regdomains(false, cfg80211_world_regdom);
3556		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557		print_regdomain(get_cfg80211_regdom());
3558		nl80211_send_reg_change_event(&core_request_world);
3559		reg_set_request_processed();
3560
3561		if (is_an_alpha2(alpha2) &&
3562		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563			struct regulatory_request *ureq;
3564
3565			spin_lock(&reg_requests_lock);
3566			ureq = list_last_entry(&reg_requests_list,
3567					       struct regulatory_request,
3568					       list);
3569			list_del(&ureq->list);
3570			spin_unlock(&reg_requests_lock);
3571
3572			notify_self_managed_wiphys(ureq);
3573			reg_update_last_request(ureq);
3574			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575				   REGD_SOURCE_CACHED);
3576		}
3577	} else {
3578		regulatory_hint_core(world_alpha2);
3579
3580		/*
3581		 * This restores the ieee80211_regdom module parameter
3582		 * preference or the last user requested regulatory
3583		 * settings, user regulatory settings takes precedence.
3584		 */
3585		if (is_an_alpha2(alpha2))
3586			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587	}
3588
3589	spin_lock(&reg_requests_lock);
3590	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3591	spin_unlock(&reg_requests_lock);
3592
3593	pr_debug("Kicking the queue\n");
3594
3595	schedule_work(&reg_work);
3596}
3597
3598static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599{
3600	struct cfg80211_registered_device *rdev;
3601	struct wireless_dev *wdev;
3602
3603	for_each_rdev(rdev) {
3604		wiphy_lock(&rdev->wiphy);
3605		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
 
3606			if (!(wdev->wiphy->regulatory_flags & flag)) {
3607				wiphy_unlock(&rdev->wiphy);
3608				return false;
3609			}
 
3610		}
3611		wiphy_unlock(&rdev->wiphy);
3612	}
3613
3614	return true;
3615}
3616
3617void regulatory_hint_disconnect(void)
3618{
3619	/* Restore of regulatory settings is not required when wiphy(s)
3620	 * ignore IE from connected access point but clearance of beacon hints
3621	 * is required when wiphy(s) supports beacon hints.
3622	 */
3623	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3624		struct reg_beacon *reg_beacon, *btmp;
3625
3626		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3627			return;
3628
3629		spin_lock_bh(&reg_pending_beacons_lock);
3630		list_for_each_entry_safe(reg_beacon, btmp,
3631					 &reg_pending_beacons, list) {
3632			list_del(&reg_beacon->list);
3633			kfree(reg_beacon);
3634		}
3635		spin_unlock_bh(&reg_pending_beacons_lock);
3636
3637		list_for_each_entry_safe(reg_beacon, btmp,
3638					 &reg_beacon_list, list) {
3639			list_del(&reg_beacon->list);
3640			kfree(reg_beacon);
3641		}
3642
3643		return;
3644	}
3645
3646	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3647	restore_regulatory_settings(false, true);
3648}
3649
3650static bool freq_is_chan_12_13_14(u32 freq)
3651{
3652	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3653	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3654	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3655		return true;
3656	return false;
3657}
3658
3659static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3660{
3661	struct reg_beacon *pending_beacon;
3662
3663	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3664		if (ieee80211_channel_equal(beacon_chan,
3665					    &pending_beacon->chan))
3666			return true;
3667	return false;
3668}
3669
3670int regulatory_hint_found_beacon(struct wiphy *wiphy,
3671				 struct ieee80211_channel *beacon_chan,
3672				 gfp_t gfp)
3673{
3674	struct reg_beacon *reg_beacon;
3675	bool processing;
3676
3677	if (beacon_chan->beacon_found ||
3678	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3679	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3680	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3681		return 0;
3682
3683	spin_lock_bh(&reg_pending_beacons_lock);
3684	processing = pending_reg_beacon(beacon_chan);
3685	spin_unlock_bh(&reg_pending_beacons_lock);
3686
3687	if (processing)
3688		return 0;
3689
3690	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3691	if (!reg_beacon)
3692		return -ENOMEM;
3693
3694	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3695		 beacon_chan->center_freq, beacon_chan->freq_offset,
3696		 ieee80211_freq_khz_to_channel(
3697			 ieee80211_channel_to_khz(beacon_chan)),
3698		 wiphy_name(wiphy));
3699
3700	memcpy(&reg_beacon->chan, beacon_chan,
3701	       sizeof(struct ieee80211_channel));
3702
3703	/*
3704	 * Since we can be called from BH or and non-BH context
3705	 * we must use spin_lock_bh()
3706	 */
3707	spin_lock_bh(&reg_pending_beacons_lock);
3708	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3709	spin_unlock_bh(&reg_pending_beacons_lock);
3710
3711	schedule_work(&reg_work);
3712
3713	return 0;
3714}
3715
3716static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717{
3718	unsigned int i;
3719	const struct ieee80211_reg_rule *reg_rule = NULL;
3720	const struct ieee80211_freq_range *freq_range = NULL;
3721	const struct ieee80211_power_rule *power_rule = NULL;
3722	char bw[32], cac_time[32];
3723
3724	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725
3726	for (i = 0; i < rd->n_reg_rules; i++) {
3727		reg_rule = &rd->reg_rules[i];
3728		freq_range = &reg_rule->freq_range;
3729		power_rule = &reg_rule->power_rule;
3730
3731		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733				 freq_range->max_bandwidth_khz,
3734				 reg_get_max_bandwidth(rd, reg_rule));
3735		else
3736			snprintf(bw, sizeof(bw), "%d KHz",
3737				 freq_range->max_bandwidth_khz);
3738
3739		if (reg_rule->flags & NL80211_RRF_DFS)
3740			scnprintf(cac_time, sizeof(cac_time), "%u s",
3741				  reg_rule->dfs_cac_ms/1000);
3742		else
3743			scnprintf(cac_time, sizeof(cac_time), "N/A");
3744
3745
3746		/*
3747		 * There may not be documentation for max antenna gain
3748		 * in certain regions
3749		 */
3750		if (power_rule->max_antenna_gain)
3751			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752				freq_range->start_freq_khz,
3753				freq_range->end_freq_khz,
3754				bw,
3755				power_rule->max_antenna_gain,
3756				power_rule->max_eirp,
3757				cac_time);
3758		else
3759			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760				freq_range->start_freq_khz,
3761				freq_range->end_freq_khz,
3762				bw,
3763				power_rule->max_eirp,
3764				cac_time);
3765	}
3766}
3767
3768bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769{
3770	switch (dfs_region) {
3771	case NL80211_DFS_UNSET:
3772	case NL80211_DFS_FCC:
3773	case NL80211_DFS_ETSI:
3774	case NL80211_DFS_JP:
3775		return true;
3776	default:
3777		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3778		return false;
3779	}
3780}
3781
3782static void print_regdomain(const struct ieee80211_regdomain *rd)
3783{
3784	struct regulatory_request *lr = get_last_request();
3785
3786	if (is_intersected_alpha2(rd->alpha2)) {
3787		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788			struct cfg80211_registered_device *rdev;
3789			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790			if (rdev) {
3791				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792					rdev->country_ie_alpha2[0],
3793					rdev->country_ie_alpha2[1]);
3794			} else
3795				pr_debug("Current regulatory domain intersected:\n");
3796		} else
3797			pr_debug("Current regulatory domain intersected:\n");
3798	} else if (is_world_regdom(rd->alpha2)) {
3799		pr_debug("World regulatory domain updated:\n");
3800	} else {
3801		if (is_unknown_alpha2(rd->alpha2))
3802			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803		else {
3804			if (reg_request_cell_base(lr))
3805				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806					rd->alpha2[0], rd->alpha2[1]);
3807			else
3808				pr_debug("Regulatory domain changed to country: %c%c\n",
3809					rd->alpha2[0], rd->alpha2[1]);
3810		}
3811	}
3812
3813	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814	print_rd_rules(rd);
3815}
3816
3817static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818{
3819	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820	print_rd_rules(rd);
3821}
3822
3823static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824{
3825	if (!is_world_regdom(rd->alpha2))
3826		return -EINVAL;
3827	update_world_regdomain(rd);
3828	return 0;
3829}
3830
3831static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832			   struct regulatory_request *user_request)
3833{
3834	const struct ieee80211_regdomain *intersected_rd = NULL;
3835
3836	if (!regdom_changes(rd->alpha2))
3837		return -EALREADY;
3838
3839	if (!is_valid_rd(rd)) {
3840		pr_err("Invalid regulatory domain detected: %c%c\n",
3841		       rd->alpha2[0], rd->alpha2[1]);
3842		print_regdomain_info(rd);
3843		return -EINVAL;
3844	}
3845
3846	if (!user_request->intersect) {
3847		reset_regdomains(false, rd);
3848		return 0;
3849	}
3850
3851	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852	if (!intersected_rd)
3853		return -EINVAL;
3854
3855	kfree(rd);
3856	rd = NULL;
3857	reset_regdomains(false, intersected_rd);
3858
3859	return 0;
3860}
3861
3862static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863			     struct regulatory_request *driver_request)
3864{
3865	const struct ieee80211_regdomain *regd;
3866	const struct ieee80211_regdomain *intersected_rd = NULL;
3867	const struct ieee80211_regdomain *tmp = NULL;
3868	struct wiphy *request_wiphy;
3869
3870	if (is_world_regdom(rd->alpha2))
3871		return -EINVAL;
3872
3873	if (!regdom_changes(rd->alpha2))
3874		return -EALREADY;
3875
3876	if (!is_valid_rd(rd)) {
3877		pr_err("Invalid regulatory domain detected: %c%c\n",
3878		       rd->alpha2[0], rd->alpha2[1]);
3879		print_regdomain_info(rd);
3880		return -EINVAL;
3881	}
3882
3883	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884	if (!request_wiphy)
3885		return -ENODEV;
3886
3887	if (!driver_request->intersect) {
3888		ASSERT_RTNL();
3889		wiphy_lock(request_wiphy);
3890		if (request_wiphy->regd)
3891			tmp = get_wiphy_regdom(request_wiphy);
 
 
3892
3893		regd = reg_copy_regd(rd);
3894		if (IS_ERR(regd)) {
3895			wiphy_unlock(request_wiphy);
3896			return PTR_ERR(regd);
3897		}
3898
3899		rcu_assign_pointer(request_wiphy->regd, regd);
3900		rcu_free_regdom(tmp);
3901		wiphy_unlock(request_wiphy);
3902		reset_regdomains(false, rd);
3903		return 0;
3904	}
3905
3906	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907	if (!intersected_rd)
3908		return -EINVAL;
3909
3910	/*
3911	 * We can trash what CRDA provided now.
3912	 * However if a driver requested this specific regulatory
3913	 * domain we keep it for its private use
3914	 */
3915	tmp = get_wiphy_regdom(request_wiphy);
3916	rcu_assign_pointer(request_wiphy->regd, rd);
3917	rcu_free_regdom(tmp);
3918
3919	rd = NULL;
3920
3921	reset_regdomains(false, intersected_rd);
3922
3923	return 0;
3924}
3925
3926static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927				 struct regulatory_request *country_ie_request)
3928{
3929	struct wiphy *request_wiphy;
3930
3931	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932	    !is_unknown_alpha2(rd->alpha2))
3933		return -EINVAL;
3934
3935	/*
3936	 * Lets only bother proceeding on the same alpha2 if the current
3937	 * rd is non static (it means CRDA was present and was used last)
3938	 * and the pending request came in from a country IE
3939	 */
3940
3941	if (!is_valid_rd(rd)) {
3942		pr_err("Invalid regulatory domain detected: %c%c\n",
3943		       rd->alpha2[0], rd->alpha2[1]);
3944		print_regdomain_info(rd);
3945		return -EINVAL;
3946	}
3947
3948	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949	if (!request_wiphy)
3950		return -ENODEV;
3951
3952	if (country_ie_request->intersect)
3953		return -EINVAL;
3954
3955	reset_regdomains(false, rd);
3956	return 0;
3957}
3958
3959/*
3960 * Use this call to set the current regulatory domain. Conflicts with
3961 * multiple drivers can be ironed out later. Caller must've already
3962 * kmalloc'd the rd structure.
3963 */
3964int set_regdom(const struct ieee80211_regdomain *rd,
3965	       enum ieee80211_regd_source regd_src)
3966{
3967	struct regulatory_request *lr;
3968	bool user_reset = false;
3969	int r;
3970
3971	if (IS_ERR_OR_NULL(rd))
3972		return -ENODATA;
3973
3974	if (!reg_is_valid_request(rd->alpha2)) {
3975		kfree(rd);
3976		return -EINVAL;
3977	}
3978
3979	if (regd_src == REGD_SOURCE_CRDA)
3980		reset_crda_timeouts();
3981
3982	lr = get_last_request();
3983
3984	/* Note that this doesn't update the wiphys, this is done below */
3985	switch (lr->initiator) {
3986	case NL80211_REGDOM_SET_BY_CORE:
3987		r = reg_set_rd_core(rd);
3988		break;
3989	case NL80211_REGDOM_SET_BY_USER:
3990		cfg80211_save_user_regdom(rd);
3991		r = reg_set_rd_user(rd, lr);
3992		user_reset = true;
3993		break;
3994	case NL80211_REGDOM_SET_BY_DRIVER:
3995		r = reg_set_rd_driver(rd, lr);
3996		break;
3997	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998		r = reg_set_rd_country_ie(rd, lr);
3999		break;
4000	default:
4001		WARN(1, "invalid initiator %d\n", lr->initiator);
4002		kfree(rd);
4003		return -EINVAL;
4004	}
4005
4006	if (r) {
4007		switch (r) {
4008		case -EALREADY:
4009			reg_set_request_processed();
4010			break;
4011		default:
4012			/* Back to world regulatory in case of errors */
4013			restore_regulatory_settings(user_reset, false);
4014		}
4015
4016		kfree(rd);
4017		return r;
4018	}
4019
4020	/* This would make this whole thing pointless */
4021	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022		return -EINVAL;
4023
4024	/* update all wiphys now with the new established regulatory domain */
4025	update_all_wiphy_regulatory(lr->initiator);
4026
4027	print_regdomain(get_cfg80211_regdom());
4028
4029	nl80211_send_reg_change_event(lr);
4030
4031	reg_set_request_processed();
4032
4033	return 0;
4034}
4035
4036static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037				       struct ieee80211_regdomain *rd)
4038{
4039	const struct ieee80211_regdomain *regd;
4040	const struct ieee80211_regdomain *prev_regd;
4041	struct cfg80211_registered_device *rdev;
4042
4043	if (WARN_ON(!wiphy || !rd))
4044		return -EINVAL;
4045
4046	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048		return -EPERM;
4049
4050	if (WARN(!is_valid_rd(rd),
4051		 "Invalid regulatory domain detected: %c%c\n",
4052		 rd->alpha2[0], rd->alpha2[1])) {
4053		print_regdomain_info(rd);
4054		return -EINVAL;
4055	}
4056
4057	regd = reg_copy_regd(rd);
4058	if (IS_ERR(regd))
4059		return PTR_ERR(regd);
4060
4061	rdev = wiphy_to_rdev(wiphy);
4062
4063	spin_lock(&reg_requests_lock);
4064	prev_regd = rdev->requested_regd;
4065	rdev->requested_regd = regd;
4066	spin_unlock(&reg_requests_lock);
4067
4068	kfree(prev_regd);
4069	return 0;
4070}
4071
4072int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073			      struct ieee80211_regdomain *rd)
4074{
4075	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076
4077	if (ret)
4078		return ret;
4079
4080	schedule_work(&reg_work);
4081	return 0;
4082}
4083EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084
4085int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086				   struct ieee80211_regdomain *rd)
4087{
4088	int ret;
4089
4090	ASSERT_RTNL();
4091
4092	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093	if (ret)
4094		return ret;
4095
4096	/* process the request immediately */
4097	reg_process_self_managed_hint(wiphy);
4098	reg_check_channels();
4099	return 0;
4100}
4101EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102
4103void wiphy_regulatory_register(struct wiphy *wiphy)
4104{
4105	struct regulatory_request *lr = get_last_request();
4106
4107	/* self-managed devices ignore beacon hints and country IE */
4108	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110					   REGULATORY_COUNTRY_IE_IGNORE;
4111
4112		/*
4113		 * The last request may have been received before this
4114		 * registration call. Call the driver notifier if
4115		 * initiator is USER.
4116		 */
4117		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118			reg_call_notifier(wiphy, lr);
4119	}
4120
4121	if (!reg_dev_ignore_cell_hint(wiphy))
4122		reg_num_devs_support_basehint++;
4123
4124	wiphy_update_regulatory(wiphy, lr->initiator);
4125	wiphy_all_share_dfs_chan_state(wiphy);
4126	reg_process_self_managed_hints();
4127}
4128
4129void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130{
4131	struct wiphy *request_wiphy = NULL;
4132	struct regulatory_request *lr;
4133
4134	lr = get_last_request();
4135
4136	if (!reg_dev_ignore_cell_hint(wiphy))
4137		reg_num_devs_support_basehint--;
4138
4139	rcu_free_regdom(get_wiphy_regdom(wiphy));
4140	RCU_INIT_POINTER(wiphy->regd, NULL);
4141
4142	if (lr)
4143		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144
4145	if (!request_wiphy || request_wiphy != wiphy)
4146		return;
4147
4148	lr->wiphy_idx = WIPHY_IDX_INVALID;
4149	lr->country_ie_env = ENVIRON_ANY;
4150}
4151
4152/*
4153 * See FCC notices for UNII band definitions
4154 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156 */
4157int cfg80211_get_unii(int freq)
4158{
4159	/* UNII-1 */
4160	if (freq >= 5150 && freq <= 5250)
4161		return 0;
4162
4163	/* UNII-2A */
4164	if (freq > 5250 && freq <= 5350)
4165		return 1;
4166
4167	/* UNII-2B */
4168	if (freq > 5350 && freq <= 5470)
4169		return 2;
4170
4171	/* UNII-2C */
4172	if (freq > 5470 && freq <= 5725)
4173		return 3;
4174
4175	/* UNII-3 */
4176	if (freq > 5725 && freq <= 5825)
4177		return 4;
4178
4179	/* UNII-5 */
4180	if (freq > 5925 && freq <= 6425)
4181		return 5;
4182
4183	/* UNII-6 */
4184	if (freq > 6425 && freq <= 6525)
4185		return 6;
4186
4187	/* UNII-7 */
4188	if (freq > 6525 && freq <= 6875)
4189		return 7;
4190
4191	/* UNII-8 */
4192	if (freq > 6875 && freq <= 7125)
4193		return 8;
4194
4195	return -EINVAL;
4196}
4197
4198bool regulatory_indoor_allowed(void)
4199{
4200	return reg_is_indoor;
4201}
4202
4203bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204{
4205	const struct ieee80211_regdomain *regd = NULL;
4206	const struct ieee80211_regdomain *wiphy_regd = NULL;
4207	bool pre_cac_allowed = false;
4208
4209	rcu_read_lock();
4210
4211	regd = rcu_dereference(cfg80211_regdomain);
4212	wiphy_regd = rcu_dereference(wiphy->regd);
4213	if (!wiphy_regd) {
4214		if (regd->dfs_region == NL80211_DFS_ETSI)
4215			pre_cac_allowed = true;
4216
4217		rcu_read_unlock();
4218
4219		return pre_cac_allowed;
4220	}
4221
4222	if (regd->dfs_region == wiphy_regd->dfs_region &&
4223	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224		pre_cac_allowed = true;
4225
4226	rcu_read_unlock();
4227
4228	return pre_cac_allowed;
4229}
4230EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231
4232static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233{
4234	struct wireless_dev *wdev;
4235	/* If we finished CAC or received radar, we should end any
4236	 * CAC running on the same channels.
4237	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4238	 * either all channels are available - those the CAC_FINISHED
4239	 * event has effected another wdev state, or there is a channel
4240	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4241	 * event has effected another wdev state.
4242	 * In both cases we should end the CAC on the wdev.
4243	 */
4244	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4245		struct cfg80211_chan_def *chandef;
4246
4247		if (!wdev->cac_started)
4248			continue;
4249
4250		/* FIXME: radar detection is tied to link 0 for now */
4251		chandef = wdev_chandef(wdev, 0);
4252		if (!chandef)
4253			continue;
4254
4255		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4256			rdev_end_cac(rdev, wdev->netdev);
4257	}
4258}
4259
4260void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261				    struct cfg80211_chan_def *chandef,
4262				    enum nl80211_dfs_state dfs_state,
4263				    enum nl80211_radar_event event)
4264{
4265	struct cfg80211_registered_device *rdev;
4266
4267	ASSERT_RTNL();
4268
4269	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270		return;
4271
4272	for_each_rdev(rdev) {
4273		if (wiphy == &rdev->wiphy)
4274			continue;
4275
4276		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277			continue;
4278
4279		if (!ieee80211_get_channel(&rdev->wiphy,
4280					   chandef->chan->center_freq))
4281			continue;
4282
4283		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285		if (event == NL80211_RADAR_DETECTED ||
4286		    event == NL80211_RADAR_CAC_FINISHED) {
4287			cfg80211_sched_dfs_chan_update(rdev);
4288			cfg80211_check_and_end_cac(rdev);
4289		}
4290
4291		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292	}
4293}
4294
4295static int __init regulatory_init_db(void)
4296{
4297	int err;
4298
4299	/*
4300	 * It's possible that - due to other bugs/issues - cfg80211
4301	 * never called regulatory_init() below, or that it failed;
4302	 * in that case, don't try to do any further work here as
4303	 * it's doomed to lead to crashes.
4304	 */
4305	if (IS_ERR_OR_NULL(reg_pdev))
4306		return -EINVAL;
4307
4308	err = load_builtin_regdb_keys();
4309	if (err) {
4310		platform_device_unregister(reg_pdev);
4311		return err;
4312	}
4313
4314	/* We always try to get an update for the static regdomain */
4315	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316	if (err) {
4317		if (err == -ENOMEM) {
4318			platform_device_unregister(reg_pdev);
4319			return err;
4320		}
4321		/*
4322		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323		 * memory which is handled and propagated appropriately above
4324		 * but it can also fail during a netlink_broadcast() or during
4325		 * early boot for call_usermodehelper(). For now treat these
4326		 * errors as non-fatal.
4327		 */
4328		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329	}
4330
4331	/*
4332	 * Finally, if the user set the module parameter treat it
4333	 * as a user hint.
4334	 */
4335	if (!is_world_regdom(ieee80211_regdom))
4336		regulatory_hint_user(ieee80211_regdom,
4337				     NL80211_USER_REG_HINT_USER);
4338
4339	return 0;
4340}
4341#ifndef MODULE
4342late_initcall(regulatory_init_db);
4343#endif
4344
4345int __init regulatory_init(void)
4346{
4347	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348	if (IS_ERR(reg_pdev))
4349		return PTR_ERR(reg_pdev);
4350
4351	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353	user_alpha2[0] = '9';
4354	user_alpha2[1] = '7';
4355
4356#ifdef MODULE
4357	return regulatory_init_db();
4358#else
4359	return 0;
4360#endif
4361}
4362
4363void regulatory_exit(void)
4364{
4365	struct regulatory_request *reg_request, *tmp;
4366	struct reg_beacon *reg_beacon, *btmp;
4367
4368	cancel_work_sync(&reg_work);
4369	cancel_crda_timeout_sync();
4370	cancel_delayed_work_sync(&reg_check_chans);
4371
4372	/* Lock to suppress warnings */
4373	rtnl_lock();
4374	reset_regdomains(true, NULL);
4375	rtnl_unlock();
4376
4377	dev_set_uevent_suppress(&reg_pdev->dev, true);
4378
4379	platform_device_unregister(reg_pdev);
4380
4381	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4382		list_del(&reg_beacon->list);
4383		kfree(reg_beacon);
4384	}
4385
4386	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4387		list_del(&reg_beacon->list);
4388		kfree(reg_beacon);
4389	}
4390
4391	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4392		list_del(&reg_request->list);
4393		kfree(reg_request);
4394	}
4395
4396	if (!IS_ERR_OR_NULL(regdb))
4397		kfree(regdb);
4398	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399		kfree(cfg80211_user_regdom);
4400
4401	free_regdb_keyring();
4402}
v5.14.15
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 * Copyright (C) 2018 - 2021 Intel Corporation
   9 *
  10 * Permission to use, copy, modify, and/or distribute this software for any
  11 * purpose with or without fee is hereby granted, provided that the above
  12 * copyright notice and this permission notice appear in all copies.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21 */
  22
  23
  24/**
  25 * DOC: Wireless regulatory infrastructure
  26 *
  27 * The usual implementation is for a driver to read a device EEPROM to
  28 * determine which regulatory domain it should be operating under, then
  29 * looking up the allowable channels in a driver-local table and finally
  30 * registering those channels in the wiphy structure.
  31 *
  32 * Another set of compliance enforcement is for drivers to use their
  33 * own compliance limits which can be stored on the EEPROM. The host
  34 * driver or firmware may ensure these are used.
  35 *
  36 * In addition to all this we provide an extra layer of regulatory
  37 * conformance. For drivers which do not have any regulatory
  38 * information CRDA provides the complete regulatory solution.
  39 * For others it provides a community effort on further restrictions
  40 * to enhance compliance.
  41 *
  42 * Note: When number of rules --> infinity we will not be able to
  43 * index on alpha2 any more, instead we'll probably have to
  44 * rely on some SHA1 checksum of the regdomain for example.
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/kernel.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/list.h>
  54#include <linux/ctype.h>
  55#include <linux/nl80211.h>
  56#include <linux/platform_device.h>
  57#include <linux/verification.h>
  58#include <linux/moduleparam.h>
  59#include <linux/firmware.h>
  60#include <net/cfg80211.h>
  61#include "core.h"
  62#include "reg.h"
  63#include "rdev-ops.h"
  64#include "nl80211.h"
  65
  66/*
  67 * Grace period we give before making sure all current interfaces reside on
  68 * channels allowed by the current regulatory domain.
  69 */
  70#define REG_ENFORCE_GRACE_MS 60000
  71
  72/**
  73 * enum reg_request_treatment - regulatory request treatment
  74 *
  75 * @REG_REQ_OK: continue processing the regulatory request
  76 * @REG_REQ_IGNORE: ignore the regulatory request
  77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  78 *	be intersected with the current one.
  79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  80 *	regulatory settings, and no further processing is required.
  81 */
  82enum reg_request_treatment {
  83	REG_REQ_OK,
  84	REG_REQ_IGNORE,
  85	REG_REQ_INTERSECT,
  86	REG_REQ_ALREADY_SET,
  87};
  88
  89static struct regulatory_request core_request_world = {
  90	.initiator = NL80211_REGDOM_SET_BY_CORE,
  91	.alpha2[0] = '0',
  92	.alpha2[1] = '0',
  93	.intersect = false,
  94	.processed = true,
  95	.country_ie_env = ENVIRON_ANY,
  96};
  97
  98/*
  99 * Receipt of information from last regulatory request,
 100 * protected by RTNL (and can be accessed with RCU protection)
 101 */
 102static struct regulatory_request __rcu *last_request =
 103	(void __force __rcu *)&core_request_world;
 104
 105/* To trigger userspace events and load firmware */
 106static struct platform_device *reg_pdev;
 107
 108/*
 109 * Central wireless core regulatory domains, we only need two,
 110 * the current one and a world regulatory domain in case we have no
 111 * information to give us an alpha2.
 112 * (protected by RTNL, can be read under RCU)
 113 */
 114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 115
 116/*
 117 * Number of devices that registered to the core
 118 * that support cellular base station regulatory hints
 119 * (protected by RTNL)
 120 */
 121static int reg_num_devs_support_basehint;
 122
 123/*
 124 * State variable indicating if the platform on which the devices
 125 * are attached is operating in an indoor environment. The state variable
 126 * is relevant for all registered devices.
 127 */
 128static bool reg_is_indoor;
 129static DEFINE_SPINLOCK(reg_indoor_lock);
 130
 131/* Used to track the userspace process controlling the indoor setting */
 132static u32 reg_is_indoor_portid;
 133
 134static void restore_regulatory_settings(bool reset_user, bool cached);
 135static void print_regdomain(const struct ieee80211_regdomain *rd);
 
 136
 137static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 138{
 139	return rcu_dereference_rtnl(cfg80211_regdomain);
 140}
 141
 142/*
 143 * Returns the regulatory domain associated with the wiphy.
 144 *
 145 * Requires any of RTNL, wiphy mutex or RCU protection.
 146 */
 147const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 148{
 149	return rcu_dereference_check(wiphy->regd,
 150				     lockdep_is_held(&wiphy->mtx) ||
 151				     lockdep_rtnl_is_held());
 152}
 153EXPORT_SYMBOL(get_wiphy_regdom);
 154
 155static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 156{
 157	switch (dfs_region) {
 158	case NL80211_DFS_UNSET:
 159		return "unset";
 160	case NL80211_DFS_FCC:
 161		return "FCC";
 162	case NL80211_DFS_ETSI:
 163		return "ETSI";
 164	case NL80211_DFS_JP:
 165		return "JP";
 166	}
 167	return "Unknown";
 168}
 169
 170enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 171{
 172	const struct ieee80211_regdomain *regd = NULL;
 173	const struct ieee80211_regdomain *wiphy_regd = NULL;
 
 174
 175	rcu_read_lock();
 176	regd = get_cfg80211_regdom();
 
 177
 178	if (!wiphy)
 179		goto out;
 180
 181	wiphy_regd = get_wiphy_regdom(wiphy);
 182	if (!wiphy_regd)
 183		goto out;
 184
 
 
 
 
 
 185	if (wiphy_regd->dfs_region == regd->dfs_region)
 186		goto out;
 187
 188	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 189		 dev_name(&wiphy->dev),
 190		 reg_dfs_region_str(wiphy_regd->dfs_region),
 191		 reg_dfs_region_str(regd->dfs_region));
 192
 193out:
 194	rcu_read_unlock();
 195
 196	return regd->dfs_region;
 197}
 198
 199static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 200{
 201	if (!r)
 202		return;
 203	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 204}
 205
 206static struct regulatory_request *get_last_request(void)
 207{
 208	return rcu_dereference_rtnl(last_request);
 209}
 210
 211/* Used to queue up regulatory hints */
 212static LIST_HEAD(reg_requests_list);
 213static DEFINE_SPINLOCK(reg_requests_lock);
 214
 215/* Used to queue up beacon hints for review */
 216static LIST_HEAD(reg_pending_beacons);
 217static DEFINE_SPINLOCK(reg_pending_beacons_lock);
 218
 219/* Used to keep track of processed beacon hints */
 220static LIST_HEAD(reg_beacon_list);
 221
 222struct reg_beacon {
 223	struct list_head list;
 224	struct ieee80211_channel chan;
 225};
 226
 227static void reg_check_chans_work(struct work_struct *work);
 228static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 229
 230static void reg_todo(struct work_struct *work);
 231static DECLARE_WORK(reg_work, reg_todo);
 232
 233/* We keep a static world regulatory domain in case of the absence of CRDA */
 234static const struct ieee80211_regdomain world_regdom = {
 235	.n_reg_rules = 8,
 236	.alpha2 =  "00",
 237	.reg_rules = {
 238		/* IEEE 802.11b/g, channels 1..11 */
 239		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 240		/* IEEE 802.11b/g, channels 12..13. */
 241		REG_RULE(2467-10, 2472+10, 20, 6, 20,
 242			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 243		/* IEEE 802.11 channel 14 - Only JP enables
 244		 * this and for 802.11b only */
 245		REG_RULE(2484-10, 2484+10, 20, 6, 20,
 246			NL80211_RRF_NO_IR |
 247			NL80211_RRF_NO_OFDM),
 248		/* IEEE 802.11a, channel 36..48 */
 249		REG_RULE(5180-10, 5240+10, 80, 6, 20,
 250                        NL80211_RRF_NO_IR |
 251                        NL80211_RRF_AUTO_BW),
 252
 253		/* IEEE 802.11a, channel 52..64 - DFS required */
 254		REG_RULE(5260-10, 5320+10, 80, 6, 20,
 255			NL80211_RRF_NO_IR |
 256			NL80211_RRF_AUTO_BW |
 257			NL80211_RRF_DFS),
 258
 259		/* IEEE 802.11a, channel 100..144 - DFS required */
 260		REG_RULE(5500-10, 5720+10, 160, 6, 20,
 261			NL80211_RRF_NO_IR |
 262			NL80211_RRF_DFS),
 263
 264		/* IEEE 802.11a, channel 149..165 */
 265		REG_RULE(5745-10, 5825+10, 80, 6, 20,
 266			NL80211_RRF_NO_IR),
 267
 268		/* IEEE 802.11ad (60GHz), channels 1..3 */
 269		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 270	}
 271};
 272
 273/* protected by RTNL */
 274static const struct ieee80211_regdomain *cfg80211_world_regdom =
 275	&world_regdom;
 276
 277static char *ieee80211_regdom = "00";
 278static char user_alpha2[2];
 279static const struct ieee80211_regdomain *cfg80211_user_regdom;
 280
 281module_param(ieee80211_regdom, charp, 0444);
 282MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 283
 284static void reg_free_request(struct regulatory_request *request)
 285{
 286	if (request == &core_request_world)
 287		return;
 288
 289	if (request != get_last_request())
 290		kfree(request);
 291}
 292
 293static void reg_free_last_request(void)
 294{
 295	struct regulatory_request *lr = get_last_request();
 296
 297	if (lr != &core_request_world && lr)
 298		kfree_rcu(lr, rcu_head);
 299}
 300
 301static void reg_update_last_request(struct regulatory_request *request)
 302{
 303	struct regulatory_request *lr;
 304
 305	lr = get_last_request();
 306	if (lr == request)
 307		return;
 308
 309	reg_free_last_request();
 310	rcu_assign_pointer(last_request, request);
 311}
 312
 313static void reset_regdomains(bool full_reset,
 314			     const struct ieee80211_regdomain *new_regdom)
 315{
 316	const struct ieee80211_regdomain *r;
 317
 318	ASSERT_RTNL();
 319
 320	r = get_cfg80211_regdom();
 321
 322	/* avoid freeing static information or freeing something twice */
 323	if (r == cfg80211_world_regdom)
 324		r = NULL;
 325	if (cfg80211_world_regdom == &world_regdom)
 326		cfg80211_world_regdom = NULL;
 327	if (r == &world_regdom)
 328		r = NULL;
 329
 330	rcu_free_regdom(r);
 331	rcu_free_regdom(cfg80211_world_regdom);
 332
 333	cfg80211_world_regdom = &world_regdom;
 334	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 335
 336	if (!full_reset)
 337		return;
 338
 339	reg_update_last_request(&core_request_world);
 340}
 341
 342/*
 343 * Dynamic world regulatory domain requested by the wireless
 344 * core upon initialization
 345 */
 346static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 347{
 348	struct regulatory_request *lr;
 349
 350	lr = get_last_request();
 351
 352	WARN_ON(!lr);
 353
 354	reset_regdomains(false, rd);
 355
 356	cfg80211_world_regdom = rd;
 357}
 358
 359bool is_world_regdom(const char *alpha2)
 360{
 361	if (!alpha2)
 362		return false;
 363	return alpha2[0] == '0' && alpha2[1] == '0';
 364}
 365
 366static bool is_alpha2_set(const char *alpha2)
 367{
 368	if (!alpha2)
 369		return false;
 370	return alpha2[0] && alpha2[1];
 371}
 372
 373static bool is_unknown_alpha2(const char *alpha2)
 374{
 375	if (!alpha2)
 376		return false;
 377	/*
 378	 * Special case where regulatory domain was built by driver
 379	 * but a specific alpha2 cannot be determined
 380	 */
 381	return alpha2[0] == '9' && alpha2[1] == '9';
 382}
 383
 384static bool is_intersected_alpha2(const char *alpha2)
 385{
 386	if (!alpha2)
 387		return false;
 388	/*
 389	 * Special case where regulatory domain is the
 390	 * result of an intersection between two regulatory domain
 391	 * structures
 392	 */
 393	return alpha2[0] == '9' && alpha2[1] == '8';
 394}
 395
 396static bool is_an_alpha2(const char *alpha2)
 397{
 398	if (!alpha2)
 399		return false;
 400	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 401}
 402
 403static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 404{
 405	if (!alpha2_x || !alpha2_y)
 406		return false;
 407	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 408}
 409
 410static bool regdom_changes(const char *alpha2)
 411{
 412	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 413
 414	if (!r)
 415		return true;
 416	return !alpha2_equal(r->alpha2, alpha2);
 417}
 418
 419/*
 420 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 421 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 422 * has ever been issued.
 423 */
 424static bool is_user_regdom_saved(void)
 425{
 426	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 427		return false;
 428
 429	/* This would indicate a mistake on the design */
 430	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 431		 "Unexpected user alpha2: %c%c\n",
 432		 user_alpha2[0], user_alpha2[1]))
 433		return false;
 434
 435	return true;
 436}
 437
 438static const struct ieee80211_regdomain *
 439reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 440{
 441	struct ieee80211_regdomain *regd;
 442	unsigned int i;
 443
 444	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
 445		       GFP_KERNEL);
 446	if (!regd)
 447		return ERR_PTR(-ENOMEM);
 448
 449	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 450
 451	for (i = 0; i < src_regd->n_reg_rules; i++)
 452		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 453		       sizeof(struct ieee80211_reg_rule));
 454
 455	return regd;
 456}
 457
 458static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
 459{
 460	ASSERT_RTNL();
 461
 462	if (!IS_ERR(cfg80211_user_regdom))
 463		kfree(cfg80211_user_regdom);
 464	cfg80211_user_regdom = reg_copy_regd(rd);
 465}
 466
 467struct reg_regdb_apply_request {
 468	struct list_head list;
 469	const struct ieee80211_regdomain *regdom;
 470};
 471
 472static LIST_HEAD(reg_regdb_apply_list);
 473static DEFINE_MUTEX(reg_regdb_apply_mutex);
 474
 475static void reg_regdb_apply(struct work_struct *work)
 476{
 477	struct reg_regdb_apply_request *request;
 478
 479	rtnl_lock();
 480
 481	mutex_lock(&reg_regdb_apply_mutex);
 482	while (!list_empty(&reg_regdb_apply_list)) {
 483		request = list_first_entry(&reg_regdb_apply_list,
 484					   struct reg_regdb_apply_request,
 485					   list);
 486		list_del(&request->list);
 487
 488		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 489		kfree(request);
 490	}
 491	mutex_unlock(&reg_regdb_apply_mutex);
 492
 493	rtnl_unlock();
 494}
 495
 496static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 497
 498static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
 499{
 500	struct reg_regdb_apply_request *request;
 501
 502	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 503	if (!request) {
 504		kfree(regdom);
 505		return -ENOMEM;
 506	}
 507
 508	request->regdom = regdom;
 509
 510	mutex_lock(&reg_regdb_apply_mutex);
 511	list_add_tail(&request->list, &reg_regdb_apply_list);
 512	mutex_unlock(&reg_regdb_apply_mutex);
 513
 514	schedule_work(&reg_regdb_work);
 515	return 0;
 516}
 517
 518#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 519/* Max number of consecutive attempts to communicate with CRDA  */
 520#define REG_MAX_CRDA_TIMEOUTS 10
 521
 522static u32 reg_crda_timeouts;
 523
 524static void crda_timeout_work(struct work_struct *work);
 525static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 526
 527static void crda_timeout_work(struct work_struct *work)
 528{
 529	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 530	rtnl_lock();
 531	reg_crda_timeouts++;
 532	restore_regulatory_settings(true, false);
 533	rtnl_unlock();
 534}
 535
 536static void cancel_crda_timeout(void)
 537{
 538	cancel_delayed_work(&crda_timeout);
 539}
 540
 541static void cancel_crda_timeout_sync(void)
 542{
 543	cancel_delayed_work_sync(&crda_timeout);
 544}
 545
 546static void reset_crda_timeouts(void)
 547{
 548	reg_crda_timeouts = 0;
 549}
 550
 551/*
 552 * This lets us keep regulatory code which is updated on a regulatory
 553 * basis in userspace.
 554 */
 555static int call_crda(const char *alpha2)
 556{
 557	char country[12];
 558	char *env[] = { country, NULL };
 559	int ret;
 560
 561	snprintf(country, sizeof(country), "COUNTRY=%c%c",
 562		 alpha2[0], alpha2[1]);
 563
 564	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 565		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 566		return -EINVAL;
 567	}
 568
 569	if (!is_world_regdom((char *) alpha2))
 570		pr_debug("Calling CRDA for country: %c%c\n",
 571			 alpha2[0], alpha2[1]);
 572	else
 573		pr_debug("Calling CRDA to update world regulatory domain\n");
 574
 575	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 576	if (ret)
 577		return ret;
 578
 579	queue_delayed_work(system_power_efficient_wq,
 580			   &crda_timeout, msecs_to_jiffies(3142));
 581	return 0;
 582}
 583#else
 584static inline void cancel_crda_timeout(void) {}
 585static inline void cancel_crda_timeout_sync(void) {}
 586static inline void reset_crda_timeouts(void) {}
 587static inline int call_crda(const char *alpha2)
 588{
 589	return -ENODATA;
 590}
 591#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 592
 593/* code to directly load a firmware database through request_firmware */
 594static const struct fwdb_header *regdb;
 595
 596struct fwdb_country {
 597	u8 alpha2[2];
 598	__be16 coll_ptr;
 599	/* this struct cannot be extended */
 600} __packed __aligned(4);
 601
 602struct fwdb_collection {
 603	u8 len;
 604	u8 n_rules;
 605	u8 dfs_region;
 606	/* no optional data yet */
 607	/* aligned to 2, then followed by __be16 array of rule pointers */
 608} __packed __aligned(4);
 609
 610enum fwdb_flags {
 611	FWDB_FLAG_NO_OFDM	= BIT(0),
 612	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
 613	FWDB_FLAG_DFS		= BIT(2),
 614	FWDB_FLAG_NO_IR		= BIT(3),
 615	FWDB_FLAG_AUTO_BW	= BIT(4),
 616};
 617
 618struct fwdb_wmm_ac {
 619	u8 ecw;
 620	u8 aifsn;
 621	__be16 cot;
 622} __packed;
 623
 624struct fwdb_wmm_rule {
 625	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
 626	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
 627} __packed;
 628
 629struct fwdb_rule {
 630	u8 len;
 631	u8 flags;
 632	__be16 max_eirp;
 633	__be32 start, end, max_bw;
 634	/* start of optional data */
 635	__be16 cac_timeout;
 636	__be16 wmm_ptr;
 637} __packed __aligned(4);
 638
 639#define FWDB_MAGIC 0x52474442
 640#define FWDB_VERSION 20
 641
 642struct fwdb_header {
 643	__be32 magic;
 644	__be32 version;
 645	struct fwdb_country country[];
 646} __packed __aligned(4);
 647
 648static int ecw2cw(int ecw)
 649{
 650	return (1 << ecw) - 1;
 651}
 652
 653static bool valid_wmm(struct fwdb_wmm_rule *rule)
 654{
 655	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
 656	int i;
 657
 658	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
 659		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
 660		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
 661		u8 aifsn = ac[i].aifsn;
 662
 663		if (cw_min >= cw_max)
 664			return false;
 665
 666		if (aifsn < 1)
 667			return false;
 668	}
 669
 670	return true;
 671}
 672
 673static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
 674{
 675	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
 676
 677	if ((u8 *)rule + sizeof(rule->len) > data + size)
 678		return false;
 679
 680	/* mandatory fields */
 681	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
 682		return false;
 683	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
 684		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 685		struct fwdb_wmm_rule *wmm;
 686
 687		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
 688			return false;
 689
 690		wmm = (void *)(data + wmm_ptr);
 691
 692		if (!valid_wmm(wmm))
 693			return false;
 694	}
 695	return true;
 696}
 697
 698static bool valid_country(const u8 *data, unsigned int size,
 699			  const struct fwdb_country *country)
 700{
 701	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 702	struct fwdb_collection *coll = (void *)(data + ptr);
 703	__be16 *rules_ptr;
 704	unsigned int i;
 705
 706	/* make sure we can read len/n_rules */
 707	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
 708		return false;
 709
 710	/* make sure base struct and all rules fit */
 711	if ((u8 *)coll + ALIGN(coll->len, 2) +
 712	    (coll->n_rules * 2) > data + size)
 713		return false;
 714
 715	/* mandatory fields must exist */
 716	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
 717		return false;
 718
 719	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 720
 721	for (i = 0; i < coll->n_rules; i++) {
 722		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
 723
 724		if (!valid_rule(data, size, rule_ptr))
 725			return false;
 726	}
 727
 728	return true;
 729}
 730
 731#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
 
 
 732static struct key *builtin_regdb_keys;
 733
 734static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
 735{
 736	const u8 *end = p + buflen;
 737	size_t plen;
 738	key_ref_t key;
 739
 740	while (p < end) {
 741		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
 742		 * than 256 bytes in size.
 743		 */
 744		if (end - p < 4)
 745			goto dodgy_cert;
 746		if (p[0] != 0x30 &&
 747		    p[1] != 0x82)
 748			goto dodgy_cert;
 749		plen = (p[2] << 8) | p[3];
 750		plen += 4;
 751		if (plen > end - p)
 752			goto dodgy_cert;
 753
 754		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
 755					   "asymmetric", NULL, p, plen,
 756					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 757					    KEY_USR_VIEW | KEY_USR_READ),
 758					   KEY_ALLOC_NOT_IN_QUOTA |
 759					   KEY_ALLOC_BUILT_IN |
 760					   KEY_ALLOC_BYPASS_RESTRICTION);
 761		if (IS_ERR(key)) {
 762			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
 763			       PTR_ERR(key));
 764		} else {
 765			pr_notice("Loaded X.509 cert '%s'\n",
 766				  key_ref_to_ptr(key)->description);
 767			key_ref_put(key);
 768		}
 769		p += plen;
 770	}
 771
 772	return;
 773
 774dodgy_cert:
 775	pr_err("Problem parsing in-kernel X.509 certificate list\n");
 776}
 777
 778static int __init load_builtin_regdb_keys(void)
 779{
 780	builtin_regdb_keys =
 781		keyring_alloc(".builtin_regdb_keys",
 782			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
 783			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
 784			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
 785			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 786	if (IS_ERR(builtin_regdb_keys))
 787		return PTR_ERR(builtin_regdb_keys);
 788
 789	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
 790
 791#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
 792	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
 
 
 793#endif
 794#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
 795	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
 796		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
 
 
 797#endif
 798
 799	return 0;
 800}
 801
 
 
 802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 803{
 804	const struct firmware *sig;
 805	bool result;
 806
 807	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
 808		return false;
 809
 810	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
 811					builtin_regdb_keys,
 812					VERIFYING_UNSPECIFIED_SIGNATURE,
 813					NULL, NULL) == 0;
 814
 815	release_firmware(sig);
 816
 817	return result;
 818}
 819
 820static void free_regdb_keyring(void)
 821{
 822	key_put(builtin_regdb_keys);
 823}
 824#else
 825static int load_builtin_regdb_keys(void)
 826{
 827	return 0;
 828}
 829
 830static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
 831{
 832	return true;
 833}
 834
 835static void free_regdb_keyring(void)
 836{
 837}
 838#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
 839
 840static bool valid_regdb(const u8 *data, unsigned int size)
 841{
 842	const struct fwdb_header *hdr = (void *)data;
 843	const struct fwdb_country *country;
 844
 845	if (size < sizeof(*hdr))
 846		return false;
 847
 848	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
 849		return false;
 850
 851	if (hdr->version != cpu_to_be32(FWDB_VERSION))
 852		return false;
 853
 854	if (!regdb_has_valid_signature(data, size))
 855		return false;
 856
 857	country = &hdr->country[0];
 858	while ((u8 *)(country + 1) <= data + size) {
 859		if (!country->coll_ptr)
 860			break;
 861		if (!valid_country(data, size, country))
 862			return false;
 863		country++;
 864	}
 865
 866	return true;
 867}
 868
 869static void set_wmm_rule(const struct fwdb_header *db,
 870			 const struct fwdb_country *country,
 871			 const struct fwdb_rule *rule,
 872			 struct ieee80211_reg_rule *rrule)
 873{
 874	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
 875	struct fwdb_wmm_rule *wmm;
 876	unsigned int i, wmm_ptr;
 877
 878	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
 879	wmm = (void *)((u8 *)db + wmm_ptr);
 880
 881	if (!valid_wmm(wmm)) {
 882		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
 883		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
 884		       country->alpha2[0], country->alpha2[1]);
 885		return;
 886	}
 887
 888	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
 889		wmm_rule->client[i].cw_min =
 890			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
 891		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
 892		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
 893		wmm_rule->client[i].cot =
 894			1000 * be16_to_cpu(wmm->client[i].cot);
 895		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
 896		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
 897		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
 898		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
 899	}
 900
 901	rrule->has_wmm = true;
 902}
 903
 904static int __regdb_query_wmm(const struct fwdb_header *db,
 905			     const struct fwdb_country *country, int freq,
 906			     struct ieee80211_reg_rule *rrule)
 907{
 908	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 909	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 910	int i;
 911
 912	for (i = 0; i < coll->n_rules; i++) {
 913		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 914		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 915		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 916
 917		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
 918			continue;
 919
 920		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
 921		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
 922			set_wmm_rule(db, country, rule, rrule);
 923			return 0;
 924		}
 925	}
 926
 927	return -ENODATA;
 928}
 929
 930int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
 931{
 932	const struct fwdb_header *hdr = regdb;
 933	const struct fwdb_country *country;
 934
 935	if (!regdb)
 936		return -ENODATA;
 937
 938	if (IS_ERR(regdb))
 939		return PTR_ERR(regdb);
 940
 941	country = &hdr->country[0];
 942	while (country->coll_ptr) {
 943		if (alpha2_equal(alpha2, country->alpha2))
 944			return __regdb_query_wmm(regdb, country, freq, rule);
 945
 946		country++;
 947	}
 948
 949	return -ENODATA;
 950}
 951EXPORT_SYMBOL(reg_query_regdb_wmm);
 952
 953static int regdb_query_country(const struct fwdb_header *db,
 954			       const struct fwdb_country *country)
 955{
 956	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
 957	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
 958	struct ieee80211_regdomain *regdom;
 959	unsigned int i;
 960
 961	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
 962			 GFP_KERNEL);
 963	if (!regdom)
 964		return -ENOMEM;
 965
 966	regdom->n_reg_rules = coll->n_rules;
 967	regdom->alpha2[0] = country->alpha2[0];
 968	regdom->alpha2[1] = country->alpha2[1];
 969	regdom->dfs_region = coll->dfs_region;
 970
 971	for (i = 0; i < regdom->n_reg_rules; i++) {
 972		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
 973		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
 974		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
 975		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
 976
 977		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
 978		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
 979		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
 980
 981		rrule->power_rule.max_antenna_gain = 0;
 982		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
 983
 984		rrule->flags = 0;
 985		if (rule->flags & FWDB_FLAG_NO_OFDM)
 986			rrule->flags |= NL80211_RRF_NO_OFDM;
 987		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
 988			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
 989		if (rule->flags & FWDB_FLAG_DFS)
 990			rrule->flags |= NL80211_RRF_DFS;
 991		if (rule->flags & FWDB_FLAG_NO_IR)
 992			rrule->flags |= NL80211_RRF_NO_IR;
 993		if (rule->flags & FWDB_FLAG_AUTO_BW)
 994			rrule->flags |= NL80211_RRF_AUTO_BW;
 995
 996		rrule->dfs_cac_ms = 0;
 997
 998		/* handle optional data */
 999		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1000			rrule->dfs_cac_ms =
1001				1000 * be16_to_cpu(rule->cac_timeout);
1002		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1003			set_wmm_rule(db, country, rule, rrule);
1004	}
1005
1006	return reg_schedule_apply(regdom);
1007}
1008
1009static int query_regdb(const char *alpha2)
1010{
1011	const struct fwdb_header *hdr = regdb;
1012	const struct fwdb_country *country;
1013
1014	ASSERT_RTNL();
1015
1016	if (IS_ERR(regdb))
1017		return PTR_ERR(regdb);
1018
1019	country = &hdr->country[0];
1020	while (country->coll_ptr) {
1021		if (alpha2_equal(alpha2, country->alpha2))
1022			return regdb_query_country(regdb, country);
1023		country++;
1024	}
1025
1026	return -ENODATA;
1027}
1028
1029static void regdb_fw_cb(const struct firmware *fw, void *context)
1030{
1031	int set_error = 0;
1032	bool restore = true;
1033	void *db;
1034
1035	if (!fw) {
1036		pr_info("failed to load regulatory.db\n");
1037		set_error = -ENODATA;
1038	} else if (!valid_regdb(fw->data, fw->size)) {
1039		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1040		set_error = -EINVAL;
1041	}
1042
1043	rtnl_lock();
1044	if (regdb && !IS_ERR(regdb)) {
1045		/* negative case - a bug
1046		 * positive case - can happen due to race in case of multiple cb's in
1047		 * queue, due to usage of asynchronous callback
1048		 *
1049		 * Either case, just restore and free new db.
1050		 */
1051	} else if (set_error) {
1052		regdb = ERR_PTR(set_error);
1053	} else if (fw) {
1054		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1055		if (db) {
1056			regdb = db;
1057			restore = context && query_regdb(context);
1058		} else {
1059			restore = true;
1060		}
1061	}
1062
1063	if (restore)
1064		restore_regulatory_settings(true, false);
1065
1066	rtnl_unlock();
1067
1068	kfree(context);
1069
1070	release_firmware(fw);
1071}
1072
 
 
1073static int query_regdb_file(const char *alpha2)
1074{
 
 
1075	ASSERT_RTNL();
1076
1077	if (regdb)
1078		return query_regdb(alpha2);
1079
1080	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1081	if (!alpha2)
1082		return -ENOMEM;
1083
1084	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1085				       &reg_pdev->dev, GFP_KERNEL,
1086				       (void *)alpha2, regdb_fw_cb);
 
 
 
 
1087}
1088
1089int reg_reload_regdb(void)
1090{
1091	const struct firmware *fw;
1092	void *db;
1093	int err;
 
 
1094
1095	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1096	if (err)
1097		return err;
1098
1099	if (!valid_regdb(fw->data, fw->size)) {
1100		err = -ENODATA;
1101		goto out;
1102	}
1103
1104	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1105	if (!db) {
1106		err = -ENOMEM;
1107		goto out;
1108	}
1109
1110	rtnl_lock();
1111	if (!IS_ERR_OR_NULL(regdb))
1112		kfree(regdb);
1113	regdb = db;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114	rtnl_unlock();
1115
1116 out:
1117	release_firmware(fw);
1118	return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123	if (query_regdb_file(request->alpha2) == 0)
1124		return true;
1125
1126	if (call_crda(request->alpha2) == 0)
1127		return true;
1128
1129	return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134	struct regulatory_request *lr = get_last_request();
1135
1136	if (!lr || lr->processed)
1137		return false;
1138
1139	return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144	struct regulatory_request *lr = get_last_request();
1145
1146	/*
1147	 * Follow the driver's regulatory domain, if present, unless a country
1148	 * IE has been processed or a user wants to help complaince further
1149	 */
1150	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152	    wiphy->regd)
1153		return get_wiphy_regdom(wiphy);
1154
1155	return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160				 const struct ieee80211_reg_rule *rule)
1161{
1162	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163	const struct ieee80211_freq_range *freq_range_tmp;
1164	const struct ieee80211_reg_rule *tmp;
1165	u32 start_freq, end_freq, idx, no;
1166
1167	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168		if (rule == &rd->reg_rules[idx])
1169			break;
1170
1171	if (idx == rd->n_reg_rules)
1172		return 0;
1173
1174	/* get start_freq */
1175	no = idx;
1176
1177	while (no) {
1178		tmp = &rd->reg_rules[--no];
1179		freq_range_tmp = &tmp->freq_range;
1180
1181		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182			break;
1183
1184		freq_range = freq_range_tmp;
1185	}
1186
1187	start_freq = freq_range->start_freq_khz;
1188
1189	/* get end_freq */
1190	freq_range = &rule->freq_range;
1191	no = idx;
1192
1193	while (no < rd->n_reg_rules - 1) {
1194		tmp = &rd->reg_rules[++no];
1195		freq_range_tmp = &tmp->freq_range;
1196
1197		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198			break;
1199
1200		freq_range = freq_range_tmp;
1201	}
1202
1203	end_freq = freq_range->end_freq_khz;
1204
1205	return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209				   const struct ieee80211_reg_rule *rule)
1210{
1211	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
 
 
1213	if (rule->flags & NL80211_RRF_NO_160MHZ)
1214		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1215	if (rule->flags & NL80211_RRF_NO_80MHZ)
1216		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1217
1218	/*
1219	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1220	 * are not allowed.
1221	 */
1222	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1223	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1224		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1225
1226	return bw;
1227}
1228
1229/* Sanity check on a regulatory rule */
1230static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1231{
1232	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1233	u32 freq_diff;
1234
1235	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1236		return false;
1237
1238	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1239		return false;
1240
1241	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1242
1243	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1244	    freq_range->max_bandwidth_khz > freq_diff)
1245		return false;
1246
1247	return true;
1248}
1249
1250static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1251{
1252	const struct ieee80211_reg_rule *reg_rule = NULL;
1253	unsigned int i;
1254
1255	if (!rd->n_reg_rules)
1256		return false;
1257
1258	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1259		return false;
1260
1261	for (i = 0; i < rd->n_reg_rules; i++) {
1262		reg_rule = &rd->reg_rules[i];
1263		if (!is_valid_reg_rule(reg_rule))
1264			return false;
1265	}
1266
1267	return true;
1268}
1269
1270/**
1271 * freq_in_rule_band - tells us if a frequency is in a frequency band
1272 * @freq_range: frequency rule we want to query
1273 * @freq_khz: frequency we are inquiring about
1274 *
1275 * This lets us know if a specific frequency rule is or is not relevant to
1276 * a specific frequency's band. Bands are device specific and artificial
1277 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1278 * however it is safe for now to assume that a frequency rule should not be
1279 * part of a frequency's band if the start freq or end freq are off by more
1280 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1281 * 60 GHz band.
1282 * This resolution can be lowered and should be considered as we add
1283 * regulatory rule support for other "bands".
1284 **/
 
 
1285static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1286			      u32 freq_khz)
1287{
1288#define ONE_GHZ_IN_KHZ	1000000
1289	/*
1290	 * From 802.11ad: directional multi-gigabit (DMG):
1291	 * Pertaining to operation in a frequency band containing a channel
1292	 * with the Channel starting frequency above 45 GHz.
1293	 */
1294	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1295			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1296	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1297		return true;
1298	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1299		return true;
1300	return false;
1301#undef ONE_GHZ_IN_KHZ
1302}
1303
1304/*
1305 * Later on we can perhaps use the more restrictive DFS
1306 * region but we don't have information for that yet so
1307 * for now simply disallow conflicts.
1308 */
1309static enum nl80211_dfs_regions
1310reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1311			 const enum nl80211_dfs_regions dfs_region2)
1312{
1313	if (dfs_region1 != dfs_region2)
1314		return NL80211_DFS_UNSET;
1315	return dfs_region1;
1316}
1317
1318static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1319				    const struct ieee80211_wmm_ac *wmm_ac2,
1320				    struct ieee80211_wmm_ac *intersect)
1321{
1322	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1323	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1324	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1325	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1326}
1327
1328/*
1329 * Helper for regdom_intersect(), this does the real
1330 * mathematical intersection fun
1331 */
1332static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1333			       const struct ieee80211_regdomain *rd2,
1334			       const struct ieee80211_reg_rule *rule1,
1335			       const struct ieee80211_reg_rule *rule2,
1336			       struct ieee80211_reg_rule *intersected_rule)
1337{
1338	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1339	struct ieee80211_freq_range *freq_range;
1340	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1341	struct ieee80211_power_rule *power_rule;
1342	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1343	struct ieee80211_wmm_rule *wmm_rule;
1344	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1345
1346	freq_range1 = &rule1->freq_range;
1347	freq_range2 = &rule2->freq_range;
1348	freq_range = &intersected_rule->freq_range;
1349
1350	power_rule1 = &rule1->power_rule;
1351	power_rule2 = &rule2->power_rule;
1352	power_rule = &intersected_rule->power_rule;
1353
1354	wmm_rule1 = &rule1->wmm_rule;
1355	wmm_rule2 = &rule2->wmm_rule;
1356	wmm_rule = &intersected_rule->wmm_rule;
1357
1358	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1359					 freq_range2->start_freq_khz);
1360	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1361				       freq_range2->end_freq_khz);
1362
1363	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1364	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1365
1366	if (rule1->flags & NL80211_RRF_AUTO_BW)
1367		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1368	if (rule2->flags & NL80211_RRF_AUTO_BW)
1369		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1370
1371	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1372
1373	intersected_rule->flags = rule1->flags | rule2->flags;
1374
1375	/*
1376	 * In case NL80211_RRF_AUTO_BW requested for both rules
1377	 * set AUTO_BW in intersected rule also. Next we will
1378	 * calculate BW correctly in handle_channel function.
1379	 * In other case remove AUTO_BW flag while we calculate
1380	 * maximum bandwidth correctly and auto calculation is
1381	 * not required.
1382	 */
1383	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1384	    (rule2->flags & NL80211_RRF_AUTO_BW))
1385		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1386	else
1387		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1388
1389	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1390	if (freq_range->max_bandwidth_khz > freq_diff)
1391		freq_range->max_bandwidth_khz = freq_diff;
1392
1393	power_rule->max_eirp = min(power_rule1->max_eirp,
1394		power_rule2->max_eirp);
1395	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1396		power_rule2->max_antenna_gain);
1397
1398	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1399					   rule2->dfs_cac_ms);
1400
1401	if (rule1->has_wmm && rule2->has_wmm) {
1402		u8 ac;
1403
1404		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1405			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1406						&wmm_rule2->client[ac],
1407						&wmm_rule->client[ac]);
1408			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1409						&wmm_rule2->ap[ac],
1410						&wmm_rule->ap[ac]);
1411		}
1412
1413		intersected_rule->has_wmm = true;
1414	} else if (rule1->has_wmm) {
1415		*wmm_rule = *wmm_rule1;
1416		intersected_rule->has_wmm = true;
1417	} else if (rule2->has_wmm) {
1418		*wmm_rule = *wmm_rule2;
1419		intersected_rule->has_wmm = true;
1420	} else {
1421		intersected_rule->has_wmm = false;
1422	}
1423
1424	if (!is_valid_reg_rule(intersected_rule))
1425		return -EINVAL;
1426
1427	return 0;
1428}
1429
1430/* check whether old rule contains new rule */
1431static bool rule_contains(struct ieee80211_reg_rule *r1,
1432			  struct ieee80211_reg_rule *r2)
1433{
1434	/* for simplicity, currently consider only same flags */
1435	if (r1->flags != r2->flags)
1436		return false;
1437
1438	/* verify r1 is more restrictive */
1439	if ((r1->power_rule.max_antenna_gain >
1440	     r2->power_rule.max_antenna_gain) ||
1441	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1442		return false;
1443
1444	/* make sure r2's range is contained within r1 */
1445	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1446	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1447		return false;
1448
1449	/* and finally verify that r1.max_bw >= r2.max_bw */
1450	if (r1->freq_range.max_bandwidth_khz <
1451	    r2->freq_range.max_bandwidth_khz)
1452		return false;
1453
1454	return true;
1455}
1456
1457/* add or extend current rules. do nothing if rule is already contained */
1458static void add_rule(struct ieee80211_reg_rule *rule,
1459		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1460{
1461	struct ieee80211_reg_rule *tmp_rule;
1462	int i;
1463
1464	for (i = 0; i < *n_rules; i++) {
1465		tmp_rule = &reg_rules[i];
1466		/* rule is already contained - do nothing */
1467		if (rule_contains(tmp_rule, rule))
1468			return;
1469
1470		/* extend rule if possible */
1471		if (rule_contains(rule, tmp_rule)) {
1472			memcpy(tmp_rule, rule, sizeof(*rule));
1473			return;
1474		}
1475	}
1476
1477	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1478	(*n_rules)++;
1479}
1480
1481/**
1482 * regdom_intersect - do the intersection between two regulatory domains
1483 * @rd1: first regulatory domain
1484 * @rd2: second regulatory domain
1485 *
1486 * Use this function to get the intersection between two regulatory domains.
1487 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1488 * as no one single alpha2 can represent this regulatory domain.
1489 *
1490 * Returns a pointer to the regulatory domain structure which will hold the
1491 * resulting intersection of rules between rd1 and rd2. We will
1492 * kzalloc() this structure for you.
 
 
1493 */
1494static struct ieee80211_regdomain *
1495regdom_intersect(const struct ieee80211_regdomain *rd1,
1496		 const struct ieee80211_regdomain *rd2)
1497{
1498	int r;
1499	unsigned int x, y;
1500	unsigned int num_rules = 0;
1501	const struct ieee80211_reg_rule *rule1, *rule2;
1502	struct ieee80211_reg_rule intersected_rule;
1503	struct ieee80211_regdomain *rd;
1504
1505	if (!rd1 || !rd2)
1506		return NULL;
1507
1508	/*
1509	 * First we get a count of the rules we'll need, then we actually
1510	 * build them. This is to so we can malloc() and free() a
1511	 * regdomain once. The reason we use reg_rules_intersect() here
1512	 * is it will return -EINVAL if the rule computed makes no sense.
1513	 * All rules that do check out OK are valid.
1514	 */
1515
1516	for (x = 0; x < rd1->n_reg_rules; x++) {
1517		rule1 = &rd1->reg_rules[x];
1518		for (y = 0; y < rd2->n_reg_rules; y++) {
1519			rule2 = &rd2->reg_rules[y];
1520			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1521						 &intersected_rule))
1522				num_rules++;
1523		}
1524	}
1525
1526	if (!num_rules)
1527		return NULL;
1528
1529	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1530	if (!rd)
1531		return NULL;
1532
1533	for (x = 0; x < rd1->n_reg_rules; x++) {
1534		rule1 = &rd1->reg_rules[x];
1535		for (y = 0; y < rd2->n_reg_rules; y++) {
1536			rule2 = &rd2->reg_rules[y];
1537			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1538						&intersected_rule);
1539			/*
1540			 * No need to memset here the intersected rule here as
1541			 * we're not using the stack anymore
1542			 */
1543			if (r)
1544				continue;
1545
1546			add_rule(&intersected_rule, rd->reg_rules,
1547				 &rd->n_reg_rules);
1548		}
1549	}
1550
1551	rd->alpha2[0] = '9';
1552	rd->alpha2[1] = '8';
1553	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1554						  rd2->dfs_region);
1555
1556	return rd;
1557}
1558
1559/*
1560 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1561 * want to just have the channel structure use these
1562 */
1563static u32 map_regdom_flags(u32 rd_flags)
1564{
1565	u32 channel_flags = 0;
1566	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1567		channel_flags |= IEEE80211_CHAN_NO_IR;
1568	if (rd_flags & NL80211_RRF_DFS)
1569		channel_flags |= IEEE80211_CHAN_RADAR;
1570	if (rd_flags & NL80211_RRF_NO_OFDM)
1571		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1572	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1573		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1574	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1575		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1576	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1577		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1578	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1579		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1580	if (rd_flags & NL80211_RRF_NO_80MHZ)
1581		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1582	if (rd_flags & NL80211_RRF_NO_160MHZ)
1583		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1584	if (rd_flags & NL80211_RRF_NO_HE)
1585		channel_flags |= IEEE80211_CHAN_NO_HE;
 
 
 
 
 
 
 
 
 
 
 
 
1586	return channel_flags;
1587}
1588
1589static const struct ieee80211_reg_rule *
1590freq_reg_info_regd(u32 center_freq,
1591		   const struct ieee80211_regdomain *regd, u32 bw)
1592{
1593	int i;
1594	bool band_rule_found = false;
1595	bool bw_fits = false;
1596
1597	if (!regd)
1598		return ERR_PTR(-EINVAL);
1599
1600	for (i = 0; i < regd->n_reg_rules; i++) {
1601		const struct ieee80211_reg_rule *rr;
1602		const struct ieee80211_freq_range *fr = NULL;
1603
1604		rr = &regd->reg_rules[i];
1605		fr = &rr->freq_range;
1606
1607		/*
1608		 * We only need to know if one frequency rule was
1609		 * in center_freq's band, that's enough, so let's
1610		 * not overwrite it once found
1611		 */
1612		if (!band_rule_found)
1613			band_rule_found = freq_in_rule_band(fr, center_freq);
1614
1615		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1616
1617		if (band_rule_found && bw_fits)
1618			return rr;
1619	}
1620
1621	if (!band_rule_found)
1622		return ERR_PTR(-ERANGE);
1623
1624	return ERR_PTR(-EINVAL);
1625}
1626
1627static const struct ieee80211_reg_rule *
1628__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1629{
1630	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1631	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1632	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1633	int i = ARRAY_SIZE(bws) - 1;
1634	u32 bw;
1635
1636	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1637		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1638		if (!IS_ERR(reg_rule))
1639			return reg_rule;
1640	}
1641
1642	return reg_rule;
1643}
1644
1645const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1646					       u32 center_freq)
1647{
1648	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1649
1650	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1651}
1652EXPORT_SYMBOL(freq_reg_info);
1653
1654const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1655{
1656	switch (initiator) {
1657	case NL80211_REGDOM_SET_BY_CORE:
1658		return "core";
1659	case NL80211_REGDOM_SET_BY_USER:
1660		return "user";
1661	case NL80211_REGDOM_SET_BY_DRIVER:
1662		return "driver";
1663	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1664		return "country element";
1665	default:
1666		WARN_ON(1);
1667		return "bug";
1668	}
1669}
1670EXPORT_SYMBOL(reg_initiator_name);
1671
1672static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1673					  const struct ieee80211_reg_rule *reg_rule,
1674					  const struct ieee80211_channel *chan)
1675{
1676	const struct ieee80211_freq_range *freq_range = NULL;
1677	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1678	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1679
1680	freq_range = &reg_rule->freq_range;
1681
1682	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1683	center_freq_khz = ieee80211_channel_to_khz(chan);
1684	/* Check if auto calculation requested */
1685	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1686		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1687
1688	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1689	if (!cfg80211_does_bw_fit_range(freq_range,
1690					center_freq_khz,
1691					MHZ_TO_KHZ(10)))
1692		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1693	if (!cfg80211_does_bw_fit_range(freq_range,
1694					center_freq_khz,
1695					MHZ_TO_KHZ(20)))
1696		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1697
1698	if (is_s1g) {
1699		/* S1G is strict about non overlapping channels. We can
1700		 * calculate which bandwidth is allowed per channel by finding
1701		 * the largest bandwidth which cleanly divides the freq_range.
1702		 */
1703		int edge_offset;
1704		int ch_bw = max_bandwidth_khz;
1705
1706		while (ch_bw) {
1707			edge_offset = (center_freq_khz - ch_bw / 2) -
1708				      freq_range->start_freq_khz;
1709			if (edge_offset % ch_bw == 0) {
1710				switch (KHZ_TO_MHZ(ch_bw)) {
1711				case 1:
1712					bw_flags |= IEEE80211_CHAN_1MHZ;
1713					break;
1714				case 2:
1715					bw_flags |= IEEE80211_CHAN_2MHZ;
1716					break;
1717				case 4:
1718					bw_flags |= IEEE80211_CHAN_4MHZ;
1719					break;
1720				case 8:
1721					bw_flags |= IEEE80211_CHAN_8MHZ;
1722					break;
1723				case 16:
1724					bw_flags |= IEEE80211_CHAN_16MHZ;
1725					break;
1726				default:
1727					/* If we got here, no bandwidths fit on
1728					 * this frequency, ie. band edge.
1729					 */
1730					bw_flags |= IEEE80211_CHAN_DISABLED;
1731					break;
1732				}
1733				break;
1734			}
1735			ch_bw /= 2;
1736		}
1737	} else {
1738		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1739			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1740		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1741			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1742		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1743			bw_flags |= IEEE80211_CHAN_NO_HT40;
1744		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1745			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1746		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1747			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
 
 
1748	}
1749	return bw_flags;
1750}
1751
1752static void handle_channel_single_rule(struct wiphy *wiphy,
1753				       enum nl80211_reg_initiator initiator,
1754				       struct ieee80211_channel *chan,
1755				       u32 flags,
1756				       struct regulatory_request *lr,
1757				       struct wiphy *request_wiphy,
1758				       const struct ieee80211_reg_rule *reg_rule)
1759{
1760	u32 bw_flags = 0;
1761	const struct ieee80211_power_rule *power_rule = NULL;
1762	const struct ieee80211_regdomain *regd;
1763
1764	regd = reg_get_regdomain(wiphy);
1765
1766	power_rule = &reg_rule->power_rule;
1767	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1768
1769	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1770	    request_wiphy && request_wiphy == wiphy &&
1771	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1772		/*
1773		 * This guarantees the driver's requested regulatory domain
1774		 * will always be used as a base for further regulatory
1775		 * settings
1776		 */
1777		chan->flags = chan->orig_flags =
1778			map_regdom_flags(reg_rule->flags) | bw_flags;
1779		chan->max_antenna_gain = chan->orig_mag =
1780			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1781		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1782			(int) MBM_TO_DBM(power_rule->max_eirp);
1783
1784		if (chan->flags & IEEE80211_CHAN_RADAR) {
1785			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786			if (reg_rule->dfs_cac_ms)
1787				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1788		}
1789
 
 
 
1790		return;
1791	}
1792
1793	chan->dfs_state = NL80211_DFS_USABLE;
1794	chan->dfs_state_entered = jiffies;
1795
1796	chan->beacon_found = false;
1797	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1798	chan->max_antenna_gain =
1799		min_t(int, chan->orig_mag,
1800		      MBI_TO_DBI(power_rule->max_antenna_gain));
1801	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1802
1803	if (chan->flags & IEEE80211_CHAN_RADAR) {
1804		if (reg_rule->dfs_cac_ms)
1805			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1806		else
1807			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1808	}
1809
 
 
 
1810	if (chan->orig_mpwr) {
1811		/*
1812		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1813		 * will always follow the passed country IE power settings.
1814		 */
1815		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1816		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1817			chan->max_power = chan->max_reg_power;
1818		else
1819			chan->max_power = min(chan->orig_mpwr,
1820					      chan->max_reg_power);
1821	} else
1822		chan->max_power = chan->max_reg_power;
1823}
1824
1825static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1826					  enum nl80211_reg_initiator initiator,
1827					  struct ieee80211_channel *chan,
1828					  u32 flags,
1829					  struct regulatory_request *lr,
1830					  struct wiphy *request_wiphy,
1831					  const struct ieee80211_reg_rule *rrule1,
1832					  const struct ieee80211_reg_rule *rrule2,
1833					  struct ieee80211_freq_range *comb_range)
1834{
1835	u32 bw_flags1 = 0;
1836	u32 bw_flags2 = 0;
1837	const struct ieee80211_power_rule *power_rule1 = NULL;
1838	const struct ieee80211_power_rule *power_rule2 = NULL;
1839	const struct ieee80211_regdomain *regd;
1840
1841	regd = reg_get_regdomain(wiphy);
1842
1843	power_rule1 = &rrule1->power_rule;
1844	power_rule2 = &rrule2->power_rule;
1845	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1846	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1847
1848	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1849	    request_wiphy && request_wiphy == wiphy &&
1850	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1851		/* This guarantees the driver's requested regulatory domain
1852		 * will always be used as a base for further regulatory
1853		 * settings
1854		 */
1855		chan->flags =
1856			map_regdom_flags(rrule1->flags) |
1857			map_regdom_flags(rrule2->flags) |
1858			bw_flags1 |
1859			bw_flags2;
1860		chan->orig_flags = chan->flags;
1861		chan->max_antenna_gain =
1862			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1863			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1864		chan->orig_mag = chan->max_antenna_gain;
1865		chan->max_reg_power =
1866			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1867			      MBM_TO_DBM(power_rule2->max_eirp));
1868		chan->max_power = chan->max_reg_power;
1869		chan->orig_mpwr = chan->max_reg_power;
1870
1871		if (chan->flags & IEEE80211_CHAN_RADAR) {
1872			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1873			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1874				chan->dfs_cac_ms = max_t(unsigned int,
1875							 rrule1->dfs_cac_ms,
1876							 rrule2->dfs_cac_ms);
1877		}
1878
 
 
 
 
 
 
1879		return;
1880	}
1881
1882	chan->dfs_state = NL80211_DFS_USABLE;
1883	chan->dfs_state_entered = jiffies;
1884
1885	chan->beacon_found = false;
1886	chan->flags = flags | bw_flags1 | bw_flags2 |
1887		      map_regdom_flags(rrule1->flags) |
1888		      map_regdom_flags(rrule2->flags);
1889
1890	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1891	 * (otherwise no adj. rule case), recheck therefore
1892	 */
1893	if (cfg80211_does_bw_fit_range(comb_range,
1894				       ieee80211_channel_to_khz(chan),
1895				       MHZ_TO_KHZ(10)))
1896		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1897	if (cfg80211_does_bw_fit_range(comb_range,
1898				       ieee80211_channel_to_khz(chan),
1899				       MHZ_TO_KHZ(20)))
1900		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1901
1902	chan->max_antenna_gain =
1903		min_t(int, chan->orig_mag,
1904		      min_t(int,
1905			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1906			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1907	chan->max_reg_power = min_t(int,
1908				    MBM_TO_DBM(power_rule1->max_eirp),
1909				    MBM_TO_DBM(power_rule2->max_eirp));
1910
1911	if (chan->flags & IEEE80211_CHAN_RADAR) {
1912		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1913			chan->dfs_cac_ms = max_t(unsigned int,
1914						 rrule1->dfs_cac_ms,
1915						 rrule2->dfs_cac_ms);
1916		else
1917			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1918	}
1919
1920	if (chan->orig_mpwr) {
1921		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1922		 * will always follow the passed country IE power settings.
1923		 */
1924		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1925		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1926			chan->max_power = chan->max_reg_power;
1927		else
1928			chan->max_power = min(chan->orig_mpwr,
1929					      chan->max_reg_power);
1930	} else {
1931		chan->max_power = chan->max_reg_power;
1932	}
1933}
1934
1935/* Note that right now we assume the desired channel bandwidth
1936 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1937 * per channel, the primary and the extension channel).
1938 */
1939static void handle_channel(struct wiphy *wiphy,
1940			   enum nl80211_reg_initiator initiator,
1941			   struct ieee80211_channel *chan)
1942{
1943	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1944	struct regulatory_request *lr = get_last_request();
1945	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1946	const struct ieee80211_reg_rule *rrule = NULL;
1947	const struct ieee80211_reg_rule *rrule1 = NULL;
1948	const struct ieee80211_reg_rule *rrule2 = NULL;
1949
1950	u32 flags = chan->orig_flags;
1951
1952	rrule = freq_reg_info(wiphy, orig_chan_freq);
1953	if (IS_ERR(rrule)) {
1954		/* check for adjacent match, therefore get rules for
1955		 * chan - 20 MHz and chan + 20 MHz and test
1956		 * if reg rules are adjacent
1957		 */
1958		rrule1 = freq_reg_info(wiphy,
1959				       orig_chan_freq - MHZ_TO_KHZ(20));
1960		rrule2 = freq_reg_info(wiphy,
1961				       orig_chan_freq + MHZ_TO_KHZ(20));
1962		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1963			struct ieee80211_freq_range comb_range;
1964
1965			if (rrule1->freq_range.end_freq_khz !=
1966			    rrule2->freq_range.start_freq_khz)
1967				goto disable_chan;
1968
1969			comb_range.start_freq_khz =
1970				rrule1->freq_range.start_freq_khz;
1971			comb_range.end_freq_khz =
1972				rrule2->freq_range.end_freq_khz;
1973			comb_range.max_bandwidth_khz =
1974				min_t(u32,
1975				      rrule1->freq_range.max_bandwidth_khz,
1976				      rrule2->freq_range.max_bandwidth_khz);
1977
1978			if (!cfg80211_does_bw_fit_range(&comb_range,
1979							orig_chan_freq,
1980							MHZ_TO_KHZ(20)))
1981				goto disable_chan;
1982
1983			handle_channel_adjacent_rules(wiphy, initiator, chan,
1984						      flags, lr, request_wiphy,
1985						      rrule1, rrule2,
1986						      &comb_range);
1987			return;
1988		}
1989
1990disable_chan:
1991		/* We will disable all channels that do not match our
1992		 * received regulatory rule unless the hint is coming
1993		 * from a Country IE and the Country IE had no information
1994		 * about a band. The IEEE 802.11 spec allows for an AP
1995		 * to send only a subset of the regulatory rules allowed,
1996		 * so an AP in the US that only supports 2.4 GHz may only send
1997		 * a country IE with information for the 2.4 GHz band
1998		 * while 5 GHz is still supported.
1999		 */
2000		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2001		    PTR_ERR(rrule) == -ERANGE)
2002			return;
2003
2004		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2005		    request_wiphy && request_wiphy == wiphy &&
2006		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2007			pr_debug("Disabling freq %d.%03d MHz for good\n",
2008				 chan->center_freq, chan->freq_offset);
2009			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2010			chan->flags = chan->orig_flags;
2011		} else {
2012			pr_debug("Disabling freq %d.%03d MHz\n",
2013				 chan->center_freq, chan->freq_offset);
2014			chan->flags |= IEEE80211_CHAN_DISABLED;
2015		}
2016		return;
2017	}
2018
2019	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2020				   request_wiphy, rrule);
2021}
2022
2023static void handle_band(struct wiphy *wiphy,
2024			enum nl80211_reg_initiator initiator,
2025			struct ieee80211_supported_band *sband)
2026{
2027	unsigned int i;
2028
2029	if (!sband)
2030		return;
2031
2032	for (i = 0; i < sband->n_channels; i++)
2033		handle_channel(wiphy, initiator, &sband->channels[i]);
2034}
2035
2036static bool reg_request_cell_base(struct regulatory_request *request)
2037{
2038	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2039		return false;
2040	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2041}
2042
2043bool reg_last_request_cell_base(void)
2044{
2045	return reg_request_cell_base(get_last_request());
2046}
2047
2048#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2049/* Core specific check */
2050static enum reg_request_treatment
2051reg_ignore_cell_hint(struct regulatory_request *pending_request)
2052{
2053	struct regulatory_request *lr = get_last_request();
2054
2055	if (!reg_num_devs_support_basehint)
2056		return REG_REQ_IGNORE;
2057
2058	if (reg_request_cell_base(lr) &&
2059	    !regdom_changes(pending_request->alpha2))
2060		return REG_REQ_ALREADY_SET;
2061
2062	return REG_REQ_OK;
2063}
2064
2065/* Device specific check */
2066static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2067{
2068	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2069}
2070#else
2071static enum reg_request_treatment
2072reg_ignore_cell_hint(struct regulatory_request *pending_request)
2073{
2074	return REG_REQ_IGNORE;
2075}
2076
2077static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2078{
2079	return true;
2080}
2081#endif
2082
2083static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2084{
2085	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2086	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2087		return true;
2088	return false;
2089}
2090
2091static bool ignore_reg_update(struct wiphy *wiphy,
2092			      enum nl80211_reg_initiator initiator)
2093{
2094	struct regulatory_request *lr = get_last_request();
2095
2096	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2097		return true;
2098
2099	if (!lr) {
2100		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2101			 reg_initiator_name(initiator));
2102		return true;
2103	}
2104
2105	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2106	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2107		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2108			 reg_initiator_name(initiator));
2109		return true;
2110	}
2111
2112	/*
2113	 * wiphy->regd will be set once the device has its own
2114	 * desired regulatory domain set
2115	 */
2116	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2117	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2118	    !is_world_regdom(lr->alpha2)) {
2119		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2120			 reg_initiator_name(initiator));
2121		return true;
2122	}
2123
2124	if (reg_request_cell_base(lr))
2125		return reg_dev_ignore_cell_hint(wiphy);
2126
2127	return false;
2128}
2129
2130static bool reg_is_world_roaming(struct wiphy *wiphy)
2131{
2132	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2133	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2134	struct regulatory_request *lr = get_last_request();
2135
2136	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2137		return true;
2138
2139	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2140	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2141		return true;
2142
2143	return false;
2144}
2145
 
 
 
 
 
 
 
2146static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2147			      struct reg_beacon *reg_beacon)
2148{
2149	struct ieee80211_supported_band *sband;
2150	struct ieee80211_channel *chan;
2151	bool channel_changed = false;
2152	struct ieee80211_channel chan_before;
 
2153
2154	sband = wiphy->bands[reg_beacon->chan.band];
2155	chan = &sband->channels[chan_idx];
2156
2157	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2158		return;
2159
2160	if (chan->beacon_found)
2161		return;
2162
2163	chan->beacon_found = true;
2164
2165	if (!reg_is_world_roaming(wiphy))
2166		return;
2167
2168	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2169		return;
2170
2171	chan_before = *chan;
2172
2173	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2174		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2175		channel_changed = true;
2176	}
2177
2178	if (channel_changed)
2179		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
 
 
 
2180}
2181
2182/*
2183 * Called when a scan on a wiphy finds a beacon on
2184 * new channel
2185 */
2186static void wiphy_update_new_beacon(struct wiphy *wiphy,
2187				    struct reg_beacon *reg_beacon)
2188{
2189	unsigned int i;
2190	struct ieee80211_supported_band *sband;
2191
2192	if (!wiphy->bands[reg_beacon->chan.band])
2193		return;
2194
2195	sband = wiphy->bands[reg_beacon->chan.band];
2196
2197	for (i = 0; i < sband->n_channels; i++)
2198		handle_reg_beacon(wiphy, i, reg_beacon);
2199}
2200
2201/*
2202 * Called upon reg changes or a new wiphy is added
2203 */
2204static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2205{
2206	unsigned int i;
2207	struct ieee80211_supported_band *sband;
2208	struct reg_beacon *reg_beacon;
2209
2210	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2211		if (!wiphy->bands[reg_beacon->chan.band])
2212			continue;
2213		sband = wiphy->bands[reg_beacon->chan.band];
2214		for (i = 0; i < sband->n_channels; i++)
2215			handle_reg_beacon(wiphy, i, reg_beacon);
2216	}
2217}
2218
2219/* Reap the advantages of previously found beacons */
2220static void reg_process_beacons(struct wiphy *wiphy)
2221{
2222	/*
2223	 * Means we are just firing up cfg80211, so no beacons would
2224	 * have been processed yet.
2225	 */
2226	if (!last_request)
2227		return;
2228	wiphy_update_beacon_reg(wiphy);
2229}
2230
2231static bool is_ht40_allowed(struct ieee80211_channel *chan)
2232{
2233	if (!chan)
2234		return false;
2235	if (chan->flags & IEEE80211_CHAN_DISABLED)
2236		return false;
2237	/* This would happen when regulatory rules disallow HT40 completely */
2238	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2239		return false;
2240	return true;
2241}
2242
2243static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2244					 struct ieee80211_channel *channel)
2245{
2246	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2247	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2248	const struct ieee80211_regdomain *regd;
2249	unsigned int i;
2250	u32 flags;
2251
2252	if (!is_ht40_allowed(channel)) {
2253		channel->flags |= IEEE80211_CHAN_NO_HT40;
2254		return;
2255	}
2256
2257	/*
2258	 * We need to ensure the extension channels exist to
2259	 * be able to use HT40- or HT40+, this finds them (or not)
2260	 */
2261	for (i = 0; i < sband->n_channels; i++) {
2262		struct ieee80211_channel *c = &sband->channels[i];
2263
2264		if (c->center_freq == (channel->center_freq - 20))
2265			channel_before = c;
2266		if (c->center_freq == (channel->center_freq + 20))
2267			channel_after = c;
2268	}
2269
2270	flags = 0;
2271	regd = get_wiphy_regdom(wiphy);
2272	if (regd) {
2273		const struct ieee80211_reg_rule *reg_rule =
2274			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2275					   regd, MHZ_TO_KHZ(20));
2276
2277		if (!IS_ERR(reg_rule))
2278			flags = reg_rule->flags;
2279	}
2280
2281	/*
2282	 * Please note that this assumes target bandwidth is 20 MHz,
2283	 * if that ever changes we also need to change the below logic
2284	 * to include that as well.
2285	 */
2286	if (!is_ht40_allowed(channel_before) ||
2287	    flags & NL80211_RRF_NO_HT40MINUS)
2288		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2289	else
2290		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2291
2292	if (!is_ht40_allowed(channel_after) ||
2293	    flags & NL80211_RRF_NO_HT40PLUS)
2294		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2295	else
2296		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2297}
2298
2299static void reg_process_ht_flags_band(struct wiphy *wiphy,
2300				      struct ieee80211_supported_band *sband)
2301{
2302	unsigned int i;
2303
2304	if (!sband)
2305		return;
2306
2307	for (i = 0; i < sband->n_channels; i++)
2308		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2309}
2310
2311static void reg_process_ht_flags(struct wiphy *wiphy)
2312{
2313	enum nl80211_band band;
2314
2315	if (!wiphy)
2316		return;
2317
2318	for (band = 0; band < NUM_NL80211_BANDS; band++)
2319		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2320}
2321
2322static void reg_call_notifier(struct wiphy *wiphy,
2323			      struct regulatory_request *request)
2324{
2325	if (wiphy->reg_notifier)
2326		wiphy->reg_notifier(wiphy, request);
2327}
2328
2329static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2330{
2331	struct cfg80211_chan_def chandef = {};
2332	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2333	enum nl80211_iftype iftype;
 
 
2334
2335	wdev_lock(wdev);
2336	iftype = wdev->iftype;
2337
2338	/* make sure the interface is active */
2339	if (!wdev->netdev || !netif_running(wdev->netdev))
2340		goto wdev_inactive_unlock;
 
 
 
2341
2342	switch (iftype) {
2343	case NL80211_IFTYPE_AP:
2344	case NL80211_IFTYPE_P2P_GO:
2345		if (!wdev->beacon_interval)
2346			goto wdev_inactive_unlock;
2347		chandef = wdev->chandef;
2348		break;
2349	case NL80211_IFTYPE_ADHOC:
2350		if (!wdev->ssid_len)
2351			goto wdev_inactive_unlock;
2352		chandef = wdev->chandef;
2353		break;
2354	case NL80211_IFTYPE_STATION:
2355	case NL80211_IFTYPE_P2P_CLIENT:
2356		if (!wdev->current_bss ||
2357		    !wdev->current_bss->pub.channel)
2358			goto wdev_inactive_unlock;
2359
2360		if (!rdev->ops->get_channel ||
2361		    rdev_get_channel(rdev, wdev, &chandef))
2362			cfg80211_chandef_create(&chandef,
2363						wdev->current_bss->pub.channel,
2364						NL80211_CHAN_NO_HT);
2365		break;
2366	case NL80211_IFTYPE_MONITOR:
2367	case NL80211_IFTYPE_AP_VLAN:
2368	case NL80211_IFTYPE_P2P_DEVICE:
2369		/* no enforcement required */
2370		break;
2371	default:
2372		/* others not implemented for now */
2373		WARN_ON(1);
2374		break;
2375	}
2376
2377	wdev_unlock(wdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378
2379	switch (iftype) {
2380	case NL80211_IFTYPE_AP:
2381	case NL80211_IFTYPE_P2P_GO:
2382	case NL80211_IFTYPE_ADHOC:
2383		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2384	case NL80211_IFTYPE_STATION:
2385	case NL80211_IFTYPE_P2P_CLIENT:
2386		return cfg80211_chandef_usable(wiphy, &chandef,
2387					       IEEE80211_CHAN_DISABLED);
2388	default:
2389		break;
 
 
 
 
 
 
 
 
 
2390	}
2391
2392	return true;
2393
2394wdev_inactive_unlock:
2395	wdev_unlock(wdev);
2396	return true;
2397}
2398
2399static void reg_leave_invalid_chans(struct wiphy *wiphy)
2400{
2401	struct wireless_dev *wdev;
2402	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2403
2404	ASSERT_RTNL();
2405
2406	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2407		if (!reg_wdev_chan_valid(wiphy, wdev))
2408			cfg80211_leave(rdev, wdev);
 
2409}
2410
2411static void reg_check_chans_work(struct work_struct *work)
2412{
2413	struct cfg80211_registered_device *rdev;
2414
2415	pr_debug("Verifying active interfaces after reg change\n");
2416	rtnl_lock();
2417
2418	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2419		if (!(rdev->wiphy.regulatory_flags &
2420		      REGULATORY_IGNORE_STALE_KICKOFF))
2421			reg_leave_invalid_chans(&rdev->wiphy);
2422
2423	rtnl_unlock();
2424}
2425
2426static void reg_check_channels(void)
2427{
2428	/*
2429	 * Give usermode a chance to do something nicer (move to another
2430	 * channel, orderly disconnection), before forcing a disconnection.
2431	 */
2432	mod_delayed_work(system_power_efficient_wq,
2433			 &reg_check_chans,
2434			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2435}
2436
2437static void wiphy_update_regulatory(struct wiphy *wiphy,
2438				    enum nl80211_reg_initiator initiator)
2439{
2440	enum nl80211_band band;
2441	struct regulatory_request *lr = get_last_request();
2442
2443	if (ignore_reg_update(wiphy, initiator)) {
2444		/*
2445		 * Regulatory updates set by CORE are ignored for custom
2446		 * regulatory cards. Let us notify the changes to the driver,
2447		 * as some drivers used this to restore its orig_* reg domain.
2448		 */
2449		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2450		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2451		    !(wiphy->regulatory_flags &
2452		      REGULATORY_WIPHY_SELF_MANAGED))
2453			reg_call_notifier(wiphy, lr);
2454		return;
2455	}
2456
2457	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2458
2459	for (band = 0; band < NUM_NL80211_BANDS; band++)
2460		handle_band(wiphy, initiator, wiphy->bands[band]);
2461
2462	reg_process_beacons(wiphy);
2463	reg_process_ht_flags(wiphy);
2464	reg_call_notifier(wiphy, lr);
2465}
2466
2467static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2468{
2469	struct cfg80211_registered_device *rdev;
2470	struct wiphy *wiphy;
2471
2472	ASSERT_RTNL();
2473
2474	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2475		wiphy = &rdev->wiphy;
2476		wiphy_update_regulatory(wiphy, initiator);
2477	}
2478
2479	reg_check_channels();
2480}
2481
2482static void handle_channel_custom(struct wiphy *wiphy,
2483				  struct ieee80211_channel *chan,
2484				  const struct ieee80211_regdomain *regd,
2485				  u32 min_bw)
2486{
2487	u32 bw_flags = 0;
2488	const struct ieee80211_reg_rule *reg_rule = NULL;
2489	const struct ieee80211_power_rule *power_rule = NULL;
2490	u32 bw, center_freq_khz;
2491
2492	center_freq_khz = ieee80211_channel_to_khz(chan);
2493	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2494		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2495		if (!IS_ERR(reg_rule))
2496			break;
2497	}
2498
2499	if (IS_ERR_OR_NULL(reg_rule)) {
2500		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2501			 chan->center_freq, chan->freq_offset);
2502		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2503			chan->flags |= IEEE80211_CHAN_DISABLED;
2504		} else {
2505			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2506			chan->flags = chan->orig_flags;
2507		}
2508		return;
2509	}
2510
2511	power_rule = &reg_rule->power_rule;
2512	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2513
2514	chan->dfs_state_entered = jiffies;
2515	chan->dfs_state = NL80211_DFS_USABLE;
2516
2517	chan->beacon_found = false;
2518
2519	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2520		chan->flags = chan->orig_flags | bw_flags |
2521			      map_regdom_flags(reg_rule->flags);
2522	else
2523		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2524
2525	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2526	chan->max_reg_power = chan->max_power =
2527		(int) MBM_TO_DBM(power_rule->max_eirp);
2528
2529	if (chan->flags & IEEE80211_CHAN_RADAR) {
2530		if (reg_rule->dfs_cac_ms)
2531			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2532		else
2533			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2534	}
2535
 
 
 
2536	chan->max_power = chan->max_reg_power;
2537}
2538
2539static void handle_band_custom(struct wiphy *wiphy,
2540			       struct ieee80211_supported_band *sband,
2541			       const struct ieee80211_regdomain *regd)
2542{
2543	unsigned int i;
2544
2545	if (!sband)
2546		return;
2547
2548	/*
2549	 * We currently assume that you always want at least 20 MHz,
2550	 * otherwise channel 12 might get enabled if this rule is
2551	 * compatible to US, which permits 2402 - 2472 MHz.
2552	 */
2553	for (i = 0; i < sband->n_channels; i++)
2554		handle_channel_custom(wiphy, &sband->channels[i], regd,
2555				      MHZ_TO_KHZ(20));
2556}
2557
2558/* Used by drivers prior to wiphy registration */
2559void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2560				   const struct ieee80211_regdomain *regd)
2561{
2562	const struct ieee80211_regdomain *new_regd, *tmp;
2563	enum nl80211_band band;
2564	unsigned int bands_set = 0;
2565
2566	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2567	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2568	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2569
2570	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2571		if (!wiphy->bands[band])
2572			continue;
2573		handle_band_custom(wiphy, wiphy->bands[band], regd);
2574		bands_set++;
2575	}
2576
2577	/*
2578	 * no point in calling this if it won't have any effect
2579	 * on your device's supported bands.
2580	 */
2581	WARN_ON(!bands_set);
2582	new_regd = reg_copy_regd(regd);
2583	if (IS_ERR(new_regd))
2584		return;
2585
2586	rtnl_lock();
2587	wiphy_lock(wiphy);
2588
2589	tmp = get_wiphy_regdom(wiphy);
2590	rcu_assign_pointer(wiphy->regd, new_regd);
2591	rcu_free_regdom(tmp);
2592
2593	wiphy_unlock(wiphy);
2594	rtnl_unlock();
2595}
2596EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2597
2598static void reg_set_request_processed(void)
2599{
2600	bool need_more_processing = false;
2601	struct regulatory_request *lr = get_last_request();
2602
2603	lr->processed = true;
2604
2605	spin_lock(&reg_requests_lock);
2606	if (!list_empty(&reg_requests_list))
2607		need_more_processing = true;
2608	spin_unlock(&reg_requests_lock);
2609
2610	cancel_crda_timeout();
2611
2612	if (need_more_processing)
2613		schedule_work(&reg_work);
2614}
2615
2616/**
2617 * reg_process_hint_core - process core regulatory requests
2618 * @core_request: a pending core regulatory request
2619 *
2620 * The wireless subsystem can use this function to process
2621 * a regulatory request issued by the regulatory core.
 
 
 
2622 */
2623static enum reg_request_treatment
2624reg_process_hint_core(struct regulatory_request *core_request)
2625{
2626	if (reg_query_database(core_request)) {
2627		core_request->intersect = false;
2628		core_request->processed = false;
2629		reg_update_last_request(core_request);
2630		return REG_REQ_OK;
2631	}
2632
2633	return REG_REQ_IGNORE;
2634}
2635
2636static enum reg_request_treatment
2637__reg_process_hint_user(struct regulatory_request *user_request)
2638{
2639	struct regulatory_request *lr = get_last_request();
2640
2641	if (reg_request_cell_base(user_request))
2642		return reg_ignore_cell_hint(user_request);
2643
2644	if (reg_request_cell_base(lr))
2645		return REG_REQ_IGNORE;
2646
2647	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2648		return REG_REQ_INTERSECT;
2649	/*
2650	 * If the user knows better the user should set the regdom
2651	 * to their country before the IE is picked up
2652	 */
2653	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2654	    lr->intersect)
2655		return REG_REQ_IGNORE;
2656	/*
2657	 * Process user requests only after previous user/driver/core
2658	 * requests have been processed
2659	 */
2660	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2661	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2662	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2663	    regdom_changes(lr->alpha2))
2664		return REG_REQ_IGNORE;
2665
2666	if (!regdom_changes(user_request->alpha2))
2667		return REG_REQ_ALREADY_SET;
2668
2669	return REG_REQ_OK;
2670}
2671
2672/**
2673 * reg_process_hint_user - process user regulatory requests
2674 * @user_request: a pending user regulatory request
2675 *
2676 * The wireless subsystem can use this function to process
2677 * a regulatory request initiated by userspace.
 
 
 
2678 */
2679static enum reg_request_treatment
2680reg_process_hint_user(struct regulatory_request *user_request)
2681{
2682	enum reg_request_treatment treatment;
2683
2684	treatment = __reg_process_hint_user(user_request);
2685	if (treatment == REG_REQ_IGNORE ||
2686	    treatment == REG_REQ_ALREADY_SET)
2687		return REG_REQ_IGNORE;
2688
2689	user_request->intersect = treatment == REG_REQ_INTERSECT;
2690	user_request->processed = false;
2691
2692	if (reg_query_database(user_request)) {
2693		reg_update_last_request(user_request);
2694		user_alpha2[0] = user_request->alpha2[0];
2695		user_alpha2[1] = user_request->alpha2[1];
2696		return REG_REQ_OK;
2697	}
2698
2699	return REG_REQ_IGNORE;
2700}
2701
2702static enum reg_request_treatment
2703__reg_process_hint_driver(struct regulatory_request *driver_request)
2704{
2705	struct regulatory_request *lr = get_last_request();
2706
2707	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2708		if (regdom_changes(driver_request->alpha2))
2709			return REG_REQ_OK;
2710		return REG_REQ_ALREADY_SET;
2711	}
2712
2713	/*
2714	 * This would happen if you unplug and plug your card
2715	 * back in or if you add a new device for which the previously
2716	 * loaded card also agrees on the regulatory domain.
2717	 */
2718	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2719	    !regdom_changes(driver_request->alpha2))
2720		return REG_REQ_ALREADY_SET;
2721
2722	return REG_REQ_INTERSECT;
2723}
2724
2725/**
2726 * reg_process_hint_driver - process driver regulatory requests
2727 * @wiphy: the wireless device for the regulatory request
2728 * @driver_request: a pending driver regulatory request
2729 *
2730 * The wireless subsystem can use this function to process
2731 * a regulatory request issued by an 802.11 driver.
2732 *
2733 * Returns one of the different reg request treatment values.
2734 */
2735static enum reg_request_treatment
2736reg_process_hint_driver(struct wiphy *wiphy,
2737			struct regulatory_request *driver_request)
2738{
2739	const struct ieee80211_regdomain *regd, *tmp;
2740	enum reg_request_treatment treatment;
2741
2742	treatment = __reg_process_hint_driver(driver_request);
2743
2744	switch (treatment) {
2745	case REG_REQ_OK:
2746		break;
2747	case REG_REQ_IGNORE:
2748		return REG_REQ_IGNORE;
2749	case REG_REQ_INTERSECT:
2750	case REG_REQ_ALREADY_SET:
2751		regd = reg_copy_regd(get_cfg80211_regdom());
2752		if (IS_ERR(regd))
2753			return REG_REQ_IGNORE;
2754
2755		tmp = get_wiphy_regdom(wiphy);
2756		ASSERT_RTNL();
2757		wiphy_lock(wiphy);
2758		rcu_assign_pointer(wiphy->regd, regd);
2759		wiphy_unlock(wiphy);
2760		rcu_free_regdom(tmp);
2761	}
2762
2763
2764	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2765	driver_request->processed = false;
2766
2767	/*
2768	 * Since CRDA will not be called in this case as we already
2769	 * have applied the requested regulatory domain before we just
2770	 * inform userspace we have processed the request
2771	 */
2772	if (treatment == REG_REQ_ALREADY_SET) {
2773		nl80211_send_reg_change_event(driver_request);
2774		reg_update_last_request(driver_request);
2775		reg_set_request_processed();
2776		return REG_REQ_ALREADY_SET;
2777	}
2778
2779	if (reg_query_database(driver_request)) {
2780		reg_update_last_request(driver_request);
2781		return REG_REQ_OK;
2782	}
2783
2784	return REG_REQ_IGNORE;
2785}
2786
2787static enum reg_request_treatment
2788__reg_process_hint_country_ie(struct wiphy *wiphy,
2789			      struct regulatory_request *country_ie_request)
2790{
2791	struct wiphy *last_wiphy = NULL;
2792	struct regulatory_request *lr = get_last_request();
2793
2794	if (reg_request_cell_base(lr)) {
2795		/* Trust a Cell base station over the AP's country IE */
2796		if (regdom_changes(country_ie_request->alpha2))
2797			return REG_REQ_IGNORE;
2798		return REG_REQ_ALREADY_SET;
2799	} else {
2800		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2801			return REG_REQ_IGNORE;
2802	}
2803
2804	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2805		return -EINVAL;
2806
2807	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2808		return REG_REQ_OK;
2809
2810	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2811
2812	if (last_wiphy != wiphy) {
2813		/*
2814		 * Two cards with two APs claiming different
2815		 * Country IE alpha2s. We could
2816		 * intersect them, but that seems unlikely
2817		 * to be correct. Reject second one for now.
2818		 */
2819		if (regdom_changes(country_ie_request->alpha2))
2820			return REG_REQ_IGNORE;
2821		return REG_REQ_ALREADY_SET;
2822	}
2823
2824	if (regdom_changes(country_ie_request->alpha2))
2825		return REG_REQ_OK;
2826	return REG_REQ_ALREADY_SET;
2827}
2828
2829/**
2830 * reg_process_hint_country_ie - process regulatory requests from country IEs
2831 * @wiphy: the wireless device for the regulatory request
2832 * @country_ie_request: a regulatory request from a country IE
2833 *
2834 * The wireless subsystem can use this function to process
2835 * a regulatory request issued by a country Information Element.
2836 *
2837 * Returns one of the different reg request treatment values.
2838 */
2839static enum reg_request_treatment
2840reg_process_hint_country_ie(struct wiphy *wiphy,
2841			    struct regulatory_request *country_ie_request)
2842{
2843	enum reg_request_treatment treatment;
2844
2845	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2846
2847	switch (treatment) {
2848	case REG_REQ_OK:
2849		break;
2850	case REG_REQ_IGNORE:
2851		return REG_REQ_IGNORE;
2852	case REG_REQ_ALREADY_SET:
2853		reg_free_request(country_ie_request);
2854		return REG_REQ_ALREADY_SET;
2855	case REG_REQ_INTERSECT:
2856		/*
2857		 * This doesn't happen yet, not sure we
2858		 * ever want to support it for this case.
2859		 */
2860		WARN_ONCE(1, "Unexpected intersection for country elements");
2861		return REG_REQ_IGNORE;
2862	}
2863
2864	country_ie_request->intersect = false;
2865	country_ie_request->processed = false;
2866
2867	if (reg_query_database(country_ie_request)) {
2868		reg_update_last_request(country_ie_request);
2869		return REG_REQ_OK;
2870	}
2871
2872	return REG_REQ_IGNORE;
2873}
2874
2875bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2876{
2877	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2878	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2879	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2880	bool dfs_domain_same;
2881
2882	rcu_read_lock();
2883
2884	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2885	wiphy1_regd = rcu_dereference(wiphy1->regd);
2886	if (!wiphy1_regd)
2887		wiphy1_regd = cfg80211_regd;
2888
2889	wiphy2_regd = rcu_dereference(wiphy2->regd);
2890	if (!wiphy2_regd)
2891		wiphy2_regd = cfg80211_regd;
2892
2893	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2894
2895	rcu_read_unlock();
2896
2897	return dfs_domain_same;
2898}
2899
2900static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2901				    struct ieee80211_channel *src_chan)
2902{
2903	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2904	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2905		return;
2906
2907	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2908	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2909		return;
2910
2911	if (src_chan->center_freq == dst_chan->center_freq &&
2912	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2913		dst_chan->dfs_state = src_chan->dfs_state;
2914		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2915	}
2916}
2917
2918static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2919				       struct wiphy *src_wiphy)
2920{
2921	struct ieee80211_supported_band *src_sband, *dst_sband;
2922	struct ieee80211_channel *src_chan, *dst_chan;
2923	int i, j, band;
2924
2925	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2926		return;
2927
2928	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2929		dst_sband = dst_wiphy->bands[band];
2930		src_sband = src_wiphy->bands[band];
2931		if (!dst_sband || !src_sband)
2932			continue;
2933
2934		for (i = 0; i < dst_sband->n_channels; i++) {
2935			dst_chan = &dst_sband->channels[i];
2936			for (j = 0; j < src_sband->n_channels; j++) {
2937				src_chan = &src_sband->channels[j];
2938				reg_copy_dfs_chan_state(dst_chan, src_chan);
2939			}
2940		}
2941	}
2942}
2943
2944static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2945{
2946	struct cfg80211_registered_device *rdev;
2947
2948	ASSERT_RTNL();
2949
2950	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2951		if (wiphy == &rdev->wiphy)
2952			continue;
2953		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2954	}
2955}
2956
2957/* This processes *all* regulatory hints */
2958static void reg_process_hint(struct regulatory_request *reg_request)
2959{
2960	struct wiphy *wiphy = NULL;
2961	enum reg_request_treatment treatment;
2962	enum nl80211_reg_initiator initiator = reg_request->initiator;
2963
2964	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2965		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2966
2967	switch (initiator) {
2968	case NL80211_REGDOM_SET_BY_CORE:
2969		treatment = reg_process_hint_core(reg_request);
2970		break;
2971	case NL80211_REGDOM_SET_BY_USER:
2972		treatment = reg_process_hint_user(reg_request);
2973		break;
2974	case NL80211_REGDOM_SET_BY_DRIVER:
2975		if (!wiphy)
2976			goto out_free;
2977		treatment = reg_process_hint_driver(wiphy, reg_request);
2978		break;
2979	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2980		if (!wiphy)
2981			goto out_free;
2982		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2983		break;
2984	default:
2985		WARN(1, "invalid initiator %d\n", initiator);
2986		goto out_free;
2987	}
2988
2989	if (treatment == REG_REQ_IGNORE)
2990		goto out_free;
2991
2992	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2993	     "unexpected treatment value %d\n", treatment);
2994
2995	/* This is required so that the orig_* parameters are saved.
2996	 * NOTE: treatment must be set for any case that reaches here!
2997	 */
2998	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2999	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3000		wiphy_update_regulatory(wiphy, initiator);
3001		wiphy_all_share_dfs_chan_state(wiphy);
3002		reg_check_channels();
3003	}
3004
3005	return;
3006
3007out_free:
3008	reg_free_request(reg_request);
3009}
3010
3011static void notify_self_managed_wiphys(struct regulatory_request *request)
3012{
3013	struct cfg80211_registered_device *rdev;
3014	struct wiphy *wiphy;
3015
3016	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3017		wiphy = &rdev->wiphy;
3018		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3019		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3020			reg_call_notifier(wiphy, request);
3021	}
3022}
3023
3024/*
3025 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3026 * Regulatory hints come on a first come first serve basis and we
3027 * must process each one atomically.
3028 */
3029static void reg_process_pending_hints(void)
3030{
3031	struct regulatory_request *reg_request, *lr;
3032
3033	lr = get_last_request();
3034
3035	/* When last_request->processed becomes true this will be rescheduled */
3036	if (lr && !lr->processed) {
3037		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3038		return;
3039	}
3040
3041	spin_lock(&reg_requests_lock);
3042
3043	if (list_empty(&reg_requests_list)) {
3044		spin_unlock(&reg_requests_lock);
3045		return;
3046	}
3047
3048	reg_request = list_first_entry(&reg_requests_list,
3049				       struct regulatory_request,
3050				       list);
3051	list_del_init(&reg_request->list);
3052
3053	spin_unlock(&reg_requests_lock);
3054
3055	notify_self_managed_wiphys(reg_request);
3056
3057	reg_process_hint(reg_request);
3058
3059	lr = get_last_request();
3060
3061	spin_lock(&reg_requests_lock);
3062	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3063		schedule_work(&reg_work);
3064	spin_unlock(&reg_requests_lock);
3065}
3066
3067/* Processes beacon hints -- this has nothing to do with country IEs */
3068static void reg_process_pending_beacon_hints(void)
3069{
3070	struct cfg80211_registered_device *rdev;
3071	struct reg_beacon *pending_beacon, *tmp;
3072
3073	/* This goes through the _pending_ beacon list */
3074	spin_lock_bh(&reg_pending_beacons_lock);
3075
3076	list_for_each_entry_safe(pending_beacon, tmp,
3077				 &reg_pending_beacons, list) {
3078		list_del_init(&pending_beacon->list);
3079
3080		/* Applies the beacon hint to current wiphys */
3081		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3082			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3083
3084		/* Remembers the beacon hint for new wiphys or reg changes */
3085		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3086	}
3087
3088	spin_unlock_bh(&reg_pending_beacons_lock);
3089}
3090
3091static void reg_process_self_managed_hint(struct wiphy *wiphy)
3092{
3093	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3094	const struct ieee80211_regdomain *tmp;
3095	const struct ieee80211_regdomain *regd;
3096	enum nl80211_band band;
3097	struct regulatory_request request = {};
3098
3099	ASSERT_RTNL();
3100	lockdep_assert_wiphy(wiphy);
3101
3102	spin_lock(&reg_requests_lock);
3103	regd = rdev->requested_regd;
3104	rdev->requested_regd = NULL;
3105	spin_unlock(&reg_requests_lock);
3106
3107	if (!regd)
3108		return;
3109
3110	tmp = get_wiphy_regdom(wiphy);
3111	rcu_assign_pointer(wiphy->regd, regd);
3112	rcu_free_regdom(tmp);
3113
3114	for (band = 0; band < NUM_NL80211_BANDS; band++)
3115		handle_band_custom(wiphy, wiphy->bands[band], regd);
3116
3117	reg_process_ht_flags(wiphy);
3118
3119	request.wiphy_idx = get_wiphy_idx(wiphy);
3120	request.alpha2[0] = regd->alpha2[0];
3121	request.alpha2[1] = regd->alpha2[1];
3122	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3123
 
 
 
3124	nl80211_send_wiphy_reg_change_event(&request);
3125}
3126
3127static void reg_process_self_managed_hints(void)
3128{
3129	struct cfg80211_registered_device *rdev;
3130
3131	ASSERT_RTNL();
3132
3133	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3134		wiphy_lock(&rdev->wiphy);
3135		reg_process_self_managed_hint(&rdev->wiphy);
3136		wiphy_unlock(&rdev->wiphy);
3137	}
3138
3139	reg_check_channels();
3140}
3141
3142static void reg_todo(struct work_struct *work)
3143{
3144	rtnl_lock();
3145	reg_process_pending_hints();
3146	reg_process_pending_beacon_hints();
3147	reg_process_self_managed_hints();
3148	rtnl_unlock();
3149}
3150
3151static void queue_regulatory_request(struct regulatory_request *request)
3152{
3153	request->alpha2[0] = toupper(request->alpha2[0]);
3154	request->alpha2[1] = toupper(request->alpha2[1]);
3155
3156	spin_lock(&reg_requests_lock);
3157	list_add_tail(&request->list, &reg_requests_list);
3158	spin_unlock(&reg_requests_lock);
3159
3160	schedule_work(&reg_work);
3161}
3162
3163/*
3164 * Core regulatory hint -- happens during cfg80211_init()
3165 * and when we restore regulatory settings.
3166 */
3167static int regulatory_hint_core(const char *alpha2)
3168{
3169	struct regulatory_request *request;
3170
3171	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3172	if (!request)
3173		return -ENOMEM;
3174
3175	request->alpha2[0] = alpha2[0];
3176	request->alpha2[1] = alpha2[1];
3177	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3178	request->wiphy_idx = WIPHY_IDX_INVALID;
3179
3180	queue_regulatory_request(request);
3181
3182	return 0;
3183}
3184
3185/* User hints */
3186int regulatory_hint_user(const char *alpha2,
3187			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3188{
3189	struct regulatory_request *request;
3190
3191	if (WARN_ON(!alpha2))
3192		return -EINVAL;
3193
3194	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3195		return -EINVAL;
3196
3197	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3198	if (!request)
3199		return -ENOMEM;
3200
3201	request->wiphy_idx = WIPHY_IDX_INVALID;
3202	request->alpha2[0] = alpha2[0];
3203	request->alpha2[1] = alpha2[1];
3204	request->initiator = NL80211_REGDOM_SET_BY_USER;
3205	request->user_reg_hint_type = user_reg_hint_type;
3206
3207	/* Allow calling CRDA again */
3208	reset_crda_timeouts();
3209
3210	queue_regulatory_request(request);
3211
3212	return 0;
3213}
3214
3215int regulatory_hint_indoor(bool is_indoor, u32 portid)
3216{
3217	spin_lock(&reg_indoor_lock);
3218
3219	/* It is possible that more than one user space process is trying to
3220	 * configure the indoor setting. To handle such cases, clear the indoor
3221	 * setting in case that some process does not think that the device
3222	 * is operating in an indoor environment. In addition, if a user space
3223	 * process indicates that it is controlling the indoor setting, save its
3224	 * portid, i.e., make it the owner.
3225	 */
3226	reg_is_indoor = is_indoor;
3227	if (reg_is_indoor) {
3228		if (!reg_is_indoor_portid)
3229			reg_is_indoor_portid = portid;
3230	} else {
3231		reg_is_indoor_portid = 0;
3232	}
3233
3234	spin_unlock(&reg_indoor_lock);
3235
3236	if (!is_indoor)
3237		reg_check_channels();
3238
3239	return 0;
3240}
3241
3242void regulatory_netlink_notify(u32 portid)
3243{
3244	spin_lock(&reg_indoor_lock);
3245
3246	if (reg_is_indoor_portid != portid) {
3247		spin_unlock(&reg_indoor_lock);
3248		return;
3249	}
3250
3251	reg_is_indoor = false;
3252	reg_is_indoor_portid = 0;
3253
3254	spin_unlock(&reg_indoor_lock);
3255
3256	reg_check_channels();
3257}
3258
3259/* Driver hints */
3260int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3261{
3262	struct regulatory_request *request;
3263
3264	if (WARN_ON(!alpha2 || !wiphy))
3265		return -EINVAL;
3266
3267	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3268
3269	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3270	if (!request)
3271		return -ENOMEM;
3272
3273	request->wiphy_idx = get_wiphy_idx(wiphy);
3274
3275	request->alpha2[0] = alpha2[0];
3276	request->alpha2[1] = alpha2[1];
3277	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3278
3279	/* Allow calling CRDA again */
3280	reset_crda_timeouts();
3281
3282	queue_regulatory_request(request);
3283
3284	return 0;
3285}
3286EXPORT_SYMBOL(regulatory_hint);
3287
3288void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3289				const u8 *country_ie, u8 country_ie_len)
3290{
3291	char alpha2[2];
3292	enum environment_cap env = ENVIRON_ANY;
3293	struct regulatory_request *request = NULL, *lr;
3294
3295	/* IE len must be evenly divisible by 2 */
3296	if (country_ie_len & 0x01)
3297		return;
3298
3299	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3300		return;
3301
3302	request = kzalloc(sizeof(*request), GFP_KERNEL);
3303	if (!request)
3304		return;
3305
3306	alpha2[0] = country_ie[0];
3307	alpha2[1] = country_ie[1];
3308
3309	if (country_ie[2] == 'I')
3310		env = ENVIRON_INDOOR;
3311	else if (country_ie[2] == 'O')
3312		env = ENVIRON_OUTDOOR;
3313
3314	rcu_read_lock();
3315	lr = get_last_request();
3316
3317	if (unlikely(!lr))
3318		goto out;
3319
3320	/*
3321	 * We will run this only upon a successful connection on cfg80211.
3322	 * We leave conflict resolution to the workqueue, where can hold
3323	 * the RTNL.
3324	 */
3325	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3326	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3327		goto out;
3328
3329	request->wiphy_idx = get_wiphy_idx(wiphy);
3330	request->alpha2[0] = alpha2[0];
3331	request->alpha2[1] = alpha2[1];
3332	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3333	request->country_ie_env = env;
3334
3335	/* Allow calling CRDA again */
3336	reset_crda_timeouts();
3337
3338	queue_regulatory_request(request);
3339	request = NULL;
3340out:
3341	kfree(request);
3342	rcu_read_unlock();
3343}
3344
3345static void restore_alpha2(char *alpha2, bool reset_user)
3346{
3347	/* indicates there is no alpha2 to consider for restoration */
3348	alpha2[0] = '9';
3349	alpha2[1] = '7';
3350
3351	/* The user setting has precedence over the module parameter */
3352	if (is_user_regdom_saved()) {
3353		/* Unless we're asked to ignore it and reset it */
3354		if (reset_user) {
3355			pr_debug("Restoring regulatory settings including user preference\n");
3356			user_alpha2[0] = '9';
3357			user_alpha2[1] = '7';
3358
3359			/*
3360			 * If we're ignoring user settings, we still need to
3361			 * check the module parameter to ensure we put things
3362			 * back as they were for a full restore.
3363			 */
3364			if (!is_world_regdom(ieee80211_regdom)) {
3365				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3366					 ieee80211_regdom[0], ieee80211_regdom[1]);
3367				alpha2[0] = ieee80211_regdom[0];
3368				alpha2[1] = ieee80211_regdom[1];
3369			}
3370		} else {
3371			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3372				 user_alpha2[0], user_alpha2[1]);
3373			alpha2[0] = user_alpha2[0];
3374			alpha2[1] = user_alpha2[1];
3375		}
3376	} else if (!is_world_regdom(ieee80211_regdom)) {
3377		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3378			 ieee80211_regdom[0], ieee80211_regdom[1]);
3379		alpha2[0] = ieee80211_regdom[0];
3380		alpha2[1] = ieee80211_regdom[1];
3381	} else
3382		pr_debug("Restoring regulatory settings\n");
3383}
3384
3385static void restore_custom_reg_settings(struct wiphy *wiphy)
3386{
3387	struct ieee80211_supported_band *sband;
3388	enum nl80211_band band;
3389	struct ieee80211_channel *chan;
3390	int i;
3391
3392	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3393		sband = wiphy->bands[band];
3394		if (!sband)
3395			continue;
3396		for (i = 0; i < sband->n_channels; i++) {
3397			chan = &sband->channels[i];
3398			chan->flags = chan->orig_flags;
3399			chan->max_antenna_gain = chan->orig_mag;
3400			chan->max_power = chan->orig_mpwr;
3401			chan->beacon_found = false;
3402		}
3403	}
3404}
3405
3406/*
3407 * Restoring regulatory settings involves ignoring any
3408 * possibly stale country IE information and user regulatory
3409 * settings if so desired, this includes any beacon hints
3410 * learned as we could have traveled outside to another country
3411 * after disconnection. To restore regulatory settings we do
3412 * exactly what we did at bootup:
3413 *
3414 *   - send a core regulatory hint
3415 *   - send a user regulatory hint if applicable
3416 *
3417 * Device drivers that send a regulatory hint for a specific country
3418 * keep their own regulatory domain on wiphy->regd so that does
3419 * not need to be remembered.
3420 */
3421static void restore_regulatory_settings(bool reset_user, bool cached)
3422{
3423	char alpha2[2];
3424	char world_alpha2[2];
3425	struct reg_beacon *reg_beacon, *btmp;
3426	LIST_HEAD(tmp_reg_req_list);
3427	struct cfg80211_registered_device *rdev;
3428
3429	ASSERT_RTNL();
3430
3431	/*
3432	 * Clear the indoor setting in case that it is not controlled by user
3433	 * space, as otherwise there is no guarantee that the device is still
3434	 * operating in an indoor environment.
3435	 */
3436	spin_lock(&reg_indoor_lock);
3437	if (reg_is_indoor && !reg_is_indoor_portid) {
3438		reg_is_indoor = false;
3439		reg_check_channels();
3440	}
3441	spin_unlock(&reg_indoor_lock);
3442
3443	reset_regdomains(true, &world_regdom);
3444	restore_alpha2(alpha2, reset_user);
3445
3446	/*
3447	 * If there's any pending requests we simply
3448	 * stash them to a temporary pending queue and
3449	 * add then after we've restored regulatory
3450	 * settings.
3451	 */
3452	spin_lock(&reg_requests_lock);
3453	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3454	spin_unlock(&reg_requests_lock);
3455
3456	/* Clear beacon hints */
3457	spin_lock_bh(&reg_pending_beacons_lock);
3458	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3459		list_del(&reg_beacon->list);
3460		kfree(reg_beacon);
3461	}
3462	spin_unlock_bh(&reg_pending_beacons_lock);
3463
3464	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3465		list_del(&reg_beacon->list);
3466		kfree(reg_beacon);
3467	}
3468
3469	/* First restore to the basic regulatory settings */
3470	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3471	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3472
3473	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3474		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3475			continue;
3476		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3477			restore_custom_reg_settings(&rdev->wiphy);
3478	}
3479
3480	if (cached && (!is_an_alpha2(alpha2) ||
3481		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3482		reset_regdomains(false, cfg80211_world_regdom);
3483		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3484		print_regdomain(get_cfg80211_regdom());
3485		nl80211_send_reg_change_event(&core_request_world);
3486		reg_set_request_processed();
3487
3488		if (is_an_alpha2(alpha2) &&
3489		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3490			struct regulatory_request *ureq;
3491
3492			spin_lock(&reg_requests_lock);
3493			ureq = list_last_entry(&reg_requests_list,
3494					       struct regulatory_request,
3495					       list);
3496			list_del(&ureq->list);
3497			spin_unlock(&reg_requests_lock);
3498
3499			notify_self_managed_wiphys(ureq);
3500			reg_update_last_request(ureq);
3501			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3502				   REGD_SOURCE_CACHED);
3503		}
3504	} else {
3505		regulatory_hint_core(world_alpha2);
3506
3507		/*
3508		 * This restores the ieee80211_regdom module parameter
3509		 * preference or the last user requested regulatory
3510		 * settings, user regulatory settings takes precedence.
3511		 */
3512		if (is_an_alpha2(alpha2))
3513			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3514	}
3515
3516	spin_lock(&reg_requests_lock);
3517	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3518	spin_unlock(&reg_requests_lock);
3519
3520	pr_debug("Kicking the queue\n");
3521
3522	schedule_work(&reg_work);
3523}
3524
3525static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3526{
3527	struct cfg80211_registered_device *rdev;
3528	struct wireless_dev *wdev;
3529
3530	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
 
3531		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3532			wdev_lock(wdev);
3533			if (!(wdev->wiphy->regulatory_flags & flag)) {
3534				wdev_unlock(wdev);
3535				return false;
3536			}
3537			wdev_unlock(wdev);
3538		}
 
3539	}
3540
3541	return true;
3542}
3543
3544void regulatory_hint_disconnect(void)
3545{
3546	/* Restore of regulatory settings is not required when wiphy(s)
3547	 * ignore IE from connected access point but clearance of beacon hints
3548	 * is required when wiphy(s) supports beacon hints.
3549	 */
3550	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3551		struct reg_beacon *reg_beacon, *btmp;
3552
3553		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3554			return;
3555
3556		spin_lock_bh(&reg_pending_beacons_lock);
3557		list_for_each_entry_safe(reg_beacon, btmp,
3558					 &reg_pending_beacons, list) {
3559			list_del(&reg_beacon->list);
3560			kfree(reg_beacon);
3561		}
3562		spin_unlock_bh(&reg_pending_beacons_lock);
3563
3564		list_for_each_entry_safe(reg_beacon, btmp,
3565					 &reg_beacon_list, list) {
3566			list_del(&reg_beacon->list);
3567			kfree(reg_beacon);
3568		}
3569
3570		return;
3571	}
3572
3573	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3574	restore_regulatory_settings(false, true);
3575}
3576
3577static bool freq_is_chan_12_13_14(u32 freq)
3578{
3579	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3580	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3581	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3582		return true;
3583	return false;
3584}
3585
3586static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3587{
3588	struct reg_beacon *pending_beacon;
3589
3590	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3591		if (ieee80211_channel_equal(beacon_chan,
3592					    &pending_beacon->chan))
3593			return true;
3594	return false;
3595}
3596
3597int regulatory_hint_found_beacon(struct wiphy *wiphy,
3598				 struct ieee80211_channel *beacon_chan,
3599				 gfp_t gfp)
3600{
3601	struct reg_beacon *reg_beacon;
3602	bool processing;
3603
3604	if (beacon_chan->beacon_found ||
3605	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3606	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3607	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3608		return 0;
3609
3610	spin_lock_bh(&reg_pending_beacons_lock);
3611	processing = pending_reg_beacon(beacon_chan);
3612	spin_unlock_bh(&reg_pending_beacons_lock);
3613
3614	if (processing)
3615		return 0;
3616
3617	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3618	if (!reg_beacon)
3619		return -ENOMEM;
3620
3621	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3622		 beacon_chan->center_freq, beacon_chan->freq_offset,
3623		 ieee80211_freq_khz_to_channel(
3624			 ieee80211_channel_to_khz(beacon_chan)),
3625		 wiphy_name(wiphy));
3626
3627	memcpy(&reg_beacon->chan, beacon_chan,
3628	       sizeof(struct ieee80211_channel));
3629
3630	/*
3631	 * Since we can be called from BH or and non-BH context
3632	 * we must use spin_lock_bh()
3633	 */
3634	spin_lock_bh(&reg_pending_beacons_lock);
3635	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3636	spin_unlock_bh(&reg_pending_beacons_lock);
3637
3638	schedule_work(&reg_work);
3639
3640	return 0;
3641}
3642
3643static void print_rd_rules(const struct ieee80211_regdomain *rd)
3644{
3645	unsigned int i;
3646	const struct ieee80211_reg_rule *reg_rule = NULL;
3647	const struct ieee80211_freq_range *freq_range = NULL;
3648	const struct ieee80211_power_rule *power_rule = NULL;
3649	char bw[32], cac_time[32];
3650
3651	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3652
3653	for (i = 0; i < rd->n_reg_rules; i++) {
3654		reg_rule = &rd->reg_rules[i];
3655		freq_range = &reg_rule->freq_range;
3656		power_rule = &reg_rule->power_rule;
3657
3658		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3659			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3660				 freq_range->max_bandwidth_khz,
3661				 reg_get_max_bandwidth(rd, reg_rule));
3662		else
3663			snprintf(bw, sizeof(bw), "%d KHz",
3664				 freq_range->max_bandwidth_khz);
3665
3666		if (reg_rule->flags & NL80211_RRF_DFS)
3667			scnprintf(cac_time, sizeof(cac_time), "%u s",
3668				  reg_rule->dfs_cac_ms/1000);
3669		else
3670			scnprintf(cac_time, sizeof(cac_time), "N/A");
3671
3672
3673		/*
3674		 * There may not be documentation for max antenna gain
3675		 * in certain regions
3676		 */
3677		if (power_rule->max_antenna_gain)
3678			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3679				freq_range->start_freq_khz,
3680				freq_range->end_freq_khz,
3681				bw,
3682				power_rule->max_antenna_gain,
3683				power_rule->max_eirp,
3684				cac_time);
3685		else
3686			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3687				freq_range->start_freq_khz,
3688				freq_range->end_freq_khz,
3689				bw,
3690				power_rule->max_eirp,
3691				cac_time);
3692	}
3693}
3694
3695bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3696{
3697	switch (dfs_region) {
3698	case NL80211_DFS_UNSET:
3699	case NL80211_DFS_FCC:
3700	case NL80211_DFS_ETSI:
3701	case NL80211_DFS_JP:
3702		return true;
3703	default:
3704		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3705		return false;
3706	}
3707}
3708
3709static void print_regdomain(const struct ieee80211_regdomain *rd)
3710{
3711	struct regulatory_request *lr = get_last_request();
3712
3713	if (is_intersected_alpha2(rd->alpha2)) {
3714		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3715			struct cfg80211_registered_device *rdev;
3716			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3717			if (rdev) {
3718				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3719					rdev->country_ie_alpha2[0],
3720					rdev->country_ie_alpha2[1]);
3721			} else
3722				pr_debug("Current regulatory domain intersected:\n");
3723		} else
3724			pr_debug("Current regulatory domain intersected:\n");
3725	} else if (is_world_regdom(rd->alpha2)) {
3726		pr_debug("World regulatory domain updated:\n");
3727	} else {
3728		if (is_unknown_alpha2(rd->alpha2))
3729			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3730		else {
3731			if (reg_request_cell_base(lr))
3732				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3733					rd->alpha2[0], rd->alpha2[1]);
3734			else
3735				pr_debug("Regulatory domain changed to country: %c%c\n",
3736					rd->alpha2[0], rd->alpha2[1]);
3737		}
3738	}
3739
3740	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3741	print_rd_rules(rd);
3742}
3743
3744static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3745{
3746	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3747	print_rd_rules(rd);
3748}
3749
3750static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3751{
3752	if (!is_world_regdom(rd->alpha2))
3753		return -EINVAL;
3754	update_world_regdomain(rd);
3755	return 0;
3756}
3757
3758static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3759			   struct regulatory_request *user_request)
3760{
3761	const struct ieee80211_regdomain *intersected_rd = NULL;
3762
3763	if (!regdom_changes(rd->alpha2))
3764		return -EALREADY;
3765
3766	if (!is_valid_rd(rd)) {
3767		pr_err("Invalid regulatory domain detected: %c%c\n",
3768		       rd->alpha2[0], rd->alpha2[1]);
3769		print_regdomain_info(rd);
3770		return -EINVAL;
3771	}
3772
3773	if (!user_request->intersect) {
3774		reset_regdomains(false, rd);
3775		return 0;
3776	}
3777
3778	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3779	if (!intersected_rd)
3780		return -EINVAL;
3781
3782	kfree(rd);
3783	rd = NULL;
3784	reset_regdomains(false, intersected_rd);
3785
3786	return 0;
3787}
3788
3789static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3790			     struct regulatory_request *driver_request)
3791{
3792	const struct ieee80211_regdomain *regd;
3793	const struct ieee80211_regdomain *intersected_rd = NULL;
3794	const struct ieee80211_regdomain *tmp;
3795	struct wiphy *request_wiphy;
3796
3797	if (is_world_regdom(rd->alpha2))
3798		return -EINVAL;
3799
3800	if (!regdom_changes(rd->alpha2))
3801		return -EALREADY;
3802
3803	if (!is_valid_rd(rd)) {
3804		pr_err("Invalid regulatory domain detected: %c%c\n",
3805		       rd->alpha2[0], rd->alpha2[1]);
3806		print_regdomain_info(rd);
3807		return -EINVAL;
3808	}
3809
3810	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3811	if (!request_wiphy)
3812		return -ENODEV;
3813
3814	if (!driver_request->intersect) {
3815		ASSERT_RTNL();
3816		wiphy_lock(request_wiphy);
3817		if (request_wiphy->regd) {
3818			wiphy_unlock(request_wiphy);
3819			return -EALREADY;
3820		}
3821
3822		regd = reg_copy_regd(rd);
3823		if (IS_ERR(regd)) {
3824			wiphy_unlock(request_wiphy);
3825			return PTR_ERR(regd);
3826		}
3827
3828		rcu_assign_pointer(request_wiphy->regd, regd);
 
3829		wiphy_unlock(request_wiphy);
3830		reset_regdomains(false, rd);
3831		return 0;
3832	}
3833
3834	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3835	if (!intersected_rd)
3836		return -EINVAL;
3837
3838	/*
3839	 * We can trash what CRDA provided now.
3840	 * However if a driver requested this specific regulatory
3841	 * domain we keep it for its private use
3842	 */
3843	tmp = get_wiphy_regdom(request_wiphy);
3844	rcu_assign_pointer(request_wiphy->regd, rd);
3845	rcu_free_regdom(tmp);
3846
3847	rd = NULL;
3848
3849	reset_regdomains(false, intersected_rd);
3850
3851	return 0;
3852}
3853
3854static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3855				 struct regulatory_request *country_ie_request)
3856{
3857	struct wiphy *request_wiphy;
3858
3859	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3860	    !is_unknown_alpha2(rd->alpha2))
3861		return -EINVAL;
3862
3863	/*
3864	 * Lets only bother proceeding on the same alpha2 if the current
3865	 * rd is non static (it means CRDA was present and was used last)
3866	 * and the pending request came in from a country IE
3867	 */
3868
3869	if (!is_valid_rd(rd)) {
3870		pr_err("Invalid regulatory domain detected: %c%c\n",
3871		       rd->alpha2[0], rd->alpha2[1]);
3872		print_regdomain_info(rd);
3873		return -EINVAL;
3874	}
3875
3876	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3877	if (!request_wiphy)
3878		return -ENODEV;
3879
3880	if (country_ie_request->intersect)
3881		return -EINVAL;
3882
3883	reset_regdomains(false, rd);
3884	return 0;
3885}
3886
3887/*
3888 * Use this call to set the current regulatory domain. Conflicts with
3889 * multiple drivers can be ironed out later. Caller must've already
3890 * kmalloc'd the rd structure.
3891 */
3892int set_regdom(const struct ieee80211_regdomain *rd,
3893	       enum ieee80211_regd_source regd_src)
3894{
3895	struct regulatory_request *lr;
3896	bool user_reset = false;
3897	int r;
3898
3899	if (IS_ERR_OR_NULL(rd))
3900		return -ENODATA;
3901
3902	if (!reg_is_valid_request(rd->alpha2)) {
3903		kfree(rd);
3904		return -EINVAL;
3905	}
3906
3907	if (regd_src == REGD_SOURCE_CRDA)
3908		reset_crda_timeouts();
3909
3910	lr = get_last_request();
3911
3912	/* Note that this doesn't update the wiphys, this is done below */
3913	switch (lr->initiator) {
3914	case NL80211_REGDOM_SET_BY_CORE:
3915		r = reg_set_rd_core(rd);
3916		break;
3917	case NL80211_REGDOM_SET_BY_USER:
3918		cfg80211_save_user_regdom(rd);
3919		r = reg_set_rd_user(rd, lr);
3920		user_reset = true;
3921		break;
3922	case NL80211_REGDOM_SET_BY_DRIVER:
3923		r = reg_set_rd_driver(rd, lr);
3924		break;
3925	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3926		r = reg_set_rd_country_ie(rd, lr);
3927		break;
3928	default:
3929		WARN(1, "invalid initiator %d\n", lr->initiator);
3930		kfree(rd);
3931		return -EINVAL;
3932	}
3933
3934	if (r) {
3935		switch (r) {
3936		case -EALREADY:
3937			reg_set_request_processed();
3938			break;
3939		default:
3940			/* Back to world regulatory in case of errors */
3941			restore_regulatory_settings(user_reset, false);
3942		}
3943
3944		kfree(rd);
3945		return r;
3946	}
3947
3948	/* This would make this whole thing pointless */
3949	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3950		return -EINVAL;
3951
3952	/* update all wiphys now with the new established regulatory domain */
3953	update_all_wiphy_regulatory(lr->initiator);
3954
3955	print_regdomain(get_cfg80211_regdom());
3956
3957	nl80211_send_reg_change_event(lr);
3958
3959	reg_set_request_processed();
3960
3961	return 0;
3962}
3963
3964static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3965				       struct ieee80211_regdomain *rd)
3966{
3967	const struct ieee80211_regdomain *regd;
3968	const struct ieee80211_regdomain *prev_regd;
3969	struct cfg80211_registered_device *rdev;
3970
3971	if (WARN_ON(!wiphy || !rd))
3972		return -EINVAL;
3973
3974	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3975		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3976		return -EPERM;
3977
3978	if (WARN(!is_valid_rd(rd),
3979		 "Invalid regulatory domain detected: %c%c\n",
3980		 rd->alpha2[0], rd->alpha2[1])) {
3981		print_regdomain_info(rd);
3982		return -EINVAL;
3983	}
3984
3985	regd = reg_copy_regd(rd);
3986	if (IS_ERR(regd))
3987		return PTR_ERR(regd);
3988
3989	rdev = wiphy_to_rdev(wiphy);
3990
3991	spin_lock(&reg_requests_lock);
3992	prev_regd = rdev->requested_regd;
3993	rdev->requested_regd = regd;
3994	spin_unlock(&reg_requests_lock);
3995
3996	kfree(prev_regd);
3997	return 0;
3998}
3999
4000int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4001			      struct ieee80211_regdomain *rd)
4002{
4003	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4004
4005	if (ret)
4006		return ret;
4007
4008	schedule_work(&reg_work);
4009	return 0;
4010}
4011EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4012
4013int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4014				   struct ieee80211_regdomain *rd)
4015{
4016	int ret;
4017
4018	ASSERT_RTNL();
4019
4020	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4021	if (ret)
4022		return ret;
4023
4024	/* process the request immediately */
4025	reg_process_self_managed_hint(wiphy);
4026	reg_check_channels();
4027	return 0;
4028}
4029EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4030
4031void wiphy_regulatory_register(struct wiphy *wiphy)
4032{
4033	struct regulatory_request *lr = get_last_request();
4034
4035	/* self-managed devices ignore beacon hints and country IE */
4036	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4037		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4038					   REGULATORY_COUNTRY_IE_IGNORE;
4039
4040		/*
4041		 * The last request may have been received before this
4042		 * registration call. Call the driver notifier if
4043		 * initiator is USER.
4044		 */
4045		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4046			reg_call_notifier(wiphy, lr);
4047	}
4048
4049	if (!reg_dev_ignore_cell_hint(wiphy))
4050		reg_num_devs_support_basehint++;
4051
4052	wiphy_update_regulatory(wiphy, lr->initiator);
4053	wiphy_all_share_dfs_chan_state(wiphy);
4054	reg_process_self_managed_hints();
4055}
4056
4057void wiphy_regulatory_deregister(struct wiphy *wiphy)
4058{
4059	struct wiphy *request_wiphy = NULL;
4060	struct regulatory_request *lr;
4061
4062	lr = get_last_request();
4063
4064	if (!reg_dev_ignore_cell_hint(wiphy))
4065		reg_num_devs_support_basehint--;
4066
4067	rcu_free_regdom(get_wiphy_regdom(wiphy));
4068	RCU_INIT_POINTER(wiphy->regd, NULL);
4069
4070	if (lr)
4071		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4072
4073	if (!request_wiphy || request_wiphy != wiphy)
4074		return;
4075
4076	lr->wiphy_idx = WIPHY_IDX_INVALID;
4077	lr->country_ie_env = ENVIRON_ANY;
4078}
4079
4080/*
4081 * See FCC notices for UNII band definitions
4082 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4083 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4084 */
4085int cfg80211_get_unii(int freq)
4086{
4087	/* UNII-1 */
4088	if (freq >= 5150 && freq <= 5250)
4089		return 0;
4090
4091	/* UNII-2A */
4092	if (freq > 5250 && freq <= 5350)
4093		return 1;
4094
4095	/* UNII-2B */
4096	if (freq > 5350 && freq <= 5470)
4097		return 2;
4098
4099	/* UNII-2C */
4100	if (freq > 5470 && freq <= 5725)
4101		return 3;
4102
4103	/* UNII-3 */
4104	if (freq > 5725 && freq <= 5825)
4105		return 4;
4106
4107	/* UNII-5 */
4108	if (freq > 5925 && freq <= 6425)
4109		return 5;
4110
4111	/* UNII-6 */
4112	if (freq > 6425 && freq <= 6525)
4113		return 6;
4114
4115	/* UNII-7 */
4116	if (freq > 6525 && freq <= 6875)
4117		return 7;
4118
4119	/* UNII-8 */
4120	if (freq > 6875 && freq <= 7125)
4121		return 8;
4122
4123	return -EINVAL;
4124}
4125
4126bool regulatory_indoor_allowed(void)
4127{
4128	return reg_is_indoor;
4129}
4130
4131bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4132{
4133	const struct ieee80211_regdomain *regd = NULL;
4134	const struct ieee80211_regdomain *wiphy_regd = NULL;
4135	bool pre_cac_allowed = false;
4136
4137	rcu_read_lock();
4138
4139	regd = rcu_dereference(cfg80211_regdomain);
4140	wiphy_regd = rcu_dereference(wiphy->regd);
4141	if (!wiphy_regd) {
4142		if (regd->dfs_region == NL80211_DFS_ETSI)
4143			pre_cac_allowed = true;
4144
4145		rcu_read_unlock();
4146
4147		return pre_cac_allowed;
4148	}
4149
4150	if (regd->dfs_region == wiphy_regd->dfs_region &&
4151	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4152		pre_cac_allowed = true;
4153
4154	rcu_read_unlock();
4155
4156	return pre_cac_allowed;
4157}
4158EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4159
4160static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4161{
4162	struct wireless_dev *wdev;
4163	/* If we finished CAC or received radar, we should end any
4164	 * CAC running on the same channels.
4165	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4166	 * either all channels are available - those the CAC_FINISHED
4167	 * event has effected another wdev state, or there is a channel
4168	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4169	 * event has effected another wdev state.
4170	 * In both cases we should end the CAC on the wdev.
4171	 */
4172	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4173		if (wdev->cac_started &&
4174		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
 
 
 
 
 
 
 
 
 
4175			rdev_end_cac(rdev, wdev->netdev);
4176	}
4177}
4178
4179void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4180				    struct cfg80211_chan_def *chandef,
4181				    enum nl80211_dfs_state dfs_state,
4182				    enum nl80211_radar_event event)
4183{
4184	struct cfg80211_registered_device *rdev;
4185
4186	ASSERT_RTNL();
4187
4188	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4189		return;
4190
4191	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4192		if (wiphy == &rdev->wiphy)
4193			continue;
4194
4195		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4196			continue;
4197
4198		if (!ieee80211_get_channel(&rdev->wiphy,
4199					   chandef->chan->center_freq))
4200			continue;
4201
4202		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4203
4204		if (event == NL80211_RADAR_DETECTED ||
4205		    event == NL80211_RADAR_CAC_FINISHED) {
4206			cfg80211_sched_dfs_chan_update(rdev);
4207			cfg80211_check_and_end_cac(rdev);
4208		}
4209
4210		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4211	}
4212}
4213
4214static int __init regulatory_init_db(void)
4215{
4216	int err;
4217
4218	/*
4219	 * It's possible that - due to other bugs/issues - cfg80211
4220	 * never called regulatory_init() below, or that it failed;
4221	 * in that case, don't try to do any further work here as
4222	 * it's doomed to lead to crashes.
4223	 */
4224	if (IS_ERR_OR_NULL(reg_pdev))
4225		return -EINVAL;
4226
4227	err = load_builtin_regdb_keys();
4228	if (err)
 
4229		return err;
 
4230
4231	/* We always try to get an update for the static regdomain */
4232	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4233	if (err) {
4234		if (err == -ENOMEM) {
4235			platform_device_unregister(reg_pdev);
4236			return err;
4237		}
4238		/*
4239		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4240		 * memory which is handled and propagated appropriately above
4241		 * but it can also fail during a netlink_broadcast() or during
4242		 * early boot for call_usermodehelper(). For now treat these
4243		 * errors as non-fatal.
4244		 */
4245		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4246	}
4247
4248	/*
4249	 * Finally, if the user set the module parameter treat it
4250	 * as a user hint.
4251	 */
4252	if (!is_world_regdom(ieee80211_regdom))
4253		regulatory_hint_user(ieee80211_regdom,
4254				     NL80211_USER_REG_HINT_USER);
4255
4256	return 0;
4257}
4258#ifndef MODULE
4259late_initcall(regulatory_init_db);
4260#endif
4261
4262int __init regulatory_init(void)
4263{
4264	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4265	if (IS_ERR(reg_pdev))
4266		return PTR_ERR(reg_pdev);
4267
4268	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4269
4270	user_alpha2[0] = '9';
4271	user_alpha2[1] = '7';
4272
4273#ifdef MODULE
4274	return regulatory_init_db();
4275#else
4276	return 0;
4277#endif
4278}
4279
4280void regulatory_exit(void)
4281{
4282	struct regulatory_request *reg_request, *tmp;
4283	struct reg_beacon *reg_beacon, *btmp;
4284
4285	cancel_work_sync(&reg_work);
4286	cancel_crda_timeout_sync();
4287	cancel_delayed_work_sync(&reg_check_chans);
4288
4289	/* Lock to suppress warnings */
4290	rtnl_lock();
4291	reset_regdomains(true, NULL);
4292	rtnl_unlock();
4293
4294	dev_set_uevent_suppress(&reg_pdev->dev, true);
4295
4296	platform_device_unregister(reg_pdev);
4297
4298	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4299		list_del(&reg_beacon->list);
4300		kfree(reg_beacon);
4301	}
4302
4303	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4304		list_del(&reg_beacon->list);
4305		kfree(reg_beacon);
4306	}
4307
4308	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4309		list_del(&reg_request->list);
4310		kfree(reg_request);
4311	}
4312
4313	if (!IS_ERR_OR_NULL(regdb))
4314		kfree(regdb);
4315	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4316		kfree(cfg80211_user_regdom);
4317
4318	free_regdb_keyring();
4319}