Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337	int err;
 338
 339	init_completion(&mrq->cmd_completion);
 340
 341	mmc_retune_hold(host);
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 347
 348	WARN_ON(!host->claimed);
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 353
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 356
 357	return 0;
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 392	}
 393
 394	return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 406		if (!cmd->error || !cmd->retries ||
 407		    mmc_card_removed(host->card))
 408			break;
 409
 410		mmc_retune_recheck(host);
 411
 412		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413			 mmc_hostname(host), cmd->opcode, cmd->error);
 414		cmd->retries--;
 415		cmd->error = 0;
 416		__mmc_start_request(host, mrq);
 417	}
 418
 419	mmc_retune_release(host);
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 432{
 433	int err;
 434
 435	/*
 436	 * CQE cannot process re-tuning commands. Caller must hold retuning
 437	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438	 * active requests i.e. this is the first.  Note, re-tuning will call
 439	 * ->cqe_off().
 440	 */
 441	err = mmc_retune(host);
 442	if (err)
 443		goto out_err;
 444
 445	mrq->host = host;
 446
 447	mmc_mrq_pr_debug(host, mrq, true);
 448
 449	err = mmc_mrq_prep(host, mrq);
 450	if (err)
 451		goto out_err;
 452
 453	err = host->cqe_ops->cqe_request(host, mrq);
 454	if (err)
 455		goto out_err;
 456
 457	trace_mmc_request_start(host, mrq);
 458
 459	return 0;
 460
 461out_err:
 462	if (mrq->cmd) {
 463		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464			 mmc_hostname(host), mrq->cmd->opcode, err);
 465	} else {
 466		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467			 mmc_hostname(host), mrq->tag, err);
 468	}
 469	return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *	@host: MMC host which completed request
 476 *	@mrq: MMC request which completed
 477 *
 478 *	CQE drivers should call this function when they have completed
 479 *	their processing of a request.
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 482{
 483	mmc_should_fail_request(host, mrq);
 484
 485	/* Flag re-tuning needed on CRC errors */
 486	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487	    (mrq->data && mrq->data->error == -EILSEQ))
 488		mmc_retune_needed(host);
 489
 490	trace_mmc_request_done(host, mrq);
 491
 492	if (mrq->cmd) {
 493		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495	} else {
 496		pr_debug("%s: CQE transfer done tag %d\n",
 497			 mmc_hostname(host), mrq->tag);
 498	}
 499
 500	if (mrq->data) {
 501		pr_debug("%s:     %d bytes transferred: %d\n",
 502			 mmc_hostname(host),
 503			 mrq->data->bytes_xfered, mrq->data->error);
 504	}
 505
 506	mrq->done(mrq);
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *	@host: MMC host
 513 *	@mrq: MMC request to be processed
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517	if (host->cqe_ops->cqe_post_req)
 518		host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT	1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 535{
 536	struct mmc_command cmd;
 537	int err;
 538
 539	mmc_retune_hold_now(host);
 540
 541	/*
 542	 * Recovery is expected seldom, if at all, but it reduces performance,
 543	 * so make sure it is not completely silent.
 544	 */
 545	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547	host->cqe_ops->cqe_recovery_start(host);
 548
 549	memset(&cmd, 0, sizeof(cmd));
 550	cmd.opcode       = MMC_STOP_TRANSMISSION;
 551	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 552	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 554	mmc_wait_for_cmd(host, &cmd, 0);
 
 
 555
 556	memset(&cmd, 0, sizeof(cmd));
 557	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 558	cmd.arg          = 1; /* Discard entire queue */
 559	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 560	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 561	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 562	err = mmc_wait_for_cmd(host, &cmd, 0);
 563
 564	host->cqe_ops->cqe_recovery_finish(host);
 565
 
 
 
 566	mmc_retune_release(host);
 567
 568	return err;
 569}
 570EXPORT_SYMBOL(mmc_cqe_recovery);
 571
 572/**
 573 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 574 *	@host: MMC host
 575 *	@mrq: MMC request
 576 *
 577 *	mmc_is_req_done() is used with requests that have
 578 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 579 *	starting a request and before waiting for it to complete. That is,
 580 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 581 *	and before mmc_wait_for_req_done(). If it is called at other times the
 582 *	result is not meaningful.
 583 */
 584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 585{
 586	return completion_done(&mrq->completion);
 587}
 588EXPORT_SYMBOL(mmc_is_req_done);
 589
 590/**
 591 *	mmc_wait_for_req - start a request and wait for completion
 592 *	@host: MMC host to start command
 593 *	@mrq: MMC request to start
 594 *
 595 *	Start a new MMC custom command request for a host, and wait
 596 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 597 *	requests, the transfer is ongoing and the caller can issue further
 598 *	commands that do not use the data lines, and then wait by calling
 599 *	mmc_wait_for_req_done().
 600 *	Does not attempt to parse the response.
 601 */
 602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 603{
 604	__mmc_start_req(host, mrq);
 605
 606	if (!mrq->cap_cmd_during_tfr)
 607		mmc_wait_for_req_done(host, mrq);
 608}
 609EXPORT_SYMBOL(mmc_wait_for_req);
 610
 611/**
 612 *	mmc_wait_for_cmd - start a command and wait for completion
 613 *	@host: MMC host to start command
 614 *	@cmd: MMC command to start
 615 *	@retries: maximum number of retries
 616 *
 617 *	Start a new MMC command for a host, and wait for the command
 618 *	to complete.  Return any error that occurred while the command
 619 *	was executing.  Do not attempt to parse the response.
 620 */
 621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 622{
 623	struct mmc_request mrq = {};
 624
 625	WARN_ON(!host->claimed);
 626
 627	memset(cmd->resp, 0, sizeof(cmd->resp));
 628	cmd->retries = retries;
 629
 630	mrq.cmd = cmd;
 631	cmd->data = NULL;
 632
 633	mmc_wait_for_req(host, &mrq);
 634
 635	return cmd->error;
 636}
 637
 638EXPORT_SYMBOL(mmc_wait_for_cmd);
 639
 640/**
 641 *	mmc_set_data_timeout - set the timeout for a data command
 642 *	@data: data phase for command
 643 *	@card: the MMC card associated with the data transfer
 644 *
 645 *	Computes the data timeout parameters according to the
 646 *	correct algorithm given the card type.
 647 */
 648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 649{
 650	unsigned int mult;
 651
 652	/*
 653	 * SDIO cards only define an upper 1 s limit on access.
 654	 */
 655	if (mmc_card_sdio(card)) {
 656		data->timeout_ns = 1000000000;
 657		data->timeout_clks = 0;
 658		return;
 659	}
 660
 661	/*
 662	 * SD cards use a 100 multiplier rather than 10
 663	 */
 664	mult = mmc_card_sd(card) ? 100 : 10;
 665
 666	/*
 667	 * Scale up the multiplier (and therefore the timeout) by
 668	 * the r2w factor for writes.
 669	 */
 670	if (data->flags & MMC_DATA_WRITE)
 671		mult <<= card->csd.r2w_factor;
 672
 673	data->timeout_ns = card->csd.taac_ns * mult;
 674	data->timeout_clks = card->csd.taac_clks * mult;
 675
 676	/*
 677	 * SD cards also have an upper limit on the timeout.
 678	 */
 679	if (mmc_card_sd(card)) {
 680		unsigned int timeout_us, limit_us;
 681
 682		timeout_us = data->timeout_ns / 1000;
 683		if (card->host->ios.clock)
 684			timeout_us += data->timeout_clks * 1000 /
 685				(card->host->ios.clock / 1000);
 686
 687		if (data->flags & MMC_DATA_WRITE)
 688			/*
 689			 * The MMC spec "It is strongly recommended
 690			 * for hosts to implement more than 500ms
 691			 * timeout value even if the card indicates
 692			 * the 250ms maximum busy length."  Even the
 693			 * previous value of 300ms is known to be
 694			 * insufficient for some cards.
 695			 */
 696			limit_us = 3000000;
 697		else
 698			limit_us = 100000;
 699
 700		/*
 701		 * SDHC cards always use these fixed values.
 702		 */
 703		if (timeout_us > limit_us) {
 704			data->timeout_ns = limit_us * 1000;
 705			data->timeout_clks = 0;
 706		}
 707
 708		/* assign limit value if invalid */
 709		if (timeout_us == 0)
 710			data->timeout_ns = limit_us * 1000;
 711	}
 712
 713	/*
 714	 * Some cards require longer data read timeout than indicated in CSD.
 715	 * Address this by setting the read timeout to a "reasonably high"
 716	 * value. For the cards tested, 600ms has proven enough. If necessary,
 717	 * this value can be increased if other problematic cards require this.
 718	 */
 719	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 720		data->timeout_ns = 600000000;
 721		data->timeout_clks = 0;
 722	}
 723
 724	/*
 725	 * Some cards need very high timeouts if driven in SPI mode.
 726	 * The worst observed timeout was 900ms after writing a
 727	 * continuous stream of data until the internal logic
 728	 * overflowed.
 729	 */
 730	if (mmc_host_is_spi(card->host)) {
 731		if (data->flags & MMC_DATA_WRITE) {
 732			if (data->timeout_ns < 1000000000)
 733				data->timeout_ns = 1000000000;	/* 1s */
 734		} else {
 735			if (data->timeout_ns < 100000000)
 736				data->timeout_ns =  100000000;	/* 100ms */
 737		}
 738	}
 739}
 740EXPORT_SYMBOL(mmc_set_data_timeout);
 741
 742/*
 743 * Allow claiming an already claimed host if the context is the same or there is
 744 * no context but the task is the same.
 745 */
 746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 747				   struct task_struct *task)
 748{
 749	return host->claimer == ctx ||
 750	       (!ctx && task && host->claimer->task == task);
 751}
 752
 753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 754				       struct mmc_ctx *ctx,
 755				       struct task_struct *task)
 756{
 757	if (!host->claimer) {
 758		if (ctx)
 759			host->claimer = ctx;
 760		else
 761			host->claimer = &host->default_ctx;
 762	}
 763	if (task)
 764		host->claimer->task = task;
 765}
 766
 767/**
 768 *	__mmc_claim_host - exclusively claim a host
 769 *	@host: mmc host to claim
 770 *	@ctx: context that claims the host or NULL in which case the default
 771 *	context will be used
 772 *	@abort: whether or not the operation should be aborted
 773 *
 774 *	Claim a host for a set of operations.  If @abort is non null and
 775 *	dereference a non-zero value then this will return prematurely with
 776 *	that non-zero value without acquiring the lock.  Returns zero
 777 *	with the lock held otherwise.
 778 */
 779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 780		     atomic_t *abort)
 781{
 782	struct task_struct *task = ctx ? NULL : current;
 783	DECLARE_WAITQUEUE(wait, current);
 784	unsigned long flags;
 785	int stop;
 786	bool pm = false;
 787
 788	might_sleep();
 789
 790	add_wait_queue(&host->wq, &wait);
 791	spin_lock_irqsave(&host->lock, flags);
 792	while (1) {
 793		set_current_state(TASK_UNINTERRUPTIBLE);
 794		stop = abort ? atomic_read(abort) : 0;
 795		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 796			break;
 797		spin_unlock_irqrestore(&host->lock, flags);
 798		schedule();
 799		spin_lock_irqsave(&host->lock, flags);
 800	}
 801	set_current_state(TASK_RUNNING);
 802	if (!stop) {
 803		host->claimed = 1;
 804		mmc_ctx_set_claimer(host, ctx, task);
 805		host->claim_cnt += 1;
 806		if (host->claim_cnt == 1)
 807			pm = true;
 808	} else
 809		wake_up(&host->wq);
 810	spin_unlock_irqrestore(&host->lock, flags);
 811	remove_wait_queue(&host->wq, &wait);
 812
 813	if (pm)
 814		pm_runtime_get_sync(mmc_dev(host));
 815
 816	return stop;
 817}
 818EXPORT_SYMBOL(__mmc_claim_host);
 819
 820/**
 821 *	mmc_release_host - release a host
 822 *	@host: mmc host to release
 823 *
 824 *	Release a MMC host, allowing others to claim the host
 825 *	for their operations.
 826 */
 827void mmc_release_host(struct mmc_host *host)
 828{
 829	unsigned long flags;
 830
 831	WARN_ON(!host->claimed);
 832
 833	spin_lock_irqsave(&host->lock, flags);
 834	if (--host->claim_cnt) {
 835		/* Release for nested claim */
 836		spin_unlock_irqrestore(&host->lock, flags);
 837	} else {
 838		host->claimed = 0;
 839		host->claimer->task = NULL;
 840		host->claimer = NULL;
 841		spin_unlock_irqrestore(&host->lock, flags);
 842		wake_up(&host->wq);
 843		pm_runtime_mark_last_busy(mmc_dev(host));
 844		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 845			pm_runtime_put_sync_suspend(mmc_dev(host));
 846		else
 847			pm_runtime_put_autosuspend(mmc_dev(host));
 848	}
 849}
 850EXPORT_SYMBOL(mmc_release_host);
 851
 852/*
 853 * This is a helper function, which fetches a runtime pm reference for the
 854 * card device and also claims the host.
 855 */
 856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 857{
 858	pm_runtime_get_sync(&card->dev);
 859	__mmc_claim_host(card->host, ctx, NULL);
 860}
 861EXPORT_SYMBOL(mmc_get_card);
 862
 863/*
 864 * This is a helper function, which releases the host and drops the runtime
 865 * pm reference for the card device.
 866 */
 867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 868{
 869	struct mmc_host *host = card->host;
 870
 871	WARN_ON(ctx && host->claimer != ctx);
 872
 873	mmc_release_host(host);
 874	pm_runtime_mark_last_busy(&card->dev);
 875	pm_runtime_put_autosuspend(&card->dev);
 876}
 877EXPORT_SYMBOL(mmc_put_card);
 878
 879/*
 880 * Internal function that does the actual ios call to the host driver,
 881 * optionally printing some debug output.
 882 */
 883static inline void mmc_set_ios(struct mmc_host *host)
 884{
 885	struct mmc_ios *ios = &host->ios;
 886
 887	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 888		"width %u timing %u\n",
 889		 mmc_hostname(host), ios->clock, ios->bus_mode,
 890		 ios->power_mode, ios->chip_select, ios->vdd,
 891		 1 << ios->bus_width, ios->timing);
 892
 893	host->ops->set_ios(host, ios);
 894}
 895
 896/*
 897 * Control chip select pin on a host.
 898 */
 899void mmc_set_chip_select(struct mmc_host *host, int mode)
 900{
 901	host->ios.chip_select = mode;
 902	mmc_set_ios(host);
 903}
 904
 905/*
 906 * Sets the host clock to the highest possible frequency that
 907 * is below "hz".
 908 */
 909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 910{
 911	WARN_ON(hz && hz < host->f_min);
 912
 913	if (hz > host->f_max)
 914		hz = host->f_max;
 915
 916	host->ios.clock = hz;
 917	mmc_set_ios(host);
 918}
 919
 920int mmc_execute_tuning(struct mmc_card *card)
 921{
 922	struct mmc_host *host = card->host;
 923	u32 opcode;
 924	int err;
 925
 926	if (!host->ops->execute_tuning)
 927		return 0;
 928
 929	if (host->cqe_on)
 930		host->cqe_ops->cqe_off(host);
 931
 932	if (mmc_card_mmc(card))
 933		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 934	else
 935		opcode = MMC_SEND_TUNING_BLOCK;
 936
 937	err = host->ops->execute_tuning(host, opcode);
 938	if (!err) {
 939		mmc_retune_clear(host);
 940		mmc_retune_enable(host);
 941		return 0;
 942	}
 943
 944	/* Only print error when we don't check for card removal */
 945	if (!host->detect_change) {
 946		pr_err("%s: tuning execution failed: %d\n",
 947			mmc_hostname(host), err);
 948		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 949	}
 950
 951	return err;
 952}
 953
 954/*
 955 * Change the bus mode (open drain/push-pull) of a host.
 956 */
 957void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 958{
 959	host->ios.bus_mode = mode;
 960	mmc_set_ios(host);
 961}
 962
 963/*
 964 * Change data bus width of a host.
 965 */
 966void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 967{
 968	host->ios.bus_width = width;
 969	mmc_set_ios(host);
 970}
 971
 972/*
 973 * Set initial state after a power cycle or a hw_reset.
 974 */
 975void mmc_set_initial_state(struct mmc_host *host)
 976{
 977	if (host->cqe_on)
 978		host->cqe_ops->cqe_off(host);
 979
 980	mmc_retune_disable(host);
 981
 982	if (mmc_host_is_spi(host))
 983		host->ios.chip_select = MMC_CS_HIGH;
 984	else
 985		host->ios.chip_select = MMC_CS_DONTCARE;
 986	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 987	host->ios.bus_width = MMC_BUS_WIDTH_1;
 988	host->ios.timing = MMC_TIMING_LEGACY;
 989	host->ios.drv_type = 0;
 990	host->ios.enhanced_strobe = false;
 991
 992	/*
 993	 * Make sure we are in non-enhanced strobe mode before we
 994	 * actually enable it in ext_csd.
 995	 */
 996	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
 997	     host->ops->hs400_enhanced_strobe)
 998		host->ops->hs400_enhanced_strobe(host, &host->ios);
 999
1000	mmc_set_ios(host);
1001
1002	mmc_crypto_set_initial_state(host);
1003}
1004
1005/**
1006 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007 * @vdd:	voltage (mV)
1008 * @low_bits:	prefer low bits in boundary cases
1009 *
1010 * This function returns the OCR bit number according to the provided @vdd
1011 * value. If conversion is not possible a negative errno value returned.
1012 *
1013 * Depending on the @low_bits flag the function prefers low or high OCR bits
1014 * on boundary voltages. For example,
1015 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017 *
1018 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019 */
1020static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021{
1022	const int max_bit = ilog2(MMC_VDD_35_36);
1023	int bit;
1024
1025	if (vdd < 1650 || vdd > 3600)
1026		return -EINVAL;
1027
1028	if (vdd >= 1650 && vdd <= 1950)
1029		return ilog2(MMC_VDD_165_195);
1030
1031	if (low_bits)
1032		vdd -= 1;
1033
1034	/* Base 2000 mV, step 100 mV, bit's base 8. */
1035	bit = (vdd - 2000) / 100 + 8;
1036	if (bit > max_bit)
1037		return max_bit;
1038	return bit;
1039}
1040
1041/**
1042 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043 * @vdd_min:	minimum voltage value (mV)
1044 * @vdd_max:	maximum voltage value (mV)
1045 *
1046 * This function returns the OCR mask bits according to the provided @vdd_min
1047 * and @vdd_max values. If conversion is not possible the function returns 0.
1048 *
1049 * Notes wrt boundary cases:
1050 * This function sets the OCR bits for all boundary voltages, for example
1051 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052 * MMC_VDD_34_35 mask.
1053 */
1054u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055{
1056	u32 mask = 0;
1057
1058	if (vdd_max < vdd_min)
1059		return 0;
1060
1061	/* Prefer high bits for the boundary vdd_max values. */
1062	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063	if (vdd_max < 0)
1064		return 0;
1065
1066	/* Prefer low bits for the boundary vdd_min values. */
1067	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068	if (vdd_min < 0)
1069		return 0;
1070
1071	/* Fill the mask, from max bit to min bit. */
1072	while (vdd_max >= vdd_min)
1073		mask |= 1 << vdd_max--;
1074
1075	return mask;
1076}
1077
1078static int mmc_of_get_func_num(struct device_node *node)
1079{
1080	u32 reg;
1081	int ret;
1082
1083	ret = of_property_read_u32(node, "reg", &reg);
1084	if (ret < 0)
1085		return ret;
1086
1087	return reg;
1088}
1089
1090struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091		unsigned func_num)
1092{
1093	struct device_node *node;
1094
1095	if (!host->parent || !host->parent->of_node)
1096		return NULL;
1097
1098	for_each_child_of_node(host->parent->of_node, node) {
1099		if (mmc_of_get_func_num(node) == func_num)
1100			return node;
1101	}
1102
1103	return NULL;
1104}
1105
1106/*
1107 * Mask off any voltages we don't support and select
1108 * the lowest voltage
1109 */
1110u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111{
1112	int bit;
1113
1114	/*
1115	 * Sanity check the voltages that the card claims to
1116	 * support.
1117	 */
1118	if (ocr & 0x7F) {
1119		dev_warn(mmc_dev(host),
1120		"card claims to support voltages below defined range\n");
1121		ocr &= ~0x7F;
1122	}
1123
1124	ocr &= host->ocr_avail;
1125	if (!ocr) {
1126		dev_warn(mmc_dev(host), "no support for card's volts\n");
1127		return 0;
1128	}
1129
1130	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131		bit = ffs(ocr) - 1;
1132		ocr &= 3 << bit;
1133		mmc_power_cycle(host, ocr);
1134	} else {
1135		bit = fls(ocr) - 1;
1136		/*
1137		 * The bit variable represents the highest voltage bit set in
1138		 * the OCR register.
1139		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140		 * we must shift the mask '3' with (bit - 1).
1141		 */
1142		ocr &= 3 << (bit - 1);
1143		if (bit != host->ios.vdd)
1144			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145	}
1146
1147	return ocr;
1148}
1149
1150int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151{
1152	int err = 0;
1153	int old_signal_voltage = host->ios.signal_voltage;
1154
1155	host->ios.signal_voltage = signal_voltage;
1156	if (host->ops->start_signal_voltage_switch)
1157		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158
1159	if (err)
1160		host->ios.signal_voltage = old_signal_voltage;
1161
1162	return err;
1163
1164}
1165
1166void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167{
1168	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175}
1176
1177int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178{
1179	u32 clock;
1180
1181	/*
1182	 * During a signal voltage level switch, the clock must be gated
1183	 * for 5 ms according to the SD spec
1184	 */
1185	clock = host->ios.clock;
1186	host->ios.clock = 0;
1187	mmc_set_ios(host);
1188
1189	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190		return -EAGAIN;
1191
1192	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193	mmc_delay(10);
1194	host->ios.clock = clock;
1195	mmc_set_ios(host);
1196
1197	return 0;
1198}
1199
1200int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201{
1202	struct mmc_command cmd = {};
1203	int err = 0;
1204
1205	/*
1206	 * If we cannot switch voltages, return failure so the caller
1207	 * can continue without UHS mode
1208	 */
1209	if (!host->ops->start_signal_voltage_switch)
1210		return -EPERM;
1211	if (!host->ops->card_busy)
1212		pr_warn("%s: cannot verify signal voltage switch\n",
1213			mmc_hostname(host));
1214
1215	cmd.opcode = SD_SWITCH_VOLTAGE;
1216	cmd.arg = 0;
1217	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218
1219	err = mmc_wait_for_cmd(host, &cmd, 0);
1220	if (err)
1221		goto power_cycle;
1222
1223	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224		return -EIO;
1225
1226	/*
1227	 * The card should drive cmd and dat[0:3] low immediately
1228	 * after the response of cmd11, but wait 1 ms to be sure
1229	 */
1230	mmc_delay(1);
1231	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232		err = -EAGAIN;
1233		goto power_cycle;
1234	}
1235
1236	if (mmc_host_set_uhs_voltage(host)) {
1237		/*
1238		 * Voltages may not have been switched, but we've already
1239		 * sent CMD11, so a power cycle is required anyway
1240		 */
1241		err = -EAGAIN;
1242		goto power_cycle;
1243	}
1244
1245	/* Wait for at least 1 ms according to spec */
1246	mmc_delay(1);
1247
1248	/*
1249	 * Failure to switch is indicated by the card holding
1250	 * dat[0:3] low
1251	 */
1252	if (host->ops->card_busy && host->ops->card_busy(host))
1253		err = -EAGAIN;
1254
1255power_cycle:
1256	if (err) {
1257		pr_debug("%s: Signal voltage switch failed, "
1258			"power cycling card\n", mmc_hostname(host));
1259		mmc_power_cycle(host, ocr);
1260	}
1261
1262	return err;
1263}
1264
1265/*
1266 * Select timing parameters for host.
1267 */
1268void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269{
1270	host->ios.timing = timing;
1271	mmc_set_ios(host);
1272}
1273
1274/*
1275 * Select appropriate driver type for host.
1276 */
1277void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278{
1279	host->ios.drv_type = drv_type;
1280	mmc_set_ios(host);
1281}
1282
1283int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284			      int card_drv_type, int *drv_type)
1285{
1286	struct mmc_host *host = card->host;
1287	int host_drv_type = SD_DRIVER_TYPE_B;
1288
1289	*drv_type = 0;
1290
1291	if (!host->ops->select_drive_strength)
1292		return 0;
1293
1294	/* Use SD definition of driver strength for hosts */
1295	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296		host_drv_type |= SD_DRIVER_TYPE_A;
1297
1298	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299		host_drv_type |= SD_DRIVER_TYPE_C;
1300
1301	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302		host_drv_type |= SD_DRIVER_TYPE_D;
1303
1304	/*
1305	 * The drive strength that the hardware can support
1306	 * depends on the board design.  Pass the appropriate
1307	 * information and let the hardware specific code
1308	 * return what is possible given the options
1309	 */
1310	return host->ops->select_drive_strength(card, max_dtr,
1311						host_drv_type,
1312						card_drv_type,
1313						drv_type);
1314}
1315
1316/*
1317 * Apply power to the MMC stack.  This is a two-stage process.
1318 * First, we enable power to the card without the clock running.
1319 * We then wait a bit for the power to stabilise.  Finally,
1320 * enable the bus drivers and clock to the card.
1321 *
1322 * We must _NOT_ enable the clock prior to power stablising.
1323 *
1324 * If a host does all the power sequencing itself, ignore the
1325 * initial MMC_POWER_UP stage.
1326 */
1327void mmc_power_up(struct mmc_host *host, u32 ocr)
1328{
1329	if (host->ios.power_mode == MMC_POWER_ON)
1330		return;
1331
1332	mmc_pwrseq_pre_power_on(host);
1333
1334	host->ios.vdd = fls(ocr) - 1;
1335	host->ios.power_mode = MMC_POWER_UP;
1336	/* Set initial state and call mmc_set_ios */
1337	mmc_set_initial_state(host);
1338
1339	mmc_set_initial_signal_voltage(host);
1340
1341	/*
1342	 * This delay should be sufficient to allow the power supply
1343	 * to reach the minimum voltage.
1344	 */
1345	mmc_delay(host->ios.power_delay_ms);
1346
1347	mmc_pwrseq_post_power_on(host);
1348
1349	host->ios.clock = host->f_init;
1350
1351	host->ios.power_mode = MMC_POWER_ON;
1352	mmc_set_ios(host);
1353
1354	/*
1355	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356	 * time required to reach a stable voltage.
1357	 */
1358	mmc_delay(host->ios.power_delay_ms);
1359}
1360
1361void mmc_power_off(struct mmc_host *host)
1362{
1363	if (host->ios.power_mode == MMC_POWER_OFF)
1364		return;
1365
1366	mmc_pwrseq_power_off(host);
1367
1368	host->ios.clock = 0;
1369	host->ios.vdd = 0;
1370
1371	host->ios.power_mode = MMC_POWER_OFF;
1372	/* Set initial state and call mmc_set_ios */
1373	mmc_set_initial_state(host);
1374
1375	/*
1376	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377	 * XO-1.5, require a short delay after poweroff before the card
1378	 * can be successfully turned on again.
1379	 */
1380	mmc_delay(1);
1381}
1382
1383void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1384{
1385	mmc_power_off(host);
1386	/* Wait at least 1 ms according to SD spec */
1387	mmc_delay(1);
1388	mmc_power_up(host, ocr);
1389}
1390
1391/*
1392 * Assign a mmc bus handler to a host. Only one bus handler may control a
1393 * host at any given time.
1394 */
1395void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1396{
1397	host->bus_ops = ops;
1398}
1399
1400/*
1401 * Remove the current bus handler from a host.
1402 */
1403void mmc_detach_bus(struct mmc_host *host)
1404{
1405	host->bus_ops = NULL;
1406}
1407
1408void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1409{
1410	/*
1411	 * Prevent system sleep for 5s to allow user space to consume the
1412	 * corresponding uevent. This is especially useful, when CD irq is used
1413	 * as a system wakeup, but doesn't hurt in other cases.
1414	 */
1415	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1416		__pm_wakeup_event(host->ws, 5000);
1417
1418	host->detect_change = 1;
1419	mmc_schedule_delayed_work(&host->detect, delay);
1420}
1421
1422/**
1423 *	mmc_detect_change - process change of state on a MMC socket
1424 *	@host: host which changed state.
1425 *	@delay: optional delay to wait before detection (jiffies)
1426 *
1427 *	MMC drivers should call this when they detect a card has been
1428 *	inserted or removed. The MMC layer will confirm that any
1429 *	present card is still functional, and initialize any newly
1430 *	inserted.
1431 */
1432void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1433{
1434	_mmc_detect_change(host, delay, true);
1435}
1436EXPORT_SYMBOL(mmc_detect_change);
1437
1438void mmc_init_erase(struct mmc_card *card)
1439{
1440	unsigned int sz;
1441
1442	if (is_power_of_2(card->erase_size))
1443		card->erase_shift = ffs(card->erase_size) - 1;
1444	else
1445		card->erase_shift = 0;
1446
1447	/*
1448	 * It is possible to erase an arbitrarily large area of an SD or MMC
1449	 * card.  That is not desirable because it can take a long time
1450	 * (minutes) potentially delaying more important I/O, and also the
1451	 * timeout calculations become increasingly hugely over-estimated.
1452	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1453	 * to that size and alignment.
1454	 *
1455	 * For SD cards that define Allocation Unit size, limit erases to one
1456	 * Allocation Unit at a time.
1457	 * For MMC, have a stab at ai good value and for modern cards it will
1458	 * end up being 4MiB. Note that if the value is too small, it can end
1459	 * up taking longer to erase. Also note, erase_size is already set to
1460	 * High Capacity Erase Size if available when this function is called.
1461	 */
1462	if (mmc_card_sd(card) && card->ssr.au) {
1463		card->pref_erase = card->ssr.au;
1464		card->erase_shift = ffs(card->ssr.au) - 1;
1465	} else if (card->erase_size) {
1466		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1467		if (sz < 128)
1468			card->pref_erase = 512 * 1024 / 512;
1469		else if (sz < 512)
1470			card->pref_erase = 1024 * 1024 / 512;
1471		else if (sz < 1024)
1472			card->pref_erase = 2 * 1024 * 1024 / 512;
1473		else
1474			card->pref_erase = 4 * 1024 * 1024 / 512;
1475		if (card->pref_erase < card->erase_size)
1476			card->pref_erase = card->erase_size;
1477		else {
1478			sz = card->pref_erase % card->erase_size;
1479			if (sz)
1480				card->pref_erase += card->erase_size - sz;
1481		}
1482	} else
1483		card->pref_erase = 0;
1484}
1485
1486static bool is_trim_arg(unsigned int arg)
1487{
1488	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1489}
1490
1491static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1492				          unsigned int arg, unsigned int qty)
1493{
1494	unsigned int erase_timeout;
1495
1496	if (arg == MMC_DISCARD_ARG ||
1497	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1498		erase_timeout = card->ext_csd.trim_timeout;
1499	} else if (card->ext_csd.erase_group_def & 1) {
1500		/* High Capacity Erase Group Size uses HC timeouts */
1501		if (arg == MMC_TRIM_ARG)
1502			erase_timeout = card->ext_csd.trim_timeout;
1503		else
1504			erase_timeout = card->ext_csd.hc_erase_timeout;
1505	} else {
1506		/* CSD Erase Group Size uses write timeout */
1507		unsigned int mult = (10 << card->csd.r2w_factor);
1508		unsigned int timeout_clks = card->csd.taac_clks * mult;
1509		unsigned int timeout_us;
1510
1511		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1512		if (card->csd.taac_ns < 1000000)
1513			timeout_us = (card->csd.taac_ns * mult) / 1000;
1514		else
1515			timeout_us = (card->csd.taac_ns / 1000) * mult;
1516
1517		/*
1518		 * ios.clock is only a target.  The real clock rate might be
1519		 * less but not that much less, so fudge it by multiplying by 2.
1520		 */
1521		timeout_clks <<= 1;
1522		timeout_us += (timeout_clks * 1000) /
1523			      (card->host->ios.clock / 1000);
1524
1525		erase_timeout = timeout_us / 1000;
1526
1527		/*
1528		 * Theoretically, the calculation could underflow so round up
1529		 * to 1ms in that case.
1530		 */
1531		if (!erase_timeout)
1532			erase_timeout = 1;
1533	}
1534
1535	/* Multiplier for secure operations */
1536	if (arg & MMC_SECURE_ARGS) {
1537		if (arg == MMC_SECURE_ERASE_ARG)
1538			erase_timeout *= card->ext_csd.sec_erase_mult;
1539		else
1540			erase_timeout *= card->ext_csd.sec_trim_mult;
1541	}
1542
1543	erase_timeout *= qty;
1544
1545	/*
1546	 * Ensure at least a 1 second timeout for SPI as per
1547	 * 'mmc_set_data_timeout()'
1548	 */
1549	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1550		erase_timeout = 1000;
1551
1552	return erase_timeout;
1553}
1554
1555static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1556					 unsigned int arg,
1557					 unsigned int qty)
1558{
1559	unsigned int erase_timeout;
1560
1561	/* for DISCARD none of the below calculation applies.
1562	 * the busy timeout is 250msec per discard command.
1563	 */
1564	if (arg == SD_DISCARD_ARG)
1565		return SD_DISCARD_TIMEOUT_MS;
1566
1567	if (card->ssr.erase_timeout) {
1568		/* Erase timeout specified in SD Status Register (SSR) */
1569		erase_timeout = card->ssr.erase_timeout * qty +
1570				card->ssr.erase_offset;
1571	} else {
1572		/*
1573		 * Erase timeout not specified in SD Status Register (SSR) so
1574		 * use 250ms per write block.
1575		 */
1576		erase_timeout = 250 * qty;
1577	}
1578
1579	/* Must not be less than 1 second */
1580	if (erase_timeout < 1000)
1581		erase_timeout = 1000;
1582
1583	return erase_timeout;
1584}
1585
1586static unsigned int mmc_erase_timeout(struct mmc_card *card,
1587				      unsigned int arg,
1588				      unsigned int qty)
1589{
1590	if (mmc_card_sd(card))
1591		return mmc_sd_erase_timeout(card, arg, qty);
1592	else
1593		return mmc_mmc_erase_timeout(card, arg, qty);
1594}
1595
1596static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1597			unsigned int to, unsigned int arg)
1598{
1599	struct mmc_command cmd = {};
1600	unsigned int qty = 0, busy_timeout = 0;
1601	bool use_r1b_resp;
1602	int err;
1603
1604	mmc_retune_hold(card->host);
1605
1606	/*
1607	 * qty is used to calculate the erase timeout which depends on how many
1608	 * erase groups (or allocation units in SD terminology) are affected.
1609	 * We count erasing part of an erase group as one erase group.
1610	 * For SD, the allocation units are always a power of 2.  For MMC, the
1611	 * erase group size is almost certainly also power of 2, but it does not
1612	 * seem to insist on that in the JEDEC standard, so we fall back to
1613	 * division in that case.  SD may not specify an allocation unit size,
1614	 * in which case the timeout is based on the number of write blocks.
1615	 *
1616	 * Note that the timeout for secure trim 2 will only be correct if the
1617	 * number of erase groups specified is the same as the total of all
1618	 * preceding secure trim 1 commands.  Since the power may have been
1619	 * lost since the secure trim 1 commands occurred, it is generally
1620	 * impossible to calculate the secure trim 2 timeout correctly.
1621	 */
1622	if (card->erase_shift)
1623		qty += ((to >> card->erase_shift) -
1624			(from >> card->erase_shift)) + 1;
1625	else if (mmc_card_sd(card))
1626		qty += to - from + 1;
1627	else
1628		qty += ((to / card->erase_size) -
1629			(from / card->erase_size)) + 1;
1630
1631	if (!mmc_card_blockaddr(card)) {
1632		from <<= 9;
1633		to <<= 9;
1634	}
1635
1636	if (mmc_card_sd(card))
1637		cmd.opcode = SD_ERASE_WR_BLK_START;
1638	else
1639		cmd.opcode = MMC_ERASE_GROUP_START;
1640	cmd.arg = from;
1641	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1642	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1643	if (err) {
1644		pr_err("mmc_erase: group start error %d, "
1645		       "status %#x\n", err, cmd.resp[0]);
1646		err = -EIO;
1647		goto out;
1648	}
1649
1650	memset(&cmd, 0, sizeof(struct mmc_command));
1651	if (mmc_card_sd(card))
1652		cmd.opcode = SD_ERASE_WR_BLK_END;
1653	else
1654		cmd.opcode = MMC_ERASE_GROUP_END;
1655	cmd.arg = to;
1656	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1657	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1658	if (err) {
1659		pr_err("mmc_erase: group end error %d, status %#x\n",
1660		       err, cmd.resp[0]);
1661		err = -EIO;
1662		goto out;
1663	}
1664
1665	memset(&cmd, 0, sizeof(struct mmc_command));
1666	cmd.opcode = MMC_ERASE;
1667	cmd.arg = arg;
1668	busy_timeout = mmc_erase_timeout(card, arg, qty);
1669	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1670
1671	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1672	if (err) {
1673		pr_err("mmc_erase: erase error %d, status %#x\n",
1674		       err, cmd.resp[0]);
1675		err = -EIO;
1676		goto out;
1677	}
1678
1679	if (mmc_host_is_spi(card->host))
1680		goto out;
1681
1682	/*
1683	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1684	 * shall be avoided.
1685	 */
1686	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1687		goto out;
1688
1689	/* Let's poll to find out when the erase operation completes. */
1690	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1691
1692out:
1693	mmc_retune_release(card->host);
1694	return err;
1695}
1696
1697static unsigned int mmc_align_erase_size(struct mmc_card *card,
1698					 unsigned int *from,
1699					 unsigned int *to,
1700					 unsigned int nr)
1701{
1702	unsigned int from_new = *from, nr_new = nr, rem;
1703
1704	/*
1705	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1706	 * to align the erase size efficiently.
1707	 */
1708	if (is_power_of_2(card->erase_size)) {
1709		unsigned int temp = from_new;
1710
1711		from_new = round_up(temp, card->erase_size);
1712		rem = from_new - temp;
1713
1714		if (nr_new > rem)
1715			nr_new -= rem;
1716		else
1717			return 0;
1718
1719		nr_new = round_down(nr_new, card->erase_size);
1720	} else {
1721		rem = from_new % card->erase_size;
1722		if (rem) {
1723			rem = card->erase_size - rem;
1724			from_new += rem;
1725			if (nr_new > rem)
1726				nr_new -= rem;
1727			else
1728				return 0;
1729		}
1730
1731		rem = nr_new % card->erase_size;
1732		if (rem)
1733			nr_new -= rem;
1734	}
1735
1736	if (nr_new == 0)
1737		return 0;
1738
1739	*to = from_new + nr_new;
1740	*from = from_new;
1741
1742	return nr_new;
1743}
1744
1745/**
1746 * mmc_erase - erase sectors.
1747 * @card: card to erase
1748 * @from: first sector to erase
1749 * @nr: number of sectors to erase
1750 * @arg: erase command argument
1751 *
1752 * Caller must claim host before calling this function.
1753 */
1754int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1755	      unsigned int arg)
1756{
1757	unsigned int rem, to = from + nr;
1758	int err;
1759
1760	if (!(card->csd.cmdclass & CCC_ERASE))
1761		return -EOPNOTSUPP;
1762
1763	if (!card->erase_size)
1764		return -EOPNOTSUPP;
1765
1766	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1767		return -EOPNOTSUPP;
1768
1769	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1770	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1771		return -EOPNOTSUPP;
1772
1773	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1774	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1775		return -EOPNOTSUPP;
1776
1777	if (arg == MMC_SECURE_ERASE_ARG) {
1778		if (from % card->erase_size || nr % card->erase_size)
1779			return -EINVAL;
1780	}
1781
1782	if (arg == MMC_ERASE_ARG)
1783		nr = mmc_align_erase_size(card, &from, &to, nr);
1784
1785	if (nr == 0)
1786		return 0;
1787
1788	if (to <= from)
1789		return -EINVAL;
1790
1791	/* 'from' and 'to' are inclusive */
1792	to -= 1;
1793
1794	/*
1795	 * Special case where only one erase-group fits in the timeout budget:
1796	 * If the region crosses an erase-group boundary on this particular
1797	 * case, we will be trimming more than one erase-group which, does not
1798	 * fit in the timeout budget of the controller, so we need to split it
1799	 * and call mmc_do_erase() twice if necessary. This special case is
1800	 * identified by the card->eg_boundary flag.
1801	 */
1802	rem = card->erase_size - (from % card->erase_size);
1803	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1804		err = mmc_do_erase(card, from, from + rem - 1, arg);
1805		from += rem;
1806		if ((err) || (to <= from))
1807			return err;
1808	}
1809
1810	return mmc_do_erase(card, from, to, arg);
1811}
1812EXPORT_SYMBOL(mmc_erase);
1813
1814int mmc_can_erase(struct mmc_card *card)
1815{
1816	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1817		return 1;
1818	return 0;
1819}
1820EXPORT_SYMBOL(mmc_can_erase);
1821
1822int mmc_can_trim(struct mmc_card *card)
1823{
1824	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1825	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1826		return 1;
1827	return 0;
1828}
1829EXPORT_SYMBOL(mmc_can_trim);
1830
1831int mmc_can_discard(struct mmc_card *card)
1832{
1833	/*
1834	 * As there's no way to detect the discard support bit at v4.5
1835	 * use the s/w feature support filed.
1836	 */
1837	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1838		return 1;
1839	return 0;
1840}
1841EXPORT_SYMBOL(mmc_can_discard);
1842
1843int mmc_can_sanitize(struct mmc_card *card)
1844{
1845	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1846		return 0;
1847	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1848		return 1;
1849	return 0;
1850}
1851
1852int mmc_can_secure_erase_trim(struct mmc_card *card)
1853{
1854	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1855	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1856		return 1;
1857	return 0;
1858}
1859EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1860
1861int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1862			    unsigned int nr)
1863{
1864	if (!card->erase_size)
1865		return 0;
1866	if (from % card->erase_size || nr % card->erase_size)
1867		return 0;
1868	return 1;
1869}
1870EXPORT_SYMBOL(mmc_erase_group_aligned);
1871
1872static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1873					    unsigned int arg)
1874{
1875	struct mmc_host *host = card->host;
1876	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1877	unsigned int last_timeout = 0;
1878	unsigned int max_busy_timeout = host->max_busy_timeout ?
1879			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1880
1881	if (card->erase_shift) {
1882		max_qty = UINT_MAX >> card->erase_shift;
1883		min_qty = card->pref_erase >> card->erase_shift;
1884	} else if (mmc_card_sd(card)) {
1885		max_qty = UINT_MAX;
1886		min_qty = card->pref_erase;
1887	} else {
1888		max_qty = UINT_MAX / card->erase_size;
1889		min_qty = card->pref_erase / card->erase_size;
1890	}
1891
1892	/*
1893	 * We should not only use 'host->max_busy_timeout' as the limitation
1894	 * when deciding the max discard sectors. We should set a balance value
1895	 * to improve the erase speed, and it can not get too long timeout at
1896	 * the same time.
1897	 *
1898	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1899	 * matter what size of 'host->max_busy_timeout', but if the
1900	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1901	 * then we can continue to increase the max discard sectors until we
1902	 * get a balance value. In cases when the 'host->max_busy_timeout'
1903	 * isn't specified, use the default max erase timeout.
1904	 */
1905	do {
1906		y = 0;
1907		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1908			timeout = mmc_erase_timeout(card, arg, qty + x);
1909
1910			if (qty + x > min_qty && timeout > max_busy_timeout)
1911				break;
1912
1913			if (timeout < last_timeout)
1914				break;
1915			last_timeout = timeout;
1916			y = x;
1917		}
1918		qty += y;
1919	} while (y);
1920
1921	if (!qty)
1922		return 0;
1923
1924	/*
1925	 * When specifying a sector range to trim, chances are we might cross
1926	 * an erase-group boundary even if the amount of sectors is less than
1927	 * one erase-group.
1928	 * If we can only fit one erase-group in the controller timeout budget,
1929	 * we have to care that erase-group boundaries are not crossed by a
1930	 * single trim operation. We flag that special case with "eg_boundary".
1931	 * In all other cases we can just decrement qty and pretend that we
1932	 * always touch (qty + 1) erase-groups as a simple optimization.
1933	 */
1934	if (qty == 1)
1935		card->eg_boundary = 1;
1936	else
1937		qty--;
1938
1939	/* Convert qty to sectors */
1940	if (card->erase_shift)
1941		max_discard = qty << card->erase_shift;
1942	else if (mmc_card_sd(card))
1943		max_discard = qty + 1;
1944	else
1945		max_discard = qty * card->erase_size;
1946
1947	return max_discard;
1948}
1949
1950unsigned int mmc_calc_max_discard(struct mmc_card *card)
1951{
1952	struct mmc_host *host = card->host;
1953	unsigned int max_discard, max_trim;
1954
1955	/*
1956	 * Without erase_group_def set, MMC erase timeout depends on clock
1957	 * frequence which can change.  In that case, the best choice is
1958	 * just the preferred erase size.
1959	 */
1960	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1961		return card->pref_erase;
1962
1963	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1964	if (mmc_can_trim(card)) {
1965		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1966		if (max_trim < max_discard || max_discard == 0)
1967			max_discard = max_trim;
1968	} else if (max_discard < card->erase_size) {
1969		max_discard = 0;
1970	}
1971	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1972		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1973		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1974	return max_discard;
1975}
1976EXPORT_SYMBOL(mmc_calc_max_discard);
1977
1978bool mmc_card_is_blockaddr(struct mmc_card *card)
1979{
1980	return card ? mmc_card_blockaddr(card) : false;
1981}
1982EXPORT_SYMBOL(mmc_card_is_blockaddr);
1983
1984int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1985{
1986	struct mmc_command cmd = {};
1987
1988	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1989	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1990		return 0;
1991
1992	cmd.opcode = MMC_SET_BLOCKLEN;
1993	cmd.arg = blocklen;
1994	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1995	return mmc_wait_for_cmd(card->host, &cmd, 5);
1996}
1997EXPORT_SYMBOL(mmc_set_blocklen);
1998
1999static void mmc_hw_reset_for_init(struct mmc_host *host)
2000{
2001	mmc_pwrseq_reset(host);
2002
2003	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2004		return;
2005	host->ops->card_hw_reset(host);
2006}
2007
2008/**
2009 * mmc_hw_reset - reset the card in hardware
2010 * @card: card to be reset
2011 *
2012 * Hard reset the card. This function is only for upper layers, like the
2013 * block layer or card drivers. You cannot use it in host drivers (struct
2014 * mmc_card might be gone then).
2015 *
2016 * Return: 0 on success, -errno on failure
2017 */
2018int mmc_hw_reset(struct mmc_card *card)
2019{
2020	struct mmc_host *host = card->host;
2021	int ret;
2022
2023	ret = host->bus_ops->hw_reset(host);
2024	if (ret < 0)
2025		pr_warn("%s: tried to HW reset card, got error %d\n",
2026			mmc_hostname(host), ret);
2027
2028	return ret;
2029}
2030EXPORT_SYMBOL(mmc_hw_reset);
2031
2032int mmc_sw_reset(struct mmc_card *card)
2033{
2034	struct mmc_host *host = card->host;
2035	int ret;
2036
2037	if (!host->bus_ops->sw_reset)
2038		return -EOPNOTSUPP;
2039
2040	ret = host->bus_ops->sw_reset(host);
2041	if (ret)
2042		pr_warn("%s: tried to SW reset card, got error %d\n",
2043			mmc_hostname(host), ret);
2044
2045	return ret;
2046}
2047EXPORT_SYMBOL(mmc_sw_reset);
2048
2049static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2050{
2051	host->f_init = freq;
2052
2053	pr_debug("%s: %s: trying to init card at %u Hz\n",
2054		mmc_hostname(host), __func__, host->f_init);
2055
2056	mmc_power_up(host, host->ocr_avail);
2057
2058	/*
2059	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2060	 * do a hardware reset if possible.
2061	 */
2062	mmc_hw_reset_for_init(host);
2063
2064	/*
2065	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2066	 * if the card is being re-initialized, just send it.  CMD52
2067	 * should be ignored by SD/eMMC cards.
2068	 * Skip it if we already know that we do not support SDIO commands
2069	 */
2070	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2071		sdio_reset(host);
2072
2073	mmc_go_idle(host);
2074
2075	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2076		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2077			goto out;
2078		if (mmc_card_sd_express(host))
2079			return 0;
2080	}
2081
2082	/* Order's important: probe SDIO, then SD, then MMC */
2083	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2084		if (!mmc_attach_sdio(host))
2085			return 0;
2086
2087	if (!(host->caps2 & MMC_CAP2_NO_SD))
2088		if (!mmc_attach_sd(host))
2089			return 0;
2090
2091	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2092		if (!mmc_attach_mmc(host))
2093			return 0;
2094
2095out:
2096	mmc_power_off(host);
2097	return -EIO;
2098}
2099
2100int _mmc_detect_card_removed(struct mmc_host *host)
2101{
2102	int ret;
2103
2104	if (!host->card || mmc_card_removed(host->card))
2105		return 1;
2106
2107	ret = host->bus_ops->alive(host);
2108
2109	/*
2110	 * Card detect status and alive check may be out of sync if card is
2111	 * removed slowly, when card detect switch changes while card/slot
2112	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2113	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2114	 * detect work 200ms later for this case.
2115	 */
2116	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2117		mmc_detect_change(host, msecs_to_jiffies(200));
2118		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2119	}
2120
2121	if (ret) {
2122		mmc_card_set_removed(host->card);
2123		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2124	}
2125
2126	return ret;
2127}
2128
2129int mmc_detect_card_removed(struct mmc_host *host)
2130{
2131	struct mmc_card *card = host->card;
2132	int ret;
2133
2134	WARN_ON(!host->claimed);
2135
2136	if (!card)
2137		return 1;
2138
2139	if (!mmc_card_is_removable(host))
2140		return 0;
2141
2142	ret = mmc_card_removed(card);
2143	/*
2144	 * The card will be considered unchanged unless we have been asked to
2145	 * detect a change or host requires polling to provide card detection.
2146	 */
2147	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2148		return ret;
2149
2150	host->detect_change = 0;
2151	if (!ret) {
2152		ret = _mmc_detect_card_removed(host);
2153		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2154			/*
2155			 * Schedule a detect work as soon as possible to let a
2156			 * rescan handle the card removal.
2157			 */
2158			cancel_delayed_work(&host->detect);
2159			_mmc_detect_change(host, 0, false);
2160		}
2161	}
2162
2163	return ret;
2164}
2165EXPORT_SYMBOL(mmc_detect_card_removed);
2166
2167int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2168{
2169	unsigned int boot_sectors_num;
2170
2171	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2172		return -EOPNOTSUPP;
2173
2174	/* filter out unrelated cards */
2175	if (card->ext_csd.rev < 3 ||
2176	    !mmc_card_mmc(card) ||
2177	    !mmc_card_is_blockaddr(card) ||
2178	     mmc_card_is_removable(card->host))
2179		return -ENOENT;
2180
2181	/*
2182	 * eMMC storage has two special boot partitions in addition to the
2183	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2184	 * accesses, this means that the partition table addresses are shifted
2185	 * by the size of boot partitions.  In accordance with the eMMC
2186	 * specification, the boot partition size is calculated as follows:
2187	 *
2188	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2189	 *
2190	 * Calculate number of sectors occupied by the both boot partitions.
2191	 */
2192	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2193			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2194
2195	/* Defined by NVIDIA and used by Android devices. */
2196	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2197
2198	return 0;
2199}
2200EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2201
2202void mmc_rescan(struct work_struct *work)
2203{
2204	struct mmc_host *host =
2205		container_of(work, struct mmc_host, detect.work);
2206	int i;
2207
2208	if (host->rescan_disable)
2209		return;
2210
2211	/* If there is a non-removable card registered, only scan once */
2212	if (!mmc_card_is_removable(host) && host->rescan_entered)
2213		return;
2214	host->rescan_entered = 1;
2215
2216	if (host->trigger_card_event && host->ops->card_event) {
2217		mmc_claim_host(host);
2218		host->ops->card_event(host);
2219		mmc_release_host(host);
2220		host->trigger_card_event = false;
2221	}
2222
2223	/* Verify a registered card to be functional, else remove it. */
2224	if (host->bus_ops)
2225		host->bus_ops->detect(host);
2226
2227	host->detect_change = 0;
2228
2229	/* if there still is a card present, stop here */
2230	if (host->bus_ops != NULL)
2231		goto out;
2232
2233	mmc_claim_host(host);
2234	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2235			host->ops->get_cd(host) == 0) {
2236		mmc_power_off(host);
2237		mmc_release_host(host);
2238		goto out;
2239	}
2240
2241	/* If an SD express card is present, then leave it as is. */
2242	if (mmc_card_sd_express(host)) {
2243		mmc_release_host(host);
2244		goto out;
2245	}
2246
2247	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2248		unsigned int freq = freqs[i];
2249		if (freq > host->f_max) {
2250			if (i + 1 < ARRAY_SIZE(freqs))
2251				continue;
2252			freq = host->f_max;
2253		}
2254		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2255			break;
2256		if (freqs[i] <= host->f_min)
2257			break;
2258	}
 
 
 
 
 
2259
2260	/*
2261	 * Ignore the command timeout errors observed during
2262	 * the card init as those are excepted.
2263	 */
2264	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2265	mmc_release_host(host);
2266
2267 out:
2268	if (host->caps & MMC_CAP_NEEDS_POLL)
2269		mmc_schedule_delayed_work(&host->detect, HZ);
2270}
2271
2272void mmc_start_host(struct mmc_host *host)
2273{
2274	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2275	host->rescan_disable = 0;
2276
2277	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2278		mmc_claim_host(host);
2279		mmc_power_up(host, host->ocr_avail);
2280		mmc_release_host(host);
2281	}
2282
2283	mmc_gpiod_request_cd_irq(host);
2284	_mmc_detect_change(host, 0, false);
2285}
2286
2287void __mmc_stop_host(struct mmc_host *host)
2288{
2289	if (host->slot.cd_irq >= 0) {
2290		mmc_gpio_set_cd_wake(host, false);
2291		disable_irq(host->slot.cd_irq);
2292	}
2293
2294	host->rescan_disable = 1;
2295	cancel_delayed_work_sync(&host->detect);
2296}
2297
2298void mmc_stop_host(struct mmc_host *host)
2299{
2300	__mmc_stop_host(host);
2301
2302	/* clear pm flags now and let card drivers set them as needed */
2303	host->pm_flags = 0;
2304
2305	if (host->bus_ops) {
2306		/* Calling bus_ops->remove() with a claimed host can deadlock */
2307		host->bus_ops->remove(host);
2308		mmc_claim_host(host);
2309		mmc_detach_bus(host);
2310		mmc_power_off(host);
2311		mmc_release_host(host);
2312		return;
2313	}
2314
2315	mmc_claim_host(host);
2316	mmc_power_off(host);
2317	mmc_release_host(host);
2318}
2319
2320static int __init mmc_init(void)
2321{
2322	int ret;
2323
2324	ret = mmc_register_bus();
2325	if (ret)
2326		return ret;
2327
2328	ret = mmc_register_host_class();
2329	if (ret)
2330		goto unregister_bus;
2331
2332	ret = sdio_register_bus();
2333	if (ret)
2334		goto unregister_host_class;
2335
2336	return 0;
2337
2338unregister_host_class:
2339	mmc_unregister_host_class();
2340unregister_bus:
2341	mmc_unregister_bus();
2342	return ret;
2343}
2344
2345static void __exit mmc_exit(void)
2346{
2347	sdio_unregister_bus();
2348	mmc_unregister_host_class();
2349	mmc_unregister_bus();
2350}
2351
2352subsys_initcall(mmc_init);
2353module_exit(mmc_exit);
2354
2355MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337	int err;
 338
 339	init_completion(&mrq->cmd_completion);
 340
 341	mmc_retune_hold(host);
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 347
 348	WARN_ON(!host->claimed);
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 353
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 356
 357	return 0;
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 392	}
 393
 394	return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 406		if (!cmd->error || !cmd->retries ||
 407		    mmc_card_removed(host->card))
 408			break;
 409
 410		mmc_retune_recheck(host);
 411
 412		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413			 mmc_hostname(host), cmd->opcode, cmd->error);
 414		cmd->retries--;
 415		cmd->error = 0;
 416		__mmc_start_request(host, mrq);
 417	}
 418
 419	mmc_retune_release(host);
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 432{
 433	int err;
 434
 435	/*
 436	 * CQE cannot process re-tuning commands. Caller must hold retuning
 437	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438	 * active requests i.e. this is the first.  Note, re-tuning will call
 439	 * ->cqe_off().
 440	 */
 441	err = mmc_retune(host);
 442	if (err)
 443		goto out_err;
 444
 445	mrq->host = host;
 446
 447	mmc_mrq_pr_debug(host, mrq, true);
 448
 449	err = mmc_mrq_prep(host, mrq);
 450	if (err)
 451		goto out_err;
 452
 453	err = host->cqe_ops->cqe_request(host, mrq);
 454	if (err)
 455		goto out_err;
 456
 457	trace_mmc_request_start(host, mrq);
 458
 459	return 0;
 460
 461out_err:
 462	if (mrq->cmd) {
 463		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464			 mmc_hostname(host), mrq->cmd->opcode, err);
 465	} else {
 466		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467			 mmc_hostname(host), mrq->tag, err);
 468	}
 469	return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *	@host: MMC host which completed request
 476 *	@mrq: MMC request which completed
 477 *
 478 *	CQE drivers should call this function when they have completed
 479 *	their processing of a request.
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 482{
 483	mmc_should_fail_request(host, mrq);
 484
 485	/* Flag re-tuning needed on CRC errors */
 486	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487	    (mrq->data && mrq->data->error == -EILSEQ))
 488		mmc_retune_needed(host);
 489
 490	trace_mmc_request_done(host, mrq);
 491
 492	if (mrq->cmd) {
 493		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495	} else {
 496		pr_debug("%s: CQE transfer done tag %d\n",
 497			 mmc_hostname(host), mrq->tag);
 498	}
 499
 500	if (mrq->data) {
 501		pr_debug("%s:     %d bytes transferred: %d\n",
 502			 mmc_hostname(host),
 503			 mrq->data->bytes_xfered, mrq->data->error);
 504	}
 505
 506	mrq->done(mrq);
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *	@host: MMC host
 513 *	@mrq: MMC request to be processed
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517	if (host->cqe_ops->cqe_post_req)
 518		host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT	1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 535{
 536	struct mmc_command cmd;
 537	int err;
 538
 539	mmc_retune_hold_now(host);
 540
 541	/*
 542	 * Recovery is expected seldom, if at all, but it reduces performance,
 543	 * so make sure it is not completely silent.
 544	 */
 545	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547	host->cqe_ops->cqe_recovery_start(host);
 548
 549	memset(&cmd, 0, sizeof(cmd));
 550	cmd.opcode       = MMC_STOP_TRANSMISSION;
 551	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 552	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 554	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 555
 556	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
 557
 558	memset(&cmd, 0, sizeof(cmd));
 559	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 560	cmd.arg          = 1; /* Discard entire queue */
 561	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 562	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 563	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 564	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 565
 566	host->cqe_ops->cqe_recovery_finish(host);
 567
 568	if (err)
 569		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 570
 571	mmc_retune_release(host);
 572
 573	return err;
 574}
 575EXPORT_SYMBOL(mmc_cqe_recovery);
 576
 577/**
 578 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 579 *	@host: MMC host
 580 *	@mrq: MMC request
 581 *
 582 *	mmc_is_req_done() is used with requests that have
 583 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 584 *	starting a request and before waiting for it to complete. That is,
 585 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 586 *	and before mmc_wait_for_req_done(). If it is called at other times the
 587 *	result is not meaningful.
 588 */
 589bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 590{
 591	return completion_done(&mrq->completion);
 592}
 593EXPORT_SYMBOL(mmc_is_req_done);
 594
 595/**
 596 *	mmc_wait_for_req - start a request and wait for completion
 597 *	@host: MMC host to start command
 598 *	@mrq: MMC request to start
 599 *
 600 *	Start a new MMC custom command request for a host, and wait
 601 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 602 *	requests, the transfer is ongoing and the caller can issue further
 603 *	commands that do not use the data lines, and then wait by calling
 604 *	mmc_wait_for_req_done().
 605 *	Does not attempt to parse the response.
 606 */
 607void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 608{
 609	__mmc_start_req(host, mrq);
 610
 611	if (!mrq->cap_cmd_during_tfr)
 612		mmc_wait_for_req_done(host, mrq);
 613}
 614EXPORT_SYMBOL(mmc_wait_for_req);
 615
 616/**
 617 *	mmc_wait_for_cmd - start a command and wait for completion
 618 *	@host: MMC host to start command
 619 *	@cmd: MMC command to start
 620 *	@retries: maximum number of retries
 621 *
 622 *	Start a new MMC command for a host, and wait for the command
 623 *	to complete.  Return any error that occurred while the command
 624 *	was executing.  Do not attempt to parse the response.
 625 */
 626int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 627{
 628	struct mmc_request mrq = {};
 629
 630	WARN_ON(!host->claimed);
 631
 632	memset(cmd->resp, 0, sizeof(cmd->resp));
 633	cmd->retries = retries;
 634
 635	mrq.cmd = cmd;
 636	cmd->data = NULL;
 637
 638	mmc_wait_for_req(host, &mrq);
 639
 640	return cmd->error;
 641}
 642
 643EXPORT_SYMBOL(mmc_wait_for_cmd);
 644
 645/**
 646 *	mmc_set_data_timeout - set the timeout for a data command
 647 *	@data: data phase for command
 648 *	@card: the MMC card associated with the data transfer
 649 *
 650 *	Computes the data timeout parameters according to the
 651 *	correct algorithm given the card type.
 652 */
 653void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 654{
 655	unsigned int mult;
 656
 657	/*
 658	 * SDIO cards only define an upper 1 s limit on access.
 659	 */
 660	if (mmc_card_sdio(card)) {
 661		data->timeout_ns = 1000000000;
 662		data->timeout_clks = 0;
 663		return;
 664	}
 665
 666	/*
 667	 * SD cards use a 100 multiplier rather than 10
 668	 */
 669	mult = mmc_card_sd(card) ? 100 : 10;
 670
 671	/*
 672	 * Scale up the multiplier (and therefore the timeout) by
 673	 * the r2w factor for writes.
 674	 */
 675	if (data->flags & MMC_DATA_WRITE)
 676		mult <<= card->csd.r2w_factor;
 677
 678	data->timeout_ns = card->csd.taac_ns * mult;
 679	data->timeout_clks = card->csd.taac_clks * mult;
 680
 681	/*
 682	 * SD cards also have an upper limit on the timeout.
 683	 */
 684	if (mmc_card_sd(card)) {
 685		unsigned int timeout_us, limit_us;
 686
 687		timeout_us = data->timeout_ns / 1000;
 688		if (card->host->ios.clock)
 689			timeout_us += data->timeout_clks * 1000 /
 690				(card->host->ios.clock / 1000);
 691
 692		if (data->flags & MMC_DATA_WRITE)
 693			/*
 694			 * The MMC spec "It is strongly recommended
 695			 * for hosts to implement more than 500ms
 696			 * timeout value even if the card indicates
 697			 * the 250ms maximum busy length."  Even the
 698			 * previous value of 300ms is known to be
 699			 * insufficient for some cards.
 700			 */
 701			limit_us = 3000000;
 702		else
 703			limit_us = 100000;
 704
 705		/*
 706		 * SDHC cards always use these fixed values.
 707		 */
 708		if (timeout_us > limit_us) {
 709			data->timeout_ns = limit_us * 1000;
 710			data->timeout_clks = 0;
 711		}
 712
 713		/* assign limit value if invalid */
 714		if (timeout_us == 0)
 715			data->timeout_ns = limit_us * 1000;
 716	}
 717
 718	/*
 719	 * Some cards require longer data read timeout than indicated in CSD.
 720	 * Address this by setting the read timeout to a "reasonably high"
 721	 * value. For the cards tested, 600ms has proven enough. If necessary,
 722	 * this value can be increased if other problematic cards require this.
 723	 */
 724	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 725		data->timeout_ns = 600000000;
 726		data->timeout_clks = 0;
 727	}
 728
 729	/*
 730	 * Some cards need very high timeouts if driven in SPI mode.
 731	 * The worst observed timeout was 900ms after writing a
 732	 * continuous stream of data until the internal logic
 733	 * overflowed.
 734	 */
 735	if (mmc_host_is_spi(card->host)) {
 736		if (data->flags & MMC_DATA_WRITE) {
 737			if (data->timeout_ns < 1000000000)
 738				data->timeout_ns = 1000000000;	/* 1s */
 739		} else {
 740			if (data->timeout_ns < 100000000)
 741				data->timeout_ns =  100000000;	/* 100ms */
 742		}
 743	}
 744}
 745EXPORT_SYMBOL(mmc_set_data_timeout);
 746
 747/*
 748 * Allow claiming an already claimed host if the context is the same or there is
 749 * no context but the task is the same.
 750 */
 751static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 752				   struct task_struct *task)
 753{
 754	return host->claimer == ctx ||
 755	       (!ctx && task && host->claimer->task == task);
 756}
 757
 758static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 759				       struct mmc_ctx *ctx,
 760				       struct task_struct *task)
 761{
 762	if (!host->claimer) {
 763		if (ctx)
 764			host->claimer = ctx;
 765		else
 766			host->claimer = &host->default_ctx;
 767	}
 768	if (task)
 769		host->claimer->task = task;
 770}
 771
 772/**
 773 *	__mmc_claim_host - exclusively claim a host
 774 *	@host: mmc host to claim
 775 *	@ctx: context that claims the host or NULL in which case the default
 776 *	context will be used
 777 *	@abort: whether or not the operation should be aborted
 778 *
 779 *	Claim a host for a set of operations.  If @abort is non null and
 780 *	dereference a non-zero value then this will return prematurely with
 781 *	that non-zero value without acquiring the lock.  Returns zero
 782 *	with the lock held otherwise.
 783 */
 784int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 785		     atomic_t *abort)
 786{
 787	struct task_struct *task = ctx ? NULL : current;
 788	DECLARE_WAITQUEUE(wait, current);
 789	unsigned long flags;
 790	int stop;
 791	bool pm = false;
 792
 793	might_sleep();
 794
 795	add_wait_queue(&host->wq, &wait);
 796	spin_lock_irqsave(&host->lock, flags);
 797	while (1) {
 798		set_current_state(TASK_UNINTERRUPTIBLE);
 799		stop = abort ? atomic_read(abort) : 0;
 800		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 801			break;
 802		spin_unlock_irqrestore(&host->lock, flags);
 803		schedule();
 804		spin_lock_irqsave(&host->lock, flags);
 805	}
 806	set_current_state(TASK_RUNNING);
 807	if (!stop) {
 808		host->claimed = 1;
 809		mmc_ctx_set_claimer(host, ctx, task);
 810		host->claim_cnt += 1;
 811		if (host->claim_cnt == 1)
 812			pm = true;
 813	} else
 814		wake_up(&host->wq);
 815	spin_unlock_irqrestore(&host->lock, flags);
 816	remove_wait_queue(&host->wq, &wait);
 817
 818	if (pm)
 819		pm_runtime_get_sync(mmc_dev(host));
 820
 821	return stop;
 822}
 823EXPORT_SYMBOL(__mmc_claim_host);
 824
 825/**
 826 *	mmc_release_host - release a host
 827 *	@host: mmc host to release
 828 *
 829 *	Release a MMC host, allowing others to claim the host
 830 *	for their operations.
 831 */
 832void mmc_release_host(struct mmc_host *host)
 833{
 834	unsigned long flags;
 835
 836	WARN_ON(!host->claimed);
 837
 838	spin_lock_irqsave(&host->lock, flags);
 839	if (--host->claim_cnt) {
 840		/* Release for nested claim */
 841		spin_unlock_irqrestore(&host->lock, flags);
 842	} else {
 843		host->claimed = 0;
 844		host->claimer->task = NULL;
 845		host->claimer = NULL;
 846		spin_unlock_irqrestore(&host->lock, flags);
 847		wake_up(&host->wq);
 848		pm_runtime_mark_last_busy(mmc_dev(host));
 849		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 850			pm_runtime_put_sync_suspend(mmc_dev(host));
 851		else
 852			pm_runtime_put_autosuspend(mmc_dev(host));
 853	}
 854}
 855EXPORT_SYMBOL(mmc_release_host);
 856
 857/*
 858 * This is a helper function, which fetches a runtime pm reference for the
 859 * card device and also claims the host.
 860 */
 861void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 862{
 863	pm_runtime_get_sync(&card->dev);
 864	__mmc_claim_host(card->host, ctx, NULL);
 865}
 866EXPORT_SYMBOL(mmc_get_card);
 867
 868/*
 869 * This is a helper function, which releases the host and drops the runtime
 870 * pm reference for the card device.
 871 */
 872void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 873{
 874	struct mmc_host *host = card->host;
 875
 876	WARN_ON(ctx && host->claimer != ctx);
 877
 878	mmc_release_host(host);
 879	pm_runtime_mark_last_busy(&card->dev);
 880	pm_runtime_put_autosuspend(&card->dev);
 881}
 882EXPORT_SYMBOL(mmc_put_card);
 883
 884/*
 885 * Internal function that does the actual ios call to the host driver,
 886 * optionally printing some debug output.
 887 */
 888static inline void mmc_set_ios(struct mmc_host *host)
 889{
 890	struct mmc_ios *ios = &host->ios;
 891
 892	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 893		"width %u timing %u\n",
 894		 mmc_hostname(host), ios->clock, ios->bus_mode,
 895		 ios->power_mode, ios->chip_select, ios->vdd,
 896		 1 << ios->bus_width, ios->timing);
 897
 898	host->ops->set_ios(host, ios);
 899}
 900
 901/*
 902 * Control chip select pin on a host.
 903 */
 904void mmc_set_chip_select(struct mmc_host *host, int mode)
 905{
 906	host->ios.chip_select = mode;
 907	mmc_set_ios(host);
 908}
 909
 910/*
 911 * Sets the host clock to the highest possible frequency that
 912 * is below "hz".
 913 */
 914void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 915{
 916	WARN_ON(hz && hz < host->f_min);
 917
 918	if (hz > host->f_max)
 919		hz = host->f_max;
 920
 921	host->ios.clock = hz;
 922	mmc_set_ios(host);
 923}
 924
 925int mmc_execute_tuning(struct mmc_card *card)
 926{
 927	struct mmc_host *host = card->host;
 928	u32 opcode;
 929	int err;
 930
 931	if (!host->ops->execute_tuning)
 932		return 0;
 933
 934	if (host->cqe_on)
 935		host->cqe_ops->cqe_off(host);
 936
 937	if (mmc_card_mmc(card))
 938		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 939	else
 940		opcode = MMC_SEND_TUNING_BLOCK;
 941
 942	err = host->ops->execute_tuning(host, opcode);
 943	if (!err) {
 944		mmc_retune_clear(host);
 945		mmc_retune_enable(host);
 946		return 0;
 947	}
 948
 949	/* Only print error when we don't check for card removal */
 950	if (!host->detect_change) {
 951		pr_err("%s: tuning execution failed: %d\n",
 952			mmc_hostname(host), err);
 953		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 954	}
 955
 956	return err;
 957}
 958
 959/*
 960 * Change the bus mode (open drain/push-pull) of a host.
 961 */
 962void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 963{
 964	host->ios.bus_mode = mode;
 965	mmc_set_ios(host);
 966}
 967
 968/*
 969 * Change data bus width of a host.
 970 */
 971void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 972{
 973	host->ios.bus_width = width;
 974	mmc_set_ios(host);
 975}
 976
 977/*
 978 * Set initial state after a power cycle or a hw_reset.
 979 */
 980void mmc_set_initial_state(struct mmc_host *host)
 981{
 982	if (host->cqe_on)
 983		host->cqe_ops->cqe_off(host);
 984
 985	mmc_retune_disable(host);
 986
 987	if (mmc_host_is_spi(host))
 988		host->ios.chip_select = MMC_CS_HIGH;
 989	else
 990		host->ios.chip_select = MMC_CS_DONTCARE;
 991	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 992	host->ios.bus_width = MMC_BUS_WIDTH_1;
 993	host->ios.timing = MMC_TIMING_LEGACY;
 994	host->ios.drv_type = 0;
 995	host->ios.enhanced_strobe = false;
 996
 997	/*
 998	 * Make sure we are in non-enhanced strobe mode before we
 999	 * actually enable it in ext_csd.
1000	 */
1001	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1002	     host->ops->hs400_enhanced_strobe)
1003		host->ops->hs400_enhanced_strobe(host, &host->ios);
1004
1005	mmc_set_ios(host);
1006
1007	mmc_crypto_set_initial_state(host);
1008}
1009
1010/**
1011 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1012 * @vdd:	voltage (mV)
1013 * @low_bits:	prefer low bits in boundary cases
1014 *
1015 * This function returns the OCR bit number according to the provided @vdd
1016 * value. If conversion is not possible a negative errno value returned.
1017 *
1018 * Depending on the @low_bits flag the function prefers low or high OCR bits
1019 * on boundary voltages. For example,
1020 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1021 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1022 *
1023 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1024 */
1025static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1026{
1027	const int max_bit = ilog2(MMC_VDD_35_36);
1028	int bit;
1029
1030	if (vdd < 1650 || vdd > 3600)
1031		return -EINVAL;
1032
1033	if (vdd >= 1650 && vdd <= 1950)
1034		return ilog2(MMC_VDD_165_195);
1035
1036	if (low_bits)
1037		vdd -= 1;
1038
1039	/* Base 2000 mV, step 100 mV, bit's base 8. */
1040	bit = (vdd - 2000) / 100 + 8;
1041	if (bit > max_bit)
1042		return max_bit;
1043	return bit;
1044}
1045
1046/**
1047 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1048 * @vdd_min:	minimum voltage value (mV)
1049 * @vdd_max:	maximum voltage value (mV)
1050 *
1051 * This function returns the OCR mask bits according to the provided @vdd_min
1052 * and @vdd_max values. If conversion is not possible the function returns 0.
1053 *
1054 * Notes wrt boundary cases:
1055 * This function sets the OCR bits for all boundary voltages, for example
1056 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1057 * MMC_VDD_34_35 mask.
1058 */
1059u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1060{
1061	u32 mask = 0;
1062
1063	if (vdd_max < vdd_min)
1064		return 0;
1065
1066	/* Prefer high bits for the boundary vdd_max values. */
1067	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1068	if (vdd_max < 0)
1069		return 0;
1070
1071	/* Prefer low bits for the boundary vdd_min values. */
1072	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1073	if (vdd_min < 0)
1074		return 0;
1075
1076	/* Fill the mask, from max bit to min bit. */
1077	while (vdd_max >= vdd_min)
1078		mask |= 1 << vdd_max--;
1079
1080	return mask;
1081}
1082
1083static int mmc_of_get_func_num(struct device_node *node)
1084{
1085	u32 reg;
1086	int ret;
1087
1088	ret = of_property_read_u32(node, "reg", &reg);
1089	if (ret < 0)
1090		return ret;
1091
1092	return reg;
1093}
1094
1095struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1096		unsigned func_num)
1097{
1098	struct device_node *node;
1099
1100	if (!host->parent || !host->parent->of_node)
1101		return NULL;
1102
1103	for_each_child_of_node(host->parent->of_node, node) {
1104		if (mmc_of_get_func_num(node) == func_num)
1105			return node;
1106	}
1107
1108	return NULL;
1109}
1110
1111/*
1112 * Mask off any voltages we don't support and select
1113 * the lowest voltage
1114 */
1115u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1116{
1117	int bit;
1118
1119	/*
1120	 * Sanity check the voltages that the card claims to
1121	 * support.
1122	 */
1123	if (ocr & 0x7F) {
1124		dev_warn(mmc_dev(host),
1125		"card claims to support voltages below defined range\n");
1126		ocr &= ~0x7F;
1127	}
1128
1129	ocr &= host->ocr_avail;
1130	if (!ocr) {
1131		dev_warn(mmc_dev(host), "no support for card's volts\n");
1132		return 0;
1133	}
1134
1135	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1136		bit = ffs(ocr) - 1;
1137		ocr &= 3 << bit;
1138		mmc_power_cycle(host, ocr);
1139	} else {
1140		bit = fls(ocr) - 1;
1141		/*
1142		 * The bit variable represents the highest voltage bit set in
1143		 * the OCR register.
1144		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1145		 * we must shift the mask '3' with (bit - 1).
1146		 */
1147		ocr &= 3 << (bit - 1);
1148		if (bit != host->ios.vdd)
1149			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1150	}
1151
1152	return ocr;
1153}
1154
1155int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1156{
1157	int err = 0;
1158	int old_signal_voltage = host->ios.signal_voltage;
1159
1160	host->ios.signal_voltage = signal_voltage;
1161	if (host->ops->start_signal_voltage_switch)
1162		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1163
1164	if (err)
1165		host->ios.signal_voltage = old_signal_voltage;
1166
1167	return err;
1168
1169}
1170
1171void mmc_set_initial_signal_voltage(struct mmc_host *host)
1172{
1173	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1175		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1176	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1177		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1178	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1179		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1180}
1181
1182int mmc_host_set_uhs_voltage(struct mmc_host *host)
1183{
1184	u32 clock;
1185
1186	/*
1187	 * During a signal voltage level switch, the clock must be gated
1188	 * for 5 ms according to the SD spec
1189	 */
1190	clock = host->ios.clock;
1191	host->ios.clock = 0;
1192	mmc_set_ios(host);
1193
1194	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1195		return -EAGAIN;
1196
1197	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1198	mmc_delay(10);
1199	host->ios.clock = clock;
1200	mmc_set_ios(host);
1201
1202	return 0;
1203}
1204
1205int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1206{
1207	struct mmc_command cmd = {};
1208	int err = 0;
1209
1210	/*
1211	 * If we cannot switch voltages, return failure so the caller
1212	 * can continue without UHS mode
1213	 */
1214	if (!host->ops->start_signal_voltage_switch)
1215		return -EPERM;
1216	if (!host->ops->card_busy)
1217		pr_warn("%s: cannot verify signal voltage switch\n",
1218			mmc_hostname(host));
1219
1220	cmd.opcode = SD_SWITCH_VOLTAGE;
1221	cmd.arg = 0;
1222	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1223
1224	err = mmc_wait_for_cmd(host, &cmd, 0);
1225	if (err)
1226		goto power_cycle;
1227
1228	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1229		return -EIO;
1230
1231	/*
1232	 * The card should drive cmd and dat[0:3] low immediately
1233	 * after the response of cmd11, but wait 1 ms to be sure
1234	 */
1235	mmc_delay(1);
1236	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1237		err = -EAGAIN;
1238		goto power_cycle;
1239	}
1240
1241	if (mmc_host_set_uhs_voltage(host)) {
1242		/*
1243		 * Voltages may not have been switched, but we've already
1244		 * sent CMD11, so a power cycle is required anyway
1245		 */
1246		err = -EAGAIN;
1247		goto power_cycle;
1248	}
1249
1250	/* Wait for at least 1 ms according to spec */
1251	mmc_delay(1);
1252
1253	/*
1254	 * Failure to switch is indicated by the card holding
1255	 * dat[0:3] low
1256	 */
1257	if (host->ops->card_busy && host->ops->card_busy(host))
1258		err = -EAGAIN;
1259
1260power_cycle:
1261	if (err) {
1262		pr_debug("%s: Signal voltage switch failed, "
1263			"power cycling card\n", mmc_hostname(host));
1264		mmc_power_cycle(host, ocr);
1265	}
1266
1267	return err;
1268}
1269
1270/*
1271 * Select timing parameters for host.
1272 */
1273void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1274{
1275	host->ios.timing = timing;
1276	mmc_set_ios(host);
1277}
1278
1279/*
1280 * Select appropriate driver type for host.
1281 */
1282void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1283{
1284	host->ios.drv_type = drv_type;
1285	mmc_set_ios(host);
1286}
1287
1288int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1289			      int card_drv_type, int *drv_type)
1290{
1291	struct mmc_host *host = card->host;
1292	int host_drv_type = SD_DRIVER_TYPE_B;
1293
1294	*drv_type = 0;
1295
1296	if (!host->ops->select_drive_strength)
1297		return 0;
1298
1299	/* Use SD definition of driver strength for hosts */
1300	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1301		host_drv_type |= SD_DRIVER_TYPE_A;
1302
1303	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1304		host_drv_type |= SD_DRIVER_TYPE_C;
1305
1306	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1307		host_drv_type |= SD_DRIVER_TYPE_D;
1308
1309	/*
1310	 * The drive strength that the hardware can support
1311	 * depends on the board design.  Pass the appropriate
1312	 * information and let the hardware specific code
1313	 * return what is possible given the options
1314	 */
1315	return host->ops->select_drive_strength(card, max_dtr,
1316						host_drv_type,
1317						card_drv_type,
1318						drv_type);
1319}
1320
1321/*
1322 * Apply power to the MMC stack.  This is a two-stage process.
1323 * First, we enable power to the card without the clock running.
1324 * We then wait a bit for the power to stabilise.  Finally,
1325 * enable the bus drivers and clock to the card.
1326 *
1327 * We must _NOT_ enable the clock prior to power stablising.
1328 *
1329 * If a host does all the power sequencing itself, ignore the
1330 * initial MMC_POWER_UP stage.
1331 */
1332void mmc_power_up(struct mmc_host *host, u32 ocr)
1333{
1334	if (host->ios.power_mode == MMC_POWER_ON)
1335		return;
1336
1337	mmc_pwrseq_pre_power_on(host);
1338
1339	host->ios.vdd = fls(ocr) - 1;
1340	host->ios.power_mode = MMC_POWER_UP;
1341	/* Set initial state and call mmc_set_ios */
1342	mmc_set_initial_state(host);
1343
1344	mmc_set_initial_signal_voltage(host);
1345
1346	/*
1347	 * This delay should be sufficient to allow the power supply
1348	 * to reach the minimum voltage.
1349	 */
1350	mmc_delay(host->ios.power_delay_ms);
1351
1352	mmc_pwrseq_post_power_on(host);
1353
1354	host->ios.clock = host->f_init;
1355
1356	host->ios.power_mode = MMC_POWER_ON;
1357	mmc_set_ios(host);
1358
1359	/*
1360	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1361	 * time required to reach a stable voltage.
1362	 */
1363	mmc_delay(host->ios.power_delay_ms);
1364}
1365
1366void mmc_power_off(struct mmc_host *host)
1367{
1368	if (host->ios.power_mode == MMC_POWER_OFF)
1369		return;
1370
1371	mmc_pwrseq_power_off(host);
1372
1373	host->ios.clock = 0;
1374	host->ios.vdd = 0;
1375
1376	host->ios.power_mode = MMC_POWER_OFF;
1377	/* Set initial state and call mmc_set_ios */
1378	mmc_set_initial_state(host);
1379
1380	/*
1381	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1382	 * XO-1.5, require a short delay after poweroff before the card
1383	 * can be successfully turned on again.
1384	 */
1385	mmc_delay(1);
1386}
1387
1388void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1389{
1390	mmc_power_off(host);
1391	/* Wait at least 1 ms according to SD spec */
1392	mmc_delay(1);
1393	mmc_power_up(host, ocr);
1394}
1395
1396/*
1397 * Assign a mmc bus handler to a host. Only one bus handler may control a
1398 * host at any given time.
1399 */
1400void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1401{
1402	host->bus_ops = ops;
1403}
1404
1405/*
1406 * Remove the current bus handler from a host.
1407 */
1408void mmc_detach_bus(struct mmc_host *host)
1409{
1410	host->bus_ops = NULL;
1411}
1412
1413void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1414{
1415	/*
1416	 * Prevent system sleep for 5s to allow user space to consume the
1417	 * corresponding uevent. This is especially useful, when CD irq is used
1418	 * as a system wakeup, but doesn't hurt in other cases.
1419	 */
1420	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1421		__pm_wakeup_event(host->ws, 5000);
1422
1423	host->detect_change = 1;
1424	mmc_schedule_delayed_work(&host->detect, delay);
1425}
1426
1427/**
1428 *	mmc_detect_change - process change of state on a MMC socket
1429 *	@host: host which changed state.
1430 *	@delay: optional delay to wait before detection (jiffies)
1431 *
1432 *	MMC drivers should call this when they detect a card has been
1433 *	inserted or removed. The MMC layer will confirm that any
1434 *	present card is still functional, and initialize any newly
1435 *	inserted.
1436 */
1437void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1438{
1439	_mmc_detect_change(host, delay, true);
1440}
1441EXPORT_SYMBOL(mmc_detect_change);
1442
1443void mmc_init_erase(struct mmc_card *card)
1444{
1445	unsigned int sz;
1446
1447	if (is_power_of_2(card->erase_size))
1448		card->erase_shift = ffs(card->erase_size) - 1;
1449	else
1450		card->erase_shift = 0;
1451
1452	/*
1453	 * It is possible to erase an arbitrarily large area of an SD or MMC
1454	 * card.  That is not desirable because it can take a long time
1455	 * (minutes) potentially delaying more important I/O, and also the
1456	 * timeout calculations become increasingly hugely over-estimated.
1457	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1458	 * to that size and alignment.
1459	 *
1460	 * For SD cards that define Allocation Unit size, limit erases to one
1461	 * Allocation Unit at a time.
1462	 * For MMC, have a stab at ai good value and for modern cards it will
1463	 * end up being 4MiB. Note that if the value is too small, it can end
1464	 * up taking longer to erase. Also note, erase_size is already set to
1465	 * High Capacity Erase Size if available when this function is called.
1466	 */
1467	if (mmc_card_sd(card) && card->ssr.au) {
1468		card->pref_erase = card->ssr.au;
1469		card->erase_shift = ffs(card->ssr.au) - 1;
1470	} else if (card->erase_size) {
1471		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1472		if (sz < 128)
1473			card->pref_erase = 512 * 1024 / 512;
1474		else if (sz < 512)
1475			card->pref_erase = 1024 * 1024 / 512;
1476		else if (sz < 1024)
1477			card->pref_erase = 2 * 1024 * 1024 / 512;
1478		else
1479			card->pref_erase = 4 * 1024 * 1024 / 512;
1480		if (card->pref_erase < card->erase_size)
1481			card->pref_erase = card->erase_size;
1482		else {
1483			sz = card->pref_erase % card->erase_size;
1484			if (sz)
1485				card->pref_erase += card->erase_size - sz;
1486		}
1487	} else
1488		card->pref_erase = 0;
1489}
1490
1491static bool is_trim_arg(unsigned int arg)
1492{
1493	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1494}
1495
1496static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1497				          unsigned int arg, unsigned int qty)
1498{
1499	unsigned int erase_timeout;
1500
1501	if (arg == MMC_DISCARD_ARG ||
1502	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1503		erase_timeout = card->ext_csd.trim_timeout;
1504	} else if (card->ext_csd.erase_group_def & 1) {
1505		/* High Capacity Erase Group Size uses HC timeouts */
1506		if (arg == MMC_TRIM_ARG)
1507			erase_timeout = card->ext_csd.trim_timeout;
1508		else
1509			erase_timeout = card->ext_csd.hc_erase_timeout;
1510	} else {
1511		/* CSD Erase Group Size uses write timeout */
1512		unsigned int mult = (10 << card->csd.r2w_factor);
1513		unsigned int timeout_clks = card->csd.taac_clks * mult;
1514		unsigned int timeout_us;
1515
1516		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1517		if (card->csd.taac_ns < 1000000)
1518			timeout_us = (card->csd.taac_ns * mult) / 1000;
1519		else
1520			timeout_us = (card->csd.taac_ns / 1000) * mult;
1521
1522		/*
1523		 * ios.clock is only a target.  The real clock rate might be
1524		 * less but not that much less, so fudge it by multiplying by 2.
1525		 */
1526		timeout_clks <<= 1;
1527		timeout_us += (timeout_clks * 1000) /
1528			      (card->host->ios.clock / 1000);
1529
1530		erase_timeout = timeout_us / 1000;
1531
1532		/*
1533		 * Theoretically, the calculation could underflow so round up
1534		 * to 1ms in that case.
1535		 */
1536		if (!erase_timeout)
1537			erase_timeout = 1;
1538	}
1539
1540	/* Multiplier for secure operations */
1541	if (arg & MMC_SECURE_ARGS) {
1542		if (arg == MMC_SECURE_ERASE_ARG)
1543			erase_timeout *= card->ext_csd.sec_erase_mult;
1544		else
1545			erase_timeout *= card->ext_csd.sec_trim_mult;
1546	}
1547
1548	erase_timeout *= qty;
1549
1550	/*
1551	 * Ensure at least a 1 second timeout for SPI as per
1552	 * 'mmc_set_data_timeout()'
1553	 */
1554	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1555		erase_timeout = 1000;
1556
1557	return erase_timeout;
1558}
1559
1560static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1561					 unsigned int arg,
1562					 unsigned int qty)
1563{
1564	unsigned int erase_timeout;
1565
1566	/* for DISCARD none of the below calculation applies.
1567	 * the busy timeout is 250msec per discard command.
1568	 */
1569	if (arg == SD_DISCARD_ARG)
1570		return SD_DISCARD_TIMEOUT_MS;
1571
1572	if (card->ssr.erase_timeout) {
1573		/* Erase timeout specified in SD Status Register (SSR) */
1574		erase_timeout = card->ssr.erase_timeout * qty +
1575				card->ssr.erase_offset;
1576	} else {
1577		/*
1578		 * Erase timeout not specified in SD Status Register (SSR) so
1579		 * use 250ms per write block.
1580		 */
1581		erase_timeout = 250 * qty;
1582	}
1583
1584	/* Must not be less than 1 second */
1585	if (erase_timeout < 1000)
1586		erase_timeout = 1000;
1587
1588	return erase_timeout;
1589}
1590
1591static unsigned int mmc_erase_timeout(struct mmc_card *card,
1592				      unsigned int arg,
1593				      unsigned int qty)
1594{
1595	if (mmc_card_sd(card))
1596		return mmc_sd_erase_timeout(card, arg, qty);
1597	else
1598		return mmc_mmc_erase_timeout(card, arg, qty);
1599}
1600
1601static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1602			unsigned int to, unsigned int arg)
1603{
1604	struct mmc_command cmd = {};
1605	unsigned int qty = 0, busy_timeout = 0;
1606	bool use_r1b_resp;
1607	int err;
1608
1609	mmc_retune_hold(card->host);
1610
1611	/*
1612	 * qty is used to calculate the erase timeout which depends on how many
1613	 * erase groups (or allocation units in SD terminology) are affected.
1614	 * We count erasing part of an erase group as one erase group.
1615	 * For SD, the allocation units are always a power of 2.  For MMC, the
1616	 * erase group size is almost certainly also power of 2, but it does not
1617	 * seem to insist on that in the JEDEC standard, so we fall back to
1618	 * division in that case.  SD may not specify an allocation unit size,
1619	 * in which case the timeout is based on the number of write blocks.
1620	 *
1621	 * Note that the timeout for secure trim 2 will only be correct if the
1622	 * number of erase groups specified is the same as the total of all
1623	 * preceding secure trim 1 commands.  Since the power may have been
1624	 * lost since the secure trim 1 commands occurred, it is generally
1625	 * impossible to calculate the secure trim 2 timeout correctly.
1626	 */
1627	if (card->erase_shift)
1628		qty += ((to >> card->erase_shift) -
1629			(from >> card->erase_shift)) + 1;
1630	else if (mmc_card_sd(card))
1631		qty += to - from + 1;
1632	else
1633		qty += ((to / card->erase_size) -
1634			(from / card->erase_size)) + 1;
1635
1636	if (!mmc_card_blockaddr(card)) {
1637		from <<= 9;
1638		to <<= 9;
1639	}
1640
1641	if (mmc_card_sd(card))
1642		cmd.opcode = SD_ERASE_WR_BLK_START;
1643	else
1644		cmd.opcode = MMC_ERASE_GROUP_START;
1645	cmd.arg = from;
1646	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1647	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1648	if (err) {
1649		pr_err("mmc_erase: group start error %d, "
1650		       "status %#x\n", err, cmd.resp[0]);
1651		err = -EIO;
1652		goto out;
1653	}
1654
1655	memset(&cmd, 0, sizeof(struct mmc_command));
1656	if (mmc_card_sd(card))
1657		cmd.opcode = SD_ERASE_WR_BLK_END;
1658	else
1659		cmd.opcode = MMC_ERASE_GROUP_END;
1660	cmd.arg = to;
1661	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1662	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663	if (err) {
1664		pr_err("mmc_erase: group end error %d, status %#x\n",
1665		       err, cmd.resp[0]);
1666		err = -EIO;
1667		goto out;
1668	}
1669
1670	memset(&cmd, 0, sizeof(struct mmc_command));
1671	cmd.opcode = MMC_ERASE;
1672	cmd.arg = arg;
1673	busy_timeout = mmc_erase_timeout(card, arg, qty);
1674	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1675
1676	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677	if (err) {
1678		pr_err("mmc_erase: erase error %d, status %#x\n",
1679		       err, cmd.resp[0]);
1680		err = -EIO;
1681		goto out;
1682	}
1683
1684	if (mmc_host_is_spi(card->host))
1685		goto out;
1686
1687	/*
1688	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1689	 * shall be avoided.
1690	 */
1691	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1692		goto out;
1693
1694	/* Let's poll to find out when the erase operation completes. */
1695	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1696
1697out:
1698	mmc_retune_release(card->host);
1699	return err;
1700}
1701
1702static unsigned int mmc_align_erase_size(struct mmc_card *card,
1703					 unsigned int *from,
1704					 unsigned int *to,
1705					 unsigned int nr)
1706{
1707	unsigned int from_new = *from, nr_new = nr, rem;
1708
1709	/*
1710	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1711	 * to align the erase size efficiently.
1712	 */
1713	if (is_power_of_2(card->erase_size)) {
1714		unsigned int temp = from_new;
1715
1716		from_new = round_up(temp, card->erase_size);
1717		rem = from_new - temp;
1718
1719		if (nr_new > rem)
1720			nr_new -= rem;
1721		else
1722			return 0;
1723
1724		nr_new = round_down(nr_new, card->erase_size);
1725	} else {
1726		rem = from_new % card->erase_size;
1727		if (rem) {
1728			rem = card->erase_size - rem;
1729			from_new += rem;
1730			if (nr_new > rem)
1731				nr_new -= rem;
1732			else
1733				return 0;
1734		}
1735
1736		rem = nr_new % card->erase_size;
1737		if (rem)
1738			nr_new -= rem;
1739	}
1740
1741	if (nr_new == 0)
1742		return 0;
1743
1744	*to = from_new + nr_new;
1745	*from = from_new;
1746
1747	return nr_new;
1748}
1749
1750/**
1751 * mmc_erase - erase sectors.
1752 * @card: card to erase
1753 * @from: first sector to erase
1754 * @nr: number of sectors to erase
1755 * @arg: erase command argument
1756 *
1757 * Caller must claim host before calling this function.
1758 */
1759int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1760	      unsigned int arg)
1761{
1762	unsigned int rem, to = from + nr;
1763	int err;
1764
1765	if (!(card->csd.cmdclass & CCC_ERASE))
1766		return -EOPNOTSUPP;
1767
1768	if (!card->erase_size)
1769		return -EOPNOTSUPP;
1770
1771	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1772		return -EOPNOTSUPP;
1773
1774	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1775	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1776		return -EOPNOTSUPP;
1777
1778	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1779	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1780		return -EOPNOTSUPP;
1781
1782	if (arg == MMC_SECURE_ERASE_ARG) {
1783		if (from % card->erase_size || nr % card->erase_size)
1784			return -EINVAL;
1785	}
1786
1787	if (arg == MMC_ERASE_ARG)
1788		nr = mmc_align_erase_size(card, &from, &to, nr);
1789
1790	if (nr == 0)
1791		return 0;
1792
1793	if (to <= from)
1794		return -EINVAL;
1795
1796	/* 'from' and 'to' are inclusive */
1797	to -= 1;
1798
1799	/*
1800	 * Special case where only one erase-group fits in the timeout budget:
1801	 * If the region crosses an erase-group boundary on this particular
1802	 * case, we will be trimming more than one erase-group which, does not
1803	 * fit in the timeout budget of the controller, so we need to split it
1804	 * and call mmc_do_erase() twice if necessary. This special case is
1805	 * identified by the card->eg_boundary flag.
1806	 */
1807	rem = card->erase_size - (from % card->erase_size);
1808	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1809		err = mmc_do_erase(card, from, from + rem - 1, arg);
1810		from += rem;
1811		if ((err) || (to <= from))
1812			return err;
1813	}
1814
1815	return mmc_do_erase(card, from, to, arg);
1816}
1817EXPORT_SYMBOL(mmc_erase);
1818
1819int mmc_can_erase(struct mmc_card *card)
1820{
1821	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1822		return 1;
1823	return 0;
1824}
1825EXPORT_SYMBOL(mmc_can_erase);
1826
1827int mmc_can_trim(struct mmc_card *card)
1828{
1829	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1830	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1831		return 1;
1832	return 0;
1833}
1834EXPORT_SYMBOL(mmc_can_trim);
1835
1836int mmc_can_discard(struct mmc_card *card)
1837{
1838	/*
1839	 * As there's no way to detect the discard support bit at v4.5
1840	 * use the s/w feature support filed.
1841	 */
1842	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1843		return 1;
1844	return 0;
1845}
1846EXPORT_SYMBOL(mmc_can_discard);
1847
1848int mmc_can_sanitize(struct mmc_card *card)
1849{
1850	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1851		return 0;
1852	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1853		return 1;
1854	return 0;
1855}
1856
1857int mmc_can_secure_erase_trim(struct mmc_card *card)
1858{
1859	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1860	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1861		return 1;
1862	return 0;
1863}
1864EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1865
1866int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1867			    unsigned int nr)
1868{
1869	if (!card->erase_size)
1870		return 0;
1871	if (from % card->erase_size || nr % card->erase_size)
1872		return 0;
1873	return 1;
1874}
1875EXPORT_SYMBOL(mmc_erase_group_aligned);
1876
1877static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1878					    unsigned int arg)
1879{
1880	struct mmc_host *host = card->host;
1881	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1882	unsigned int last_timeout = 0;
1883	unsigned int max_busy_timeout = host->max_busy_timeout ?
1884			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1885
1886	if (card->erase_shift) {
1887		max_qty = UINT_MAX >> card->erase_shift;
1888		min_qty = card->pref_erase >> card->erase_shift;
1889	} else if (mmc_card_sd(card)) {
1890		max_qty = UINT_MAX;
1891		min_qty = card->pref_erase;
1892	} else {
1893		max_qty = UINT_MAX / card->erase_size;
1894		min_qty = card->pref_erase / card->erase_size;
1895	}
1896
1897	/*
1898	 * We should not only use 'host->max_busy_timeout' as the limitation
1899	 * when deciding the max discard sectors. We should set a balance value
1900	 * to improve the erase speed, and it can not get too long timeout at
1901	 * the same time.
1902	 *
1903	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1904	 * matter what size of 'host->max_busy_timeout', but if the
1905	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1906	 * then we can continue to increase the max discard sectors until we
1907	 * get a balance value. In cases when the 'host->max_busy_timeout'
1908	 * isn't specified, use the default max erase timeout.
1909	 */
1910	do {
1911		y = 0;
1912		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1913			timeout = mmc_erase_timeout(card, arg, qty + x);
1914
1915			if (qty + x > min_qty && timeout > max_busy_timeout)
1916				break;
1917
1918			if (timeout < last_timeout)
1919				break;
1920			last_timeout = timeout;
1921			y = x;
1922		}
1923		qty += y;
1924	} while (y);
1925
1926	if (!qty)
1927		return 0;
1928
1929	/*
1930	 * When specifying a sector range to trim, chances are we might cross
1931	 * an erase-group boundary even if the amount of sectors is less than
1932	 * one erase-group.
1933	 * If we can only fit one erase-group in the controller timeout budget,
1934	 * we have to care that erase-group boundaries are not crossed by a
1935	 * single trim operation. We flag that special case with "eg_boundary".
1936	 * In all other cases we can just decrement qty and pretend that we
1937	 * always touch (qty + 1) erase-groups as a simple optimization.
1938	 */
1939	if (qty == 1)
1940		card->eg_boundary = 1;
1941	else
1942		qty--;
1943
1944	/* Convert qty to sectors */
1945	if (card->erase_shift)
1946		max_discard = qty << card->erase_shift;
1947	else if (mmc_card_sd(card))
1948		max_discard = qty + 1;
1949	else
1950		max_discard = qty * card->erase_size;
1951
1952	return max_discard;
1953}
1954
1955unsigned int mmc_calc_max_discard(struct mmc_card *card)
1956{
1957	struct mmc_host *host = card->host;
1958	unsigned int max_discard, max_trim;
1959
1960	/*
1961	 * Without erase_group_def set, MMC erase timeout depends on clock
1962	 * frequence which can change.  In that case, the best choice is
1963	 * just the preferred erase size.
1964	 */
1965	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1966		return card->pref_erase;
1967
1968	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1969	if (mmc_can_trim(card)) {
1970		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1971		if (max_trim < max_discard || max_discard == 0)
1972			max_discard = max_trim;
1973	} else if (max_discard < card->erase_size) {
1974		max_discard = 0;
1975	}
1976	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1977		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1978		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1979	return max_discard;
1980}
1981EXPORT_SYMBOL(mmc_calc_max_discard);
1982
1983bool mmc_card_is_blockaddr(struct mmc_card *card)
1984{
1985	return card ? mmc_card_blockaddr(card) : false;
1986}
1987EXPORT_SYMBOL(mmc_card_is_blockaddr);
1988
1989int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1990{
1991	struct mmc_command cmd = {};
1992
1993	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1994	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1995		return 0;
1996
1997	cmd.opcode = MMC_SET_BLOCKLEN;
1998	cmd.arg = blocklen;
1999	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000	return mmc_wait_for_cmd(card->host, &cmd, 5);
2001}
2002EXPORT_SYMBOL(mmc_set_blocklen);
2003
2004static void mmc_hw_reset_for_init(struct mmc_host *host)
2005{
2006	mmc_pwrseq_reset(host);
2007
2008	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2009		return;
2010	host->ops->card_hw_reset(host);
2011}
2012
2013/**
2014 * mmc_hw_reset - reset the card in hardware
2015 * @card: card to be reset
2016 *
2017 * Hard reset the card. This function is only for upper layers, like the
2018 * block layer or card drivers. You cannot use it in host drivers (struct
2019 * mmc_card might be gone then).
2020 *
2021 * Return: 0 on success, -errno on failure
2022 */
2023int mmc_hw_reset(struct mmc_card *card)
2024{
2025	struct mmc_host *host = card->host;
2026	int ret;
2027
2028	ret = host->bus_ops->hw_reset(host);
2029	if (ret < 0)
2030		pr_warn("%s: tried to HW reset card, got error %d\n",
2031			mmc_hostname(host), ret);
2032
2033	return ret;
2034}
2035EXPORT_SYMBOL(mmc_hw_reset);
2036
2037int mmc_sw_reset(struct mmc_card *card)
2038{
2039	struct mmc_host *host = card->host;
2040	int ret;
2041
2042	if (!host->bus_ops->sw_reset)
2043		return -EOPNOTSUPP;
2044
2045	ret = host->bus_ops->sw_reset(host);
2046	if (ret)
2047		pr_warn("%s: tried to SW reset card, got error %d\n",
2048			mmc_hostname(host), ret);
2049
2050	return ret;
2051}
2052EXPORT_SYMBOL(mmc_sw_reset);
2053
2054static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2055{
2056	host->f_init = freq;
2057
2058	pr_debug("%s: %s: trying to init card at %u Hz\n",
2059		mmc_hostname(host), __func__, host->f_init);
2060
2061	mmc_power_up(host, host->ocr_avail);
2062
2063	/*
2064	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2065	 * do a hardware reset if possible.
2066	 */
2067	mmc_hw_reset_for_init(host);
2068
2069	/*
2070	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2071	 * if the card is being re-initialized, just send it.  CMD52
2072	 * should be ignored by SD/eMMC cards.
2073	 * Skip it if we already know that we do not support SDIO commands
2074	 */
2075	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2076		sdio_reset(host);
2077
2078	mmc_go_idle(host);
2079
2080	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2081		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2082			goto out;
2083		if (mmc_card_sd_express(host))
2084			return 0;
2085	}
2086
2087	/* Order's important: probe SDIO, then SD, then MMC */
2088	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2089		if (!mmc_attach_sdio(host))
2090			return 0;
2091
2092	if (!(host->caps2 & MMC_CAP2_NO_SD))
2093		if (!mmc_attach_sd(host))
2094			return 0;
2095
2096	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2097		if (!mmc_attach_mmc(host))
2098			return 0;
2099
2100out:
2101	mmc_power_off(host);
2102	return -EIO;
2103}
2104
2105int _mmc_detect_card_removed(struct mmc_host *host)
2106{
2107	int ret;
2108
2109	if (!host->card || mmc_card_removed(host->card))
2110		return 1;
2111
2112	ret = host->bus_ops->alive(host);
2113
2114	/*
2115	 * Card detect status and alive check may be out of sync if card is
2116	 * removed slowly, when card detect switch changes while card/slot
2117	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2118	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2119	 * detect work 200ms later for this case.
2120	 */
2121	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2122		mmc_detect_change(host, msecs_to_jiffies(200));
2123		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2124	}
2125
2126	if (ret) {
2127		mmc_card_set_removed(host->card);
2128		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2129	}
2130
2131	return ret;
2132}
2133
2134int mmc_detect_card_removed(struct mmc_host *host)
2135{
2136	struct mmc_card *card = host->card;
2137	int ret;
2138
2139	WARN_ON(!host->claimed);
2140
2141	if (!card)
2142		return 1;
2143
2144	if (!mmc_card_is_removable(host))
2145		return 0;
2146
2147	ret = mmc_card_removed(card);
2148	/*
2149	 * The card will be considered unchanged unless we have been asked to
2150	 * detect a change or host requires polling to provide card detection.
2151	 */
2152	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2153		return ret;
2154
2155	host->detect_change = 0;
2156	if (!ret) {
2157		ret = _mmc_detect_card_removed(host);
2158		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2159			/*
2160			 * Schedule a detect work as soon as possible to let a
2161			 * rescan handle the card removal.
2162			 */
2163			cancel_delayed_work(&host->detect);
2164			_mmc_detect_change(host, 0, false);
2165		}
2166	}
2167
2168	return ret;
2169}
2170EXPORT_SYMBOL(mmc_detect_card_removed);
2171
2172int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2173{
2174	unsigned int boot_sectors_num;
2175
2176	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2177		return -EOPNOTSUPP;
2178
2179	/* filter out unrelated cards */
2180	if (card->ext_csd.rev < 3 ||
2181	    !mmc_card_mmc(card) ||
2182	    !mmc_card_is_blockaddr(card) ||
2183	     mmc_card_is_removable(card->host))
2184		return -ENOENT;
2185
2186	/*
2187	 * eMMC storage has two special boot partitions in addition to the
2188	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2189	 * accesses, this means that the partition table addresses are shifted
2190	 * by the size of boot partitions.  In accordance with the eMMC
2191	 * specification, the boot partition size is calculated as follows:
2192	 *
2193	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2194	 *
2195	 * Calculate number of sectors occupied by the both boot partitions.
2196	 */
2197	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2198			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2199
2200	/* Defined by NVIDIA and used by Android devices. */
2201	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2202
2203	return 0;
2204}
2205EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2206
2207void mmc_rescan(struct work_struct *work)
2208{
2209	struct mmc_host *host =
2210		container_of(work, struct mmc_host, detect.work);
2211	int i;
2212
2213	if (host->rescan_disable)
2214		return;
2215
2216	/* If there is a non-removable card registered, only scan once */
2217	if (!mmc_card_is_removable(host) && host->rescan_entered)
2218		return;
2219	host->rescan_entered = 1;
2220
2221	if (host->trigger_card_event && host->ops->card_event) {
2222		mmc_claim_host(host);
2223		host->ops->card_event(host);
2224		mmc_release_host(host);
2225		host->trigger_card_event = false;
2226	}
2227
2228	/* Verify a registered card to be functional, else remove it. */
2229	if (host->bus_ops)
2230		host->bus_ops->detect(host);
2231
2232	host->detect_change = 0;
2233
2234	/* if there still is a card present, stop here */
2235	if (host->bus_ops != NULL)
2236		goto out;
2237
2238	mmc_claim_host(host);
2239	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2240			host->ops->get_cd(host) == 0) {
2241		mmc_power_off(host);
2242		mmc_release_host(host);
2243		goto out;
2244	}
2245
2246	/* If an SD express card is present, then leave it as is. */
2247	if (mmc_card_sd_express(host)) {
2248		mmc_release_host(host);
2249		goto out;
2250	}
2251
2252	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2253		unsigned int freq = freqs[i];
2254		if (freq > host->f_max) {
2255			if (i + 1 < ARRAY_SIZE(freqs))
2256				continue;
2257			freq = host->f_max;
2258		}
2259		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2260			break;
2261		if (freqs[i] <= host->f_min)
2262			break;
2263	}
2264
2265	/* A non-removable card should have been detected by now. */
2266	if (!mmc_card_is_removable(host) && !host->bus_ops)
2267		pr_info("%s: Failed to initialize a non-removable card",
2268			mmc_hostname(host));
2269
2270	/*
2271	 * Ignore the command timeout errors observed during
2272	 * the card init as those are excepted.
2273	 */
2274	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2275	mmc_release_host(host);
2276
2277 out:
2278	if (host->caps & MMC_CAP_NEEDS_POLL)
2279		mmc_schedule_delayed_work(&host->detect, HZ);
2280}
2281
2282void mmc_start_host(struct mmc_host *host)
2283{
2284	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2285	host->rescan_disable = 0;
2286
2287	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2288		mmc_claim_host(host);
2289		mmc_power_up(host, host->ocr_avail);
2290		mmc_release_host(host);
2291	}
2292
2293	mmc_gpiod_request_cd_irq(host);
2294	_mmc_detect_change(host, 0, false);
2295}
2296
2297void __mmc_stop_host(struct mmc_host *host)
2298{
2299	if (host->slot.cd_irq >= 0) {
2300		mmc_gpio_set_cd_wake(host, false);
2301		disable_irq(host->slot.cd_irq);
2302	}
2303
2304	host->rescan_disable = 1;
2305	cancel_delayed_work_sync(&host->detect);
2306}
2307
2308void mmc_stop_host(struct mmc_host *host)
2309{
2310	__mmc_stop_host(host);
2311
2312	/* clear pm flags now and let card drivers set them as needed */
2313	host->pm_flags = 0;
2314
2315	if (host->bus_ops) {
2316		/* Calling bus_ops->remove() with a claimed host can deadlock */
2317		host->bus_ops->remove(host);
2318		mmc_claim_host(host);
2319		mmc_detach_bus(host);
2320		mmc_power_off(host);
2321		mmc_release_host(host);
2322		return;
2323	}
2324
2325	mmc_claim_host(host);
2326	mmc_power_off(host);
2327	mmc_release_host(host);
2328}
2329
2330static int __init mmc_init(void)
2331{
2332	int ret;
2333
2334	ret = mmc_register_bus();
2335	if (ret)
2336		return ret;
2337
2338	ret = mmc_register_host_class();
2339	if (ret)
2340		goto unregister_bus;
2341
2342	ret = sdio_register_bus();
2343	if (ret)
2344		goto unregister_host_class;
2345
2346	return 0;
2347
2348unregister_host_class:
2349	mmc_unregister_host_class();
2350unregister_bus:
2351	mmc_unregister_bus();
2352	return ret;
2353}
2354
2355static void __exit mmc_exit(void)
2356{
2357	sdio_unregister_bus();
2358	mmc_unregister_host_class();
2359	mmc_unregister_bus();
2360}
2361
2362subsys_initcall(mmc_init);
2363module_exit(mmc_exit);
2364
2365MODULE_LICENSE("GPL");