Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/crc32.h>
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "io.h"
  24#include "workarounds.h"
  25
  26/* Falcon-architecture (SFC4000 and SFC9000-family) support */
  27
  28/**************************************************************************
  29 *
  30 * Configurable values
  31 *
  32 **************************************************************************
  33 */
  34
  35/* This is set to 16 for a good reason.  In summary, if larger than
  36 * 16, the descriptor cache holds more than a default socket
  37 * buffer's worth of packets (for UDP we can only have at most one
  38 * socket buffer's worth outstanding).  This combined with the fact
  39 * that we only get 1 TX event per descriptor cache means the NIC
  40 * goes idle.
  41 */
  42#define TX_DC_ENTRIES 16
  43#define TX_DC_ENTRIES_ORDER 1
  44
  45#define RX_DC_ENTRIES 64
  46#define RX_DC_ENTRIES_ORDER 3
  47
  48/* If EFX_MAX_INT_ERRORS internal errors occur within
  49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  50 * disable it.
  51 */
  52#define EFX_INT_ERROR_EXPIRE 3600
  53#define EFX_MAX_INT_ERRORS 5
  54
  55/* Depth of RX flush request fifo */
  56#define EFX_RX_FLUSH_COUNT 4
  57
  58/* Driver generated events */
  59#define _EFX_CHANNEL_MAGIC_TEST		0x000101
  60#define _EFX_CHANNEL_MAGIC_FILL		0x000102
  61#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
  62#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
  63
  64#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
  65#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
  66
  67#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
  68	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  69#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
  70	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
  71			   efx_rx_queue_index(_rx_queue))
  72#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
  73	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
  74			   efx_rx_queue_index(_rx_queue))
  75#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
  76	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
  77			   (_tx_queue)->queue)
  78
  79static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  80
  81/**************************************************************************
  82 *
  83 * Hardware access
  84 *
  85 **************************************************************************/
  86
  87static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  88				     unsigned int index)
  89{
  90	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  91			value, index);
  92}
  93
  94static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  95				     const efx_oword_t *mask)
  96{
  97	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  98		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  99}
 100
 101int efx_farch_test_registers(struct efx_nic *efx,
 102			     const struct efx_farch_register_test *regs,
 103			     size_t n_regs)
 104{
 105	unsigned address = 0, i, j;
 106	efx_oword_t mask, imask, original, reg, buf;
 107
 108	for (i = 0; i < n_regs; ++i) {
 109		address = regs[i].address;
 110		mask = imask = regs[i].mask;
 111		EFX_INVERT_OWORD(imask);
 112
 113		efx_reado(efx, &original, address);
 114
 115		/* bit sweep on and off */
 116		for (j = 0; j < 128; j++) {
 117			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 118				continue;
 119
 120			/* Test this testable bit can be set in isolation */
 121			EFX_AND_OWORD(reg, original, mask);
 122			EFX_SET_OWORD32(reg, j, j, 1);
 123
 124			efx_writeo(efx, &reg, address);
 125			efx_reado(efx, &buf, address);
 126
 127			if (efx_masked_compare_oword(&reg, &buf, &mask))
 128				goto fail;
 129
 130			/* Test this testable bit can be cleared in isolation */
 131			EFX_OR_OWORD(reg, original, mask);
 132			EFX_SET_OWORD32(reg, j, j, 0);
 133
 134			efx_writeo(efx, &reg, address);
 135			efx_reado(efx, &buf, address);
 136
 137			if (efx_masked_compare_oword(&reg, &buf, &mask))
 138				goto fail;
 139		}
 140
 141		efx_writeo(efx, &original, address);
 142	}
 143
 144	return 0;
 145
 146fail:
 147	netif_err(efx, hw, efx->net_dev,
 148		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 149		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 150		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 151	return -EIO;
 152}
 153
 154/**************************************************************************
 155 *
 156 * Special buffer handling
 157 * Special buffers are used for event queues and the TX and RX
 158 * descriptor rings.
 159 *
 160 *************************************************************************/
 161
 162/*
 163 * Initialise a special buffer
 164 *
 165 * This will define a buffer (previously allocated via
 166 * efx_alloc_special_buffer()) in the buffer table, allowing
 167 * it to be used for event queues, descriptor rings etc.
 168 */
 169static void
 170efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 171{
 172	efx_qword_t buf_desc;
 173	unsigned int index;
 174	dma_addr_t dma_addr;
 175	int i;
 176
 177	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
 178
 179	/* Write buffer descriptors to NIC */
 180	for (i = 0; i < buffer->entries; i++) {
 181		index = buffer->index + i;
 182		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 183		netif_dbg(efx, probe, efx->net_dev,
 184			  "mapping special buffer %d at %llx\n",
 185			  index, (unsigned long long)dma_addr);
 186		EFX_POPULATE_QWORD_3(buf_desc,
 187				     FRF_AZ_BUF_ADR_REGION, 0,
 188				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 189				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 190		efx_write_buf_tbl(efx, &buf_desc, index);
 191	}
 192}
 193
 194/* Unmaps a buffer and clears the buffer table entries */
 195static void
 196efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 197{
 198	efx_oword_t buf_tbl_upd;
 199	unsigned int start = buffer->index;
 200	unsigned int end = (buffer->index + buffer->entries - 1);
 201
 202	if (!buffer->entries)
 203		return;
 204
 205	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 206		  buffer->index, buffer->index + buffer->entries - 1);
 207
 208	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 209			     FRF_AZ_BUF_UPD_CMD, 0,
 210			     FRF_AZ_BUF_CLR_CMD, 1,
 211			     FRF_AZ_BUF_CLR_END_ID, end,
 212			     FRF_AZ_BUF_CLR_START_ID, start);
 213	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 214}
 215
 216/*
 217 * Allocate a new special buffer
 218 *
 219 * This allocates memory for a new buffer, clears it and allocates a
 220 * new buffer ID range.  It does not write into the buffer table.
 221 *
 222 * This call will allocate 4KB buffers, since 8KB buffers can't be
 223 * used for event queues and descriptor rings.
 224 */
 225static int efx_alloc_special_buffer(struct efx_nic *efx,
 226				    struct efx_special_buffer *buffer,
 227				    unsigned int len)
 228{
 229	len = ALIGN(len, EFX_BUF_SIZE);
 230
 231	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 232		return -ENOMEM;
 233	buffer->entries = len / EFX_BUF_SIZE;
 234	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 235
 236	/* Select new buffer ID */
 237	buffer->index = efx->next_buffer_table;
 238	efx->next_buffer_table += buffer->entries;
 239#ifdef CONFIG_SFC_SRIOV
 240	BUG_ON(efx_sriov_enabled(efx) &&
 241	       efx->vf_buftbl_base < efx->next_buffer_table);
 242#endif
 243
 244	netif_dbg(efx, probe, efx->net_dev,
 245		  "allocating special buffers %d-%d at %llx+%x "
 246		  "(virt %p phys %llx)\n", buffer->index,
 247		  buffer->index + buffer->entries - 1,
 248		  (u64)buffer->buf.dma_addr, len,
 249		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 250
 251	return 0;
 252}
 253
 254static void
 255efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 256{
 257	if (!buffer->buf.addr)
 258		return;
 259
 260	netif_dbg(efx, hw, efx->net_dev,
 261		  "deallocating special buffers %d-%d at %llx+%x "
 262		  "(virt %p phys %llx)\n", buffer->index,
 263		  buffer->index + buffer->entries - 1,
 264		  (u64)buffer->buf.dma_addr, buffer->buf.len,
 265		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 266
 267	efx_nic_free_buffer(efx, &buffer->buf);
 268	buffer->entries = 0;
 269}
 270
 271/**************************************************************************
 272 *
 273 * TX path
 274 *
 275 **************************************************************************/
 276
 277/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 278static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 279{
 280	unsigned write_ptr;
 281	efx_dword_t reg;
 282
 283	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 284	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 285	efx_writed_page(tx_queue->efx, &reg,
 286			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 287}
 288
 289/* Write pointer and first descriptor for TX descriptor ring */
 290static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 291					  const efx_qword_t *txd)
 292{
 293	unsigned write_ptr;
 294	efx_oword_t reg;
 295
 296	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 297	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 298
 299	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 300	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 301			     FRF_AZ_TX_DESC_WPTR, write_ptr);
 302	reg.qword[0] = *txd;
 303	efx_writeo_page(tx_queue->efx, &reg,
 304			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 305}
 306
 307
 308/* For each entry inserted into the software descriptor ring, create a
 309 * descriptor in the hardware TX descriptor ring (in host memory), and
 310 * write a doorbell.
 311 */
 312void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 313{
 314	struct efx_tx_buffer *buffer;
 315	efx_qword_t *txd;
 316	unsigned write_ptr;
 317	unsigned old_write_count = tx_queue->write_count;
 318
 319	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 320
 321	do {
 322		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 323		buffer = &tx_queue->buffer[write_ptr];
 324		txd = efx_tx_desc(tx_queue, write_ptr);
 325		++tx_queue->write_count;
 326
 327		EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 328
 329		/* Create TX descriptor ring entry */
 330		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 331		EFX_POPULATE_QWORD_4(*txd,
 332				     FSF_AZ_TX_KER_CONT,
 333				     buffer->flags & EFX_TX_BUF_CONT,
 334				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 335				     FSF_AZ_TX_KER_BUF_REGION, 0,
 336				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 337	} while (tx_queue->write_count != tx_queue->insert_count);
 338
 339	wmb(); /* Ensure descriptors are written before they are fetched */
 340
 341	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 342		txd = efx_tx_desc(tx_queue,
 343				  old_write_count & tx_queue->ptr_mask);
 344		efx_farch_push_tx_desc(tx_queue, txd);
 345		++tx_queue->pushes;
 346	} else {
 347		efx_farch_notify_tx_desc(tx_queue);
 348	}
 349}
 350
 351/* Allocate hardware resources for a TX queue */
 352int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 353{
 354	struct efx_nic *efx = tx_queue->efx;
 355	unsigned entries;
 356
 357	entries = tx_queue->ptr_mask + 1;
 358	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 359					entries * sizeof(efx_qword_t));
 360}
 361
 362void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 363{
 364	struct efx_nic *efx = tx_queue->efx;
 365	efx_oword_t reg;
 366
 367	/* Pin TX descriptor ring */
 368	efx_init_special_buffer(efx, &tx_queue->txd);
 369
 370	/* Push TX descriptor ring to card */
 371	EFX_POPULATE_OWORD_10(reg,
 372			      FRF_AZ_TX_DESCQ_EN, 1,
 373			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 374			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 375			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 376			      FRF_AZ_TX_DESCQ_EVQ_ID,
 377			      tx_queue->channel->channel,
 378			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 379			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 380			      FRF_AZ_TX_DESCQ_SIZE,
 381			      __ffs(tx_queue->txd.entries),
 382			      FRF_AZ_TX_DESCQ_TYPE, 0,
 383			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 384
 385	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 386		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 387		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 388		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 389				    !csum);
 390	}
 391
 392	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 393			 tx_queue->queue);
 394
 395	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 396		/* Only 128 bits in this register */
 397		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
 398
 399		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 400		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 401			__clear_bit_le(tx_queue->queue, &reg);
 402		else
 403			__set_bit_le(tx_queue->queue, &reg);
 404		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 405	}
 406
 407	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 408		EFX_POPULATE_OWORD_1(reg,
 409				     FRF_BZ_TX_PACE,
 410				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 411				     FFE_BZ_TX_PACE_OFF :
 412				     FFE_BZ_TX_PACE_RESERVED);
 413		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 414				 tx_queue->queue);
 415	}
 416}
 417
 418static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 419{
 420	struct efx_nic *efx = tx_queue->efx;
 421	efx_oword_t tx_flush_descq;
 422
 423	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 424	atomic_set(&tx_queue->flush_outstanding, 1);
 425
 426	EFX_POPULATE_OWORD_2(tx_flush_descq,
 427			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 428			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 429	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 430}
 431
 432void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 433{
 434	struct efx_nic *efx = tx_queue->efx;
 435	efx_oword_t tx_desc_ptr;
 436
 437	/* Remove TX descriptor ring from card */
 438	EFX_ZERO_OWORD(tx_desc_ptr);
 439	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 440			 tx_queue->queue);
 441
 442	/* Unpin TX descriptor ring */
 443	efx_fini_special_buffer(efx, &tx_queue->txd);
 444}
 445
 446/* Free buffers backing TX queue */
 447void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 448{
 449	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 450}
 451
 452/**************************************************************************
 453 *
 454 * RX path
 455 *
 456 **************************************************************************/
 457
 458/* This creates an entry in the RX descriptor queue */
 459static inline void
 460efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 461{
 462	struct efx_rx_buffer *rx_buf;
 463	efx_qword_t *rxd;
 464
 465	rxd = efx_rx_desc(rx_queue, index);
 466	rx_buf = efx_rx_buffer(rx_queue, index);
 467	EFX_POPULATE_QWORD_3(*rxd,
 468			     FSF_AZ_RX_KER_BUF_SIZE,
 469			     rx_buf->len -
 470			     rx_queue->efx->type->rx_buffer_padding,
 471			     FSF_AZ_RX_KER_BUF_REGION, 0,
 472			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 473}
 474
 475/* This writes to the RX_DESC_WPTR register for the specified receive
 476 * descriptor ring.
 477 */
 478void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 479{
 480	struct efx_nic *efx = rx_queue->efx;
 481	efx_dword_t reg;
 482	unsigned write_ptr;
 483
 484	while (rx_queue->notified_count != rx_queue->added_count) {
 485		efx_farch_build_rx_desc(
 486			rx_queue,
 487			rx_queue->notified_count & rx_queue->ptr_mask);
 488		++rx_queue->notified_count;
 489	}
 490
 491	wmb();
 492	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 493	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 494	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 495			efx_rx_queue_index(rx_queue));
 496}
 497
 498int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 499{
 500	struct efx_nic *efx = rx_queue->efx;
 501	unsigned entries;
 502
 503	entries = rx_queue->ptr_mask + 1;
 504	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 505					entries * sizeof(efx_qword_t));
 506}
 507
 508void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 509{
 510	efx_oword_t rx_desc_ptr;
 511	struct efx_nic *efx = rx_queue->efx;
 512	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
 513	bool iscsi_digest_en = is_b0;
 514	bool jumbo_en;
 515
 516	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
 517	 * DMA to continue after a PCIe page boundary (and scattering
 518	 * is not possible).  In Falcon B0 and Siena, it enables
 519	 * scatter.
 520	 */
 521	jumbo_en = !is_b0 || efx->rx_scatter;
 522
 523	netif_dbg(efx, hw, efx->net_dev,
 524		  "RX queue %d ring in special buffers %d-%d\n",
 525		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 526		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 527
 528	rx_queue->scatter_n = 0;
 529
 530	/* Pin RX descriptor ring */
 531	efx_init_special_buffer(efx, &rx_queue->rxd);
 532
 533	/* Push RX descriptor ring to card */
 534	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 535			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 536			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 537			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 538			      FRF_AZ_RX_DESCQ_EVQ_ID,
 539			      efx_rx_queue_channel(rx_queue)->channel,
 540			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 541			      FRF_AZ_RX_DESCQ_LABEL,
 542			      efx_rx_queue_index(rx_queue),
 543			      FRF_AZ_RX_DESCQ_SIZE,
 544			      __ffs(rx_queue->rxd.entries),
 545			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 546			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 547			      FRF_AZ_RX_DESCQ_EN, 1);
 548	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 549			 efx_rx_queue_index(rx_queue));
 550}
 551
 552static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 553{
 554	struct efx_nic *efx = rx_queue->efx;
 555	efx_oword_t rx_flush_descq;
 556
 557	EFX_POPULATE_OWORD_2(rx_flush_descq,
 558			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 559			     FRF_AZ_RX_FLUSH_DESCQ,
 560			     efx_rx_queue_index(rx_queue));
 561	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 562}
 563
 564void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 565{
 566	efx_oword_t rx_desc_ptr;
 567	struct efx_nic *efx = rx_queue->efx;
 568
 569	/* Remove RX descriptor ring from card */
 570	EFX_ZERO_OWORD(rx_desc_ptr);
 571	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 572			 efx_rx_queue_index(rx_queue));
 573
 574	/* Unpin RX descriptor ring */
 575	efx_fini_special_buffer(efx, &rx_queue->rxd);
 576}
 577
 578/* Free buffers backing RX queue */
 579void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 580{
 581	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 582}
 583
 584/**************************************************************************
 585 *
 586 * Flush handling
 587 *
 588 **************************************************************************/
 589
 590/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 591 * or more RX flushes can be kicked off.
 592 */
 593static bool efx_farch_flush_wake(struct efx_nic *efx)
 594{
 595	/* Ensure that all updates are visible to efx_farch_flush_queues() */
 596	smp_mb();
 597
 598	return (atomic_read(&efx->active_queues) == 0 ||
 599		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 600		 && atomic_read(&efx->rxq_flush_pending) > 0));
 601}
 602
 603static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 604{
 605	bool i = true;
 606	efx_oword_t txd_ptr_tbl;
 607	struct efx_channel *channel;
 608	struct efx_tx_queue *tx_queue;
 609
 610	efx_for_each_channel(channel, efx) {
 611		efx_for_each_channel_tx_queue(tx_queue, channel) {
 612			efx_reado_table(efx, &txd_ptr_tbl,
 613					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 614			if (EFX_OWORD_FIELD(txd_ptr_tbl,
 615					    FRF_AZ_TX_DESCQ_FLUSH) ||
 616			    EFX_OWORD_FIELD(txd_ptr_tbl,
 617					    FRF_AZ_TX_DESCQ_EN)) {
 618				netif_dbg(efx, hw, efx->net_dev,
 619					  "flush did not complete on TXQ %d\n",
 620					  tx_queue->queue);
 621				i = false;
 622			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 623						  1, 0)) {
 624				/* The flush is complete, but we didn't
 625				 * receive a flush completion event
 626				 */
 627				netif_dbg(efx, hw, efx->net_dev,
 628					  "flush complete on TXQ %d, so drain "
 629					  "the queue\n", tx_queue->queue);
 630				/* Don't need to increment active_queues as it
 631				 * has already been incremented for the queues
 632				 * which did not drain
 633				 */
 634				efx_farch_magic_event(channel,
 635						      EFX_CHANNEL_MAGIC_TX_DRAIN(
 636							      tx_queue));
 637			}
 638		}
 639	}
 640
 641	return i;
 642}
 643
 644/* Flush all the transmit queues, and continue flushing receive queues until
 645 * they're all flushed. Wait for the DRAIN events to be recieved so that there
 646 * are no more RX and TX events left on any channel. */
 647static int efx_farch_do_flush(struct efx_nic *efx)
 648{
 649	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 650	struct efx_channel *channel;
 651	struct efx_rx_queue *rx_queue;
 652	struct efx_tx_queue *tx_queue;
 653	int rc = 0;
 654
 655	efx_for_each_channel(channel, efx) {
 656		efx_for_each_channel_tx_queue(tx_queue, channel) {
 657			efx_farch_flush_tx_queue(tx_queue);
 658		}
 659		efx_for_each_channel_rx_queue(rx_queue, channel) {
 660			rx_queue->flush_pending = true;
 661			atomic_inc(&efx->rxq_flush_pending);
 662		}
 663	}
 664
 665	while (timeout && atomic_read(&efx->active_queues) > 0) {
 666		/* If SRIOV is enabled, then offload receive queue flushing to
 667		 * the firmware (though we will still have to poll for
 668		 * completion). If that fails, fall back to the old scheme.
 669		 */
 670		if (efx_sriov_enabled(efx)) {
 671			rc = efx_mcdi_flush_rxqs(efx);
 672			if (!rc)
 673				goto wait;
 674		}
 675
 676		/* The hardware supports four concurrent rx flushes, each of
 677		 * which may need to be retried if there is an outstanding
 678		 * descriptor fetch
 679		 */
 680		efx_for_each_channel(channel, efx) {
 681			efx_for_each_channel_rx_queue(rx_queue, channel) {
 682				if (atomic_read(&efx->rxq_flush_outstanding) >=
 683				    EFX_RX_FLUSH_COUNT)
 684					break;
 685
 686				if (rx_queue->flush_pending) {
 687					rx_queue->flush_pending = false;
 688					atomic_dec(&efx->rxq_flush_pending);
 689					atomic_inc(&efx->rxq_flush_outstanding);
 690					efx_farch_flush_rx_queue(rx_queue);
 691				}
 692			}
 693		}
 694
 695	wait:
 696		timeout = wait_event_timeout(efx->flush_wq,
 697					     efx_farch_flush_wake(efx),
 698					     timeout);
 699	}
 700
 701	if (atomic_read(&efx->active_queues) &&
 702	    !efx_check_tx_flush_complete(efx)) {
 703		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 704			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 705			  atomic_read(&efx->rxq_flush_outstanding),
 706			  atomic_read(&efx->rxq_flush_pending));
 707		rc = -ETIMEDOUT;
 708
 709		atomic_set(&efx->active_queues, 0);
 710		atomic_set(&efx->rxq_flush_pending, 0);
 711		atomic_set(&efx->rxq_flush_outstanding, 0);
 712	}
 713
 714	return rc;
 715}
 716
 717int efx_farch_fini_dmaq(struct efx_nic *efx)
 718{
 719	struct efx_channel *channel;
 720	struct efx_tx_queue *tx_queue;
 721	struct efx_rx_queue *rx_queue;
 722	int rc = 0;
 723
 724	/* Do not attempt to write to the NIC during EEH recovery */
 725	if (efx->state != STATE_RECOVERY) {
 726		/* Only perform flush if DMA is enabled */
 727		if (efx->pci_dev->is_busmaster) {
 728			efx->type->prepare_flush(efx);
 729			rc = efx_farch_do_flush(efx);
 730			efx->type->finish_flush(efx);
 731		}
 732
 733		efx_for_each_channel(channel, efx) {
 734			efx_for_each_channel_rx_queue(rx_queue, channel)
 735				efx_farch_rx_fini(rx_queue);
 736			efx_for_each_channel_tx_queue(tx_queue, channel)
 737				efx_farch_tx_fini(tx_queue);
 738		}
 739	}
 740
 741	return rc;
 742}
 743
 744/* Reset queue and flush accounting after FLR
 745 *
 746 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 747 * mastering was disabled), in which case we don't receive (RXQ) flush
 748 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 749 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 750 * events were received, and we didn't go through efx_check_tx_flush_complete())
 751 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 752 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 753 * for batched flush requests; and the efx->active_queues gets messed up because
 754 * we keep incrementing for the newly initialised queues, but it never went to
 755 * zero previously.  Then we get a timeout every time we try to restart the
 756 * queues, as it doesn't go back to zero when we should be flushing the queues.
 757 */
 758void efx_farch_finish_flr(struct efx_nic *efx)
 759{
 760	atomic_set(&efx->rxq_flush_pending, 0);
 761	atomic_set(&efx->rxq_flush_outstanding, 0);
 762	atomic_set(&efx->active_queues, 0);
 763}
 764
 765
 766/**************************************************************************
 767 *
 768 * Event queue processing
 769 * Event queues are processed by per-channel tasklets.
 770 *
 771 **************************************************************************/
 772
 773/* Update a channel's event queue's read pointer (RPTR) register
 774 *
 775 * This writes the EVQ_RPTR_REG register for the specified channel's
 776 * event queue.
 777 */
 778void efx_farch_ev_read_ack(struct efx_channel *channel)
 779{
 780	efx_dword_t reg;
 781	struct efx_nic *efx = channel->efx;
 782
 783	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 784			     channel->eventq_read_ptr & channel->eventq_mask);
 785
 786	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 787	 * of 4 bytes, but it is really 16 bytes just like later revisions.
 788	 */
 789	efx_writed(efx, &reg,
 790		   efx->type->evq_rptr_tbl_base +
 791		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 792}
 793
 794/* Use HW to insert a SW defined event */
 795void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 796			      efx_qword_t *event)
 797{
 798	efx_oword_t drv_ev_reg;
 799
 800	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 801		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 802	drv_ev_reg.u32[0] = event->u32[0];
 803	drv_ev_reg.u32[1] = event->u32[1];
 804	drv_ev_reg.u32[2] = 0;
 805	drv_ev_reg.u32[3] = 0;
 806	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 807	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 808}
 809
 810static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 811{
 812	efx_qword_t event;
 813
 814	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 815			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 816			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 817	efx_farch_generate_event(channel->efx, channel->channel, &event);
 818}
 819
 820/* Handle a transmit completion event
 821 *
 822 * The NIC batches TX completion events; the message we receive is of
 823 * the form "complete all TX events up to this index".
 824 */
 825static int
 826efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 827{
 828	unsigned int tx_ev_desc_ptr;
 829	unsigned int tx_ev_q_label;
 830	struct efx_tx_queue *tx_queue;
 831	struct efx_nic *efx = channel->efx;
 832	int tx_packets = 0;
 833
 834	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 835		return 0;
 836
 837	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 838		/* Transmit completion */
 839		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 840		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 841		tx_queue = efx_channel_get_tx_queue(
 842			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 843		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 844			      tx_queue->ptr_mask);
 845		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 846	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 847		/* Rewrite the FIFO write pointer */
 848		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 849		tx_queue = efx_channel_get_tx_queue(
 850			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 851
 852		netif_tx_lock(efx->net_dev);
 853		efx_farch_notify_tx_desc(tx_queue);
 854		netif_tx_unlock(efx->net_dev);
 855	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 856		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 857	} else {
 858		netif_err(efx, tx_err, efx->net_dev,
 859			  "channel %d unexpected TX event "
 860			  EFX_QWORD_FMT"\n", channel->channel,
 861			  EFX_QWORD_VAL(*event));
 862	}
 863
 864	return tx_packets;
 865}
 866
 867/* Detect errors included in the rx_evt_pkt_ok bit. */
 868static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 869				      const efx_qword_t *event)
 870{
 871	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 872	struct efx_nic *efx = rx_queue->efx;
 873	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 874	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 875	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 876	bool rx_ev_other_err, rx_ev_pause_frm;
 877	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 878	unsigned rx_ev_pkt_type;
 879
 880	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 881	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 882	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 883	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 884	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 885						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 886	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 887						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 888	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 889						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 890	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 891	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 892	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
 893			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 894	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 895
 896	/* Every error apart from tobe_disc and pause_frm */
 897	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 898			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 899			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 900
 901	/* Count errors that are not in MAC stats.  Ignore expected
 902	 * checksum errors during self-test. */
 903	if (rx_ev_frm_trunc)
 904		++channel->n_rx_frm_trunc;
 905	else if (rx_ev_tobe_disc)
 906		++channel->n_rx_tobe_disc;
 907	else if (!efx->loopback_selftest) {
 908		if (rx_ev_ip_hdr_chksum_err)
 909			++channel->n_rx_ip_hdr_chksum_err;
 910		else if (rx_ev_tcp_udp_chksum_err)
 911			++channel->n_rx_tcp_udp_chksum_err;
 912	}
 913
 914	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 915	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 916	 * to a FIFO overflow.
 917	 */
 918#ifdef DEBUG
 919	if (rx_ev_other_err && net_ratelimit()) {
 920		netif_dbg(efx, rx_err, efx->net_dev,
 921			  " RX queue %d unexpected RX event "
 922			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 923			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 924			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 925			  rx_ev_ip_hdr_chksum_err ?
 926			  " [IP_HDR_CHKSUM_ERR]" : "",
 927			  rx_ev_tcp_udp_chksum_err ?
 928			  " [TCP_UDP_CHKSUM_ERR]" : "",
 929			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 930			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 931			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 932			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 933			  rx_ev_pause_frm ? " [PAUSE]" : "");
 934	}
 935#endif
 936
 937	/* The frame must be discarded if any of these are true. */
 938	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 939		rx_ev_tobe_disc | rx_ev_pause_frm) ?
 940		EFX_RX_PKT_DISCARD : 0;
 941}
 942
 943/* Handle receive events that are not in-order. Return true if this
 944 * can be handled as a partial packet discard, false if it's more
 945 * serious.
 946 */
 947static bool
 948efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 949{
 950	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 951	struct efx_nic *efx = rx_queue->efx;
 952	unsigned expected, dropped;
 953
 954	if (rx_queue->scatter_n &&
 955	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 956		      rx_queue->ptr_mask)) {
 957		++channel->n_rx_nodesc_trunc;
 958		return true;
 959	}
 960
 961	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 962	dropped = (index - expected) & rx_queue->ptr_mask;
 963	netif_info(efx, rx_err, efx->net_dev,
 964		   "dropped %d events (index=%d expected=%d)\n",
 965		   dropped, index, expected);
 966
 967	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 968			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 969	return false;
 970}
 971
 972/* Handle a packet received event
 973 *
 974 * The NIC gives a "discard" flag if it's a unicast packet with the
 975 * wrong destination address
 976 * Also "is multicast" and "matches multicast filter" flags can be used to
 977 * discard non-matching multicast packets.
 978 */
 979static void
 980efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 981{
 982	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 983	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 984	unsigned expected_ptr;
 985	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 986	u16 flags;
 987	struct efx_rx_queue *rx_queue;
 988	struct efx_nic *efx = channel->efx;
 989
 990	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 991		return;
 992
 993	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 994	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 995	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 996		channel->channel);
 997
 998	rx_queue = efx_channel_get_rx_queue(channel);
 999
1000	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1001	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1002			rx_queue->ptr_mask);
1003
1004	/* Check for partial drops and other errors */
1005	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1006	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1007		if (rx_ev_desc_ptr != expected_ptr &&
1008		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1009			return;
1010
1011		/* Discard all pending fragments */
1012		if (rx_queue->scatter_n) {
1013			efx_rx_packet(
1014				rx_queue,
1015				rx_queue->removed_count & rx_queue->ptr_mask,
1016				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1017			rx_queue->removed_count += rx_queue->scatter_n;
1018			rx_queue->scatter_n = 0;
1019		}
1020
1021		/* Return if there is no new fragment */
1022		if (rx_ev_desc_ptr != expected_ptr)
1023			return;
1024
1025		/* Discard new fragment if not SOP */
1026		if (!rx_ev_sop) {
1027			efx_rx_packet(
1028				rx_queue,
1029				rx_queue->removed_count & rx_queue->ptr_mask,
1030				1, 0, EFX_RX_PKT_DISCARD);
1031			++rx_queue->removed_count;
1032			return;
1033		}
1034	}
1035
1036	++rx_queue->scatter_n;
1037	if (rx_ev_cont)
1038		return;
1039
1040	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1041	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1042	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1043
1044	if (likely(rx_ev_pkt_ok)) {
1045		/* If packet is marked as OK then we can rely on the
1046		 * hardware checksum and classification.
1047		 */
1048		flags = 0;
1049		switch (rx_ev_hdr_type) {
1050		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1051			flags |= EFX_RX_PKT_TCP;
1052			/* fall through */
1053		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1054			flags |= EFX_RX_PKT_CSUMMED;
1055			/* fall through */
1056		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1057		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1058			break;
1059		}
1060	} else {
1061		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1062	}
1063
1064	/* Detect multicast packets that didn't match the filter */
1065	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1066	if (rx_ev_mcast_pkt) {
1067		unsigned int rx_ev_mcast_hash_match =
1068			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1069
1070		if (unlikely(!rx_ev_mcast_hash_match)) {
1071			++channel->n_rx_mcast_mismatch;
1072			flags |= EFX_RX_PKT_DISCARD;
1073		}
1074	}
1075
1076	channel->irq_mod_score += 2;
1077
1078	/* Handle received packet */
1079	efx_rx_packet(rx_queue,
1080		      rx_queue->removed_count & rx_queue->ptr_mask,
1081		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1082	rx_queue->removed_count += rx_queue->scatter_n;
1083	rx_queue->scatter_n = 0;
1084}
1085
1086/* If this flush done event corresponds to a &struct efx_tx_queue, then
1087 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1088 * of all transmit completions.
1089 */
1090static void
1091efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1092{
1093	struct efx_tx_queue *tx_queue;
1094	int qid;
1095
1096	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1097	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1098		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1099					    qid % EFX_TXQ_TYPES);
1100		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1101			efx_farch_magic_event(tx_queue->channel,
1102					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1103		}
1104	}
1105}
1106
1107/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1108 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1109 * the RX queue back to the mask of RX queues in need of flushing.
1110 */
1111static void
1112efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1113{
1114	struct efx_channel *channel;
1115	struct efx_rx_queue *rx_queue;
1116	int qid;
1117	bool failed;
1118
1119	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1120	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1121	if (qid >= efx->n_channels)
1122		return;
1123	channel = efx_get_channel(efx, qid);
1124	if (!efx_channel_has_rx_queue(channel))
1125		return;
1126	rx_queue = efx_channel_get_rx_queue(channel);
1127
1128	if (failed) {
1129		netif_info(efx, hw, efx->net_dev,
1130			   "RXQ %d flush retry\n", qid);
1131		rx_queue->flush_pending = true;
1132		atomic_inc(&efx->rxq_flush_pending);
1133	} else {
1134		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1135				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1136	}
1137	atomic_dec(&efx->rxq_flush_outstanding);
1138	if (efx_farch_flush_wake(efx))
1139		wake_up(&efx->flush_wq);
1140}
1141
1142static void
1143efx_farch_handle_drain_event(struct efx_channel *channel)
1144{
1145	struct efx_nic *efx = channel->efx;
1146
1147	WARN_ON(atomic_read(&efx->active_queues) == 0);
1148	atomic_dec(&efx->active_queues);
1149	if (efx_farch_flush_wake(efx))
1150		wake_up(&efx->flush_wq);
1151}
1152
1153static void efx_farch_handle_generated_event(struct efx_channel *channel,
1154					     efx_qword_t *event)
1155{
1156	struct efx_nic *efx = channel->efx;
1157	struct efx_rx_queue *rx_queue =
1158		efx_channel_has_rx_queue(channel) ?
1159		efx_channel_get_rx_queue(channel) : NULL;
1160	unsigned magic, code;
1161
1162	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1163	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1164
1165	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1166		channel->event_test_cpu = raw_smp_processor_id();
1167	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1168		/* The queue must be empty, so we won't receive any rx
1169		 * events, so efx_process_channel() won't refill the
1170		 * queue. Refill it here */
1171		efx_fast_push_rx_descriptors(rx_queue, true);
1172	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1173		efx_farch_handle_drain_event(channel);
1174	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1175		efx_farch_handle_drain_event(channel);
1176	} else {
1177		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1178			  "generated event "EFX_QWORD_FMT"\n",
1179			  channel->channel, EFX_QWORD_VAL(*event));
1180	}
1181}
1182
1183static void
1184efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1185{
1186	struct efx_nic *efx = channel->efx;
1187	unsigned int ev_sub_code;
1188	unsigned int ev_sub_data;
1189
1190	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1191	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1192
1193	switch (ev_sub_code) {
1194	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1195		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1196			   channel->channel, ev_sub_data);
1197		efx_farch_handle_tx_flush_done(efx, event);
1198		efx_sriov_tx_flush_done(efx, event);
1199		break;
1200	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1201		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1202			   channel->channel, ev_sub_data);
1203		efx_farch_handle_rx_flush_done(efx, event);
1204		efx_sriov_rx_flush_done(efx, event);
1205		break;
1206	case FSE_AZ_EVQ_INIT_DONE_EV:
1207		netif_dbg(efx, hw, efx->net_dev,
1208			  "channel %d EVQ %d initialised\n",
1209			  channel->channel, ev_sub_data);
1210		break;
1211	case FSE_AZ_SRM_UPD_DONE_EV:
1212		netif_vdbg(efx, hw, efx->net_dev,
1213			   "channel %d SRAM update done\n", channel->channel);
1214		break;
1215	case FSE_AZ_WAKE_UP_EV:
1216		netif_vdbg(efx, hw, efx->net_dev,
1217			   "channel %d RXQ %d wakeup event\n",
1218			   channel->channel, ev_sub_data);
1219		break;
1220	case FSE_AZ_TIMER_EV:
1221		netif_vdbg(efx, hw, efx->net_dev,
1222			   "channel %d RX queue %d timer expired\n",
1223			   channel->channel, ev_sub_data);
1224		break;
1225	case FSE_AA_RX_RECOVER_EV:
1226		netif_err(efx, rx_err, efx->net_dev,
1227			  "channel %d seen DRIVER RX_RESET event. "
1228			"Resetting.\n", channel->channel);
1229		atomic_inc(&efx->rx_reset);
1230		efx_schedule_reset(efx,
1231				   EFX_WORKAROUND_6555(efx) ?
1232				   RESET_TYPE_RX_RECOVERY :
1233				   RESET_TYPE_DISABLE);
1234		break;
1235	case FSE_BZ_RX_DSC_ERROR_EV:
1236		if (ev_sub_data < EFX_VI_BASE) {
1237			netif_err(efx, rx_err, efx->net_dev,
1238				  "RX DMA Q %d reports descriptor fetch error."
1239				  " RX Q %d is disabled.\n", ev_sub_data,
1240				  ev_sub_data);
1241			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1242		} else
1243			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1244		break;
1245	case FSE_BZ_TX_DSC_ERROR_EV:
1246		if (ev_sub_data < EFX_VI_BASE) {
1247			netif_err(efx, tx_err, efx->net_dev,
1248				  "TX DMA Q %d reports descriptor fetch error."
1249				  " TX Q %d is disabled.\n", ev_sub_data,
1250				  ev_sub_data);
1251			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1252		} else
1253			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1254		break;
1255	default:
1256		netif_vdbg(efx, hw, efx->net_dev,
1257			   "channel %d unknown driver event code %d "
1258			   "data %04x\n", channel->channel, ev_sub_code,
1259			   ev_sub_data);
1260		break;
1261	}
1262}
1263
1264int efx_farch_ev_process(struct efx_channel *channel, int budget)
1265{
1266	struct efx_nic *efx = channel->efx;
1267	unsigned int read_ptr;
1268	efx_qword_t event, *p_event;
1269	int ev_code;
1270	int tx_packets = 0;
1271	int spent = 0;
1272
1273	if (budget <= 0)
1274		return spent;
1275
1276	read_ptr = channel->eventq_read_ptr;
1277
1278	for (;;) {
1279		p_event = efx_event(channel, read_ptr);
1280		event = *p_event;
1281
1282		if (!efx_event_present(&event))
1283			/* End of events */
1284			break;
1285
1286		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1287			   "channel %d event is "EFX_QWORD_FMT"\n",
1288			   channel->channel, EFX_QWORD_VAL(event));
1289
1290		/* Clear this event by marking it all ones */
1291		EFX_SET_QWORD(*p_event);
1292
1293		++read_ptr;
1294
1295		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1296
1297		switch (ev_code) {
1298		case FSE_AZ_EV_CODE_RX_EV:
1299			efx_farch_handle_rx_event(channel, &event);
1300			if (++spent == budget)
1301				goto out;
1302			break;
1303		case FSE_AZ_EV_CODE_TX_EV:
1304			tx_packets += efx_farch_handle_tx_event(channel,
1305								&event);
1306			if (tx_packets > efx->txq_entries) {
1307				spent = budget;
1308				goto out;
1309			}
1310			break;
1311		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1312			efx_farch_handle_generated_event(channel, &event);
1313			break;
1314		case FSE_AZ_EV_CODE_DRIVER_EV:
1315			efx_farch_handle_driver_event(channel, &event);
1316			break;
1317		case FSE_CZ_EV_CODE_USER_EV:
1318			efx_sriov_event(channel, &event);
1319			break;
1320		case FSE_CZ_EV_CODE_MCDI_EV:
1321			efx_mcdi_process_event(channel, &event);
1322			break;
1323		case FSE_AZ_EV_CODE_GLOBAL_EV:
1324			if (efx->type->handle_global_event &&
1325			    efx->type->handle_global_event(channel, &event))
1326				break;
1327			/* else fall through */
1328		default:
1329			netif_err(channel->efx, hw, channel->efx->net_dev,
1330				  "channel %d unknown event type %d (data "
1331				  EFX_QWORD_FMT ")\n", channel->channel,
1332				  ev_code, EFX_QWORD_VAL(event));
1333		}
1334	}
1335
1336out:
1337	channel->eventq_read_ptr = read_ptr;
1338	return spent;
1339}
1340
1341/* Allocate buffer table entries for event queue */
1342int efx_farch_ev_probe(struct efx_channel *channel)
1343{
1344	struct efx_nic *efx = channel->efx;
1345	unsigned entries;
1346
1347	entries = channel->eventq_mask + 1;
1348	return efx_alloc_special_buffer(efx, &channel->eventq,
1349					entries * sizeof(efx_qword_t));
1350}
1351
1352int efx_farch_ev_init(struct efx_channel *channel)
1353{
1354	efx_oword_t reg;
1355	struct efx_nic *efx = channel->efx;
1356
1357	netif_dbg(efx, hw, efx->net_dev,
1358		  "channel %d event queue in special buffers %d-%d\n",
1359		  channel->channel, channel->eventq.index,
1360		  channel->eventq.index + channel->eventq.entries - 1);
1361
1362	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1363		EFX_POPULATE_OWORD_3(reg,
1364				     FRF_CZ_TIMER_Q_EN, 1,
1365				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1366				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1367		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1368	}
1369
1370	/* Pin event queue buffer */
1371	efx_init_special_buffer(efx, &channel->eventq);
1372
1373	/* Fill event queue with all ones (i.e. empty events) */
1374	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1375
1376	/* Push event queue to card */
1377	EFX_POPULATE_OWORD_3(reg,
1378			     FRF_AZ_EVQ_EN, 1,
1379			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1380			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1381	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1382			 channel->channel);
1383
1384	return 0;
1385}
1386
1387void efx_farch_ev_fini(struct efx_channel *channel)
1388{
1389	efx_oword_t reg;
1390	struct efx_nic *efx = channel->efx;
1391
1392	/* Remove event queue from card */
1393	EFX_ZERO_OWORD(reg);
1394	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1395			 channel->channel);
1396	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1397		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1398
1399	/* Unpin event queue */
1400	efx_fini_special_buffer(efx, &channel->eventq);
1401}
1402
1403/* Free buffers backing event queue */
1404void efx_farch_ev_remove(struct efx_channel *channel)
1405{
1406	efx_free_special_buffer(channel->efx, &channel->eventq);
1407}
1408
1409
1410void efx_farch_ev_test_generate(struct efx_channel *channel)
1411{
1412	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1413}
1414
1415void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1416{
1417	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1418			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1419}
1420
1421/**************************************************************************
1422 *
1423 * Hardware interrupts
1424 * The hardware interrupt handler does very little work; all the event
1425 * queue processing is carried out by per-channel tasklets.
1426 *
1427 **************************************************************************/
1428
1429/* Enable/disable/generate interrupts */
1430static inline void efx_farch_interrupts(struct efx_nic *efx,
1431				      bool enabled, bool force)
1432{
1433	efx_oword_t int_en_reg_ker;
1434
1435	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1436			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1437			     FRF_AZ_KER_INT_KER, force,
1438			     FRF_AZ_DRV_INT_EN_KER, enabled);
1439	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1440}
1441
1442void efx_farch_irq_enable_master(struct efx_nic *efx)
1443{
1444	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1445	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1446
1447	efx_farch_interrupts(efx, true, false);
1448}
1449
1450void efx_farch_irq_disable_master(struct efx_nic *efx)
1451{
1452	/* Disable interrupts */
1453	efx_farch_interrupts(efx, false, false);
1454}
1455
1456/* Generate a test interrupt
1457 * Interrupt must already have been enabled, otherwise nasty things
1458 * may happen.
1459 */
1460void efx_farch_irq_test_generate(struct efx_nic *efx)
1461{
1462	efx_farch_interrupts(efx, true, true);
1463}
1464
1465/* Process a fatal interrupt
1466 * Disable bus mastering ASAP and schedule a reset
1467 */
1468irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1469{
1470	struct falcon_nic_data *nic_data = efx->nic_data;
1471	efx_oword_t *int_ker = efx->irq_status.addr;
1472	efx_oword_t fatal_intr;
1473	int error, mem_perr;
1474
1475	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1476	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1477
1478	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1479		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1480		  EFX_OWORD_VAL(fatal_intr),
1481		  error ? "disabling bus mastering" : "no recognised error");
1482
1483	/* If this is a memory parity error dump which blocks are offending */
1484	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1485		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1486	if (mem_perr) {
1487		efx_oword_t reg;
1488		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1489		netif_err(efx, hw, efx->net_dev,
1490			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1491			  EFX_OWORD_VAL(reg));
1492	}
1493
1494	/* Disable both devices */
1495	pci_clear_master(efx->pci_dev);
1496	if (efx_nic_is_dual_func(efx))
1497		pci_clear_master(nic_data->pci_dev2);
1498	efx_farch_irq_disable_master(efx);
1499
1500	/* Count errors and reset or disable the NIC accordingly */
1501	if (efx->int_error_count == 0 ||
1502	    time_after(jiffies, efx->int_error_expire)) {
1503		efx->int_error_count = 0;
1504		efx->int_error_expire =
1505			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1506	}
1507	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1508		netif_err(efx, hw, efx->net_dev,
1509			  "SYSTEM ERROR - reset scheduled\n");
1510		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1511	} else {
1512		netif_err(efx, hw, efx->net_dev,
1513			  "SYSTEM ERROR - max number of errors seen."
1514			  "NIC will be disabled\n");
1515		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1516	}
1517
1518	return IRQ_HANDLED;
1519}
1520
1521/* Handle a legacy interrupt
1522 * Acknowledges the interrupt and schedule event queue processing.
1523 */
1524irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1525{
1526	struct efx_nic *efx = dev_id;
1527	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1528	efx_oword_t *int_ker = efx->irq_status.addr;
1529	irqreturn_t result = IRQ_NONE;
1530	struct efx_channel *channel;
1531	efx_dword_t reg;
1532	u32 queues;
1533	int syserr;
1534
1535	/* Read the ISR which also ACKs the interrupts */
1536	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1537	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1538
1539	/* Legacy interrupts are disabled too late by the EEH kernel
1540	 * code. Disable them earlier.
1541	 * If an EEH error occurred, the read will have returned all ones.
1542	 */
1543	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1544	    !efx->eeh_disabled_legacy_irq) {
1545		disable_irq_nosync(efx->legacy_irq);
1546		efx->eeh_disabled_legacy_irq = true;
1547	}
1548
1549	/* Handle non-event-queue sources */
1550	if (queues & (1U << efx->irq_level) && soft_enabled) {
1551		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1552		if (unlikely(syserr))
1553			return efx_farch_fatal_interrupt(efx);
1554		efx->last_irq_cpu = raw_smp_processor_id();
1555	}
1556
1557	if (queues != 0) {
1558		efx->irq_zero_count = 0;
1559
1560		/* Schedule processing of any interrupting queues */
1561		if (likely(soft_enabled)) {
1562			efx_for_each_channel(channel, efx) {
1563				if (queues & 1)
1564					efx_schedule_channel_irq(channel);
1565				queues >>= 1;
1566			}
1567		}
1568		result = IRQ_HANDLED;
1569
1570	} else {
1571		efx_qword_t *event;
1572
1573		/* Legacy ISR read can return zero once (SF bug 15783) */
1574
1575		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1576		 * because this might be a shared interrupt. */
1577		if (efx->irq_zero_count++ == 0)
1578			result = IRQ_HANDLED;
1579
1580		/* Ensure we schedule or rearm all event queues */
1581		if (likely(soft_enabled)) {
1582			efx_for_each_channel(channel, efx) {
1583				event = efx_event(channel,
1584						  channel->eventq_read_ptr);
1585				if (efx_event_present(event))
1586					efx_schedule_channel_irq(channel);
1587				else
1588					efx_farch_ev_read_ack(channel);
1589			}
1590		}
1591	}
1592
1593	if (result == IRQ_HANDLED)
1594		netif_vdbg(efx, intr, efx->net_dev,
1595			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1596			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1597
1598	return result;
1599}
1600
1601/* Handle an MSI interrupt
1602 *
1603 * Handle an MSI hardware interrupt.  This routine schedules event
1604 * queue processing.  No interrupt acknowledgement cycle is necessary.
1605 * Also, we never need to check that the interrupt is for us, since
1606 * MSI interrupts cannot be shared.
1607 */
1608irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1609{
1610	struct efx_msi_context *context = dev_id;
1611	struct efx_nic *efx = context->efx;
1612	efx_oword_t *int_ker = efx->irq_status.addr;
1613	int syserr;
1614
1615	netif_vdbg(efx, intr, efx->net_dev,
1616		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1617		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1618
1619	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1620		return IRQ_HANDLED;
1621
1622	/* Handle non-event-queue sources */
1623	if (context->index == efx->irq_level) {
1624		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1625		if (unlikely(syserr))
1626			return efx_farch_fatal_interrupt(efx);
1627		efx->last_irq_cpu = raw_smp_processor_id();
1628	}
1629
1630	/* Schedule processing of the channel */
1631	efx_schedule_channel_irq(efx->channel[context->index]);
1632
1633	return IRQ_HANDLED;
1634}
1635
1636/* Setup RSS indirection table.
1637 * This maps from the hash value of the packet to RXQ
1638 */
1639void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1640{
1641	size_t i = 0;
1642	efx_dword_t dword;
1643
1644	BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1645
1646	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1647		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1648
1649	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1650		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1651				     efx->rx_indir_table[i]);
1652		efx_writed(efx, &dword,
1653			   FR_BZ_RX_INDIRECTION_TBL +
1654			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1655	}
1656}
1657
1658/* Looks at available SRAM resources and works out how many queues we
1659 * can support, and where things like descriptor caches should live.
1660 *
1661 * SRAM is split up as follows:
1662 * 0                          buftbl entries for channels
1663 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1664 * efx->rx_dc_base            RX descriptor caches
1665 * efx->tx_dc_base            TX descriptor caches
1666 */
1667void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1668{
1669	unsigned vi_count, buftbl_min;
1670
1671	/* Account for the buffer table entries backing the datapath channels
1672	 * and the descriptor caches for those channels.
1673	 */
1674	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1675		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1676		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1677		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1678	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1679
1680#ifdef CONFIG_SFC_SRIOV
1681	if (efx_sriov_wanted(efx)) {
1682		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1683
1684		efx->vf_buftbl_base = buftbl_min;
1685
1686		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1687		vi_count = max(vi_count, EFX_VI_BASE);
1688		buftbl_free = (sram_lim_qw - buftbl_min -
1689			       vi_count * vi_dc_entries);
1690
1691		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1692				  efx_vf_size(efx));
1693		vf_limit = min(buftbl_free / entries_per_vf,
1694			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1695
1696		if (efx->vf_count > vf_limit) {
1697			netif_err(efx, probe, efx->net_dev,
1698				  "Reducing VF count from from %d to %d\n",
1699				  efx->vf_count, vf_limit);
1700			efx->vf_count = vf_limit;
1701		}
1702		vi_count += efx->vf_count * efx_vf_size(efx);
1703	}
1704#endif
1705
1706	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1707	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1708}
1709
1710u32 efx_farch_fpga_ver(struct efx_nic *efx)
1711{
1712	efx_oword_t altera_build;
1713	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1714	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1715}
1716
1717void efx_farch_init_common(struct efx_nic *efx)
1718{
1719	efx_oword_t temp;
1720
1721	/* Set positions of descriptor caches in SRAM. */
1722	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1723	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1724	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1725	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1726
1727	/* Set TX descriptor cache size. */
1728	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1729	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1730	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1731
1732	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1733	 * this allows most efficient prefetching.
1734	 */
1735	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1736	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1737	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1738	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1739	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1740
1741	/* Program INT_KER address */
1742	EFX_POPULATE_OWORD_2(temp,
1743			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1744			     EFX_INT_MODE_USE_MSI(efx),
1745			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1746	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1747
1748	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1749		/* Use an interrupt level unused by event queues */
1750		efx->irq_level = 0x1f;
1751	else
1752		/* Use a valid MSI-X vector */
1753		efx->irq_level = 0;
1754
1755	/* Enable all the genuinely fatal interrupts.  (They are still
1756	 * masked by the overall interrupt mask, controlled by
1757	 * falcon_interrupts()).
1758	 *
1759	 * Note: All other fatal interrupts are enabled
1760	 */
1761	EFX_POPULATE_OWORD_3(temp,
1762			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1763			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1764			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1765	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1766		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1767	EFX_INVERT_OWORD(temp);
1768	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1769
1770	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1771	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1772	 */
1773	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1774	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1775	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1776	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1777	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1778	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1779	/* Enable SW_EV to inherit in char driver - assume harmless here */
1780	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1781	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1782	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1783	/* Disable hardware watchdog which can misfire */
1784	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1785	/* Squash TX of packets of 16 bytes or less */
1786	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1787		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1788	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1789
1790	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1791		EFX_POPULATE_OWORD_4(temp,
1792				     /* Default values */
1793				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1794				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1795				     FRF_BZ_TX_PACE_FB_BASE, 0,
1796				     /* Allow large pace values in the
1797				      * fast bin. */
1798				     FRF_BZ_TX_PACE_BIN_TH,
1799				     FFE_BZ_TX_PACE_RESERVED);
1800		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1801	}
1802}
1803
1804/**************************************************************************
1805 *
1806 * Filter tables
1807 *
1808 **************************************************************************
1809 */
1810
1811/* "Fudge factors" - difference between programmed value and actual depth.
1812 * Due to pipelined implementation we need to program H/W with a value that
1813 * is larger than the hop limit we want.
1814 */
1815#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1816#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1817
1818/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1819 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1820 * table is full.
1821 */
1822#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1823
1824/* Don't try very hard to find space for performance hints, as this is
1825 * counter-productive. */
1826#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1827
1828enum efx_farch_filter_type {
1829	EFX_FARCH_FILTER_TCP_FULL = 0,
1830	EFX_FARCH_FILTER_TCP_WILD,
1831	EFX_FARCH_FILTER_UDP_FULL,
1832	EFX_FARCH_FILTER_UDP_WILD,
1833	EFX_FARCH_FILTER_MAC_FULL = 4,
1834	EFX_FARCH_FILTER_MAC_WILD,
1835	EFX_FARCH_FILTER_UC_DEF = 8,
1836	EFX_FARCH_FILTER_MC_DEF,
1837	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1838};
1839
1840enum efx_farch_filter_table_id {
1841	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1842	EFX_FARCH_FILTER_TABLE_RX_MAC,
1843	EFX_FARCH_FILTER_TABLE_RX_DEF,
1844	EFX_FARCH_FILTER_TABLE_TX_MAC,
1845	EFX_FARCH_FILTER_TABLE_COUNT,
1846};
1847
1848enum efx_farch_filter_index {
1849	EFX_FARCH_FILTER_INDEX_UC_DEF,
1850	EFX_FARCH_FILTER_INDEX_MC_DEF,
1851	EFX_FARCH_FILTER_SIZE_RX_DEF,
1852};
1853
1854struct efx_farch_filter_spec {
1855	u8	type:4;
1856	u8	priority:4;
1857	u8	flags;
1858	u16	dmaq_id;
1859	u32	data[3];
1860};
1861
1862struct efx_farch_filter_table {
1863	enum efx_farch_filter_table_id id;
1864	u32		offset;		/* address of table relative to BAR */
1865	unsigned	size;		/* number of entries */
1866	unsigned	step;		/* step between entries */
1867	unsigned	used;		/* number currently used */
1868	unsigned long	*used_bitmap;
1869	struct efx_farch_filter_spec *spec;
1870	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1871};
1872
1873struct efx_farch_filter_state {
1874	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1875};
1876
1877static void
1878efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1879				   struct efx_farch_filter_table *table,
1880				   unsigned int filter_idx);
1881
1882/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1883 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1884static u16 efx_farch_filter_hash(u32 key)
1885{
1886	u16 tmp;
1887
1888	/* First 16 rounds */
1889	tmp = 0x1fff ^ key >> 16;
1890	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1891	tmp = tmp ^ tmp >> 9;
1892	/* Last 16 rounds */
1893	tmp = tmp ^ tmp << 13 ^ key;
1894	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1895	return tmp ^ tmp >> 9;
1896}
1897
1898/* To allow for hash collisions, filter search continues at these
1899 * increments from the first possible entry selected by the hash. */
1900static u16 efx_farch_filter_increment(u32 key)
1901{
1902	return key * 2 - 1;
1903}
1904
1905static enum efx_farch_filter_table_id
1906efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1907{
1908	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1909		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1910	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1911		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1912	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1913		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1914	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1915		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1916	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1917		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1918	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1919		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1920	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1921		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1922	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1923}
1924
1925static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1926{
1927	struct efx_farch_filter_state *state = efx->filter_state;
1928	struct efx_farch_filter_table *table;
1929	efx_oword_t filter_ctl;
1930
1931	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1932
1933	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1934	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1935			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1936			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1937	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1938			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1939			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1940	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1941			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1942			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1943	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1944			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1945			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1946
1947	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1948	if (table->size) {
1949		EFX_SET_OWORD_FIELD(
1950			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1951			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1952			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1953		EFX_SET_OWORD_FIELD(
1954			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1955			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1956			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1957	}
1958
1959	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1960	if (table->size) {
1961		EFX_SET_OWORD_FIELD(
1962			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1963			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1964		EFX_SET_OWORD_FIELD(
1965			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1966			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1967			   EFX_FILTER_FLAG_RX_RSS));
1968		EFX_SET_OWORD_FIELD(
1969			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1970			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1971		EFX_SET_OWORD_FIELD(
1972			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1973			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1974			   EFX_FILTER_FLAG_RX_RSS));
1975
1976		/* There is a single bit to enable RX scatter for all
1977		 * unmatched packets.  Only set it if scatter is
1978		 * enabled in both filter specs.
1979		 */
1980		EFX_SET_OWORD_FIELD(
1981			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1982			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1983			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1984			   EFX_FILTER_FLAG_RX_SCATTER));
1985	} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1986		/* We don't expose 'default' filters because unmatched
1987		 * packets always go to the queue number found in the
1988		 * RSS table.  But we still need to set the RX scatter
1989		 * bit here.
1990		 */
1991		EFX_SET_OWORD_FIELD(
1992			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1993			efx->rx_scatter);
1994	}
1995
1996	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1997}
1998
1999static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2000{
2001	struct efx_farch_filter_state *state = efx->filter_state;
2002	struct efx_farch_filter_table *table;
2003	efx_oword_t tx_cfg;
2004
2005	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2006
2007	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2008	if (table->size) {
2009		EFX_SET_OWORD_FIELD(
2010			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2011			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2012			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2013		EFX_SET_OWORD_FIELD(
2014			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2015			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2016			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2017	}
2018
2019	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2020}
2021
2022static int
2023efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2024			       const struct efx_filter_spec *gen_spec)
2025{
2026	bool is_full = false;
2027
2028	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2029	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2030		return -EINVAL;
2031
2032	spec->priority = gen_spec->priority;
2033	spec->flags = gen_spec->flags;
2034	spec->dmaq_id = gen_spec->dmaq_id;
2035
2036	switch (gen_spec->match_flags) {
2037	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2038	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2039	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2040		is_full = true;
2041		/* fall through */
2042	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2043	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2044		__be32 rhost, host1, host2;
2045		__be16 rport, port1, port2;
2046
2047		EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2048
2049		if (gen_spec->ether_type != htons(ETH_P_IP))
2050			return -EPROTONOSUPPORT;
2051		if (gen_spec->loc_port == 0 ||
2052		    (is_full && gen_spec->rem_port == 0))
2053			return -EADDRNOTAVAIL;
2054		switch (gen_spec->ip_proto) {
2055		case IPPROTO_TCP:
2056			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2057				      EFX_FARCH_FILTER_TCP_WILD);
2058			break;
2059		case IPPROTO_UDP:
2060			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2061				      EFX_FARCH_FILTER_UDP_WILD);
2062			break;
2063		default:
2064			return -EPROTONOSUPPORT;
2065		}
2066
2067		/* Filter is constructed in terms of source and destination,
2068		 * with the odd wrinkle that the ports are swapped in a UDP
2069		 * wildcard filter.  We need to convert from local and remote
2070		 * (= zero for wildcard) addresses.
2071		 */
2072		rhost = is_full ? gen_spec->rem_host[0] : 0;
2073		rport = is_full ? gen_spec->rem_port : 0;
2074		host1 = rhost;
2075		host2 = gen_spec->loc_host[0];
2076		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2077			port1 = gen_spec->loc_port;
2078			port2 = rport;
2079		} else {
2080			port1 = rport;
2081			port2 = gen_spec->loc_port;
2082		}
2083		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2084		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2085		spec->data[2] = ntohl(host2);
2086
2087		break;
2088	}
2089
2090	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2091		is_full = true;
2092		/* fall through */
2093	case EFX_FILTER_MATCH_LOC_MAC:
2094		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2095			      EFX_FARCH_FILTER_MAC_WILD);
2096		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2097		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2098				 gen_spec->loc_mac[3] << 16 |
2099				 gen_spec->loc_mac[4] << 8 |
2100				 gen_spec->loc_mac[5]);
2101		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2102				 gen_spec->loc_mac[1]);
2103		break;
2104
2105	case EFX_FILTER_MATCH_LOC_MAC_IG:
2106		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2107			      EFX_FARCH_FILTER_MC_DEF :
2108			      EFX_FARCH_FILTER_UC_DEF);
2109		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2110		break;
2111
2112	default:
2113		return -EPROTONOSUPPORT;
2114	}
2115
2116	return 0;
2117}
2118
2119static void
2120efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2121			     const struct efx_farch_filter_spec *spec)
2122{
2123	bool is_full = false;
2124
2125	/* *gen_spec should be completely initialised, to be consistent
2126	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2127	 * it back to userland.
2128	 */
2129	memset(gen_spec, 0, sizeof(*gen_spec));
2130
2131	gen_spec->priority = spec->priority;
2132	gen_spec->flags = spec->flags;
2133	gen_spec->dmaq_id = spec->dmaq_id;
2134
2135	switch (spec->type) {
2136	case EFX_FARCH_FILTER_TCP_FULL:
2137	case EFX_FARCH_FILTER_UDP_FULL:
2138		is_full = true;
2139		/* fall through */
2140	case EFX_FARCH_FILTER_TCP_WILD:
2141	case EFX_FARCH_FILTER_UDP_WILD: {
2142		__be32 host1, host2;
2143		__be16 port1, port2;
2144
2145		gen_spec->match_flags =
2146			EFX_FILTER_MATCH_ETHER_TYPE |
2147			EFX_FILTER_MATCH_IP_PROTO |
2148			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2149		if (is_full)
2150			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2151						  EFX_FILTER_MATCH_REM_PORT);
2152		gen_spec->ether_type = htons(ETH_P_IP);
2153		gen_spec->ip_proto =
2154			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2155			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2156			IPPROTO_TCP : IPPROTO_UDP;
2157
2158		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2159		port1 = htons(spec->data[0]);
2160		host2 = htonl(spec->data[2]);
2161		port2 = htons(spec->data[1] >> 16);
2162		if (spec->flags & EFX_FILTER_FLAG_TX) {
2163			gen_spec->loc_host[0] = host1;
2164			gen_spec->rem_host[0] = host2;
2165		} else {
2166			gen_spec->loc_host[0] = host2;
2167			gen_spec->rem_host[0] = host1;
2168		}
2169		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2170		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2171			gen_spec->loc_port = port1;
2172			gen_spec->rem_port = port2;
2173		} else {
2174			gen_spec->loc_port = port2;
2175			gen_spec->rem_port = port1;
2176		}
2177
2178		break;
2179	}
2180
2181	case EFX_FARCH_FILTER_MAC_FULL:
2182		is_full = true;
2183		/* fall through */
2184	case EFX_FARCH_FILTER_MAC_WILD:
2185		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2186		if (is_full)
2187			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2188		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2189		gen_spec->loc_mac[1] = spec->data[2];
2190		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2191		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2192		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2193		gen_spec->loc_mac[5] = spec->data[1];
2194		gen_spec->outer_vid = htons(spec->data[0]);
2195		break;
2196
2197	case EFX_FARCH_FILTER_UC_DEF:
2198	case EFX_FARCH_FILTER_MC_DEF:
2199		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2200		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2201		break;
2202
2203	default:
2204		WARN_ON(1);
2205		break;
2206	}
2207}
2208
2209static void
2210efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2211			      struct efx_farch_filter_spec *spec)
2212{
2213	/* If there's only one channel then disable RSS for non VF
2214	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2215	 */
2216	spec->priority = EFX_FILTER_PRI_AUTO;
2217	spec->flags = (EFX_FILTER_FLAG_RX |
2218		       (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2219		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2220	spec->dmaq_id = 0;
2221}
2222
2223/* Build a filter entry and return its n-tuple key. */
2224static u32 efx_farch_filter_build(efx_oword_t *filter,
2225				  struct efx_farch_filter_spec *spec)
2226{
2227	u32 data3;
2228
2229	switch (efx_farch_filter_spec_table_id(spec)) {
2230	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2231		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2232			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2233		EFX_POPULATE_OWORD_7(
2234			*filter,
2235			FRF_BZ_RSS_EN,
2236			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2237			FRF_BZ_SCATTER_EN,
2238			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2239			FRF_BZ_TCP_UDP, is_udp,
2240			FRF_BZ_RXQ_ID, spec->dmaq_id,
2241			EFX_DWORD_2, spec->data[2],
2242			EFX_DWORD_1, spec->data[1],
2243			EFX_DWORD_0, spec->data[0]);
2244		data3 = is_udp;
2245		break;
2246	}
2247
2248	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2249		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2250		EFX_POPULATE_OWORD_7(
2251			*filter,
2252			FRF_CZ_RMFT_RSS_EN,
2253			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2254			FRF_CZ_RMFT_SCATTER_EN,
2255			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2256			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2257			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2258			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2259			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2260			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2261		data3 = is_wild;
2262		break;
2263	}
2264
2265	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2266		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2267		EFX_POPULATE_OWORD_5(*filter,
2268				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2269				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2270				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2271				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2272				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2273		data3 = is_wild | spec->dmaq_id << 1;
2274		break;
2275	}
2276
2277	default:
2278		BUG();
2279	}
2280
2281	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2282}
2283
2284static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2285				   const struct efx_farch_filter_spec *right)
2286{
2287	if (left->type != right->type ||
2288	    memcmp(left->data, right->data, sizeof(left->data)))
2289		return false;
2290
2291	if (left->flags & EFX_FILTER_FLAG_TX &&
2292	    left->dmaq_id != right->dmaq_id)
2293		return false;
2294
2295	return true;
2296}
2297
2298/*
2299 * Construct/deconstruct external filter IDs.  At least the RX filter
2300 * IDs must be ordered by matching priority, for RX NFC semantics.
2301 *
2302 * Deconstruction needs to be robust against invalid IDs so that
2303 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2304 * accept user-provided IDs.
2305 */
2306
2307#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2308
2309static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2310	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2311	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2312	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2313	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2314	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2315	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2316	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2317	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2318};
2319
2320static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2321	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2322	EFX_FARCH_FILTER_TABLE_RX_IP,
2323	EFX_FARCH_FILTER_TABLE_RX_MAC,
2324	EFX_FARCH_FILTER_TABLE_RX_MAC,
2325	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2326	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2327	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2328};
2329
2330#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2331#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2332
2333static inline u32
2334efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2335			 unsigned int index)
2336{
2337	unsigned int range;
2338
2339	range = efx_farch_filter_type_match_pri[spec->type];
2340	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2341		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2342
2343	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2344}
2345
2346static inline enum efx_farch_filter_table_id
2347efx_farch_filter_id_table_id(u32 id)
2348{
2349	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2350
2351	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2352		return efx_farch_filter_range_table[range];
2353	else
2354		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2355}
2356
2357static inline unsigned int efx_farch_filter_id_index(u32 id)
2358{
2359	return id & EFX_FARCH_FILTER_INDEX_MASK;
2360}
2361
2362u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2363{
2364	struct efx_farch_filter_state *state = efx->filter_state;
2365	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2366	enum efx_farch_filter_table_id table_id;
2367
2368	do {
2369		table_id = efx_farch_filter_range_table[range];
2370		if (state->table[table_id].size != 0)
2371			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2372				state->table[table_id].size;
2373	} while (range--);
2374
2375	return 0;
2376}
2377
2378s32 efx_farch_filter_insert(struct efx_nic *efx,
2379			    struct efx_filter_spec *gen_spec,
2380			    bool replace_equal)
2381{
2382	struct efx_farch_filter_state *state = efx->filter_state;
2383	struct efx_farch_filter_table *table;
2384	struct efx_farch_filter_spec spec;
2385	efx_oword_t filter;
2386	int rep_index, ins_index;
2387	unsigned int depth = 0;
2388	int rc;
2389
2390	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2391	if (rc)
2392		return rc;
2393
2394	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2395	if (table->size == 0)
2396		return -EINVAL;
2397
2398	netif_vdbg(efx, hw, efx->net_dev,
2399		   "%s: type %d search_limit=%d", __func__, spec.type,
2400		   table->search_limit[spec.type]);
2401
2402	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2403		/* One filter spec per type */
2404		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2405		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2406			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2407		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2408		ins_index = rep_index;
2409
2410		spin_lock_bh(&efx->filter_lock);
2411	} else {
2412		/* Search concurrently for
2413		 * (1) a filter to be replaced (rep_index): any filter
2414		 *     with the same match values, up to the current
2415		 *     search depth for this type, and
2416		 * (2) the insertion point (ins_index): (1) or any
2417		 *     free slot before it or up to the maximum search
2418		 *     depth for this priority
2419		 * We fail if we cannot find (2).
2420		 *
2421		 * We can stop once either
2422		 * (a) we find (1), in which case we have definitely
2423		 *     found (2) as well; or
2424		 * (b) we have searched exhaustively for (1), and have
2425		 *     either found (2) or searched exhaustively for it
2426		 */
2427		u32 key = efx_farch_filter_build(&filter, &spec);
2428		unsigned int hash = efx_farch_filter_hash(key);
2429		unsigned int incr = efx_farch_filter_increment(key);
2430		unsigned int max_rep_depth = table->search_limit[spec.type];
2431		unsigned int max_ins_depth =
2432			spec.priority <= EFX_FILTER_PRI_HINT ?
2433			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2434			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2435		unsigned int i = hash & (table->size - 1);
2436
2437		ins_index = -1;
2438		depth = 1;
2439
2440		spin_lock_bh(&efx->filter_lock);
2441
2442		for (;;) {
2443			if (!test_bit(i, table->used_bitmap)) {
2444				if (ins_index < 0)
2445					ins_index = i;
2446			} else if (efx_farch_filter_equal(&spec,
2447							  &table->spec[i])) {
2448				/* Case (a) */
2449				if (ins_index < 0)
2450					ins_index = i;
2451				rep_index = i;
2452				break;
2453			}
2454
2455			if (depth >= max_rep_depth &&
2456			    (ins_index >= 0 || depth >= max_ins_depth)) {
2457				/* Case (b) */
2458				if (ins_index < 0) {
2459					rc = -EBUSY;
2460					goto out;
2461				}
2462				rep_index = -1;
2463				break;
2464			}
2465
2466			i = (i + incr) & (table->size - 1);
2467			++depth;
2468		}
2469	}
2470
2471	/* If we found a filter to be replaced, check whether we
2472	 * should do so
2473	 */
2474	if (rep_index >= 0) {
2475		struct efx_farch_filter_spec *saved_spec =
2476			&table->spec[rep_index];
2477
2478		if (spec.priority == saved_spec->priority && !replace_equal) {
2479			rc = -EEXIST;
2480			goto out;
2481		}
2482		if (spec.priority < saved_spec->priority) {
2483			rc = -EPERM;
2484			goto out;
2485		}
2486		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2487		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2488			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2489	}
2490
2491	/* Insert the filter */
2492	if (ins_index != rep_index) {
2493		__set_bit(ins_index, table->used_bitmap);
2494		++table->used;
2495	}
2496	table->spec[ins_index] = spec;
2497
2498	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2499		efx_farch_filter_push_rx_config(efx);
2500	} else {
2501		if (table->search_limit[spec.type] < depth) {
2502			table->search_limit[spec.type] = depth;
2503			if (spec.flags & EFX_FILTER_FLAG_TX)
2504				efx_farch_filter_push_tx_limits(efx);
2505			else
2506				efx_farch_filter_push_rx_config(efx);
2507		}
2508
2509		efx_writeo(efx, &filter,
2510			   table->offset + table->step * ins_index);
2511
2512		/* If we were able to replace a filter by inserting
2513		 * at a lower depth, clear the replaced filter
2514		 */
2515		if (ins_index != rep_index && rep_index >= 0)
2516			efx_farch_filter_table_clear_entry(efx, table,
2517							   rep_index);
2518	}
2519
2520	netif_vdbg(efx, hw, efx->net_dev,
2521		   "%s: filter type %d index %d rxq %u set",
2522		   __func__, spec.type, ins_index, spec.dmaq_id);
2523	rc = efx_farch_filter_make_id(&spec, ins_index);
2524
2525out:
2526	spin_unlock_bh(&efx->filter_lock);
2527	return rc;
2528}
2529
2530static void
2531efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2532				   struct efx_farch_filter_table *table,
2533				   unsigned int filter_idx)
2534{
2535	static efx_oword_t filter;
2536
2537	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2538	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2539
2540	__clear_bit(filter_idx, table->used_bitmap);
2541	--table->used;
2542	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2543
2544	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2545
2546	/* If this filter required a greater search depth than
2547	 * any other, the search limit for its type can now be
2548	 * decreased.  However, it is hard to determine that
2549	 * unless the table has become completely empty - in
2550	 * which case, all its search limits can be set to 0.
2551	 */
2552	if (unlikely(table->used == 0)) {
2553		memset(table->search_limit, 0, sizeof(table->search_limit));
2554		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2555			efx_farch_filter_push_tx_limits(efx);
2556		else
2557			efx_farch_filter_push_rx_config(efx);
2558	}
2559}
2560
2561static int efx_farch_filter_remove(struct efx_nic *efx,
2562				   struct efx_farch_filter_table *table,
2563				   unsigned int filter_idx,
2564				   enum efx_filter_priority priority)
2565{
2566	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2567
2568	if (!test_bit(filter_idx, table->used_bitmap) ||
2569	    spec->priority != priority)
2570		return -ENOENT;
2571
2572	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2573		efx_farch_filter_init_rx_auto(efx, spec);
2574		efx_farch_filter_push_rx_config(efx);
2575	} else {
2576		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2577	}
2578
2579	return 0;
2580}
2581
2582int efx_farch_filter_remove_safe(struct efx_nic *efx,
2583				 enum efx_filter_priority priority,
2584				 u32 filter_id)
2585{
2586	struct efx_farch_filter_state *state = efx->filter_state;
2587	enum efx_farch_filter_table_id table_id;
2588	struct efx_farch_filter_table *table;
2589	unsigned int filter_idx;
2590	struct efx_farch_filter_spec *spec;
2591	int rc;
2592
2593	table_id = efx_farch_filter_id_table_id(filter_id);
2594	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2595		return -ENOENT;
2596	table = &state->table[table_id];
2597
2598	filter_idx = efx_farch_filter_id_index(filter_id);
2599	if (filter_idx >= table->size)
2600		return -ENOENT;
2601	spec = &table->spec[filter_idx];
2602
2603	spin_lock_bh(&efx->filter_lock);
2604	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2605	spin_unlock_bh(&efx->filter_lock);
2606
2607	return rc;
2608}
2609
2610int efx_farch_filter_get_safe(struct efx_nic *efx,
2611			      enum efx_filter_priority priority,
2612			      u32 filter_id, struct efx_filter_spec *spec_buf)
2613{
2614	struct efx_farch_filter_state *state = efx->filter_state;
2615	enum efx_farch_filter_table_id table_id;
2616	struct efx_farch_filter_table *table;
2617	struct efx_farch_filter_spec *spec;
2618	unsigned int filter_idx;
2619	int rc;
2620
2621	table_id = efx_farch_filter_id_table_id(filter_id);
2622	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2623		return -ENOENT;
2624	table = &state->table[table_id];
2625
2626	filter_idx = efx_farch_filter_id_index(filter_id);
2627	if (filter_idx >= table->size)
2628		return -ENOENT;
2629	spec = &table->spec[filter_idx];
2630
2631	spin_lock_bh(&efx->filter_lock);
2632
2633	if (test_bit(filter_idx, table->used_bitmap) &&
2634	    spec->priority == priority) {
2635		efx_farch_filter_to_gen_spec(spec_buf, spec);
2636		rc = 0;
2637	} else {
2638		rc = -ENOENT;
2639	}
2640
2641	spin_unlock_bh(&efx->filter_lock);
2642
2643	return rc;
2644}
2645
2646static void
2647efx_farch_filter_table_clear(struct efx_nic *efx,
2648			     enum efx_farch_filter_table_id table_id,
2649			     enum efx_filter_priority priority)
2650{
2651	struct efx_farch_filter_state *state = efx->filter_state;
2652	struct efx_farch_filter_table *table = &state->table[table_id];
2653	unsigned int filter_idx;
2654
2655	spin_lock_bh(&efx->filter_lock);
2656	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2657		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2658			efx_farch_filter_remove(efx, table,
2659						filter_idx, priority);
2660	}
2661	spin_unlock_bh(&efx->filter_lock);
2662}
2663
2664int efx_farch_filter_clear_rx(struct efx_nic *efx,
2665			       enum efx_filter_priority priority)
2666{
2667	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2668				     priority);
2669	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2670				     priority);
2671	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2672				     priority);
2673	return 0;
2674}
2675
2676u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2677				   enum efx_filter_priority priority)
2678{
2679	struct efx_farch_filter_state *state = efx->filter_state;
2680	enum efx_farch_filter_table_id table_id;
2681	struct efx_farch_filter_table *table;
2682	unsigned int filter_idx;
2683	u32 count = 0;
2684
2685	spin_lock_bh(&efx->filter_lock);
2686
2687	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2688	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2689	     table_id++) {
2690		table = &state->table[table_id];
2691		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2692			if (test_bit(filter_idx, table->used_bitmap) &&
2693			    table->spec[filter_idx].priority == priority)
2694				++count;
2695		}
2696	}
2697
2698	spin_unlock_bh(&efx->filter_lock);
2699
2700	return count;
2701}
2702
2703s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2704				enum efx_filter_priority priority,
2705				u32 *buf, u32 size)
2706{
2707	struct efx_farch_filter_state *state = efx->filter_state;
2708	enum efx_farch_filter_table_id table_id;
2709	struct efx_farch_filter_table *table;
2710	unsigned int filter_idx;
2711	s32 count = 0;
2712
2713	spin_lock_bh(&efx->filter_lock);
2714
2715	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2716	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2717	     table_id++) {
2718		table = &state->table[table_id];
2719		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2720			if (test_bit(filter_idx, table->used_bitmap) &&
2721			    table->spec[filter_idx].priority == priority) {
2722				if (count == size) {
2723					count = -EMSGSIZE;
2724					goto out;
2725				}
2726				buf[count++] = efx_farch_filter_make_id(
2727					&table->spec[filter_idx], filter_idx);
2728			}
2729		}
2730	}
2731out:
2732	spin_unlock_bh(&efx->filter_lock);
2733
2734	return count;
2735}
2736
2737/* Restore filter stater after reset */
2738void efx_farch_filter_table_restore(struct efx_nic *efx)
2739{
2740	struct efx_farch_filter_state *state = efx->filter_state;
2741	enum efx_farch_filter_table_id table_id;
2742	struct efx_farch_filter_table *table;
2743	efx_oword_t filter;
2744	unsigned int filter_idx;
2745
2746	spin_lock_bh(&efx->filter_lock);
2747
2748	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2749		table = &state->table[table_id];
2750
2751		/* Check whether this is a regular register table */
2752		if (table->step == 0)
2753			continue;
2754
2755		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2756			if (!test_bit(filter_idx, table->used_bitmap))
2757				continue;
2758			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2759			efx_writeo(efx, &filter,
2760				   table->offset + table->step * filter_idx);
2761		}
2762	}
2763
2764	efx_farch_filter_push_rx_config(efx);
2765	efx_farch_filter_push_tx_limits(efx);
2766
2767	spin_unlock_bh(&efx->filter_lock);
2768}
2769
2770void efx_farch_filter_table_remove(struct efx_nic *efx)
2771{
2772	struct efx_farch_filter_state *state = efx->filter_state;
2773	enum efx_farch_filter_table_id table_id;
2774
2775	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2776		kfree(state->table[table_id].used_bitmap);
2777		vfree(state->table[table_id].spec);
2778	}
2779	kfree(state);
2780}
2781
2782int efx_farch_filter_table_probe(struct efx_nic *efx)
2783{
2784	struct efx_farch_filter_state *state;
2785	struct efx_farch_filter_table *table;
2786	unsigned table_id;
2787
2788	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2789	if (!state)
2790		return -ENOMEM;
2791	efx->filter_state = state;
2792
2793	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2794		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2795		table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2796		table->offset = FR_BZ_RX_FILTER_TBL0;
2797		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2798		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2799	}
2800
2801	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2802		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2803		table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2804		table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2805		table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2806		table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2807
2808		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2809		table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2810		table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2811
2812		table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2813		table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2814		table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2815		table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2816		table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2817	}
2818
2819	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2820		table = &state->table[table_id];
2821		if (table->size == 0)
2822			continue;
2823		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2824					     sizeof(unsigned long),
2825					     GFP_KERNEL);
2826		if (!table->used_bitmap)
2827			goto fail;
2828		table->spec = vzalloc(table->size * sizeof(*table->spec));
2829		if (!table->spec)
2830			goto fail;
2831	}
2832
2833	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2834	if (table->size) {
2835		/* RX default filters must always exist */
2836		struct efx_farch_filter_spec *spec;
2837		unsigned i;
2838
2839		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2840			spec = &table->spec[i];
2841			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2842			efx_farch_filter_init_rx_auto(efx, spec);
2843			__set_bit(i, table->used_bitmap);
2844		}
2845	}
2846
2847	efx_farch_filter_push_rx_config(efx);
2848
2849	return 0;
2850
2851fail:
2852	efx_farch_filter_table_remove(efx);
2853	return -ENOMEM;
2854}
2855
2856/* Update scatter enable flags for filters pointing to our own RX queues */
2857void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2858{
2859	struct efx_farch_filter_state *state = efx->filter_state;
2860	enum efx_farch_filter_table_id table_id;
2861	struct efx_farch_filter_table *table;
2862	efx_oword_t filter;
2863	unsigned int filter_idx;
2864
2865	spin_lock_bh(&efx->filter_lock);
2866
2867	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2868	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2869	     table_id++) {
2870		table = &state->table[table_id];
2871
2872		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2873			if (!test_bit(filter_idx, table->used_bitmap) ||
2874			    table->spec[filter_idx].dmaq_id >=
2875			    efx->n_rx_channels)
2876				continue;
2877
2878			if (efx->rx_scatter)
2879				table->spec[filter_idx].flags |=
2880					EFX_FILTER_FLAG_RX_SCATTER;
2881			else
2882				table->spec[filter_idx].flags &=
2883					~EFX_FILTER_FLAG_RX_SCATTER;
2884
2885			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2886				/* Pushed by efx_farch_filter_push_rx_config() */
2887				continue;
2888
2889			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2890			efx_writeo(efx, &filter,
2891				   table->offset + table->step * filter_idx);
2892		}
2893	}
2894
2895	efx_farch_filter_push_rx_config(efx);
2896
2897	spin_unlock_bh(&efx->filter_lock);
2898}
2899
2900#ifdef CONFIG_RFS_ACCEL
2901
2902s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2903				struct efx_filter_spec *gen_spec)
2904{
2905	return efx_farch_filter_insert(efx, gen_spec, true);
2906}
2907
2908bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2909				     unsigned int index)
2910{
2911	struct efx_farch_filter_state *state = efx->filter_state;
2912	struct efx_farch_filter_table *table =
2913		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914
2915	if (test_bit(index, table->used_bitmap) &&
2916	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2917	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2918				flow_id, index)) {
2919		efx_farch_filter_table_clear_entry(efx, table, index);
2920		return true;
2921	}
2922
2923	return false;
2924}
2925
2926#endif /* CONFIG_RFS_ACCEL */
2927
2928void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2929{
2930	struct net_device *net_dev = efx->net_dev;
2931	struct netdev_hw_addr *ha;
2932	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2933	u32 crc;
2934	int bit;
2935
2936	netif_addr_lock_bh(net_dev);
2937
2938	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2939
2940	/* Build multicast hash table */
2941	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2942		memset(mc_hash, 0xff, sizeof(*mc_hash));
2943	} else {
2944		memset(mc_hash, 0x00, sizeof(*mc_hash));
2945		netdev_for_each_mc_addr(ha, net_dev) {
2946			crc = ether_crc_le(ETH_ALEN, ha->addr);
2947			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2948			__set_bit_le(bit, mc_hash);
2949		}
2950
2951		/* Broadcast packets go through the multicast hash filter.
2952		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2953		 * so we always add bit 0xff to the mask.
2954		 */
2955		__set_bit_le(0xff, mc_hash);
2956	}
2957
2958	netif_addr_unlock_bh(net_dev);
2959}