Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/task_stack.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/pagemap.h>
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
27#include <linux/extable.h>
28#include <linux/kprobes.h>
29#include <linux/kdebug.h>
30#include <linux/perf_event.h>
31#include <linux/ratelimit.h>
32#include <linux/context_tracking.h>
33#include <linux/hugetlb.h>
34#include <linux/uaccess.h>
35#include <linux/kfence.h>
36#include <linux/pkeys.h>
37
38#include <asm/firmware.h>
39#include <asm/interrupt.h>
40#include <asm/page.h>
41#include <asm/mmu.h>
42#include <asm/mmu_context.h>
43#include <asm/siginfo.h>
44#include <asm/debug.h>
45#include <asm/kup.h>
46#include <asm/inst.h>
47
48
49/*
50 * do_page_fault error handling helpers
51 */
52
53static int
54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
55{
56 /*
57 * If we are in kernel mode, bail out with a SEGV, this will
58 * be caught by the assembly which will restore the non-volatile
59 * registers before calling bad_page_fault()
60 */
61 if (!user_mode(regs))
62 return SIGSEGV;
63
64 _exception(SIGSEGV, regs, si_code, address);
65
66 return 0;
67}
68
69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70{
71 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
72}
73
74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
75{
76 struct mm_struct *mm = current->mm;
77
78 /*
79 * Something tried to access memory that isn't in our memory map..
80 * Fix it, but check if it's kernel or user first..
81 */
82 mmap_read_unlock(mm);
83
84 return __bad_area_nosemaphore(regs, address, si_code);
85}
86
87static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
88 struct vm_area_struct *vma)
89{
90 struct mm_struct *mm = current->mm;
91 int pkey;
92
93 /*
94 * We don't try to fetch the pkey from page table because reading
95 * page table without locking doesn't guarantee stable pte value.
96 * Hence the pkey value that we return to userspace can be different
97 * from the pkey that actually caused access error.
98 *
99 * It does *not* guarantee that the VMA we find here
100 * was the one that we faulted on.
101 *
102 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
103 * 2. T1 : set AMR to deny access to pkey=4, touches, page
104 * 3. T1 : faults...
105 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
106 * 5. T1 : enters fault handler, takes mmap_lock, etc...
107 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
108 * faulted on a pte with its pkey=4.
109 */
110 pkey = vma_pkey(vma);
111
112 mmap_read_unlock(mm);
113
114 /*
115 * If we are in kernel mode, bail out with a SEGV, this will
116 * be caught by the assembly which will restore the non-volatile
117 * registers before calling bad_page_fault()
118 */
119 if (!user_mode(regs))
120 return SIGSEGV;
121
122 _exception_pkey(regs, address, pkey);
123
124 return 0;
125}
126
127static noinline int bad_access(struct pt_regs *regs, unsigned long address)
128{
129 return __bad_area(regs, address, SEGV_ACCERR);
130}
131
132static int do_sigbus(struct pt_regs *regs, unsigned long address,
133 vm_fault_t fault)
134{
135 if (!user_mode(regs))
136 return SIGBUS;
137
138 current->thread.trap_nr = BUS_ADRERR;
139#ifdef CONFIG_MEMORY_FAILURE
140 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
141 unsigned int lsb = 0; /* shutup gcc */
142
143 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
144 current->comm, current->pid, address);
145
146 if (fault & VM_FAULT_HWPOISON_LARGE)
147 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
148 if (fault & VM_FAULT_HWPOISON)
149 lsb = PAGE_SHIFT;
150
151 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
152 return 0;
153 }
154
155#endif
156 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
157 return 0;
158}
159
160static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
161 vm_fault_t fault)
162{
163 /*
164 * Kernel page fault interrupted by SIGKILL. We have no reason to
165 * continue processing.
166 */
167 if (fatal_signal_pending(current) && !user_mode(regs))
168 return SIGKILL;
169
170 /* Out of memory */
171 if (fault & VM_FAULT_OOM) {
172 /*
173 * We ran out of memory, or some other thing happened to us that
174 * made us unable to handle the page fault gracefully.
175 */
176 if (!user_mode(regs))
177 return SIGSEGV;
178 pagefault_out_of_memory();
179 } else {
180 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
181 VM_FAULT_HWPOISON_LARGE))
182 return do_sigbus(regs, addr, fault);
183 else if (fault & VM_FAULT_SIGSEGV)
184 return bad_area_nosemaphore(regs, addr);
185 else
186 BUG();
187 }
188 return 0;
189}
190
191/* Is this a bad kernel fault ? */
192static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
193 unsigned long address, bool is_write)
194{
195 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
196
197 if (is_exec) {
198 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
199 address >= TASK_SIZE ? "exec-protected" : "user",
200 address,
201 from_kuid(&init_user_ns, current_uid()));
202
203 // Kernel exec fault is always bad
204 return true;
205 }
206
207 // Kernel fault on kernel address is bad
208 if (address >= TASK_SIZE)
209 return true;
210
211 // Read/write fault blocked by KUAP is bad, it can never succeed.
212 if (bad_kuap_fault(regs, address, is_write)) {
213 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
214 is_write ? "write" : "read", address,
215 from_kuid(&init_user_ns, current_uid()));
216
217 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
218 if (!search_exception_tables(regs->nip))
219 return true;
220
221 // Read/write fault in a valid region (the exception table search passed
222 // above), but blocked by KUAP is bad, it can never succeed.
223 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
224 }
225
226 // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
227 return false;
228}
229
230static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
231 struct vm_area_struct *vma)
232{
233 /*
234 * Make sure to check the VMA so that we do not perform
235 * faults just to hit a pkey fault as soon as we fill in a
236 * page. Only called for current mm, hence foreign == 0
237 */
238 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
239 return true;
240
241 return false;
242}
243
244static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
245{
246 /*
247 * Allow execution from readable areas if the MMU does not
248 * provide separate controls over reading and executing.
249 *
250 * Note: That code used to not be enabled for 4xx/BookE.
251 * It is now as I/D cache coherency for these is done at
252 * set_pte_at() time and I see no reason why the test
253 * below wouldn't be valid on those processors. This -may-
254 * break programs compiled with a really old ABI though.
255 */
256 if (is_exec) {
257 return !(vma->vm_flags & VM_EXEC) &&
258 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
259 !(vma->vm_flags & (VM_READ | VM_WRITE)));
260 }
261
262 if (is_write) {
263 if (unlikely(!(vma->vm_flags & VM_WRITE)))
264 return true;
265 return false;
266 }
267
268 /*
269 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
270 * defined in protection_map[]. In that case Read faults can only be
271 * caused by a PROT_NONE mapping. However a non exec access on a
272 * VM_EXEC only mapping is invalid anyway, so report it as such.
273 */
274 if (unlikely(!vma_is_accessible(vma)))
275 return true;
276
277 if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
278 return true;
279
280 /*
281 * We should ideally do the vma pkey access check here. But in the
282 * fault path, handle_mm_fault() also does the same check. To avoid
283 * these multiple checks, we skip it here and handle access error due
284 * to pkeys later.
285 */
286 return false;
287}
288
289#ifdef CONFIG_PPC_SMLPAR
290static inline void cmo_account_page_fault(void)
291{
292 if (firmware_has_feature(FW_FEATURE_CMO)) {
293 u32 page_ins;
294
295 preempt_disable();
296 page_ins = be32_to_cpu(get_lppaca()->page_ins);
297 page_ins += 1 << PAGE_FACTOR;
298 get_lppaca()->page_ins = cpu_to_be32(page_ins);
299 preempt_enable();
300 }
301}
302#else
303static inline void cmo_account_page_fault(void) { }
304#endif /* CONFIG_PPC_SMLPAR */
305
306static void sanity_check_fault(bool is_write, bool is_user,
307 unsigned long error_code, unsigned long address)
308{
309 /*
310 * Userspace trying to access kernel address, we get PROTFAULT for that.
311 */
312 if (is_user && address >= TASK_SIZE) {
313 if ((long)address == -1)
314 return;
315
316 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
317 current->comm, current->pid, address,
318 from_kuid(&init_user_ns, current_uid()));
319 return;
320 }
321
322 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
323 return;
324
325 /*
326 * For hash translation mode, we should never get a
327 * PROTFAULT. Any update to pte to reduce access will result in us
328 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
329 * fault instead of DSISR_PROTFAULT.
330 *
331 * A pte update to relax the access will not result in a hash page table
332 * entry invalidate and hence can result in DSISR_PROTFAULT.
333 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
334 * the special !is_write in the below conditional.
335 *
336 * For platforms that doesn't supports coherent icache and do support
337 * per page noexec bit, we do setup things such that we do the
338 * sync between D/I cache via fault. But that is handled via low level
339 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
340 * here in such case.
341 *
342 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
343 * check should handle those and hence we should fall to the bad_area
344 * handling correctly.
345 *
346 * For embedded with per page exec support that doesn't support coherent
347 * icache we do get PROTFAULT and we handle that D/I cache sync in
348 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
349 * is conditional for server MMU.
350 *
351 * For radix, we can get prot fault for autonuma case, because radix
352 * page table will have them marked noaccess for user.
353 */
354 if (radix_enabled() || is_write)
355 return;
356
357 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
358}
359
360/*
361 * Define the correct "is_write" bit in error_code based
362 * on the processor family
363 */
364#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365#define page_fault_is_write(__err) ((__err) & ESR_DST)
366#else
367#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
368#endif
369
370#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
371#define page_fault_is_bad(__err) (0)
372#elif defined(CONFIG_PPC_8xx)
373#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
374#elif defined(CONFIG_PPC64)
375static int page_fault_is_bad(unsigned long err)
376{
377 unsigned long flag = DSISR_BAD_FAULT_64S;
378
379 /*
380 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
381 * If byte 0, bit 3 of pi-attribute-specifier-type in
382 * ibm,pi-features property is defined, ignore the DSI error
383 * which is caused by the paste instruction on the
384 * suspended NX window.
385 */
386 if (mmu_has_feature(MMU_FTR_NX_DSI))
387 flag &= ~DSISR_BAD_COPYPASTE;
388
389 return err & flag;
390}
391#else
392#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
393#endif
394
395/*
396 * For 600- and 800-family processors, the error_code parameter is DSISR
397 * for a data fault, SRR1 for an instruction fault.
398 * For 400-family processors the error_code parameter is ESR for a data fault,
399 * 0 for an instruction fault.
400 * For 64-bit processors, the error_code parameter is DSISR for a data access
401 * fault, SRR1 & 0x08000000 for an instruction access fault.
402 *
403 * The return value is 0 if the fault was handled, or the signal
404 * number if this is a kernel fault that can't be handled here.
405 */
406static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
407 unsigned long error_code)
408{
409 struct vm_area_struct * vma;
410 struct mm_struct *mm = current->mm;
411 unsigned int flags = FAULT_FLAG_DEFAULT;
412 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
413 int is_user = user_mode(regs);
414 int is_write = page_fault_is_write(error_code);
415 vm_fault_t fault, major = 0;
416 bool kprobe_fault = kprobe_page_fault(regs, 11);
417
418 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
419 return 0;
420
421 if (unlikely(page_fault_is_bad(error_code))) {
422 if (is_user) {
423 _exception(SIGBUS, regs, BUS_OBJERR, address);
424 return 0;
425 }
426 return SIGBUS;
427 }
428
429 /* Additional sanity check(s) */
430 sanity_check_fault(is_write, is_user, error_code, address);
431
432 /*
433 * The kernel should never take an execute fault nor should it
434 * take a page fault to a kernel address or a page fault to a user
435 * address outside of dedicated places
436 */
437 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
438 if (kfence_handle_page_fault(address, is_write, regs))
439 return 0;
440
441 return SIGSEGV;
442 }
443
444 /*
445 * If we're in an interrupt, have no user context or are running
446 * in a region with pagefaults disabled then we must not take the fault
447 */
448 if (unlikely(faulthandler_disabled() || !mm)) {
449 if (is_user)
450 printk_ratelimited(KERN_ERR "Page fault in user mode"
451 " with faulthandler_disabled()=%d"
452 " mm=%p\n",
453 faulthandler_disabled(), mm);
454 return bad_area_nosemaphore(regs, address);
455 }
456
457 interrupt_cond_local_irq_enable(regs);
458
459 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460
461 /*
462 * We want to do this outside mmap_lock, because reading code around nip
463 * can result in fault, which will cause a deadlock when called with
464 * mmap_lock held
465 */
466 if (is_user)
467 flags |= FAULT_FLAG_USER;
468 if (is_write)
469 flags |= FAULT_FLAG_WRITE;
470 if (is_exec)
471 flags |= FAULT_FLAG_INSTRUCTION;
472
473 if (!(flags & FAULT_FLAG_USER))
474 goto lock_mmap;
475
476 vma = lock_vma_under_rcu(mm, address);
477 if (!vma)
478 goto lock_mmap;
479
480 if (unlikely(access_pkey_error(is_write, is_exec,
481 (error_code & DSISR_KEYFAULT), vma))) {
482 vma_end_read(vma);
483 goto lock_mmap;
484 }
485
486 if (unlikely(access_error(is_write, is_exec, vma))) {
487 vma_end_read(vma);
488 goto lock_mmap;
489 }
490
491 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
492 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
493 vma_end_read(vma);
494
495 if (!(fault & VM_FAULT_RETRY)) {
496 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497 goto done;
498 }
499 count_vm_vma_lock_event(VMA_LOCK_RETRY);
500 if (fault & VM_FAULT_MAJOR)
501 flags |= FAULT_FLAG_TRIED;
502
503 if (fault_signal_pending(fault, regs))
504 return user_mode(regs) ? 0 : SIGBUS;
505
506lock_mmap:
507
508 /* When running in the kernel we expect faults to occur only to
509 * addresses in user space. All other faults represent errors in the
510 * kernel and should generate an OOPS. Unfortunately, in the case of an
511 * erroneous fault occurring in a code path which already holds mmap_lock
512 * we will deadlock attempting to validate the fault against the
513 * address space. Luckily the kernel only validly references user
514 * space from well defined areas of code, which are listed in the
515 * exceptions table. lock_mm_and_find_vma() handles that logic.
516 */
517retry:
518 vma = lock_mm_and_find_vma(mm, address, regs);
519 if (unlikely(!vma))
520 return bad_area_nosemaphore(regs, address);
521
522 if (unlikely(access_pkey_error(is_write, is_exec,
523 (error_code & DSISR_KEYFAULT), vma)))
524 return bad_access_pkey(regs, address, vma);
525
526 if (unlikely(access_error(is_write, is_exec, vma)))
527 return bad_access(regs, address);
528
529 /*
530 * If for any reason at all we couldn't handle the fault,
531 * make sure we exit gracefully rather than endlessly redo
532 * the fault.
533 */
534 fault = handle_mm_fault(vma, address, flags, regs);
535
536 major |= fault & VM_FAULT_MAJOR;
537
538 if (fault_signal_pending(fault, regs))
539 return user_mode(regs) ? 0 : SIGBUS;
540
541 /* The fault is fully completed (including releasing mmap lock) */
542 if (fault & VM_FAULT_COMPLETED)
543 goto out;
544
545 /*
546 * Handle the retry right now, the mmap_lock has been released in that
547 * case.
548 */
549 if (unlikely(fault & VM_FAULT_RETRY)) {
550 flags |= FAULT_FLAG_TRIED;
551 goto retry;
552 }
553
554 mmap_read_unlock(current->mm);
555
556done:
557 if (unlikely(fault & VM_FAULT_ERROR))
558 return mm_fault_error(regs, address, fault);
559
560out:
561 /*
562 * Major/minor page fault accounting.
563 */
564 if (major)
565 cmo_account_page_fault();
566
567 return 0;
568}
569NOKPROBE_SYMBOL(___do_page_fault);
570
571static __always_inline void __do_page_fault(struct pt_regs *regs)
572{
573 long err;
574
575 err = ___do_page_fault(regs, regs->dar, regs->dsisr);
576 if (unlikely(err))
577 bad_page_fault(regs, err);
578}
579
580DEFINE_INTERRUPT_HANDLER(do_page_fault)
581{
582 __do_page_fault(regs);
583}
584
585#ifdef CONFIG_PPC_BOOK3S_64
586/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
587void hash__do_page_fault(struct pt_regs *regs)
588{
589 __do_page_fault(regs);
590}
591NOKPROBE_SYMBOL(hash__do_page_fault);
592#endif
593
594/*
595 * bad_page_fault is called when we have a bad access from the kernel.
596 * It is called from the DSI and ISI handlers in head.S and from some
597 * of the procedures in traps.c.
598 */
599static void __bad_page_fault(struct pt_regs *regs, int sig)
600{
601 int is_write = page_fault_is_write(regs->dsisr);
602 const char *msg;
603
604 /* kernel has accessed a bad area */
605
606 if (regs->dar < PAGE_SIZE)
607 msg = "Kernel NULL pointer dereference";
608 else
609 msg = "Unable to handle kernel data access";
610
611 switch (TRAP(regs)) {
612 case INTERRUPT_DATA_STORAGE:
613 case INTERRUPT_H_DATA_STORAGE:
614 pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
615 is_write ? "write" : "read", regs->dar);
616 break;
617 case INTERRUPT_DATA_SEGMENT:
618 pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
619 break;
620 case INTERRUPT_INST_STORAGE:
621 case INTERRUPT_INST_SEGMENT:
622 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
623 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
624 break;
625 case INTERRUPT_ALIGNMENT:
626 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
627 regs->dar);
628 break;
629 default:
630 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
631 regs->dar);
632 break;
633 }
634 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
635 regs->nip);
636
637 if (task_stack_end_corrupted(current))
638 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
639
640 die("Kernel access of bad area", regs, sig);
641}
642
643void bad_page_fault(struct pt_regs *regs, int sig)
644{
645 const struct exception_table_entry *entry;
646
647 /* Are we prepared to handle this fault? */
648 entry = search_exception_tables(instruction_pointer(regs));
649 if (entry)
650 instruction_pointer_set(regs, extable_fixup(entry));
651 else
652 __bad_page_fault(regs, sig);
653}
654
655#ifdef CONFIG_PPC_BOOK3S_64
656DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
657{
658 bad_page_fault(regs, SIGSEGV);
659}
660
661/*
662 * In radix, segment interrupts indicate the EA is not addressable by the
663 * page table geometry, so they are always sent here.
664 *
665 * In hash, this is called if do_slb_fault returns error. Typically it is
666 * because the EA was outside the region allowed by software.
667 */
668DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
669{
670 int err = regs->result;
671
672 if (err == -EFAULT) {
673 if (user_mode(regs))
674 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
675 else
676 bad_page_fault(regs, SIGSEGV);
677 } else if (err == -EINVAL) {
678 unrecoverable_exception(regs);
679 } else {
680 BUG();
681 }
682}
683#endif
1/*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#include <linux/signal.h>
19#include <linux/sched.h>
20#include <linux/kernel.h>
21#include <linux/errno.h>
22#include <linux/string.h>
23#include <linux/types.h>
24#include <linux/ptrace.h>
25#include <linux/mman.h>
26#include <linux/mm.h>
27#include <linux/interrupt.h>
28#include <linux/highmem.h>
29#include <linux/module.h>
30#include <linux/kprobes.h>
31#include <linux/kdebug.h>
32#include <linux/perf_event.h>
33#include <linux/magic.h>
34#include <linux/ratelimit.h>
35
36#include <asm/firmware.h>
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/mmu.h>
40#include <asm/mmu_context.h>
41#include <asm/system.h>
42#include <asm/uaccess.h>
43#include <asm/tlbflush.h>
44#include <asm/siginfo.h>
45#include <mm/mmu_decl.h>
46
47#ifdef CONFIG_KPROBES
48static inline int notify_page_fault(struct pt_regs *regs)
49{
50 int ret = 0;
51
52 /* kprobe_running() needs smp_processor_id() */
53 if (!user_mode(regs)) {
54 preempt_disable();
55 if (kprobe_running() && kprobe_fault_handler(regs, 11))
56 ret = 1;
57 preempt_enable();
58 }
59
60 return ret;
61}
62#else
63static inline int notify_page_fault(struct pt_regs *regs)
64{
65 return 0;
66}
67#endif
68
69/*
70 * Check whether the instruction at regs->nip is a store using
71 * an update addressing form which will update r1.
72 */
73static int store_updates_sp(struct pt_regs *regs)
74{
75 unsigned int inst;
76
77 if (get_user(inst, (unsigned int __user *)regs->nip))
78 return 0;
79 /* check for 1 in the rA field */
80 if (((inst >> 16) & 0x1f) != 1)
81 return 0;
82 /* check major opcode */
83 switch (inst >> 26) {
84 case 37: /* stwu */
85 case 39: /* stbu */
86 case 45: /* sthu */
87 case 53: /* stfsu */
88 case 55: /* stfdu */
89 return 1;
90 case 62: /* std or stdu */
91 return (inst & 3) == 1;
92 case 31:
93 /* check minor opcode */
94 switch ((inst >> 1) & 0x3ff) {
95 case 181: /* stdux */
96 case 183: /* stwux */
97 case 247: /* stbux */
98 case 439: /* sthux */
99 case 695: /* stfsux */
100 case 759: /* stfdux */
101 return 1;
102 }
103 }
104 return 0;
105}
106
107/*
108 * For 600- and 800-family processors, the error_code parameter is DSISR
109 * for a data fault, SRR1 for an instruction fault. For 400-family processors
110 * the error_code parameter is ESR for a data fault, 0 for an instruction
111 * fault.
112 * For 64-bit processors, the error_code parameter is
113 * - DSISR for a non-SLB data access fault,
114 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
115 * - 0 any SLB fault.
116 *
117 * The return value is 0 if the fault was handled, or the signal
118 * number if this is a kernel fault that can't be handled here.
119 */
120int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
121 unsigned long error_code)
122{
123 struct vm_area_struct * vma;
124 struct mm_struct *mm = current->mm;
125 siginfo_t info;
126 int code = SEGV_MAPERR;
127 int is_write = 0, ret;
128 int trap = TRAP(regs);
129 int is_exec = trap == 0x400;
130
131#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
132 /*
133 * Fortunately the bit assignments in SRR1 for an instruction
134 * fault and DSISR for a data fault are mostly the same for the
135 * bits we are interested in. But there are some bits which
136 * indicate errors in DSISR but can validly be set in SRR1.
137 */
138 if (trap == 0x400)
139 error_code &= 0x48200000;
140 else
141 is_write = error_code & DSISR_ISSTORE;
142#else
143 is_write = error_code & ESR_DST;
144#endif /* CONFIG_4xx || CONFIG_BOOKE */
145
146 if (notify_page_fault(regs))
147 return 0;
148
149 if (unlikely(debugger_fault_handler(regs)))
150 return 0;
151
152 /* On a kernel SLB miss we can only check for a valid exception entry */
153 if (!user_mode(regs) && (address >= TASK_SIZE))
154 return SIGSEGV;
155
156#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
157 defined(CONFIG_PPC_BOOK3S_64))
158 if (error_code & DSISR_DABRMATCH) {
159 /* DABR match */
160 do_dabr(regs, address, error_code);
161 return 0;
162 }
163#endif
164
165 if (in_atomic() || mm == NULL) {
166 if (!user_mode(regs))
167 return SIGSEGV;
168 /* in_atomic() in user mode is really bad,
169 as is current->mm == NULL. */
170 printk(KERN_EMERG "Page fault in user mode with "
171 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
172 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
173 regs->nip, regs->msr);
174 die("Weird page fault", regs, SIGSEGV);
175 }
176
177 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
178
179 /* When running in the kernel we expect faults to occur only to
180 * addresses in user space. All other faults represent errors in the
181 * kernel and should generate an OOPS. Unfortunately, in the case of an
182 * erroneous fault occurring in a code path which already holds mmap_sem
183 * we will deadlock attempting to validate the fault against the
184 * address space. Luckily the kernel only validly references user
185 * space from well defined areas of code, which are listed in the
186 * exceptions table.
187 *
188 * As the vast majority of faults will be valid we will only perform
189 * the source reference check when there is a possibility of a deadlock.
190 * Attempt to lock the address space, if we cannot we then validate the
191 * source. If this is invalid we can skip the address space check,
192 * thus avoiding the deadlock.
193 */
194 if (!down_read_trylock(&mm->mmap_sem)) {
195 if (!user_mode(regs) && !search_exception_tables(regs->nip))
196 goto bad_area_nosemaphore;
197
198 down_read(&mm->mmap_sem);
199 }
200
201 vma = find_vma(mm, address);
202 if (!vma)
203 goto bad_area;
204 if (vma->vm_start <= address)
205 goto good_area;
206 if (!(vma->vm_flags & VM_GROWSDOWN))
207 goto bad_area;
208
209 /*
210 * N.B. The POWER/Open ABI allows programs to access up to
211 * 288 bytes below the stack pointer.
212 * The kernel signal delivery code writes up to about 1.5kB
213 * below the stack pointer (r1) before decrementing it.
214 * The exec code can write slightly over 640kB to the stack
215 * before setting the user r1. Thus we allow the stack to
216 * expand to 1MB without further checks.
217 */
218 if (address + 0x100000 < vma->vm_end) {
219 /* get user regs even if this fault is in kernel mode */
220 struct pt_regs *uregs = current->thread.regs;
221 if (uregs == NULL)
222 goto bad_area;
223
224 /*
225 * A user-mode access to an address a long way below
226 * the stack pointer is only valid if the instruction
227 * is one which would update the stack pointer to the
228 * address accessed if the instruction completed,
229 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
230 * (or the byte, halfword, float or double forms).
231 *
232 * If we don't check this then any write to the area
233 * between the last mapped region and the stack will
234 * expand the stack rather than segfaulting.
235 */
236 if (address + 2048 < uregs->gpr[1]
237 && (!user_mode(regs) || !store_updates_sp(regs)))
238 goto bad_area;
239 }
240 if (expand_stack(vma, address))
241 goto bad_area;
242
243good_area:
244 code = SEGV_ACCERR;
245#if defined(CONFIG_6xx)
246 if (error_code & 0x95700000)
247 /* an error such as lwarx to I/O controller space,
248 address matching DABR, eciwx, etc. */
249 goto bad_area;
250#endif /* CONFIG_6xx */
251#if defined(CONFIG_8xx)
252 /* 8xx sometimes need to load a invalid/non-present TLBs.
253 * These must be invalidated separately as linux mm don't.
254 */
255 if (error_code & 0x40000000) /* no translation? */
256 _tlbil_va(address, 0, 0, 0);
257
258 /* The MPC8xx seems to always set 0x80000000, which is
259 * "undefined". Of those that can be set, this is the only
260 * one which seems bad.
261 */
262 if (error_code & 0x10000000)
263 /* Guarded storage error. */
264 goto bad_area;
265#endif /* CONFIG_8xx */
266
267 if (is_exec) {
268#ifdef CONFIG_PPC_STD_MMU
269 /* Protection fault on exec go straight to failure on
270 * Hash based MMUs as they either don't support per-page
271 * execute permission, or if they do, it's handled already
272 * at the hash level. This test would probably have to
273 * be removed if we change the way this works to make hash
274 * processors use the same I/D cache coherency mechanism
275 * as embedded.
276 */
277 if (error_code & DSISR_PROTFAULT)
278 goto bad_area;
279#endif /* CONFIG_PPC_STD_MMU */
280
281 /*
282 * Allow execution from readable areas if the MMU does not
283 * provide separate controls over reading and executing.
284 *
285 * Note: That code used to not be enabled for 4xx/BookE.
286 * It is now as I/D cache coherency for these is done at
287 * set_pte_at() time and I see no reason why the test
288 * below wouldn't be valid on those processors. This -may-
289 * break programs compiled with a really old ABI though.
290 */
291 if (!(vma->vm_flags & VM_EXEC) &&
292 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
293 !(vma->vm_flags & (VM_READ | VM_WRITE))))
294 goto bad_area;
295 /* a write */
296 } else if (is_write) {
297 if (!(vma->vm_flags & VM_WRITE))
298 goto bad_area;
299 /* a read */
300 } else {
301 /* protection fault */
302 if (error_code & 0x08000000)
303 goto bad_area;
304 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
305 goto bad_area;
306 }
307
308 /*
309 * If for any reason at all we couldn't handle the fault,
310 * make sure we exit gracefully rather than endlessly redo
311 * the fault.
312 */
313 ret = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
314 if (unlikely(ret & VM_FAULT_ERROR)) {
315 if (ret & VM_FAULT_OOM)
316 goto out_of_memory;
317 else if (ret & VM_FAULT_SIGBUS)
318 goto do_sigbus;
319 BUG();
320 }
321 if (ret & VM_FAULT_MAJOR) {
322 current->maj_flt++;
323 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
324 regs, address);
325#ifdef CONFIG_PPC_SMLPAR
326 if (firmware_has_feature(FW_FEATURE_CMO)) {
327 preempt_disable();
328 get_lppaca()->page_ins += (1 << PAGE_FACTOR);
329 preempt_enable();
330 }
331#endif
332 } else {
333 current->min_flt++;
334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
335 regs, address);
336 }
337 up_read(&mm->mmap_sem);
338 return 0;
339
340bad_area:
341 up_read(&mm->mmap_sem);
342
343bad_area_nosemaphore:
344 /* User mode accesses cause a SIGSEGV */
345 if (user_mode(regs)) {
346 _exception(SIGSEGV, regs, code, address);
347 return 0;
348 }
349
350 if (is_exec && (error_code & DSISR_PROTFAULT))
351 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
352 " page (%lx) - exploit attempt? (uid: %d)\n",
353 address, current_uid());
354
355 return SIGSEGV;
356
357/*
358 * We ran out of memory, or some other thing happened to us that made
359 * us unable to handle the page fault gracefully.
360 */
361out_of_memory:
362 up_read(&mm->mmap_sem);
363 if (!user_mode(regs))
364 return SIGKILL;
365 pagefault_out_of_memory();
366 return 0;
367
368do_sigbus:
369 up_read(&mm->mmap_sem);
370 if (user_mode(regs)) {
371 info.si_signo = SIGBUS;
372 info.si_errno = 0;
373 info.si_code = BUS_ADRERR;
374 info.si_addr = (void __user *)address;
375 force_sig_info(SIGBUS, &info, current);
376 return 0;
377 }
378 return SIGBUS;
379}
380
381/*
382 * bad_page_fault is called when we have a bad access from the kernel.
383 * It is called from the DSI and ISI handlers in head.S and from some
384 * of the procedures in traps.c.
385 */
386void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
387{
388 const struct exception_table_entry *entry;
389 unsigned long *stackend;
390
391 /* Are we prepared to handle this fault? */
392 if ((entry = search_exception_tables(regs->nip)) != NULL) {
393 regs->nip = entry->fixup;
394 return;
395 }
396
397 /* kernel has accessed a bad area */
398
399 switch (regs->trap) {
400 case 0x300:
401 case 0x380:
402 printk(KERN_ALERT "Unable to handle kernel paging request for "
403 "data at address 0x%08lx\n", regs->dar);
404 break;
405 case 0x400:
406 case 0x480:
407 printk(KERN_ALERT "Unable to handle kernel paging request for "
408 "instruction fetch\n");
409 break;
410 default:
411 printk(KERN_ALERT "Unable to handle kernel paging request for "
412 "unknown fault\n");
413 break;
414 }
415 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
416 regs->nip);
417
418 stackend = end_of_stack(current);
419 if (current != &init_task && *stackend != STACK_END_MAGIC)
420 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
421
422 die("Kernel access of bad area", regs, sig);
423}