Loading...
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2023 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201out:
202 rcu_read_unlock();
203
204 return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216 return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299}
300
301static void reg_free_last_request(void)
302{
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323{
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473}
474
475struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624};
625
626struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658 return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708{
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740#include <keys/asymmetric-type.h>
741
742static struct key *builtin_regdb_keys;
743
744static int __init load_builtin_regdb_keys(void)
745{
746 builtin_regdb_keys =
747 keyring_alloc(".builtin_regdb_keys",
748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 if (IS_ERR(builtin_regdb_keys))
753 return PTR_ERR(builtin_regdb_keys);
754
755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 x509_load_certificate_list(shipped_regdb_certs,
759 shipped_regdb_certs_len,
760 builtin_regdb_keys);
761#endif
762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 x509_load_certificate_list(extra_regdb_certs,
765 extra_regdb_certs_len,
766 builtin_regdb_keys);
767#endif
768
769 return 0;
770}
771
772MODULE_FIRMWARE("regulatory.db.p7s");
773
774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775{
776 const struct firmware *sig;
777 bool result;
778
779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
780 return false;
781
782 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 builtin_regdb_keys,
784 VERIFYING_UNSPECIFIED_SIGNATURE,
785 NULL, NULL) == 0;
786
787 release_firmware(sig);
788
789 return result;
790}
791
792static void free_regdb_keyring(void)
793{
794 key_put(builtin_regdb_keys);
795}
796#else
797static int load_builtin_regdb_keys(void)
798{
799 return 0;
800}
801
802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803{
804 return true;
805}
806
807static void free_regdb_keyring(void)
808{
809}
810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812static bool valid_regdb(const u8 *data, unsigned int size)
813{
814 const struct fwdb_header *hdr = (void *)data;
815 const struct fwdb_country *country;
816
817 if (size < sizeof(*hdr))
818 return false;
819
820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 return false;
822
823 if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 return false;
825
826 if (!regdb_has_valid_signature(data, size))
827 return false;
828
829 country = &hdr->country[0];
830 while ((u8 *)(country + 1) <= data + size) {
831 if (!country->coll_ptr)
832 break;
833 if (!valid_country(data, size, country))
834 return false;
835 country++;
836 }
837
838 return true;
839}
840
841static void set_wmm_rule(const struct fwdb_header *db,
842 const struct fwdb_country *country,
843 const struct fwdb_rule *rule,
844 struct ieee80211_reg_rule *rrule)
845{
846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 struct fwdb_wmm_rule *wmm;
848 unsigned int i, wmm_ptr;
849
850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 wmm = (void *)((u8 *)db + wmm_ptr);
852
853 if (!valid_wmm(wmm)) {
854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 country->alpha2[0], country->alpha2[1]);
857 return;
858 }
859
860 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 wmm_rule->client[i].cw_min =
862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
865 wmm_rule->client[i].cot =
866 1000 * be16_to_cpu(wmm->client[i].cot);
867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 }
872
873 rrule->has_wmm = true;
874}
875
876static int __regdb_query_wmm(const struct fwdb_header *db,
877 const struct fwdb_country *country, int freq,
878 struct ieee80211_reg_rule *rrule)
879{
880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 int i;
883
884 for (i = 0; i < coll->n_rules; i++) {
885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 continue;
891
892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 set_wmm_rule(db, country, rule, rrule);
895 return 0;
896 }
897 }
898
899 return -ENODATA;
900}
901
902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903{
904 const struct fwdb_header *hdr = regdb;
905 const struct fwdb_country *country;
906
907 if (!regdb)
908 return -ENODATA;
909
910 if (IS_ERR(regdb))
911 return PTR_ERR(regdb);
912
913 country = &hdr->country[0];
914 while (country->coll_ptr) {
915 if (alpha2_equal(alpha2, country->alpha2))
916 return __regdb_query_wmm(regdb, country, freq, rule);
917
918 country++;
919 }
920
921 return -ENODATA;
922}
923EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925static int regdb_query_country(const struct fwdb_header *db,
926 const struct fwdb_country *country)
927{
928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 struct ieee80211_regdomain *regdom;
931 unsigned int i;
932
933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 GFP_KERNEL);
935 if (!regdom)
936 return -ENOMEM;
937
938 regdom->n_reg_rules = coll->n_rules;
939 regdom->alpha2[0] = country->alpha2[0];
940 regdom->alpha2[1] = country->alpha2[1];
941 regdom->dfs_region = coll->dfs_region;
942
943 for (i = 0; i < regdom->n_reg_rules; i++) {
944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
948
949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953 rrule->power_rule.max_antenna_gain = 0;
954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956 rrule->flags = 0;
957 if (rule->flags & FWDB_FLAG_NO_OFDM)
958 rrule->flags |= NL80211_RRF_NO_OFDM;
959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 if (rule->flags & FWDB_FLAG_DFS)
962 rrule->flags |= NL80211_RRF_DFS;
963 if (rule->flags & FWDB_FLAG_NO_IR)
964 rrule->flags |= NL80211_RRF_NO_IR;
965 if (rule->flags & FWDB_FLAG_AUTO_BW)
966 rrule->flags |= NL80211_RRF_AUTO_BW;
967
968 rrule->dfs_cac_ms = 0;
969
970 /* handle optional data */
971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 rrule->dfs_cac_ms =
973 1000 * be16_to_cpu(rule->cac_timeout);
974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 set_wmm_rule(db, country, rule, rrule);
976 }
977
978 return reg_schedule_apply(regdom);
979}
980
981static int query_regdb(const char *alpha2)
982{
983 const struct fwdb_header *hdr = regdb;
984 const struct fwdb_country *country;
985
986 ASSERT_RTNL();
987
988 if (IS_ERR(regdb))
989 return PTR_ERR(regdb);
990
991 country = &hdr->country[0];
992 while (country->coll_ptr) {
993 if (alpha2_equal(alpha2, country->alpha2))
994 return regdb_query_country(regdb, country);
995 country++;
996 }
997
998 return -ENODATA;
999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003 int set_error = 0;
1004 bool restore = true;
1005 void *db;
1006
1007 if (!fw) {
1008 pr_info("failed to load regulatory.db\n");
1009 set_error = -ENODATA;
1010 } else if (!valid_regdb(fw->data, fw->size)) {
1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 set_error = -EINVAL;
1013 }
1014
1015 rtnl_lock();
1016 if (regdb && !IS_ERR(regdb)) {
1017 /* negative case - a bug
1018 * positive case - can happen due to race in case of multiple cb's in
1019 * queue, due to usage of asynchronous callback
1020 *
1021 * Either case, just restore and free new db.
1022 */
1023 } else if (set_error) {
1024 regdb = ERR_PTR(set_error);
1025 } else if (fw) {
1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 if (db) {
1028 regdb = db;
1029 restore = context && query_regdb(context);
1030 } else {
1031 restore = true;
1032 }
1033 }
1034
1035 if (restore)
1036 restore_regulatory_settings(true, false);
1037
1038 rtnl_unlock();
1039
1040 kfree(context);
1041
1042 release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049 int err;
1050
1051 ASSERT_RTNL();
1052
1053 if (regdb)
1054 return query_regdb(alpha2);
1055
1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 if (!alpha2)
1058 return -ENOMEM;
1059
1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 ®_pdev->dev, GFP_KERNEL,
1062 (void *)alpha2, regdb_fw_cb);
1063 if (err)
1064 kfree(alpha2);
1065
1066 return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071 const struct firmware *fw;
1072 void *db;
1073 int err;
1074 const struct ieee80211_regdomain *current_regdomain;
1075 struct regulatory_request *request;
1076
1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1078 if (err)
1079 return err;
1080
1081 if (!valid_regdb(fw->data, fw->size)) {
1082 err = -ENODATA;
1083 goto out;
1084 }
1085
1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 if (!db) {
1088 err = -ENOMEM;
1089 goto out;
1090 }
1091
1092 rtnl_lock();
1093 if (!IS_ERR_OR_NULL(regdb))
1094 kfree(regdb);
1095 regdb = db;
1096
1097 /* reset regulatory domain */
1098 current_regdomain = get_cfg80211_regdom();
1099
1100 request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 if (!request) {
1102 err = -ENOMEM;
1103 goto out_unlock;
1104 }
1105
1106 request->wiphy_idx = WIPHY_IDX_INVALID;
1107 request->alpha2[0] = current_regdomain->alpha2[0];
1108 request->alpha2[1] = current_regdomain->alpha2[1];
1109 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112 reg_process_hint(request);
1113
1114out_unlock:
1115 rtnl_unlock();
1116 out:
1117 release_firmware(fw);
1118 return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123 if (query_regdb_file(request->alpha2) == 0)
1124 return true;
1125
1126 if (call_crda(request->alpha2) == 0)
1127 return true;
1128
1129 return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134 struct regulatory_request *lr = get_last_request();
1135
1136 if (!lr || lr->processed)
1137 return false;
1138
1139 return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144 struct regulatory_request *lr = get_last_request();
1145
1146 /*
1147 * Follow the driver's regulatory domain, if present, unless a country
1148 * IE has been processed or a user wants to help complaince further
1149 */
1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 wiphy->regd)
1153 return get_wiphy_regdom(wiphy);
1154
1155 return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 const struct ieee80211_reg_rule *rule)
1161{
1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 const struct ieee80211_freq_range *freq_range_tmp;
1164 const struct ieee80211_reg_rule *tmp;
1165 u32 start_freq, end_freq, idx, no;
1166
1167 for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 if (rule == &rd->reg_rules[idx])
1169 break;
1170
1171 if (idx == rd->n_reg_rules)
1172 return 0;
1173
1174 /* get start_freq */
1175 no = idx;
1176
1177 while (no) {
1178 tmp = &rd->reg_rules[--no];
1179 freq_range_tmp = &tmp->freq_range;
1180
1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 break;
1183
1184 freq_range = freq_range_tmp;
1185 }
1186
1187 start_freq = freq_range->start_freq_khz;
1188
1189 /* get end_freq */
1190 freq_range = &rule->freq_range;
1191 no = idx;
1192
1193 while (no < rd->n_reg_rules - 1) {
1194 tmp = &rd->reg_rules[++no];
1195 freq_range_tmp = &tmp->freq_range;
1196
1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 break;
1199
1200 freq_range = freq_range_tmp;
1201 }
1202
1203 end_freq = freq_range->end_freq_khz;
1204
1205 return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 const struct ieee80211_reg_rule *rule)
1210{
1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213 if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220 /*
1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 * are not allowed.
1223 */
1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228 return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 u32 freq_diff;
1236
1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 return false;
1239
1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 return false;
1242
1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 freq_range->max_bandwidth_khz > freq_diff)
1247 return false;
1248
1249 return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254 const struct ieee80211_reg_rule *reg_rule = NULL;
1255 unsigned int i;
1256
1257 if (!rd->n_reg_rules)
1258 return false;
1259
1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 return false;
1262
1263 for (i = 0; i < rd->n_reg_rules; i++) {
1264 reg_rule = &rd->reg_rules[i];
1265 if (!is_valid_reg_rule(reg_rule))
1266 return false;
1267 }
1268
1269 return true;
1270}
1271
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 *
1287 * Returns: whether or not the frequency is in the range
1288 */
1289static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290 u32 freq_khz)
1291{
1292#define ONE_GHZ_IN_KHZ 1000000
1293 /*
1294 * From 802.11ad: directional multi-gigabit (DMG):
1295 * Pertaining to operation in a frequency band containing a channel
1296 * with the Channel starting frequency above 45 GHz.
1297 */
1298 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 return true;
1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 return true;
1304 return false;
1305#undef ONE_GHZ_IN_KHZ
1306}
1307
1308/*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313static enum nl80211_dfs_regions
1314reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 const enum nl80211_dfs_regions dfs_region2)
1316{
1317 if (dfs_region1 != dfs_region2)
1318 return NL80211_DFS_UNSET;
1319 return dfs_region1;
1320}
1321
1322static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 const struct ieee80211_wmm_ac *wmm_ac2,
1324 struct ieee80211_wmm_ac *intersect)
1325{
1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330}
1331
1332/*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
1336static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 const struct ieee80211_regdomain *rd2,
1338 const struct ieee80211_reg_rule *rule1,
1339 const struct ieee80211_reg_rule *rule2,
1340 struct ieee80211_reg_rule *intersected_rule)
1341{
1342 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 struct ieee80211_freq_range *freq_range;
1344 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 struct ieee80211_power_rule *power_rule;
1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 struct ieee80211_wmm_rule *wmm_rule;
1348 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350 freq_range1 = &rule1->freq_range;
1351 freq_range2 = &rule2->freq_range;
1352 freq_range = &intersected_rule->freq_range;
1353
1354 power_rule1 = &rule1->power_rule;
1355 power_rule2 = &rule2->power_rule;
1356 power_rule = &intersected_rule->power_rule;
1357
1358 wmm_rule1 = &rule1->wmm_rule;
1359 wmm_rule2 = &rule2->wmm_rule;
1360 wmm_rule = &intersected_rule->wmm_rule;
1361
1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 freq_range2->start_freq_khz);
1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 freq_range2->end_freq_khz);
1366
1367 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370 if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374
1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377 intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379 /*
1380 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 * set AUTO_BW in intersected rule also. Next we will
1382 * calculate BW correctly in handle_channel function.
1383 * In other case remove AUTO_BW flag while we calculate
1384 * maximum bandwidth correctly and auto calculation is
1385 * not required.
1386 */
1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 (rule2->flags & NL80211_RRF_AUTO_BW))
1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 else
1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 if (freq_range->max_bandwidth_khz > freq_diff)
1395 freq_range->max_bandwidth_khz = freq_diff;
1396
1397 power_rule->max_eirp = min(power_rule1->max_eirp,
1398 power_rule2->max_eirp);
1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 power_rule2->max_antenna_gain);
1401
1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 rule2->dfs_cac_ms);
1404
1405 if (rule1->has_wmm && rule2->has_wmm) {
1406 u8 ac;
1407
1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 &wmm_rule2->client[ac],
1411 &wmm_rule->client[ac]);
1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 &wmm_rule2->ap[ac],
1414 &wmm_rule->ap[ac]);
1415 }
1416
1417 intersected_rule->has_wmm = true;
1418 } else if (rule1->has_wmm) {
1419 *wmm_rule = *wmm_rule1;
1420 intersected_rule->has_wmm = true;
1421 } else if (rule2->has_wmm) {
1422 *wmm_rule = *wmm_rule2;
1423 intersected_rule->has_wmm = true;
1424 } else {
1425 intersected_rule->has_wmm = false;
1426 }
1427
1428 if (!is_valid_reg_rule(intersected_rule))
1429 return -EINVAL;
1430
1431 return 0;
1432}
1433
1434/* check whether old rule contains new rule */
1435static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 struct ieee80211_reg_rule *r2)
1437{
1438 /* for simplicity, currently consider only same flags */
1439 if (r1->flags != r2->flags)
1440 return false;
1441
1442 /* verify r1 is more restrictive */
1443 if ((r1->power_rule.max_antenna_gain >
1444 r2->power_rule.max_antenna_gain) ||
1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 return false;
1447
1448 /* make sure r2's range is contained within r1 */
1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 return false;
1452
1453 /* and finally verify that r1.max_bw >= r2.max_bw */
1454 if (r1->freq_range.max_bandwidth_khz <
1455 r2->freq_range.max_bandwidth_khz)
1456 return false;
1457
1458 return true;
1459}
1460
1461/* add or extend current rules. do nothing if rule is already contained */
1462static void add_rule(struct ieee80211_reg_rule *rule,
1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464{
1465 struct ieee80211_reg_rule *tmp_rule;
1466 int i;
1467
1468 for (i = 0; i < *n_rules; i++) {
1469 tmp_rule = ®_rules[i];
1470 /* rule is already contained - do nothing */
1471 if (rule_contains(tmp_rule, rule))
1472 return;
1473
1474 /* extend rule if possible */
1475 if (rule_contains(rule, tmp_rule)) {
1476 memcpy(tmp_rule, rule, sizeof(*rule));
1477 return;
1478 }
1479 }
1480
1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1482 (*n_rules)++;
1483}
1484
1485/**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500static struct ieee80211_regdomain *
1501regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 const struct ieee80211_regdomain *rd2)
1503{
1504 int r;
1505 unsigned int x, y;
1506 unsigned int num_rules = 0;
1507 const struct ieee80211_reg_rule *rule1, *rule2;
1508 struct ieee80211_reg_rule intersected_rule;
1509 struct ieee80211_regdomain *rd;
1510
1511 if (!rd1 || !rd2)
1512 return NULL;
1513
1514 /*
1515 * First we get a count of the rules we'll need, then we actually
1516 * build them. This is to so we can malloc() and free() a
1517 * regdomain once. The reason we use reg_rules_intersect() here
1518 * is it will return -EINVAL if the rule computed makes no sense.
1519 * All rules that do check out OK are valid.
1520 */
1521
1522 for (x = 0; x < rd1->n_reg_rules; x++) {
1523 rule1 = &rd1->reg_rules[x];
1524 for (y = 0; y < rd2->n_reg_rules; y++) {
1525 rule2 = &rd2->reg_rules[y];
1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 &intersected_rule))
1528 num_rules++;
1529 }
1530 }
1531
1532 if (!num_rules)
1533 return NULL;
1534
1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 if (!rd)
1537 return NULL;
1538
1539 for (x = 0; x < rd1->n_reg_rules; x++) {
1540 rule1 = &rd1->reg_rules[x];
1541 for (y = 0; y < rd2->n_reg_rules; y++) {
1542 rule2 = &rd2->reg_rules[y];
1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 &intersected_rule);
1545 /*
1546 * No need to memset here the intersected rule here as
1547 * we're not using the stack anymore
1548 */
1549 if (r)
1550 continue;
1551
1552 add_rule(&intersected_rule, rd->reg_rules,
1553 &rd->n_reg_rules);
1554 }
1555 }
1556
1557 rd->alpha2[0] = '9';
1558 rd->alpha2[1] = '8';
1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 rd2->dfs_region);
1561
1562 return rd;
1563}
1564
1565/*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
1569static u32 map_regdom_flags(u32 rd_flags)
1570{
1571 u32 channel_flags = 0;
1572 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 channel_flags |= IEEE80211_CHAN_NO_IR;
1574 if (rd_flags & NL80211_RRF_DFS)
1575 channel_flags |= IEEE80211_CHAN_RADAR;
1576 if (rd_flags & NL80211_RRF_NO_OFDM)
1577 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 if (rd_flags & NL80211_RRF_NO_HE)
1591 channel_flags |= IEEE80211_CHAN_NO_HE;
1592 if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 if (rd_flags & NL80211_RRF_NO_EHT)
1595 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT)
1599 channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT;
1600 if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT)
1601 channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT;
1602 if (rd_flags & NL80211_RRF_PSD)
1603 channel_flags |= IEEE80211_CHAN_PSD;
1604 return channel_flags;
1605}
1606
1607static const struct ieee80211_reg_rule *
1608freq_reg_info_regd(u32 center_freq,
1609 const struct ieee80211_regdomain *regd, u32 bw)
1610{
1611 int i;
1612 bool band_rule_found = false;
1613 bool bw_fits = false;
1614
1615 if (!regd)
1616 return ERR_PTR(-EINVAL);
1617
1618 for (i = 0; i < regd->n_reg_rules; i++) {
1619 const struct ieee80211_reg_rule *rr;
1620 const struct ieee80211_freq_range *fr = NULL;
1621
1622 rr = ®d->reg_rules[i];
1623 fr = &rr->freq_range;
1624
1625 /*
1626 * We only need to know if one frequency rule was
1627 * in center_freq's band, that's enough, so let's
1628 * not overwrite it once found
1629 */
1630 if (!band_rule_found)
1631 band_rule_found = freq_in_rule_band(fr, center_freq);
1632
1633 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1634
1635 if (band_rule_found && bw_fits)
1636 return rr;
1637 }
1638
1639 if (!band_rule_found)
1640 return ERR_PTR(-ERANGE);
1641
1642 return ERR_PTR(-EINVAL);
1643}
1644
1645static const struct ieee80211_reg_rule *
1646__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1647{
1648 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1649 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1650 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1651 int i = ARRAY_SIZE(bws) - 1;
1652 u32 bw;
1653
1654 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1655 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1656 if (!IS_ERR(reg_rule))
1657 return reg_rule;
1658 }
1659
1660 return reg_rule;
1661}
1662
1663const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1664 u32 center_freq)
1665{
1666 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1667
1668 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1669}
1670EXPORT_SYMBOL(freq_reg_info);
1671
1672const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1673{
1674 switch (initiator) {
1675 case NL80211_REGDOM_SET_BY_CORE:
1676 return "core";
1677 case NL80211_REGDOM_SET_BY_USER:
1678 return "user";
1679 case NL80211_REGDOM_SET_BY_DRIVER:
1680 return "driver";
1681 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1682 return "country element";
1683 default:
1684 WARN_ON(1);
1685 return "bug";
1686 }
1687}
1688EXPORT_SYMBOL(reg_initiator_name);
1689
1690static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1691 const struct ieee80211_reg_rule *reg_rule,
1692 const struct ieee80211_channel *chan)
1693{
1694 const struct ieee80211_freq_range *freq_range = NULL;
1695 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1696 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1697
1698 freq_range = ®_rule->freq_range;
1699
1700 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1701 center_freq_khz = ieee80211_channel_to_khz(chan);
1702 /* Check if auto calculation requested */
1703 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1704 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1705
1706 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1707 if (!cfg80211_does_bw_fit_range(freq_range,
1708 center_freq_khz,
1709 MHZ_TO_KHZ(10)))
1710 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1711 if (!cfg80211_does_bw_fit_range(freq_range,
1712 center_freq_khz,
1713 MHZ_TO_KHZ(20)))
1714 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1715
1716 if (is_s1g) {
1717 /* S1G is strict about non overlapping channels. We can
1718 * calculate which bandwidth is allowed per channel by finding
1719 * the largest bandwidth which cleanly divides the freq_range.
1720 */
1721 int edge_offset;
1722 int ch_bw = max_bandwidth_khz;
1723
1724 while (ch_bw) {
1725 edge_offset = (center_freq_khz - ch_bw / 2) -
1726 freq_range->start_freq_khz;
1727 if (edge_offset % ch_bw == 0) {
1728 switch (KHZ_TO_MHZ(ch_bw)) {
1729 case 1:
1730 bw_flags |= IEEE80211_CHAN_1MHZ;
1731 break;
1732 case 2:
1733 bw_flags |= IEEE80211_CHAN_2MHZ;
1734 break;
1735 case 4:
1736 bw_flags |= IEEE80211_CHAN_4MHZ;
1737 break;
1738 case 8:
1739 bw_flags |= IEEE80211_CHAN_8MHZ;
1740 break;
1741 case 16:
1742 bw_flags |= IEEE80211_CHAN_16MHZ;
1743 break;
1744 default:
1745 /* If we got here, no bandwidths fit on
1746 * this frequency, ie. band edge.
1747 */
1748 bw_flags |= IEEE80211_CHAN_DISABLED;
1749 break;
1750 }
1751 break;
1752 }
1753 ch_bw /= 2;
1754 }
1755 } else {
1756 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1757 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1759 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1760 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1761 bw_flags |= IEEE80211_CHAN_NO_HT40;
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1763 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1764 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1765 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1767 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1768 }
1769 return bw_flags;
1770}
1771
1772static void handle_channel_single_rule(struct wiphy *wiphy,
1773 enum nl80211_reg_initiator initiator,
1774 struct ieee80211_channel *chan,
1775 u32 flags,
1776 struct regulatory_request *lr,
1777 struct wiphy *request_wiphy,
1778 const struct ieee80211_reg_rule *reg_rule)
1779{
1780 u32 bw_flags = 0;
1781 const struct ieee80211_power_rule *power_rule = NULL;
1782 const struct ieee80211_regdomain *regd;
1783
1784 regd = reg_get_regdomain(wiphy);
1785
1786 power_rule = ®_rule->power_rule;
1787 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1788
1789 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1790 request_wiphy && request_wiphy == wiphy &&
1791 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1792 /*
1793 * This guarantees the driver's requested regulatory domain
1794 * will always be used as a base for further regulatory
1795 * settings
1796 */
1797 chan->flags = chan->orig_flags =
1798 map_regdom_flags(reg_rule->flags) | bw_flags;
1799 chan->max_antenna_gain = chan->orig_mag =
1800 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1801 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1802 (int) MBM_TO_DBM(power_rule->max_eirp);
1803
1804 if (chan->flags & IEEE80211_CHAN_RADAR) {
1805 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806 if (reg_rule->dfs_cac_ms)
1807 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1808 }
1809
1810 if (chan->flags & IEEE80211_CHAN_PSD)
1811 chan->psd = reg_rule->psd;
1812
1813 return;
1814 }
1815
1816 chan->dfs_state = NL80211_DFS_USABLE;
1817 chan->dfs_state_entered = jiffies;
1818
1819 chan->beacon_found = false;
1820 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1821 chan->max_antenna_gain =
1822 min_t(int, chan->orig_mag,
1823 MBI_TO_DBI(power_rule->max_antenna_gain));
1824 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1825
1826 if (chan->flags & IEEE80211_CHAN_RADAR) {
1827 if (reg_rule->dfs_cac_ms)
1828 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1829 else
1830 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1831 }
1832
1833 if (chan->flags & IEEE80211_CHAN_PSD)
1834 chan->psd = reg_rule->psd;
1835
1836 if (chan->orig_mpwr) {
1837 /*
1838 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1839 * will always follow the passed country IE power settings.
1840 */
1841 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1842 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1843 chan->max_power = chan->max_reg_power;
1844 else
1845 chan->max_power = min(chan->orig_mpwr,
1846 chan->max_reg_power);
1847 } else
1848 chan->max_power = chan->max_reg_power;
1849}
1850
1851static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1852 enum nl80211_reg_initiator initiator,
1853 struct ieee80211_channel *chan,
1854 u32 flags,
1855 struct regulatory_request *lr,
1856 struct wiphy *request_wiphy,
1857 const struct ieee80211_reg_rule *rrule1,
1858 const struct ieee80211_reg_rule *rrule2,
1859 struct ieee80211_freq_range *comb_range)
1860{
1861 u32 bw_flags1 = 0;
1862 u32 bw_flags2 = 0;
1863 const struct ieee80211_power_rule *power_rule1 = NULL;
1864 const struct ieee80211_power_rule *power_rule2 = NULL;
1865 const struct ieee80211_regdomain *regd;
1866
1867 regd = reg_get_regdomain(wiphy);
1868
1869 power_rule1 = &rrule1->power_rule;
1870 power_rule2 = &rrule2->power_rule;
1871 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1872 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1873
1874 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1875 request_wiphy && request_wiphy == wiphy &&
1876 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1877 /* This guarantees the driver's requested regulatory domain
1878 * will always be used as a base for further regulatory
1879 * settings
1880 */
1881 chan->flags =
1882 map_regdom_flags(rrule1->flags) |
1883 map_regdom_flags(rrule2->flags) |
1884 bw_flags1 |
1885 bw_flags2;
1886 chan->orig_flags = chan->flags;
1887 chan->max_antenna_gain =
1888 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1889 MBI_TO_DBI(power_rule2->max_antenna_gain));
1890 chan->orig_mag = chan->max_antenna_gain;
1891 chan->max_reg_power =
1892 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1893 MBM_TO_DBM(power_rule2->max_eirp));
1894 chan->max_power = chan->max_reg_power;
1895 chan->orig_mpwr = chan->max_reg_power;
1896
1897 if (chan->flags & IEEE80211_CHAN_RADAR) {
1898 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1899 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1900 chan->dfs_cac_ms = max_t(unsigned int,
1901 rrule1->dfs_cac_ms,
1902 rrule2->dfs_cac_ms);
1903 }
1904
1905 if ((rrule1->flags & NL80211_RRF_PSD) &&
1906 (rrule2->flags & NL80211_RRF_PSD))
1907 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1908 else
1909 chan->flags &= ~NL80211_RRF_PSD;
1910
1911 return;
1912 }
1913
1914 chan->dfs_state = NL80211_DFS_USABLE;
1915 chan->dfs_state_entered = jiffies;
1916
1917 chan->beacon_found = false;
1918 chan->flags = flags | bw_flags1 | bw_flags2 |
1919 map_regdom_flags(rrule1->flags) |
1920 map_regdom_flags(rrule2->flags);
1921
1922 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1923 * (otherwise no adj. rule case), recheck therefore
1924 */
1925 if (cfg80211_does_bw_fit_range(comb_range,
1926 ieee80211_channel_to_khz(chan),
1927 MHZ_TO_KHZ(10)))
1928 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1929 if (cfg80211_does_bw_fit_range(comb_range,
1930 ieee80211_channel_to_khz(chan),
1931 MHZ_TO_KHZ(20)))
1932 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1933
1934 chan->max_antenna_gain =
1935 min_t(int, chan->orig_mag,
1936 min_t(int,
1937 MBI_TO_DBI(power_rule1->max_antenna_gain),
1938 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1939 chan->max_reg_power = min_t(int,
1940 MBM_TO_DBM(power_rule1->max_eirp),
1941 MBM_TO_DBM(power_rule2->max_eirp));
1942
1943 if (chan->flags & IEEE80211_CHAN_RADAR) {
1944 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1945 chan->dfs_cac_ms = max_t(unsigned int,
1946 rrule1->dfs_cac_ms,
1947 rrule2->dfs_cac_ms);
1948 else
1949 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1950 }
1951
1952 if (chan->orig_mpwr) {
1953 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1954 * will always follow the passed country IE power settings.
1955 */
1956 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1957 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1958 chan->max_power = chan->max_reg_power;
1959 else
1960 chan->max_power = min(chan->orig_mpwr,
1961 chan->max_reg_power);
1962 } else {
1963 chan->max_power = chan->max_reg_power;
1964 }
1965}
1966
1967/* Note that right now we assume the desired channel bandwidth
1968 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1969 * per channel, the primary and the extension channel).
1970 */
1971static void handle_channel(struct wiphy *wiphy,
1972 enum nl80211_reg_initiator initiator,
1973 struct ieee80211_channel *chan)
1974{
1975 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1976 struct regulatory_request *lr = get_last_request();
1977 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1978 const struct ieee80211_reg_rule *rrule = NULL;
1979 const struct ieee80211_reg_rule *rrule1 = NULL;
1980 const struct ieee80211_reg_rule *rrule2 = NULL;
1981
1982 u32 flags = chan->orig_flags;
1983
1984 rrule = freq_reg_info(wiphy, orig_chan_freq);
1985 if (IS_ERR(rrule)) {
1986 /* check for adjacent match, therefore get rules for
1987 * chan - 20 MHz and chan + 20 MHz and test
1988 * if reg rules are adjacent
1989 */
1990 rrule1 = freq_reg_info(wiphy,
1991 orig_chan_freq - MHZ_TO_KHZ(20));
1992 rrule2 = freq_reg_info(wiphy,
1993 orig_chan_freq + MHZ_TO_KHZ(20));
1994 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1995 struct ieee80211_freq_range comb_range;
1996
1997 if (rrule1->freq_range.end_freq_khz !=
1998 rrule2->freq_range.start_freq_khz)
1999 goto disable_chan;
2000
2001 comb_range.start_freq_khz =
2002 rrule1->freq_range.start_freq_khz;
2003 comb_range.end_freq_khz =
2004 rrule2->freq_range.end_freq_khz;
2005 comb_range.max_bandwidth_khz =
2006 min_t(u32,
2007 rrule1->freq_range.max_bandwidth_khz,
2008 rrule2->freq_range.max_bandwidth_khz);
2009
2010 if (!cfg80211_does_bw_fit_range(&comb_range,
2011 orig_chan_freq,
2012 MHZ_TO_KHZ(20)))
2013 goto disable_chan;
2014
2015 handle_channel_adjacent_rules(wiphy, initiator, chan,
2016 flags, lr, request_wiphy,
2017 rrule1, rrule2,
2018 &comb_range);
2019 return;
2020 }
2021
2022disable_chan:
2023 /* We will disable all channels that do not match our
2024 * received regulatory rule unless the hint is coming
2025 * from a Country IE and the Country IE had no information
2026 * about a band. The IEEE 802.11 spec allows for an AP
2027 * to send only a subset of the regulatory rules allowed,
2028 * so an AP in the US that only supports 2.4 GHz may only send
2029 * a country IE with information for the 2.4 GHz band
2030 * while 5 GHz is still supported.
2031 */
2032 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2033 PTR_ERR(rrule) == -ERANGE)
2034 return;
2035
2036 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2037 request_wiphy && request_wiphy == wiphy &&
2038 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2039 pr_debug("Disabling freq %d.%03d MHz for good\n",
2040 chan->center_freq, chan->freq_offset);
2041 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2042 chan->flags = chan->orig_flags;
2043 } else {
2044 pr_debug("Disabling freq %d.%03d MHz\n",
2045 chan->center_freq, chan->freq_offset);
2046 chan->flags |= IEEE80211_CHAN_DISABLED;
2047 }
2048 return;
2049 }
2050
2051 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2052 request_wiphy, rrule);
2053}
2054
2055static void handle_band(struct wiphy *wiphy,
2056 enum nl80211_reg_initiator initiator,
2057 struct ieee80211_supported_band *sband)
2058{
2059 unsigned int i;
2060
2061 if (!sband)
2062 return;
2063
2064 for (i = 0; i < sband->n_channels; i++)
2065 handle_channel(wiphy, initiator, &sband->channels[i]);
2066}
2067
2068static bool reg_request_cell_base(struct regulatory_request *request)
2069{
2070 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2071 return false;
2072 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2073}
2074
2075bool reg_last_request_cell_base(void)
2076{
2077 return reg_request_cell_base(get_last_request());
2078}
2079
2080#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2081/* Core specific check */
2082static enum reg_request_treatment
2083reg_ignore_cell_hint(struct regulatory_request *pending_request)
2084{
2085 struct regulatory_request *lr = get_last_request();
2086
2087 if (!reg_num_devs_support_basehint)
2088 return REG_REQ_IGNORE;
2089
2090 if (reg_request_cell_base(lr) &&
2091 !regdom_changes(pending_request->alpha2))
2092 return REG_REQ_ALREADY_SET;
2093
2094 return REG_REQ_OK;
2095}
2096
2097/* Device specific check */
2098static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2099{
2100 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2101}
2102#else
2103static enum reg_request_treatment
2104reg_ignore_cell_hint(struct regulatory_request *pending_request)
2105{
2106 return REG_REQ_IGNORE;
2107}
2108
2109static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2110{
2111 return true;
2112}
2113#endif
2114
2115static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2116{
2117 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2118 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119 return true;
2120 return false;
2121}
2122
2123static bool ignore_reg_update(struct wiphy *wiphy,
2124 enum nl80211_reg_initiator initiator)
2125{
2126 struct regulatory_request *lr = get_last_request();
2127
2128 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2129 return true;
2130
2131 if (!lr) {
2132 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2133 reg_initiator_name(initiator));
2134 return true;
2135 }
2136
2137 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2138 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2139 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2140 reg_initiator_name(initiator));
2141 return true;
2142 }
2143
2144 /*
2145 * wiphy->regd will be set once the device has its own
2146 * desired regulatory domain set
2147 */
2148 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2149 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2150 !is_world_regdom(lr->alpha2)) {
2151 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2152 reg_initiator_name(initiator));
2153 return true;
2154 }
2155
2156 if (reg_request_cell_base(lr))
2157 return reg_dev_ignore_cell_hint(wiphy);
2158
2159 return false;
2160}
2161
2162static bool reg_is_world_roaming(struct wiphy *wiphy)
2163{
2164 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2165 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2166 struct regulatory_request *lr = get_last_request();
2167
2168 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2169 return true;
2170
2171 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2172 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2173 return true;
2174
2175 return false;
2176}
2177
2178static void reg_call_notifier(struct wiphy *wiphy,
2179 struct regulatory_request *request)
2180{
2181 if (wiphy->reg_notifier)
2182 wiphy->reg_notifier(wiphy, request);
2183}
2184
2185static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2186 struct reg_beacon *reg_beacon)
2187{
2188 struct ieee80211_supported_band *sband;
2189 struct ieee80211_channel *chan;
2190 bool channel_changed = false;
2191 struct ieee80211_channel chan_before;
2192 struct regulatory_request *lr = get_last_request();
2193
2194 sband = wiphy->bands[reg_beacon->chan.band];
2195 chan = &sband->channels[chan_idx];
2196
2197 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2198 return;
2199
2200 if (chan->beacon_found)
2201 return;
2202
2203 chan->beacon_found = true;
2204
2205 if (!reg_is_world_roaming(wiphy))
2206 return;
2207
2208 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2209 return;
2210
2211 chan_before = *chan;
2212
2213 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2214 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2215 channel_changed = true;
2216 }
2217
2218 if (channel_changed) {
2219 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2220 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2221 reg_call_notifier(wiphy, lr);
2222 }
2223}
2224
2225/*
2226 * Called when a scan on a wiphy finds a beacon on
2227 * new channel
2228 */
2229static void wiphy_update_new_beacon(struct wiphy *wiphy,
2230 struct reg_beacon *reg_beacon)
2231{
2232 unsigned int i;
2233 struct ieee80211_supported_band *sband;
2234
2235 if (!wiphy->bands[reg_beacon->chan.band])
2236 return;
2237
2238 sband = wiphy->bands[reg_beacon->chan.band];
2239
2240 for (i = 0; i < sband->n_channels; i++)
2241 handle_reg_beacon(wiphy, i, reg_beacon);
2242}
2243
2244/*
2245 * Called upon reg changes or a new wiphy is added
2246 */
2247static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2248{
2249 unsigned int i;
2250 struct ieee80211_supported_band *sband;
2251 struct reg_beacon *reg_beacon;
2252
2253 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2254 if (!wiphy->bands[reg_beacon->chan.band])
2255 continue;
2256 sband = wiphy->bands[reg_beacon->chan.band];
2257 for (i = 0; i < sband->n_channels; i++)
2258 handle_reg_beacon(wiphy, i, reg_beacon);
2259 }
2260}
2261
2262/* Reap the advantages of previously found beacons */
2263static void reg_process_beacons(struct wiphy *wiphy)
2264{
2265 /*
2266 * Means we are just firing up cfg80211, so no beacons would
2267 * have been processed yet.
2268 */
2269 if (!last_request)
2270 return;
2271 wiphy_update_beacon_reg(wiphy);
2272}
2273
2274static bool is_ht40_allowed(struct ieee80211_channel *chan)
2275{
2276 if (!chan)
2277 return false;
2278 if (chan->flags & IEEE80211_CHAN_DISABLED)
2279 return false;
2280 /* This would happen when regulatory rules disallow HT40 completely */
2281 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2282 return false;
2283 return true;
2284}
2285
2286static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2287 struct ieee80211_channel *channel)
2288{
2289 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2290 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2291 const struct ieee80211_regdomain *regd;
2292 unsigned int i;
2293 u32 flags;
2294
2295 if (!is_ht40_allowed(channel)) {
2296 channel->flags |= IEEE80211_CHAN_NO_HT40;
2297 return;
2298 }
2299
2300 /*
2301 * We need to ensure the extension channels exist to
2302 * be able to use HT40- or HT40+, this finds them (or not)
2303 */
2304 for (i = 0; i < sband->n_channels; i++) {
2305 struct ieee80211_channel *c = &sband->channels[i];
2306
2307 if (c->center_freq == (channel->center_freq - 20))
2308 channel_before = c;
2309 if (c->center_freq == (channel->center_freq + 20))
2310 channel_after = c;
2311 }
2312
2313 flags = 0;
2314 regd = get_wiphy_regdom(wiphy);
2315 if (regd) {
2316 const struct ieee80211_reg_rule *reg_rule =
2317 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2318 regd, MHZ_TO_KHZ(20));
2319
2320 if (!IS_ERR(reg_rule))
2321 flags = reg_rule->flags;
2322 }
2323
2324 /*
2325 * Please note that this assumes target bandwidth is 20 MHz,
2326 * if that ever changes we also need to change the below logic
2327 * to include that as well.
2328 */
2329 if (!is_ht40_allowed(channel_before) ||
2330 flags & NL80211_RRF_NO_HT40MINUS)
2331 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2332 else
2333 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2334
2335 if (!is_ht40_allowed(channel_after) ||
2336 flags & NL80211_RRF_NO_HT40PLUS)
2337 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2338 else
2339 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2340}
2341
2342static void reg_process_ht_flags_band(struct wiphy *wiphy,
2343 struct ieee80211_supported_band *sband)
2344{
2345 unsigned int i;
2346
2347 if (!sband)
2348 return;
2349
2350 for (i = 0; i < sband->n_channels; i++)
2351 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2352}
2353
2354static void reg_process_ht_flags(struct wiphy *wiphy)
2355{
2356 enum nl80211_band band;
2357
2358 if (!wiphy)
2359 return;
2360
2361 for (band = 0; band < NUM_NL80211_BANDS; band++)
2362 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2363}
2364
2365static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2366{
2367 struct cfg80211_chan_def chandef = {};
2368 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2369 enum nl80211_iftype iftype;
2370 bool ret;
2371 int link;
2372
2373 iftype = wdev->iftype;
2374
2375 /* make sure the interface is active */
2376 if (!wdev->netdev || !netif_running(wdev->netdev))
2377 return true;
2378
2379 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2380 struct ieee80211_channel *chan;
2381
2382 if (!wdev->valid_links && link > 0)
2383 break;
2384 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2385 continue;
2386 switch (iftype) {
2387 case NL80211_IFTYPE_AP:
2388 case NL80211_IFTYPE_P2P_GO:
2389 if (!wdev->links[link].ap.beacon_interval)
2390 continue;
2391 chandef = wdev->links[link].ap.chandef;
2392 break;
2393 case NL80211_IFTYPE_MESH_POINT:
2394 if (!wdev->u.mesh.beacon_interval)
2395 continue;
2396 chandef = wdev->u.mesh.chandef;
2397 break;
2398 case NL80211_IFTYPE_ADHOC:
2399 if (!wdev->u.ibss.ssid_len)
2400 continue;
2401 chandef = wdev->u.ibss.chandef;
2402 break;
2403 case NL80211_IFTYPE_STATION:
2404 case NL80211_IFTYPE_P2P_CLIENT:
2405 /* Maybe we could consider disabling that link only? */
2406 if (!wdev->links[link].client.current_bss)
2407 continue;
2408
2409 chan = wdev->links[link].client.current_bss->pub.channel;
2410 if (!chan)
2411 continue;
2412
2413 if (!rdev->ops->get_channel ||
2414 rdev_get_channel(rdev, wdev, link, &chandef))
2415 cfg80211_chandef_create(&chandef, chan,
2416 NL80211_CHAN_NO_HT);
2417 break;
2418 case NL80211_IFTYPE_MONITOR:
2419 case NL80211_IFTYPE_AP_VLAN:
2420 case NL80211_IFTYPE_P2P_DEVICE:
2421 /* no enforcement required */
2422 break;
2423 case NL80211_IFTYPE_OCB:
2424 if (!wdev->u.ocb.chandef.chan)
2425 continue;
2426 chandef = wdev->u.ocb.chandef;
2427 break;
2428 case NL80211_IFTYPE_NAN:
2429 /* we have no info, but NAN is also pretty universal */
2430 continue;
2431 default:
2432 /* others not implemented for now */
2433 WARN_ON_ONCE(1);
2434 break;
2435 }
2436
2437 switch (iftype) {
2438 case NL80211_IFTYPE_AP:
2439 case NL80211_IFTYPE_P2P_GO:
2440 case NL80211_IFTYPE_ADHOC:
2441 case NL80211_IFTYPE_MESH_POINT:
2442 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2443 iftype);
2444 if (!ret)
2445 return ret;
2446 break;
2447 case NL80211_IFTYPE_STATION:
2448 case NL80211_IFTYPE_P2P_CLIENT:
2449 ret = cfg80211_chandef_usable(wiphy, &chandef,
2450 IEEE80211_CHAN_DISABLED);
2451 if (!ret)
2452 return ret;
2453 break;
2454 default:
2455 break;
2456 }
2457 }
2458
2459 return true;
2460}
2461
2462static void reg_leave_invalid_chans(struct wiphy *wiphy)
2463{
2464 struct wireless_dev *wdev;
2465 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2466
2467 wiphy_lock(wiphy);
2468 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2469 if (!reg_wdev_chan_valid(wiphy, wdev))
2470 cfg80211_leave(rdev, wdev);
2471 wiphy_unlock(wiphy);
2472}
2473
2474static void reg_check_chans_work(struct work_struct *work)
2475{
2476 struct cfg80211_registered_device *rdev;
2477
2478 pr_debug("Verifying active interfaces after reg change\n");
2479 rtnl_lock();
2480
2481 for_each_rdev(rdev)
2482 reg_leave_invalid_chans(&rdev->wiphy);
2483
2484 rtnl_unlock();
2485}
2486
2487void reg_check_channels(void)
2488{
2489 /*
2490 * Give usermode a chance to do something nicer (move to another
2491 * channel, orderly disconnection), before forcing a disconnection.
2492 */
2493 mod_delayed_work(system_power_efficient_wq,
2494 ®_check_chans,
2495 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2496}
2497
2498static void wiphy_update_regulatory(struct wiphy *wiphy,
2499 enum nl80211_reg_initiator initiator)
2500{
2501 enum nl80211_band band;
2502 struct regulatory_request *lr = get_last_request();
2503
2504 if (ignore_reg_update(wiphy, initiator)) {
2505 /*
2506 * Regulatory updates set by CORE are ignored for custom
2507 * regulatory cards. Let us notify the changes to the driver,
2508 * as some drivers used this to restore its orig_* reg domain.
2509 */
2510 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2511 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2512 !(wiphy->regulatory_flags &
2513 REGULATORY_WIPHY_SELF_MANAGED))
2514 reg_call_notifier(wiphy, lr);
2515 return;
2516 }
2517
2518 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2519
2520 for (band = 0; band < NUM_NL80211_BANDS; band++)
2521 handle_band(wiphy, initiator, wiphy->bands[band]);
2522
2523 reg_process_beacons(wiphy);
2524 reg_process_ht_flags(wiphy);
2525 reg_call_notifier(wiphy, lr);
2526}
2527
2528static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2529{
2530 struct cfg80211_registered_device *rdev;
2531 struct wiphy *wiphy;
2532
2533 ASSERT_RTNL();
2534
2535 for_each_rdev(rdev) {
2536 wiphy = &rdev->wiphy;
2537 wiphy_update_regulatory(wiphy, initiator);
2538 }
2539
2540 reg_check_channels();
2541}
2542
2543static void handle_channel_custom(struct wiphy *wiphy,
2544 struct ieee80211_channel *chan,
2545 const struct ieee80211_regdomain *regd,
2546 u32 min_bw)
2547{
2548 u32 bw_flags = 0;
2549 const struct ieee80211_reg_rule *reg_rule = NULL;
2550 const struct ieee80211_power_rule *power_rule = NULL;
2551 u32 bw, center_freq_khz;
2552
2553 center_freq_khz = ieee80211_channel_to_khz(chan);
2554 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2555 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2556 if (!IS_ERR(reg_rule))
2557 break;
2558 }
2559
2560 if (IS_ERR_OR_NULL(reg_rule)) {
2561 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2562 chan->center_freq, chan->freq_offset);
2563 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2564 chan->flags |= IEEE80211_CHAN_DISABLED;
2565 } else {
2566 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2567 chan->flags = chan->orig_flags;
2568 }
2569 return;
2570 }
2571
2572 power_rule = ®_rule->power_rule;
2573 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2574
2575 chan->dfs_state_entered = jiffies;
2576 chan->dfs_state = NL80211_DFS_USABLE;
2577
2578 chan->beacon_found = false;
2579
2580 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581 chan->flags = chan->orig_flags | bw_flags |
2582 map_regdom_flags(reg_rule->flags);
2583 else
2584 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2585
2586 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2587 chan->max_reg_power = chan->max_power =
2588 (int) MBM_TO_DBM(power_rule->max_eirp);
2589
2590 if (chan->flags & IEEE80211_CHAN_RADAR) {
2591 if (reg_rule->dfs_cac_ms)
2592 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2593 else
2594 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2595 }
2596
2597 if (chan->flags & IEEE80211_CHAN_PSD)
2598 chan->psd = reg_rule->psd;
2599
2600 chan->max_power = chan->max_reg_power;
2601}
2602
2603static void handle_band_custom(struct wiphy *wiphy,
2604 struct ieee80211_supported_band *sband,
2605 const struct ieee80211_regdomain *regd)
2606{
2607 unsigned int i;
2608
2609 if (!sband)
2610 return;
2611
2612 /*
2613 * We currently assume that you always want at least 20 MHz,
2614 * otherwise channel 12 might get enabled if this rule is
2615 * compatible to US, which permits 2402 - 2472 MHz.
2616 */
2617 for (i = 0; i < sband->n_channels; i++)
2618 handle_channel_custom(wiphy, &sband->channels[i], regd,
2619 MHZ_TO_KHZ(20));
2620}
2621
2622/* Used by drivers prior to wiphy registration */
2623void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2624 const struct ieee80211_regdomain *regd)
2625{
2626 const struct ieee80211_regdomain *new_regd, *tmp;
2627 enum nl80211_band band;
2628 unsigned int bands_set = 0;
2629
2630 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2631 "wiphy should have REGULATORY_CUSTOM_REG\n");
2632 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2633
2634 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2635 if (!wiphy->bands[band])
2636 continue;
2637 handle_band_custom(wiphy, wiphy->bands[band], regd);
2638 bands_set++;
2639 }
2640
2641 /*
2642 * no point in calling this if it won't have any effect
2643 * on your device's supported bands.
2644 */
2645 WARN_ON(!bands_set);
2646 new_regd = reg_copy_regd(regd);
2647 if (IS_ERR(new_regd))
2648 return;
2649
2650 rtnl_lock();
2651 wiphy_lock(wiphy);
2652
2653 tmp = get_wiphy_regdom(wiphy);
2654 rcu_assign_pointer(wiphy->regd, new_regd);
2655 rcu_free_regdom(tmp);
2656
2657 wiphy_unlock(wiphy);
2658 rtnl_unlock();
2659}
2660EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661
2662static void reg_set_request_processed(void)
2663{
2664 bool need_more_processing = false;
2665 struct regulatory_request *lr = get_last_request();
2666
2667 lr->processed = true;
2668
2669 spin_lock(®_requests_lock);
2670 if (!list_empty(®_requests_list))
2671 need_more_processing = true;
2672 spin_unlock(®_requests_lock);
2673
2674 cancel_crda_timeout();
2675
2676 if (need_more_processing)
2677 schedule_work(®_work);
2678}
2679
2680/**
2681 * reg_process_hint_core - process core regulatory requests
2682 * @core_request: a pending core regulatory request
2683 *
2684 * The wireless subsystem can use this function to process
2685 * a regulatory request issued by the regulatory core.
2686 *
2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688 * hint was processed or ignored
2689 */
2690static enum reg_request_treatment
2691reg_process_hint_core(struct regulatory_request *core_request)
2692{
2693 if (reg_query_database(core_request)) {
2694 core_request->intersect = false;
2695 core_request->processed = false;
2696 reg_update_last_request(core_request);
2697 return REG_REQ_OK;
2698 }
2699
2700 return REG_REQ_IGNORE;
2701}
2702
2703static enum reg_request_treatment
2704__reg_process_hint_user(struct regulatory_request *user_request)
2705{
2706 struct regulatory_request *lr = get_last_request();
2707
2708 if (reg_request_cell_base(user_request))
2709 return reg_ignore_cell_hint(user_request);
2710
2711 if (reg_request_cell_base(lr))
2712 return REG_REQ_IGNORE;
2713
2714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715 return REG_REQ_INTERSECT;
2716 /*
2717 * If the user knows better the user should set the regdom
2718 * to their country before the IE is picked up
2719 */
2720 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721 lr->intersect)
2722 return REG_REQ_IGNORE;
2723 /*
2724 * Process user requests only after previous user/driver/core
2725 * requests have been processed
2726 */
2727 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730 regdom_changes(lr->alpha2))
2731 return REG_REQ_IGNORE;
2732
2733 if (!regdom_changes(user_request->alpha2))
2734 return REG_REQ_ALREADY_SET;
2735
2736 return REG_REQ_OK;
2737}
2738
2739/**
2740 * reg_process_hint_user - process user regulatory requests
2741 * @user_request: a pending user regulatory request
2742 *
2743 * The wireless subsystem can use this function to process
2744 * a regulatory request initiated by userspace.
2745 *
2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747 * hint was processed or ignored
2748 */
2749static enum reg_request_treatment
2750reg_process_hint_user(struct regulatory_request *user_request)
2751{
2752 enum reg_request_treatment treatment;
2753
2754 treatment = __reg_process_hint_user(user_request);
2755 if (treatment == REG_REQ_IGNORE ||
2756 treatment == REG_REQ_ALREADY_SET)
2757 return REG_REQ_IGNORE;
2758
2759 user_request->intersect = treatment == REG_REQ_INTERSECT;
2760 user_request->processed = false;
2761
2762 if (reg_query_database(user_request)) {
2763 reg_update_last_request(user_request);
2764 user_alpha2[0] = user_request->alpha2[0];
2765 user_alpha2[1] = user_request->alpha2[1];
2766 return REG_REQ_OK;
2767 }
2768
2769 return REG_REQ_IGNORE;
2770}
2771
2772static enum reg_request_treatment
2773__reg_process_hint_driver(struct regulatory_request *driver_request)
2774{
2775 struct regulatory_request *lr = get_last_request();
2776
2777 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778 if (regdom_changes(driver_request->alpha2))
2779 return REG_REQ_OK;
2780 return REG_REQ_ALREADY_SET;
2781 }
2782
2783 /*
2784 * This would happen if you unplug and plug your card
2785 * back in or if you add a new device for which the previously
2786 * loaded card also agrees on the regulatory domain.
2787 */
2788 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789 !regdom_changes(driver_request->alpha2))
2790 return REG_REQ_ALREADY_SET;
2791
2792 return REG_REQ_INTERSECT;
2793}
2794
2795/**
2796 * reg_process_hint_driver - process driver regulatory requests
2797 * @wiphy: the wireless device for the regulatory request
2798 * @driver_request: a pending driver regulatory request
2799 *
2800 * The wireless subsystem can use this function to process
2801 * a regulatory request issued by an 802.11 driver.
2802 *
2803 * Returns: one of the different reg request treatment values.
2804 */
2805static enum reg_request_treatment
2806reg_process_hint_driver(struct wiphy *wiphy,
2807 struct regulatory_request *driver_request)
2808{
2809 const struct ieee80211_regdomain *regd, *tmp;
2810 enum reg_request_treatment treatment;
2811
2812 treatment = __reg_process_hint_driver(driver_request);
2813
2814 switch (treatment) {
2815 case REG_REQ_OK:
2816 break;
2817 case REG_REQ_IGNORE:
2818 return REG_REQ_IGNORE;
2819 case REG_REQ_INTERSECT:
2820 case REG_REQ_ALREADY_SET:
2821 regd = reg_copy_regd(get_cfg80211_regdom());
2822 if (IS_ERR(regd))
2823 return REG_REQ_IGNORE;
2824
2825 tmp = get_wiphy_regdom(wiphy);
2826 ASSERT_RTNL();
2827 wiphy_lock(wiphy);
2828 rcu_assign_pointer(wiphy->regd, regd);
2829 wiphy_unlock(wiphy);
2830 rcu_free_regdom(tmp);
2831 }
2832
2833
2834 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835 driver_request->processed = false;
2836
2837 /*
2838 * Since CRDA will not be called in this case as we already
2839 * have applied the requested regulatory domain before we just
2840 * inform userspace we have processed the request
2841 */
2842 if (treatment == REG_REQ_ALREADY_SET) {
2843 nl80211_send_reg_change_event(driver_request);
2844 reg_update_last_request(driver_request);
2845 reg_set_request_processed();
2846 return REG_REQ_ALREADY_SET;
2847 }
2848
2849 if (reg_query_database(driver_request)) {
2850 reg_update_last_request(driver_request);
2851 return REG_REQ_OK;
2852 }
2853
2854 return REG_REQ_IGNORE;
2855}
2856
2857static enum reg_request_treatment
2858__reg_process_hint_country_ie(struct wiphy *wiphy,
2859 struct regulatory_request *country_ie_request)
2860{
2861 struct wiphy *last_wiphy = NULL;
2862 struct regulatory_request *lr = get_last_request();
2863
2864 if (reg_request_cell_base(lr)) {
2865 /* Trust a Cell base station over the AP's country IE */
2866 if (regdom_changes(country_ie_request->alpha2))
2867 return REG_REQ_IGNORE;
2868 return REG_REQ_ALREADY_SET;
2869 } else {
2870 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871 return REG_REQ_IGNORE;
2872 }
2873
2874 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875 return -EINVAL;
2876
2877 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878 return REG_REQ_OK;
2879
2880 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881
2882 if (last_wiphy != wiphy) {
2883 /*
2884 * Two cards with two APs claiming different
2885 * Country IE alpha2s. We could
2886 * intersect them, but that seems unlikely
2887 * to be correct. Reject second one for now.
2888 */
2889 if (regdom_changes(country_ie_request->alpha2))
2890 return REG_REQ_IGNORE;
2891 return REG_REQ_ALREADY_SET;
2892 }
2893
2894 if (regdom_changes(country_ie_request->alpha2))
2895 return REG_REQ_OK;
2896 return REG_REQ_ALREADY_SET;
2897}
2898
2899/**
2900 * reg_process_hint_country_ie - process regulatory requests from country IEs
2901 * @wiphy: the wireless device for the regulatory request
2902 * @country_ie_request: a regulatory request from a country IE
2903 *
2904 * The wireless subsystem can use this function to process
2905 * a regulatory request issued by a country Information Element.
2906 *
2907 * Returns: one of the different reg request treatment values.
2908 */
2909static enum reg_request_treatment
2910reg_process_hint_country_ie(struct wiphy *wiphy,
2911 struct regulatory_request *country_ie_request)
2912{
2913 enum reg_request_treatment treatment;
2914
2915 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916
2917 switch (treatment) {
2918 case REG_REQ_OK:
2919 break;
2920 case REG_REQ_IGNORE:
2921 return REG_REQ_IGNORE;
2922 case REG_REQ_ALREADY_SET:
2923 reg_free_request(country_ie_request);
2924 return REG_REQ_ALREADY_SET;
2925 case REG_REQ_INTERSECT:
2926 /*
2927 * This doesn't happen yet, not sure we
2928 * ever want to support it for this case.
2929 */
2930 WARN_ONCE(1, "Unexpected intersection for country elements");
2931 return REG_REQ_IGNORE;
2932 }
2933
2934 country_ie_request->intersect = false;
2935 country_ie_request->processed = false;
2936
2937 if (reg_query_database(country_ie_request)) {
2938 reg_update_last_request(country_ie_request);
2939 return REG_REQ_OK;
2940 }
2941
2942 return REG_REQ_IGNORE;
2943}
2944
2945bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946{
2947 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950 bool dfs_domain_same;
2951
2952 rcu_read_lock();
2953
2954 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955 wiphy1_regd = rcu_dereference(wiphy1->regd);
2956 if (!wiphy1_regd)
2957 wiphy1_regd = cfg80211_regd;
2958
2959 wiphy2_regd = rcu_dereference(wiphy2->regd);
2960 if (!wiphy2_regd)
2961 wiphy2_regd = cfg80211_regd;
2962
2963 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964
2965 rcu_read_unlock();
2966
2967 return dfs_domain_same;
2968}
2969
2970static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971 struct ieee80211_channel *src_chan)
2972{
2973 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975 return;
2976
2977 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978 src_chan->flags & IEEE80211_CHAN_DISABLED)
2979 return;
2980
2981 if (src_chan->center_freq == dst_chan->center_freq &&
2982 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983 dst_chan->dfs_state = src_chan->dfs_state;
2984 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985 }
2986}
2987
2988static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989 struct wiphy *src_wiphy)
2990{
2991 struct ieee80211_supported_band *src_sband, *dst_sband;
2992 struct ieee80211_channel *src_chan, *dst_chan;
2993 int i, j, band;
2994
2995 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996 return;
2997
2998 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999 dst_sband = dst_wiphy->bands[band];
3000 src_sband = src_wiphy->bands[band];
3001 if (!dst_sband || !src_sband)
3002 continue;
3003
3004 for (i = 0; i < dst_sband->n_channels; i++) {
3005 dst_chan = &dst_sband->channels[i];
3006 for (j = 0; j < src_sband->n_channels; j++) {
3007 src_chan = &src_sband->channels[j];
3008 reg_copy_dfs_chan_state(dst_chan, src_chan);
3009 }
3010 }
3011 }
3012}
3013
3014static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015{
3016 struct cfg80211_registered_device *rdev;
3017
3018 ASSERT_RTNL();
3019
3020 for_each_rdev(rdev) {
3021 if (wiphy == &rdev->wiphy)
3022 continue;
3023 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024 }
3025}
3026
3027/* This processes *all* regulatory hints */
3028static void reg_process_hint(struct regulatory_request *reg_request)
3029{
3030 struct wiphy *wiphy = NULL;
3031 enum reg_request_treatment treatment;
3032 enum nl80211_reg_initiator initiator = reg_request->initiator;
3033
3034 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036
3037 switch (initiator) {
3038 case NL80211_REGDOM_SET_BY_CORE:
3039 treatment = reg_process_hint_core(reg_request);
3040 break;
3041 case NL80211_REGDOM_SET_BY_USER:
3042 treatment = reg_process_hint_user(reg_request);
3043 break;
3044 case NL80211_REGDOM_SET_BY_DRIVER:
3045 if (!wiphy)
3046 goto out_free;
3047 treatment = reg_process_hint_driver(wiphy, reg_request);
3048 break;
3049 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050 if (!wiphy)
3051 goto out_free;
3052 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053 break;
3054 default:
3055 WARN(1, "invalid initiator %d\n", initiator);
3056 goto out_free;
3057 }
3058
3059 if (treatment == REG_REQ_IGNORE)
3060 goto out_free;
3061
3062 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063 "unexpected treatment value %d\n", treatment);
3064
3065 /* This is required so that the orig_* parameters are saved.
3066 * NOTE: treatment must be set for any case that reaches here!
3067 */
3068 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070 wiphy_update_regulatory(wiphy, initiator);
3071 wiphy_all_share_dfs_chan_state(wiphy);
3072 reg_check_channels();
3073 }
3074
3075 return;
3076
3077out_free:
3078 reg_free_request(reg_request);
3079}
3080
3081static void notify_self_managed_wiphys(struct regulatory_request *request)
3082{
3083 struct cfg80211_registered_device *rdev;
3084 struct wiphy *wiphy;
3085
3086 for_each_rdev(rdev) {
3087 wiphy = &rdev->wiphy;
3088 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089 request->initiator == NL80211_REGDOM_SET_BY_USER)
3090 reg_call_notifier(wiphy, request);
3091 }
3092}
3093
3094/*
3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096 * Regulatory hints come on a first come first serve basis and we
3097 * must process each one atomically.
3098 */
3099static void reg_process_pending_hints(void)
3100{
3101 struct regulatory_request *reg_request, *lr;
3102
3103 lr = get_last_request();
3104
3105 /* When last_request->processed becomes true this will be rescheduled */
3106 if (lr && !lr->processed) {
3107 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108 return;
3109 }
3110
3111 spin_lock(®_requests_lock);
3112
3113 if (list_empty(®_requests_list)) {
3114 spin_unlock(®_requests_lock);
3115 return;
3116 }
3117
3118 reg_request = list_first_entry(®_requests_list,
3119 struct regulatory_request,
3120 list);
3121 list_del_init(®_request->list);
3122
3123 spin_unlock(®_requests_lock);
3124
3125 notify_self_managed_wiphys(reg_request);
3126
3127 reg_process_hint(reg_request);
3128
3129 lr = get_last_request();
3130
3131 spin_lock(®_requests_lock);
3132 if (!list_empty(®_requests_list) && lr && lr->processed)
3133 schedule_work(®_work);
3134 spin_unlock(®_requests_lock);
3135}
3136
3137/* Processes beacon hints -- this has nothing to do with country IEs */
3138static void reg_process_pending_beacon_hints(void)
3139{
3140 struct cfg80211_registered_device *rdev;
3141 struct reg_beacon *pending_beacon, *tmp;
3142
3143 /* This goes through the _pending_ beacon list */
3144 spin_lock_bh(®_pending_beacons_lock);
3145
3146 list_for_each_entry_safe(pending_beacon, tmp,
3147 ®_pending_beacons, list) {
3148 list_del_init(&pending_beacon->list);
3149
3150 /* Applies the beacon hint to current wiphys */
3151 for_each_rdev(rdev)
3152 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153
3154 /* Remembers the beacon hint for new wiphys or reg changes */
3155 list_add_tail(&pending_beacon->list, ®_beacon_list);
3156 }
3157
3158 spin_unlock_bh(®_pending_beacons_lock);
3159}
3160
3161static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162{
3163 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3164 const struct ieee80211_regdomain *tmp;
3165 const struct ieee80211_regdomain *regd;
3166 enum nl80211_band band;
3167 struct regulatory_request request = {};
3168
3169 ASSERT_RTNL();
3170 lockdep_assert_wiphy(wiphy);
3171
3172 spin_lock(®_requests_lock);
3173 regd = rdev->requested_regd;
3174 rdev->requested_regd = NULL;
3175 spin_unlock(®_requests_lock);
3176
3177 if (!regd)
3178 return;
3179
3180 tmp = get_wiphy_regdom(wiphy);
3181 rcu_assign_pointer(wiphy->regd, regd);
3182 rcu_free_regdom(tmp);
3183
3184 for (band = 0; band < NUM_NL80211_BANDS; band++)
3185 handle_band_custom(wiphy, wiphy->bands[band], regd);
3186
3187 reg_process_ht_flags(wiphy);
3188
3189 request.wiphy_idx = get_wiphy_idx(wiphy);
3190 request.alpha2[0] = regd->alpha2[0];
3191 request.alpha2[1] = regd->alpha2[1];
3192 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193
3194 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195 reg_call_notifier(wiphy, &request);
3196
3197 nl80211_send_wiphy_reg_change_event(&request);
3198}
3199
3200static void reg_process_self_managed_hints(void)
3201{
3202 struct cfg80211_registered_device *rdev;
3203
3204 ASSERT_RTNL();
3205
3206 for_each_rdev(rdev) {
3207 wiphy_lock(&rdev->wiphy);
3208 reg_process_self_managed_hint(&rdev->wiphy);
3209 wiphy_unlock(&rdev->wiphy);
3210 }
3211
3212 reg_check_channels();
3213}
3214
3215static void reg_todo(struct work_struct *work)
3216{
3217 rtnl_lock();
3218 reg_process_pending_hints();
3219 reg_process_pending_beacon_hints();
3220 reg_process_self_managed_hints();
3221 rtnl_unlock();
3222}
3223
3224static void queue_regulatory_request(struct regulatory_request *request)
3225{
3226 request->alpha2[0] = toupper(request->alpha2[0]);
3227 request->alpha2[1] = toupper(request->alpha2[1]);
3228
3229 spin_lock(®_requests_lock);
3230 list_add_tail(&request->list, ®_requests_list);
3231 spin_unlock(®_requests_lock);
3232
3233 schedule_work(®_work);
3234}
3235
3236/*
3237 * Core regulatory hint -- happens during cfg80211_init()
3238 * and when we restore regulatory settings.
3239 */
3240static int regulatory_hint_core(const char *alpha2)
3241{
3242 struct regulatory_request *request;
3243
3244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245 if (!request)
3246 return -ENOMEM;
3247
3248 request->alpha2[0] = alpha2[0];
3249 request->alpha2[1] = alpha2[1];
3250 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251 request->wiphy_idx = WIPHY_IDX_INVALID;
3252
3253 queue_regulatory_request(request);
3254
3255 return 0;
3256}
3257
3258/* User hints */
3259int regulatory_hint_user(const char *alpha2,
3260 enum nl80211_user_reg_hint_type user_reg_hint_type)
3261{
3262 struct regulatory_request *request;
3263
3264 if (WARN_ON(!alpha2))
3265 return -EINVAL;
3266
3267 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268 return -EINVAL;
3269
3270 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271 if (!request)
3272 return -ENOMEM;
3273
3274 request->wiphy_idx = WIPHY_IDX_INVALID;
3275 request->alpha2[0] = alpha2[0];
3276 request->alpha2[1] = alpha2[1];
3277 request->initiator = NL80211_REGDOM_SET_BY_USER;
3278 request->user_reg_hint_type = user_reg_hint_type;
3279
3280 /* Allow calling CRDA again */
3281 reset_crda_timeouts();
3282
3283 queue_regulatory_request(request);
3284
3285 return 0;
3286}
3287
3288int regulatory_hint_indoor(bool is_indoor, u32 portid)
3289{
3290 spin_lock(®_indoor_lock);
3291
3292 /* It is possible that more than one user space process is trying to
3293 * configure the indoor setting. To handle such cases, clear the indoor
3294 * setting in case that some process does not think that the device
3295 * is operating in an indoor environment. In addition, if a user space
3296 * process indicates that it is controlling the indoor setting, save its
3297 * portid, i.e., make it the owner.
3298 */
3299 reg_is_indoor = is_indoor;
3300 if (reg_is_indoor) {
3301 if (!reg_is_indoor_portid)
3302 reg_is_indoor_portid = portid;
3303 } else {
3304 reg_is_indoor_portid = 0;
3305 }
3306
3307 spin_unlock(®_indoor_lock);
3308
3309 if (!is_indoor)
3310 reg_check_channels();
3311
3312 return 0;
3313}
3314
3315void regulatory_netlink_notify(u32 portid)
3316{
3317 spin_lock(®_indoor_lock);
3318
3319 if (reg_is_indoor_portid != portid) {
3320 spin_unlock(®_indoor_lock);
3321 return;
3322 }
3323
3324 reg_is_indoor = false;
3325 reg_is_indoor_portid = 0;
3326
3327 spin_unlock(®_indoor_lock);
3328
3329 reg_check_channels();
3330}
3331
3332/* Driver hints */
3333int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334{
3335 struct regulatory_request *request;
3336
3337 if (WARN_ON(!alpha2 || !wiphy))
3338 return -EINVAL;
3339
3340 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341
3342 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343 if (!request)
3344 return -ENOMEM;
3345
3346 request->wiphy_idx = get_wiphy_idx(wiphy);
3347
3348 request->alpha2[0] = alpha2[0];
3349 request->alpha2[1] = alpha2[1];
3350 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351
3352 /* Allow calling CRDA again */
3353 reset_crda_timeouts();
3354
3355 queue_regulatory_request(request);
3356
3357 return 0;
3358}
3359EXPORT_SYMBOL(regulatory_hint);
3360
3361void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362 const u8 *country_ie, u8 country_ie_len)
3363{
3364 char alpha2[2];
3365 enum environment_cap env = ENVIRON_ANY;
3366 struct regulatory_request *request = NULL, *lr;
3367
3368 /* IE len must be evenly divisible by 2 */
3369 if (country_ie_len & 0x01)
3370 return;
3371
3372 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373 return;
3374
3375 request = kzalloc(sizeof(*request), GFP_KERNEL);
3376 if (!request)
3377 return;
3378
3379 alpha2[0] = country_ie[0];
3380 alpha2[1] = country_ie[1];
3381
3382 if (country_ie[2] == 'I')
3383 env = ENVIRON_INDOOR;
3384 else if (country_ie[2] == 'O')
3385 env = ENVIRON_OUTDOOR;
3386
3387 rcu_read_lock();
3388 lr = get_last_request();
3389
3390 if (unlikely(!lr))
3391 goto out;
3392
3393 /*
3394 * We will run this only upon a successful connection on cfg80211.
3395 * We leave conflict resolution to the workqueue, where can hold
3396 * the RTNL.
3397 */
3398 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399 lr->wiphy_idx != WIPHY_IDX_INVALID)
3400 goto out;
3401
3402 request->wiphy_idx = get_wiphy_idx(wiphy);
3403 request->alpha2[0] = alpha2[0];
3404 request->alpha2[1] = alpha2[1];
3405 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406 request->country_ie_env = env;
3407
3408 /* Allow calling CRDA again */
3409 reset_crda_timeouts();
3410
3411 queue_regulatory_request(request);
3412 request = NULL;
3413out:
3414 kfree(request);
3415 rcu_read_unlock();
3416}
3417
3418static void restore_alpha2(char *alpha2, bool reset_user)
3419{
3420 /* indicates there is no alpha2 to consider for restoration */
3421 alpha2[0] = '9';
3422 alpha2[1] = '7';
3423
3424 /* The user setting has precedence over the module parameter */
3425 if (is_user_regdom_saved()) {
3426 /* Unless we're asked to ignore it and reset it */
3427 if (reset_user) {
3428 pr_debug("Restoring regulatory settings including user preference\n");
3429 user_alpha2[0] = '9';
3430 user_alpha2[1] = '7';
3431
3432 /*
3433 * If we're ignoring user settings, we still need to
3434 * check the module parameter to ensure we put things
3435 * back as they were for a full restore.
3436 */
3437 if (!is_world_regdom(ieee80211_regdom)) {
3438 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439 ieee80211_regdom[0], ieee80211_regdom[1]);
3440 alpha2[0] = ieee80211_regdom[0];
3441 alpha2[1] = ieee80211_regdom[1];
3442 }
3443 } else {
3444 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445 user_alpha2[0], user_alpha2[1]);
3446 alpha2[0] = user_alpha2[0];
3447 alpha2[1] = user_alpha2[1];
3448 }
3449 } else if (!is_world_regdom(ieee80211_regdom)) {
3450 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451 ieee80211_regdom[0], ieee80211_regdom[1]);
3452 alpha2[0] = ieee80211_regdom[0];
3453 alpha2[1] = ieee80211_regdom[1];
3454 } else
3455 pr_debug("Restoring regulatory settings\n");
3456}
3457
3458static void restore_custom_reg_settings(struct wiphy *wiphy)
3459{
3460 struct ieee80211_supported_band *sband;
3461 enum nl80211_band band;
3462 struct ieee80211_channel *chan;
3463 int i;
3464
3465 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466 sband = wiphy->bands[band];
3467 if (!sband)
3468 continue;
3469 for (i = 0; i < sband->n_channels; i++) {
3470 chan = &sband->channels[i];
3471 chan->flags = chan->orig_flags;
3472 chan->max_antenna_gain = chan->orig_mag;
3473 chan->max_power = chan->orig_mpwr;
3474 chan->beacon_found = false;
3475 }
3476 }
3477}
3478
3479/*
3480 * Restoring regulatory settings involves ignoring any
3481 * possibly stale country IE information and user regulatory
3482 * settings if so desired, this includes any beacon hints
3483 * learned as we could have traveled outside to another country
3484 * after disconnection. To restore regulatory settings we do
3485 * exactly what we did at bootup:
3486 *
3487 * - send a core regulatory hint
3488 * - send a user regulatory hint if applicable
3489 *
3490 * Device drivers that send a regulatory hint for a specific country
3491 * keep their own regulatory domain on wiphy->regd so that does
3492 * not need to be remembered.
3493 */
3494static void restore_regulatory_settings(bool reset_user, bool cached)
3495{
3496 char alpha2[2];
3497 char world_alpha2[2];
3498 struct reg_beacon *reg_beacon, *btmp;
3499 LIST_HEAD(tmp_reg_req_list);
3500 struct cfg80211_registered_device *rdev;
3501
3502 ASSERT_RTNL();
3503
3504 /*
3505 * Clear the indoor setting in case that it is not controlled by user
3506 * space, as otherwise there is no guarantee that the device is still
3507 * operating in an indoor environment.
3508 */
3509 spin_lock(®_indoor_lock);
3510 if (reg_is_indoor && !reg_is_indoor_portid) {
3511 reg_is_indoor = false;
3512 reg_check_channels();
3513 }
3514 spin_unlock(®_indoor_lock);
3515
3516 reset_regdomains(true, &world_regdom);
3517 restore_alpha2(alpha2, reset_user);
3518
3519 /*
3520 * If there's any pending requests we simply
3521 * stash them to a temporary pending queue and
3522 * add then after we've restored regulatory
3523 * settings.
3524 */
3525 spin_lock(®_requests_lock);
3526 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3527 spin_unlock(®_requests_lock);
3528
3529 /* Clear beacon hints */
3530 spin_lock_bh(®_pending_beacons_lock);
3531 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3532 list_del(®_beacon->list);
3533 kfree(reg_beacon);
3534 }
3535 spin_unlock_bh(®_pending_beacons_lock);
3536
3537 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3538 list_del(®_beacon->list);
3539 kfree(reg_beacon);
3540 }
3541
3542 /* First restore to the basic regulatory settings */
3543 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545
3546 for_each_rdev(rdev) {
3547 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548 continue;
3549 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550 restore_custom_reg_settings(&rdev->wiphy);
3551 }
3552
3553 if (cached && (!is_an_alpha2(alpha2) ||
3554 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555 reset_regdomains(false, cfg80211_world_regdom);
3556 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557 print_regdomain(get_cfg80211_regdom());
3558 nl80211_send_reg_change_event(&core_request_world);
3559 reg_set_request_processed();
3560
3561 if (is_an_alpha2(alpha2) &&
3562 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563 struct regulatory_request *ureq;
3564
3565 spin_lock(®_requests_lock);
3566 ureq = list_last_entry(®_requests_list,
3567 struct regulatory_request,
3568 list);
3569 list_del(&ureq->list);
3570 spin_unlock(®_requests_lock);
3571
3572 notify_self_managed_wiphys(ureq);
3573 reg_update_last_request(ureq);
3574 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575 REGD_SOURCE_CACHED);
3576 }
3577 } else {
3578 regulatory_hint_core(world_alpha2);
3579
3580 /*
3581 * This restores the ieee80211_regdom module parameter
3582 * preference or the last user requested regulatory
3583 * settings, user regulatory settings takes precedence.
3584 */
3585 if (is_an_alpha2(alpha2))
3586 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587 }
3588
3589 spin_lock(®_requests_lock);
3590 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3591 spin_unlock(®_requests_lock);
3592
3593 pr_debug("Kicking the queue\n");
3594
3595 schedule_work(®_work);
3596}
3597
3598static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599{
3600 struct cfg80211_registered_device *rdev;
3601 struct wireless_dev *wdev;
3602
3603 for_each_rdev(rdev) {
3604 wiphy_lock(&rdev->wiphy);
3605 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3606 if (!(wdev->wiphy->regulatory_flags & flag)) {
3607 wiphy_unlock(&rdev->wiphy);
3608 return false;
3609 }
3610 }
3611 wiphy_unlock(&rdev->wiphy);
3612 }
3613
3614 return true;
3615}
3616
3617void regulatory_hint_disconnect(void)
3618{
3619 /* Restore of regulatory settings is not required when wiphy(s)
3620 * ignore IE from connected access point but clearance of beacon hints
3621 * is required when wiphy(s) supports beacon hints.
3622 */
3623 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3624 struct reg_beacon *reg_beacon, *btmp;
3625
3626 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3627 return;
3628
3629 spin_lock_bh(®_pending_beacons_lock);
3630 list_for_each_entry_safe(reg_beacon, btmp,
3631 ®_pending_beacons, list) {
3632 list_del(®_beacon->list);
3633 kfree(reg_beacon);
3634 }
3635 spin_unlock_bh(®_pending_beacons_lock);
3636
3637 list_for_each_entry_safe(reg_beacon, btmp,
3638 ®_beacon_list, list) {
3639 list_del(®_beacon->list);
3640 kfree(reg_beacon);
3641 }
3642
3643 return;
3644 }
3645
3646 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3647 restore_regulatory_settings(false, true);
3648}
3649
3650static bool freq_is_chan_12_13_14(u32 freq)
3651{
3652 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3653 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3654 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3655 return true;
3656 return false;
3657}
3658
3659static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3660{
3661 struct reg_beacon *pending_beacon;
3662
3663 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3664 if (ieee80211_channel_equal(beacon_chan,
3665 &pending_beacon->chan))
3666 return true;
3667 return false;
3668}
3669
3670int regulatory_hint_found_beacon(struct wiphy *wiphy,
3671 struct ieee80211_channel *beacon_chan,
3672 gfp_t gfp)
3673{
3674 struct reg_beacon *reg_beacon;
3675 bool processing;
3676
3677 if (beacon_chan->beacon_found ||
3678 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3679 (beacon_chan->band == NL80211_BAND_2GHZ &&
3680 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3681 return 0;
3682
3683 spin_lock_bh(®_pending_beacons_lock);
3684 processing = pending_reg_beacon(beacon_chan);
3685 spin_unlock_bh(®_pending_beacons_lock);
3686
3687 if (processing)
3688 return 0;
3689
3690 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3691 if (!reg_beacon)
3692 return -ENOMEM;
3693
3694 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3695 beacon_chan->center_freq, beacon_chan->freq_offset,
3696 ieee80211_freq_khz_to_channel(
3697 ieee80211_channel_to_khz(beacon_chan)),
3698 wiphy_name(wiphy));
3699
3700 memcpy(®_beacon->chan, beacon_chan,
3701 sizeof(struct ieee80211_channel));
3702
3703 /*
3704 * Since we can be called from BH or and non-BH context
3705 * we must use spin_lock_bh()
3706 */
3707 spin_lock_bh(®_pending_beacons_lock);
3708 list_add_tail(®_beacon->list, ®_pending_beacons);
3709 spin_unlock_bh(®_pending_beacons_lock);
3710
3711 schedule_work(®_work);
3712
3713 return 0;
3714}
3715
3716static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717{
3718 unsigned int i;
3719 const struct ieee80211_reg_rule *reg_rule = NULL;
3720 const struct ieee80211_freq_range *freq_range = NULL;
3721 const struct ieee80211_power_rule *power_rule = NULL;
3722 char bw[32], cac_time[32];
3723
3724 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725
3726 for (i = 0; i < rd->n_reg_rules; i++) {
3727 reg_rule = &rd->reg_rules[i];
3728 freq_range = ®_rule->freq_range;
3729 power_rule = ®_rule->power_rule;
3730
3731 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733 freq_range->max_bandwidth_khz,
3734 reg_get_max_bandwidth(rd, reg_rule));
3735 else
3736 snprintf(bw, sizeof(bw), "%d KHz",
3737 freq_range->max_bandwidth_khz);
3738
3739 if (reg_rule->flags & NL80211_RRF_DFS)
3740 scnprintf(cac_time, sizeof(cac_time), "%u s",
3741 reg_rule->dfs_cac_ms/1000);
3742 else
3743 scnprintf(cac_time, sizeof(cac_time), "N/A");
3744
3745
3746 /*
3747 * There may not be documentation for max antenna gain
3748 * in certain regions
3749 */
3750 if (power_rule->max_antenna_gain)
3751 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752 freq_range->start_freq_khz,
3753 freq_range->end_freq_khz,
3754 bw,
3755 power_rule->max_antenna_gain,
3756 power_rule->max_eirp,
3757 cac_time);
3758 else
3759 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760 freq_range->start_freq_khz,
3761 freq_range->end_freq_khz,
3762 bw,
3763 power_rule->max_eirp,
3764 cac_time);
3765 }
3766}
3767
3768bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769{
3770 switch (dfs_region) {
3771 case NL80211_DFS_UNSET:
3772 case NL80211_DFS_FCC:
3773 case NL80211_DFS_ETSI:
3774 case NL80211_DFS_JP:
3775 return true;
3776 default:
3777 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3778 return false;
3779 }
3780}
3781
3782static void print_regdomain(const struct ieee80211_regdomain *rd)
3783{
3784 struct regulatory_request *lr = get_last_request();
3785
3786 if (is_intersected_alpha2(rd->alpha2)) {
3787 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788 struct cfg80211_registered_device *rdev;
3789 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790 if (rdev) {
3791 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792 rdev->country_ie_alpha2[0],
3793 rdev->country_ie_alpha2[1]);
3794 } else
3795 pr_debug("Current regulatory domain intersected:\n");
3796 } else
3797 pr_debug("Current regulatory domain intersected:\n");
3798 } else if (is_world_regdom(rd->alpha2)) {
3799 pr_debug("World regulatory domain updated:\n");
3800 } else {
3801 if (is_unknown_alpha2(rd->alpha2))
3802 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803 else {
3804 if (reg_request_cell_base(lr))
3805 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806 rd->alpha2[0], rd->alpha2[1]);
3807 else
3808 pr_debug("Regulatory domain changed to country: %c%c\n",
3809 rd->alpha2[0], rd->alpha2[1]);
3810 }
3811 }
3812
3813 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814 print_rd_rules(rd);
3815}
3816
3817static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818{
3819 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820 print_rd_rules(rd);
3821}
3822
3823static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824{
3825 if (!is_world_regdom(rd->alpha2))
3826 return -EINVAL;
3827 update_world_regdomain(rd);
3828 return 0;
3829}
3830
3831static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832 struct regulatory_request *user_request)
3833{
3834 const struct ieee80211_regdomain *intersected_rd = NULL;
3835
3836 if (!regdom_changes(rd->alpha2))
3837 return -EALREADY;
3838
3839 if (!is_valid_rd(rd)) {
3840 pr_err("Invalid regulatory domain detected: %c%c\n",
3841 rd->alpha2[0], rd->alpha2[1]);
3842 print_regdomain_info(rd);
3843 return -EINVAL;
3844 }
3845
3846 if (!user_request->intersect) {
3847 reset_regdomains(false, rd);
3848 return 0;
3849 }
3850
3851 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852 if (!intersected_rd)
3853 return -EINVAL;
3854
3855 kfree(rd);
3856 rd = NULL;
3857 reset_regdomains(false, intersected_rd);
3858
3859 return 0;
3860}
3861
3862static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863 struct regulatory_request *driver_request)
3864{
3865 const struct ieee80211_regdomain *regd;
3866 const struct ieee80211_regdomain *intersected_rd = NULL;
3867 const struct ieee80211_regdomain *tmp = NULL;
3868 struct wiphy *request_wiphy;
3869
3870 if (is_world_regdom(rd->alpha2))
3871 return -EINVAL;
3872
3873 if (!regdom_changes(rd->alpha2))
3874 return -EALREADY;
3875
3876 if (!is_valid_rd(rd)) {
3877 pr_err("Invalid regulatory domain detected: %c%c\n",
3878 rd->alpha2[0], rd->alpha2[1]);
3879 print_regdomain_info(rd);
3880 return -EINVAL;
3881 }
3882
3883 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884 if (!request_wiphy)
3885 return -ENODEV;
3886
3887 if (!driver_request->intersect) {
3888 ASSERT_RTNL();
3889 wiphy_lock(request_wiphy);
3890 if (request_wiphy->regd)
3891 tmp = get_wiphy_regdom(request_wiphy);
3892
3893 regd = reg_copy_regd(rd);
3894 if (IS_ERR(regd)) {
3895 wiphy_unlock(request_wiphy);
3896 return PTR_ERR(regd);
3897 }
3898
3899 rcu_assign_pointer(request_wiphy->regd, regd);
3900 rcu_free_regdom(tmp);
3901 wiphy_unlock(request_wiphy);
3902 reset_regdomains(false, rd);
3903 return 0;
3904 }
3905
3906 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907 if (!intersected_rd)
3908 return -EINVAL;
3909
3910 /*
3911 * We can trash what CRDA provided now.
3912 * However if a driver requested this specific regulatory
3913 * domain we keep it for its private use
3914 */
3915 tmp = get_wiphy_regdom(request_wiphy);
3916 rcu_assign_pointer(request_wiphy->regd, rd);
3917 rcu_free_regdom(tmp);
3918
3919 rd = NULL;
3920
3921 reset_regdomains(false, intersected_rd);
3922
3923 return 0;
3924}
3925
3926static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927 struct regulatory_request *country_ie_request)
3928{
3929 struct wiphy *request_wiphy;
3930
3931 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932 !is_unknown_alpha2(rd->alpha2))
3933 return -EINVAL;
3934
3935 /*
3936 * Lets only bother proceeding on the same alpha2 if the current
3937 * rd is non static (it means CRDA was present and was used last)
3938 * and the pending request came in from a country IE
3939 */
3940
3941 if (!is_valid_rd(rd)) {
3942 pr_err("Invalid regulatory domain detected: %c%c\n",
3943 rd->alpha2[0], rd->alpha2[1]);
3944 print_regdomain_info(rd);
3945 return -EINVAL;
3946 }
3947
3948 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949 if (!request_wiphy)
3950 return -ENODEV;
3951
3952 if (country_ie_request->intersect)
3953 return -EINVAL;
3954
3955 reset_regdomains(false, rd);
3956 return 0;
3957}
3958
3959/*
3960 * Use this call to set the current regulatory domain. Conflicts with
3961 * multiple drivers can be ironed out later. Caller must've already
3962 * kmalloc'd the rd structure.
3963 */
3964int set_regdom(const struct ieee80211_regdomain *rd,
3965 enum ieee80211_regd_source regd_src)
3966{
3967 struct regulatory_request *lr;
3968 bool user_reset = false;
3969 int r;
3970
3971 if (IS_ERR_OR_NULL(rd))
3972 return -ENODATA;
3973
3974 if (!reg_is_valid_request(rd->alpha2)) {
3975 kfree(rd);
3976 return -EINVAL;
3977 }
3978
3979 if (regd_src == REGD_SOURCE_CRDA)
3980 reset_crda_timeouts();
3981
3982 lr = get_last_request();
3983
3984 /* Note that this doesn't update the wiphys, this is done below */
3985 switch (lr->initiator) {
3986 case NL80211_REGDOM_SET_BY_CORE:
3987 r = reg_set_rd_core(rd);
3988 break;
3989 case NL80211_REGDOM_SET_BY_USER:
3990 cfg80211_save_user_regdom(rd);
3991 r = reg_set_rd_user(rd, lr);
3992 user_reset = true;
3993 break;
3994 case NL80211_REGDOM_SET_BY_DRIVER:
3995 r = reg_set_rd_driver(rd, lr);
3996 break;
3997 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998 r = reg_set_rd_country_ie(rd, lr);
3999 break;
4000 default:
4001 WARN(1, "invalid initiator %d\n", lr->initiator);
4002 kfree(rd);
4003 return -EINVAL;
4004 }
4005
4006 if (r) {
4007 switch (r) {
4008 case -EALREADY:
4009 reg_set_request_processed();
4010 break;
4011 default:
4012 /* Back to world regulatory in case of errors */
4013 restore_regulatory_settings(user_reset, false);
4014 }
4015
4016 kfree(rd);
4017 return r;
4018 }
4019
4020 /* This would make this whole thing pointless */
4021 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022 return -EINVAL;
4023
4024 /* update all wiphys now with the new established regulatory domain */
4025 update_all_wiphy_regulatory(lr->initiator);
4026
4027 print_regdomain(get_cfg80211_regdom());
4028
4029 nl80211_send_reg_change_event(lr);
4030
4031 reg_set_request_processed();
4032
4033 return 0;
4034}
4035
4036static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037 struct ieee80211_regdomain *rd)
4038{
4039 const struct ieee80211_regdomain *regd;
4040 const struct ieee80211_regdomain *prev_regd;
4041 struct cfg80211_registered_device *rdev;
4042
4043 if (WARN_ON(!wiphy || !rd))
4044 return -EINVAL;
4045
4046 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048 return -EPERM;
4049
4050 if (WARN(!is_valid_rd(rd),
4051 "Invalid regulatory domain detected: %c%c\n",
4052 rd->alpha2[0], rd->alpha2[1])) {
4053 print_regdomain_info(rd);
4054 return -EINVAL;
4055 }
4056
4057 regd = reg_copy_regd(rd);
4058 if (IS_ERR(regd))
4059 return PTR_ERR(regd);
4060
4061 rdev = wiphy_to_rdev(wiphy);
4062
4063 spin_lock(®_requests_lock);
4064 prev_regd = rdev->requested_regd;
4065 rdev->requested_regd = regd;
4066 spin_unlock(®_requests_lock);
4067
4068 kfree(prev_regd);
4069 return 0;
4070}
4071
4072int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073 struct ieee80211_regdomain *rd)
4074{
4075 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076
4077 if (ret)
4078 return ret;
4079
4080 schedule_work(®_work);
4081 return 0;
4082}
4083EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084
4085int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086 struct ieee80211_regdomain *rd)
4087{
4088 int ret;
4089
4090 ASSERT_RTNL();
4091
4092 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093 if (ret)
4094 return ret;
4095
4096 /* process the request immediately */
4097 reg_process_self_managed_hint(wiphy);
4098 reg_check_channels();
4099 return 0;
4100}
4101EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102
4103void wiphy_regulatory_register(struct wiphy *wiphy)
4104{
4105 struct regulatory_request *lr = get_last_request();
4106
4107 /* self-managed devices ignore beacon hints and country IE */
4108 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110 REGULATORY_COUNTRY_IE_IGNORE;
4111
4112 /*
4113 * The last request may have been received before this
4114 * registration call. Call the driver notifier if
4115 * initiator is USER.
4116 */
4117 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118 reg_call_notifier(wiphy, lr);
4119 }
4120
4121 if (!reg_dev_ignore_cell_hint(wiphy))
4122 reg_num_devs_support_basehint++;
4123
4124 wiphy_update_regulatory(wiphy, lr->initiator);
4125 wiphy_all_share_dfs_chan_state(wiphy);
4126 reg_process_self_managed_hints();
4127}
4128
4129void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130{
4131 struct wiphy *request_wiphy = NULL;
4132 struct regulatory_request *lr;
4133
4134 lr = get_last_request();
4135
4136 if (!reg_dev_ignore_cell_hint(wiphy))
4137 reg_num_devs_support_basehint--;
4138
4139 rcu_free_regdom(get_wiphy_regdom(wiphy));
4140 RCU_INIT_POINTER(wiphy->regd, NULL);
4141
4142 if (lr)
4143 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144
4145 if (!request_wiphy || request_wiphy != wiphy)
4146 return;
4147
4148 lr->wiphy_idx = WIPHY_IDX_INVALID;
4149 lr->country_ie_env = ENVIRON_ANY;
4150}
4151
4152/*
4153 * See FCC notices for UNII band definitions
4154 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156 */
4157int cfg80211_get_unii(int freq)
4158{
4159 /* UNII-1 */
4160 if (freq >= 5150 && freq <= 5250)
4161 return 0;
4162
4163 /* UNII-2A */
4164 if (freq > 5250 && freq <= 5350)
4165 return 1;
4166
4167 /* UNII-2B */
4168 if (freq > 5350 && freq <= 5470)
4169 return 2;
4170
4171 /* UNII-2C */
4172 if (freq > 5470 && freq <= 5725)
4173 return 3;
4174
4175 /* UNII-3 */
4176 if (freq > 5725 && freq <= 5825)
4177 return 4;
4178
4179 /* UNII-5 */
4180 if (freq > 5925 && freq <= 6425)
4181 return 5;
4182
4183 /* UNII-6 */
4184 if (freq > 6425 && freq <= 6525)
4185 return 6;
4186
4187 /* UNII-7 */
4188 if (freq > 6525 && freq <= 6875)
4189 return 7;
4190
4191 /* UNII-8 */
4192 if (freq > 6875 && freq <= 7125)
4193 return 8;
4194
4195 return -EINVAL;
4196}
4197
4198bool regulatory_indoor_allowed(void)
4199{
4200 return reg_is_indoor;
4201}
4202
4203bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204{
4205 const struct ieee80211_regdomain *regd = NULL;
4206 const struct ieee80211_regdomain *wiphy_regd = NULL;
4207 bool pre_cac_allowed = false;
4208
4209 rcu_read_lock();
4210
4211 regd = rcu_dereference(cfg80211_regdomain);
4212 wiphy_regd = rcu_dereference(wiphy->regd);
4213 if (!wiphy_regd) {
4214 if (regd->dfs_region == NL80211_DFS_ETSI)
4215 pre_cac_allowed = true;
4216
4217 rcu_read_unlock();
4218
4219 return pre_cac_allowed;
4220 }
4221
4222 if (regd->dfs_region == wiphy_regd->dfs_region &&
4223 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224 pre_cac_allowed = true;
4225
4226 rcu_read_unlock();
4227
4228 return pre_cac_allowed;
4229}
4230EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231
4232static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233{
4234 struct wireless_dev *wdev;
4235 /* If we finished CAC or received radar, we should end any
4236 * CAC running on the same channels.
4237 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4238 * either all channels are available - those the CAC_FINISHED
4239 * event has effected another wdev state, or there is a channel
4240 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4241 * event has effected another wdev state.
4242 * In both cases we should end the CAC on the wdev.
4243 */
4244 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4245 struct cfg80211_chan_def *chandef;
4246
4247 if (!wdev->cac_started)
4248 continue;
4249
4250 /* FIXME: radar detection is tied to link 0 for now */
4251 chandef = wdev_chandef(wdev, 0);
4252 if (!chandef)
4253 continue;
4254
4255 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4256 rdev_end_cac(rdev, wdev->netdev);
4257 }
4258}
4259
4260void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261 struct cfg80211_chan_def *chandef,
4262 enum nl80211_dfs_state dfs_state,
4263 enum nl80211_radar_event event)
4264{
4265 struct cfg80211_registered_device *rdev;
4266
4267 ASSERT_RTNL();
4268
4269 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270 return;
4271
4272 for_each_rdev(rdev) {
4273 if (wiphy == &rdev->wiphy)
4274 continue;
4275
4276 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277 continue;
4278
4279 if (!ieee80211_get_channel(&rdev->wiphy,
4280 chandef->chan->center_freq))
4281 continue;
4282
4283 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285 if (event == NL80211_RADAR_DETECTED ||
4286 event == NL80211_RADAR_CAC_FINISHED) {
4287 cfg80211_sched_dfs_chan_update(rdev);
4288 cfg80211_check_and_end_cac(rdev);
4289 }
4290
4291 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292 }
4293}
4294
4295static int __init regulatory_init_db(void)
4296{
4297 int err;
4298
4299 /*
4300 * It's possible that - due to other bugs/issues - cfg80211
4301 * never called regulatory_init() below, or that it failed;
4302 * in that case, don't try to do any further work here as
4303 * it's doomed to lead to crashes.
4304 */
4305 if (IS_ERR_OR_NULL(reg_pdev))
4306 return -EINVAL;
4307
4308 err = load_builtin_regdb_keys();
4309 if (err) {
4310 platform_device_unregister(reg_pdev);
4311 return err;
4312 }
4313
4314 /* We always try to get an update for the static regdomain */
4315 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316 if (err) {
4317 if (err == -ENOMEM) {
4318 platform_device_unregister(reg_pdev);
4319 return err;
4320 }
4321 /*
4322 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323 * memory which is handled and propagated appropriately above
4324 * but it can also fail during a netlink_broadcast() or during
4325 * early boot for call_usermodehelper(). For now treat these
4326 * errors as non-fatal.
4327 */
4328 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329 }
4330
4331 /*
4332 * Finally, if the user set the module parameter treat it
4333 * as a user hint.
4334 */
4335 if (!is_world_regdom(ieee80211_regdom))
4336 regulatory_hint_user(ieee80211_regdom,
4337 NL80211_USER_REG_HINT_USER);
4338
4339 return 0;
4340}
4341#ifndef MODULE
4342late_initcall(regulatory_init_db);
4343#endif
4344
4345int __init regulatory_init(void)
4346{
4347 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348 if (IS_ERR(reg_pdev))
4349 return PTR_ERR(reg_pdev);
4350
4351 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353 user_alpha2[0] = '9';
4354 user_alpha2[1] = '7';
4355
4356#ifdef MODULE
4357 return regulatory_init_db();
4358#else
4359 return 0;
4360#endif
4361}
4362
4363void regulatory_exit(void)
4364{
4365 struct regulatory_request *reg_request, *tmp;
4366 struct reg_beacon *reg_beacon, *btmp;
4367
4368 cancel_work_sync(®_work);
4369 cancel_crda_timeout_sync();
4370 cancel_delayed_work_sync(®_check_chans);
4371
4372 /* Lock to suppress warnings */
4373 rtnl_lock();
4374 reset_regdomains(true, NULL);
4375 rtnl_unlock();
4376
4377 dev_set_uevent_suppress(®_pdev->dev, true);
4378
4379 platform_device_unregister(reg_pdev);
4380
4381 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4382 list_del(®_beacon->list);
4383 kfree(reg_beacon);
4384 }
4385
4386 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4387 list_del(®_beacon->list);
4388 kfree(reg_beacon);
4389 }
4390
4391 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4392 list_del(®_request->list);
4393 kfree(reg_request);
4394 }
4395
4396 if (!IS_ERR_OR_NULL(regdb))
4397 kfree(regdb);
4398 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399 kfree(cfg80211_user_regdom);
4400
4401 free_regdb_keyring();
4402}
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static spinlock_t reg_indoor_lock;
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138{
139 return rcu_dereference_rtnl(cfg80211_regdomain);
140}
141
142const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143{
144 return rcu_dereference_rtnl(wiphy->regd);
145}
146
147static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148{
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
158 }
159 return "Unknown";
160}
161
162enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163{
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
170
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
174
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
177
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
182
183out:
184 return regd->dfs_region;
185}
186
187static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188{
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192}
193
194static struct regulatory_request *get_last_request(void)
195{
196 return rcu_dereference_rtnl(last_request);
197}
198
199/* Used to queue up regulatory hints */
200static LIST_HEAD(reg_requests_list);
201static spinlock_t reg_requests_lock;
202
203/* Used to queue up beacon hints for review */
204static LIST_HEAD(reg_pending_beacons);
205static spinlock_t reg_pending_beacons_lock;
206
207/* Used to keep track of processed beacon hints */
208static LIST_HEAD(reg_beacon_list);
209
210struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
213};
214
215static void reg_check_chans_work(struct work_struct *work);
216static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218static void reg_todo(struct work_struct *work);
219static DECLARE_WORK(reg_work, reg_todo);
220
221/* We keep a static world regulatory domain in case of the absence of CRDA */
222static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
240
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
251
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
255
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 }
259};
260
261/* protected by RTNL */
262static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
264
265static char *ieee80211_regdom = "00";
266static char user_alpha2[2];
267static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269module_param(ieee80211_regdom, charp, 0444);
270MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272static void reg_free_request(struct regulatory_request *request)
273{
274 if (request == &core_request_world)
275 return;
276
277 if (request != get_last_request())
278 kfree(request);
279}
280
281static void reg_free_last_request(void)
282{
283 struct regulatory_request *lr = get_last_request();
284
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
287}
288
289static void reg_update_last_request(struct regulatory_request *request)
290{
291 struct regulatory_request *lr;
292
293 lr = get_last_request();
294 if (lr == request)
295 return;
296
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
299}
300
301static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
303{
304 const struct ieee80211_regdomain *r;
305
306 ASSERT_RTNL();
307
308 r = get_cfg80211_regdom();
309
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
317
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
320
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324 if (!full_reset)
325 return;
326
327 reg_update_last_request(&core_request_world);
328}
329
330/*
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
333 */
334static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335{
336 struct regulatory_request *lr;
337
338 lr = get_last_request();
339
340 WARN_ON(!lr);
341
342 reset_regdomains(false, rd);
343
344 cfg80211_world_regdom = rd;
345}
346
347bool is_world_regdom(const char *alpha2)
348{
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
352}
353
354static bool is_alpha2_set(const char *alpha2)
355{
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
359}
360
361static bool is_unknown_alpha2(const char *alpha2)
362{
363 if (!alpha2)
364 return false;
365 /*
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
368 */
369 return alpha2[0] == '9' && alpha2[1] == '9';
370}
371
372static bool is_intersected_alpha2(const char *alpha2)
373{
374 if (!alpha2)
375 return false;
376 /*
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
380 */
381 return alpha2[0] == '9' && alpha2[1] == '8';
382}
383
384static bool is_an_alpha2(const char *alpha2)
385{
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389}
390
391static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392{
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396}
397
398static bool regdom_changes(const char *alpha2)
399{
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
405}
406
407/*
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
411 */
412static bool is_user_regdom_saved(void)
413{
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
416
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
422
423 return true;
424}
425
426static const struct ieee80211_regdomain *
427reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428{
429 struct ieee80211_regdomain *regd;
430 unsigned int i;
431
432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 GFP_KERNEL);
434 if (!regd)
435 return ERR_PTR(-ENOMEM);
436
437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439 for (i = 0; i < src_regd->n_reg_rules; i++)
440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
441 sizeof(struct ieee80211_reg_rule));
442
443 return regd;
444}
445
446static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447{
448 ASSERT_RTNL();
449
450 if (!IS_ERR(cfg80211_user_regdom))
451 kfree(cfg80211_user_regdom);
452 cfg80211_user_regdom = reg_copy_regd(rd);
453}
454
455struct reg_regdb_apply_request {
456 struct list_head list;
457 const struct ieee80211_regdomain *regdom;
458};
459
460static LIST_HEAD(reg_regdb_apply_list);
461static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463static void reg_regdb_apply(struct work_struct *work)
464{
465 struct reg_regdb_apply_request *request;
466
467 rtnl_lock();
468
469 mutex_lock(®_regdb_apply_mutex);
470 while (!list_empty(®_regdb_apply_list)) {
471 request = list_first_entry(®_regdb_apply_list,
472 struct reg_regdb_apply_request,
473 list);
474 list_del(&request->list);
475
476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 kfree(request);
478 }
479 mutex_unlock(®_regdb_apply_mutex);
480
481 rtnl_unlock();
482}
483
484static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487{
488 struct reg_regdb_apply_request *request;
489
490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 if (!request) {
492 kfree(regdom);
493 return -ENOMEM;
494 }
495
496 request->regdom = regdom;
497
498 mutex_lock(®_regdb_apply_mutex);
499 list_add_tail(&request->list, ®_regdb_apply_list);
500 mutex_unlock(®_regdb_apply_mutex);
501
502 schedule_work(®_regdb_work);
503 return 0;
504}
505
506#ifdef CONFIG_CFG80211_CRDA_SUPPORT
507/* Max number of consecutive attempts to communicate with CRDA */
508#define REG_MAX_CRDA_TIMEOUTS 10
509
510static u32 reg_crda_timeouts;
511
512static void crda_timeout_work(struct work_struct *work);
513static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
515static void crda_timeout_work(struct work_struct *work)
516{
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 rtnl_lock();
519 reg_crda_timeouts++;
520 restore_regulatory_settings(true, false);
521 rtnl_unlock();
522}
523
524static void cancel_crda_timeout(void)
525{
526 cancel_delayed_work(&crda_timeout);
527}
528
529static void cancel_crda_timeout_sync(void)
530{
531 cancel_delayed_work_sync(&crda_timeout);
532}
533
534static void reset_crda_timeouts(void)
535{
536 reg_crda_timeouts = 0;
537}
538
539/*
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
542 */
543static int call_crda(const char *alpha2)
544{
545 char country[12];
546 char *env[] = { country, NULL };
547 int ret;
548
549 snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 alpha2[0], alpha2[1]);
551
552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 return -EINVAL;
555 }
556
557 if (!is_world_regdom((char *) alpha2))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2[0], alpha2[1]);
560 else
561 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
564 if (ret)
565 return ret;
566
567 queue_delayed_work(system_power_efficient_wq,
568 &crda_timeout, msecs_to_jiffies(3142));
569 return 0;
570}
571#else
572static inline void cancel_crda_timeout(void) {}
573static inline void cancel_crda_timeout_sync(void) {}
574static inline void reset_crda_timeouts(void) {}
575static inline int call_crda(const char *alpha2)
576{
577 return -ENODATA;
578}
579#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581/* code to directly load a firmware database through request_firmware */
582static const struct fwdb_header *regdb;
583
584struct fwdb_country {
585 u8 alpha2[2];
586 __be16 coll_ptr;
587 /* this struct cannot be extended */
588} __packed __aligned(4);
589
590struct fwdb_collection {
591 u8 len;
592 u8 n_rules;
593 u8 dfs_region;
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596} __packed __aligned(4);
597
598enum fwdb_flags {
599 FWDB_FLAG_NO_OFDM = BIT(0),
600 FWDB_FLAG_NO_OUTDOOR = BIT(1),
601 FWDB_FLAG_DFS = BIT(2),
602 FWDB_FLAG_NO_IR = BIT(3),
603 FWDB_FLAG_AUTO_BW = BIT(4),
604};
605
606struct fwdb_wmm_ac {
607 u8 ecw;
608 u8 aifsn;
609 __be16 cot;
610} __packed;
611
612struct fwdb_wmm_rule {
613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615} __packed;
616
617struct fwdb_rule {
618 u8 len;
619 u8 flags;
620 __be16 max_eirp;
621 __be32 start, end, max_bw;
622 /* start of optional data */
623 __be16 cac_timeout;
624 __be16 wmm_ptr;
625} __packed __aligned(4);
626
627#define FWDB_MAGIC 0x52474442
628#define FWDB_VERSION 20
629
630struct fwdb_header {
631 __be32 magic;
632 __be32 version;
633 struct fwdb_country country[];
634} __packed __aligned(4);
635
636static int ecw2cw(int ecw)
637{
638 return (1 << ecw) - 1;
639}
640
641static bool valid_wmm(struct fwdb_wmm_rule *rule)
642{
643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 int i;
645
646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 u8 aifsn = ac[i].aifsn;
650
651 if (cw_min >= cw_max)
652 return false;
653
654 if (aifsn < 1)
655 return false;
656 }
657
658 return true;
659}
660
661static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662{
663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665 if ((u8 *)rule + sizeof(rule->len) > data + size)
666 return false;
667
668 /* mandatory fields */
669 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 return false;
671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 struct fwdb_wmm_rule *wmm;
674
675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 return false;
677
678 wmm = (void *)(data + wmm_ptr);
679
680 if (!valid_wmm(wmm))
681 return false;
682 }
683 return true;
684}
685
686static bool valid_country(const u8 *data, unsigned int size,
687 const struct fwdb_country *country)
688{
689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 struct fwdb_collection *coll = (void *)(data + ptr);
691 __be16 *rules_ptr;
692 unsigned int i;
693
694 /* make sure we can read len/n_rules */
695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 return false;
697
698 /* make sure base struct and all rules fit */
699 if ((u8 *)coll + ALIGN(coll->len, 2) +
700 (coll->n_rules * 2) > data + size)
701 return false;
702
703 /* mandatory fields must exist */
704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 return false;
706
707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709 for (i = 0; i < coll->n_rules; i++) {
710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712 if (!valid_rule(data, size, rule_ptr))
713 return false;
714 }
715
716 return true;
717}
718
719#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720static struct key *builtin_regdb_keys;
721
722static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723{
724 const u8 *end = p + buflen;
725 size_t plen;
726 key_ref_t key;
727
728 while (p < end) {
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
731 */
732 if (end - p < 4)
733 goto dodgy_cert;
734 if (p[0] != 0x30 &&
735 p[1] != 0x82)
736 goto dodgy_cert;
737 plen = (p[2] << 8) | p[3];
738 plen += 4;
739 if (plen > end - p)
740 goto dodgy_cert;
741
742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 "asymmetric", NULL, p, plen,
744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 KEY_USR_VIEW | KEY_USR_READ),
746 KEY_ALLOC_NOT_IN_QUOTA |
747 KEY_ALLOC_BUILT_IN |
748 KEY_ALLOC_BYPASS_RESTRICTION);
749 if (IS_ERR(key)) {
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 PTR_ERR(key));
752 } else {
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key)->description);
755 key_ref_put(key);
756 }
757 p += plen;
758 }
759
760 return;
761
762dodgy_cert:
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
764}
765
766static int __init load_builtin_regdb_keys(void)
767{
768 builtin_regdb_keys =
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 if (IS_ERR(builtin_regdb_keys))
775 return PTR_ERR(builtin_regdb_keys);
776
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781#endif
782#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785#endif
786
787 return 0;
788}
789
790static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791{
792 const struct firmware *sig;
793 bool result;
794
795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
796 return false;
797
798 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 builtin_regdb_keys,
800 VERIFYING_UNSPECIFIED_SIGNATURE,
801 NULL, NULL) == 0;
802
803 release_firmware(sig);
804
805 return result;
806}
807
808static void free_regdb_keyring(void)
809{
810 key_put(builtin_regdb_keys);
811}
812#else
813static int load_builtin_regdb_keys(void)
814{
815 return 0;
816}
817
818static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819{
820 return true;
821}
822
823static void free_regdb_keyring(void)
824{
825}
826#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
828static bool valid_regdb(const u8 *data, unsigned int size)
829{
830 const struct fwdb_header *hdr = (void *)data;
831 const struct fwdb_country *country;
832
833 if (size < sizeof(*hdr))
834 return false;
835
836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 return false;
838
839 if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 return false;
841
842 if (!regdb_has_valid_signature(data, size))
843 return false;
844
845 country = &hdr->country[0];
846 while ((u8 *)(country + 1) <= data + size) {
847 if (!country->coll_ptr)
848 break;
849 if (!valid_country(data, size, country))
850 return false;
851 country++;
852 }
853
854 return true;
855}
856
857static void set_wmm_rule(const struct fwdb_header *db,
858 const struct fwdb_country *country,
859 const struct fwdb_rule *rule,
860 struct ieee80211_reg_rule *rrule)
861{
862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 struct fwdb_wmm_rule *wmm;
864 unsigned int i, wmm_ptr;
865
866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 wmm = (void *)((u8 *)db + wmm_ptr);
868
869 if (!valid_wmm(wmm)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 country->alpha2[0], country->alpha2[1]);
873 return;
874 }
875
876 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877 wmm_rule->client[i].cw_min =
878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
881 wmm_rule->client[i].cot =
882 1000 * be16_to_cpu(wmm->client[i].cot);
883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887 }
888
889 rrule->has_wmm = true;
890}
891
892static int __regdb_query_wmm(const struct fwdb_header *db,
893 const struct fwdb_country *country, int freq,
894 struct ieee80211_reg_rule *rrule)
895{
896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 int i;
899
900 for (i = 0; i < coll->n_rules; i++) {
901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904
905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906 continue;
907
908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 set_wmm_rule(db, country, rule, rrule);
911 return 0;
912 }
913 }
914
915 return -ENODATA;
916}
917
918int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919{
920 const struct fwdb_header *hdr = regdb;
921 const struct fwdb_country *country;
922
923 if (!regdb)
924 return -ENODATA;
925
926 if (IS_ERR(regdb))
927 return PTR_ERR(regdb);
928
929 country = &hdr->country[0];
930 while (country->coll_ptr) {
931 if (alpha2_equal(alpha2, country->alpha2))
932 return __regdb_query_wmm(regdb, country, freq, rule);
933
934 country++;
935 }
936
937 return -ENODATA;
938}
939EXPORT_SYMBOL(reg_query_regdb_wmm);
940
941static int regdb_query_country(const struct fwdb_header *db,
942 const struct fwdb_country *country)
943{
944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 struct ieee80211_regdomain *regdom;
947 unsigned int i;
948
949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 GFP_KERNEL);
951 if (!regdom)
952 return -ENOMEM;
953
954 regdom->n_reg_rules = coll->n_rules;
955 regdom->alpha2[0] = country->alpha2[0];
956 regdom->alpha2[1] = country->alpha2[1];
957 regdom->dfs_region = coll->dfs_region;
958
959 for (i = 0; i < regdom->n_reg_rules; i++) {
960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
964
965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969 rrule->power_rule.max_antenna_gain = 0;
970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972 rrule->flags = 0;
973 if (rule->flags & FWDB_FLAG_NO_OFDM)
974 rrule->flags |= NL80211_RRF_NO_OFDM;
975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 if (rule->flags & FWDB_FLAG_DFS)
978 rrule->flags |= NL80211_RRF_DFS;
979 if (rule->flags & FWDB_FLAG_NO_IR)
980 rrule->flags |= NL80211_RRF_NO_IR;
981 if (rule->flags & FWDB_FLAG_AUTO_BW)
982 rrule->flags |= NL80211_RRF_AUTO_BW;
983
984 rrule->dfs_cac_ms = 0;
985
986 /* handle optional data */
987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 rrule->dfs_cac_ms =
989 1000 * be16_to_cpu(rule->cac_timeout);
990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 set_wmm_rule(db, country, rule, rrule);
992 }
993
994 return reg_schedule_apply(regdom);
995}
996
997static int query_regdb(const char *alpha2)
998{
999 const struct fwdb_header *hdr = regdb;
1000 const struct fwdb_country *country;
1001
1002 ASSERT_RTNL();
1003
1004 if (IS_ERR(regdb))
1005 return PTR_ERR(regdb);
1006
1007 country = &hdr->country[0];
1008 while (country->coll_ptr) {
1009 if (alpha2_equal(alpha2, country->alpha2))
1010 return regdb_query_country(regdb, country);
1011 country++;
1012 }
1013
1014 return -ENODATA;
1015}
1016
1017static void regdb_fw_cb(const struct firmware *fw, void *context)
1018{
1019 int set_error = 0;
1020 bool restore = true;
1021 void *db;
1022
1023 if (!fw) {
1024 pr_info("failed to load regulatory.db\n");
1025 set_error = -ENODATA;
1026 } else if (!valid_regdb(fw->data, fw->size)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error = -EINVAL;
1029 }
1030
1031 rtnl_lock();
1032 if (regdb && !IS_ERR(regdb)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1036 *
1037 * Either case, just restore and free new db.
1038 */
1039 } else if (set_error) {
1040 regdb = ERR_PTR(set_error);
1041 } else if (fw) {
1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 if (db) {
1044 regdb = db;
1045 restore = context && query_regdb(context);
1046 } else {
1047 restore = true;
1048 }
1049 }
1050
1051 if (restore)
1052 restore_regulatory_settings(true, false);
1053
1054 rtnl_unlock();
1055
1056 kfree(context);
1057
1058 release_firmware(fw);
1059}
1060
1061static int query_regdb_file(const char *alpha2)
1062{
1063 ASSERT_RTNL();
1064
1065 if (regdb)
1066 return query_regdb(alpha2);
1067
1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069 if (!alpha2)
1070 return -ENOMEM;
1071
1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073 ®_pdev->dev, GFP_KERNEL,
1074 (void *)alpha2, regdb_fw_cb);
1075}
1076
1077int reg_reload_regdb(void)
1078{
1079 const struct firmware *fw;
1080 void *db;
1081 int err;
1082
1083 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1084 if (err)
1085 return err;
1086
1087 if (!valid_regdb(fw->data, fw->size)) {
1088 err = -ENODATA;
1089 goto out;
1090 }
1091
1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093 if (!db) {
1094 err = -ENOMEM;
1095 goto out;
1096 }
1097
1098 rtnl_lock();
1099 if (!IS_ERR_OR_NULL(regdb))
1100 kfree(regdb);
1101 regdb = db;
1102 rtnl_unlock();
1103
1104 out:
1105 release_firmware(fw);
1106 return err;
1107}
1108
1109static bool reg_query_database(struct regulatory_request *request)
1110{
1111 if (query_regdb_file(request->alpha2) == 0)
1112 return true;
1113
1114 if (call_crda(request->alpha2) == 0)
1115 return true;
1116
1117 return false;
1118}
1119
1120bool reg_is_valid_request(const char *alpha2)
1121{
1122 struct regulatory_request *lr = get_last_request();
1123
1124 if (!lr || lr->processed)
1125 return false;
1126
1127 return alpha2_equal(lr->alpha2, alpha2);
1128}
1129
1130static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131{
1132 struct regulatory_request *lr = get_last_request();
1133
1134 /*
1135 * Follow the driver's regulatory domain, if present, unless a country
1136 * IE has been processed or a user wants to help complaince further
1137 */
1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140 wiphy->regd)
1141 return get_wiphy_regdom(wiphy);
1142
1143 return get_cfg80211_regdom();
1144}
1145
1146static unsigned int
1147reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148 const struct ieee80211_reg_rule *rule)
1149{
1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151 const struct ieee80211_freq_range *freq_range_tmp;
1152 const struct ieee80211_reg_rule *tmp;
1153 u32 start_freq, end_freq, idx, no;
1154
1155 for (idx = 0; idx < rd->n_reg_rules; idx++)
1156 if (rule == &rd->reg_rules[idx])
1157 break;
1158
1159 if (idx == rd->n_reg_rules)
1160 return 0;
1161
1162 /* get start_freq */
1163 no = idx;
1164
1165 while (no) {
1166 tmp = &rd->reg_rules[--no];
1167 freq_range_tmp = &tmp->freq_range;
1168
1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170 break;
1171
1172 freq_range = freq_range_tmp;
1173 }
1174
1175 start_freq = freq_range->start_freq_khz;
1176
1177 /* get end_freq */
1178 freq_range = &rule->freq_range;
1179 no = idx;
1180
1181 while (no < rd->n_reg_rules - 1) {
1182 tmp = &rd->reg_rules[++no];
1183 freq_range_tmp = &tmp->freq_range;
1184
1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186 break;
1187
1188 freq_range = freq_range_tmp;
1189 }
1190
1191 end_freq = freq_range->end_freq_khz;
1192
1193 return end_freq - start_freq;
1194}
1195
1196unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197 const struct ieee80211_reg_rule *rule)
1198{
1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
1201 if (rule->flags & NL80211_RRF_NO_160MHZ)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203 if (rule->flags & NL80211_RRF_NO_80MHZ)
1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206 /*
1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208 * are not allowed.
1209 */
1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211 rule->flags & NL80211_RRF_NO_HT40PLUS)
1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214 return bw;
1215}
1216
1217/* Sanity check on a regulatory rule */
1218static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219{
1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221 u32 freq_diff;
1222
1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224 return false;
1225
1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227 return false;
1228
1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232 freq_range->max_bandwidth_khz > freq_diff)
1233 return false;
1234
1235 return true;
1236}
1237
1238static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239{
1240 const struct ieee80211_reg_rule *reg_rule = NULL;
1241 unsigned int i;
1242
1243 if (!rd->n_reg_rules)
1244 return false;
1245
1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247 return false;
1248
1249 for (i = 0; i < rd->n_reg_rules; i++) {
1250 reg_rule = &rd->reg_rules[i];
1251 if (!is_valid_reg_rule(reg_rule))
1252 return false;
1253 }
1254
1255 return true;
1256}
1257
1258/**
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1262 *
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269 * 60 GHz band.
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1272 **/
1273static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274 u32 freq_khz)
1275{
1276#define ONE_GHZ_IN_KHZ 1000000
1277 /*
1278 * From 802.11ad: directional multi-gigabit (DMG):
1279 * Pertaining to operation in a frequency band containing a channel
1280 * with the Channel starting frequency above 45 GHz.
1281 */
1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285 return true;
1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287 return true;
1288 return false;
1289#undef ONE_GHZ_IN_KHZ
1290}
1291
1292/*
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1296 */
1297static enum nl80211_dfs_regions
1298reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299 const enum nl80211_dfs_regions dfs_region2)
1300{
1301 if (dfs_region1 != dfs_region2)
1302 return NL80211_DFS_UNSET;
1303 return dfs_region1;
1304}
1305
1306static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307 const struct ieee80211_wmm_ac *wmm_ac2,
1308 struct ieee80211_wmm_ac *intersect)
1309{
1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314}
1315
1316/*
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1319 */
1320static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321 const struct ieee80211_regdomain *rd2,
1322 const struct ieee80211_reg_rule *rule1,
1323 const struct ieee80211_reg_rule *rule2,
1324 struct ieee80211_reg_rule *intersected_rule)
1325{
1326 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327 struct ieee80211_freq_range *freq_range;
1328 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329 struct ieee80211_power_rule *power_rule;
1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331 struct ieee80211_wmm_rule *wmm_rule;
1332 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334 freq_range1 = &rule1->freq_range;
1335 freq_range2 = &rule2->freq_range;
1336 freq_range = &intersected_rule->freq_range;
1337
1338 power_rule1 = &rule1->power_rule;
1339 power_rule2 = &rule2->power_rule;
1340 power_rule = &intersected_rule->power_rule;
1341
1342 wmm_rule1 = &rule1->wmm_rule;
1343 wmm_rule2 = &rule2->wmm_rule;
1344 wmm_rule = &intersected_rule->wmm_rule;
1345
1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347 freq_range2->start_freq_khz);
1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349 freq_range2->end_freq_khz);
1350
1351 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354 if (rule1->flags & NL80211_RRF_AUTO_BW)
1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356 if (rule2->flags & NL80211_RRF_AUTO_BW)
1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361 intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363 /*
1364 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 * set AUTO_BW in intersected rule also. Next we will
1366 * calculate BW correctly in handle_channel function.
1367 * In other case remove AUTO_BW flag while we calculate
1368 * maximum bandwidth correctly and auto calculation is
1369 * not required.
1370 */
1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372 (rule2->flags & NL80211_RRF_AUTO_BW))
1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374 else
1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378 if (freq_range->max_bandwidth_khz > freq_diff)
1379 freq_range->max_bandwidth_khz = freq_diff;
1380
1381 power_rule->max_eirp = min(power_rule1->max_eirp,
1382 power_rule2->max_eirp);
1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384 power_rule2->max_antenna_gain);
1385
1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387 rule2->dfs_cac_ms);
1388
1389 if (rule1->has_wmm && rule2->has_wmm) {
1390 u8 ac;
1391
1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394 &wmm_rule2->client[ac],
1395 &wmm_rule->client[ac]);
1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397 &wmm_rule2->ap[ac],
1398 &wmm_rule->ap[ac]);
1399 }
1400
1401 intersected_rule->has_wmm = true;
1402 } else if (rule1->has_wmm) {
1403 *wmm_rule = *wmm_rule1;
1404 intersected_rule->has_wmm = true;
1405 } else if (rule2->has_wmm) {
1406 *wmm_rule = *wmm_rule2;
1407 intersected_rule->has_wmm = true;
1408 } else {
1409 intersected_rule->has_wmm = false;
1410 }
1411
1412 if (!is_valid_reg_rule(intersected_rule))
1413 return -EINVAL;
1414
1415 return 0;
1416}
1417
1418/* check whether old rule contains new rule */
1419static bool rule_contains(struct ieee80211_reg_rule *r1,
1420 struct ieee80211_reg_rule *r2)
1421{
1422 /* for simplicity, currently consider only same flags */
1423 if (r1->flags != r2->flags)
1424 return false;
1425
1426 /* verify r1 is more restrictive */
1427 if ((r1->power_rule.max_antenna_gain >
1428 r2->power_rule.max_antenna_gain) ||
1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430 return false;
1431
1432 /* make sure r2's range is contained within r1 */
1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435 return false;
1436
1437 /* and finally verify that r1.max_bw >= r2.max_bw */
1438 if (r1->freq_range.max_bandwidth_khz <
1439 r2->freq_range.max_bandwidth_khz)
1440 return false;
1441
1442 return true;
1443}
1444
1445/* add or extend current rules. do nothing if rule is already contained */
1446static void add_rule(struct ieee80211_reg_rule *rule,
1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448{
1449 struct ieee80211_reg_rule *tmp_rule;
1450 int i;
1451
1452 for (i = 0; i < *n_rules; i++) {
1453 tmp_rule = ®_rules[i];
1454 /* rule is already contained - do nothing */
1455 if (rule_contains(tmp_rule, rule))
1456 return;
1457
1458 /* extend rule if possible */
1459 if (rule_contains(rule, tmp_rule)) {
1460 memcpy(tmp_rule, rule, sizeof(*rule));
1461 return;
1462 }
1463 }
1464
1465 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1466 (*n_rules)++;
1467}
1468
1469/**
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1473 *
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1477 *
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
1481 */
1482static struct ieee80211_regdomain *
1483regdom_intersect(const struct ieee80211_regdomain *rd1,
1484 const struct ieee80211_regdomain *rd2)
1485{
1486 int r;
1487 unsigned int x, y;
1488 unsigned int num_rules = 0;
1489 const struct ieee80211_reg_rule *rule1, *rule2;
1490 struct ieee80211_reg_rule intersected_rule;
1491 struct ieee80211_regdomain *rd;
1492
1493 if (!rd1 || !rd2)
1494 return NULL;
1495
1496 /*
1497 * First we get a count of the rules we'll need, then we actually
1498 * build them. This is to so we can malloc() and free() a
1499 * regdomain once. The reason we use reg_rules_intersect() here
1500 * is it will return -EINVAL if the rule computed makes no sense.
1501 * All rules that do check out OK are valid.
1502 */
1503
1504 for (x = 0; x < rd1->n_reg_rules; x++) {
1505 rule1 = &rd1->reg_rules[x];
1506 for (y = 0; y < rd2->n_reg_rules; y++) {
1507 rule2 = &rd2->reg_rules[y];
1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509 &intersected_rule))
1510 num_rules++;
1511 }
1512 }
1513
1514 if (!num_rules)
1515 return NULL;
1516
1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518 if (!rd)
1519 return NULL;
1520
1521 for (x = 0; x < rd1->n_reg_rules; x++) {
1522 rule1 = &rd1->reg_rules[x];
1523 for (y = 0; y < rd2->n_reg_rules; y++) {
1524 rule2 = &rd2->reg_rules[y];
1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 &intersected_rule);
1527 /*
1528 * No need to memset here the intersected rule here as
1529 * we're not using the stack anymore
1530 */
1531 if (r)
1532 continue;
1533
1534 add_rule(&intersected_rule, rd->reg_rules,
1535 &rd->n_reg_rules);
1536 }
1537 }
1538
1539 rd->alpha2[0] = '9';
1540 rd->alpha2[1] = '8';
1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542 rd2->dfs_region);
1543
1544 return rd;
1545}
1546
1547/*
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1550 */
1551static u32 map_regdom_flags(u32 rd_flags)
1552{
1553 u32 channel_flags = 0;
1554 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555 channel_flags |= IEEE80211_CHAN_NO_IR;
1556 if (rd_flags & NL80211_RRF_DFS)
1557 channel_flags |= IEEE80211_CHAN_RADAR;
1558 if (rd_flags & NL80211_RRF_NO_OFDM)
1559 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568 if (rd_flags & NL80211_RRF_NO_80MHZ)
1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570 if (rd_flags & NL80211_RRF_NO_160MHZ)
1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572 if (rd_flags & NL80211_RRF_NO_HE)
1573 channel_flags |= IEEE80211_CHAN_NO_HE;
1574 return channel_flags;
1575}
1576
1577static const struct ieee80211_reg_rule *
1578freq_reg_info_regd(u32 center_freq,
1579 const struct ieee80211_regdomain *regd, u32 bw)
1580{
1581 int i;
1582 bool band_rule_found = false;
1583 bool bw_fits = false;
1584
1585 if (!regd)
1586 return ERR_PTR(-EINVAL);
1587
1588 for (i = 0; i < regd->n_reg_rules; i++) {
1589 const struct ieee80211_reg_rule *rr;
1590 const struct ieee80211_freq_range *fr = NULL;
1591
1592 rr = ®d->reg_rules[i];
1593 fr = &rr->freq_range;
1594
1595 /*
1596 * We only need to know if one frequency rule was
1597 * was in center_freq's band, that's enough, so lets
1598 * not overwrite it once found
1599 */
1600 if (!band_rule_found)
1601 band_rule_found = freq_in_rule_band(fr, center_freq);
1602
1603 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1604
1605 if (band_rule_found && bw_fits)
1606 return rr;
1607 }
1608
1609 if (!band_rule_found)
1610 return ERR_PTR(-ERANGE);
1611
1612 return ERR_PTR(-EINVAL);
1613}
1614
1615static const struct ieee80211_reg_rule *
1616__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1617{
1618 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1619 const struct ieee80211_reg_rule *reg_rule = NULL;
1620 u32 bw;
1621
1622 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1623 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1624 if (!IS_ERR(reg_rule))
1625 return reg_rule;
1626 }
1627
1628 return reg_rule;
1629}
1630
1631const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1632 u32 center_freq)
1633{
1634 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1635}
1636EXPORT_SYMBOL(freq_reg_info);
1637
1638const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1639{
1640 switch (initiator) {
1641 case NL80211_REGDOM_SET_BY_CORE:
1642 return "core";
1643 case NL80211_REGDOM_SET_BY_USER:
1644 return "user";
1645 case NL80211_REGDOM_SET_BY_DRIVER:
1646 return "driver";
1647 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1648 return "country element";
1649 default:
1650 WARN_ON(1);
1651 return "bug";
1652 }
1653}
1654EXPORT_SYMBOL(reg_initiator_name);
1655
1656static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1657 const struct ieee80211_reg_rule *reg_rule,
1658 const struct ieee80211_channel *chan)
1659{
1660 const struct ieee80211_freq_range *freq_range = NULL;
1661 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1662
1663 freq_range = ®_rule->freq_range;
1664
1665 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1666 center_freq_khz = ieee80211_channel_to_khz(chan);
1667 /* Check if auto calculation requested */
1668 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1669 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1670
1671 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1672 if (!cfg80211_does_bw_fit_range(freq_range,
1673 center_freq_khz,
1674 MHZ_TO_KHZ(10)))
1675 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1676 if (!cfg80211_does_bw_fit_range(freq_range,
1677 center_freq_khz,
1678 MHZ_TO_KHZ(20)))
1679 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1680
1681 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1682 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1683 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1684 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1685 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1686 bw_flags |= IEEE80211_CHAN_NO_HT40;
1687 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1688 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1689 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1690 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1691 return bw_flags;
1692}
1693
1694/*
1695 * Note that right now we assume the desired channel bandwidth
1696 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1697 * per channel, the primary and the extension channel).
1698 */
1699static void handle_channel(struct wiphy *wiphy,
1700 enum nl80211_reg_initiator initiator,
1701 struct ieee80211_channel *chan)
1702{
1703 u32 flags, bw_flags = 0;
1704 const struct ieee80211_reg_rule *reg_rule = NULL;
1705 const struct ieee80211_power_rule *power_rule = NULL;
1706 struct wiphy *request_wiphy = NULL;
1707 struct regulatory_request *lr = get_last_request();
1708 const struct ieee80211_regdomain *regd;
1709
1710 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1711
1712 flags = chan->orig_flags;
1713
1714 reg_rule = freq_reg_info(wiphy, ieee80211_channel_to_khz(chan));
1715 if (IS_ERR(reg_rule)) {
1716 /*
1717 * We will disable all channels that do not match our
1718 * received regulatory rule unless the hint is coming
1719 * from a Country IE and the Country IE had no information
1720 * about a band. The IEEE 802.11 spec allows for an AP
1721 * to send only a subset of the regulatory rules allowed,
1722 * so an AP in the US that only supports 2.4 GHz may only send
1723 * a country IE with information for the 2.4 GHz band
1724 * while 5 GHz is still supported.
1725 */
1726 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1727 PTR_ERR(reg_rule) == -ERANGE)
1728 return;
1729
1730 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1731 request_wiphy && request_wiphy == wiphy &&
1732 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1733 pr_debug("Disabling freq %d.%03d MHz for good\n",
1734 chan->center_freq, chan->freq_offset);
1735 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1736 chan->flags = chan->orig_flags;
1737 } else {
1738 pr_debug("Disabling freq %d.%03d MHz\n",
1739 chan->center_freq, chan->freq_offset);
1740 chan->flags |= IEEE80211_CHAN_DISABLED;
1741 }
1742 return;
1743 }
1744
1745 regd = reg_get_regdomain(wiphy);
1746
1747 power_rule = ®_rule->power_rule;
1748 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1749
1750 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1751 request_wiphy && request_wiphy == wiphy &&
1752 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1753 /*
1754 * This guarantees the driver's requested regulatory domain
1755 * will always be used as a base for further regulatory
1756 * settings
1757 */
1758 chan->flags = chan->orig_flags =
1759 map_regdom_flags(reg_rule->flags) | bw_flags;
1760 chan->max_antenna_gain = chan->orig_mag =
1761 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1762 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1763 (int) MBM_TO_DBM(power_rule->max_eirp);
1764
1765 if (chan->flags & IEEE80211_CHAN_RADAR) {
1766 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1767 if (reg_rule->dfs_cac_ms)
1768 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1769 }
1770
1771 return;
1772 }
1773
1774 chan->dfs_state = NL80211_DFS_USABLE;
1775 chan->dfs_state_entered = jiffies;
1776
1777 chan->beacon_found = false;
1778 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1779 chan->max_antenna_gain =
1780 min_t(int, chan->orig_mag,
1781 MBI_TO_DBI(power_rule->max_antenna_gain));
1782 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1783
1784 if (chan->flags & IEEE80211_CHAN_RADAR) {
1785 if (reg_rule->dfs_cac_ms)
1786 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1787 else
1788 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1789 }
1790
1791 if (chan->orig_mpwr) {
1792 /*
1793 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1794 * will always follow the passed country IE power settings.
1795 */
1796 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1797 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1798 chan->max_power = chan->max_reg_power;
1799 else
1800 chan->max_power = min(chan->orig_mpwr,
1801 chan->max_reg_power);
1802 } else
1803 chan->max_power = chan->max_reg_power;
1804}
1805
1806static void handle_band(struct wiphy *wiphy,
1807 enum nl80211_reg_initiator initiator,
1808 struct ieee80211_supported_band *sband)
1809{
1810 unsigned int i;
1811
1812 if (!sband)
1813 return;
1814
1815 for (i = 0; i < sband->n_channels; i++)
1816 handle_channel(wiphy, initiator, &sband->channels[i]);
1817}
1818
1819static bool reg_request_cell_base(struct regulatory_request *request)
1820{
1821 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1822 return false;
1823 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1824}
1825
1826bool reg_last_request_cell_base(void)
1827{
1828 return reg_request_cell_base(get_last_request());
1829}
1830
1831#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1832/* Core specific check */
1833static enum reg_request_treatment
1834reg_ignore_cell_hint(struct regulatory_request *pending_request)
1835{
1836 struct regulatory_request *lr = get_last_request();
1837
1838 if (!reg_num_devs_support_basehint)
1839 return REG_REQ_IGNORE;
1840
1841 if (reg_request_cell_base(lr) &&
1842 !regdom_changes(pending_request->alpha2))
1843 return REG_REQ_ALREADY_SET;
1844
1845 return REG_REQ_OK;
1846}
1847
1848/* Device specific check */
1849static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1850{
1851 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1852}
1853#else
1854static enum reg_request_treatment
1855reg_ignore_cell_hint(struct regulatory_request *pending_request)
1856{
1857 return REG_REQ_IGNORE;
1858}
1859
1860static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1861{
1862 return true;
1863}
1864#endif
1865
1866static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1867{
1868 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1869 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1870 return true;
1871 return false;
1872}
1873
1874static bool ignore_reg_update(struct wiphy *wiphy,
1875 enum nl80211_reg_initiator initiator)
1876{
1877 struct regulatory_request *lr = get_last_request();
1878
1879 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1880 return true;
1881
1882 if (!lr) {
1883 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1884 reg_initiator_name(initiator));
1885 return true;
1886 }
1887
1888 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1889 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1890 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1891 reg_initiator_name(initiator));
1892 return true;
1893 }
1894
1895 /*
1896 * wiphy->regd will be set once the device has its own
1897 * desired regulatory domain set
1898 */
1899 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1900 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1901 !is_world_regdom(lr->alpha2)) {
1902 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1903 reg_initiator_name(initiator));
1904 return true;
1905 }
1906
1907 if (reg_request_cell_base(lr))
1908 return reg_dev_ignore_cell_hint(wiphy);
1909
1910 return false;
1911}
1912
1913static bool reg_is_world_roaming(struct wiphy *wiphy)
1914{
1915 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1916 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1917 struct regulatory_request *lr = get_last_request();
1918
1919 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1920 return true;
1921
1922 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1923 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1924 return true;
1925
1926 return false;
1927}
1928
1929static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1930 struct reg_beacon *reg_beacon)
1931{
1932 struct ieee80211_supported_band *sband;
1933 struct ieee80211_channel *chan;
1934 bool channel_changed = false;
1935 struct ieee80211_channel chan_before;
1936
1937 sband = wiphy->bands[reg_beacon->chan.band];
1938 chan = &sband->channels[chan_idx];
1939
1940 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
1941 return;
1942
1943 if (chan->beacon_found)
1944 return;
1945
1946 chan->beacon_found = true;
1947
1948 if (!reg_is_world_roaming(wiphy))
1949 return;
1950
1951 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1952 return;
1953
1954 chan_before = *chan;
1955
1956 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1957 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1958 channel_changed = true;
1959 }
1960
1961 if (channel_changed)
1962 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1963}
1964
1965/*
1966 * Called when a scan on a wiphy finds a beacon on
1967 * new channel
1968 */
1969static void wiphy_update_new_beacon(struct wiphy *wiphy,
1970 struct reg_beacon *reg_beacon)
1971{
1972 unsigned int i;
1973 struct ieee80211_supported_band *sband;
1974
1975 if (!wiphy->bands[reg_beacon->chan.band])
1976 return;
1977
1978 sband = wiphy->bands[reg_beacon->chan.band];
1979
1980 for (i = 0; i < sband->n_channels; i++)
1981 handle_reg_beacon(wiphy, i, reg_beacon);
1982}
1983
1984/*
1985 * Called upon reg changes or a new wiphy is added
1986 */
1987static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1988{
1989 unsigned int i;
1990 struct ieee80211_supported_band *sband;
1991 struct reg_beacon *reg_beacon;
1992
1993 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1994 if (!wiphy->bands[reg_beacon->chan.band])
1995 continue;
1996 sband = wiphy->bands[reg_beacon->chan.band];
1997 for (i = 0; i < sband->n_channels; i++)
1998 handle_reg_beacon(wiphy, i, reg_beacon);
1999 }
2000}
2001
2002/* Reap the advantages of previously found beacons */
2003static void reg_process_beacons(struct wiphy *wiphy)
2004{
2005 /*
2006 * Means we are just firing up cfg80211, so no beacons would
2007 * have been processed yet.
2008 */
2009 if (!last_request)
2010 return;
2011 wiphy_update_beacon_reg(wiphy);
2012}
2013
2014static bool is_ht40_allowed(struct ieee80211_channel *chan)
2015{
2016 if (!chan)
2017 return false;
2018 if (chan->flags & IEEE80211_CHAN_DISABLED)
2019 return false;
2020 /* This would happen when regulatory rules disallow HT40 completely */
2021 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2022 return false;
2023 return true;
2024}
2025
2026static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2027 struct ieee80211_channel *channel)
2028{
2029 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2030 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2031 const struct ieee80211_regdomain *regd;
2032 unsigned int i;
2033 u32 flags;
2034
2035 if (!is_ht40_allowed(channel)) {
2036 channel->flags |= IEEE80211_CHAN_NO_HT40;
2037 return;
2038 }
2039
2040 /*
2041 * We need to ensure the extension channels exist to
2042 * be able to use HT40- or HT40+, this finds them (or not)
2043 */
2044 for (i = 0; i < sband->n_channels; i++) {
2045 struct ieee80211_channel *c = &sband->channels[i];
2046
2047 if (c->center_freq == (channel->center_freq - 20))
2048 channel_before = c;
2049 if (c->center_freq == (channel->center_freq + 20))
2050 channel_after = c;
2051 }
2052
2053 flags = 0;
2054 regd = get_wiphy_regdom(wiphy);
2055 if (regd) {
2056 const struct ieee80211_reg_rule *reg_rule =
2057 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2058 regd, MHZ_TO_KHZ(20));
2059
2060 if (!IS_ERR(reg_rule))
2061 flags = reg_rule->flags;
2062 }
2063
2064 /*
2065 * Please note that this assumes target bandwidth is 20 MHz,
2066 * if that ever changes we also need to change the below logic
2067 * to include that as well.
2068 */
2069 if (!is_ht40_allowed(channel_before) ||
2070 flags & NL80211_RRF_NO_HT40MINUS)
2071 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2072 else
2073 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2074
2075 if (!is_ht40_allowed(channel_after) ||
2076 flags & NL80211_RRF_NO_HT40PLUS)
2077 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2078 else
2079 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2080}
2081
2082static void reg_process_ht_flags_band(struct wiphy *wiphy,
2083 struct ieee80211_supported_band *sband)
2084{
2085 unsigned int i;
2086
2087 if (!sband)
2088 return;
2089
2090 for (i = 0; i < sband->n_channels; i++)
2091 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2092}
2093
2094static void reg_process_ht_flags(struct wiphy *wiphy)
2095{
2096 enum nl80211_band band;
2097
2098 if (!wiphy)
2099 return;
2100
2101 for (band = 0; band < NUM_NL80211_BANDS; band++)
2102 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2103}
2104
2105static void reg_call_notifier(struct wiphy *wiphy,
2106 struct regulatory_request *request)
2107{
2108 if (wiphy->reg_notifier)
2109 wiphy->reg_notifier(wiphy, request);
2110}
2111
2112static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2113{
2114 struct cfg80211_chan_def chandef = {};
2115 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2116 enum nl80211_iftype iftype;
2117
2118 wdev_lock(wdev);
2119 iftype = wdev->iftype;
2120
2121 /* make sure the interface is active */
2122 if (!wdev->netdev || !netif_running(wdev->netdev))
2123 goto wdev_inactive_unlock;
2124
2125 switch (iftype) {
2126 case NL80211_IFTYPE_AP:
2127 case NL80211_IFTYPE_P2P_GO:
2128 if (!wdev->beacon_interval)
2129 goto wdev_inactive_unlock;
2130 chandef = wdev->chandef;
2131 break;
2132 case NL80211_IFTYPE_ADHOC:
2133 if (!wdev->ssid_len)
2134 goto wdev_inactive_unlock;
2135 chandef = wdev->chandef;
2136 break;
2137 case NL80211_IFTYPE_STATION:
2138 case NL80211_IFTYPE_P2P_CLIENT:
2139 if (!wdev->current_bss ||
2140 !wdev->current_bss->pub.channel)
2141 goto wdev_inactive_unlock;
2142
2143 if (!rdev->ops->get_channel ||
2144 rdev_get_channel(rdev, wdev, &chandef))
2145 cfg80211_chandef_create(&chandef,
2146 wdev->current_bss->pub.channel,
2147 NL80211_CHAN_NO_HT);
2148 break;
2149 case NL80211_IFTYPE_MONITOR:
2150 case NL80211_IFTYPE_AP_VLAN:
2151 case NL80211_IFTYPE_P2P_DEVICE:
2152 /* no enforcement required */
2153 break;
2154 default:
2155 /* others not implemented for now */
2156 WARN_ON(1);
2157 break;
2158 }
2159
2160 wdev_unlock(wdev);
2161
2162 switch (iftype) {
2163 case NL80211_IFTYPE_AP:
2164 case NL80211_IFTYPE_P2P_GO:
2165 case NL80211_IFTYPE_ADHOC:
2166 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2167 case NL80211_IFTYPE_STATION:
2168 case NL80211_IFTYPE_P2P_CLIENT:
2169 return cfg80211_chandef_usable(wiphy, &chandef,
2170 IEEE80211_CHAN_DISABLED);
2171 default:
2172 break;
2173 }
2174
2175 return true;
2176
2177wdev_inactive_unlock:
2178 wdev_unlock(wdev);
2179 return true;
2180}
2181
2182static void reg_leave_invalid_chans(struct wiphy *wiphy)
2183{
2184 struct wireless_dev *wdev;
2185 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2186
2187 ASSERT_RTNL();
2188
2189 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2190 if (!reg_wdev_chan_valid(wiphy, wdev))
2191 cfg80211_leave(rdev, wdev);
2192}
2193
2194static void reg_check_chans_work(struct work_struct *work)
2195{
2196 struct cfg80211_registered_device *rdev;
2197
2198 pr_debug("Verifying active interfaces after reg change\n");
2199 rtnl_lock();
2200
2201 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2202 if (!(rdev->wiphy.regulatory_flags &
2203 REGULATORY_IGNORE_STALE_KICKOFF))
2204 reg_leave_invalid_chans(&rdev->wiphy);
2205
2206 rtnl_unlock();
2207}
2208
2209static void reg_check_channels(void)
2210{
2211 /*
2212 * Give usermode a chance to do something nicer (move to another
2213 * channel, orderly disconnection), before forcing a disconnection.
2214 */
2215 mod_delayed_work(system_power_efficient_wq,
2216 ®_check_chans,
2217 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2218}
2219
2220static void wiphy_update_regulatory(struct wiphy *wiphy,
2221 enum nl80211_reg_initiator initiator)
2222{
2223 enum nl80211_band band;
2224 struct regulatory_request *lr = get_last_request();
2225
2226 if (ignore_reg_update(wiphy, initiator)) {
2227 /*
2228 * Regulatory updates set by CORE are ignored for custom
2229 * regulatory cards. Let us notify the changes to the driver,
2230 * as some drivers used this to restore its orig_* reg domain.
2231 */
2232 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2233 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2234 !(wiphy->regulatory_flags &
2235 REGULATORY_WIPHY_SELF_MANAGED))
2236 reg_call_notifier(wiphy, lr);
2237 return;
2238 }
2239
2240 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2241
2242 for (band = 0; band < NUM_NL80211_BANDS; band++)
2243 handle_band(wiphy, initiator, wiphy->bands[band]);
2244
2245 reg_process_beacons(wiphy);
2246 reg_process_ht_flags(wiphy);
2247 reg_call_notifier(wiphy, lr);
2248}
2249
2250static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2251{
2252 struct cfg80211_registered_device *rdev;
2253 struct wiphy *wiphy;
2254
2255 ASSERT_RTNL();
2256
2257 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2258 wiphy = &rdev->wiphy;
2259 wiphy_update_regulatory(wiphy, initiator);
2260 }
2261
2262 reg_check_channels();
2263}
2264
2265static void handle_channel_custom(struct wiphy *wiphy,
2266 struct ieee80211_channel *chan,
2267 const struct ieee80211_regdomain *regd,
2268 u32 min_bw)
2269{
2270 u32 bw_flags = 0;
2271 const struct ieee80211_reg_rule *reg_rule = NULL;
2272 const struct ieee80211_power_rule *power_rule = NULL;
2273 u32 bw, center_freq_khz;
2274
2275 center_freq_khz = ieee80211_channel_to_khz(chan);
2276 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2277 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2278 if (!IS_ERR(reg_rule))
2279 break;
2280 }
2281
2282 if (IS_ERR_OR_NULL(reg_rule)) {
2283 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2284 chan->center_freq, chan->freq_offset);
2285 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2286 chan->flags |= IEEE80211_CHAN_DISABLED;
2287 } else {
2288 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2289 chan->flags = chan->orig_flags;
2290 }
2291 return;
2292 }
2293
2294 power_rule = ®_rule->power_rule;
2295 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2296
2297 chan->dfs_state_entered = jiffies;
2298 chan->dfs_state = NL80211_DFS_USABLE;
2299
2300 chan->beacon_found = false;
2301
2302 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2303 chan->flags = chan->orig_flags | bw_flags |
2304 map_regdom_flags(reg_rule->flags);
2305 else
2306 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2307
2308 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2309 chan->max_reg_power = chan->max_power =
2310 (int) MBM_TO_DBM(power_rule->max_eirp);
2311
2312 if (chan->flags & IEEE80211_CHAN_RADAR) {
2313 if (reg_rule->dfs_cac_ms)
2314 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2315 else
2316 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2317 }
2318
2319 chan->max_power = chan->max_reg_power;
2320}
2321
2322static void handle_band_custom(struct wiphy *wiphy,
2323 struct ieee80211_supported_band *sband,
2324 const struct ieee80211_regdomain *regd)
2325{
2326 unsigned int i;
2327
2328 if (!sband)
2329 return;
2330
2331 /*
2332 * We currently assume that you always want at least 20 MHz,
2333 * otherwise channel 12 might get enabled if this rule is
2334 * compatible to US, which permits 2402 - 2472 MHz.
2335 */
2336 for (i = 0; i < sband->n_channels; i++)
2337 handle_channel_custom(wiphy, &sband->channels[i], regd,
2338 MHZ_TO_KHZ(20));
2339}
2340
2341/* Used by drivers prior to wiphy registration */
2342void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2343 const struct ieee80211_regdomain *regd)
2344{
2345 enum nl80211_band band;
2346 unsigned int bands_set = 0;
2347
2348 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2349 "wiphy should have REGULATORY_CUSTOM_REG\n");
2350 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2351
2352 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2353 if (!wiphy->bands[band])
2354 continue;
2355 handle_band_custom(wiphy, wiphy->bands[band], regd);
2356 bands_set++;
2357 }
2358
2359 /*
2360 * no point in calling this if it won't have any effect
2361 * on your device's supported bands.
2362 */
2363 WARN_ON(!bands_set);
2364}
2365EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2366
2367static void reg_set_request_processed(void)
2368{
2369 bool need_more_processing = false;
2370 struct regulatory_request *lr = get_last_request();
2371
2372 lr->processed = true;
2373
2374 spin_lock(®_requests_lock);
2375 if (!list_empty(®_requests_list))
2376 need_more_processing = true;
2377 spin_unlock(®_requests_lock);
2378
2379 cancel_crda_timeout();
2380
2381 if (need_more_processing)
2382 schedule_work(®_work);
2383}
2384
2385/**
2386 * reg_process_hint_core - process core regulatory requests
2387 * @core_request: a pending core regulatory request
2388 *
2389 * The wireless subsystem can use this function to process
2390 * a regulatory request issued by the regulatory core.
2391 */
2392static enum reg_request_treatment
2393reg_process_hint_core(struct regulatory_request *core_request)
2394{
2395 if (reg_query_database(core_request)) {
2396 core_request->intersect = false;
2397 core_request->processed = false;
2398 reg_update_last_request(core_request);
2399 return REG_REQ_OK;
2400 }
2401
2402 return REG_REQ_IGNORE;
2403}
2404
2405static enum reg_request_treatment
2406__reg_process_hint_user(struct regulatory_request *user_request)
2407{
2408 struct regulatory_request *lr = get_last_request();
2409
2410 if (reg_request_cell_base(user_request))
2411 return reg_ignore_cell_hint(user_request);
2412
2413 if (reg_request_cell_base(lr))
2414 return REG_REQ_IGNORE;
2415
2416 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2417 return REG_REQ_INTERSECT;
2418 /*
2419 * If the user knows better the user should set the regdom
2420 * to their country before the IE is picked up
2421 */
2422 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2423 lr->intersect)
2424 return REG_REQ_IGNORE;
2425 /*
2426 * Process user requests only after previous user/driver/core
2427 * requests have been processed
2428 */
2429 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2430 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2431 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2432 regdom_changes(lr->alpha2))
2433 return REG_REQ_IGNORE;
2434
2435 if (!regdom_changes(user_request->alpha2))
2436 return REG_REQ_ALREADY_SET;
2437
2438 return REG_REQ_OK;
2439}
2440
2441/**
2442 * reg_process_hint_user - process user regulatory requests
2443 * @user_request: a pending user regulatory request
2444 *
2445 * The wireless subsystem can use this function to process
2446 * a regulatory request initiated by userspace.
2447 */
2448static enum reg_request_treatment
2449reg_process_hint_user(struct regulatory_request *user_request)
2450{
2451 enum reg_request_treatment treatment;
2452
2453 treatment = __reg_process_hint_user(user_request);
2454 if (treatment == REG_REQ_IGNORE ||
2455 treatment == REG_REQ_ALREADY_SET)
2456 return REG_REQ_IGNORE;
2457
2458 user_request->intersect = treatment == REG_REQ_INTERSECT;
2459 user_request->processed = false;
2460
2461 if (reg_query_database(user_request)) {
2462 reg_update_last_request(user_request);
2463 user_alpha2[0] = user_request->alpha2[0];
2464 user_alpha2[1] = user_request->alpha2[1];
2465 return REG_REQ_OK;
2466 }
2467
2468 return REG_REQ_IGNORE;
2469}
2470
2471static enum reg_request_treatment
2472__reg_process_hint_driver(struct regulatory_request *driver_request)
2473{
2474 struct regulatory_request *lr = get_last_request();
2475
2476 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2477 if (regdom_changes(driver_request->alpha2))
2478 return REG_REQ_OK;
2479 return REG_REQ_ALREADY_SET;
2480 }
2481
2482 /*
2483 * This would happen if you unplug and plug your card
2484 * back in or if you add a new device for which the previously
2485 * loaded card also agrees on the regulatory domain.
2486 */
2487 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2488 !regdom_changes(driver_request->alpha2))
2489 return REG_REQ_ALREADY_SET;
2490
2491 return REG_REQ_INTERSECT;
2492}
2493
2494/**
2495 * reg_process_hint_driver - process driver regulatory requests
2496 * @wiphy: the wireless device for the regulatory request
2497 * @driver_request: a pending driver regulatory request
2498 *
2499 * The wireless subsystem can use this function to process
2500 * a regulatory request issued by an 802.11 driver.
2501 *
2502 * Returns one of the different reg request treatment values.
2503 */
2504static enum reg_request_treatment
2505reg_process_hint_driver(struct wiphy *wiphy,
2506 struct regulatory_request *driver_request)
2507{
2508 const struct ieee80211_regdomain *regd, *tmp;
2509 enum reg_request_treatment treatment;
2510
2511 treatment = __reg_process_hint_driver(driver_request);
2512
2513 switch (treatment) {
2514 case REG_REQ_OK:
2515 break;
2516 case REG_REQ_IGNORE:
2517 return REG_REQ_IGNORE;
2518 case REG_REQ_INTERSECT:
2519 case REG_REQ_ALREADY_SET:
2520 regd = reg_copy_regd(get_cfg80211_regdom());
2521 if (IS_ERR(regd))
2522 return REG_REQ_IGNORE;
2523
2524 tmp = get_wiphy_regdom(wiphy);
2525 rcu_assign_pointer(wiphy->regd, regd);
2526 rcu_free_regdom(tmp);
2527 }
2528
2529
2530 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2531 driver_request->processed = false;
2532
2533 /*
2534 * Since CRDA will not be called in this case as we already
2535 * have applied the requested regulatory domain before we just
2536 * inform userspace we have processed the request
2537 */
2538 if (treatment == REG_REQ_ALREADY_SET) {
2539 nl80211_send_reg_change_event(driver_request);
2540 reg_update_last_request(driver_request);
2541 reg_set_request_processed();
2542 return REG_REQ_ALREADY_SET;
2543 }
2544
2545 if (reg_query_database(driver_request)) {
2546 reg_update_last_request(driver_request);
2547 return REG_REQ_OK;
2548 }
2549
2550 return REG_REQ_IGNORE;
2551}
2552
2553static enum reg_request_treatment
2554__reg_process_hint_country_ie(struct wiphy *wiphy,
2555 struct regulatory_request *country_ie_request)
2556{
2557 struct wiphy *last_wiphy = NULL;
2558 struct regulatory_request *lr = get_last_request();
2559
2560 if (reg_request_cell_base(lr)) {
2561 /* Trust a Cell base station over the AP's country IE */
2562 if (regdom_changes(country_ie_request->alpha2))
2563 return REG_REQ_IGNORE;
2564 return REG_REQ_ALREADY_SET;
2565 } else {
2566 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2567 return REG_REQ_IGNORE;
2568 }
2569
2570 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2571 return -EINVAL;
2572
2573 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2574 return REG_REQ_OK;
2575
2576 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2577
2578 if (last_wiphy != wiphy) {
2579 /*
2580 * Two cards with two APs claiming different
2581 * Country IE alpha2s. We could
2582 * intersect them, but that seems unlikely
2583 * to be correct. Reject second one for now.
2584 */
2585 if (regdom_changes(country_ie_request->alpha2))
2586 return REG_REQ_IGNORE;
2587 return REG_REQ_ALREADY_SET;
2588 }
2589
2590 if (regdom_changes(country_ie_request->alpha2))
2591 return REG_REQ_OK;
2592 return REG_REQ_ALREADY_SET;
2593}
2594
2595/**
2596 * reg_process_hint_country_ie - process regulatory requests from country IEs
2597 * @wiphy: the wireless device for the regulatory request
2598 * @country_ie_request: a regulatory request from a country IE
2599 *
2600 * The wireless subsystem can use this function to process
2601 * a regulatory request issued by a country Information Element.
2602 *
2603 * Returns one of the different reg request treatment values.
2604 */
2605static enum reg_request_treatment
2606reg_process_hint_country_ie(struct wiphy *wiphy,
2607 struct regulatory_request *country_ie_request)
2608{
2609 enum reg_request_treatment treatment;
2610
2611 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2612
2613 switch (treatment) {
2614 case REG_REQ_OK:
2615 break;
2616 case REG_REQ_IGNORE:
2617 return REG_REQ_IGNORE;
2618 case REG_REQ_ALREADY_SET:
2619 reg_free_request(country_ie_request);
2620 return REG_REQ_ALREADY_SET;
2621 case REG_REQ_INTERSECT:
2622 /*
2623 * This doesn't happen yet, not sure we
2624 * ever want to support it for this case.
2625 */
2626 WARN_ONCE(1, "Unexpected intersection for country elements");
2627 return REG_REQ_IGNORE;
2628 }
2629
2630 country_ie_request->intersect = false;
2631 country_ie_request->processed = false;
2632
2633 if (reg_query_database(country_ie_request)) {
2634 reg_update_last_request(country_ie_request);
2635 return REG_REQ_OK;
2636 }
2637
2638 return REG_REQ_IGNORE;
2639}
2640
2641bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2642{
2643 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2644 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2645 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2646 bool dfs_domain_same;
2647
2648 rcu_read_lock();
2649
2650 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2651 wiphy1_regd = rcu_dereference(wiphy1->regd);
2652 if (!wiphy1_regd)
2653 wiphy1_regd = cfg80211_regd;
2654
2655 wiphy2_regd = rcu_dereference(wiphy2->regd);
2656 if (!wiphy2_regd)
2657 wiphy2_regd = cfg80211_regd;
2658
2659 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2660
2661 rcu_read_unlock();
2662
2663 return dfs_domain_same;
2664}
2665
2666static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2667 struct ieee80211_channel *src_chan)
2668{
2669 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2670 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2671 return;
2672
2673 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2674 src_chan->flags & IEEE80211_CHAN_DISABLED)
2675 return;
2676
2677 if (src_chan->center_freq == dst_chan->center_freq &&
2678 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2679 dst_chan->dfs_state = src_chan->dfs_state;
2680 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2681 }
2682}
2683
2684static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2685 struct wiphy *src_wiphy)
2686{
2687 struct ieee80211_supported_band *src_sband, *dst_sband;
2688 struct ieee80211_channel *src_chan, *dst_chan;
2689 int i, j, band;
2690
2691 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2692 return;
2693
2694 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2695 dst_sband = dst_wiphy->bands[band];
2696 src_sband = src_wiphy->bands[band];
2697 if (!dst_sband || !src_sband)
2698 continue;
2699
2700 for (i = 0; i < dst_sband->n_channels; i++) {
2701 dst_chan = &dst_sband->channels[i];
2702 for (j = 0; j < src_sband->n_channels; j++) {
2703 src_chan = &src_sband->channels[j];
2704 reg_copy_dfs_chan_state(dst_chan, src_chan);
2705 }
2706 }
2707 }
2708}
2709
2710static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2711{
2712 struct cfg80211_registered_device *rdev;
2713
2714 ASSERT_RTNL();
2715
2716 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2717 if (wiphy == &rdev->wiphy)
2718 continue;
2719 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2720 }
2721}
2722
2723/* This processes *all* regulatory hints */
2724static void reg_process_hint(struct regulatory_request *reg_request)
2725{
2726 struct wiphy *wiphy = NULL;
2727 enum reg_request_treatment treatment;
2728 enum nl80211_reg_initiator initiator = reg_request->initiator;
2729
2730 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2731 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2732
2733 switch (initiator) {
2734 case NL80211_REGDOM_SET_BY_CORE:
2735 treatment = reg_process_hint_core(reg_request);
2736 break;
2737 case NL80211_REGDOM_SET_BY_USER:
2738 treatment = reg_process_hint_user(reg_request);
2739 break;
2740 case NL80211_REGDOM_SET_BY_DRIVER:
2741 if (!wiphy)
2742 goto out_free;
2743 treatment = reg_process_hint_driver(wiphy, reg_request);
2744 break;
2745 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2746 if (!wiphy)
2747 goto out_free;
2748 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2749 break;
2750 default:
2751 WARN(1, "invalid initiator %d\n", initiator);
2752 goto out_free;
2753 }
2754
2755 if (treatment == REG_REQ_IGNORE)
2756 goto out_free;
2757
2758 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2759 "unexpected treatment value %d\n", treatment);
2760
2761 /* This is required so that the orig_* parameters are saved.
2762 * NOTE: treatment must be set for any case that reaches here!
2763 */
2764 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2765 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2766 wiphy_update_regulatory(wiphy, initiator);
2767 wiphy_all_share_dfs_chan_state(wiphy);
2768 reg_check_channels();
2769 }
2770
2771 return;
2772
2773out_free:
2774 reg_free_request(reg_request);
2775}
2776
2777static void notify_self_managed_wiphys(struct regulatory_request *request)
2778{
2779 struct cfg80211_registered_device *rdev;
2780 struct wiphy *wiphy;
2781
2782 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2783 wiphy = &rdev->wiphy;
2784 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2785 request->initiator == NL80211_REGDOM_SET_BY_USER)
2786 reg_call_notifier(wiphy, request);
2787 }
2788}
2789
2790/*
2791 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2792 * Regulatory hints come on a first come first serve basis and we
2793 * must process each one atomically.
2794 */
2795static void reg_process_pending_hints(void)
2796{
2797 struct regulatory_request *reg_request, *lr;
2798
2799 lr = get_last_request();
2800
2801 /* When last_request->processed becomes true this will be rescheduled */
2802 if (lr && !lr->processed) {
2803 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2804 return;
2805 }
2806
2807 spin_lock(®_requests_lock);
2808
2809 if (list_empty(®_requests_list)) {
2810 spin_unlock(®_requests_lock);
2811 return;
2812 }
2813
2814 reg_request = list_first_entry(®_requests_list,
2815 struct regulatory_request,
2816 list);
2817 list_del_init(®_request->list);
2818
2819 spin_unlock(®_requests_lock);
2820
2821 notify_self_managed_wiphys(reg_request);
2822
2823 reg_process_hint(reg_request);
2824
2825 lr = get_last_request();
2826
2827 spin_lock(®_requests_lock);
2828 if (!list_empty(®_requests_list) && lr && lr->processed)
2829 schedule_work(®_work);
2830 spin_unlock(®_requests_lock);
2831}
2832
2833/* Processes beacon hints -- this has nothing to do with country IEs */
2834static void reg_process_pending_beacon_hints(void)
2835{
2836 struct cfg80211_registered_device *rdev;
2837 struct reg_beacon *pending_beacon, *tmp;
2838
2839 /* This goes through the _pending_ beacon list */
2840 spin_lock_bh(®_pending_beacons_lock);
2841
2842 list_for_each_entry_safe(pending_beacon, tmp,
2843 ®_pending_beacons, list) {
2844 list_del_init(&pending_beacon->list);
2845
2846 /* Applies the beacon hint to current wiphys */
2847 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2848 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2849
2850 /* Remembers the beacon hint for new wiphys or reg changes */
2851 list_add_tail(&pending_beacon->list, ®_beacon_list);
2852 }
2853
2854 spin_unlock_bh(®_pending_beacons_lock);
2855}
2856
2857static void reg_process_self_managed_hints(void)
2858{
2859 struct cfg80211_registered_device *rdev;
2860 struct wiphy *wiphy;
2861 const struct ieee80211_regdomain *tmp;
2862 const struct ieee80211_regdomain *regd;
2863 enum nl80211_band band;
2864 struct regulatory_request request = {};
2865
2866 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2867 wiphy = &rdev->wiphy;
2868
2869 spin_lock(®_requests_lock);
2870 regd = rdev->requested_regd;
2871 rdev->requested_regd = NULL;
2872 spin_unlock(®_requests_lock);
2873
2874 if (regd == NULL)
2875 continue;
2876
2877 tmp = get_wiphy_regdom(wiphy);
2878 rcu_assign_pointer(wiphy->regd, regd);
2879 rcu_free_regdom(tmp);
2880
2881 for (band = 0; band < NUM_NL80211_BANDS; band++)
2882 handle_band_custom(wiphy, wiphy->bands[band], regd);
2883
2884 reg_process_ht_flags(wiphy);
2885
2886 request.wiphy_idx = get_wiphy_idx(wiphy);
2887 request.alpha2[0] = regd->alpha2[0];
2888 request.alpha2[1] = regd->alpha2[1];
2889 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2890
2891 nl80211_send_wiphy_reg_change_event(&request);
2892 }
2893
2894 reg_check_channels();
2895}
2896
2897static void reg_todo(struct work_struct *work)
2898{
2899 rtnl_lock();
2900 reg_process_pending_hints();
2901 reg_process_pending_beacon_hints();
2902 reg_process_self_managed_hints();
2903 rtnl_unlock();
2904}
2905
2906static void queue_regulatory_request(struct regulatory_request *request)
2907{
2908 request->alpha2[0] = toupper(request->alpha2[0]);
2909 request->alpha2[1] = toupper(request->alpha2[1]);
2910
2911 spin_lock(®_requests_lock);
2912 list_add_tail(&request->list, ®_requests_list);
2913 spin_unlock(®_requests_lock);
2914
2915 schedule_work(®_work);
2916}
2917
2918/*
2919 * Core regulatory hint -- happens during cfg80211_init()
2920 * and when we restore regulatory settings.
2921 */
2922static int regulatory_hint_core(const char *alpha2)
2923{
2924 struct regulatory_request *request;
2925
2926 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2927 if (!request)
2928 return -ENOMEM;
2929
2930 request->alpha2[0] = alpha2[0];
2931 request->alpha2[1] = alpha2[1];
2932 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2933 request->wiphy_idx = WIPHY_IDX_INVALID;
2934
2935 queue_regulatory_request(request);
2936
2937 return 0;
2938}
2939
2940/* User hints */
2941int regulatory_hint_user(const char *alpha2,
2942 enum nl80211_user_reg_hint_type user_reg_hint_type)
2943{
2944 struct regulatory_request *request;
2945
2946 if (WARN_ON(!alpha2))
2947 return -EINVAL;
2948
2949 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
2950 return -EINVAL;
2951
2952 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2953 if (!request)
2954 return -ENOMEM;
2955
2956 request->wiphy_idx = WIPHY_IDX_INVALID;
2957 request->alpha2[0] = alpha2[0];
2958 request->alpha2[1] = alpha2[1];
2959 request->initiator = NL80211_REGDOM_SET_BY_USER;
2960 request->user_reg_hint_type = user_reg_hint_type;
2961
2962 /* Allow calling CRDA again */
2963 reset_crda_timeouts();
2964
2965 queue_regulatory_request(request);
2966
2967 return 0;
2968}
2969
2970int regulatory_hint_indoor(bool is_indoor, u32 portid)
2971{
2972 spin_lock(®_indoor_lock);
2973
2974 /* It is possible that more than one user space process is trying to
2975 * configure the indoor setting. To handle such cases, clear the indoor
2976 * setting in case that some process does not think that the device
2977 * is operating in an indoor environment. In addition, if a user space
2978 * process indicates that it is controlling the indoor setting, save its
2979 * portid, i.e., make it the owner.
2980 */
2981 reg_is_indoor = is_indoor;
2982 if (reg_is_indoor) {
2983 if (!reg_is_indoor_portid)
2984 reg_is_indoor_portid = portid;
2985 } else {
2986 reg_is_indoor_portid = 0;
2987 }
2988
2989 spin_unlock(®_indoor_lock);
2990
2991 if (!is_indoor)
2992 reg_check_channels();
2993
2994 return 0;
2995}
2996
2997void regulatory_netlink_notify(u32 portid)
2998{
2999 spin_lock(®_indoor_lock);
3000
3001 if (reg_is_indoor_portid != portid) {
3002 spin_unlock(®_indoor_lock);
3003 return;
3004 }
3005
3006 reg_is_indoor = false;
3007 reg_is_indoor_portid = 0;
3008
3009 spin_unlock(®_indoor_lock);
3010
3011 reg_check_channels();
3012}
3013
3014/* Driver hints */
3015int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3016{
3017 struct regulatory_request *request;
3018
3019 if (WARN_ON(!alpha2 || !wiphy))
3020 return -EINVAL;
3021
3022 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3023
3024 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3025 if (!request)
3026 return -ENOMEM;
3027
3028 request->wiphy_idx = get_wiphy_idx(wiphy);
3029
3030 request->alpha2[0] = alpha2[0];
3031 request->alpha2[1] = alpha2[1];
3032 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3033
3034 /* Allow calling CRDA again */
3035 reset_crda_timeouts();
3036
3037 queue_regulatory_request(request);
3038
3039 return 0;
3040}
3041EXPORT_SYMBOL(regulatory_hint);
3042
3043void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3044 const u8 *country_ie, u8 country_ie_len)
3045{
3046 char alpha2[2];
3047 enum environment_cap env = ENVIRON_ANY;
3048 struct regulatory_request *request = NULL, *lr;
3049
3050 /* IE len must be evenly divisible by 2 */
3051 if (country_ie_len & 0x01)
3052 return;
3053
3054 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3055 return;
3056
3057 request = kzalloc(sizeof(*request), GFP_KERNEL);
3058 if (!request)
3059 return;
3060
3061 alpha2[0] = country_ie[0];
3062 alpha2[1] = country_ie[1];
3063
3064 if (country_ie[2] == 'I')
3065 env = ENVIRON_INDOOR;
3066 else if (country_ie[2] == 'O')
3067 env = ENVIRON_OUTDOOR;
3068
3069 rcu_read_lock();
3070 lr = get_last_request();
3071
3072 if (unlikely(!lr))
3073 goto out;
3074
3075 /*
3076 * We will run this only upon a successful connection on cfg80211.
3077 * We leave conflict resolution to the workqueue, where can hold
3078 * the RTNL.
3079 */
3080 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3081 lr->wiphy_idx != WIPHY_IDX_INVALID)
3082 goto out;
3083
3084 request->wiphy_idx = get_wiphy_idx(wiphy);
3085 request->alpha2[0] = alpha2[0];
3086 request->alpha2[1] = alpha2[1];
3087 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3088 request->country_ie_env = env;
3089
3090 /* Allow calling CRDA again */
3091 reset_crda_timeouts();
3092
3093 queue_regulatory_request(request);
3094 request = NULL;
3095out:
3096 kfree(request);
3097 rcu_read_unlock();
3098}
3099
3100static void restore_alpha2(char *alpha2, bool reset_user)
3101{
3102 /* indicates there is no alpha2 to consider for restoration */
3103 alpha2[0] = '9';
3104 alpha2[1] = '7';
3105
3106 /* The user setting has precedence over the module parameter */
3107 if (is_user_regdom_saved()) {
3108 /* Unless we're asked to ignore it and reset it */
3109 if (reset_user) {
3110 pr_debug("Restoring regulatory settings including user preference\n");
3111 user_alpha2[0] = '9';
3112 user_alpha2[1] = '7';
3113
3114 /*
3115 * If we're ignoring user settings, we still need to
3116 * check the module parameter to ensure we put things
3117 * back as they were for a full restore.
3118 */
3119 if (!is_world_regdom(ieee80211_regdom)) {
3120 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3121 ieee80211_regdom[0], ieee80211_regdom[1]);
3122 alpha2[0] = ieee80211_regdom[0];
3123 alpha2[1] = ieee80211_regdom[1];
3124 }
3125 } else {
3126 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3127 user_alpha2[0], user_alpha2[1]);
3128 alpha2[0] = user_alpha2[0];
3129 alpha2[1] = user_alpha2[1];
3130 }
3131 } else if (!is_world_regdom(ieee80211_regdom)) {
3132 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3133 ieee80211_regdom[0], ieee80211_regdom[1]);
3134 alpha2[0] = ieee80211_regdom[0];
3135 alpha2[1] = ieee80211_regdom[1];
3136 } else
3137 pr_debug("Restoring regulatory settings\n");
3138}
3139
3140static void restore_custom_reg_settings(struct wiphy *wiphy)
3141{
3142 struct ieee80211_supported_band *sband;
3143 enum nl80211_band band;
3144 struct ieee80211_channel *chan;
3145 int i;
3146
3147 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3148 sband = wiphy->bands[band];
3149 if (!sband)
3150 continue;
3151 for (i = 0; i < sband->n_channels; i++) {
3152 chan = &sband->channels[i];
3153 chan->flags = chan->orig_flags;
3154 chan->max_antenna_gain = chan->orig_mag;
3155 chan->max_power = chan->orig_mpwr;
3156 chan->beacon_found = false;
3157 }
3158 }
3159}
3160
3161/*
3162 * Restoring regulatory settings involves ingoring any
3163 * possibly stale country IE information and user regulatory
3164 * settings if so desired, this includes any beacon hints
3165 * learned as we could have traveled outside to another country
3166 * after disconnection. To restore regulatory settings we do
3167 * exactly what we did at bootup:
3168 *
3169 * - send a core regulatory hint
3170 * - send a user regulatory hint if applicable
3171 *
3172 * Device drivers that send a regulatory hint for a specific country
3173 * keep their own regulatory domain on wiphy->regd so that does does
3174 * not need to be remembered.
3175 */
3176static void restore_regulatory_settings(bool reset_user, bool cached)
3177{
3178 char alpha2[2];
3179 char world_alpha2[2];
3180 struct reg_beacon *reg_beacon, *btmp;
3181 LIST_HEAD(tmp_reg_req_list);
3182 struct cfg80211_registered_device *rdev;
3183
3184 ASSERT_RTNL();
3185
3186 /*
3187 * Clear the indoor setting in case that it is not controlled by user
3188 * space, as otherwise there is no guarantee that the device is still
3189 * operating in an indoor environment.
3190 */
3191 spin_lock(®_indoor_lock);
3192 if (reg_is_indoor && !reg_is_indoor_portid) {
3193 reg_is_indoor = false;
3194 reg_check_channels();
3195 }
3196 spin_unlock(®_indoor_lock);
3197
3198 reset_regdomains(true, &world_regdom);
3199 restore_alpha2(alpha2, reset_user);
3200
3201 /*
3202 * If there's any pending requests we simply
3203 * stash them to a temporary pending queue and
3204 * add then after we've restored regulatory
3205 * settings.
3206 */
3207 spin_lock(®_requests_lock);
3208 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3209 spin_unlock(®_requests_lock);
3210
3211 /* Clear beacon hints */
3212 spin_lock_bh(®_pending_beacons_lock);
3213 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3214 list_del(®_beacon->list);
3215 kfree(reg_beacon);
3216 }
3217 spin_unlock_bh(®_pending_beacons_lock);
3218
3219 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3220 list_del(®_beacon->list);
3221 kfree(reg_beacon);
3222 }
3223
3224 /* First restore to the basic regulatory settings */
3225 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3226 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3227
3228 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3229 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3230 continue;
3231 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3232 restore_custom_reg_settings(&rdev->wiphy);
3233 }
3234
3235 if (cached && (!is_an_alpha2(alpha2) ||
3236 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3237 reset_regdomains(false, cfg80211_world_regdom);
3238 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3239 print_regdomain(get_cfg80211_regdom());
3240 nl80211_send_reg_change_event(&core_request_world);
3241 reg_set_request_processed();
3242
3243 if (is_an_alpha2(alpha2) &&
3244 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3245 struct regulatory_request *ureq;
3246
3247 spin_lock(®_requests_lock);
3248 ureq = list_last_entry(®_requests_list,
3249 struct regulatory_request,
3250 list);
3251 list_del(&ureq->list);
3252 spin_unlock(®_requests_lock);
3253
3254 notify_self_managed_wiphys(ureq);
3255 reg_update_last_request(ureq);
3256 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3257 REGD_SOURCE_CACHED);
3258 }
3259 } else {
3260 regulatory_hint_core(world_alpha2);
3261
3262 /*
3263 * This restores the ieee80211_regdom module parameter
3264 * preference or the last user requested regulatory
3265 * settings, user regulatory settings takes precedence.
3266 */
3267 if (is_an_alpha2(alpha2))
3268 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3269 }
3270
3271 spin_lock(®_requests_lock);
3272 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3273 spin_unlock(®_requests_lock);
3274
3275 pr_debug("Kicking the queue\n");
3276
3277 schedule_work(®_work);
3278}
3279
3280static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3281{
3282 struct cfg80211_registered_device *rdev;
3283 struct wireless_dev *wdev;
3284
3285 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3286 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3287 wdev_lock(wdev);
3288 if (!(wdev->wiphy->regulatory_flags & flag)) {
3289 wdev_unlock(wdev);
3290 return false;
3291 }
3292 wdev_unlock(wdev);
3293 }
3294 }
3295
3296 return true;
3297}
3298
3299void regulatory_hint_disconnect(void)
3300{
3301 /* Restore of regulatory settings is not required when wiphy(s)
3302 * ignore IE from connected access point but clearance of beacon hints
3303 * is required when wiphy(s) supports beacon hints.
3304 */
3305 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3306 struct reg_beacon *reg_beacon, *btmp;
3307
3308 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3309 return;
3310
3311 spin_lock_bh(®_pending_beacons_lock);
3312 list_for_each_entry_safe(reg_beacon, btmp,
3313 ®_pending_beacons, list) {
3314 list_del(®_beacon->list);
3315 kfree(reg_beacon);
3316 }
3317 spin_unlock_bh(®_pending_beacons_lock);
3318
3319 list_for_each_entry_safe(reg_beacon, btmp,
3320 ®_beacon_list, list) {
3321 list_del(®_beacon->list);
3322 kfree(reg_beacon);
3323 }
3324
3325 return;
3326 }
3327
3328 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3329 restore_regulatory_settings(false, true);
3330}
3331
3332static bool freq_is_chan_12_13_14(u32 freq)
3333{
3334 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3335 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3336 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3337 return true;
3338 return false;
3339}
3340
3341static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3342{
3343 struct reg_beacon *pending_beacon;
3344
3345 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3346 if (ieee80211_channel_equal(beacon_chan,
3347 &pending_beacon->chan))
3348 return true;
3349 return false;
3350}
3351
3352int regulatory_hint_found_beacon(struct wiphy *wiphy,
3353 struct ieee80211_channel *beacon_chan,
3354 gfp_t gfp)
3355{
3356 struct reg_beacon *reg_beacon;
3357 bool processing;
3358
3359 if (beacon_chan->beacon_found ||
3360 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3361 (beacon_chan->band == NL80211_BAND_2GHZ &&
3362 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3363 return 0;
3364
3365 spin_lock_bh(®_pending_beacons_lock);
3366 processing = pending_reg_beacon(beacon_chan);
3367 spin_unlock_bh(®_pending_beacons_lock);
3368
3369 if (processing)
3370 return 0;
3371
3372 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3373 if (!reg_beacon)
3374 return -ENOMEM;
3375
3376 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3377 beacon_chan->center_freq, beacon_chan->freq_offset,
3378 ieee80211_freq_khz_to_channel(
3379 ieee80211_channel_to_khz(beacon_chan)),
3380 wiphy_name(wiphy));
3381
3382 memcpy(®_beacon->chan, beacon_chan,
3383 sizeof(struct ieee80211_channel));
3384
3385 /*
3386 * Since we can be called from BH or and non-BH context
3387 * we must use spin_lock_bh()
3388 */
3389 spin_lock_bh(®_pending_beacons_lock);
3390 list_add_tail(®_beacon->list, ®_pending_beacons);
3391 spin_unlock_bh(®_pending_beacons_lock);
3392
3393 schedule_work(®_work);
3394
3395 return 0;
3396}
3397
3398static void print_rd_rules(const struct ieee80211_regdomain *rd)
3399{
3400 unsigned int i;
3401 const struct ieee80211_reg_rule *reg_rule = NULL;
3402 const struct ieee80211_freq_range *freq_range = NULL;
3403 const struct ieee80211_power_rule *power_rule = NULL;
3404 char bw[32], cac_time[32];
3405
3406 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3407
3408 for (i = 0; i < rd->n_reg_rules; i++) {
3409 reg_rule = &rd->reg_rules[i];
3410 freq_range = ®_rule->freq_range;
3411 power_rule = ®_rule->power_rule;
3412
3413 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3414 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3415 freq_range->max_bandwidth_khz,
3416 reg_get_max_bandwidth(rd, reg_rule));
3417 else
3418 snprintf(bw, sizeof(bw), "%d KHz",
3419 freq_range->max_bandwidth_khz);
3420
3421 if (reg_rule->flags & NL80211_RRF_DFS)
3422 scnprintf(cac_time, sizeof(cac_time), "%u s",
3423 reg_rule->dfs_cac_ms/1000);
3424 else
3425 scnprintf(cac_time, sizeof(cac_time), "N/A");
3426
3427
3428 /*
3429 * There may not be documentation for max antenna gain
3430 * in certain regions
3431 */
3432 if (power_rule->max_antenna_gain)
3433 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3434 freq_range->start_freq_khz,
3435 freq_range->end_freq_khz,
3436 bw,
3437 power_rule->max_antenna_gain,
3438 power_rule->max_eirp,
3439 cac_time);
3440 else
3441 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3442 freq_range->start_freq_khz,
3443 freq_range->end_freq_khz,
3444 bw,
3445 power_rule->max_eirp,
3446 cac_time);
3447 }
3448}
3449
3450bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3451{
3452 switch (dfs_region) {
3453 case NL80211_DFS_UNSET:
3454 case NL80211_DFS_FCC:
3455 case NL80211_DFS_ETSI:
3456 case NL80211_DFS_JP:
3457 return true;
3458 default:
3459 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3460 return false;
3461 }
3462}
3463
3464static void print_regdomain(const struct ieee80211_regdomain *rd)
3465{
3466 struct regulatory_request *lr = get_last_request();
3467
3468 if (is_intersected_alpha2(rd->alpha2)) {
3469 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3470 struct cfg80211_registered_device *rdev;
3471 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3472 if (rdev) {
3473 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3474 rdev->country_ie_alpha2[0],
3475 rdev->country_ie_alpha2[1]);
3476 } else
3477 pr_debug("Current regulatory domain intersected:\n");
3478 } else
3479 pr_debug("Current regulatory domain intersected:\n");
3480 } else if (is_world_regdom(rd->alpha2)) {
3481 pr_debug("World regulatory domain updated:\n");
3482 } else {
3483 if (is_unknown_alpha2(rd->alpha2))
3484 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3485 else {
3486 if (reg_request_cell_base(lr))
3487 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3488 rd->alpha2[0], rd->alpha2[1]);
3489 else
3490 pr_debug("Regulatory domain changed to country: %c%c\n",
3491 rd->alpha2[0], rd->alpha2[1]);
3492 }
3493 }
3494
3495 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3496 print_rd_rules(rd);
3497}
3498
3499static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3500{
3501 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3502 print_rd_rules(rd);
3503}
3504
3505static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3506{
3507 if (!is_world_regdom(rd->alpha2))
3508 return -EINVAL;
3509 update_world_regdomain(rd);
3510 return 0;
3511}
3512
3513static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3514 struct regulatory_request *user_request)
3515{
3516 const struct ieee80211_regdomain *intersected_rd = NULL;
3517
3518 if (!regdom_changes(rd->alpha2))
3519 return -EALREADY;
3520
3521 if (!is_valid_rd(rd)) {
3522 pr_err("Invalid regulatory domain detected: %c%c\n",
3523 rd->alpha2[0], rd->alpha2[1]);
3524 print_regdomain_info(rd);
3525 return -EINVAL;
3526 }
3527
3528 if (!user_request->intersect) {
3529 reset_regdomains(false, rd);
3530 return 0;
3531 }
3532
3533 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3534 if (!intersected_rd)
3535 return -EINVAL;
3536
3537 kfree(rd);
3538 rd = NULL;
3539 reset_regdomains(false, intersected_rd);
3540
3541 return 0;
3542}
3543
3544static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3545 struct regulatory_request *driver_request)
3546{
3547 const struct ieee80211_regdomain *regd;
3548 const struct ieee80211_regdomain *intersected_rd = NULL;
3549 const struct ieee80211_regdomain *tmp;
3550 struct wiphy *request_wiphy;
3551
3552 if (is_world_regdom(rd->alpha2))
3553 return -EINVAL;
3554
3555 if (!regdom_changes(rd->alpha2))
3556 return -EALREADY;
3557
3558 if (!is_valid_rd(rd)) {
3559 pr_err("Invalid regulatory domain detected: %c%c\n",
3560 rd->alpha2[0], rd->alpha2[1]);
3561 print_regdomain_info(rd);
3562 return -EINVAL;
3563 }
3564
3565 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3566 if (!request_wiphy)
3567 return -ENODEV;
3568
3569 if (!driver_request->intersect) {
3570 if (request_wiphy->regd)
3571 return -EALREADY;
3572
3573 regd = reg_copy_regd(rd);
3574 if (IS_ERR(regd))
3575 return PTR_ERR(regd);
3576
3577 rcu_assign_pointer(request_wiphy->regd, regd);
3578 reset_regdomains(false, rd);
3579 return 0;
3580 }
3581
3582 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3583 if (!intersected_rd)
3584 return -EINVAL;
3585
3586 /*
3587 * We can trash what CRDA provided now.
3588 * However if a driver requested this specific regulatory
3589 * domain we keep it for its private use
3590 */
3591 tmp = get_wiphy_regdom(request_wiphy);
3592 rcu_assign_pointer(request_wiphy->regd, rd);
3593 rcu_free_regdom(tmp);
3594
3595 rd = NULL;
3596
3597 reset_regdomains(false, intersected_rd);
3598
3599 return 0;
3600}
3601
3602static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3603 struct regulatory_request *country_ie_request)
3604{
3605 struct wiphy *request_wiphy;
3606
3607 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3608 !is_unknown_alpha2(rd->alpha2))
3609 return -EINVAL;
3610
3611 /*
3612 * Lets only bother proceeding on the same alpha2 if the current
3613 * rd is non static (it means CRDA was present and was used last)
3614 * and the pending request came in from a country IE
3615 */
3616
3617 if (!is_valid_rd(rd)) {
3618 pr_err("Invalid regulatory domain detected: %c%c\n",
3619 rd->alpha2[0], rd->alpha2[1]);
3620 print_regdomain_info(rd);
3621 return -EINVAL;
3622 }
3623
3624 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3625 if (!request_wiphy)
3626 return -ENODEV;
3627
3628 if (country_ie_request->intersect)
3629 return -EINVAL;
3630
3631 reset_regdomains(false, rd);
3632 return 0;
3633}
3634
3635/*
3636 * Use this call to set the current regulatory domain. Conflicts with
3637 * multiple drivers can be ironed out later. Caller must've already
3638 * kmalloc'd the rd structure.
3639 */
3640int set_regdom(const struct ieee80211_regdomain *rd,
3641 enum ieee80211_regd_source regd_src)
3642{
3643 struct regulatory_request *lr;
3644 bool user_reset = false;
3645 int r;
3646
3647 if (IS_ERR_OR_NULL(rd))
3648 return -ENODATA;
3649
3650 if (!reg_is_valid_request(rd->alpha2)) {
3651 kfree(rd);
3652 return -EINVAL;
3653 }
3654
3655 if (regd_src == REGD_SOURCE_CRDA)
3656 reset_crda_timeouts();
3657
3658 lr = get_last_request();
3659
3660 /* Note that this doesn't update the wiphys, this is done below */
3661 switch (lr->initiator) {
3662 case NL80211_REGDOM_SET_BY_CORE:
3663 r = reg_set_rd_core(rd);
3664 break;
3665 case NL80211_REGDOM_SET_BY_USER:
3666 cfg80211_save_user_regdom(rd);
3667 r = reg_set_rd_user(rd, lr);
3668 user_reset = true;
3669 break;
3670 case NL80211_REGDOM_SET_BY_DRIVER:
3671 r = reg_set_rd_driver(rd, lr);
3672 break;
3673 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3674 r = reg_set_rd_country_ie(rd, lr);
3675 break;
3676 default:
3677 WARN(1, "invalid initiator %d\n", lr->initiator);
3678 kfree(rd);
3679 return -EINVAL;
3680 }
3681
3682 if (r) {
3683 switch (r) {
3684 case -EALREADY:
3685 reg_set_request_processed();
3686 break;
3687 default:
3688 /* Back to world regulatory in case of errors */
3689 restore_regulatory_settings(user_reset, false);
3690 }
3691
3692 kfree(rd);
3693 return r;
3694 }
3695
3696 /* This would make this whole thing pointless */
3697 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3698 return -EINVAL;
3699
3700 /* update all wiphys now with the new established regulatory domain */
3701 update_all_wiphy_regulatory(lr->initiator);
3702
3703 print_regdomain(get_cfg80211_regdom());
3704
3705 nl80211_send_reg_change_event(lr);
3706
3707 reg_set_request_processed();
3708
3709 return 0;
3710}
3711
3712static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3713 struct ieee80211_regdomain *rd)
3714{
3715 const struct ieee80211_regdomain *regd;
3716 const struct ieee80211_regdomain *prev_regd;
3717 struct cfg80211_registered_device *rdev;
3718
3719 if (WARN_ON(!wiphy || !rd))
3720 return -EINVAL;
3721
3722 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3723 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3724 return -EPERM;
3725
3726 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3727 print_regdomain_info(rd);
3728 return -EINVAL;
3729 }
3730
3731 regd = reg_copy_regd(rd);
3732 if (IS_ERR(regd))
3733 return PTR_ERR(regd);
3734
3735 rdev = wiphy_to_rdev(wiphy);
3736
3737 spin_lock(®_requests_lock);
3738 prev_regd = rdev->requested_regd;
3739 rdev->requested_regd = regd;
3740 spin_unlock(®_requests_lock);
3741
3742 kfree(prev_regd);
3743 return 0;
3744}
3745
3746int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3747 struct ieee80211_regdomain *rd)
3748{
3749 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3750
3751 if (ret)
3752 return ret;
3753
3754 schedule_work(®_work);
3755 return 0;
3756}
3757EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3758
3759int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3760 struct ieee80211_regdomain *rd)
3761{
3762 int ret;
3763
3764 ASSERT_RTNL();
3765
3766 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3767 if (ret)
3768 return ret;
3769
3770 /* process the request immediately */
3771 reg_process_self_managed_hints();
3772 return 0;
3773}
3774EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3775
3776void wiphy_regulatory_register(struct wiphy *wiphy)
3777{
3778 struct regulatory_request *lr = get_last_request();
3779
3780 /* self-managed devices ignore beacon hints and country IE */
3781 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3782 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3783 REGULATORY_COUNTRY_IE_IGNORE;
3784
3785 /*
3786 * The last request may have been received before this
3787 * registration call. Call the driver notifier if
3788 * initiator is USER.
3789 */
3790 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3791 reg_call_notifier(wiphy, lr);
3792 }
3793
3794 if (!reg_dev_ignore_cell_hint(wiphy))
3795 reg_num_devs_support_basehint++;
3796
3797 wiphy_update_regulatory(wiphy, lr->initiator);
3798 wiphy_all_share_dfs_chan_state(wiphy);
3799}
3800
3801void wiphy_regulatory_deregister(struct wiphy *wiphy)
3802{
3803 struct wiphy *request_wiphy = NULL;
3804 struct regulatory_request *lr;
3805
3806 lr = get_last_request();
3807
3808 if (!reg_dev_ignore_cell_hint(wiphy))
3809 reg_num_devs_support_basehint--;
3810
3811 rcu_free_regdom(get_wiphy_regdom(wiphy));
3812 RCU_INIT_POINTER(wiphy->regd, NULL);
3813
3814 if (lr)
3815 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3816
3817 if (!request_wiphy || request_wiphy != wiphy)
3818 return;
3819
3820 lr->wiphy_idx = WIPHY_IDX_INVALID;
3821 lr->country_ie_env = ENVIRON_ANY;
3822}
3823
3824/*
3825 * See FCC notices for UNII band definitions
3826 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3827 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3828 */
3829int cfg80211_get_unii(int freq)
3830{
3831 /* UNII-1 */
3832 if (freq >= 5150 && freq <= 5250)
3833 return 0;
3834
3835 /* UNII-2A */
3836 if (freq > 5250 && freq <= 5350)
3837 return 1;
3838
3839 /* UNII-2B */
3840 if (freq > 5350 && freq <= 5470)
3841 return 2;
3842
3843 /* UNII-2C */
3844 if (freq > 5470 && freq <= 5725)
3845 return 3;
3846
3847 /* UNII-3 */
3848 if (freq > 5725 && freq <= 5825)
3849 return 4;
3850
3851 /* UNII-5 */
3852 if (freq > 5925 && freq <= 6425)
3853 return 5;
3854
3855 /* UNII-6 */
3856 if (freq > 6425 && freq <= 6525)
3857 return 6;
3858
3859 /* UNII-7 */
3860 if (freq > 6525 && freq <= 6875)
3861 return 7;
3862
3863 /* UNII-8 */
3864 if (freq > 6875 && freq <= 7125)
3865 return 8;
3866
3867 return -EINVAL;
3868}
3869
3870bool regulatory_indoor_allowed(void)
3871{
3872 return reg_is_indoor;
3873}
3874
3875bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3876{
3877 const struct ieee80211_regdomain *regd = NULL;
3878 const struct ieee80211_regdomain *wiphy_regd = NULL;
3879 bool pre_cac_allowed = false;
3880
3881 rcu_read_lock();
3882
3883 regd = rcu_dereference(cfg80211_regdomain);
3884 wiphy_regd = rcu_dereference(wiphy->regd);
3885 if (!wiphy_regd) {
3886 if (regd->dfs_region == NL80211_DFS_ETSI)
3887 pre_cac_allowed = true;
3888
3889 rcu_read_unlock();
3890
3891 return pre_cac_allowed;
3892 }
3893
3894 if (regd->dfs_region == wiphy_regd->dfs_region &&
3895 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3896 pre_cac_allowed = true;
3897
3898 rcu_read_unlock();
3899
3900 return pre_cac_allowed;
3901}
3902EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3903
3904static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3905{
3906 struct wireless_dev *wdev;
3907 /* If we finished CAC or received radar, we should end any
3908 * CAC running on the same channels.
3909 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3910 * either all channels are available - those the CAC_FINISHED
3911 * event has effected another wdev state, or there is a channel
3912 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3913 * event has effected another wdev state.
3914 * In both cases we should end the CAC on the wdev.
3915 */
3916 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3917 if (wdev->cac_started &&
3918 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3919 rdev_end_cac(rdev, wdev->netdev);
3920 }
3921}
3922
3923void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3924 struct cfg80211_chan_def *chandef,
3925 enum nl80211_dfs_state dfs_state,
3926 enum nl80211_radar_event event)
3927{
3928 struct cfg80211_registered_device *rdev;
3929
3930 ASSERT_RTNL();
3931
3932 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3933 return;
3934
3935 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3936 if (wiphy == &rdev->wiphy)
3937 continue;
3938
3939 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3940 continue;
3941
3942 if (!ieee80211_get_channel(&rdev->wiphy,
3943 chandef->chan->center_freq))
3944 continue;
3945
3946 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3947
3948 if (event == NL80211_RADAR_DETECTED ||
3949 event == NL80211_RADAR_CAC_FINISHED) {
3950 cfg80211_sched_dfs_chan_update(rdev);
3951 cfg80211_check_and_end_cac(rdev);
3952 }
3953
3954 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3955 }
3956}
3957
3958static int __init regulatory_init_db(void)
3959{
3960 int err;
3961
3962 /*
3963 * It's possible that - due to other bugs/issues - cfg80211
3964 * never called regulatory_init() below, or that it failed;
3965 * in that case, don't try to do any further work here as
3966 * it's doomed to lead to crashes.
3967 */
3968 if (IS_ERR_OR_NULL(reg_pdev))
3969 return -EINVAL;
3970
3971 err = load_builtin_regdb_keys();
3972 if (err)
3973 return err;
3974
3975 /* We always try to get an update for the static regdomain */
3976 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3977 if (err) {
3978 if (err == -ENOMEM) {
3979 platform_device_unregister(reg_pdev);
3980 return err;
3981 }
3982 /*
3983 * N.B. kobject_uevent_env() can fail mainly for when we're out
3984 * memory which is handled and propagated appropriately above
3985 * but it can also fail during a netlink_broadcast() or during
3986 * early boot for call_usermodehelper(). For now treat these
3987 * errors as non-fatal.
3988 */
3989 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3990 }
3991
3992 /*
3993 * Finally, if the user set the module parameter treat it
3994 * as a user hint.
3995 */
3996 if (!is_world_regdom(ieee80211_regdom))
3997 regulatory_hint_user(ieee80211_regdom,
3998 NL80211_USER_REG_HINT_USER);
3999
4000 return 0;
4001}
4002#ifndef MODULE
4003late_initcall(regulatory_init_db);
4004#endif
4005
4006int __init regulatory_init(void)
4007{
4008 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4009 if (IS_ERR(reg_pdev))
4010 return PTR_ERR(reg_pdev);
4011
4012 spin_lock_init(®_requests_lock);
4013 spin_lock_init(®_pending_beacons_lock);
4014 spin_lock_init(®_indoor_lock);
4015
4016 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4017
4018 user_alpha2[0] = '9';
4019 user_alpha2[1] = '7';
4020
4021#ifdef MODULE
4022 return regulatory_init_db();
4023#else
4024 return 0;
4025#endif
4026}
4027
4028void regulatory_exit(void)
4029{
4030 struct regulatory_request *reg_request, *tmp;
4031 struct reg_beacon *reg_beacon, *btmp;
4032
4033 cancel_work_sync(®_work);
4034 cancel_crda_timeout_sync();
4035 cancel_delayed_work_sync(®_check_chans);
4036
4037 /* Lock to suppress warnings */
4038 rtnl_lock();
4039 reset_regdomains(true, NULL);
4040 rtnl_unlock();
4041
4042 dev_set_uevent_suppress(®_pdev->dev, true);
4043
4044 platform_device_unregister(reg_pdev);
4045
4046 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4047 list_del(®_beacon->list);
4048 kfree(reg_beacon);
4049 }
4050
4051 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4052 list_del(®_beacon->list);
4053 kfree(reg_beacon);
4054 }
4055
4056 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4057 list_del(®_request->list);
4058 kfree(reg_request);
4059 }
4060
4061 if (!IS_ERR_OR_NULL(regdb))
4062 kfree(regdb);
4063 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4064 kfree(cfg80211_user_regdom);
4065
4066 free_regdb_keyring();
4067}