Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337	int err;
 338
 339	init_completion(&mrq->cmd_completion);
 340
 341	mmc_retune_hold(host);
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 347
 348	WARN_ON(!host->claimed);
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 353
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 356
 357	return 0;
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 392	}
 393
 394	return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 406		if (!cmd->error || !cmd->retries ||
 407		    mmc_card_removed(host->card))
 408			break;
 409
 410		mmc_retune_recheck(host);
 411
 412		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413			 mmc_hostname(host), cmd->opcode, cmd->error);
 414		cmd->retries--;
 415		cmd->error = 0;
 416		__mmc_start_request(host, mrq);
 417	}
 418
 419	mmc_retune_release(host);
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 432{
 433	int err;
 434
 435	/*
 436	 * CQE cannot process re-tuning commands. Caller must hold retuning
 437	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438	 * active requests i.e. this is the first.  Note, re-tuning will call
 439	 * ->cqe_off().
 440	 */
 441	err = mmc_retune(host);
 442	if (err)
 443		goto out_err;
 444
 445	mrq->host = host;
 446
 447	mmc_mrq_pr_debug(host, mrq, true);
 448
 449	err = mmc_mrq_prep(host, mrq);
 450	if (err)
 451		goto out_err;
 452
 453	err = host->cqe_ops->cqe_request(host, mrq);
 454	if (err)
 455		goto out_err;
 456
 457	trace_mmc_request_start(host, mrq);
 458
 459	return 0;
 460
 461out_err:
 462	if (mrq->cmd) {
 463		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464			 mmc_hostname(host), mrq->cmd->opcode, err);
 465	} else {
 466		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467			 mmc_hostname(host), mrq->tag, err);
 468	}
 469	return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *	@host: MMC host which completed request
 476 *	@mrq: MMC request which completed
 477 *
 478 *	CQE drivers should call this function when they have completed
 479 *	their processing of a request.
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 482{
 483	mmc_should_fail_request(host, mrq);
 484
 485	/* Flag re-tuning needed on CRC errors */
 486	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487	    (mrq->data && mrq->data->error == -EILSEQ))
 488		mmc_retune_needed(host);
 489
 490	trace_mmc_request_done(host, mrq);
 491
 492	if (mrq->cmd) {
 493		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495	} else {
 496		pr_debug("%s: CQE transfer done tag %d\n",
 497			 mmc_hostname(host), mrq->tag);
 498	}
 499
 500	if (mrq->data) {
 501		pr_debug("%s:     %d bytes transferred: %d\n",
 502			 mmc_hostname(host),
 503			 mrq->data->bytes_xfered, mrq->data->error);
 504	}
 505
 506	mrq->done(mrq);
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *	@host: MMC host
 513 *	@mrq: MMC request to be processed
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517	if (host->cqe_ops->cqe_post_req)
 518		host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT	1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 535{
 536	struct mmc_command cmd;
 537	int err;
 538
 539	mmc_retune_hold_now(host);
 540
 541	/*
 542	 * Recovery is expected seldom, if at all, but it reduces performance,
 543	 * so make sure it is not completely silent.
 544	 */
 545	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547	host->cqe_ops->cqe_recovery_start(host);
 548
 549	memset(&cmd, 0, sizeof(cmd));
 550	cmd.opcode       = MMC_STOP_TRANSMISSION;
 551	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 552	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 554	mmc_wait_for_cmd(host, &cmd, 0);
 555
 556	memset(&cmd, 0, sizeof(cmd));
 557	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 558	cmd.arg          = 1; /* Discard entire queue */
 559	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 560	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 561	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 562	err = mmc_wait_for_cmd(host, &cmd, 0);
 563
 564	host->cqe_ops->cqe_recovery_finish(host);
 565
 566	mmc_retune_release(host);
 567
 568	return err;
 569}
 570EXPORT_SYMBOL(mmc_cqe_recovery);
 571
 572/**
 573 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 574 *	@host: MMC host
 575 *	@mrq: MMC request
 576 *
 577 *	mmc_is_req_done() is used with requests that have
 578 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 579 *	starting a request and before waiting for it to complete. That is,
 580 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 581 *	and before mmc_wait_for_req_done(). If it is called at other times the
 582 *	result is not meaningful.
 583 */
 584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 585{
 586	return completion_done(&mrq->completion);
 587}
 588EXPORT_SYMBOL(mmc_is_req_done);
 589
 590/**
 591 *	mmc_wait_for_req - start a request and wait for completion
 592 *	@host: MMC host to start command
 593 *	@mrq: MMC request to start
 594 *
 595 *	Start a new MMC custom command request for a host, and wait
 596 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 597 *	requests, the transfer is ongoing and the caller can issue further
 598 *	commands that do not use the data lines, and then wait by calling
 599 *	mmc_wait_for_req_done().
 600 *	Does not attempt to parse the response.
 601 */
 602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 603{
 604	__mmc_start_req(host, mrq);
 605
 606	if (!mrq->cap_cmd_during_tfr)
 607		mmc_wait_for_req_done(host, mrq);
 608}
 609EXPORT_SYMBOL(mmc_wait_for_req);
 610
 611/**
 612 *	mmc_wait_for_cmd - start a command and wait for completion
 613 *	@host: MMC host to start command
 614 *	@cmd: MMC command to start
 615 *	@retries: maximum number of retries
 616 *
 617 *	Start a new MMC command for a host, and wait for the command
 618 *	to complete.  Return any error that occurred while the command
 619 *	was executing.  Do not attempt to parse the response.
 620 */
 621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 622{
 623	struct mmc_request mrq = {};
 624
 625	WARN_ON(!host->claimed);
 626
 627	memset(cmd->resp, 0, sizeof(cmd->resp));
 628	cmd->retries = retries;
 629
 630	mrq.cmd = cmd;
 631	cmd->data = NULL;
 632
 633	mmc_wait_for_req(host, &mrq);
 634
 635	return cmd->error;
 636}
 637
 638EXPORT_SYMBOL(mmc_wait_for_cmd);
 639
 640/**
 641 *	mmc_set_data_timeout - set the timeout for a data command
 642 *	@data: data phase for command
 643 *	@card: the MMC card associated with the data transfer
 644 *
 645 *	Computes the data timeout parameters according to the
 646 *	correct algorithm given the card type.
 647 */
 648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 649{
 650	unsigned int mult;
 651
 652	/*
 653	 * SDIO cards only define an upper 1 s limit on access.
 654	 */
 655	if (mmc_card_sdio(card)) {
 656		data->timeout_ns = 1000000000;
 657		data->timeout_clks = 0;
 658		return;
 659	}
 660
 661	/*
 662	 * SD cards use a 100 multiplier rather than 10
 663	 */
 664	mult = mmc_card_sd(card) ? 100 : 10;
 665
 666	/*
 667	 * Scale up the multiplier (and therefore the timeout) by
 668	 * the r2w factor for writes.
 669	 */
 670	if (data->flags & MMC_DATA_WRITE)
 671		mult <<= card->csd.r2w_factor;
 672
 673	data->timeout_ns = card->csd.taac_ns * mult;
 674	data->timeout_clks = card->csd.taac_clks * mult;
 675
 676	/*
 677	 * SD cards also have an upper limit on the timeout.
 678	 */
 679	if (mmc_card_sd(card)) {
 680		unsigned int timeout_us, limit_us;
 681
 682		timeout_us = data->timeout_ns / 1000;
 683		if (card->host->ios.clock)
 684			timeout_us += data->timeout_clks * 1000 /
 685				(card->host->ios.clock / 1000);
 686
 687		if (data->flags & MMC_DATA_WRITE)
 688			/*
 689			 * The MMC spec "It is strongly recommended
 690			 * for hosts to implement more than 500ms
 691			 * timeout value even if the card indicates
 692			 * the 250ms maximum busy length."  Even the
 693			 * previous value of 300ms is known to be
 694			 * insufficient for some cards.
 695			 */
 696			limit_us = 3000000;
 697		else
 698			limit_us = 100000;
 699
 700		/*
 701		 * SDHC cards always use these fixed values.
 702		 */
 703		if (timeout_us > limit_us) {
 704			data->timeout_ns = limit_us * 1000;
 705			data->timeout_clks = 0;
 706		}
 707
 708		/* assign limit value if invalid */
 709		if (timeout_us == 0)
 710			data->timeout_ns = limit_us * 1000;
 711	}
 712
 713	/*
 714	 * Some cards require longer data read timeout than indicated in CSD.
 715	 * Address this by setting the read timeout to a "reasonably high"
 716	 * value. For the cards tested, 600ms has proven enough. If necessary,
 717	 * this value can be increased if other problematic cards require this.
 718	 */
 719	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 720		data->timeout_ns = 600000000;
 721		data->timeout_clks = 0;
 722	}
 723
 724	/*
 725	 * Some cards need very high timeouts if driven in SPI mode.
 726	 * The worst observed timeout was 900ms after writing a
 727	 * continuous stream of data until the internal logic
 728	 * overflowed.
 729	 */
 730	if (mmc_host_is_spi(card->host)) {
 731		if (data->flags & MMC_DATA_WRITE) {
 732			if (data->timeout_ns < 1000000000)
 733				data->timeout_ns = 1000000000;	/* 1s */
 734		} else {
 735			if (data->timeout_ns < 100000000)
 736				data->timeout_ns =  100000000;	/* 100ms */
 737		}
 738	}
 739}
 740EXPORT_SYMBOL(mmc_set_data_timeout);
 741
 742/*
 743 * Allow claiming an already claimed host if the context is the same or there is
 744 * no context but the task is the same.
 745 */
 746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 747				   struct task_struct *task)
 748{
 749	return host->claimer == ctx ||
 750	       (!ctx && task && host->claimer->task == task);
 751}
 752
 753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 754				       struct mmc_ctx *ctx,
 755				       struct task_struct *task)
 756{
 757	if (!host->claimer) {
 758		if (ctx)
 759			host->claimer = ctx;
 760		else
 761			host->claimer = &host->default_ctx;
 762	}
 763	if (task)
 764		host->claimer->task = task;
 765}
 766
 767/**
 768 *	__mmc_claim_host - exclusively claim a host
 769 *	@host: mmc host to claim
 770 *	@ctx: context that claims the host or NULL in which case the default
 771 *	context will be used
 772 *	@abort: whether or not the operation should be aborted
 773 *
 774 *	Claim a host for a set of operations.  If @abort is non null and
 775 *	dereference a non-zero value then this will return prematurely with
 776 *	that non-zero value without acquiring the lock.  Returns zero
 777 *	with the lock held otherwise.
 778 */
 779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 780		     atomic_t *abort)
 781{
 782	struct task_struct *task = ctx ? NULL : current;
 783	DECLARE_WAITQUEUE(wait, current);
 784	unsigned long flags;
 785	int stop;
 786	bool pm = false;
 787
 788	might_sleep();
 789
 790	add_wait_queue(&host->wq, &wait);
 791	spin_lock_irqsave(&host->lock, flags);
 792	while (1) {
 793		set_current_state(TASK_UNINTERRUPTIBLE);
 794		stop = abort ? atomic_read(abort) : 0;
 795		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 796			break;
 797		spin_unlock_irqrestore(&host->lock, flags);
 798		schedule();
 799		spin_lock_irqsave(&host->lock, flags);
 800	}
 801	set_current_state(TASK_RUNNING);
 802	if (!stop) {
 803		host->claimed = 1;
 804		mmc_ctx_set_claimer(host, ctx, task);
 805		host->claim_cnt += 1;
 806		if (host->claim_cnt == 1)
 807			pm = true;
 808	} else
 809		wake_up(&host->wq);
 810	spin_unlock_irqrestore(&host->lock, flags);
 811	remove_wait_queue(&host->wq, &wait);
 812
 813	if (pm)
 814		pm_runtime_get_sync(mmc_dev(host));
 815
 816	return stop;
 817}
 818EXPORT_SYMBOL(__mmc_claim_host);
 819
 820/**
 821 *	mmc_release_host - release a host
 822 *	@host: mmc host to release
 823 *
 824 *	Release a MMC host, allowing others to claim the host
 825 *	for their operations.
 826 */
 827void mmc_release_host(struct mmc_host *host)
 828{
 829	unsigned long flags;
 830
 831	WARN_ON(!host->claimed);
 832
 833	spin_lock_irqsave(&host->lock, flags);
 834	if (--host->claim_cnt) {
 835		/* Release for nested claim */
 836		spin_unlock_irqrestore(&host->lock, flags);
 837	} else {
 838		host->claimed = 0;
 839		host->claimer->task = NULL;
 840		host->claimer = NULL;
 841		spin_unlock_irqrestore(&host->lock, flags);
 842		wake_up(&host->wq);
 843		pm_runtime_mark_last_busy(mmc_dev(host));
 844		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 845			pm_runtime_put_sync_suspend(mmc_dev(host));
 846		else
 847			pm_runtime_put_autosuspend(mmc_dev(host));
 848	}
 849}
 850EXPORT_SYMBOL(mmc_release_host);
 851
 852/*
 853 * This is a helper function, which fetches a runtime pm reference for the
 854 * card device and also claims the host.
 855 */
 856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 857{
 858	pm_runtime_get_sync(&card->dev);
 859	__mmc_claim_host(card->host, ctx, NULL);
 860}
 861EXPORT_SYMBOL(mmc_get_card);
 862
 863/*
 864 * This is a helper function, which releases the host and drops the runtime
 865 * pm reference for the card device.
 866 */
 867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 868{
 869	struct mmc_host *host = card->host;
 870
 871	WARN_ON(ctx && host->claimer != ctx);
 872
 873	mmc_release_host(host);
 874	pm_runtime_mark_last_busy(&card->dev);
 875	pm_runtime_put_autosuspend(&card->dev);
 876}
 877EXPORT_SYMBOL(mmc_put_card);
 878
 879/*
 880 * Internal function that does the actual ios call to the host driver,
 881 * optionally printing some debug output.
 882 */
 883static inline void mmc_set_ios(struct mmc_host *host)
 884{
 885	struct mmc_ios *ios = &host->ios;
 886
 887	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 888		"width %u timing %u\n",
 889		 mmc_hostname(host), ios->clock, ios->bus_mode,
 890		 ios->power_mode, ios->chip_select, ios->vdd,
 891		 1 << ios->bus_width, ios->timing);
 892
 893	host->ops->set_ios(host, ios);
 894}
 895
 896/*
 897 * Control chip select pin on a host.
 898 */
 899void mmc_set_chip_select(struct mmc_host *host, int mode)
 900{
 901	host->ios.chip_select = mode;
 902	mmc_set_ios(host);
 903}
 904
 905/*
 906 * Sets the host clock to the highest possible frequency that
 907 * is below "hz".
 908 */
 909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 910{
 911	WARN_ON(hz && hz < host->f_min);
 912
 913	if (hz > host->f_max)
 914		hz = host->f_max;
 915
 916	host->ios.clock = hz;
 917	mmc_set_ios(host);
 918}
 919
 920int mmc_execute_tuning(struct mmc_card *card)
 921{
 922	struct mmc_host *host = card->host;
 923	u32 opcode;
 924	int err;
 925
 926	if (!host->ops->execute_tuning)
 927		return 0;
 928
 929	if (host->cqe_on)
 930		host->cqe_ops->cqe_off(host);
 931
 932	if (mmc_card_mmc(card))
 933		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 934	else
 935		opcode = MMC_SEND_TUNING_BLOCK;
 936
 937	err = host->ops->execute_tuning(host, opcode);
 938	if (!err) {
 939		mmc_retune_clear(host);
 940		mmc_retune_enable(host);
 941		return 0;
 942	}
 943
 944	/* Only print error when we don't check for card removal */
 945	if (!host->detect_change) {
 946		pr_err("%s: tuning execution failed: %d\n",
 947			mmc_hostname(host), err);
 948		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 
 
 
 949	}
 950
 951	return err;
 952}
 953
 954/*
 955 * Change the bus mode (open drain/push-pull) of a host.
 956 */
 957void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 958{
 959	host->ios.bus_mode = mode;
 960	mmc_set_ios(host);
 961}
 962
 963/*
 964 * Change data bus width of a host.
 965 */
 966void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 967{
 968	host->ios.bus_width = width;
 969	mmc_set_ios(host);
 970}
 971
 972/*
 973 * Set initial state after a power cycle or a hw_reset.
 974 */
 975void mmc_set_initial_state(struct mmc_host *host)
 976{
 977	if (host->cqe_on)
 978		host->cqe_ops->cqe_off(host);
 979
 980	mmc_retune_disable(host);
 981
 982	if (mmc_host_is_spi(host))
 983		host->ios.chip_select = MMC_CS_HIGH;
 984	else
 985		host->ios.chip_select = MMC_CS_DONTCARE;
 986	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 987	host->ios.bus_width = MMC_BUS_WIDTH_1;
 988	host->ios.timing = MMC_TIMING_LEGACY;
 989	host->ios.drv_type = 0;
 990	host->ios.enhanced_strobe = false;
 991
 992	/*
 993	 * Make sure we are in non-enhanced strobe mode before we
 994	 * actually enable it in ext_csd.
 995	 */
 996	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
 997	     host->ops->hs400_enhanced_strobe)
 998		host->ops->hs400_enhanced_strobe(host, &host->ios);
 999
1000	mmc_set_ios(host);
1001
1002	mmc_crypto_set_initial_state(host);
1003}
1004
1005/**
1006 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007 * @vdd:	voltage (mV)
1008 * @low_bits:	prefer low bits in boundary cases
1009 *
1010 * This function returns the OCR bit number according to the provided @vdd
1011 * value. If conversion is not possible a negative errno value returned.
1012 *
1013 * Depending on the @low_bits flag the function prefers low or high OCR bits
1014 * on boundary voltages. For example,
1015 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017 *
1018 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019 */
1020static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021{
1022	const int max_bit = ilog2(MMC_VDD_35_36);
1023	int bit;
1024
1025	if (vdd < 1650 || vdd > 3600)
1026		return -EINVAL;
1027
1028	if (vdd >= 1650 && vdd <= 1950)
1029		return ilog2(MMC_VDD_165_195);
1030
1031	if (low_bits)
1032		vdd -= 1;
1033
1034	/* Base 2000 mV, step 100 mV, bit's base 8. */
1035	bit = (vdd - 2000) / 100 + 8;
1036	if (bit > max_bit)
1037		return max_bit;
1038	return bit;
1039}
1040
1041/**
1042 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043 * @vdd_min:	minimum voltage value (mV)
1044 * @vdd_max:	maximum voltage value (mV)
1045 *
1046 * This function returns the OCR mask bits according to the provided @vdd_min
1047 * and @vdd_max values. If conversion is not possible the function returns 0.
1048 *
1049 * Notes wrt boundary cases:
1050 * This function sets the OCR bits for all boundary voltages, for example
1051 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052 * MMC_VDD_34_35 mask.
1053 */
1054u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055{
1056	u32 mask = 0;
1057
1058	if (vdd_max < vdd_min)
1059		return 0;
1060
1061	/* Prefer high bits for the boundary vdd_max values. */
1062	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063	if (vdd_max < 0)
1064		return 0;
1065
1066	/* Prefer low bits for the boundary vdd_min values. */
1067	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068	if (vdd_min < 0)
1069		return 0;
1070
1071	/* Fill the mask, from max bit to min bit. */
1072	while (vdd_max >= vdd_min)
1073		mask |= 1 << vdd_max--;
1074
1075	return mask;
1076}
1077
1078static int mmc_of_get_func_num(struct device_node *node)
1079{
1080	u32 reg;
1081	int ret;
1082
1083	ret = of_property_read_u32(node, "reg", &reg);
1084	if (ret < 0)
1085		return ret;
1086
1087	return reg;
1088}
1089
1090struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091		unsigned func_num)
1092{
1093	struct device_node *node;
1094
1095	if (!host->parent || !host->parent->of_node)
1096		return NULL;
1097
1098	for_each_child_of_node(host->parent->of_node, node) {
1099		if (mmc_of_get_func_num(node) == func_num)
1100			return node;
1101	}
1102
1103	return NULL;
1104}
1105
1106/*
1107 * Mask off any voltages we don't support and select
1108 * the lowest voltage
1109 */
1110u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111{
1112	int bit;
1113
1114	/*
1115	 * Sanity check the voltages that the card claims to
1116	 * support.
1117	 */
1118	if (ocr & 0x7F) {
1119		dev_warn(mmc_dev(host),
1120		"card claims to support voltages below defined range\n");
1121		ocr &= ~0x7F;
1122	}
1123
1124	ocr &= host->ocr_avail;
1125	if (!ocr) {
1126		dev_warn(mmc_dev(host), "no support for card's volts\n");
1127		return 0;
1128	}
1129
1130	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131		bit = ffs(ocr) - 1;
1132		ocr &= 3 << bit;
1133		mmc_power_cycle(host, ocr);
1134	} else {
1135		bit = fls(ocr) - 1;
1136		/*
1137		 * The bit variable represents the highest voltage bit set in
1138		 * the OCR register.
1139		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140		 * we must shift the mask '3' with (bit - 1).
1141		 */
1142		ocr &= 3 << (bit - 1);
1143		if (bit != host->ios.vdd)
1144			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145	}
1146
1147	return ocr;
1148}
1149
1150int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151{
1152	int err = 0;
1153	int old_signal_voltage = host->ios.signal_voltage;
1154
1155	host->ios.signal_voltage = signal_voltage;
1156	if (host->ops->start_signal_voltage_switch)
1157		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158
1159	if (err)
1160		host->ios.signal_voltage = old_signal_voltage;
1161
1162	return err;
1163
1164}
1165
1166void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167{
1168	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175}
1176
1177int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178{
1179	u32 clock;
1180
1181	/*
1182	 * During a signal voltage level switch, the clock must be gated
1183	 * for 5 ms according to the SD spec
1184	 */
1185	clock = host->ios.clock;
1186	host->ios.clock = 0;
1187	mmc_set_ios(host);
1188
1189	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190		return -EAGAIN;
1191
1192	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193	mmc_delay(10);
1194	host->ios.clock = clock;
1195	mmc_set_ios(host);
1196
1197	return 0;
1198}
1199
1200int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201{
1202	struct mmc_command cmd = {};
1203	int err = 0;
1204
1205	/*
1206	 * If we cannot switch voltages, return failure so the caller
1207	 * can continue without UHS mode
1208	 */
1209	if (!host->ops->start_signal_voltage_switch)
1210		return -EPERM;
1211	if (!host->ops->card_busy)
1212		pr_warn("%s: cannot verify signal voltage switch\n",
1213			mmc_hostname(host));
1214
1215	cmd.opcode = SD_SWITCH_VOLTAGE;
1216	cmd.arg = 0;
1217	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218
1219	err = mmc_wait_for_cmd(host, &cmd, 0);
1220	if (err)
1221		goto power_cycle;
1222
1223	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224		return -EIO;
1225
1226	/*
1227	 * The card should drive cmd and dat[0:3] low immediately
1228	 * after the response of cmd11, but wait 1 ms to be sure
1229	 */
1230	mmc_delay(1);
1231	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232		err = -EAGAIN;
1233		goto power_cycle;
1234	}
1235
1236	if (mmc_host_set_uhs_voltage(host)) {
1237		/*
1238		 * Voltages may not have been switched, but we've already
1239		 * sent CMD11, so a power cycle is required anyway
1240		 */
1241		err = -EAGAIN;
1242		goto power_cycle;
1243	}
1244
1245	/* Wait for at least 1 ms according to spec */
1246	mmc_delay(1);
1247
1248	/*
1249	 * Failure to switch is indicated by the card holding
1250	 * dat[0:3] low
1251	 */
1252	if (host->ops->card_busy && host->ops->card_busy(host))
1253		err = -EAGAIN;
1254
1255power_cycle:
1256	if (err) {
1257		pr_debug("%s: Signal voltage switch failed, "
1258			"power cycling card\n", mmc_hostname(host));
1259		mmc_power_cycle(host, ocr);
1260	}
1261
1262	return err;
1263}
1264
1265/*
1266 * Select timing parameters for host.
1267 */
1268void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269{
1270	host->ios.timing = timing;
1271	mmc_set_ios(host);
1272}
1273
1274/*
1275 * Select appropriate driver type for host.
1276 */
1277void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278{
1279	host->ios.drv_type = drv_type;
1280	mmc_set_ios(host);
1281}
1282
1283int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284			      int card_drv_type, int *drv_type)
1285{
1286	struct mmc_host *host = card->host;
1287	int host_drv_type = SD_DRIVER_TYPE_B;
1288
1289	*drv_type = 0;
1290
1291	if (!host->ops->select_drive_strength)
1292		return 0;
1293
1294	/* Use SD definition of driver strength for hosts */
1295	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296		host_drv_type |= SD_DRIVER_TYPE_A;
1297
1298	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299		host_drv_type |= SD_DRIVER_TYPE_C;
1300
1301	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302		host_drv_type |= SD_DRIVER_TYPE_D;
1303
1304	/*
1305	 * The drive strength that the hardware can support
1306	 * depends on the board design.  Pass the appropriate
1307	 * information and let the hardware specific code
1308	 * return what is possible given the options
1309	 */
1310	return host->ops->select_drive_strength(card, max_dtr,
1311						host_drv_type,
1312						card_drv_type,
1313						drv_type);
1314}
1315
1316/*
1317 * Apply power to the MMC stack.  This is a two-stage process.
1318 * First, we enable power to the card without the clock running.
1319 * We then wait a bit for the power to stabilise.  Finally,
1320 * enable the bus drivers and clock to the card.
1321 *
1322 * We must _NOT_ enable the clock prior to power stablising.
1323 *
1324 * If a host does all the power sequencing itself, ignore the
1325 * initial MMC_POWER_UP stage.
1326 */
1327void mmc_power_up(struct mmc_host *host, u32 ocr)
1328{
1329	if (host->ios.power_mode == MMC_POWER_ON)
1330		return;
1331
1332	mmc_pwrseq_pre_power_on(host);
1333
1334	host->ios.vdd = fls(ocr) - 1;
1335	host->ios.power_mode = MMC_POWER_UP;
1336	/* Set initial state and call mmc_set_ios */
1337	mmc_set_initial_state(host);
1338
1339	mmc_set_initial_signal_voltage(host);
1340
1341	/*
1342	 * This delay should be sufficient to allow the power supply
1343	 * to reach the minimum voltage.
1344	 */
1345	mmc_delay(host->ios.power_delay_ms);
1346
1347	mmc_pwrseq_post_power_on(host);
1348
1349	host->ios.clock = host->f_init;
1350
1351	host->ios.power_mode = MMC_POWER_ON;
1352	mmc_set_ios(host);
1353
1354	/*
1355	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356	 * time required to reach a stable voltage.
1357	 */
1358	mmc_delay(host->ios.power_delay_ms);
1359}
1360
1361void mmc_power_off(struct mmc_host *host)
1362{
1363	if (host->ios.power_mode == MMC_POWER_OFF)
1364		return;
1365
1366	mmc_pwrseq_power_off(host);
1367
1368	host->ios.clock = 0;
1369	host->ios.vdd = 0;
1370
1371	host->ios.power_mode = MMC_POWER_OFF;
1372	/* Set initial state and call mmc_set_ios */
1373	mmc_set_initial_state(host);
1374
1375	/*
1376	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377	 * XO-1.5, require a short delay after poweroff before the card
1378	 * can be successfully turned on again.
1379	 */
1380	mmc_delay(1);
1381}
1382
1383void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1384{
1385	mmc_power_off(host);
1386	/* Wait at least 1 ms according to SD spec */
1387	mmc_delay(1);
1388	mmc_power_up(host, ocr);
1389}
1390
1391/*
1392 * Assign a mmc bus handler to a host. Only one bus handler may control a
1393 * host at any given time.
1394 */
1395void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1396{
1397	host->bus_ops = ops;
1398}
1399
1400/*
1401 * Remove the current bus handler from a host.
1402 */
1403void mmc_detach_bus(struct mmc_host *host)
1404{
1405	host->bus_ops = NULL;
1406}
1407
1408void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1409{
1410	/*
1411	 * Prevent system sleep for 5s to allow user space to consume the
1412	 * corresponding uevent. This is especially useful, when CD irq is used
1413	 * as a system wakeup, but doesn't hurt in other cases.
1414	 */
1415	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1416		__pm_wakeup_event(host->ws, 5000);
1417
1418	host->detect_change = 1;
1419	mmc_schedule_delayed_work(&host->detect, delay);
1420}
1421
1422/**
1423 *	mmc_detect_change - process change of state on a MMC socket
1424 *	@host: host which changed state.
1425 *	@delay: optional delay to wait before detection (jiffies)
1426 *
1427 *	MMC drivers should call this when they detect a card has been
1428 *	inserted or removed. The MMC layer will confirm that any
1429 *	present card is still functional, and initialize any newly
1430 *	inserted.
1431 */
1432void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1433{
1434	_mmc_detect_change(host, delay, true);
1435}
1436EXPORT_SYMBOL(mmc_detect_change);
1437
1438void mmc_init_erase(struct mmc_card *card)
1439{
1440	unsigned int sz;
1441
1442	if (is_power_of_2(card->erase_size))
1443		card->erase_shift = ffs(card->erase_size) - 1;
1444	else
1445		card->erase_shift = 0;
1446
1447	/*
1448	 * It is possible to erase an arbitrarily large area of an SD or MMC
1449	 * card.  That is not desirable because it can take a long time
1450	 * (minutes) potentially delaying more important I/O, and also the
1451	 * timeout calculations become increasingly hugely over-estimated.
1452	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1453	 * to that size and alignment.
1454	 *
1455	 * For SD cards that define Allocation Unit size, limit erases to one
1456	 * Allocation Unit at a time.
1457	 * For MMC, have a stab at ai good value and for modern cards it will
1458	 * end up being 4MiB. Note that if the value is too small, it can end
1459	 * up taking longer to erase. Also note, erase_size is already set to
1460	 * High Capacity Erase Size if available when this function is called.
1461	 */
1462	if (mmc_card_sd(card) && card->ssr.au) {
1463		card->pref_erase = card->ssr.au;
1464		card->erase_shift = ffs(card->ssr.au) - 1;
1465	} else if (card->erase_size) {
1466		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1467		if (sz < 128)
1468			card->pref_erase = 512 * 1024 / 512;
1469		else if (sz < 512)
1470			card->pref_erase = 1024 * 1024 / 512;
1471		else if (sz < 1024)
1472			card->pref_erase = 2 * 1024 * 1024 / 512;
1473		else
1474			card->pref_erase = 4 * 1024 * 1024 / 512;
1475		if (card->pref_erase < card->erase_size)
1476			card->pref_erase = card->erase_size;
1477		else {
1478			sz = card->pref_erase % card->erase_size;
1479			if (sz)
1480				card->pref_erase += card->erase_size - sz;
1481		}
1482	} else
1483		card->pref_erase = 0;
1484}
1485
1486static bool is_trim_arg(unsigned int arg)
1487{
1488	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1489}
1490
1491static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1492				          unsigned int arg, unsigned int qty)
1493{
1494	unsigned int erase_timeout;
1495
1496	if (arg == MMC_DISCARD_ARG ||
1497	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1498		erase_timeout = card->ext_csd.trim_timeout;
1499	} else if (card->ext_csd.erase_group_def & 1) {
1500		/* High Capacity Erase Group Size uses HC timeouts */
1501		if (arg == MMC_TRIM_ARG)
1502			erase_timeout = card->ext_csd.trim_timeout;
1503		else
1504			erase_timeout = card->ext_csd.hc_erase_timeout;
1505	} else {
1506		/* CSD Erase Group Size uses write timeout */
1507		unsigned int mult = (10 << card->csd.r2w_factor);
1508		unsigned int timeout_clks = card->csd.taac_clks * mult;
1509		unsigned int timeout_us;
1510
1511		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1512		if (card->csd.taac_ns < 1000000)
1513			timeout_us = (card->csd.taac_ns * mult) / 1000;
1514		else
1515			timeout_us = (card->csd.taac_ns / 1000) * mult;
1516
1517		/*
1518		 * ios.clock is only a target.  The real clock rate might be
1519		 * less but not that much less, so fudge it by multiplying by 2.
1520		 */
1521		timeout_clks <<= 1;
1522		timeout_us += (timeout_clks * 1000) /
1523			      (card->host->ios.clock / 1000);
1524
1525		erase_timeout = timeout_us / 1000;
1526
1527		/*
1528		 * Theoretically, the calculation could underflow so round up
1529		 * to 1ms in that case.
1530		 */
1531		if (!erase_timeout)
1532			erase_timeout = 1;
1533	}
1534
1535	/* Multiplier for secure operations */
1536	if (arg & MMC_SECURE_ARGS) {
1537		if (arg == MMC_SECURE_ERASE_ARG)
1538			erase_timeout *= card->ext_csd.sec_erase_mult;
1539		else
1540			erase_timeout *= card->ext_csd.sec_trim_mult;
1541	}
1542
1543	erase_timeout *= qty;
1544
1545	/*
1546	 * Ensure at least a 1 second timeout for SPI as per
1547	 * 'mmc_set_data_timeout()'
1548	 */
1549	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1550		erase_timeout = 1000;
1551
1552	return erase_timeout;
1553}
1554
1555static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1556					 unsigned int arg,
1557					 unsigned int qty)
1558{
1559	unsigned int erase_timeout;
1560
1561	/* for DISCARD none of the below calculation applies.
1562	 * the busy timeout is 250msec per discard command.
1563	 */
1564	if (arg == SD_DISCARD_ARG)
1565		return SD_DISCARD_TIMEOUT_MS;
1566
1567	if (card->ssr.erase_timeout) {
1568		/* Erase timeout specified in SD Status Register (SSR) */
1569		erase_timeout = card->ssr.erase_timeout * qty +
1570				card->ssr.erase_offset;
1571	} else {
1572		/*
1573		 * Erase timeout not specified in SD Status Register (SSR) so
1574		 * use 250ms per write block.
1575		 */
1576		erase_timeout = 250 * qty;
1577	}
1578
1579	/* Must not be less than 1 second */
1580	if (erase_timeout < 1000)
1581		erase_timeout = 1000;
1582
1583	return erase_timeout;
1584}
1585
1586static unsigned int mmc_erase_timeout(struct mmc_card *card,
1587				      unsigned int arg,
1588				      unsigned int qty)
1589{
1590	if (mmc_card_sd(card))
1591		return mmc_sd_erase_timeout(card, arg, qty);
1592	else
1593		return mmc_mmc_erase_timeout(card, arg, qty);
1594}
1595
1596static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1597			unsigned int to, unsigned int arg)
1598{
1599	struct mmc_command cmd = {};
1600	unsigned int qty = 0, busy_timeout = 0;
1601	bool use_r1b_resp;
1602	int err;
1603
1604	mmc_retune_hold(card->host);
1605
1606	/*
1607	 * qty is used to calculate the erase timeout which depends on how many
1608	 * erase groups (or allocation units in SD terminology) are affected.
1609	 * We count erasing part of an erase group as one erase group.
1610	 * For SD, the allocation units are always a power of 2.  For MMC, the
1611	 * erase group size is almost certainly also power of 2, but it does not
1612	 * seem to insist on that in the JEDEC standard, so we fall back to
1613	 * division in that case.  SD may not specify an allocation unit size,
1614	 * in which case the timeout is based on the number of write blocks.
1615	 *
1616	 * Note that the timeout for secure trim 2 will only be correct if the
1617	 * number of erase groups specified is the same as the total of all
1618	 * preceding secure trim 1 commands.  Since the power may have been
1619	 * lost since the secure trim 1 commands occurred, it is generally
1620	 * impossible to calculate the secure trim 2 timeout correctly.
1621	 */
1622	if (card->erase_shift)
1623		qty += ((to >> card->erase_shift) -
1624			(from >> card->erase_shift)) + 1;
1625	else if (mmc_card_sd(card))
1626		qty += to - from + 1;
1627	else
1628		qty += ((to / card->erase_size) -
1629			(from / card->erase_size)) + 1;
1630
1631	if (!mmc_card_blockaddr(card)) {
1632		from <<= 9;
1633		to <<= 9;
1634	}
1635
1636	if (mmc_card_sd(card))
1637		cmd.opcode = SD_ERASE_WR_BLK_START;
1638	else
1639		cmd.opcode = MMC_ERASE_GROUP_START;
1640	cmd.arg = from;
1641	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1642	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1643	if (err) {
1644		pr_err("mmc_erase: group start error %d, "
1645		       "status %#x\n", err, cmd.resp[0]);
1646		err = -EIO;
1647		goto out;
1648	}
1649
1650	memset(&cmd, 0, sizeof(struct mmc_command));
1651	if (mmc_card_sd(card))
1652		cmd.opcode = SD_ERASE_WR_BLK_END;
1653	else
1654		cmd.opcode = MMC_ERASE_GROUP_END;
1655	cmd.arg = to;
1656	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1657	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1658	if (err) {
1659		pr_err("mmc_erase: group end error %d, status %#x\n",
1660		       err, cmd.resp[0]);
1661		err = -EIO;
1662		goto out;
1663	}
1664
1665	memset(&cmd, 0, sizeof(struct mmc_command));
1666	cmd.opcode = MMC_ERASE;
1667	cmd.arg = arg;
1668	busy_timeout = mmc_erase_timeout(card, arg, qty);
1669	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1670
1671	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1672	if (err) {
1673		pr_err("mmc_erase: erase error %d, status %#x\n",
1674		       err, cmd.resp[0]);
1675		err = -EIO;
1676		goto out;
1677	}
1678
1679	if (mmc_host_is_spi(card->host))
1680		goto out;
1681
1682	/*
1683	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1684	 * shall be avoided.
1685	 */
1686	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1687		goto out;
1688
1689	/* Let's poll to find out when the erase operation completes. */
1690	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1691
1692out:
1693	mmc_retune_release(card->host);
1694	return err;
1695}
1696
1697static unsigned int mmc_align_erase_size(struct mmc_card *card,
1698					 unsigned int *from,
1699					 unsigned int *to,
1700					 unsigned int nr)
1701{
1702	unsigned int from_new = *from, nr_new = nr, rem;
1703
1704	/*
1705	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1706	 * to align the erase size efficiently.
1707	 */
1708	if (is_power_of_2(card->erase_size)) {
1709		unsigned int temp = from_new;
1710
1711		from_new = round_up(temp, card->erase_size);
1712		rem = from_new - temp;
1713
1714		if (nr_new > rem)
1715			nr_new -= rem;
1716		else
1717			return 0;
1718
1719		nr_new = round_down(nr_new, card->erase_size);
1720	} else {
1721		rem = from_new % card->erase_size;
1722		if (rem) {
1723			rem = card->erase_size - rem;
1724			from_new += rem;
1725			if (nr_new > rem)
1726				nr_new -= rem;
1727			else
1728				return 0;
1729		}
1730
1731		rem = nr_new % card->erase_size;
1732		if (rem)
1733			nr_new -= rem;
1734	}
1735
1736	if (nr_new == 0)
1737		return 0;
1738
1739	*to = from_new + nr_new;
1740	*from = from_new;
1741
1742	return nr_new;
1743}
1744
1745/**
1746 * mmc_erase - erase sectors.
1747 * @card: card to erase
1748 * @from: first sector to erase
1749 * @nr: number of sectors to erase
1750 * @arg: erase command argument
1751 *
1752 * Caller must claim host before calling this function.
1753 */
1754int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1755	      unsigned int arg)
1756{
1757	unsigned int rem, to = from + nr;
1758	int err;
1759
1760	if (!(card->csd.cmdclass & CCC_ERASE))
1761		return -EOPNOTSUPP;
1762
1763	if (!card->erase_size)
1764		return -EOPNOTSUPP;
1765
1766	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1767		return -EOPNOTSUPP;
1768
1769	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1770	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1771		return -EOPNOTSUPP;
1772
1773	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1774	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1775		return -EOPNOTSUPP;
1776
1777	if (arg == MMC_SECURE_ERASE_ARG) {
1778		if (from % card->erase_size || nr % card->erase_size)
1779			return -EINVAL;
1780	}
1781
1782	if (arg == MMC_ERASE_ARG)
1783		nr = mmc_align_erase_size(card, &from, &to, nr);
1784
1785	if (nr == 0)
1786		return 0;
1787
1788	if (to <= from)
1789		return -EINVAL;
1790
1791	/* 'from' and 'to' are inclusive */
1792	to -= 1;
1793
1794	/*
1795	 * Special case where only one erase-group fits in the timeout budget:
1796	 * If the region crosses an erase-group boundary on this particular
1797	 * case, we will be trimming more than one erase-group which, does not
1798	 * fit in the timeout budget of the controller, so we need to split it
1799	 * and call mmc_do_erase() twice if necessary. This special case is
1800	 * identified by the card->eg_boundary flag.
1801	 */
1802	rem = card->erase_size - (from % card->erase_size);
1803	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1804		err = mmc_do_erase(card, from, from + rem - 1, arg);
1805		from += rem;
1806		if ((err) || (to <= from))
1807			return err;
1808	}
1809
1810	return mmc_do_erase(card, from, to, arg);
1811}
1812EXPORT_SYMBOL(mmc_erase);
1813
1814int mmc_can_erase(struct mmc_card *card)
1815{
1816	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1817		return 1;
1818	return 0;
1819}
1820EXPORT_SYMBOL(mmc_can_erase);
1821
1822int mmc_can_trim(struct mmc_card *card)
1823{
1824	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1825	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1826		return 1;
1827	return 0;
1828}
1829EXPORT_SYMBOL(mmc_can_trim);
1830
1831int mmc_can_discard(struct mmc_card *card)
1832{
1833	/*
1834	 * As there's no way to detect the discard support bit at v4.5
1835	 * use the s/w feature support filed.
1836	 */
1837	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1838		return 1;
1839	return 0;
1840}
1841EXPORT_SYMBOL(mmc_can_discard);
1842
1843int mmc_can_sanitize(struct mmc_card *card)
1844{
1845	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1846		return 0;
1847	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1848		return 1;
1849	return 0;
1850}
1851
1852int mmc_can_secure_erase_trim(struct mmc_card *card)
1853{
1854	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1855	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1856		return 1;
1857	return 0;
1858}
1859EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1860
1861int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1862			    unsigned int nr)
1863{
1864	if (!card->erase_size)
1865		return 0;
1866	if (from % card->erase_size || nr % card->erase_size)
1867		return 0;
1868	return 1;
1869}
1870EXPORT_SYMBOL(mmc_erase_group_aligned);
1871
1872static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1873					    unsigned int arg)
1874{
1875	struct mmc_host *host = card->host;
1876	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1877	unsigned int last_timeout = 0;
1878	unsigned int max_busy_timeout = host->max_busy_timeout ?
1879			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1880
1881	if (card->erase_shift) {
1882		max_qty = UINT_MAX >> card->erase_shift;
1883		min_qty = card->pref_erase >> card->erase_shift;
1884	} else if (mmc_card_sd(card)) {
1885		max_qty = UINT_MAX;
1886		min_qty = card->pref_erase;
1887	} else {
1888		max_qty = UINT_MAX / card->erase_size;
1889		min_qty = card->pref_erase / card->erase_size;
1890	}
1891
1892	/*
1893	 * We should not only use 'host->max_busy_timeout' as the limitation
1894	 * when deciding the max discard sectors. We should set a balance value
1895	 * to improve the erase speed, and it can not get too long timeout at
1896	 * the same time.
1897	 *
1898	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1899	 * matter what size of 'host->max_busy_timeout', but if the
1900	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1901	 * then we can continue to increase the max discard sectors until we
1902	 * get a balance value. In cases when the 'host->max_busy_timeout'
1903	 * isn't specified, use the default max erase timeout.
1904	 */
1905	do {
1906		y = 0;
1907		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1908			timeout = mmc_erase_timeout(card, arg, qty + x);
1909
1910			if (qty + x > min_qty && timeout > max_busy_timeout)
1911				break;
1912
1913			if (timeout < last_timeout)
1914				break;
1915			last_timeout = timeout;
1916			y = x;
1917		}
1918		qty += y;
1919	} while (y);
1920
1921	if (!qty)
1922		return 0;
1923
1924	/*
1925	 * When specifying a sector range to trim, chances are we might cross
1926	 * an erase-group boundary even if the amount of sectors is less than
1927	 * one erase-group.
1928	 * If we can only fit one erase-group in the controller timeout budget,
1929	 * we have to care that erase-group boundaries are not crossed by a
1930	 * single trim operation. We flag that special case with "eg_boundary".
1931	 * In all other cases we can just decrement qty and pretend that we
1932	 * always touch (qty + 1) erase-groups as a simple optimization.
1933	 */
1934	if (qty == 1)
1935		card->eg_boundary = 1;
1936	else
1937		qty--;
1938
1939	/* Convert qty to sectors */
1940	if (card->erase_shift)
1941		max_discard = qty << card->erase_shift;
1942	else if (mmc_card_sd(card))
1943		max_discard = qty + 1;
1944	else
1945		max_discard = qty * card->erase_size;
1946
1947	return max_discard;
1948}
1949
1950unsigned int mmc_calc_max_discard(struct mmc_card *card)
1951{
1952	struct mmc_host *host = card->host;
1953	unsigned int max_discard, max_trim;
1954
1955	/*
1956	 * Without erase_group_def set, MMC erase timeout depends on clock
1957	 * frequence which can change.  In that case, the best choice is
1958	 * just the preferred erase size.
1959	 */
1960	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1961		return card->pref_erase;
1962
1963	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1964	if (mmc_can_trim(card)) {
1965		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1966		if (max_trim < max_discard || max_discard == 0)
1967			max_discard = max_trim;
1968	} else if (max_discard < card->erase_size) {
1969		max_discard = 0;
1970	}
1971	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1972		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1973		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1974	return max_discard;
1975}
1976EXPORT_SYMBOL(mmc_calc_max_discard);
1977
1978bool mmc_card_is_blockaddr(struct mmc_card *card)
1979{
1980	return card ? mmc_card_blockaddr(card) : false;
1981}
1982EXPORT_SYMBOL(mmc_card_is_blockaddr);
1983
1984int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1985{
1986	struct mmc_command cmd = {};
1987
1988	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1989	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1990		return 0;
1991
1992	cmd.opcode = MMC_SET_BLOCKLEN;
1993	cmd.arg = blocklen;
1994	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1995	return mmc_wait_for_cmd(card->host, &cmd, 5);
1996}
1997EXPORT_SYMBOL(mmc_set_blocklen);
1998
1999static void mmc_hw_reset_for_init(struct mmc_host *host)
2000{
2001	mmc_pwrseq_reset(host);
2002
2003	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2004		return;
2005	host->ops->card_hw_reset(host);
2006}
2007
2008/**
2009 * mmc_hw_reset - reset the card in hardware
2010 * @card: card to be reset
2011 *
2012 * Hard reset the card. This function is only for upper layers, like the
2013 * block layer or card drivers. You cannot use it in host drivers (struct
2014 * mmc_card might be gone then).
2015 *
2016 * Return: 0 on success, -errno on failure
2017 */
2018int mmc_hw_reset(struct mmc_card *card)
2019{
2020	struct mmc_host *host = card->host;
2021	int ret;
2022
2023	ret = host->bus_ops->hw_reset(host);
2024	if (ret < 0)
2025		pr_warn("%s: tried to HW reset card, got error %d\n",
2026			mmc_hostname(host), ret);
2027
2028	return ret;
2029}
2030EXPORT_SYMBOL(mmc_hw_reset);
2031
2032int mmc_sw_reset(struct mmc_card *card)
2033{
2034	struct mmc_host *host = card->host;
2035	int ret;
2036
2037	if (!host->bus_ops->sw_reset)
2038		return -EOPNOTSUPP;
2039
2040	ret = host->bus_ops->sw_reset(host);
2041	if (ret)
2042		pr_warn("%s: tried to SW reset card, got error %d\n",
2043			mmc_hostname(host), ret);
2044
2045	return ret;
2046}
2047EXPORT_SYMBOL(mmc_sw_reset);
2048
2049static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2050{
2051	host->f_init = freq;
2052
2053	pr_debug("%s: %s: trying to init card at %u Hz\n",
2054		mmc_hostname(host), __func__, host->f_init);
2055
2056	mmc_power_up(host, host->ocr_avail);
2057
2058	/*
2059	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2060	 * do a hardware reset if possible.
2061	 */
2062	mmc_hw_reset_for_init(host);
2063
2064	/*
2065	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2066	 * if the card is being re-initialized, just send it.  CMD52
2067	 * should be ignored by SD/eMMC cards.
2068	 * Skip it if we already know that we do not support SDIO commands
2069	 */
2070	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2071		sdio_reset(host);
2072
2073	mmc_go_idle(host);
2074
2075	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2076		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2077			goto out;
2078		if (mmc_card_sd_express(host))
2079			return 0;
2080	}
2081
2082	/* Order's important: probe SDIO, then SD, then MMC */
2083	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2084		if (!mmc_attach_sdio(host))
2085			return 0;
2086
2087	if (!(host->caps2 & MMC_CAP2_NO_SD))
2088		if (!mmc_attach_sd(host))
2089			return 0;
2090
2091	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2092		if (!mmc_attach_mmc(host))
2093			return 0;
2094
2095out:
2096	mmc_power_off(host);
2097	return -EIO;
2098}
2099
2100int _mmc_detect_card_removed(struct mmc_host *host)
2101{
2102	int ret;
2103
2104	if (!host->card || mmc_card_removed(host->card))
2105		return 1;
2106
2107	ret = host->bus_ops->alive(host);
2108
2109	/*
2110	 * Card detect status and alive check may be out of sync if card is
2111	 * removed slowly, when card detect switch changes while card/slot
2112	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2113	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2114	 * detect work 200ms later for this case.
2115	 */
2116	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2117		mmc_detect_change(host, msecs_to_jiffies(200));
2118		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2119	}
2120
2121	if (ret) {
2122		mmc_card_set_removed(host->card);
2123		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2124	}
2125
2126	return ret;
2127}
2128
2129int mmc_detect_card_removed(struct mmc_host *host)
2130{
2131	struct mmc_card *card = host->card;
2132	int ret;
2133
2134	WARN_ON(!host->claimed);
2135
2136	if (!card)
2137		return 1;
2138
2139	if (!mmc_card_is_removable(host))
2140		return 0;
2141
2142	ret = mmc_card_removed(card);
2143	/*
2144	 * The card will be considered unchanged unless we have been asked to
2145	 * detect a change or host requires polling to provide card detection.
2146	 */
2147	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2148		return ret;
2149
2150	host->detect_change = 0;
2151	if (!ret) {
2152		ret = _mmc_detect_card_removed(host);
2153		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2154			/*
2155			 * Schedule a detect work as soon as possible to let a
2156			 * rescan handle the card removal.
2157			 */
2158			cancel_delayed_work(&host->detect);
2159			_mmc_detect_change(host, 0, false);
2160		}
2161	}
2162
2163	return ret;
2164}
2165EXPORT_SYMBOL(mmc_detect_card_removed);
2166
2167int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2168{
2169	unsigned int boot_sectors_num;
2170
2171	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2172		return -EOPNOTSUPP;
2173
2174	/* filter out unrelated cards */
2175	if (card->ext_csd.rev < 3 ||
2176	    !mmc_card_mmc(card) ||
2177	    !mmc_card_is_blockaddr(card) ||
2178	     mmc_card_is_removable(card->host))
2179		return -ENOENT;
2180
2181	/*
2182	 * eMMC storage has two special boot partitions in addition to the
2183	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2184	 * accesses, this means that the partition table addresses are shifted
2185	 * by the size of boot partitions.  In accordance with the eMMC
2186	 * specification, the boot partition size is calculated as follows:
2187	 *
2188	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2189	 *
2190	 * Calculate number of sectors occupied by the both boot partitions.
2191	 */
2192	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2193			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2194
2195	/* Defined by NVIDIA and used by Android devices. */
2196	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2197
2198	return 0;
2199}
2200EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2201
2202void mmc_rescan(struct work_struct *work)
2203{
2204	struct mmc_host *host =
2205		container_of(work, struct mmc_host, detect.work);
2206	int i;
2207
2208	if (host->rescan_disable)
2209		return;
2210
2211	/* If there is a non-removable card registered, only scan once */
2212	if (!mmc_card_is_removable(host) && host->rescan_entered)
2213		return;
2214	host->rescan_entered = 1;
2215
2216	if (host->trigger_card_event && host->ops->card_event) {
2217		mmc_claim_host(host);
2218		host->ops->card_event(host);
2219		mmc_release_host(host);
2220		host->trigger_card_event = false;
2221	}
2222
2223	/* Verify a registered card to be functional, else remove it. */
2224	if (host->bus_ops)
2225		host->bus_ops->detect(host);
2226
2227	host->detect_change = 0;
2228
2229	/* if there still is a card present, stop here */
2230	if (host->bus_ops != NULL)
2231		goto out;
2232
2233	mmc_claim_host(host);
2234	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2235			host->ops->get_cd(host) == 0) {
2236		mmc_power_off(host);
2237		mmc_release_host(host);
2238		goto out;
2239	}
2240
2241	/* If an SD express card is present, then leave it as is. */
2242	if (mmc_card_sd_express(host)) {
2243		mmc_release_host(host);
2244		goto out;
2245	}
2246
2247	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2248		unsigned int freq = freqs[i];
2249		if (freq > host->f_max) {
2250			if (i + 1 < ARRAY_SIZE(freqs))
2251				continue;
2252			freq = host->f_max;
2253		}
2254		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2255			break;
2256		if (freqs[i] <= host->f_min)
2257			break;
2258	}
2259
2260	/*
2261	 * Ignore the command timeout errors observed during
2262	 * the card init as those are excepted.
2263	 */
2264	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2265	mmc_release_host(host);
2266
2267 out:
2268	if (host->caps & MMC_CAP_NEEDS_POLL)
2269		mmc_schedule_delayed_work(&host->detect, HZ);
2270}
2271
2272void mmc_start_host(struct mmc_host *host)
2273{
2274	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2275	host->rescan_disable = 0;
2276
2277	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2278		mmc_claim_host(host);
2279		mmc_power_up(host, host->ocr_avail);
2280		mmc_release_host(host);
2281	}
2282
2283	mmc_gpiod_request_cd_irq(host);
2284	_mmc_detect_change(host, 0, false);
2285}
2286
2287void __mmc_stop_host(struct mmc_host *host)
2288{
2289	if (host->slot.cd_irq >= 0) {
2290		mmc_gpio_set_cd_wake(host, false);
2291		disable_irq(host->slot.cd_irq);
2292	}
2293
2294	host->rescan_disable = 1;
2295	cancel_delayed_work_sync(&host->detect);
2296}
2297
2298void mmc_stop_host(struct mmc_host *host)
2299{
2300	__mmc_stop_host(host);
2301
2302	/* clear pm flags now and let card drivers set them as needed */
2303	host->pm_flags = 0;
2304
2305	if (host->bus_ops) {
2306		/* Calling bus_ops->remove() with a claimed host can deadlock */
2307		host->bus_ops->remove(host);
2308		mmc_claim_host(host);
2309		mmc_detach_bus(host);
2310		mmc_power_off(host);
2311		mmc_release_host(host);
2312		return;
2313	}
2314
2315	mmc_claim_host(host);
2316	mmc_power_off(host);
2317	mmc_release_host(host);
2318}
2319
2320static int __init mmc_init(void)
2321{
2322	int ret;
2323
2324	ret = mmc_register_bus();
2325	if (ret)
2326		return ret;
2327
2328	ret = mmc_register_host_class();
2329	if (ret)
2330		goto unregister_bus;
2331
2332	ret = sdio_register_bus();
2333	if (ret)
2334		goto unregister_host_class;
2335
2336	return 0;
2337
2338unregister_host_class:
2339	mmc_unregister_host_class();
2340unregister_bus:
2341	mmc_unregister_bus();
2342	return ret;
2343}
2344
2345static void __exit mmc_exit(void)
2346{
2347	sdio_unregister_bus();
2348	mmc_unregister_host_class();
2349	mmc_unregister_bus();
2350}
2351
2352subsys_initcall(mmc_init);
2353module_exit(mmc_exit);
2354
2355MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 101	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 146	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
 147	    !host->retune_crc_disable &&
 148	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 149	    (mrq->data && mrq->data->error == -EILSEQ) ||
 150	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 151		mmc_retune_needed(host);
 152
 153	if (err && cmd->retries && mmc_host_is_spi(host)) {
 154		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 155			cmd->retries = 0;
 156	}
 157
 158	if (host->ongoing_mrq == mrq)
 159		host->ongoing_mrq = NULL;
 160
 161	mmc_complete_cmd(mrq);
 162
 163	trace_mmc_request_done(host, mrq);
 164
 165	/*
 166	 * We list various conditions for the command to be considered
 167	 * properly done:
 168	 *
 169	 * - There was no error, OK fine then
 170	 * - We are not doing some kind of retry
 171	 * - The card was removed (...so just complete everything no matter
 172	 *   if there are errors or retries)
 173	 */
 174	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 175		mmc_should_fail_request(host, mrq);
 176
 177		if (!host->ongoing_mrq)
 178			led_trigger_event(host->led, LED_OFF);
 179
 180		if (mrq->sbc) {
 181			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 182				mmc_hostname(host), mrq->sbc->opcode,
 183				mrq->sbc->error,
 184				mrq->sbc->resp[0], mrq->sbc->resp[1],
 185				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 186		}
 187
 188		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 189			mmc_hostname(host), cmd->opcode, err,
 190			cmd->resp[0], cmd->resp[1],
 191			cmd->resp[2], cmd->resp[3]);
 192
 193		if (mrq->data) {
 194			pr_debug("%s:     %d bytes transferred: %d\n",
 195				mmc_hostname(host),
 196				mrq->data->bytes_xfered, mrq->data->error);
 197		}
 198
 199		if (mrq->stop) {
 200			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 201				mmc_hostname(host), mrq->stop->opcode,
 202				mrq->stop->error,
 203				mrq->stop->resp[0], mrq->stop->resp[1],
 204				mrq->stop->resp[2], mrq->stop->resp[3]);
 205		}
 206	}
 207	/*
 208	 * Request starter must handle retries - see
 209	 * mmc_wait_for_req_done().
 210	 */
 211	if (mrq->done)
 212		mrq->done(mrq);
 213}
 214
 215EXPORT_SYMBOL(mmc_request_done);
 216
 217static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 218{
 219	int err;
 220
 221	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 222	err = mmc_retune(host);
 223	if (err) {
 224		mrq->cmd->error = err;
 225		mmc_request_done(host, mrq);
 226		return;
 227	}
 228
 229	/*
 230	 * For sdio rw commands we must wait for card busy otherwise some
 231	 * sdio devices won't work properly.
 232	 * And bypass I/O abort, reset and bus suspend operations.
 233	 */
 234	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 235	    host->ops->card_busy) {
 236		int tries = 500; /* Wait aprox 500ms at maximum */
 237
 238		while (host->ops->card_busy(host) && --tries)
 239			mmc_delay(1);
 240
 241		if (tries == 0) {
 242			mrq->cmd->error = -EBUSY;
 243			mmc_request_done(host, mrq);
 244			return;
 245		}
 246	}
 247
 248	if (mrq->cap_cmd_during_tfr) {
 249		host->ongoing_mrq = mrq;
 250		/*
 251		 * Retry path could come through here without having waiting on
 252		 * cmd_completion, so ensure it is reinitialised.
 253		 */
 254		reinit_completion(&mrq->cmd_completion);
 255	}
 256
 257	trace_mmc_request_start(host, mrq);
 258
 259	if (host->cqe_on)
 260		host->cqe_ops->cqe_off(host);
 261
 262	host->ops->request(host, mrq);
 263}
 264
 265static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 266			     bool cqe)
 267{
 268	if (mrq->sbc) {
 269		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 270			 mmc_hostname(host), mrq->sbc->opcode,
 271			 mrq->sbc->arg, mrq->sbc->flags);
 272	}
 273
 274	if (mrq->cmd) {
 275		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 276			 mmc_hostname(host), cqe ? "CQE direct " : "",
 277			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 278	} else if (cqe) {
 279		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 280			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 281	}
 282
 283	if (mrq->data) {
 284		pr_debug("%s:     blksz %d blocks %d flags %08x "
 285			"tsac %d ms nsac %d\n",
 286			mmc_hostname(host), mrq->data->blksz,
 287			mrq->data->blocks, mrq->data->flags,
 288			mrq->data->timeout_ns / 1000000,
 289			mrq->data->timeout_clks);
 290	}
 291
 292	if (mrq->stop) {
 293		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 294			 mmc_hostname(host), mrq->stop->opcode,
 295			 mrq->stop->arg, mrq->stop->flags);
 296	}
 297}
 298
 299static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 300{
 301	unsigned int i, sz = 0;
 302	struct scatterlist *sg;
 303
 304	if (mrq->cmd) {
 305		mrq->cmd->error = 0;
 306		mrq->cmd->mrq = mrq;
 307		mrq->cmd->data = mrq->data;
 308	}
 309	if (mrq->sbc) {
 310		mrq->sbc->error = 0;
 311		mrq->sbc->mrq = mrq;
 312	}
 313	if (mrq->data) {
 314		if (mrq->data->blksz > host->max_blk_size ||
 315		    mrq->data->blocks > host->max_blk_count ||
 316		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 317			return -EINVAL;
 318
 319		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 320			sz += sg->length;
 321		if (sz != mrq->data->blocks * mrq->data->blksz)
 322			return -EINVAL;
 323
 324		mrq->data->error = 0;
 325		mrq->data->mrq = mrq;
 326		if (mrq->stop) {
 327			mrq->data->stop = mrq->stop;
 328			mrq->stop->error = 0;
 329			mrq->stop->mrq = mrq;
 330		}
 331	}
 332
 333	return 0;
 334}
 335
 336int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 337{
 338	int err;
 339
 340	init_completion(&mrq->cmd_completion);
 341
 342	mmc_retune_hold(host);
 343
 344	if (mmc_card_removed(host->card))
 345		return -ENOMEDIUM;
 346
 347	mmc_mrq_pr_debug(host, mrq, false);
 348
 349	WARN_ON(!host->claimed);
 350
 351	err = mmc_mrq_prep(host, mrq);
 352	if (err)
 353		return err;
 354
 355	led_trigger_event(host->led, LED_FULL);
 356	__mmc_start_request(host, mrq);
 357
 358	return 0;
 359}
 360EXPORT_SYMBOL(mmc_start_request);
 361
 362static void mmc_wait_done(struct mmc_request *mrq)
 363{
 364	complete(&mrq->completion);
 365}
 366
 367static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 368{
 369	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 370
 371	/*
 372	 * If there is an ongoing transfer, wait for the command line to become
 373	 * available.
 374	 */
 375	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 376		wait_for_completion(&ongoing_mrq->cmd_completion);
 377}
 378
 379static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 380{
 381	int err;
 382
 383	mmc_wait_ongoing_tfr_cmd(host);
 384
 385	init_completion(&mrq->completion);
 386	mrq->done = mmc_wait_done;
 387
 388	err = mmc_start_request(host, mrq);
 389	if (err) {
 390		mrq->cmd->error = err;
 391		mmc_complete_cmd(mrq);
 392		complete(&mrq->completion);
 393	}
 394
 395	return err;
 396}
 397
 398void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 399{
 400	struct mmc_command *cmd;
 401
 402	while (1) {
 403		wait_for_completion(&mrq->completion);
 404
 405		cmd = mrq->cmd;
 406
 407		if (!cmd->error || !cmd->retries ||
 408		    mmc_card_removed(host->card))
 409			break;
 410
 411		mmc_retune_recheck(host);
 412
 413		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 414			 mmc_hostname(host), cmd->opcode, cmd->error);
 415		cmd->retries--;
 416		cmd->error = 0;
 417		__mmc_start_request(host, mrq);
 418	}
 419
 420	mmc_retune_release(host);
 421}
 422EXPORT_SYMBOL(mmc_wait_for_req_done);
 423
 424/*
 425 * mmc_cqe_start_req - Start a CQE request.
 426 * @host: MMC host to start the request
 427 * @mrq: request to start
 428 *
 429 * Start the request, re-tuning if needed and it is possible. Returns an error
 430 * code if the request fails to start or -EBUSY if CQE is busy.
 431 */
 432int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 433{
 434	int err;
 435
 436	/*
 437	 * CQE cannot process re-tuning commands. Caller must hold retuning
 438	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 439	 * active requests i.e. this is the first.  Note, re-tuning will call
 440	 * ->cqe_off().
 441	 */
 442	err = mmc_retune(host);
 443	if (err)
 444		goto out_err;
 445
 446	mrq->host = host;
 447
 448	mmc_mrq_pr_debug(host, mrq, true);
 449
 450	err = mmc_mrq_prep(host, mrq);
 451	if (err)
 452		goto out_err;
 453
 454	err = host->cqe_ops->cqe_request(host, mrq);
 455	if (err)
 456		goto out_err;
 457
 458	trace_mmc_request_start(host, mrq);
 459
 460	return 0;
 461
 462out_err:
 463	if (mrq->cmd) {
 464		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 465			 mmc_hostname(host), mrq->cmd->opcode, err);
 466	} else {
 467		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 468			 mmc_hostname(host), mrq->tag, err);
 469	}
 470	return err;
 471}
 472EXPORT_SYMBOL(mmc_cqe_start_req);
 473
 474/**
 475 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 476 *	@host: MMC host which completed request
 477 *	@mrq: MMC request which completed
 478 *
 479 *	CQE drivers should call this function when they have completed
 480 *	their processing of a request.
 481 */
 482void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 483{
 484	mmc_should_fail_request(host, mrq);
 485
 486	/* Flag re-tuning needed on CRC errors */
 487	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 488	    (mrq->data && mrq->data->error == -EILSEQ))
 489		mmc_retune_needed(host);
 490
 491	trace_mmc_request_done(host, mrq);
 492
 493	if (mrq->cmd) {
 494		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 495			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 496	} else {
 497		pr_debug("%s: CQE transfer done tag %d\n",
 498			 mmc_hostname(host), mrq->tag);
 499	}
 500
 501	if (mrq->data) {
 502		pr_debug("%s:     %d bytes transferred: %d\n",
 503			 mmc_hostname(host),
 504			 mrq->data->bytes_xfered, mrq->data->error);
 505	}
 506
 507	mrq->done(mrq);
 508}
 509EXPORT_SYMBOL(mmc_cqe_request_done);
 510
 511/**
 512 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 513 *	@host: MMC host
 514 *	@mrq: MMC request to be processed
 515 */
 516void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 517{
 518	if (host->cqe_ops->cqe_post_req)
 519		host->cqe_ops->cqe_post_req(host, mrq);
 520}
 521EXPORT_SYMBOL(mmc_cqe_post_req);
 522
 523/* Arbitrary 1 second timeout */
 524#define MMC_CQE_RECOVERY_TIMEOUT	1000
 525
 526/*
 527 * mmc_cqe_recovery - Recover from CQE errors.
 528 * @host: MMC host to recover
 529 *
 530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 531 * in eMMC, and discarding the queue in CQE. CQE must call
 532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 533 * fails to discard its queue.
 534 */
 535int mmc_cqe_recovery(struct mmc_host *host)
 536{
 537	struct mmc_command cmd;
 538	int err;
 539
 540	mmc_retune_hold_now(host);
 541
 542	/*
 543	 * Recovery is expected seldom, if at all, but it reduces performance,
 544	 * so make sure it is not completely silent.
 545	 */
 546	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 547
 548	host->cqe_ops->cqe_recovery_start(host);
 549
 550	memset(&cmd, 0, sizeof(cmd));
 551	cmd.opcode       = MMC_STOP_TRANSMISSION;
 552	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 553	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 554	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 555	mmc_wait_for_cmd(host, &cmd, 0);
 556
 557	memset(&cmd, 0, sizeof(cmd));
 558	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 559	cmd.arg          = 1; /* Discard entire queue */
 560	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 561	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 562	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 563	err = mmc_wait_for_cmd(host, &cmd, 0);
 564
 565	host->cqe_ops->cqe_recovery_finish(host);
 566
 567	mmc_retune_release(host);
 568
 569	return err;
 570}
 571EXPORT_SYMBOL(mmc_cqe_recovery);
 572
 573/**
 574 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 575 *	@host: MMC host
 576 *	@mrq: MMC request
 577 *
 578 *	mmc_is_req_done() is used with requests that have
 579 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 580 *	starting a request and before waiting for it to complete. That is,
 581 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 582 *	and before mmc_wait_for_req_done(). If it is called at other times the
 583 *	result is not meaningful.
 584 */
 585bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 586{
 587	return completion_done(&mrq->completion);
 588}
 589EXPORT_SYMBOL(mmc_is_req_done);
 590
 591/**
 592 *	mmc_wait_for_req - start a request and wait for completion
 593 *	@host: MMC host to start command
 594 *	@mrq: MMC request to start
 595 *
 596 *	Start a new MMC custom command request for a host, and wait
 597 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 598 *	requests, the transfer is ongoing and the caller can issue further
 599 *	commands that do not use the data lines, and then wait by calling
 600 *	mmc_wait_for_req_done().
 601 *	Does not attempt to parse the response.
 602 */
 603void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 604{
 605	__mmc_start_req(host, mrq);
 606
 607	if (!mrq->cap_cmd_during_tfr)
 608		mmc_wait_for_req_done(host, mrq);
 609}
 610EXPORT_SYMBOL(mmc_wait_for_req);
 611
 612/**
 613 *	mmc_wait_for_cmd - start a command and wait for completion
 614 *	@host: MMC host to start command
 615 *	@cmd: MMC command to start
 616 *	@retries: maximum number of retries
 617 *
 618 *	Start a new MMC command for a host, and wait for the command
 619 *	to complete.  Return any error that occurred while the command
 620 *	was executing.  Do not attempt to parse the response.
 621 */
 622int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 623{
 624	struct mmc_request mrq = {};
 625
 626	WARN_ON(!host->claimed);
 627
 628	memset(cmd->resp, 0, sizeof(cmd->resp));
 629	cmd->retries = retries;
 630
 631	mrq.cmd = cmd;
 632	cmd->data = NULL;
 633
 634	mmc_wait_for_req(host, &mrq);
 635
 636	return cmd->error;
 637}
 638
 639EXPORT_SYMBOL(mmc_wait_for_cmd);
 640
 641/**
 642 *	mmc_set_data_timeout - set the timeout for a data command
 643 *	@data: data phase for command
 644 *	@card: the MMC card associated with the data transfer
 645 *
 646 *	Computes the data timeout parameters according to the
 647 *	correct algorithm given the card type.
 648 */
 649void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 650{
 651	unsigned int mult;
 652
 653	/*
 654	 * SDIO cards only define an upper 1 s limit on access.
 655	 */
 656	if (mmc_card_sdio(card)) {
 657		data->timeout_ns = 1000000000;
 658		data->timeout_clks = 0;
 659		return;
 660	}
 661
 662	/*
 663	 * SD cards use a 100 multiplier rather than 10
 664	 */
 665	mult = mmc_card_sd(card) ? 100 : 10;
 666
 667	/*
 668	 * Scale up the multiplier (and therefore the timeout) by
 669	 * the r2w factor for writes.
 670	 */
 671	if (data->flags & MMC_DATA_WRITE)
 672		mult <<= card->csd.r2w_factor;
 673
 674	data->timeout_ns = card->csd.taac_ns * mult;
 675	data->timeout_clks = card->csd.taac_clks * mult;
 676
 677	/*
 678	 * SD cards also have an upper limit on the timeout.
 679	 */
 680	if (mmc_card_sd(card)) {
 681		unsigned int timeout_us, limit_us;
 682
 683		timeout_us = data->timeout_ns / 1000;
 684		if (card->host->ios.clock)
 685			timeout_us += data->timeout_clks * 1000 /
 686				(card->host->ios.clock / 1000);
 687
 688		if (data->flags & MMC_DATA_WRITE)
 689			/*
 690			 * The MMC spec "It is strongly recommended
 691			 * for hosts to implement more than 500ms
 692			 * timeout value even if the card indicates
 693			 * the 250ms maximum busy length."  Even the
 694			 * previous value of 300ms is known to be
 695			 * insufficient for some cards.
 696			 */
 697			limit_us = 3000000;
 698		else
 699			limit_us = 100000;
 700
 701		/*
 702		 * SDHC cards always use these fixed values.
 703		 */
 704		if (timeout_us > limit_us) {
 705			data->timeout_ns = limit_us * 1000;
 706			data->timeout_clks = 0;
 707		}
 708
 709		/* assign limit value if invalid */
 710		if (timeout_us == 0)
 711			data->timeout_ns = limit_us * 1000;
 712	}
 713
 714	/*
 715	 * Some cards require longer data read timeout than indicated in CSD.
 716	 * Address this by setting the read timeout to a "reasonably high"
 717	 * value. For the cards tested, 600ms has proven enough. If necessary,
 718	 * this value can be increased if other problematic cards require this.
 719	 */
 720	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 721		data->timeout_ns = 600000000;
 722		data->timeout_clks = 0;
 723	}
 724
 725	/*
 726	 * Some cards need very high timeouts if driven in SPI mode.
 727	 * The worst observed timeout was 900ms after writing a
 728	 * continuous stream of data until the internal logic
 729	 * overflowed.
 730	 */
 731	if (mmc_host_is_spi(card->host)) {
 732		if (data->flags & MMC_DATA_WRITE) {
 733			if (data->timeout_ns < 1000000000)
 734				data->timeout_ns = 1000000000;	/* 1s */
 735		} else {
 736			if (data->timeout_ns < 100000000)
 737				data->timeout_ns =  100000000;	/* 100ms */
 738		}
 739	}
 740}
 741EXPORT_SYMBOL(mmc_set_data_timeout);
 742
 743/*
 744 * Allow claiming an already claimed host if the context is the same or there is
 745 * no context but the task is the same.
 746 */
 747static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 748				   struct task_struct *task)
 749{
 750	return host->claimer == ctx ||
 751	       (!ctx && task && host->claimer->task == task);
 752}
 753
 754static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 755				       struct mmc_ctx *ctx,
 756				       struct task_struct *task)
 757{
 758	if (!host->claimer) {
 759		if (ctx)
 760			host->claimer = ctx;
 761		else
 762			host->claimer = &host->default_ctx;
 763	}
 764	if (task)
 765		host->claimer->task = task;
 766}
 767
 768/**
 769 *	__mmc_claim_host - exclusively claim a host
 770 *	@host: mmc host to claim
 771 *	@ctx: context that claims the host or NULL in which case the default
 772 *	context will be used
 773 *	@abort: whether or not the operation should be aborted
 774 *
 775 *	Claim a host for a set of operations.  If @abort is non null and
 776 *	dereference a non-zero value then this will return prematurely with
 777 *	that non-zero value without acquiring the lock.  Returns zero
 778 *	with the lock held otherwise.
 779 */
 780int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 781		     atomic_t *abort)
 782{
 783	struct task_struct *task = ctx ? NULL : current;
 784	DECLARE_WAITQUEUE(wait, current);
 785	unsigned long flags;
 786	int stop;
 787	bool pm = false;
 788
 789	might_sleep();
 790
 791	add_wait_queue(&host->wq, &wait);
 792	spin_lock_irqsave(&host->lock, flags);
 793	while (1) {
 794		set_current_state(TASK_UNINTERRUPTIBLE);
 795		stop = abort ? atomic_read(abort) : 0;
 796		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 797			break;
 798		spin_unlock_irqrestore(&host->lock, flags);
 799		schedule();
 800		spin_lock_irqsave(&host->lock, flags);
 801	}
 802	set_current_state(TASK_RUNNING);
 803	if (!stop) {
 804		host->claimed = 1;
 805		mmc_ctx_set_claimer(host, ctx, task);
 806		host->claim_cnt += 1;
 807		if (host->claim_cnt == 1)
 808			pm = true;
 809	} else
 810		wake_up(&host->wq);
 811	spin_unlock_irqrestore(&host->lock, flags);
 812	remove_wait_queue(&host->wq, &wait);
 813
 814	if (pm)
 815		pm_runtime_get_sync(mmc_dev(host));
 816
 817	return stop;
 818}
 819EXPORT_SYMBOL(__mmc_claim_host);
 820
 821/**
 822 *	mmc_release_host - release a host
 823 *	@host: mmc host to release
 824 *
 825 *	Release a MMC host, allowing others to claim the host
 826 *	for their operations.
 827 */
 828void mmc_release_host(struct mmc_host *host)
 829{
 830	unsigned long flags;
 831
 832	WARN_ON(!host->claimed);
 833
 834	spin_lock_irqsave(&host->lock, flags);
 835	if (--host->claim_cnt) {
 836		/* Release for nested claim */
 837		spin_unlock_irqrestore(&host->lock, flags);
 838	} else {
 839		host->claimed = 0;
 840		host->claimer->task = NULL;
 841		host->claimer = NULL;
 842		spin_unlock_irqrestore(&host->lock, flags);
 843		wake_up(&host->wq);
 844		pm_runtime_mark_last_busy(mmc_dev(host));
 845		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 846			pm_runtime_put_sync_suspend(mmc_dev(host));
 847		else
 848			pm_runtime_put_autosuspend(mmc_dev(host));
 849	}
 850}
 851EXPORT_SYMBOL(mmc_release_host);
 852
 853/*
 854 * This is a helper function, which fetches a runtime pm reference for the
 855 * card device and also claims the host.
 856 */
 857void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 858{
 859	pm_runtime_get_sync(&card->dev);
 860	__mmc_claim_host(card->host, ctx, NULL);
 861}
 862EXPORT_SYMBOL(mmc_get_card);
 863
 864/*
 865 * This is a helper function, which releases the host and drops the runtime
 866 * pm reference for the card device.
 867 */
 868void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 869{
 870	struct mmc_host *host = card->host;
 871
 872	WARN_ON(ctx && host->claimer != ctx);
 873
 874	mmc_release_host(host);
 875	pm_runtime_mark_last_busy(&card->dev);
 876	pm_runtime_put_autosuspend(&card->dev);
 877}
 878EXPORT_SYMBOL(mmc_put_card);
 879
 880/*
 881 * Internal function that does the actual ios call to the host driver,
 882 * optionally printing some debug output.
 883 */
 884static inline void mmc_set_ios(struct mmc_host *host)
 885{
 886	struct mmc_ios *ios = &host->ios;
 887
 888	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 889		"width %u timing %u\n",
 890		 mmc_hostname(host), ios->clock, ios->bus_mode,
 891		 ios->power_mode, ios->chip_select, ios->vdd,
 892		 1 << ios->bus_width, ios->timing);
 893
 894	host->ops->set_ios(host, ios);
 895}
 896
 897/*
 898 * Control chip select pin on a host.
 899 */
 900void mmc_set_chip_select(struct mmc_host *host, int mode)
 901{
 902	host->ios.chip_select = mode;
 903	mmc_set_ios(host);
 904}
 905
 906/*
 907 * Sets the host clock to the highest possible frequency that
 908 * is below "hz".
 909 */
 910void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 911{
 912	WARN_ON(hz && hz < host->f_min);
 913
 914	if (hz > host->f_max)
 915		hz = host->f_max;
 916
 917	host->ios.clock = hz;
 918	mmc_set_ios(host);
 919}
 920
 921int mmc_execute_tuning(struct mmc_card *card)
 922{
 923	struct mmc_host *host = card->host;
 924	u32 opcode;
 925	int err;
 926
 927	if (!host->ops->execute_tuning)
 928		return 0;
 929
 930	if (host->cqe_on)
 931		host->cqe_ops->cqe_off(host);
 932
 933	if (mmc_card_mmc(card))
 934		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 935	else
 936		opcode = MMC_SEND_TUNING_BLOCK;
 937
 938	err = host->ops->execute_tuning(host, opcode);
 
 
 
 
 
 939
 940	if (err) {
 
 941		pr_err("%s: tuning execution failed: %d\n",
 942			mmc_hostname(host), err);
 943	} else {
 944		host->retune_now = 0;
 945		host->need_retune = 0;
 946		mmc_retune_enable(host);
 947	}
 948
 949	return err;
 950}
 951
 952/*
 953 * Change the bus mode (open drain/push-pull) of a host.
 954 */
 955void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 956{
 957	host->ios.bus_mode = mode;
 958	mmc_set_ios(host);
 959}
 960
 961/*
 962 * Change data bus width of a host.
 963 */
 964void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 965{
 966	host->ios.bus_width = width;
 967	mmc_set_ios(host);
 968}
 969
 970/*
 971 * Set initial state after a power cycle or a hw_reset.
 972 */
 973void mmc_set_initial_state(struct mmc_host *host)
 974{
 975	if (host->cqe_on)
 976		host->cqe_ops->cqe_off(host);
 977
 978	mmc_retune_disable(host);
 979
 980	if (mmc_host_is_spi(host))
 981		host->ios.chip_select = MMC_CS_HIGH;
 982	else
 983		host->ios.chip_select = MMC_CS_DONTCARE;
 984	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 985	host->ios.bus_width = MMC_BUS_WIDTH_1;
 986	host->ios.timing = MMC_TIMING_LEGACY;
 987	host->ios.drv_type = 0;
 988	host->ios.enhanced_strobe = false;
 989
 990	/*
 991	 * Make sure we are in non-enhanced strobe mode before we
 992	 * actually enable it in ext_csd.
 993	 */
 994	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
 995	     host->ops->hs400_enhanced_strobe)
 996		host->ops->hs400_enhanced_strobe(host, &host->ios);
 997
 998	mmc_set_ios(host);
 999
1000	mmc_crypto_set_initial_state(host);
1001}
1002
1003/**
1004 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1005 * @vdd:	voltage (mV)
1006 * @low_bits:	prefer low bits in boundary cases
1007 *
1008 * This function returns the OCR bit number according to the provided @vdd
1009 * value. If conversion is not possible a negative errno value returned.
1010 *
1011 * Depending on the @low_bits flag the function prefers low or high OCR bits
1012 * on boundary voltages. For example,
1013 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1014 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1015 *
1016 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1017 */
1018static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1019{
1020	const int max_bit = ilog2(MMC_VDD_35_36);
1021	int bit;
1022
1023	if (vdd < 1650 || vdd > 3600)
1024		return -EINVAL;
1025
1026	if (vdd >= 1650 && vdd <= 1950)
1027		return ilog2(MMC_VDD_165_195);
1028
1029	if (low_bits)
1030		vdd -= 1;
1031
1032	/* Base 2000 mV, step 100 mV, bit's base 8. */
1033	bit = (vdd - 2000) / 100 + 8;
1034	if (bit > max_bit)
1035		return max_bit;
1036	return bit;
1037}
1038
1039/**
1040 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1041 * @vdd_min:	minimum voltage value (mV)
1042 * @vdd_max:	maximum voltage value (mV)
1043 *
1044 * This function returns the OCR mask bits according to the provided @vdd_min
1045 * and @vdd_max values. If conversion is not possible the function returns 0.
1046 *
1047 * Notes wrt boundary cases:
1048 * This function sets the OCR bits for all boundary voltages, for example
1049 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1050 * MMC_VDD_34_35 mask.
1051 */
1052u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1053{
1054	u32 mask = 0;
1055
1056	if (vdd_max < vdd_min)
1057		return 0;
1058
1059	/* Prefer high bits for the boundary vdd_max values. */
1060	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1061	if (vdd_max < 0)
1062		return 0;
1063
1064	/* Prefer low bits for the boundary vdd_min values. */
1065	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1066	if (vdd_min < 0)
1067		return 0;
1068
1069	/* Fill the mask, from max bit to min bit. */
1070	while (vdd_max >= vdd_min)
1071		mask |= 1 << vdd_max--;
1072
1073	return mask;
1074}
1075
1076static int mmc_of_get_func_num(struct device_node *node)
1077{
1078	u32 reg;
1079	int ret;
1080
1081	ret = of_property_read_u32(node, "reg", &reg);
1082	if (ret < 0)
1083		return ret;
1084
1085	return reg;
1086}
1087
1088struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1089		unsigned func_num)
1090{
1091	struct device_node *node;
1092
1093	if (!host->parent || !host->parent->of_node)
1094		return NULL;
1095
1096	for_each_child_of_node(host->parent->of_node, node) {
1097		if (mmc_of_get_func_num(node) == func_num)
1098			return node;
1099	}
1100
1101	return NULL;
1102}
1103
1104/*
1105 * Mask off any voltages we don't support and select
1106 * the lowest voltage
1107 */
1108u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1109{
1110	int bit;
1111
1112	/*
1113	 * Sanity check the voltages that the card claims to
1114	 * support.
1115	 */
1116	if (ocr & 0x7F) {
1117		dev_warn(mmc_dev(host),
1118		"card claims to support voltages below defined range\n");
1119		ocr &= ~0x7F;
1120	}
1121
1122	ocr &= host->ocr_avail;
1123	if (!ocr) {
1124		dev_warn(mmc_dev(host), "no support for card's volts\n");
1125		return 0;
1126	}
1127
1128	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1129		bit = ffs(ocr) - 1;
1130		ocr &= 3 << bit;
1131		mmc_power_cycle(host, ocr);
1132	} else {
1133		bit = fls(ocr) - 1;
1134		ocr &= 3 << bit;
 
 
 
 
 
 
1135		if (bit != host->ios.vdd)
1136			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1137	}
1138
1139	return ocr;
1140}
1141
1142int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1143{
1144	int err = 0;
1145	int old_signal_voltage = host->ios.signal_voltage;
1146
1147	host->ios.signal_voltage = signal_voltage;
1148	if (host->ops->start_signal_voltage_switch)
1149		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1150
1151	if (err)
1152		host->ios.signal_voltage = old_signal_voltage;
1153
1154	return err;
1155
1156}
1157
1158void mmc_set_initial_signal_voltage(struct mmc_host *host)
1159{
1160	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1161	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1162		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1163	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1164		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1165	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1166		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1167}
1168
1169int mmc_host_set_uhs_voltage(struct mmc_host *host)
1170{
1171	u32 clock;
1172
1173	/*
1174	 * During a signal voltage level switch, the clock must be gated
1175	 * for 5 ms according to the SD spec
1176	 */
1177	clock = host->ios.clock;
1178	host->ios.clock = 0;
1179	mmc_set_ios(host);
1180
1181	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182		return -EAGAIN;
1183
1184	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1185	mmc_delay(10);
1186	host->ios.clock = clock;
1187	mmc_set_ios(host);
1188
1189	return 0;
1190}
1191
1192int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1193{
1194	struct mmc_command cmd = {};
1195	int err = 0;
1196
1197	/*
1198	 * If we cannot switch voltages, return failure so the caller
1199	 * can continue without UHS mode
1200	 */
1201	if (!host->ops->start_signal_voltage_switch)
1202		return -EPERM;
1203	if (!host->ops->card_busy)
1204		pr_warn("%s: cannot verify signal voltage switch\n",
1205			mmc_hostname(host));
1206
1207	cmd.opcode = SD_SWITCH_VOLTAGE;
1208	cmd.arg = 0;
1209	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1210
1211	err = mmc_wait_for_cmd(host, &cmd, 0);
1212	if (err)
1213		goto power_cycle;
1214
1215	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1216		return -EIO;
1217
1218	/*
1219	 * The card should drive cmd and dat[0:3] low immediately
1220	 * after the response of cmd11, but wait 1 ms to be sure
1221	 */
1222	mmc_delay(1);
1223	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1224		err = -EAGAIN;
1225		goto power_cycle;
1226	}
1227
1228	if (mmc_host_set_uhs_voltage(host)) {
1229		/*
1230		 * Voltages may not have been switched, but we've already
1231		 * sent CMD11, so a power cycle is required anyway
1232		 */
1233		err = -EAGAIN;
1234		goto power_cycle;
1235	}
1236
1237	/* Wait for at least 1 ms according to spec */
1238	mmc_delay(1);
1239
1240	/*
1241	 * Failure to switch is indicated by the card holding
1242	 * dat[0:3] low
1243	 */
1244	if (host->ops->card_busy && host->ops->card_busy(host))
1245		err = -EAGAIN;
1246
1247power_cycle:
1248	if (err) {
1249		pr_debug("%s: Signal voltage switch failed, "
1250			"power cycling card\n", mmc_hostname(host));
1251		mmc_power_cycle(host, ocr);
1252	}
1253
1254	return err;
1255}
1256
1257/*
1258 * Select timing parameters for host.
1259 */
1260void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1261{
1262	host->ios.timing = timing;
1263	mmc_set_ios(host);
1264}
1265
1266/*
1267 * Select appropriate driver type for host.
1268 */
1269void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1270{
1271	host->ios.drv_type = drv_type;
1272	mmc_set_ios(host);
1273}
1274
1275int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1276			      int card_drv_type, int *drv_type)
1277{
1278	struct mmc_host *host = card->host;
1279	int host_drv_type = SD_DRIVER_TYPE_B;
1280
1281	*drv_type = 0;
1282
1283	if (!host->ops->select_drive_strength)
1284		return 0;
1285
1286	/* Use SD definition of driver strength for hosts */
1287	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1288		host_drv_type |= SD_DRIVER_TYPE_A;
1289
1290	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1291		host_drv_type |= SD_DRIVER_TYPE_C;
1292
1293	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1294		host_drv_type |= SD_DRIVER_TYPE_D;
1295
1296	/*
1297	 * The drive strength that the hardware can support
1298	 * depends on the board design.  Pass the appropriate
1299	 * information and let the hardware specific code
1300	 * return what is possible given the options
1301	 */
1302	return host->ops->select_drive_strength(card, max_dtr,
1303						host_drv_type,
1304						card_drv_type,
1305						drv_type);
1306}
1307
1308/*
1309 * Apply power to the MMC stack.  This is a two-stage process.
1310 * First, we enable power to the card without the clock running.
1311 * We then wait a bit for the power to stabilise.  Finally,
1312 * enable the bus drivers and clock to the card.
1313 *
1314 * We must _NOT_ enable the clock prior to power stablising.
1315 *
1316 * If a host does all the power sequencing itself, ignore the
1317 * initial MMC_POWER_UP stage.
1318 */
1319void mmc_power_up(struct mmc_host *host, u32 ocr)
1320{
1321	if (host->ios.power_mode == MMC_POWER_ON)
1322		return;
1323
1324	mmc_pwrseq_pre_power_on(host);
1325
1326	host->ios.vdd = fls(ocr) - 1;
1327	host->ios.power_mode = MMC_POWER_UP;
1328	/* Set initial state and call mmc_set_ios */
1329	mmc_set_initial_state(host);
1330
1331	mmc_set_initial_signal_voltage(host);
1332
1333	/*
1334	 * This delay should be sufficient to allow the power supply
1335	 * to reach the minimum voltage.
1336	 */
1337	mmc_delay(host->ios.power_delay_ms);
1338
1339	mmc_pwrseq_post_power_on(host);
1340
1341	host->ios.clock = host->f_init;
1342
1343	host->ios.power_mode = MMC_POWER_ON;
1344	mmc_set_ios(host);
1345
1346	/*
1347	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1348	 * time required to reach a stable voltage.
1349	 */
1350	mmc_delay(host->ios.power_delay_ms);
1351}
1352
1353void mmc_power_off(struct mmc_host *host)
1354{
1355	if (host->ios.power_mode == MMC_POWER_OFF)
1356		return;
1357
1358	mmc_pwrseq_power_off(host);
1359
1360	host->ios.clock = 0;
1361	host->ios.vdd = 0;
1362
1363	host->ios.power_mode = MMC_POWER_OFF;
1364	/* Set initial state and call mmc_set_ios */
1365	mmc_set_initial_state(host);
1366
1367	/*
1368	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1369	 * XO-1.5, require a short delay after poweroff before the card
1370	 * can be successfully turned on again.
1371	 */
1372	mmc_delay(1);
1373}
1374
1375void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1376{
1377	mmc_power_off(host);
1378	/* Wait at least 1 ms according to SD spec */
1379	mmc_delay(1);
1380	mmc_power_up(host, ocr);
1381}
1382
1383/*
1384 * Assign a mmc bus handler to a host. Only one bus handler may control a
1385 * host at any given time.
1386 */
1387void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1388{
1389	host->bus_ops = ops;
1390}
1391
1392/*
1393 * Remove the current bus handler from a host.
1394 */
1395void mmc_detach_bus(struct mmc_host *host)
1396{
1397	host->bus_ops = NULL;
1398}
1399
1400void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1401{
1402	/*
1403	 * Prevent system sleep for 5s to allow user space to consume the
1404	 * corresponding uevent. This is especially useful, when CD irq is used
1405	 * as a system wakeup, but doesn't hurt in other cases.
1406	 */
1407	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1408		__pm_wakeup_event(host->ws, 5000);
1409
1410	host->detect_change = 1;
1411	mmc_schedule_delayed_work(&host->detect, delay);
1412}
1413
1414/**
1415 *	mmc_detect_change - process change of state on a MMC socket
1416 *	@host: host which changed state.
1417 *	@delay: optional delay to wait before detection (jiffies)
1418 *
1419 *	MMC drivers should call this when they detect a card has been
1420 *	inserted or removed. The MMC layer will confirm that any
1421 *	present card is still functional, and initialize any newly
1422 *	inserted.
1423 */
1424void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1425{
1426	_mmc_detect_change(host, delay, true);
1427}
1428EXPORT_SYMBOL(mmc_detect_change);
1429
1430void mmc_init_erase(struct mmc_card *card)
1431{
1432	unsigned int sz;
1433
1434	if (is_power_of_2(card->erase_size))
1435		card->erase_shift = ffs(card->erase_size) - 1;
1436	else
1437		card->erase_shift = 0;
1438
1439	/*
1440	 * It is possible to erase an arbitrarily large area of an SD or MMC
1441	 * card.  That is not desirable because it can take a long time
1442	 * (minutes) potentially delaying more important I/O, and also the
1443	 * timeout calculations become increasingly hugely over-estimated.
1444	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1445	 * to that size and alignment.
1446	 *
1447	 * For SD cards that define Allocation Unit size, limit erases to one
1448	 * Allocation Unit at a time.
1449	 * For MMC, have a stab at ai good value and for modern cards it will
1450	 * end up being 4MiB. Note that if the value is too small, it can end
1451	 * up taking longer to erase. Also note, erase_size is already set to
1452	 * High Capacity Erase Size if available when this function is called.
1453	 */
1454	if (mmc_card_sd(card) && card->ssr.au) {
1455		card->pref_erase = card->ssr.au;
1456		card->erase_shift = ffs(card->ssr.au) - 1;
1457	} else if (card->erase_size) {
1458		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1459		if (sz < 128)
1460			card->pref_erase = 512 * 1024 / 512;
1461		else if (sz < 512)
1462			card->pref_erase = 1024 * 1024 / 512;
1463		else if (sz < 1024)
1464			card->pref_erase = 2 * 1024 * 1024 / 512;
1465		else
1466			card->pref_erase = 4 * 1024 * 1024 / 512;
1467		if (card->pref_erase < card->erase_size)
1468			card->pref_erase = card->erase_size;
1469		else {
1470			sz = card->pref_erase % card->erase_size;
1471			if (sz)
1472				card->pref_erase += card->erase_size - sz;
1473		}
1474	} else
1475		card->pref_erase = 0;
1476}
1477
 
 
 
 
 
1478static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1479				          unsigned int arg, unsigned int qty)
1480{
1481	unsigned int erase_timeout;
1482
1483	if (arg == MMC_DISCARD_ARG ||
1484	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1485		erase_timeout = card->ext_csd.trim_timeout;
1486	} else if (card->ext_csd.erase_group_def & 1) {
1487		/* High Capacity Erase Group Size uses HC timeouts */
1488		if (arg == MMC_TRIM_ARG)
1489			erase_timeout = card->ext_csd.trim_timeout;
1490		else
1491			erase_timeout = card->ext_csd.hc_erase_timeout;
1492	} else {
1493		/* CSD Erase Group Size uses write timeout */
1494		unsigned int mult = (10 << card->csd.r2w_factor);
1495		unsigned int timeout_clks = card->csd.taac_clks * mult;
1496		unsigned int timeout_us;
1497
1498		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1499		if (card->csd.taac_ns < 1000000)
1500			timeout_us = (card->csd.taac_ns * mult) / 1000;
1501		else
1502			timeout_us = (card->csd.taac_ns / 1000) * mult;
1503
1504		/*
1505		 * ios.clock is only a target.  The real clock rate might be
1506		 * less but not that much less, so fudge it by multiplying by 2.
1507		 */
1508		timeout_clks <<= 1;
1509		timeout_us += (timeout_clks * 1000) /
1510			      (card->host->ios.clock / 1000);
1511
1512		erase_timeout = timeout_us / 1000;
1513
1514		/*
1515		 * Theoretically, the calculation could underflow so round up
1516		 * to 1ms in that case.
1517		 */
1518		if (!erase_timeout)
1519			erase_timeout = 1;
1520	}
1521
1522	/* Multiplier for secure operations */
1523	if (arg & MMC_SECURE_ARGS) {
1524		if (arg == MMC_SECURE_ERASE_ARG)
1525			erase_timeout *= card->ext_csd.sec_erase_mult;
1526		else
1527			erase_timeout *= card->ext_csd.sec_trim_mult;
1528	}
1529
1530	erase_timeout *= qty;
1531
1532	/*
1533	 * Ensure at least a 1 second timeout for SPI as per
1534	 * 'mmc_set_data_timeout()'
1535	 */
1536	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1537		erase_timeout = 1000;
1538
1539	return erase_timeout;
1540}
1541
1542static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1543					 unsigned int arg,
1544					 unsigned int qty)
1545{
1546	unsigned int erase_timeout;
1547
1548	/* for DISCARD none of the below calculation applies.
1549	 * the busy timeout is 250msec per discard command.
1550	 */
1551	if (arg == SD_DISCARD_ARG)
1552		return SD_DISCARD_TIMEOUT_MS;
1553
1554	if (card->ssr.erase_timeout) {
1555		/* Erase timeout specified in SD Status Register (SSR) */
1556		erase_timeout = card->ssr.erase_timeout * qty +
1557				card->ssr.erase_offset;
1558	} else {
1559		/*
1560		 * Erase timeout not specified in SD Status Register (SSR) so
1561		 * use 250ms per write block.
1562		 */
1563		erase_timeout = 250 * qty;
1564	}
1565
1566	/* Must not be less than 1 second */
1567	if (erase_timeout < 1000)
1568		erase_timeout = 1000;
1569
1570	return erase_timeout;
1571}
1572
1573static unsigned int mmc_erase_timeout(struct mmc_card *card,
1574				      unsigned int arg,
1575				      unsigned int qty)
1576{
1577	if (mmc_card_sd(card))
1578		return mmc_sd_erase_timeout(card, arg, qty);
1579	else
1580		return mmc_mmc_erase_timeout(card, arg, qty);
1581}
1582
1583static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1584			unsigned int to, unsigned int arg)
1585{
1586	struct mmc_command cmd = {};
1587	unsigned int qty = 0, busy_timeout = 0;
1588	bool use_r1b_resp;
1589	int err;
1590
1591	mmc_retune_hold(card->host);
1592
1593	/*
1594	 * qty is used to calculate the erase timeout which depends on how many
1595	 * erase groups (or allocation units in SD terminology) are affected.
1596	 * We count erasing part of an erase group as one erase group.
1597	 * For SD, the allocation units are always a power of 2.  For MMC, the
1598	 * erase group size is almost certainly also power of 2, but it does not
1599	 * seem to insist on that in the JEDEC standard, so we fall back to
1600	 * division in that case.  SD may not specify an allocation unit size,
1601	 * in which case the timeout is based on the number of write blocks.
1602	 *
1603	 * Note that the timeout for secure trim 2 will only be correct if the
1604	 * number of erase groups specified is the same as the total of all
1605	 * preceding secure trim 1 commands.  Since the power may have been
1606	 * lost since the secure trim 1 commands occurred, it is generally
1607	 * impossible to calculate the secure trim 2 timeout correctly.
1608	 */
1609	if (card->erase_shift)
1610		qty += ((to >> card->erase_shift) -
1611			(from >> card->erase_shift)) + 1;
1612	else if (mmc_card_sd(card))
1613		qty += to - from + 1;
1614	else
1615		qty += ((to / card->erase_size) -
1616			(from / card->erase_size)) + 1;
1617
1618	if (!mmc_card_blockaddr(card)) {
1619		from <<= 9;
1620		to <<= 9;
1621	}
1622
1623	if (mmc_card_sd(card))
1624		cmd.opcode = SD_ERASE_WR_BLK_START;
1625	else
1626		cmd.opcode = MMC_ERASE_GROUP_START;
1627	cmd.arg = from;
1628	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1629	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1630	if (err) {
1631		pr_err("mmc_erase: group start error %d, "
1632		       "status %#x\n", err, cmd.resp[0]);
1633		err = -EIO;
1634		goto out;
1635	}
1636
1637	memset(&cmd, 0, sizeof(struct mmc_command));
1638	if (mmc_card_sd(card))
1639		cmd.opcode = SD_ERASE_WR_BLK_END;
1640	else
1641		cmd.opcode = MMC_ERASE_GROUP_END;
1642	cmd.arg = to;
1643	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1644	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1645	if (err) {
1646		pr_err("mmc_erase: group end error %d, status %#x\n",
1647		       err, cmd.resp[0]);
1648		err = -EIO;
1649		goto out;
1650	}
1651
1652	memset(&cmd, 0, sizeof(struct mmc_command));
1653	cmd.opcode = MMC_ERASE;
1654	cmd.arg = arg;
1655	busy_timeout = mmc_erase_timeout(card, arg, qty);
1656	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1657
1658	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659	if (err) {
1660		pr_err("mmc_erase: erase error %d, status %#x\n",
1661		       err, cmd.resp[0]);
1662		err = -EIO;
1663		goto out;
1664	}
1665
1666	if (mmc_host_is_spi(card->host))
1667		goto out;
1668
1669	/*
1670	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1671	 * shall be avoided.
1672	 */
1673	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1674		goto out;
1675
1676	/* Let's poll to find out when the erase operation completes. */
1677	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1678
1679out:
1680	mmc_retune_release(card->host);
1681	return err;
1682}
1683
1684static unsigned int mmc_align_erase_size(struct mmc_card *card,
1685					 unsigned int *from,
1686					 unsigned int *to,
1687					 unsigned int nr)
1688{
1689	unsigned int from_new = *from, nr_new = nr, rem;
1690
1691	/*
1692	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1693	 * to align the erase size efficiently.
1694	 */
1695	if (is_power_of_2(card->erase_size)) {
1696		unsigned int temp = from_new;
1697
1698		from_new = round_up(temp, card->erase_size);
1699		rem = from_new - temp;
1700
1701		if (nr_new > rem)
1702			nr_new -= rem;
1703		else
1704			return 0;
1705
1706		nr_new = round_down(nr_new, card->erase_size);
1707	} else {
1708		rem = from_new % card->erase_size;
1709		if (rem) {
1710			rem = card->erase_size - rem;
1711			from_new += rem;
1712			if (nr_new > rem)
1713				nr_new -= rem;
1714			else
1715				return 0;
1716		}
1717
1718		rem = nr_new % card->erase_size;
1719		if (rem)
1720			nr_new -= rem;
1721	}
1722
1723	if (nr_new == 0)
1724		return 0;
1725
1726	*to = from_new + nr_new;
1727	*from = from_new;
1728
1729	return nr_new;
1730}
1731
1732/**
1733 * mmc_erase - erase sectors.
1734 * @card: card to erase
1735 * @from: first sector to erase
1736 * @nr: number of sectors to erase
1737 * @arg: erase command argument
1738 *
1739 * Caller must claim host before calling this function.
1740 */
1741int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1742	      unsigned int arg)
1743{
1744	unsigned int rem, to = from + nr;
1745	int err;
1746
1747	if (!(card->csd.cmdclass & CCC_ERASE))
1748		return -EOPNOTSUPP;
1749
1750	if (!card->erase_size)
1751		return -EOPNOTSUPP;
1752
1753	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1754		return -EOPNOTSUPP;
1755
1756	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1757	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1758		return -EOPNOTSUPP;
1759
1760	if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1761	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1762		return -EOPNOTSUPP;
1763
1764	if (arg == MMC_SECURE_ERASE_ARG) {
1765		if (from % card->erase_size || nr % card->erase_size)
1766			return -EINVAL;
1767	}
1768
1769	if (arg == MMC_ERASE_ARG)
1770		nr = mmc_align_erase_size(card, &from, &to, nr);
1771
1772	if (nr == 0)
1773		return 0;
1774
1775	if (to <= from)
1776		return -EINVAL;
1777
1778	/* 'from' and 'to' are inclusive */
1779	to -= 1;
1780
1781	/*
1782	 * Special case where only one erase-group fits in the timeout budget:
1783	 * If the region crosses an erase-group boundary on this particular
1784	 * case, we will be trimming more than one erase-group which, does not
1785	 * fit in the timeout budget of the controller, so we need to split it
1786	 * and call mmc_do_erase() twice if necessary. This special case is
1787	 * identified by the card->eg_boundary flag.
1788	 */
1789	rem = card->erase_size - (from % card->erase_size);
1790	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1791		err = mmc_do_erase(card, from, from + rem - 1, arg);
1792		from += rem;
1793		if ((err) || (to <= from))
1794			return err;
1795	}
1796
1797	return mmc_do_erase(card, from, to, arg);
1798}
1799EXPORT_SYMBOL(mmc_erase);
1800
1801int mmc_can_erase(struct mmc_card *card)
1802{
1803	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1804		return 1;
1805	return 0;
1806}
1807EXPORT_SYMBOL(mmc_can_erase);
1808
1809int mmc_can_trim(struct mmc_card *card)
1810{
1811	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1812	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1813		return 1;
1814	return 0;
1815}
1816EXPORT_SYMBOL(mmc_can_trim);
1817
1818int mmc_can_discard(struct mmc_card *card)
1819{
1820	/*
1821	 * As there's no way to detect the discard support bit at v4.5
1822	 * use the s/w feature support filed.
1823	 */
1824	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1825		return 1;
1826	return 0;
1827}
1828EXPORT_SYMBOL(mmc_can_discard);
1829
1830int mmc_can_sanitize(struct mmc_card *card)
1831{
1832	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1833		return 0;
1834	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1835		return 1;
1836	return 0;
1837}
1838
1839int mmc_can_secure_erase_trim(struct mmc_card *card)
1840{
1841	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1842	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1843		return 1;
1844	return 0;
1845}
1846EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1847
1848int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1849			    unsigned int nr)
1850{
1851	if (!card->erase_size)
1852		return 0;
1853	if (from % card->erase_size || nr % card->erase_size)
1854		return 0;
1855	return 1;
1856}
1857EXPORT_SYMBOL(mmc_erase_group_aligned);
1858
1859static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1860					    unsigned int arg)
1861{
1862	struct mmc_host *host = card->host;
1863	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1864	unsigned int last_timeout = 0;
1865	unsigned int max_busy_timeout = host->max_busy_timeout ?
1866			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1867
1868	if (card->erase_shift) {
1869		max_qty = UINT_MAX >> card->erase_shift;
1870		min_qty = card->pref_erase >> card->erase_shift;
1871	} else if (mmc_card_sd(card)) {
1872		max_qty = UINT_MAX;
1873		min_qty = card->pref_erase;
1874	} else {
1875		max_qty = UINT_MAX / card->erase_size;
1876		min_qty = card->pref_erase / card->erase_size;
1877	}
1878
1879	/*
1880	 * We should not only use 'host->max_busy_timeout' as the limitation
1881	 * when deciding the max discard sectors. We should set a balance value
1882	 * to improve the erase speed, and it can not get too long timeout at
1883	 * the same time.
1884	 *
1885	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1886	 * matter what size of 'host->max_busy_timeout', but if the
1887	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1888	 * then we can continue to increase the max discard sectors until we
1889	 * get a balance value. In cases when the 'host->max_busy_timeout'
1890	 * isn't specified, use the default max erase timeout.
1891	 */
1892	do {
1893		y = 0;
1894		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1895			timeout = mmc_erase_timeout(card, arg, qty + x);
1896
1897			if (qty + x > min_qty && timeout > max_busy_timeout)
1898				break;
1899
1900			if (timeout < last_timeout)
1901				break;
1902			last_timeout = timeout;
1903			y = x;
1904		}
1905		qty += y;
1906	} while (y);
1907
1908	if (!qty)
1909		return 0;
1910
1911	/*
1912	 * When specifying a sector range to trim, chances are we might cross
1913	 * an erase-group boundary even if the amount of sectors is less than
1914	 * one erase-group.
1915	 * If we can only fit one erase-group in the controller timeout budget,
1916	 * we have to care that erase-group boundaries are not crossed by a
1917	 * single trim operation. We flag that special case with "eg_boundary".
1918	 * In all other cases we can just decrement qty and pretend that we
1919	 * always touch (qty + 1) erase-groups as a simple optimization.
1920	 */
1921	if (qty == 1)
1922		card->eg_boundary = 1;
1923	else
1924		qty--;
1925
1926	/* Convert qty to sectors */
1927	if (card->erase_shift)
1928		max_discard = qty << card->erase_shift;
1929	else if (mmc_card_sd(card))
1930		max_discard = qty + 1;
1931	else
1932		max_discard = qty * card->erase_size;
1933
1934	return max_discard;
1935}
1936
1937unsigned int mmc_calc_max_discard(struct mmc_card *card)
1938{
1939	struct mmc_host *host = card->host;
1940	unsigned int max_discard, max_trim;
1941
1942	/*
1943	 * Without erase_group_def set, MMC erase timeout depends on clock
1944	 * frequence which can change.  In that case, the best choice is
1945	 * just the preferred erase size.
1946	 */
1947	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1948		return card->pref_erase;
1949
1950	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1951	if (mmc_can_trim(card)) {
1952		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1953		if (max_trim < max_discard || max_discard == 0)
1954			max_discard = max_trim;
1955	} else if (max_discard < card->erase_size) {
1956		max_discard = 0;
1957	}
1958	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1959		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1960		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1961	return max_discard;
1962}
1963EXPORT_SYMBOL(mmc_calc_max_discard);
1964
1965bool mmc_card_is_blockaddr(struct mmc_card *card)
1966{
1967	return card ? mmc_card_blockaddr(card) : false;
1968}
1969EXPORT_SYMBOL(mmc_card_is_blockaddr);
1970
1971int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1972{
1973	struct mmc_command cmd = {};
1974
1975	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1976	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1977		return 0;
1978
1979	cmd.opcode = MMC_SET_BLOCKLEN;
1980	cmd.arg = blocklen;
1981	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1982	return mmc_wait_for_cmd(card->host, &cmd, 5);
1983}
1984EXPORT_SYMBOL(mmc_set_blocklen);
1985
1986static void mmc_hw_reset_for_init(struct mmc_host *host)
1987{
1988	mmc_pwrseq_reset(host);
1989
1990	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1991		return;
1992	host->ops->hw_reset(host);
1993}
1994
1995/**
1996 * mmc_hw_reset - reset the card in hardware
1997 * @host: MMC host to which the card is attached
1998 *
1999 * Hard reset the card. This function is only for upper layers, like the
2000 * block layer or card drivers. You cannot use it in host drivers (struct
2001 * mmc_card might be gone then).
2002 *
2003 * Return: 0 on success, -errno on failure
2004 */
2005int mmc_hw_reset(struct mmc_host *host)
2006{
 
2007	int ret;
2008
2009	ret = host->bus_ops->hw_reset(host);
2010	if (ret < 0)
2011		pr_warn("%s: tried to HW reset card, got error %d\n",
2012			mmc_hostname(host), ret);
2013
2014	return ret;
2015}
2016EXPORT_SYMBOL(mmc_hw_reset);
2017
2018int mmc_sw_reset(struct mmc_host *host)
2019{
 
2020	int ret;
2021
2022	if (!host->bus_ops->sw_reset)
2023		return -EOPNOTSUPP;
2024
2025	ret = host->bus_ops->sw_reset(host);
2026	if (ret)
2027		pr_warn("%s: tried to SW reset card, got error %d\n",
2028			mmc_hostname(host), ret);
2029
2030	return ret;
2031}
2032EXPORT_SYMBOL(mmc_sw_reset);
2033
2034static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2035{
2036	host->f_init = freq;
2037
2038	pr_debug("%s: %s: trying to init card at %u Hz\n",
2039		mmc_hostname(host), __func__, host->f_init);
2040
2041	mmc_power_up(host, host->ocr_avail);
2042
2043	/*
2044	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2045	 * do a hardware reset if possible.
2046	 */
2047	mmc_hw_reset_for_init(host);
2048
2049	/*
2050	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2051	 * if the card is being re-initialized, just send it.  CMD52
2052	 * should be ignored by SD/eMMC cards.
2053	 * Skip it if we already know that we do not support SDIO commands
2054	 */
2055	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2056		sdio_reset(host);
2057
2058	mmc_go_idle(host);
2059
2060	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2061		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2062			goto out;
2063		if (mmc_card_sd_express(host))
2064			return 0;
2065	}
2066
2067	/* Order's important: probe SDIO, then SD, then MMC */
2068	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2069		if (!mmc_attach_sdio(host))
2070			return 0;
2071
2072	if (!(host->caps2 & MMC_CAP2_NO_SD))
2073		if (!mmc_attach_sd(host))
2074			return 0;
2075
2076	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2077		if (!mmc_attach_mmc(host))
2078			return 0;
2079
2080out:
2081	mmc_power_off(host);
2082	return -EIO;
2083}
2084
2085int _mmc_detect_card_removed(struct mmc_host *host)
2086{
2087	int ret;
2088
2089	if (!host->card || mmc_card_removed(host->card))
2090		return 1;
2091
2092	ret = host->bus_ops->alive(host);
2093
2094	/*
2095	 * Card detect status and alive check may be out of sync if card is
2096	 * removed slowly, when card detect switch changes while card/slot
2097	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2098	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2099	 * detect work 200ms later for this case.
2100	 */
2101	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2102		mmc_detect_change(host, msecs_to_jiffies(200));
2103		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2104	}
2105
2106	if (ret) {
2107		mmc_card_set_removed(host->card);
2108		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2109	}
2110
2111	return ret;
2112}
2113
2114int mmc_detect_card_removed(struct mmc_host *host)
2115{
2116	struct mmc_card *card = host->card;
2117	int ret;
2118
2119	WARN_ON(!host->claimed);
2120
2121	if (!card)
2122		return 1;
2123
2124	if (!mmc_card_is_removable(host))
2125		return 0;
2126
2127	ret = mmc_card_removed(card);
2128	/*
2129	 * The card will be considered unchanged unless we have been asked to
2130	 * detect a change or host requires polling to provide card detection.
2131	 */
2132	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2133		return ret;
2134
2135	host->detect_change = 0;
2136	if (!ret) {
2137		ret = _mmc_detect_card_removed(host);
2138		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2139			/*
2140			 * Schedule a detect work as soon as possible to let a
2141			 * rescan handle the card removal.
2142			 */
2143			cancel_delayed_work(&host->detect);
2144			_mmc_detect_change(host, 0, false);
2145		}
2146	}
2147
2148	return ret;
2149}
2150EXPORT_SYMBOL(mmc_detect_card_removed);
2151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152void mmc_rescan(struct work_struct *work)
2153{
2154	struct mmc_host *host =
2155		container_of(work, struct mmc_host, detect.work);
2156	int i;
2157
2158	if (host->rescan_disable)
2159		return;
2160
2161	/* If there is a non-removable card registered, only scan once */
2162	if (!mmc_card_is_removable(host) && host->rescan_entered)
2163		return;
2164	host->rescan_entered = 1;
2165
2166	if (host->trigger_card_event && host->ops->card_event) {
2167		mmc_claim_host(host);
2168		host->ops->card_event(host);
2169		mmc_release_host(host);
2170		host->trigger_card_event = false;
2171	}
2172
2173	/* Verify a registered card to be functional, else remove it. */
2174	if (host->bus_ops)
2175		host->bus_ops->detect(host);
2176
2177	host->detect_change = 0;
2178
2179	/* if there still is a card present, stop here */
2180	if (host->bus_ops != NULL)
2181		goto out;
2182
2183	mmc_claim_host(host);
2184	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2185			host->ops->get_cd(host) == 0) {
2186		mmc_power_off(host);
2187		mmc_release_host(host);
2188		goto out;
2189	}
2190
2191	/* If an SD express card is present, then leave it as is. */
2192	if (mmc_card_sd_express(host)) {
2193		mmc_release_host(host);
2194		goto out;
2195	}
2196
2197	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2198		unsigned int freq = freqs[i];
2199		if (freq > host->f_max) {
2200			if (i + 1 < ARRAY_SIZE(freqs))
2201				continue;
2202			freq = host->f_max;
2203		}
2204		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2205			break;
2206		if (freqs[i] <= host->f_min)
2207			break;
2208	}
 
 
 
 
 
 
2209	mmc_release_host(host);
2210
2211 out:
2212	if (host->caps & MMC_CAP_NEEDS_POLL)
2213		mmc_schedule_delayed_work(&host->detect, HZ);
2214}
2215
2216void mmc_start_host(struct mmc_host *host)
2217{
2218	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2219	host->rescan_disable = 0;
2220
2221	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2222		mmc_claim_host(host);
2223		mmc_power_up(host, host->ocr_avail);
2224		mmc_release_host(host);
2225	}
2226
2227	mmc_gpiod_request_cd_irq(host);
2228	_mmc_detect_change(host, 0, false);
2229}
2230
2231void mmc_stop_host(struct mmc_host *host)
2232{
2233	if (host->slot.cd_irq >= 0) {
2234		mmc_gpio_set_cd_wake(host, false);
2235		disable_irq(host->slot.cd_irq);
2236	}
2237
2238	host->rescan_disable = 1;
2239	cancel_delayed_work_sync(&host->detect);
 
 
 
 
 
2240
2241	/* clear pm flags now and let card drivers set them as needed */
2242	host->pm_flags = 0;
2243
2244	if (host->bus_ops) {
2245		/* Calling bus_ops->remove() with a claimed host can deadlock */
2246		host->bus_ops->remove(host);
2247		mmc_claim_host(host);
2248		mmc_detach_bus(host);
2249		mmc_power_off(host);
2250		mmc_release_host(host);
2251		return;
2252	}
2253
2254	mmc_claim_host(host);
2255	mmc_power_off(host);
2256	mmc_release_host(host);
2257}
2258
2259static int __init mmc_init(void)
2260{
2261	int ret;
2262
2263	ret = mmc_register_bus();
2264	if (ret)
2265		return ret;
2266
2267	ret = mmc_register_host_class();
2268	if (ret)
2269		goto unregister_bus;
2270
2271	ret = sdio_register_bus();
2272	if (ret)
2273		goto unregister_host_class;
2274
2275	return 0;
2276
2277unregister_host_class:
2278	mmc_unregister_host_class();
2279unregister_bus:
2280	mmc_unregister_bus();
2281	return ret;
2282}
2283
2284static void __exit mmc_exit(void)
2285{
2286	sdio_unregister_bus();
2287	mmc_unregister_host_class();
2288	mmc_unregister_bus();
2289}
2290
2291subsys_initcall(mmc_init);
2292module_exit(mmc_exit);
2293
2294MODULE_LICENSE("GPL");