Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262}
263
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266{
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296}
297
298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299{
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333}
334
335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336{
337 int err;
338
339 init_completion(&mrq->cmd_completion);
340
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
346 mmc_mrq_pr_debug(host, mrq, false);
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
356
357 return 0;
358}
359EXPORT_SYMBOL(mmc_start_request);
360
361static void mmc_wait_done(struct mmc_request *mrq)
362{
363 complete(&mrq->completion);
364}
365
366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367{
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376}
377
378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379{
380 int err;
381
382 mmc_wait_ongoing_tfr_cmd(host);
383
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
392 }
393
394 return err;
395}
396
397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398{
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
405
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
408 break;
409
410 mmc_retune_recheck(host);
411
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 __mmc_start_request(host, mrq);
417 }
418
419 mmc_retune_release(host);
420}
421EXPORT_SYMBOL(mmc_wait_for_req_done);
422
423/*
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
427 *
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
430 */
431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432{
433 int err;
434
435 /*
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
440 */
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
444
445 mrq->host = host;
446
447 mmc_mrq_pr_debug(host, mrq, true);
448
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
452
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
456
457 trace_mmc_request_start(host, mrq);
458
459 return 0;
460
461out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
468 }
469 return err;
470}
471EXPORT_SYMBOL(mmc_cqe_start_req);
472
473/**
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
477 *
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
480 */
481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482{
483 mmc_should_fail_request(host, mrq);
484
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
489
490 trace_mmc_request_done(host, mrq);
491
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
498 }
499
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
504 }
505
506 mrq->done(mrq);
507}
508EXPORT_SYMBOL(mmc_cqe_request_done);
509
510/**
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
514 */
515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516{
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
519}
520EXPORT_SYMBOL(mmc_cqe_post_req);
521
522/* Arbitrary 1 second timeout */
523#define MMC_CQE_RECOVERY_TIMEOUT 1000
524
525/*
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
528 *
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
533 */
534int mmc_cqe_recovery(struct mmc_host *host)
535{
536 struct mmc_command cmd;
537 int err;
538
539 mmc_retune_hold_now(host);
540
541 /*
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
544 */
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546
547 host->cqe_ops->cqe_recovery_start(host);
548
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION;
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
554 mmc_wait_for_cmd(host, &cmd, 0);
555
556 memset(&cmd, 0, sizeof(cmd));
557 cmd.opcode = MMC_CMDQ_TASK_MGMT;
558 cmd.arg = 1; /* Discard entire queue */
559 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
560 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
561 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
562 err = mmc_wait_for_cmd(host, &cmd, 0);
563
564 host->cqe_ops->cqe_recovery_finish(host);
565
566 mmc_retune_release(host);
567
568 return err;
569}
570EXPORT_SYMBOL(mmc_cqe_recovery);
571
572/**
573 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
574 * @host: MMC host
575 * @mrq: MMC request
576 *
577 * mmc_is_req_done() is used with requests that have
578 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579 * starting a request and before waiting for it to complete. That is,
580 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581 * and before mmc_wait_for_req_done(). If it is called at other times the
582 * result is not meaningful.
583 */
584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
585{
586 return completion_done(&mrq->completion);
587}
588EXPORT_SYMBOL(mmc_is_req_done);
589
590/**
591 * mmc_wait_for_req - start a request and wait for completion
592 * @host: MMC host to start command
593 * @mrq: MMC request to start
594 *
595 * Start a new MMC custom command request for a host, and wait
596 * for the command to complete. In the case of 'cap_cmd_during_tfr'
597 * requests, the transfer is ongoing and the caller can issue further
598 * commands that do not use the data lines, and then wait by calling
599 * mmc_wait_for_req_done().
600 * Does not attempt to parse the response.
601 */
602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
603{
604 __mmc_start_req(host, mrq);
605
606 if (!mrq->cap_cmd_during_tfr)
607 mmc_wait_for_req_done(host, mrq);
608}
609EXPORT_SYMBOL(mmc_wait_for_req);
610
611/**
612 * mmc_wait_for_cmd - start a command and wait for completion
613 * @host: MMC host to start command
614 * @cmd: MMC command to start
615 * @retries: maximum number of retries
616 *
617 * Start a new MMC command for a host, and wait for the command
618 * to complete. Return any error that occurred while the command
619 * was executing. Do not attempt to parse the response.
620 */
621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
622{
623 struct mmc_request mrq = {};
624
625 WARN_ON(!host->claimed);
626
627 memset(cmd->resp, 0, sizeof(cmd->resp));
628 cmd->retries = retries;
629
630 mrq.cmd = cmd;
631 cmd->data = NULL;
632
633 mmc_wait_for_req(host, &mrq);
634
635 return cmd->error;
636}
637
638EXPORT_SYMBOL(mmc_wait_for_cmd);
639
640/**
641 * mmc_set_data_timeout - set the timeout for a data command
642 * @data: data phase for command
643 * @card: the MMC card associated with the data transfer
644 *
645 * Computes the data timeout parameters according to the
646 * correct algorithm given the card type.
647 */
648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
649{
650 unsigned int mult;
651
652 /*
653 * SDIO cards only define an upper 1 s limit on access.
654 */
655 if (mmc_card_sdio(card)) {
656 data->timeout_ns = 1000000000;
657 data->timeout_clks = 0;
658 return;
659 }
660
661 /*
662 * SD cards use a 100 multiplier rather than 10
663 */
664 mult = mmc_card_sd(card) ? 100 : 10;
665
666 /*
667 * Scale up the multiplier (and therefore the timeout) by
668 * the r2w factor for writes.
669 */
670 if (data->flags & MMC_DATA_WRITE)
671 mult <<= card->csd.r2w_factor;
672
673 data->timeout_ns = card->csd.taac_ns * mult;
674 data->timeout_clks = card->csd.taac_clks * mult;
675
676 /*
677 * SD cards also have an upper limit on the timeout.
678 */
679 if (mmc_card_sd(card)) {
680 unsigned int timeout_us, limit_us;
681
682 timeout_us = data->timeout_ns / 1000;
683 if (card->host->ios.clock)
684 timeout_us += data->timeout_clks * 1000 /
685 (card->host->ios.clock / 1000);
686
687 if (data->flags & MMC_DATA_WRITE)
688 /*
689 * The MMC spec "It is strongly recommended
690 * for hosts to implement more than 500ms
691 * timeout value even if the card indicates
692 * the 250ms maximum busy length." Even the
693 * previous value of 300ms is known to be
694 * insufficient for some cards.
695 */
696 limit_us = 3000000;
697 else
698 limit_us = 100000;
699
700 /*
701 * SDHC cards always use these fixed values.
702 */
703 if (timeout_us > limit_us) {
704 data->timeout_ns = limit_us * 1000;
705 data->timeout_clks = 0;
706 }
707
708 /* assign limit value if invalid */
709 if (timeout_us == 0)
710 data->timeout_ns = limit_us * 1000;
711 }
712
713 /*
714 * Some cards require longer data read timeout than indicated in CSD.
715 * Address this by setting the read timeout to a "reasonably high"
716 * value. For the cards tested, 600ms has proven enough. If necessary,
717 * this value can be increased if other problematic cards require this.
718 */
719 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
720 data->timeout_ns = 600000000;
721 data->timeout_clks = 0;
722 }
723
724 /*
725 * Some cards need very high timeouts if driven in SPI mode.
726 * The worst observed timeout was 900ms after writing a
727 * continuous stream of data until the internal logic
728 * overflowed.
729 */
730 if (mmc_host_is_spi(card->host)) {
731 if (data->flags & MMC_DATA_WRITE) {
732 if (data->timeout_ns < 1000000000)
733 data->timeout_ns = 1000000000; /* 1s */
734 } else {
735 if (data->timeout_ns < 100000000)
736 data->timeout_ns = 100000000; /* 100ms */
737 }
738 }
739}
740EXPORT_SYMBOL(mmc_set_data_timeout);
741
742/*
743 * Allow claiming an already claimed host if the context is the same or there is
744 * no context but the task is the same.
745 */
746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
747 struct task_struct *task)
748{
749 return host->claimer == ctx ||
750 (!ctx && task && host->claimer->task == task);
751}
752
753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
754 struct mmc_ctx *ctx,
755 struct task_struct *task)
756{
757 if (!host->claimer) {
758 if (ctx)
759 host->claimer = ctx;
760 else
761 host->claimer = &host->default_ctx;
762 }
763 if (task)
764 host->claimer->task = task;
765}
766
767/**
768 * __mmc_claim_host - exclusively claim a host
769 * @host: mmc host to claim
770 * @ctx: context that claims the host or NULL in which case the default
771 * context will be used
772 * @abort: whether or not the operation should be aborted
773 *
774 * Claim a host for a set of operations. If @abort is non null and
775 * dereference a non-zero value then this will return prematurely with
776 * that non-zero value without acquiring the lock. Returns zero
777 * with the lock held otherwise.
778 */
779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
780 atomic_t *abort)
781{
782 struct task_struct *task = ctx ? NULL : current;
783 DECLARE_WAITQUEUE(wait, current);
784 unsigned long flags;
785 int stop;
786 bool pm = false;
787
788 might_sleep();
789
790 add_wait_queue(&host->wq, &wait);
791 spin_lock_irqsave(&host->lock, flags);
792 while (1) {
793 set_current_state(TASK_UNINTERRUPTIBLE);
794 stop = abort ? atomic_read(abort) : 0;
795 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
796 break;
797 spin_unlock_irqrestore(&host->lock, flags);
798 schedule();
799 spin_lock_irqsave(&host->lock, flags);
800 }
801 set_current_state(TASK_RUNNING);
802 if (!stop) {
803 host->claimed = 1;
804 mmc_ctx_set_claimer(host, ctx, task);
805 host->claim_cnt += 1;
806 if (host->claim_cnt == 1)
807 pm = true;
808 } else
809 wake_up(&host->wq);
810 spin_unlock_irqrestore(&host->lock, flags);
811 remove_wait_queue(&host->wq, &wait);
812
813 if (pm)
814 pm_runtime_get_sync(mmc_dev(host));
815
816 return stop;
817}
818EXPORT_SYMBOL(__mmc_claim_host);
819
820/**
821 * mmc_release_host - release a host
822 * @host: mmc host to release
823 *
824 * Release a MMC host, allowing others to claim the host
825 * for their operations.
826 */
827void mmc_release_host(struct mmc_host *host)
828{
829 unsigned long flags;
830
831 WARN_ON(!host->claimed);
832
833 spin_lock_irqsave(&host->lock, flags);
834 if (--host->claim_cnt) {
835 /* Release for nested claim */
836 spin_unlock_irqrestore(&host->lock, flags);
837 } else {
838 host->claimed = 0;
839 host->claimer->task = NULL;
840 host->claimer = NULL;
841 spin_unlock_irqrestore(&host->lock, flags);
842 wake_up(&host->wq);
843 pm_runtime_mark_last_busy(mmc_dev(host));
844 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
845 pm_runtime_put_sync_suspend(mmc_dev(host));
846 else
847 pm_runtime_put_autosuspend(mmc_dev(host));
848 }
849}
850EXPORT_SYMBOL(mmc_release_host);
851
852/*
853 * This is a helper function, which fetches a runtime pm reference for the
854 * card device and also claims the host.
855 */
856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
857{
858 pm_runtime_get_sync(&card->dev);
859 __mmc_claim_host(card->host, ctx, NULL);
860}
861EXPORT_SYMBOL(mmc_get_card);
862
863/*
864 * This is a helper function, which releases the host and drops the runtime
865 * pm reference for the card device.
866 */
867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
868{
869 struct mmc_host *host = card->host;
870
871 WARN_ON(ctx && host->claimer != ctx);
872
873 mmc_release_host(host);
874 pm_runtime_mark_last_busy(&card->dev);
875 pm_runtime_put_autosuspend(&card->dev);
876}
877EXPORT_SYMBOL(mmc_put_card);
878
879/*
880 * Internal function that does the actual ios call to the host driver,
881 * optionally printing some debug output.
882 */
883static inline void mmc_set_ios(struct mmc_host *host)
884{
885 struct mmc_ios *ios = &host->ios;
886
887 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 "width %u timing %u\n",
889 mmc_hostname(host), ios->clock, ios->bus_mode,
890 ios->power_mode, ios->chip_select, ios->vdd,
891 1 << ios->bus_width, ios->timing);
892
893 host->ops->set_ios(host, ios);
894}
895
896/*
897 * Control chip select pin on a host.
898 */
899void mmc_set_chip_select(struct mmc_host *host, int mode)
900{
901 host->ios.chip_select = mode;
902 mmc_set_ios(host);
903}
904
905/*
906 * Sets the host clock to the highest possible frequency that
907 * is below "hz".
908 */
909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
910{
911 WARN_ON(hz && hz < host->f_min);
912
913 if (hz > host->f_max)
914 hz = host->f_max;
915
916 host->ios.clock = hz;
917 mmc_set_ios(host);
918}
919
920int mmc_execute_tuning(struct mmc_card *card)
921{
922 struct mmc_host *host = card->host;
923 u32 opcode;
924 int err;
925
926 if (!host->ops->execute_tuning)
927 return 0;
928
929 if (host->cqe_on)
930 host->cqe_ops->cqe_off(host);
931
932 if (mmc_card_mmc(card))
933 opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 else
935 opcode = MMC_SEND_TUNING_BLOCK;
936
937 err = host->ops->execute_tuning(host, opcode);
938 if (!err) {
939 mmc_retune_clear(host);
940 mmc_retune_enable(host);
941 return 0;
942 }
943
944 /* Only print error when we don't check for card removal */
945 if (!host->detect_change) {
946 pr_err("%s: tuning execution failed: %d\n",
947 mmc_hostname(host), err);
948 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
949 }
950
951 return err;
952}
953
954/*
955 * Change the bus mode (open drain/push-pull) of a host.
956 */
957void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
958{
959 host->ios.bus_mode = mode;
960 mmc_set_ios(host);
961}
962
963/*
964 * Change data bus width of a host.
965 */
966void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
967{
968 host->ios.bus_width = width;
969 mmc_set_ios(host);
970}
971
972/*
973 * Set initial state after a power cycle or a hw_reset.
974 */
975void mmc_set_initial_state(struct mmc_host *host)
976{
977 if (host->cqe_on)
978 host->cqe_ops->cqe_off(host);
979
980 mmc_retune_disable(host);
981
982 if (mmc_host_is_spi(host))
983 host->ios.chip_select = MMC_CS_HIGH;
984 else
985 host->ios.chip_select = MMC_CS_DONTCARE;
986 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
987 host->ios.bus_width = MMC_BUS_WIDTH_1;
988 host->ios.timing = MMC_TIMING_LEGACY;
989 host->ios.drv_type = 0;
990 host->ios.enhanced_strobe = false;
991
992 /*
993 * Make sure we are in non-enhanced strobe mode before we
994 * actually enable it in ext_csd.
995 */
996 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
997 host->ops->hs400_enhanced_strobe)
998 host->ops->hs400_enhanced_strobe(host, &host->ios);
999
1000 mmc_set_ios(host);
1001
1002 mmc_crypto_set_initial_state(host);
1003}
1004
1005/**
1006 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007 * @vdd: voltage (mV)
1008 * @low_bits: prefer low bits in boundary cases
1009 *
1010 * This function returns the OCR bit number according to the provided @vdd
1011 * value. If conversion is not possible a negative errno value returned.
1012 *
1013 * Depending on the @low_bits flag the function prefers low or high OCR bits
1014 * on boundary voltages. For example,
1015 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017 *
1018 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019 */
1020static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021{
1022 const int max_bit = ilog2(MMC_VDD_35_36);
1023 int bit;
1024
1025 if (vdd < 1650 || vdd > 3600)
1026 return -EINVAL;
1027
1028 if (vdd >= 1650 && vdd <= 1950)
1029 return ilog2(MMC_VDD_165_195);
1030
1031 if (low_bits)
1032 vdd -= 1;
1033
1034 /* Base 2000 mV, step 100 mV, bit's base 8. */
1035 bit = (vdd - 2000) / 100 + 8;
1036 if (bit > max_bit)
1037 return max_bit;
1038 return bit;
1039}
1040
1041/**
1042 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043 * @vdd_min: minimum voltage value (mV)
1044 * @vdd_max: maximum voltage value (mV)
1045 *
1046 * This function returns the OCR mask bits according to the provided @vdd_min
1047 * and @vdd_max values. If conversion is not possible the function returns 0.
1048 *
1049 * Notes wrt boundary cases:
1050 * This function sets the OCR bits for all boundary voltages, for example
1051 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052 * MMC_VDD_34_35 mask.
1053 */
1054u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055{
1056 u32 mask = 0;
1057
1058 if (vdd_max < vdd_min)
1059 return 0;
1060
1061 /* Prefer high bits for the boundary vdd_max values. */
1062 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063 if (vdd_max < 0)
1064 return 0;
1065
1066 /* Prefer low bits for the boundary vdd_min values. */
1067 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068 if (vdd_min < 0)
1069 return 0;
1070
1071 /* Fill the mask, from max bit to min bit. */
1072 while (vdd_max >= vdd_min)
1073 mask |= 1 << vdd_max--;
1074
1075 return mask;
1076}
1077
1078static int mmc_of_get_func_num(struct device_node *node)
1079{
1080 u32 reg;
1081 int ret;
1082
1083 ret = of_property_read_u32(node, "reg", ®);
1084 if (ret < 0)
1085 return ret;
1086
1087 return reg;
1088}
1089
1090struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091 unsigned func_num)
1092{
1093 struct device_node *node;
1094
1095 if (!host->parent || !host->parent->of_node)
1096 return NULL;
1097
1098 for_each_child_of_node(host->parent->of_node, node) {
1099 if (mmc_of_get_func_num(node) == func_num)
1100 return node;
1101 }
1102
1103 return NULL;
1104}
1105
1106/*
1107 * Mask off any voltages we don't support and select
1108 * the lowest voltage
1109 */
1110u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111{
1112 int bit;
1113
1114 /*
1115 * Sanity check the voltages that the card claims to
1116 * support.
1117 */
1118 if (ocr & 0x7F) {
1119 dev_warn(mmc_dev(host),
1120 "card claims to support voltages below defined range\n");
1121 ocr &= ~0x7F;
1122 }
1123
1124 ocr &= host->ocr_avail;
1125 if (!ocr) {
1126 dev_warn(mmc_dev(host), "no support for card's volts\n");
1127 return 0;
1128 }
1129
1130 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131 bit = ffs(ocr) - 1;
1132 ocr &= 3 << bit;
1133 mmc_power_cycle(host, ocr);
1134 } else {
1135 bit = fls(ocr) - 1;
1136 /*
1137 * The bit variable represents the highest voltage bit set in
1138 * the OCR register.
1139 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140 * we must shift the mask '3' with (bit - 1).
1141 */
1142 ocr &= 3 << (bit - 1);
1143 if (bit != host->ios.vdd)
1144 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145 }
1146
1147 return ocr;
1148}
1149
1150int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151{
1152 int err = 0;
1153 int old_signal_voltage = host->ios.signal_voltage;
1154
1155 host->ios.signal_voltage = signal_voltage;
1156 if (host->ops->start_signal_voltage_switch)
1157 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158
1159 if (err)
1160 host->ios.signal_voltage = old_signal_voltage;
1161
1162 return err;
1163
1164}
1165
1166void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167{
1168 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175}
1176
1177int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178{
1179 u32 clock;
1180
1181 /*
1182 * During a signal voltage level switch, the clock must be gated
1183 * for 5 ms according to the SD spec
1184 */
1185 clock = host->ios.clock;
1186 host->ios.clock = 0;
1187 mmc_set_ios(host);
1188
1189 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190 return -EAGAIN;
1191
1192 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193 mmc_delay(10);
1194 host->ios.clock = clock;
1195 mmc_set_ios(host);
1196
1197 return 0;
1198}
1199
1200int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201{
1202 struct mmc_command cmd = {};
1203 int err = 0;
1204
1205 /*
1206 * If we cannot switch voltages, return failure so the caller
1207 * can continue without UHS mode
1208 */
1209 if (!host->ops->start_signal_voltage_switch)
1210 return -EPERM;
1211 if (!host->ops->card_busy)
1212 pr_warn("%s: cannot verify signal voltage switch\n",
1213 mmc_hostname(host));
1214
1215 cmd.opcode = SD_SWITCH_VOLTAGE;
1216 cmd.arg = 0;
1217 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218
1219 err = mmc_wait_for_cmd(host, &cmd, 0);
1220 if (err)
1221 goto power_cycle;
1222
1223 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224 return -EIO;
1225
1226 /*
1227 * The card should drive cmd and dat[0:3] low immediately
1228 * after the response of cmd11, but wait 1 ms to be sure
1229 */
1230 mmc_delay(1);
1231 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232 err = -EAGAIN;
1233 goto power_cycle;
1234 }
1235
1236 if (mmc_host_set_uhs_voltage(host)) {
1237 /*
1238 * Voltages may not have been switched, but we've already
1239 * sent CMD11, so a power cycle is required anyway
1240 */
1241 err = -EAGAIN;
1242 goto power_cycle;
1243 }
1244
1245 /* Wait for at least 1 ms according to spec */
1246 mmc_delay(1);
1247
1248 /*
1249 * Failure to switch is indicated by the card holding
1250 * dat[0:3] low
1251 */
1252 if (host->ops->card_busy && host->ops->card_busy(host))
1253 err = -EAGAIN;
1254
1255power_cycle:
1256 if (err) {
1257 pr_debug("%s: Signal voltage switch failed, "
1258 "power cycling card\n", mmc_hostname(host));
1259 mmc_power_cycle(host, ocr);
1260 }
1261
1262 return err;
1263}
1264
1265/*
1266 * Select timing parameters for host.
1267 */
1268void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269{
1270 host->ios.timing = timing;
1271 mmc_set_ios(host);
1272}
1273
1274/*
1275 * Select appropriate driver type for host.
1276 */
1277void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278{
1279 host->ios.drv_type = drv_type;
1280 mmc_set_ios(host);
1281}
1282
1283int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284 int card_drv_type, int *drv_type)
1285{
1286 struct mmc_host *host = card->host;
1287 int host_drv_type = SD_DRIVER_TYPE_B;
1288
1289 *drv_type = 0;
1290
1291 if (!host->ops->select_drive_strength)
1292 return 0;
1293
1294 /* Use SD definition of driver strength for hosts */
1295 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296 host_drv_type |= SD_DRIVER_TYPE_A;
1297
1298 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299 host_drv_type |= SD_DRIVER_TYPE_C;
1300
1301 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302 host_drv_type |= SD_DRIVER_TYPE_D;
1303
1304 /*
1305 * The drive strength that the hardware can support
1306 * depends on the board design. Pass the appropriate
1307 * information and let the hardware specific code
1308 * return what is possible given the options
1309 */
1310 return host->ops->select_drive_strength(card, max_dtr,
1311 host_drv_type,
1312 card_drv_type,
1313 drv_type);
1314}
1315
1316/*
1317 * Apply power to the MMC stack. This is a two-stage process.
1318 * First, we enable power to the card without the clock running.
1319 * We then wait a bit for the power to stabilise. Finally,
1320 * enable the bus drivers and clock to the card.
1321 *
1322 * We must _NOT_ enable the clock prior to power stablising.
1323 *
1324 * If a host does all the power sequencing itself, ignore the
1325 * initial MMC_POWER_UP stage.
1326 */
1327void mmc_power_up(struct mmc_host *host, u32 ocr)
1328{
1329 if (host->ios.power_mode == MMC_POWER_ON)
1330 return;
1331
1332 mmc_pwrseq_pre_power_on(host);
1333
1334 host->ios.vdd = fls(ocr) - 1;
1335 host->ios.power_mode = MMC_POWER_UP;
1336 /* Set initial state and call mmc_set_ios */
1337 mmc_set_initial_state(host);
1338
1339 mmc_set_initial_signal_voltage(host);
1340
1341 /*
1342 * This delay should be sufficient to allow the power supply
1343 * to reach the minimum voltage.
1344 */
1345 mmc_delay(host->ios.power_delay_ms);
1346
1347 mmc_pwrseq_post_power_on(host);
1348
1349 host->ios.clock = host->f_init;
1350
1351 host->ios.power_mode = MMC_POWER_ON;
1352 mmc_set_ios(host);
1353
1354 /*
1355 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356 * time required to reach a stable voltage.
1357 */
1358 mmc_delay(host->ios.power_delay_ms);
1359}
1360
1361void mmc_power_off(struct mmc_host *host)
1362{
1363 if (host->ios.power_mode == MMC_POWER_OFF)
1364 return;
1365
1366 mmc_pwrseq_power_off(host);
1367
1368 host->ios.clock = 0;
1369 host->ios.vdd = 0;
1370
1371 host->ios.power_mode = MMC_POWER_OFF;
1372 /* Set initial state and call mmc_set_ios */
1373 mmc_set_initial_state(host);
1374
1375 /*
1376 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377 * XO-1.5, require a short delay after poweroff before the card
1378 * can be successfully turned on again.
1379 */
1380 mmc_delay(1);
1381}
1382
1383void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1384{
1385 mmc_power_off(host);
1386 /* Wait at least 1 ms according to SD spec */
1387 mmc_delay(1);
1388 mmc_power_up(host, ocr);
1389}
1390
1391/*
1392 * Assign a mmc bus handler to a host. Only one bus handler may control a
1393 * host at any given time.
1394 */
1395void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1396{
1397 host->bus_ops = ops;
1398}
1399
1400/*
1401 * Remove the current bus handler from a host.
1402 */
1403void mmc_detach_bus(struct mmc_host *host)
1404{
1405 host->bus_ops = NULL;
1406}
1407
1408void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1409{
1410 /*
1411 * Prevent system sleep for 5s to allow user space to consume the
1412 * corresponding uevent. This is especially useful, when CD irq is used
1413 * as a system wakeup, but doesn't hurt in other cases.
1414 */
1415 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1416 __pm_wakeup_event(host->ws, 5000);
1417
1418 host->detect_change = 1;
1419 mmc_schedule_delayed_work(&host->detect, delay);
1420}
1421
1422/**
1423 * mmc_detect_change - process change of state on a MMC socket
1424 * @host: host which changed state.
1425 * @delay: optional delay to wait before detection (jiffies)
1426 *
1427 * MMC drivers should call this when they detect a card has been
1428 * inserted or removed. The MMC layer will confirm that any
1429 * present card is still functional, and initialize any newly
1430 * inserted.
1431 */
1432void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1433{
1434 _mmc_detect_change(host, delay, true);
1435}
1436EXPORT_SYMBOL(mmc_detect_change);
1437
1438void mmc_init_erase(struct mmc_card *card)
1439{
1440 unsigned int sz;
1441
1442 if (is_power_of_2(card->erase_size))
1443 card->erase_shift = ffs(card->erase_size) - 1;
1444 else
1445 card->erase_shift = 0;
1446
1447 /*
1448 * It is possible to erase an arbitrarily large area of an SD or MMC
1449 * card. That is not desirable because it can take a long time
1450 * (minutes) potentially delaying more important I/O, and also the
1451 * timeout calculations become increasingly hugely over-estimated.
1452 * Consequently, 'pref_erase' is defined as a guide to limit erases
1453 * to that size and alignment.
1454 *
1455 * For SD cards that define Allocation Unit size, limit erases to one
1456 * Allocation Unit at a time.
1457 * For MMC, have a stab at ai good value and for modern cards it will
1458 * end up being 4MiB. Note that if the value is too small, it can end
1459 * up taking longer to erase. Also note, erase_size is already set to
1460 * High Capacity Erase Size if available when this function is called.
1461 */
1462 if (mmc_card_sd(card) && card->ssr.au) {
1463 card->pref_erase = card->ssr.au;
1464 card->erase_shift = ffs(card->ssr.au) - 1;
1465 } else if (card->erase_size) {
1466 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1467 if (sz < 128)
1468 card->pref_erase = 512 * 1024 / 512;
1469 else if (sz < 512)
1470 card->pref_erase = 1024 * 1024 / 512;
1471 else if (sz < 1024)
1472 card->pref_erase = 2 * 1024 * 1024 / 512;
1473 else
1474 card->pref_erase = 4 * 1024 * 1024 / 512;
1475 if (card->pref_erase < card->erase_size)
1476 card->pref_erase = card->erase_size;
1477 else {
1478 sz = card->pref_erase % card->erase_size;
1479 if (sz)
1480 card->pref_erase += card->erase_size - sz;
1481 }
1482 } else
1483 card->pref_erase = 0;
1484}
1485
1486static bool is_trim_arg(unsigned int arg)
1487{
1488 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1489}
1490
1491static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1492 unsigned int arg, unsigned int qty)
1493{
1494 unsigned int erase_timeout;
1495
1496 if (arg == MMC_DISCARD_ARG ||
1497 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1498 erase_timeout = card->ext_csd.trim_timeout;
1499 } else if (card->ext_csd.erase_group_def & 1) {
1500 /* High Capacity Erase Group Size uses HC timeouts */
1501 if (arg == MMC_TRIM_ARG)
1502 erase_timeout = card->ext_csd.trim_timeout;
1503 else
1504 erase_timeout = card->ext_csd.hc_erase_timeout;
1505 } else {
1506 /* CSD Erase Group Size uses write timeout */
1507 unsigned int mult = (10 << card->csd.r2w_factor);
1508 unsigned int timeout_clks = card->csd.taac_clks * mult;
1509 unsigned int timeout_us;
1510
1511 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1512 if (card->csd.taac_ns < 1000000)
1513 timeout_us = (card->csd.taac_ns * mult) / 1000;
1514 else
1515 timeout_us = (card->csd.taac_ns / 1000) * mult;
1516
1517 /*
1518 * ios.clock is only a target. The real clock rate might be
1519 * less but not that much less, so fudge it by multiplying by 2.
1520 */
1521 timeout_clks <<= 1;
1522 timeout_us += (timeout_clks * 1000) /
1523 (card->host->ios.clock / 1000);
1524
1525 erase_timeout = timeout_us / 1000;
1526
1527 /*
1528 * Theoretically, the calculation could underflow so round up
1529 * to 1ms in that case.
1530 */
1531 if (!erase_timeout)
1532 erase_timeout = 1;
1533 }
1534
1535 /* Multiplier for secure operations */
1536 if (arg & MMC_SECURE_ARGS) {
1537 if (arg == MMC_SECURE_ERASE_ARG)
1538 erase_timeout *= card->ext_csd.sec_erase_mult;
1539 else
1540 erase_timeout *= card->ext_csd.sec_trim_mult;
1541 }
1542
1543 erase_timeout *= qty;
1544
1545 /*
1546 * Ensure at least a 1 second timeout for SPI as per
1547 * 'mmc_set_data_timeout()'
1548 */
1549 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1550 erase_timeout = 1000;
1551
1552 return erase_timeout;
1553}
1554
1555static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1556 unsigned int arg,
1557 unsigned int qty)
1558{
1559 unsigned int erase_timeout;
1560
1561 /* for DISCARD none of the below calculation applies.
1562 * the busy timeout is 250msec per discard command.
1563 */
1564 if (arg == SD_DISCARD_ARG)
1565 return SD_DISCARD_TIMEOUT_MS;
1566
1567 if (card->ssr.erase_timeout) {
1568 /* Erase timeout specified in SD Status Register (SSR) */
1569 erase_timeout = card->ssr.erase_timeout * qty +
1570 card->ssr.erase_offset;
1571 } else {
1572 /*
1573 * Erase timeout not specified in SD Status Register (SSR) so
1574 * use 250ms per write block.
1575 */
1576 erase_timeout = 250 * qty;
1577 }
1578
1579 /* Must not be less than 1 second */
1580 if (erase_timeout < 1000)
1581 erase_timeout = 1000;
1582
1583 return erase_timeout;
1584}
1585
1586static unsigned int mmc_erase_timeout(struct mmc_card *card,
1587 unsigned int arg,
1588 unsigned int qty)
1589{
1590 if (mmc_card_sd(card))
1591 return mmc_sd_erase_timeout(card, arg, qty);
1592 else
1593 return mmc_mmc_erase_timeout(card, arg, qty);
1594}
1595
1596static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1597 unsigned int to, unsigned int arg)
1598{
1599 struct mmc_command cmd = {};
1600 unsigned int qty = 0, busy_timeout = 0;
1601 bool use_r1b_resp;
1602 int err;
1603
1604 mmc_retune_hold(card->host);
1605
1606 /*
1607 * qty is used to calculate the erase timeout which depends on how many
1608 * erase groups (or allocation units in SD terminology) are affected.
1609 * We count erasing part of an erase group as one erase group.
1610 * For SD, the allocation units are always a power of 2. For MMC, the
1611 * erase group size is almost certainly also power of 2, but it does not
1612 * seem to insist on that in the JEDEC standard, so we fall back to
1613 * division in that case. SD may not specify an allocation unit size,
1614 * in which case the timeout is based on the number of write blocks.
1615 *
1616 * Note that the timeout for secure trim 2 will only be correct if the
1617 * number of erase groups specified is the same as the total of all
1618 * preceding secure trim 1 commands. Since the power may have been
1619 * lost since the secure trim 1 commands occurred, it is generally
1620 * impossible to calculate the secure trim 2 timeout correctly.
1621 */
1622 if (card->erase_shift)
1623 qty += ((to >> card->erase_shift) -
1624 (from >> card->erase_shift)) + 1;
1625 else if (mmc_card_sd(card))
1626 qty += to - from + 1;
1627 else
1628 qty += ((to / card->erase_size) -
1629 (from / card->erase_size)) + 1;
1630
1631 if (!mmc_card_blockaddr(card)) {
1632 from <<= 9;
1633 to <<= 9;
1634 }
1635
1636 if (mmc_card_sd(card))
1637 cmd.opcode = SD_ERASE_WR_BLK_START;
1638 else
1639 cmd.opcode = MMC_ERASE_GROUP_START;
1640 cmd.arg = from;
1641 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1642 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1643 if (err) {
1644 pr_err("mmc_erase: group start error %d, "
1645 "status %#x\n", err, cmd.resp[0]);
1646 err = -EIO;
1647 goto out;
1648 }
1649
1650 memset(&cmd, 0, sizeof(struct mmc_command));
1651 if (mmc_card_sd(card))
1652 cmd.opcode = SD_ERASE_WR_BLK_END;
1653 else
1654 cmd.opcode = MMC_ERASE_GROUP_END;
1655 cmd.arg = to;
1656 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1657 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1658 if (err) {
1659 pr_err("mmc_erase: group end error %d, status %#x\n",
1660 err, cmd.resp[0]);
1661 err = -EIO;
1662 goto out;
1663 }
1664
1665 memset(&cmd, 0, sizeof(struct mmc_command));
1666 cmd.opcode = MMC_ERASE;
1667 cmd.arg = arg;
1668 busy_timeout = mmc_erase_timeout(card, arg, qty);
1669 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1670
1671 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1672 if (err) {
1673 pr_err("mmc_erase: erase error %d, status %#x\n",
1674 err, cmd.resp[0]);
1675 err = -EIO;
1676 goto out;
1677 }
1678
1679 if (mmc_host_is_spi(card->host))
1680 goto out;
1681
1682 /*
1683 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1684 * shall be avoided.
1685 */
1686 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1687 goto out;
1688
1689 /* Let's poll to find out when the erase operation completes. */
1690 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1691
1692out:
1693 mmc_retune_release(card->host);
1694 return err;
1695}
1696
1697static unsigned int mmc_align_erase_size(struct mmc_card *card,
1698 unsigned int *from,
1699 unsigned int *to,
1700 unsigned int nr)
1701{
1702 unsigned int from_new = *from, nr_new = nr, rem;
1703
1704 /*
1705 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1706 * to align the erase size efficiently.
1707 */
1708 if (is_power_of_2(card->erase_size)) {
1709 unsigned int temp = from_new;
1710
1711 from_new = round_up(temp, card->erase_size);
1712 rem = from_new - temp;
1713
1714 if (nr_new > rem)
1715 nr_new -= rem;
1716 else
1717 return 0;
1718
1719 nr_new = round_down(nr_new, card->erase_size);
1720 } else {
1721 rem = from_new % card->erase_size;
1722 if (rem) {
1723 rem = card->erase_size - rem;
1724 from_new += rem;
1725 if (nr_new > rem)
1726 nr_new -= rem;
1727 else
1728 return 0;
1729 }
1730
1731 rem = nr_new % card->erase_size;
1732 if (rem)
1733 nr_new -= rem;
1734 }
1735
1736 if (nr_new == 0)
1737 return 0;
1738
1739 *to = from_new + nr_new;
1740 *from = from_new;
1741
1742 return nr_new;
1743}
1744
1745/**
1746 * mmc_erase - erase sectors.
1747 * @card: card to erase
1748 * @from: first sector to erase
1749 * @nr: number of sectors to erase
1750 * @arg: erase command argument
1751 *
1752 * Caller must claim host before calling this function.
1753 */
1754int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1755 unsigned int arg)
1756{
1757 unsigned int rem, to = from + nr;
1758 int err;
1759
1760 if (!(card->csd.cmdclass & CCC_ERASE))
1761 return -EOPNOTSUPP;
1762
1763 if (!card->erase_size)
1764 return -EOPNOTSUPP;
1765
1766 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1767 return -EOPNOTSUPP;
1768
1769 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1770 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1771 return -EOPNOTSUPP;
1772
1773 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1774 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1775 return -EOPNOTSUPP;
1776
1777 if (arg == MMC_SECURE_ERASE_ARG) {
1778 if (from % card->erase_size || nr % card->erase_size)
1779 return -EINVAL;
1780 }
1781
1782 if (arg == MMC_ERASE_ARG)
1783 nr = mmc_align_erase_size(card, &from, &to, nr);
1784
1785 if (nr == 0)
1786 return 0;
1787
1788 if (to <= from)
1789 return -EINVAL;
1790
1791 /* 'from' and 'to' are inclusive */
1792 to -= 1;
1793
1794 /*
1795 * Special case where only one erase-group fits in the timeout budget:
1796 * If the region crosses an erase-group boundary on this particular
1797 * case, we will be trimming more than one erase-group which, does not
1798 * fit in the timeout budget of the controller, so we need to split it
1799 * and call mmc_do_erase() twice if necessary. This special case is
1800 * identified by the card->eg_boundary flag.
1801 */
1802 rem = card->erase_size - (from % card->erase_size);
1803 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1804 err = mmc_do_erase(card, from, from + rem - 1, arg);
1805 from += rem;
1806 if ((err) || (to <= from))
1807 return err;
1808 }
1809
1810 return mmc_do_erase(card, from, to, arg);
1811}
1812EXPORT_SYMBOL(mmc_erase);
1813
1814int mmc_can_erase(struct mmc_card *card)
1815{
1816 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1817 return 1;
1818 return 0;
1819}
1820EXPORT_SYMBOL(mmc_can_erase);
1821
1822int mmc_can_trim(struct mmc_card *card)
1823{
1824 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1825 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1826 return 1;
1827 return 0;
1828}
1829EXPORT_SYMBOL(mmc_can_trim);
1830
1831int mmc_can_discard(struct mmc_card *card)
1832{
1833 /*
1834 * As there's no way to detect the discard support bit at v4.5
1835 * use the s/w feature support filed.
1836 */
1837 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1838 return 1;
1839 return 0;
1840}
1841EXPORT_SYMBOL(mmc_can_discard);
1842
1843int mmc_can_sanitize(struct mmc_card *card)
1844{
1845 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1846 return 0;
1847 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1848 return 1;
1849 return 0;
1850}
1851
1852int mmc_can_secure_erase_trim(struct mmc_card *card)
1853{
1854 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1855 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1856 return 1;
1857 return 0;
1858}
1859EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1860
1861int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1862 unsigned int nr)
1863{
1864 if (!card->erase_size)
1865 return 0;
1866 if (from % card->erase_size || nr % card->erase_size)
1867 return 0;
1868 return 1;
1869}
1870EXPORT_SYMBOL(mmc_erase_group_aligned);
1871
1872static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1873 unsigned int arg)
1874{
1875 struct mmc_host *host = card->host;
1876 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1877 unsigned int last_timeout = 0;
1878 unsigned int max_busy_timeout = host->max_busy_timeout ?
1879 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1880
1881 if (card->erase_shift) {
1882 max_qty = UINT_MAX >> card->erase_shift;
1883 min_qty = card->pref_erase >> card->erase_shift;
1884 } else if (mmc_card_sd(card)) {
1885 max_qty = UINT_MAX;
1886 min_qty = card->pref_erase;
1887 } else {
1888 max_qty = UINT_MAX / card->erase_size;
1889 min_qty = card->pref_erase / card->erase_size;
1890 }
1891
1892 /*
1893 * We should not only use 'host->max_busy_timeout' as the limitation
1894 * when deciding the max discard sectors. We should set a balance value
1895 * to improve the erase speed, and it can not get too long timeout at
1896 * the same time.
1897 *
1898 * Here we set 'card->pref_erase' as the minimal discard sectors no
1899 * matter what size of 'host->max_busy_timeout', but if the
1900 * 'host->max_busy_timeout' is large enough for more discard sectors,
1901 * then we can continue to increase the max discard sectors until we
1902 * get a balance value. In cases when the 'host->max_busy_timeout'
1903 * isn't specified, use the default max erase timeout.
1904 */
1905 do {
1906 y = 0;
1907 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1908 timeout = mmc_erase_timeout(card, arg, qty + x);
1909
1910 if (qty + x > min_qty && timeout > max_busy_timeout)
1911 break;
1912
1913 if (timeout < last_timeout)
1914 break;
1915 last_timeout = timeout;
1916 y = x;
1917 }
1918 qty += y;
1919 } while (y);
1920
1921 if (!qty)
1922 return 0;
1923
1924 /*
1925 * When specifying a sector range to trim, chances are we might cross
1926 * an erase-group boundary even if the amount of sectors is less than
1927 * one erase-group.
1928 * If we can only fit one erase-group in the controller timeout budget,
1929 * we have to care that erase-group boundaries are not crossed by a
1930 * single trim operation. We flag that special case with "eg_boundary".
1931 * In all other cases we can just decrement qty and pretend that we
1932 * always touch (qty + 1) erase-groups as a simple optimization.
1933 */
1934 if (qty == 1)
1935 card->eg_boundary = 1;
1936 else
1937 qty--;
1938
1939 /* Convert qty to sectors */
1940 if (card->erase_shift)
1941 max_discard = qty << card->erase_shift;
1942 else if (mmc_card_sd(card))
1943 max_discard = qty + 1;
1944 else
1945 max_discard = qty * card->erase_size;
1946
1947 return max_discard;
1948}
1949
1950unsigned int mmc_calc_max_discard(struct mmc_card *card)
1951{
1952 struct mmc_host *host = card->host;
1953 unsigned int max_discard, max_trim;
1954
1955 /*
1956 * Without erase_group_def set, MMC erase timeout depends on clock
1957 * frequence which can change. In that case, the best choice is
1958 * just the preferred erase size.
1959 */
1960 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1961 return card->pref_erase;
1962
1963 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1964 if (mmc_can_trim(card)) {
1965 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1966 if (max_trim < max_discard || max_discard == 0)
1967 max_discard = max_trim;
1968 } else if (max_discard < card->erase_size) {
1969 max_discard = 0;
1970 }
1971 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1972 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1973 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1974 return max_discard;
1975}
1976EXPORT_SYMBOL(mmc_calc_max_discard);
1977
1978bool mmc_card_is_blockaddr(struct mmc_card *card)
1979{
1980 return card ? mmc_card_blockaddr(card) : false;
1981}
1982EXPORT_SYMBOL(mmc_card_is_blockaddr);
1983
1984int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1985{
1986 struct mmc_command cmd = {};
1987
1988 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1989 mmc_card_hs400(card) || mmc_card_hs400es(card))
1990 return 0;
1991
1992 cmd.opcode = MMC_SET_BLOCKLEN;
1993 cmd.arg = blocklen;
1994 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1995 return mmc_wait_for_cmd(card->host, &cmd, 5);
1996}
1997EXPORT_SYMBOL(mmc_set_blocklen);
1998
1999static void mmc_hw_reset_for_init(struct mmc_host *host)
2000{
2001 mmc_pwrseq_reset(host);
2002
2003 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2004 return;
2005 host->ops->card_hw_reset(host);
2006}
2007
2008/**
2009 * mmc_hw_reset - reset the card in hardware
2010 * @card: card to be reset
2011 *
2012 * Hard reset the card. This function is only for upper layers, like the
2013 * block layer or card drivers. You cannot use it in host drivers (struct
2014 * mmc_card might be gone then).
2015 *
2016 * Return: 0 on success, -errno on failure
2017 */
2018int mmc_hw_reset(struct mmc_card *card)
2019{
2020 struct mmc_host *host = card->host;
2021 int ret;
2022
2023 ret = host->bus_ops->hw_reset(host);
2024 if (ret < 0)
2025 pr_warn("%s: tried to HW reset card, got error %d\n",
2026 mmc_hostname(host), ret);
2027
2028 return ret;
2029}
2030EXPORT_SYMBOL(mmc_hw_reset);
2031
2032int mmc_sw_reset(struct mmc_card *card)
2033{
2034 struct mmc_host *host = card->host;
2035 int ret;
2036
2037 if (!host->bus_ops->sw_reset)
2038 return -EOPNOTSUPP;
2039
2040 ret = host->bus_ops->sw_reset(host);
2041 if (ret)
2042 pr_warn("%s: tried to SW reset card, got error %d\n",
2043 mmc_hostname(host), ret);
2044
2045 return ret;
2046}
2047EXPORT_SYMBOL(mmc_sw_reset);
2048
2049static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2050{
2051 host->f_init = freq;
2052
2053 pr_debug("%s: %s: trying to init card at %u Hz\n",
2054 mmc_hostname(host), __func__, host->f_init);
2055
2056 mmc_power_up(host, host->ocr_avail);
2057
2058 /*
2059 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2060 * do a hardware reset if possible.
2061 */
2062 mmc_hw_reset_for_init(host);
2063
2064 /*
2065 * sdio_reset sends CMD52 to reset card. Since we do not know
2066 * if the card is being re-initialized, just send it. CMD52
2067 * should be ignored by SD/eMMC cards.
2068 * Skip it if we already know that we do not support SDIO commands
2069 */
2070 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2071 sdio_reset(host);
2072
2073 mmc_go_idle(host);
2074
2075 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2076 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2077 goto out;
2078 if (mmc_card_sd_express(host))
2079 return 0;
2080 }
2081
2082 /* Order's important: probe SDIO, then SD, then MMC */
2083 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2084 if (!mmc_attach_sdio(host))
2085 return 0;
2086
2087 if (!(host->caps2 & MMC_CAP2_NO_SD))
2088 if (!mmc_attach_sd(host))
2089 return 0;
2090
2091 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2092 if (!mmc_attach_mmc(host))
2093 return 0;
2094
2095out:
2096 mmc_power_off(host);
2097 return -EIO;
2098}
2099
2100int _mmc_detect_card_removed(struct mmc_host *host)
2101{
2102 int ret;
2103
2104 if (!host->card || mmc_card_removed(host->card))
2105 return 1;
2106
2107 ret = host->bus_ops->alive(host);
2108
2109 /*
2110 * Card detect status and alive check may be out of sync if card is
2111 * removed slowly, when card detect switch changes while card/slot
2112 * pads are still contacted in hardware (refer to "SD Card Mechanical
2113 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2114 * detect work 200ms later for this case.
2115 */
2116 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2117 mmc_detect_change(host, msecs_to_jiffies(200));
2118 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2119 }
2120
2121 if (ret) {
2122 mmc_card_set_removed(host->card);
2123 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2124 }
2125
2126 return ret;
2127}
2128
2129int mmc_detect_card_removed(struct mmc_host *host)
2130{
2131 struct mmc_card *card = host->card;
2132 int ret;
2133
2134 WARN_ON(!host->claimed);
2135
2136 if (!card)
2137 return 1;
2138
2139 if (!mmc_card_is_removable(host))
2140 return 0;
2141
2142 ret = mmc_card_removed(card);
2143 /*
2144 * The card will be considered unchanged unless we have been asked to
2145 * detect a change or host requires polling to provide card detection.
2146 */
2147 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2148 return ret;
2149
2150 host->detect_change = 0;
2151 if (!ret) {
2152 ret = _mmc_detect_card_removed(host);
2153 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2154 /*
2155 * Schedule a detect work as soon as possible to let a
2156 * rescan handle the card removal.
2157 */
2158 cancel_delayed_work(&host->detect);
2159 _mmc_detect_change(host, 0, false);
2160 }
2161 }
2162
2163 return ret;
2164}
2165EXPORT_SYMBOL(mmc_detect_card_removed);
2166
2167int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2168{
2169 unsigned int boot_sectors_num;
2170
2171 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2172 return -EOPNOTSUPP;
2173
2174 /* filter out unrelated cards */
2175 if (card->ext_csd.rev < 3 ||
2176 !mmc_card_mmc(card) ||
2177 !mmc_card_is_blockaddr(card) ||
2178 mmc_card_is_removable(card->host))
2179 return -ENOENT;
2180
2181 /*
2182 * eMMC storage has two special boot partitions in addition to the
2183 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2184 * accesses, this means that the partition table addresses are shifted
2185 * by the size of boot partitions. In accordance with the eMMC
2186 * specification, the boot partition size is calculated as follows:
2187 *
2188 * boot partition size = 128K byte x BOOT_SIZE_MULT
2189 *
2190 * Calculate number of sectors occupied by the both boot partitions.
2191 */
2192 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2193 SZ_512 * MMC_NUM_BOOT_PARTITION;
2194
2195 /* Defined by NVIDIA and used by Android devices. */
2196 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2197
2198 return 0;
2199}
2200EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2201
2202void mmc_rescan(struct work_struct *work)
2203{
2204 struct mmc_host *host =
2205 container_of(work, struct mmc_host, detect.work);
2206 int i;
2207
2208 if (host->rescan_disable)
2209 return;
2210
2211 /* If there is a non-removable card registered, only scan once */
2212 if (!mmc_card_is_removable(host) && host->rescan_entered)
2213 return;
2214 host->rescan_entered = 1;
2215
2216 if (host->trigger_card_event && host->ops->card_event) {
2217 mmc_claim_host(host);
2218 host->ops->card_event(host);
2219 mmc_release_host(host);
2220 host->trigger_card_event = false;
2221 }
2222
2223 /* Verify a registered card to be functional, else remove it. */
2224 if (host->bus_ops)
2225 host->bus_ops->detect(host);
2226
2227 host->detect_change = 0;
2228
2229 /* if there still is a card present, stop here */
2230 if (host->bus_ops != NULL)
2231 goto out;
2232
2233 mmc_claim_host(host);
2234 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2235 host->ops->get_cd(host) == 0) {
2236 mmc_power_off(host);
2237 mmc_release_host(host);
2238 goto out;
2239 }
2240
2241 /* If an SD express card is present, then leave it as is. */
2242 if (mmc_card_sd_express(host)) {
2243 mmc_release_host(host);
2244 goto out;
2245 }
2246
2247 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2248 unsigned int freq = freqs[i];
2249 if (freq > host->f_max) {
2250 if (i + 1 < ARRAY_SIZE(freqs))
2251 continue;
2252 freq = host->f_max;
2253 }
2254 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2255 break;
2256 if (freqs[i] <= host->f_min)
2257 break;
2258 }
2259
2260 /*
2261 * Ignore the command timeout errors observed during
2262 * the card init as those are excepted.
2263 */
2264 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2265 mmc_release_host(host);
2266
2267 out:
2268 if (host->caps & MMC_CAP_NEEDS_POLL)
2269 mmc_schedule_delayed_work(&host->detect, HZ);
2270}
2271
2272void mmc_start_host(struct mmc_host *host)
2273{
2274 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2275 host->rescan_disable = 0;
2276
2277 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2278 mmc_claim_host(host);
2279 mmc_power_up(host, host->ocr_avail);
2280 mmc_release_host(host);
2281 }
2282
2283 mmc_gpiod_request_cd_irq(host);
2284 _mmc_detect_change(host, 0, false);
2285}
2286
2287void __mmc_stop_host(struct mmc_host *host)
2288{
2289 if (host->slot.cd_irq >= 0) {
2290 mmc_gpio_set_cd_wake(host, false);
2291 disable_irq(host->slot.cd_irq);
2292 }
2293
2294 host->rescan_disable = 1;
2295 cancel_delayed_work_sync(&host->detect);
2296}
2297
2298void mmc_stop_host(struct mmc_host *host)
2299{
2300 __mmc_stop_host(host);
2301
2302 /* clear pm flags now and let card drivers set them as needed */
2303 host->pm_flags = 0;
2304
2305 if (host->bus_ops) {
2306 /* Calling bus_ops->remove() with a claimed host can deadlock */
2307 host->bus_ops->remove(host);
2308 mmc_claim_host(host);
2309 mmc_detach_bus(host);
2310 mmc_power_off(host);
2311 mmc_release_host(host);
2312 return;
2313 }
2314
2315 mmc_claim_host(host);
2316 mmc_power_off(host);
2317 mmc_release_host(host);
2318}
2319
2320static int __init mmc_init(void)
2321{
2322 int ret;
2323
2324 ret = mmc_register_bus();
2325 if (ret)
2326 return ret;
2327
2328 ret = mmc_register_host_class();
2329 if (ret)
2330 goto unregister_bus;
2331
2332 ret = sdio_register_bus();
2333 if (ret)
2334 goto unregister_host_class;
2335
2336 return 0;
2337
2338unregister_host_class:
2339 mmc_unregister_host_class();
2340unregister_bus:
2341 mmc_unregister_bus();
2342 return ret;
2343}
2344
2345static void __exit mmc_exit(void)
2346{
2347 sdio_unregister_bus();
2348 mmc_unregister_host_class();
2349 mmc_unregister_bus();
2350}
2351
2352subsys_initcall(mmc_init);
2353module_exit(mmc_exit);
2354
2355MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/mmc.h>
41
42#include "core.h"
43#include "card.h"
44#include "bus.h"
45#include "host.h"
46#include "sdio_bus.h"
47#include "pwrseq.h"
48
49#include "mmc_ops.h"
50#include "sd_ops.h"
51#include "sdio_ops.h"
52
53/* If the device is not responding */
54#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
55
56/* The max erase timeout, used when host->max_busy_timeout isn't specified */
57#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
58
59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60
61/*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
66bool use_spi_crc = 1;
67module_param(use_spi_crc, bool, 0);
68
69static int mmc_schedule_delayed_work(struct delayed_work *work,
70 unsigned long delay)
71{
72 /*
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
77 */
78 return queue_delayed_work(system_freezable_wq, work, delay);
79}
80
81#ifdef CONFIG_FAIL_MMC_REQUEST
82
83/*
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
86 */
87static void mmc_should_fail_request(struct mmc_host *host,
88 struct mmc_request *mrq)
89{
90 struct mmc_command *cmd = mrq->cmd;
91 struct mmc_data *data = mrq->data;
92 static const int data_errors[] = {
93 -ETIMEDOUT,
94 -EILSEQ,
95 -EIO,
96 };
97
98 if (!data)
99 return;
100
101 if (cmd->error || data->error ||
102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 return;
104
105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
107}
108
109#else /* CONFIG_FAIL_MMC_REQUEST */
110
111static inline void mmc_should_fail_request(struct mmc_host *host,
112 struct mmc_request *mrq)
113{
114}
115
116#endif /* CONFIG_FAIL_MMC_REQUEST */
117
118static inline void mmc_complete_cmd(struct mmc_request *mrq)
119{
120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 complete_all(&mrq->cmd_completion);
122}
123
124void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
125{
126 if (!mrq->cap_cmd_during_tfr)
127 return;
128
129 mmc_complete_cmd(mrq);
130
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host), mrq->cmd->opcode);
133}
134EXPORT_SYMBOL(mmc_command_done);
135
136/**
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
140 *
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
143 */
144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145{
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
148
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 (mrq->data && mrq->data->error == -EILSEQ) ||
154 (mrq->stop && mrq->stop->error == -EILSEQ)))
155 mmc_retune_needed(host);
156
157 if (err && cmd->retries && mmc_host_is_spi(host)) {
158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 cmd->retries = 0;
160 }
161
162 if (host->ongoing_mrq == mrq)
163 host->ongoing_mrq = NULL;
164
165 mmc_complete_cmd(mrq);
166
167 trace_mmc_request_done(host, mrq);
168
169 /*
170 * We list various conditions for the command to be considered
171 * properly done:
172 *
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
177 */
178 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 mmc_should_fail_request(host, mrq);
180
181 if (!host->ongoing_mrq)
182 led_trigger_event(host->led, LED_OFF);
183
184 if (mrq->sbc) {
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host), mrq->sbc->opcode,
187 mrq->sbc->error,
188 mrq->sbc->resp[0], mrq->sbc->resp[1],
189 mrq->sbc->resp[2], mrq->sbc->resp[3]);
190 }
191
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host), cmd->opcode, err,
194 cmd->resp[0], cmd->resp[1],
195 cmd->resp[2], cmd->resp[3]);
196
197 if (mrq->data) {
198 pr_debug("%s: %d bytes transferred: %d\n",
199 mmc_hostname(host),
200 mrq->data->bytes_xfered, mrq->data->error);
201 }
202
203 if (mrq->stop) {
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host), mrq->stop->opcode,
206 mrq->stop->error,
207 mrq->stop->resp[0], mrq->stop->resp[1],
208 mrq->stop->resp[2], mrq->stop->resp[3]);
209 }
210 }
211 /*
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
214 */
215 if (mrq->done)
216 mrq->done(mrq);
217}
218
219EXPORT_SYMBOL(mmc_request_done);
220
221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222{
223 int err;
224
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
231 }
232
233 /*
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
237 */
238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 host->ops->card_busy) {
240 int tries = 500; /* Wait aprox 500ms at maximum */
241
242 while (host->ops->card_busy(host) && --tries)
243 mmc_delay(1);
244
245 if (tries == 0) {
246 mrq->cmd->error = -EBUSY;
247 mmc_request_done(host, mrq);
248 return;
249 }
250 }
251
252 if (mrq->cap_cmd_during_tfr) {
253 host->ongoing_mrq = mrq;
254 /*
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
257 */
258 reinit_completion(&mrq->cmd_completion);
259 }
260
261 trace_mmc_request_start(host, mrq);
262
263 if (host->cqe_on)
264 host->cqe_ops->cqe_off(host);
265
266 host->ops->request(host, mrq);
267}
268
269static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
270 bool cqe)
271{
272 if (mrq->sbc) {
273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 mmc_hostname(host), mrq->sbc->opcode,
275 mrq->sbc->arg, mrq->sbc->flags);
276 }
277
278 if (mrq->cmd) {
279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 mmc_hostname(host), cqe ? "CQE direct " : "",
281 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
282 } else if (cqe) {
283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
285 }
286
287 if (mrq->data) {
288 pr_debug("%s: blksz %d blocks %d flags %08x "
289 "tsac %d ms nsac %d\n",
290 mmc_hostname(host), mrq->data->blksz,
291 mrq->data->blocks, mrq->data->flags,
292 mrq->data->timeout_ns / 1000000,
293 mrq->data->timeout_clks);
294 }
295
296 if (mrq->stop) {
297 pr_debug("%s: CMD%u arg %08x flags %08x\n",
298 mmc_hostname(host), mrq->stop->opcode,
299 mrq->stop->arg, mrq->stop->flags);
300 }
301}
302
303static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
304{
305 unsigned int i, sz = 0;
306 struct scatterlist *sg;
307
308 if (mrq->cmd) {
309 mrq->cmd->error = 0;
310 mrq->cmd->mrq = mrq;
311 mrq->cmd->data = mrq->data;
312 }
313 if (mrq->sbc) {
314 mrq->sbc->error = 0;
315 mrq->sbc->mrq = mrq;
316 }
317 if (mrq->data) {
318 if (mrq->data->blksz > host->max_blk_size ||
319 mrq->data->blocks > host->max_blk_count ||
320 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
321 return -EINVAL;
322
323 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
324 sz += sg->length;
325 if (sz != mrq->data->blocks * mrq->data->blksz)
326 return -EINVAL;
327
328 mrq->data->error = 0;
329 mrq->data->mrq = mrq;
330 if (mrq->stop) {
331 mrq->data->stop = mrq->stop;
332 mrq->stop->error = 0;
333 mrq->stop->mrq = mrq;
334 }
335 }
336
337 return 0;
338}
339
340int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
341{
342 int err;
343
344 init_completion(&mrq->cmd_completion);
345
346 mmc_retune_hold(host);
347
348 if (mmc_card_removed(host->card))
349 return -ENOMEDIUM;
350
351 mmc_mrq_pr_debug(host, mrq, false);
352
353 WARN_ON(!host->claimed);
354
355 err = mmc_mrq_prep(host, mrq);
356 if (err)
357 return err;
358
359 led_trigger_event(host->led, LED_FULL);
360 __mmc_start_request(host, mrq);
361
362 return 0;
363}
364EXPORT_SYMBOL(mmc_start_request);
365
366static void mmc_wait_done(struct mmc_request *mrq)
367{
368 complete(&mrq->completion);
369}
370
371static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372{
373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374
375 /*
376 * If there is an ongoing transfer, wait for the command line to become
377 * available.
378 */
379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 wait_for_completion(&ongoing_mrq->cmd_completion);
381}
382
383static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384{
385 int err;
386
387 mmc_wait_ongoing_tfr_cmd(host);
388
389 init_completion(&mrq->completion);
390 mrq->done = mmc_wait_done;
391
392 err = mmc_start_request(host, mrq);
393 if (err) {
394 mrq->cmd->error = err;
395 mmc_complete_cmd(mrq);
396 complete(&mrq->completion);
397 }
398
399 return err;
400}
401
402void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403{
404 struct mmc_command *cmd;
405
406 while (1) {
407 wait_for_completion(&mrq->completion);
408
409 cmd = mrq->cmd;
410
411 /*
412 * If host has timed out waiting for the sanitize
413 * to complete, card might be still in programming state
414 * so let's try to bring the card out of programming
415 * state.
416 */
417 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
418 if (!mmc_interrupt_hpi(host->card)) {
419 pr_warn("%s: %s: Interrupted sanitize\n",
420 mmc_hostname(host), __func__);
421 cmd->error = 0;
422 break;
423 } else {
424 pr_err("%s: %s: Failed to interrupt sanitize\n",
425 mmc_hostname(host), __func__);
426 }
427 }
428 if (!cmd->error || !cmd->retries ||
429 mmc_card_removed(host->card))
430 break;
431
432 mmc_retune_recheck(host);
433
434 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
435 mmc_hostname(host), cmd->opcode, cmd->error);
436 cmd->retries--;
437 cmd->error = 0;
438 __mmc_start_request(host, mrq);
439 }
440
441 mmc_retune_release(host);
442}
443EXPORT_SYMBOL(mmc_wait_for_req_done);
444
445/*
446 * mmc_cqe_start_req - Start a CQE request.
447 * @host: MMC host to start the request
448 * @mrq: request to start
449 *
450 * Start the request, re-tuning if needed and it is possible. Returns an error
451 * code if the request fails to start or -EBUSY if CQE is busy.
452 */
453int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
454{
455 int err;
456
457 /*
458 * CQE cannot process re-tuning commands. Caller must hold retuning
459 * while CQE is in use. Re-tuning can happen here only when CQE has no
460 * active requests i.e. this is the first. Note, re-tuning will call
461 * ->cqe_off().
462 */
463 err = mmc_retune(host);
464 if (err)
465 goto out_err;
466
467 mrq->host = host;
468
469 mmc_mrq_pr_debug(host, mrq, true);
470
471 err = mmc_mrq_prep(host, mrq);
472 if (err)
473 goto out_err;
474
475 err = host->cqe_ops->cqe_request(host, mrq);
476 if (err)
477 goto out_err;
478
479 trace_mmc_request_start(host, mrq);
480
481 return 0;
482
483out_err:
484 if (mrq->cmd) {
485 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
486 mmc_hostname(host), mrq->cmd->opcode, err);
487 } else {
488 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
489 mmc_hostname(host), mrq->tag, err);
490 }
491 return err;
492}
493EXPORT_SYMBOL(mmc_cqe_start_req);
494
495/**
496 * mmc_cqe_request_done - CQE has finished processing an MMC request
497 * @host: MMC host which completed request
498 * @mrq: MMC request which completed
499 *
500 * CQE drivers should call this function when they have completed
501 * their processing of a request.
502 */
503void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
504{
505 mmc_should_fail_request(host, mrq);
506
507 /* Flag re-tuning needed on CRC errors */
508 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
509 (mrq->data && mrq->data->error == -EILSEQ))
510 mmc_retune_needed(host);
511
512 trace_mmc_request_done(host, mrq);
513
514 if (mrq->cmd) {
515 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
516 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
517 } else {
518 pr_debug("%s: CQE transfer done tag %d\n",
519 mmc_hostname(host), mrq->tag);
520 }
521
522 if (mrq->data) {
523 pr_debug("%s: %d bytes transferred: %d\n",
524 mmc_hostname(host),
525 mrq->data->bytes_xfered, mrq->data->error);
526 }
527
528 mrq->done(mrq);
529}
530EXPORT_SYMBOL(mmc_cqe_request_done);
531
532/**
533 * mmc_cqe_post_req - CQE post process of a completed MMC request
534 * @host: MMC host
535 * @mrq: MMC request to be processed
536 */
537void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
538{
539 if (host->cqe_ops->cqe_post_req)
540 host->cqe_ops->cqe_post_req(host, mrq);
541}
542EXPORT_SYMBOL(mmc_cqe_post_req);
543
544/* Arbitrary 1 second timeout */
545#define MMC_CQE_RECOVERY_TIMEOUT 1000
546
547/*
548 * mmc_cqe_recovery - Recover from CQE errors.
549 * @host: MMC host to recover
550 *
551 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
552 * in eMMC, and discarding the queue in CQE. CQE must call
553 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
554 * fails to discard its queue.
555 */
556int mmc_cqe_recovery(struct mmc_host *host)
557{
558 struct mmc_command cmd;
559 int err;
560
561 mmc_retune_hold_now(host);
562
563 /*
564 * Recovery is expected seldom, if at all, but it reduces performance,
565 * so make sure it is not completely silent.
566 */
567 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
568
569 host->cqe_ops->cqe_recovery_start(host);
570
571 memset(&cmd, 0, sizeof(cmd));
572 cmd.opcode = MMC_STOP_TRANSMISSION,
573 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
574 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
575 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
576 mmc_wait_for_cmd(host, &cmd, 0);
577
578 memset(&cmd, 0, sizeof(cmd));
579 cmd.opcode = MMC_CMDQ_TASK_MGMT;
580 cmd.arg = 1; /* Discard entire queue */
581 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
582 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
583 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
584 err = mmc_wait_for_cmd(host, &cmd, 0);
585
586 host->cqe_ops->cqe_recovery_finish(host);
587
588 mmc_retune_release(host);
589
590 return err;
591}
592EXPORT_SYMBOL(mmc_cqe_recovery);
593
594/**
595 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
596 * @host: MMC host
597 * @mrq: MMC request
598 *
599 * mmc_is_req_done() is used with requests that have
600 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
601 * starting a request and before waiting for it to complete. That is,
602 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
603 * and before mmc_wait_for_req_done(). If it is called at other times the
604 * result is not meaningful.
605 */
606bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
607{
608 return completion_done(&mrq->completion);
609}
610EXPORT_SYMBOL(mmc_is_req_done);
611
612/**
613 * mmc_wait_for_req - start a request and wait for completion
614 * @host: MMC host to start command
615 * @mrq: MMC request to start
616 *
617 * Start a new MMC custom command request for a host, and wait
618 * for the command to complete. In the case of 'cap_cmd_during_tfr'
619 * requests, the transfer is ongoing and the caller can issue further
620 * commands that do not use the data lines, and then wait by calling
621 * mmc_wait_for_req_done().
622 * Does not attempt to parse the response.
623 */
624void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
625{
626 __mmc_start_req(host, mrq);
627
628 if (!mrq->cap_cmd_during_tfr)
629 mmc_wait_for_req_done(host, mrq);
630}
631EXPORT_SYMBOL(mmc_wait_for_req);
632
633/**
634 * mmc_wait_for_cmd - start a command and wait for completion
635 * @host: MMC host to start command
636 * @cmd: MMC command to start
637 * @retries: maximum number of retries
638 *
639 * Start a new MMC command for a host, and wait for the command
640 * to complete. Return any error that occurred while the command
641 * was executing. Do not attempt to parse the response.
642 */
643int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
644{
645 struct mmc_request mrq = {};
646
647 WARN_ON(!host->claimed);
648
649 memset(cmd->resp, 0, sizeof(cmd->resp));
650 cmd->retries = retries;
651
652 mrq.cmd = cmd;
653 cmd->data = NULL;
654
655 mmc_wait_for_req(host, &mrq);
656
657 return cmd->error;
658}
659
660EXPORT_SYMBOL(mmc_wait_for_cmd);
661
662/**
663 * mmc_set_data_timeout - set the timeout for a data command
664 * @data: data phase for command
665 * @card: the MMC card associated with the data transfer
666 *
667 * Computes the data timeout parameters according to the
668 * correct algorithm given the card type.
669 */
670void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
671{
672 unsigned int mult;
673
674 /*
675 * SDIO cards only define an upper 1 s limit on access.
676 */
677 if (mmc_card_sdio(card)) {
678 data->timeout_ns = 1000000000;
679 data->timeout_clks = 0;
680 return;
681 }
682
683 /*
684 * SD cards use a 100 multiplier rather than 10
685 */
686 mult = mmc_card_sd(card) ? 100 : 10;
687
688 /*
689 * Scale up the multiplier (and therefore the timeout) by
690 * the r2w factor for writes.
691 */
692 if (data->flags & MMC_DATA_WRITE)
693 mult <<= card->csd.r2w_factor;
694
695 data->timeout_ns = card->csd.taac_ns * mult;
696 data->timeout_clks = card->csd.taac_clks * mult;
697
698 /*
699 * SD cards also have an upper limit on the timeout.
700 */
701 if (mmc_card_sd(card)) {
702 unsigned int timeout_us, limit_us;
703
704 timeout_us = data->timeout_ns / 1000;
705 if (card->host->ios.clock)
706 timeout_us += data->timeout_clks * 1000 /
707 (card->host->ios.clock / 1000);
708
709 if (data->flags & MMC_DATA_WRITE)
710 /*
711 * The MMC spec "It is strongly recommended
712 * for hosts to implement more than 500ms
713 * timeout value even if the card indicates
714 * the 250ms maximum busy length." Even the
715 * previous value of 300ms is known to be
716 * insufficient for some cards.
717 */
718 limit_us = 3000000;
719 else
720 limit_us = 100000;
721
722 /*
723 * SDHC cards always use these fixed values.
724 */
725 if (timeout_us > limit_us) {
726 data->timeout_ns = limit_us * 1000;
727 data->timeout_clks = 0;
728 }
729
730 /* assign limit value if invalid */
731 if (timeout_us == 0)
732 data->timeout_ns = limit_us * 1000;
733 }
734
735 /*
736 * Some cards require longer data read timeout than indicated in CSD.
737 * Address this by setting the read timeout to a "reasonably high"
738 * value. For the cards tested, 600ms has proven enough. If necessary,
739 * this value can be increased if other problematic cards require this.
740 */
741 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
742 data->timeout_ns = 600000000;
743 data->timeout_clks = 0;
744 }
745
746 /*
747 * Some cards need very high timeouts if driven in SPI mode.
748 * The worst observed timeout was 900ms after writing a
749 * continuous stream of data until the internal logic
750 * overflowed.
751 */
752 if (mmc_host_is_spi(card->host)) {
753 if (data->flags & MMC_DATA_WRITE) {
754 if (data->timeout_ns < 1000000000)
755 data->timeout_ns = 1000000000; /* 1s */
756 } else {
757 if (data->timeout_ns < 100000000)
758 data->timeout_ns = 100000000; /* 100ms */
759 }
760 }
761}
762EXPORT_SYMBOL(mmc_set_data_timeout);
763
764/**
765 * mmc_align_data_size - pads a transfer size to a more optimal value
766 * @card: the MMC card associated with the data transfer
767 * @sz: original transfer size
768 *
769 * Pads the original data size with a number of extra bytes in
770 * order to avoid controller bugs and/or performance hits
771 * (e.g. some controllers revert to PIO for certain sizes).
772 *
773 * Returns the improved size, which might be unmodified.
774 *
775 * Note that this function is only relevant when issuing a
776 * single scatter gather entry.
777 */
778unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
779{
780 /*
781 * FIXME: We don't have a system for the controller to tell
782 * the core about its problems yet, so for now we just 32-bit
783 * align the size.
784 */
785 sz = ((sz + 3) / 4) * 4;
786
787 return sz;
788}
789EXPORT_SYMBOL(mmc_align_data_size);
790
791/*
792 * Allow claiming an already claimed host if the context is the same or there is
793 * no context but the task is the same.
794 */
795static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
796 struct task_struct *task)
797{
798 return host->claimer == ctx ||
799 (!ctx && task && host->claimer->task == task);
800}
801
802static inline void mmc_ctx_set_claimer(struct mmc_host *host,
803 struct mmc_ctx *ctx,
804 struct task_struct *task)
805{
806 if (!host->claimer) {
807 if (ctx)
808 host->claimer = ctx;
809 else
810 host->claimer = &host->default_ctx;
811 }
812 if (task)
813 host->claimer->task = task;
814}
815
816/**
817 * __mmc_claim_host - exclusively claim a host
818 * @host: mmc host to claim
819 * @ctx: context that claims the host or NULL in which case the default
820 * context will be used
821 * @abort: whether or not the operation should be aborted
822 *
823 * Claim a host for a set of operations. If @abort is non null and
824 * dereference a non-zero value then this will return prematurely with
825 * that non-zero value without acquiring the lock. Returns zero
826 * with the lock held otherwise.
827 */
828int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
829 atomic_t *abort)
830{
831 struct task_struct *task = ctx ? NULL : current;
832 DECLARE_WAITQUEUE(wait, current);
833 unsigned long flags;
834 int stop;
835 bool pm = false;
836
837 might_sleep();
838
839 add_wait_queue(&host->wq, &wait);
840 spin_lock_irqsave(&host->lock, flags);
841 while (1) {
842 set_current_state(TASK_UNINTERRUPTIBLE);
843 stop = abort ? atomic_read(abort) : 0;
844 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
845 break;
846 spin_unlock_irqrestore(&host->lock, flags);
847 schedule();
848 spin_lock_irqsave(&host->lock, flags);
849 }
850 set_current_state(TASK_RUNNING);
851 if (!stop) {
852 host->claimed = 1;
853 mmc_ctx_set_claimer(host, ctx, task);
854 host->claim_cnt += 1;
855 if (host->claim_cnt == 1)
856 pm = true;
857 } else
858 wake_up(&host->wq);
859 spin_unlock_irqrestore(&host->lock, flags);
860 remove_wait_queue(&host->wq, &wait);
861
862 if (pm)
863 pm_runtime_get_sync(mmc_dev(host));
864
865 return stop;
866}
867EXPORT_SYMBOL(__mmc_claim_host);
868
869/**
870 * mmc_release_host - release a host
871 * @host: mmc host to release
872 *
873 * Release a MMC host, allowing others to claim the host
874 * for their operations.
875 */
876void mmc_release_host(struct mmc_host *host)
877{
878 unsigned long flags;
879
880 WARN_ON(!host->claimed);
881
882 spin_lock_irqsave(&host->lock, flags);
883 if (--host->claim_cnt) {
884 /* Release for nested claim */
885 spin_unlock_irqrestore(&host->lock, flags);
886 } else {
887 host->claimed = 0;
888 host->claimer->task = NULL;
889 host->claimer = NULL;
890 spin_unlock_irqrestore(&host->lock, flags);
891 wake_up(&host->wq);
892 pm_runtime_mark_last_busy(mmc_dev(host));
893 pm_runtime_put_autosuspend(mmc_dev(host));
894 }
895}
896EXPORT_SYMBOL(mmc_release_host);
897
898/*
899 * This is a helper function, which fetches a runtime pm reference for the
900 * card device and also claims the host.
901 */
902void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
903{
904 pm_runtime_get_sync(&card->dev);
905 __mmc_claim_host(card->host, ctx, NULL);
906}
907EXPORT_SYMBOL(mmc_get_card);
908
909/*
910 * This is a helper function, which releases the host and drops the runtime
911 * pm reference for the card device.
912 */
913void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
914{
915 struct mmc_host *host = card->host;
916
917 WARN_ON(ctx && host->claimer != ctx);
918
919 mmc_release_host(host);
920 pm_runtime_mark_last_busy(&card->dev);
921 pm_runtime_put_autosuspend(&card->dev);
922}
923EXPORT_SYMBOL(mmc_put_card);
924
925/*
926 * Internal function that does the actual ios call to the host driver,
927 * optionally printing some debug output.
928 */
929static inline void mmc_set_ios(struct mmc_host *host)
930{
931 struct mmc_ios *ios = &host->ios;
932
933 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
934 "width %u timing %u\n",
935 mmc_hostname(host), ios->clock, ios->bus_mode,
936 ios->power_mode, ios->chip_select, ios->vdd,
937 1 << ios->bus_width, ios->timing);
938
939 host->ops->set_ios(host, ios);
940}
941
942/*
943 * Control chip select pin on a host.
944 */
945void mmc_set_chip_select(struct mmc_host *host, int mode)
946{
947 host->ios.chip_select = mode;
948 mmc_set_ios(host);
949}
950
951/*
952 * Sets the host clock to the highest possible frequency that
953 * is below "hz".
954 */
955void mmc_set_clock(struct mmc_host *host, unsigned int hz)
956{
957 WARN_ON(hz && hz < host->f_min);
958
959 if (hz > host->f_max)
960 hz = host->f_max;
961
962 host->ios.clock = hz;
963 mmc_set_ios(host);
964}
965
966int mmc_execute_tuning(struct mmc_card *card)
967{
968 struct mmc_host *host = card->host;
969 u32 opcode;
970 int err;
971
972 if (!host->ops->execute_tuning)
973 return 0;
974
975 if (host->cqe_on)
976 host->cqe_ops->cqe_off(host);
977
978 if (mmc_card_mmc(card))
979 opcode = MMC_SEND_TUNING_BLOCK_HS200;
980 else
981 opcode = MMC_SEND_TUNING_BLOCK;
982
983 err = host->ops->execute_tuning(host, opcode);
984
985 if (err)
986 pr_err("%s: tuning execution failed: %d\n",
987 mmc_hostname(host), err);
988 else
989 mmc_retune_enable(host);
990
991 return err;
992}
993
994/*
995 * Change the bus mode (open drain/push-pull) of a host.
996 */
997void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
998{
999 host->ios.bus_mode = mode;
1000 mmc_set_ios(host);
1001}
1002
1003/*
1004 * Change data bus width of a host.
1005 */
1006void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007{
1008 host->ios.bus_width = width;
1009 mmc_set_ios(host);
1010}
1011
1012/*
1013 * Set initial state after a power cycle or a hw_reset.
1014 */
1015void mmc_set_initial_state(struct mmc_host *host)
1016{
1017 if (host->cqe_on)
1018 host->cqe_ops->cqe_off(host);
1019
1020 mmc_retune_disable(host);
1021
1022 if (mmc_host_is_spi(host))
1023 host->ios.chip_select = MMC_CS_HIGH;
1024 else
1025 host->ios.chip_select = MMC_CS_DONTCARE;
1026 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027 host->ios.bus_width = MMC_BUS_WIDTH_1;
1028 host->ios.timing = MMC_TIMING_LEGACY;
1029 host->ios.drv_type = 0;
1030 host->ios.enhanced_strobe = false;
1031
1032 /*
1033 * Make sure we are in non-enhanced strobe mode before we
1034 * actually enable it in ext_csd.
1035 */
1036 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037 host->ops->hs400_enhanced_strobe)
1038 host->ops->hs400_enhanced_strobe(host, &host->ios);
1039
1040 mmc_set_ios(host);
1041}
1042
1043/**
1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045 * @vdd: voltage (mV)
1046 * @low_bits: prefer low bits in boundary cases
1047 *
1048 * This function returns the OCR bit number according to the provided @vdd
1049 * value. If conversion is not possible a negative errno value returned.
1050 *
1051 * Depending on the @low_bits flag the function prefers low or high OCR bits
1052 * on boundary voltages. For example,
1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055 *
1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057 */
1058static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059{
1060 const int max_bit = ilog2(MMC_VDD_35_36);
1061 int bit;
1062
1063 if (vdd < 1650 || vdd > 3600)
1064 return -EINVAL;
1065
1066 if (vdd >= 1650 && vdd <= 1950)
1067 return ilog2(MMC_VDD_165_195);
1068
1069 if (low_bits)
1070 vdd -= 1;
1071
1072 /* Base 2000 mV, step 100 mV, bit's base 8. */
1073 bit = (vdd - 2000) / 100 + 8;
1074 if (bit > max_bit)
1075 return max_bit;
1076 return bit;
1077}
1078
1079/**
1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081 * @vdd_min: minimum voltage value (mV)
1082 * @vdd_max: maximum voltage value (mV)
1083 *
1084 * This function returns the OCR mask bits according to the provided @vdd_min
1085 * and @vdd_max values. If conversion is not possible the function returns 0.
1086 *
1087 * Notes wrt boundary cases:
1088 * This function sets the OCR bits for all boundary voltages, for example
1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090 * MMC_VDD_34_35 mask.
1091 */
1092u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093{
1094 u32 mask = 0;
1095
1096 if (vdd_max < vdd_min)
1097 return 0;
1098
1099 /* Prefer high bits for the boundary vdd_max values. */
1100 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101 if (vdd_max < 0)
1102 return 0;
1103
1104 /* Prefer low bits for the boundary vdd_min values. */
1105 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106 if (vdd_min < 0)
1107 return 0;
1108
1109 /* Fill the mask, from max bit to min bit. */
1110 while (vdd_max >= vdd_min)
1111 mask |= 1 << vdd_max--;
1112
1113 return mask;
1114}
1115EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116
1117#ifdef CONFIG_OF
1118
1119/**
1120 * mmc_of_parse_voltage - return mask of supported voltages
1121 * @np: The device node need to be parsed.
1122 * @mask: mask of voltages available for MMC/SD/SDIO
1123 *
1124 * Parse the "voltage-ranges" DT property, returning zero if it is not
1125 * found, negative errno if the voltage-range specification is invalid,
1126 * or one if the voltage-range is specified and successfully parsed.
1127 */
1128int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129{
1130 const u32 *voltage_ranges;
1131 int num_ranges, i;
1132
1133 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135 if (!voltage_ranges) {
1136 pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137 return 0;
1138 }
1139 if (!num_ranges) {
1140 pr_err("%pOF: voltage-ranges empty\n", np);
1141 return -EINVAL;
1142 }
1143
1144 for (i = 0; i < num_ranges; i++) {
1145 const int j = i * 2;
1146 u32 ocr_mask;
1147
1148 ocr_mask = mmc_vddrange_to_ocrmask(
1149 be32_to_cpu(voltage_ranges[j]),
1150 be32_to_cpu(voltage_ranges[j + 1]));
1151 if (!ocr_mask) {
1152 pr_err("%pOF: voltage-range #%d is invalid\n",
1153 np, i);
1154 return -EINVAL;
1155 }
1156 *mask |= ocr_mask;
1157 }
1158
1159 return 1;
1160}
1161EXPORT_SYMBOL(mmc_of_parse_voltage);
1162
1163#endif /* CONFIG_OF */
1164
1165static int mmc_of_get_func_num(struct device_node *node)
1166{
1167 u32 reg;
1168 int ret;
1169
1170 ret = of_property_read_u32(node, "reg", ®);
1171 if (ret < 0)
1172 return ret;
1173
1174 return reg;
1175}
1176
1177struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178 unsigned func_num)
1179{
1180 struct device_node *node;
1181
1182 if (!host->parent || !host->parent->of_node)
1183 return NULL;
1184
1185 for_each_child_of_node(host->parent->of_node, node) {
1186 if (mmc_of_get_func_num(node) == func_num)
1187 return node;
1188 }
1189
1190 return NULL;
1191}
1192
1193#ifdef CONFIG_REGULATOR
1194
1195/**
1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197 * @vdd_bit: OCR bit number
1198 * @min_uV: minimum voltage value (mV)
1199 * @max_uV: maximum voltage value (mV)
1200 *
1201 * This function returns the voltage range according to the provided OCR
1202 * bit number. If conversion is not possible a negative errno value returned.
1203 */
1204static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205{
1206 int tmp;
1207
1208 if (!vdd_bit)
1209 return -EINVAL;
1210
1211 /*
1212 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213 * bits this regulator doesn't quite support ... don't
1214 * be too picky, most cards and regulators are OK with
1215 * a 0.1V range goof (it's a small error percentage).
1216 */
1217 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218 if (tmp == 0) {
1219 *min_uV = 1650 * 1000;
1220 *max_uV = 1950 * 1000;
1221 } else {
1222 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223 *max_uV = *min_uV + 100 * 1000;
1224 }
1225
1226 return 0;
1227}
1228
1229/**
1230 * mmc_regulator_get_ocrmask - return mask of supported voltages
1231 * @supply: regulator to use
1232 *
1233 * This returns either a negative errno, or a mask of voltages that
1234 * can be provided to MMC/SD/SDIO devices using the specified voltage
1235 * regulator. This would normally be called before registering the
1236 * MMC host adapter.
1237 */
1238int mmc_regulator_get_ocrmask(struct regulator *supply)
1239{
1240 int result = 0;
1241 int count;
1242 int i;
1243 int vdd_uV;
1244 int vdd_mV;
1245
1246 count = regulator_count_voltages(supply);
1247 if (count < 0)
1248 return count;
1249
1250 for (i = 0; i < count; i++) {
1251 vdd_uV = regulator_list_voltage(supply, i);
1252 if (vdd_uV <= 0)
1253 continue;
1254
1255 vdd_mV = vdd_uV / 1000;
1256 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257 }
1258
1259 if (!result) {
1260 vdd_uV = regulator_get_voltage(supply);
1261 if (vdd_uV <= 0)
1262 return vdd_uV;
1263
1264 vdd_mV = vdd_uV / 1000;
1265 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266 }
1267
1268 return result;
1269}
1270EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271
1272/**
1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274 * @mmc: the host to regulate
1275 * @supply: regulator to use
1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277 *
1278 * Returns zero on success, else negative errno.
1279 *
1280 * MMC host drivers may use this to enable or disable a regulator using
1281 * a particular supply voltage. This would normally be called from the
1282 * set_ios() method.
1283 */
1284int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285 struct regulator *supply,
1286 unsigned short vdd_bit)
1287{
1288 int result = 0;
1289 int min_uV, max_uV;
1290
1291 if (vdd_bit) {
1292 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1293
1294 result = regulator_set_voltage(supply, min_uV, max_uV);
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314 int min_uV, int target_uV,
1315 int max_uV)
1316{
1317 /*
1318 * Check if supported first to avoid errors since we may try several
1319 * signal levels during power up and don't want to show errors.
1320 */
1321 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322 return -EINVAL;
1323
1324 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325 max_uV);
1326}
1327
1328/**
1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330 *
1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1334 * SD card spec also define VQMMC in terms of VMMC.
1335 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336 *
1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338 * requested voltage. This is definitely a good idea for UHS where there's a
1339 * separate regulator on the card that's trying to make 1.8V and it's best if
1340 * we match.
1341 *
1342 * This function is expected to be used by a controller's
1343 * start_signal_voltage_switch() function.
1344 */
1345int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346{
1347 struct device *dev = mmc_dev(mmc);
1348 int ret, volt, min_uV, max_uV;
1349
1350 /* If no vqmmc supply then we can't change the voltage */
1351 if (IS_ERR(mmc->supply.vqmmc))
1352 return -EINVAL;
1353
1354 switch (ios->signal_voltage) {
1355 case MMC_SIGNAL_VOLTAGE_120:
1356 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 1100000, 1200000, 1300000);
1358 case MMC_SIGNAL_VOLTAGE_180:
1359 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360 1700000, 1800000, 1950000);
1361 case MMC_SIGNAL_VOLTAGE_330:
1362 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363 if (ret < 0)
1364 return ret;
1365
1366 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367 __func__, volt, max_uV);
1368
1369 min_uV = max(volt - 300000, 2700000);
1370 max_uV = min(max_uV + 200000, 3600000);
1371
1372 /*
1373 * Due to a limitation in the current implementation of
1374 * regulator_set_voltage_triplet() which is taking the lowest
1375 * voltage possible if below the target, search for a suitable
1376 * voltage in two steps and try to stay close to vmmc
1377 * with a 0.3V tolerance at first.
1378 */
1379 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380 min_uV, volt, max_uV))
1381 return 0;
1382
1383 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384 2700000, volt, 3600000);
1385 default:
1386 return -EINVAL;
1387 }
1388}
1389EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390
1391#endif /* CONFIG_REGULATOR */
1392
1393/**
1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395 * @mmc: the host to regulate
1396 *
1397 * Returns 0 or errno. errno should be handled, it is either a critical error
1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399 * regulators have been found because they all are optional. If you require
1400 * certain regulators, you need to check separately in your driver if they got
1401 * populated after calling this function.
1402 */
1403int mmc_regulator_get_supply(struct mmc_host *mmc)
1404{
1405 struct device *dev = mmc_dev(mmc);
1406 int ret;
1407
1408 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411 if (IS_ERR(mmc->supply.vmmc)) {
1412 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 return -EPROBE_DEFER;
1414 dev_dbg(dev, "No vmmc regulator found\n");
1415 } else {
1416 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 if (ret > 0)
1418 mmc->ocr_avail = ret;
1419 else
1420 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 }
1422
1423 if (IS_ERR(mmc->supply.vqmmc)) {
1424 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 return -EPROBE_DEFER;
1426 dev_dbg(dev, "No vqmmc regulator found\n");
1427 }
1428
1429 return 0;
1430}
1431EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
1433/*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
1437u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438{
1439 int bit;
1440
1441 /*
1442 * Sanity check the voltages that the card claims to
1443 * support.
1444 */
1445 if (ocr & 0x7F) {
1446 dev_warn(mmc_dev(host),
1447 "card claims to support voltages below defined range\n");
1448 ocr &= ~0x7F;
1449 }
1450
1451 ocr &= host->ocr_avail;
1452 if (!ocr) {
1453 dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 return 0;
1455 }
1456
1457 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 bit = ffs(ocr) - 1;
1459 ocr &= 3 << bit;
1460 mmc_power_cycle(host, ocr);
1461 } else {
1462 bit = fls(ocr) - 1;
1463 ocr &= 3 << bit;
1464 if (bit != host->ios.vdd)
1465 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 }
1467
1468 return ocr;
1469}
1470
1471int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472{
1473 int err = 0;
1474 int old_signal_voltage = host->ios.signal_voltage;
1475
1476 host->ios.signal_voltage = signal_voltage;
1477 if (host->ops->start_signal_voltage_switch)
1478 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479
1480 if (err)
1481 host->ios.signal_voltage = old_signal_voltage;
1482
1483 return err;
1484
1485}
1486
1487int mmc_host_set_uhs_voltage(struct mmc_host *host)
1488{
1489 u32 clock;
1490
1491 /*
1492 * During a signal voltage level switch, the clock must be gated
1493 * for 5 ms according to the SD spec
1494 */
1495 clock = host->ios.clock;
1496 host->ios.clock = 0;
1497 mmc_set_ios(host);
1498
1499 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1500 return -EAGAIN;
1501
1502 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1503 mmc_delay(10);
1504 host->ios.clock = clock;
1505 mmc_set_ios(host);
1506
1507 return 0;
1508}
1509
1510int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1511{
1512 struct mmc_command cmd = {};
1513 int err = 0;
1514
1515 /*
1516 * If we cannot switch voltages, return failure so the caller
1517 * can continue without UHS mode
1518 */
1519 if (!host->ops->start_signal_voltage_switch)
1520 return -EPERM;
1521 if (!host->ops->card_busy)
1522 pr_warn("%s: cannot verify signal voltage switch\n",
1523 mmc_hostname(host));
1524
1525 cmd.opcode = SD_SWITCH_VOLTAGE;
1526 cmd.arg = 0;
1527 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1528
1529 err = mmc_wait_for_cmd(host, &cmd, 0);
1530 if (err)
1531 return err;
1532
1533 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1534 return -EIO;
1535
1536 /*
1537 * The card should drive cmd and dat[0:3] low immediately
1538 * after the response of cmd11, but wait 1 ms to be sure
1539 */
1540 mmc_delay(1);
1541 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1542 err = -EAGAIN;
1543 goto power_cycle;
1544 }
1545
1546 if (mmc_host_set_uhs_voltage(host)) {
1547 /*
1548 * Voltages may not have been switched, but we've already
1549 * sent CMD11, so a power cycle is required anyway
1550 */
1551 err = -EAGAIN;
1552 goto power_cycle;
1553 }
1554
1555 /* Wait for at least 1 ms according to spec */
1556 mmc_delay(1);
1557
1558 /*
1559 * Failure to switch is indicated by the card holding
1560 * dat[0:3] low
1561 */
1562 if (host->ops->card_busy && host->ops->card_busy(host))
1563 err = -EAGAIN;
1564
1565power_cycle:
1566 if (err) {
1567 pr_debug("%s: Signal voltage switch failed, "
1568 "power cycling card\n", mmc_hostname(host));
1569 mmc_power_cycle(host, ocr);
1570 }
1571
1572 return err;
1573}
1574
1575/*
1576 * Select timing parameters for host.
1577 */
1578void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1579{
1580 host->ios.timing = timing;
1581 mmc_set_ios(host);
1582}
1583
1584/*
1585 * Select appropriate driver type for host.
1586 */
1587void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1588{
1589 host->ios.drv_type = drv_type;
1590 mmc_set_ios(host);
1591}
1592
1593int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1594 int card_drv_type, int *drv_type)
1595{
1596 struct mmc_host *host = card->host;
1597 int host_drv_type = SD_DRIVER_TYPE_B;
1598
1599 *drv_type = 0;
1600
1601 if (!host->ops->select_drive_strength)
1602 return 0;
1603
1604 /* Use SD definition of driver strength for hosts */
1605 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1606 host_drv_type |= SD_DRIVER_TYPE_A;
1607
1608 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1609 host_drv_type |= SD_DRIVER_TYPE_C;
1610
1611 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1612 host_drv_type |= SD_DRIVER_TYPE_D;
1613
1614 /*
1615 * The drive strength that the hardware can support
1616 * depends on the board design. Pass the appropriate
1617 * information and let the hardware specific code
1618 * return what is possible given the options
1619 */
1620 return host->ops->select_drive_strength(card, max_dtr,
1621 host_drv_type,
1622 card_drv_type,
1623 drv_type);
1624}
1625
1626/*
1627 * Apply power to the MMC stack. This is a two-stage process.
1628 * First, we enable power to the card without the clock running.
1629 * We then wait a bit for the power to stabilise. Finally,
1630 * enable the bus drivers and clock to the card.
1631 *
1632 * We must _NOT_ enable the clock prior to power stablising.
1633 *
1634 * If a host does all the power sequencing itself, ignore the
1635 * initial MMC_POWER_UP stage.
1636 */
1637void mmc_power_up(struct mmc_host *host, u32 ocr)
1638{
1639 if (host->ios.power_mode == MMC_POWER_ON)
1640 return;
1641
1642 mmc_pwrseq_pre_power_on(host);
1643
1644 host->ios.vdd = fls(ocr) - 1;
1645 host->ios.power_mode = MMC_POWER_UP;
1646 /* Set initial state and call mmc_set_ios */
1647 mmc_set_initial_state(host);
1648
1649 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1650 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1651 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1652 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1653 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1654 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1655 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1656
1657 /*
1658 * This delay should be sufficient to allow the power supply
1659 * to reach the minimum voltage.
1660 */
1661 mmc_delay(10);
1662
1663 mmc_pwrseq_post_power_on(host);
1664
1665 host->ios.clock = host->f_init;
1666
1667 host->ios.power_mode = MMC_POWER_ON;
1668 mmc_set_ios(host);
1669
1670 /*
1671 * This delay must be at least 74 clock sizes, or 1 ms, or the
1672 * time required to reach a stable voltage.
1673 */
1674 mmc_delay(10);
1675}
1676
1677void mmc_power_off(struct mmc_host *host)
1678{
1679 if (host->ios.power_mode == MMC_POWER_OFF)
1680 return;
1681
1682 mmc_pwrseq_power_off(host);
1683
1684 host->ios.clock = 0;
1685 host->ios.vdd = 0;
1686
1687 host->ios.power_mode = MMC_POWER_OFF;
1688 /* Set initial state and call mmc_set_ios */
1689 mmc_set_initial_state(host);
1690
1691 /*
1692 * Some configurations, such as the 802.11 SDIO card in the OLPC
1693 * XO-1.5, require a short delay after poweroff before the card
1694 * can be successfully turned on again.
1695 */
1696 mmc_delay(1);
1697}
1698
1699void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1700{
1701 mmc_power_off(host);
1702 /* Wait at least 1 ms according to SD spec */
1703 mmc_delay(1);
1704 mmc_power_up(host, ocr);
1705}
1706
1707/*
1708 * Cleanup when the last reference to the bus operator is dropped.
1709 */
1710static void __mmc_release_bus(struct mmc_host *host)
1711{
1712 WARN_ON(!host->bus_dead);
1713
1714 host->bus_ops = NULL;
1715}
1716
1717/*
1718 * Increase reference count of bus operator
1719 */
1720static inline void mmc_bus_get(struct mmc_host *host)
1721{
1722 unsigned long flags;
1723
1724 spin_lock_irqsave(&host->lock, flags);
1725 host->bus_refs++;
1726 spin_unlock_irqrestore(&host->lock, flags);
1727}
1728
1729/*
1730 * Decrease reference count of bus operator and free it if
1731 * it is the last reference.
1732 */
1733static inline void mmc_bus_put(struct mmc_host *host)
1734{
1735 unsigned long flags;
1736
1737 spin_lock_irqsave(&host->lock, flags);
1738 host->bus_refs--;
1739 if ((host->bus_refs == 0) && host->bus_ops)
1740 __mmc_release_bus(host);
1741 spin_unlock_irqrestore(&host->lock, flags);
1742}
1743
1744/*
1745 * Assign a mmc bus handler to a host. Only one bus handler may control a
1746 * host at any given time.
1747 */
1748void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1749{
1750 unsigned long flags;
1751
1752 WARN_ON(!host->claimed);
1753
1754 spin_lock_irqsave(&host->lock, flags);
1755
1756 WARN_ON(host->bus_ops);
1757 WARN_ON(host->bus_refs);
1758
1759 host->bus_ops = ops;
1760 host->bus_refs = 1;
1761 host->bus_dead = 0;
1762
1763 spin_unlock_irqrestore(&host->lock, flags);
1764}
1765
1766/*
1767 * Remove the current bus handler from a host.
1768 */
1769void mmc_detach_bus(struct mmc_host *host)
1770{
1771 unsigned long flags;
1772
1773 WARN_ON(!host->claimed);
1774 WARN_ON(!host->bus_ops);
1775
1776 spin_lock_irqsave(&host->lock, flags);
1777
1778 host->bus_dead = 1;
1779
1780 spin_unlock_irqrestore(&host->lock, flags);
1781
1782 mmc_bus_put(host);
1783}
1784
1785static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1786 bool cd_irq)
1787{
1788 /*
1789 * If the device is configured as wakeup, we prevent a new sleep for
1790 * 5 s to give provision for user space to consume the event.
1791 */
1792 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793 device_can_wakeup(mmc_dev(host)))
1794 pm_wakeup_event(mmc_dev(host), 5000);
1795
1796 host->detect_change = 1;
1797 mmc_schedule_delayed_work(&host->detect, delay);
1798}
1799
1800/**
1801 * mmc_detect_change - process change of state on a MMC socket
1802 * @host: host which changed state.
1803 * @delay: optional delay to wait before detection (jiffies)
1804 *
1805 * MMC drivers should call this when they detect a card has been
1806 * inserted or removed. The MMC layer will confirm that any
1807 * present card is still functional, and initialize any newly
1808 * inserted.
1809 */
1810void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811{
1812 _mmc_detect_change(host, delay, true);
1813}
1814EXPORT_SYMBOL(mmc_detect_change);
1815
1816void mmc_init_erase(struct mmc_card *card)
1817{
1818 unsigned int sz;
1819
1820 if (is_power_of_2(card->erase_size))
1821 card->erase_shift = ffs(card->erase_size) - 1;
1822 else
1823 card->erase_shift = 0;
1824
1825 /*
1826 * It is possible to erase an arbitrarily large area of an SD or MMC
1827 * card. That is not desirable because it can take a long time
1828 * (minutes) potentially delaying more important I/O, and also the
1829 * timeout calculations become increasingly hugely over-estimated.
1830 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831 * to that size and alignment.
1832 *
1833 * For SD cards that define Allocation Unit size, limit erases to one
1834 * Allocation Unit at a time.
1835 * For MMC, have a stab at ai good value and for modern cards it will
1836 * end up being 4MiB. Note that if the value is too small, it can end
1837 * up taking longer to erase. Also note, erase_size is already set to
1838 * High Capacity Erase Size if available when this function is called.
1839 */
1840 if (mmc_card_sd(card) && card->ssr.au) {
1841 card->pref_erase = card->ssr.au;
1842 card->erase_shift = ffs(card->ssr.au) - 1;
1843 } else if (card->erase_size) {
1844 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1845 if (sz < 128)
1846 card->pref_erase = 512 * 1024 / 512;
1847 else if (sz < 512)
1848 card->pref_erase = 1024 * 1024 / 512;
1849 else if (sz < 1024)
1850 card->pref_erase = 2 * 1024 * 1024 / 512;
1851 else
1852 card->pref_erase = 4 * 1024 * 1024 / 512;
1853 if (card->pref_erase < card->erase_size)
1854 card->pref_erase = card->erase_size;
1855 else {
1856 sz = card->pref_erase % card->erase_size;
1857 if (sz)
1858 card->pref_erase += card->erase_size - sz;
1859 }
1860 } else
1861 card->pref_erase = 0;
1862}
1863
1864static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1865 unsigned int arg, unsigned int qty)
1866{
1867 unsigned int erase_timeout;
1868
1869 if (arg == MMC_DISCARD_ARG ||
1870 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1871 erase_timeout = card->ext_csd.trim_timeout;
1872 } else if (card->ext_csd.erase_group_def & 1) {
1873 /* High Capacity Erase Group Size uses HC timeouts */
1874 if (arg == MMC_TRIM_ARG)
1875 erase_timeout = card->ext_csd.trim_timeout;
1876 else
1877 erase_timeout = card->ext_csd.hc_erase_timeout;
1878 } else {
1879 /* CSD Erase Group Size uses write timeout */
1880 unsigned int mult = (10 << card->csd.r2w_factor);
1881 unsigned int timeout_clks = card->csd.taac_clks * mult;
1882 unsigned int timeout_us;
1883
1884 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1885 if (card->csd.taac_ns < 1000000)
1886 timeout_us = (card->csd.taac_ns * mult) / 1000;
1887 else
1888 timeout_us = (card->csd.taac_ns / 1000) * mult;
1889
1890 /*
1891 * ios.clock is only a target. The real clock rate might be
1892 * less but not that much less, so fudge it by multiplying by 2.
1893 */
1894 timeout_clks <<= 1;
1895 timeout_us += (timeout_clks * 1000) /
1896 (card->host->ios.clock / 1000);
1897
1898 erase_timeout = timeout_us / 1000;
1899
1900 /*
1901 * Theoretically, the calculation could underflow so round up
1902 * to 1ms in that case.
1903 */
1904 if (!erase_timeout)
1905 erase_timeout = 1;
1906 }
1907
1908 /* Multiplier for secure operations */
1909 if (arg & MMC_SECURE_ARGS) {
1910 if (arg == MMC_SECURE_ERASE_ARG)
1911 erase_timeout *= card->ext_csd.sec_erase_mult;
1912 else
1913 erase_timeout *= card->ext_csd.sec_trim_mult;
1914 }
1915
1916 erase_timeout *= qty;
1917
1918 /*
1919 * Ensure at least a 1 second timeout for SPI as per
1920 * 'mmc_set_data_timeout()'
1921 */
1922 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1923 erase_timeout = 1000;
1924
1925 return erase_timeout;
1926}
1927
1928static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1929 unsigned int arg,
1930 unsigned int qty)
1931{
1932 unsigned int erase_timeout;
1933
1934 if (card->ssr.erase_timeout) {
1935 /* Erase timeout specified in SD Status Register (SSR) */
1936 erase_timeout = card->ssr.erase_timeout * qty +
1937 card->ssr.erase_offset;
1938 } else {
1939 /*
1940 * Erase timeout not specified in SD Status Register (SSR) so
1941 * use 250ms per write block.
1942 */
1943 erase_timeout = 250 * qty;
1944 }
1945
1946 /* Must not be less than 1 second */
1947 if (erase_timeout < 1000)
1948 erase_timeout = 1000;
1949
1950 return erase_timeout;
1951}
1952
1953static unsigned int mmc_erase_timeout(struct mmc_card *card,
1954 unsigned int arg,
1955 unsigned int qty)
1956{
1957 if (mmc_card_sd(card))
1958 return mmc_sd_erase_timeout(card, arg, qty);
1959 else
1960 return mmc_mmc_erase_timeout(card, arg, qty);
1961}
1962
1963static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1964 unsigned int to, unsigned int arg)
1965{
1966 struct mmc_command cmd = {};
1967 unsigned int qty = 0, busy_timeout = 0;
1968 bool use_r1b_resp = false;
1969 unsigned long timeout;
1970 int err;
1971
1972 mmc_retune_hold(card->host);
1973
1974 /*
1975 * qty is used to calculate the erase timeout which depends on how many
1976 * erase groups (or allocation units in SD terminology) are affected.
1977 * We count erasing part of an erase group as one erase group.
1978 * For SD, the allocation units are always a power of 2. For MMC, the
1979 * erase group size is almost certainly also power of 2, but it does not
1980 * seem to insist on that in the JEDEC standard, so we fall back to
1981 * division in that case. SD may not specify an allocation unit size,
1982 * in which case the timeout is based on the number of write blocks.
1983 *
1984 * Note that the timeout for secure trim 2 will only be correct if the
1985 * number of erase groups specified is the same as the total of all
1986 * preceding secure trim 1 commands. Since the power may have been
1987 * lost since the secure trim 1 commands occurred, it is generally
1988 * impossible to calculate the secure trim 2 timeout correctly.
1989 */
1990 if (card->erase_shift)
1991 qty += ((to >> card->erase_shift) -
1992 (from >> card->erase_shift)) + 1;
1993 else if (mmc_card_sd(card))
1994 qty += to - from + 1;
1995 else
1996 qty += ((to / card->erase_size) -
1997 (from / card->erase_size)) + 1;
1998
1999 if (!mmc_card_blockaddr(card)) {
2000 from <<= 9;
2001 to <<= 9;
2002 }
2003
2004 if (mmc_card_sd(card))
2005 cmd.opcode = SD_ERASE_WR_BLK_START;
2006 else
2007 cmd.opcode = MMC_ERASE_GROUP_START;
2008 cmd.arg = from;
2009 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2010 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2011 if (err) {
2012 pr_err("mmc_erase: group start error %d, "
2013 "status %#x\n", err, cmd.resp[0]);
2014 err = -EIO;
2015 goto out;
2016 }
2017
2018 memset(&cmd, 0, sizeof(struct mmc_command));
2019 if (mmc_card_sd(card))
2020 cmd.opcode = SD_ERASE_WR_BLK_END;
2021 else
2022 cmd.opcode = MMC_ERASE_GROUP_END;
2023 cmd.arg = to;
2024 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2025 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2026 if (err) {
2027 pr_err("mmc_erase: group end error %d, status %#x\n",
2028 err, cmd.resp[0]);
2029 err = -EIO;
2030 goto out;
2031 }
2032
2033 memset(&cmd, 0, sizeof(struct mmc_command));
2034 cmd.opcode = MMC_ERASE;
2035 cmd.arg = arg;
2036 busy_timeout = mmc_erase_timeout(card, arg, qty);
2037 /*
2038 * If the host controller supports busy signalling and the timeout for
2039 * the erase operation does not exceed the max_busy_timeout, we should
2040 * use R1B response. Or we need to prevent the host from doing hw busy
2041 * detection, which is done by converting to a R1 response instead.
2042 */
2043 if (card->host->max_busy_timeout &&
2044 busy_timeout > card->host->max_busy_timeout) {
2045 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2046 } else {
2047 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2048 cmd.busy_timeout = busy_timeout;
2049 use_r1b_resp = true;
2050 }
2051
2052 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2053 if (err) {
2054 pr_err("mmc_erase: erase error %d, status %#x\n",
2055 err, cmd.resp[0]);
2056 err = -EIO;
2057 goto out;
2058 }
2059
2060 if (mmc_host_is_spi(card->host))
2061 goto out;
2062
2063 /*
2064 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2065 * shall be avoided.
2066 */
2067 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2068 goto out;
2069
2070 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2071 do {
2072 memset(&cmd, 0, sizeof(struct mmc_command));
2073 cmd.opcode = MMC_SEND_STATUS;
2074 cmd.arg = card->rca << 16;
2075 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2076 /* Do not retry else we can't see errors */
2077 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2078 if (err || (cmd.resp[0] & 0xFDF92000)) {
2079 pr_err("error %d requesting status %#x\n",
2080 err, cmd.resp[0]);
2081 err = -EIO;
2082 goto out;
2083 }
2084
2085 /* Timeout if the device never becomes ready for data and
2086 * never leaves the program state.
2087 */
2088 if (time_after(jiffies, timeout)) {
2089 pr_err("%s: Card stuck in programming state! %s\n",
2090 mmc_hostname(card->host), __func__);
2091 err = -EIO;
2092 goto out;
2093 }
2094
2095 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2096 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2097out:
2098 mmc_retune_release(card->host);
2099 return err;
2100}
2101
2102static unsigned int mmc_align_erase_size(struct mmc_card *card,
2103 unsigned int *from,
2104 unsigned int *to,
2105 unsigned int nr)
2106{
2107 unsigned int from_new = *from, nr_new = nr, rem;
2108
2109 /*
2110 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2111 * to align the erase size efficiently.
2112 */
2113 if (is_power_of_2(card->erase_size)) {
2114 unsigned int temp = from_new;
2115
2116 from_new = round_up(temp, card->erase_size);
2117 rem = from_new - temp;
2118
2119 if (nr_new > rem)
2120 nr_new -= rem;
2121 else
2122 return 0;
2123
2124 nr_new = round_down(nr_new, card->erase_size);
2125 } else {
2126 rem = from_new % card->erase_size;
2127 if (rem) {
2128 rem = card->erase_size - rem;
2129 from_new += rem;
2130 if (nr_new > rem)
2131 nr_new -= rem;
2132 else
2133 return 0;
2134 }
2135
2136 rem = nr_new % card->erase_size;
2137 if (rem)
2138 nr_new -= rem;
2139 }
2140
2141 if (nr_new == 0)
2142 return 0;
2143
2144 *to = from_new + nr_new;
2145 *from = from_new;
2146
2147 return nr_new;
2148}
2149
2150/**
2151 * mmc_erase - erase sectors.
2152 * @card: card to erase
2153 * @from: first sector to erase
2154 * @nr: number of sectors to erase
2155 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2156 *
2157 * Caller must claim host before calling this function.
2158 */
2159int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2160 unsigned int arg)
2161{
2162 unsigned int rem, to = from + nr;
2163 int err;
2164
2165 if (!(card->host->caps & MMC_CAP_ERASE) ||
2166 !(card->csd.cmdclass & CCC_ERASE))
2167 return -EOPNOTSUPP;
2168
2169 if (!card->erase_size)
2170 return -EOPNOTSUPP;
2171
2172 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2173 return -EOPNOTSUPP;
2174
2175 if ((arg & MMC_SECURE_ARGS) &&
2176 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2177 return -EOPNOTSUPP;
2178
2179 if ((arg & MMC_TRIM_ARGS) &&
2180 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2181 return -EOPNOTSUPP;
2182
2183 if (arg == MMC_SECURE_ERASE_ARG) {
2184 if (from % card->erase_size || nr % card->erase_size)
2185 return -EINVAL;
2186 }
2187
2188 if (arg == MMC_ERASE_ARG)
2189 nr = mmc_align_erase_size(card, &from, &to, nr);
2190
2191 if (nr == 0)
2192 return 0;
2193
2194 if (to <= from)
2195 return -EINVAL;
2196
2197 /* 'from' and 'to' are inclusive */
2198 to -= 1;
2199
2200 /*
2201 * Special case where only one erase-group fits in the timeout budget:
2202 * If the region crosses an erase-group boundary on this particular
2203 * case, we will be trimming more than one erase-group which, does not
2204 * fit in the timeout budget of the controller, so we need to split it
2205 * and call mmc_do_erase() twice if necessary. This special case is
2206 * identified by the card->eg_boundary flag.
2207 */
2208 rem = card->erase_size - (from % card->erase_size);
2209 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2210 err = mmc_do_erase(card, from, from + rem - 1, arg);
2211 from += rem;
2212 if ((err) || (to <= from))
2213 return err;
2214 }
2215
2216 return mmc_do_erase(card, from, to, arg);
2217}
2218EXPORT_SYMBOL(mmc_erase);
2219
2220int mmc_can_erase(struct mmc_card *card)
2221{
2222 if ((card->host->caps & MMC_CAP_ERASE) &&
2223 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2224 return 1;
2225 return 0;
2226}
2227EXPORT_SYMBOL(mmc_can_erase);
2228
2229int mmc_can_trim(struct mmc_card *card)
2230{
2231 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2232 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2233 return 1;
2234 return 0;
2235}
2236EXPORT_SYMBOL(mmc_can_trim);
2237
2238int mmc_can_discard(struct mmc_card *card)
2239{
2240 /*
2241 * As there's no way to detect the discard support bit at v4.5
2242 * use the s/w feature support filed.
2243 */
2244 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2245 return 1;
2246 return 0;
2247}
2248EXPORT_SYMBOL(mmc_can_discard);
2249
2250int mmc_can_sanitize(struct mmc_card *card)
2251{
2252 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2253 return 0;
2254 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2255 return 1;
2256 return 0;
2257}
2258EXPORT_SYMBOL(mmc_can_sanitize);
2259
2260int mmc_can_secure_erase_trim(struct mmc_card *card)
2261{
2262 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2263 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2264 return 1;
2265 return 0;
2266}
2267EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2268
2269int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2270 unsigned int nr)
2271{
2272 if (!card->erase_size)
2273 return 0;
2274 if (from % card->erase_size || nr % card->erase_size)
2275 return 0;
2276 return 1;
2277}
2278EXPORT_SYMBOL(mmc_erase_group_aligned);
2279
2280static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2281 unsigned int arg)
2282{
2283 struct mmc_host *host = card->host;
2284 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2285 unsigned int last_timeout = 0;
2286 unsigned int max_busy_timeout = host->max_busy_timeout ?
2287 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2288
2289 if (card->erase_shift) {
2290 max_qty = UINT_MAX >> card->erase_shift;
2291 min_qty = card->pref_erase >> card->erase_shift;
2292 } else if (mmc_card_sd(card)) {
2293 max_qty = UINT_MAX;
2294 min_qty = card->pref_erase;
2295 } else {
2296 max_qty = UINT_MAX / card->erase_size;
2297 min_qty = card->pref_erase / card->erase_size;
2298 }
2299
2300 /*
2301 * We should not only use 'host->max_busy_timeout' as the limitation
2302 * when deciding the max discard sectors. We should set a balance value
2303 * to improve the erase speed, and it can not get too long timeout at
2304 * the same time.
2305 *
2306 * Here we set 'card->pref_erase' as the minimal discard sectors no
2307 * matter what size of 'host->max_busy_timeout', but if the
2308 * 'host->max_busy_timeout' is large enough for more discard sectors,
2309 * then we can continue to increase the max discard sectors until we
2310 * get a balance value. In cases when the 'host->max_busy_timeout'
2311 * isn't specified, use the default max erase timeout.
2312 */
2313 do {
2314 y = 0;
2315 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2316 timeout = mmc_erase_timeout(card, arg, qty + x);
2317
2318 if (qty + x > min_qty && timeout > max_busy_timeout)
2319 break;
2320
2321 if (timeout < last_timeout)
2322 break;
2323 last_timeout = timeout;
2324 y = x;
2325 }
2326 qty += y;
2327 } while (y);
2328
2329 if (!qty)
2330 return 0;
2331
2332 /*
2333 * When specifying a sector range to trim, chances are we might cross
2334 * an erase-group boundary even if the amount of sectors is less than
2335 * one erase-group.
2336 * If we can only fit one erase-group in the controller timeout budget,
2337 * we have to care that erase-group boundaries are not crossed by a
2338 * single trim operation. We flag that special case with "eg_boundary".
2339 * In all other cases we can just decrement qty and pretend that we
2340 * always touch (qty + 1) erase-groups as a simple optimization.
2341 */
2342 if (qty == 1)
2343 card->eg_boundary = 1;
2344 else
2345 qty--;
2346
2347 /* Convert qty to sectors */
2348 if (card->erase_shift)
2349 max_discard = qty << card->erase_shift;
2350 else if (mmc_card_sd(card))
2351 max_discard = qty + 1;
2352 else
2353 max_discard = qty * card->erase_size;
2354
2355 return max_discard;
2356}
2357
2358unsigned int mmc_calc_max_discard(struct mmc_card *card)
2359{
2360 struct mmc_host *host = card->host;
2361 unsigned int max_discard, max_trim;
2362
2363 /*
2364 * Without erase_group_def set, MMC erase timeout depends on clock
2365 * frequence which can change. In that case, the best choice is
2366 * just the preferred erase size.
2367 */
2368 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2369 return card->pref_erase;
2370
2371 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2372 if (max_discard && mmc_can_trim(card)) {
2373 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2374 if (max_trim < max_discard)
2375 max_discard = max_trim;
2376 } else if (max_discard < card->erase_size) {
2377 max_discard = 0;
2378 }
2379 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2380 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2381 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2382 return max_discard;
2383}
2384EXPORT_SYMBOL(mmc_calc_max_discard);
2385
2386bool mmc_card_is_blockaddr(struct mmc_card *card)
2387{
2388 return card ? mmc_card_blockaddr(card) : false;
2389}
2390EXPORT_SYMBOL(mmc_card_is_blockaddr);
2391
2392int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2393{
2394 struct mmc_command cmd = {};
2395
2396 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2397 mmc_card_hs400(card) || mmc_card_hs400es(card))
2398 return 0;
2399
2400 cmd.opcode = MMC_SET_BLOCKLEN;
2401 cmd.arg = blocklen;
2402 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2403 return mmc_wait_for_cmd(card->host, &cmd, 5);
2404}
2405EXPORT_SYMBOL(mmc_set_blocklen);
2406
2407int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2408 bool is_rel_write)
2409{
2410 struct mmc_command cmd = {};
2411
2412 cmd.opcode = MMC_SET_BLOCK_COUNT;
2413 cmd.arg = blockcount & 0x0000FFFF;
2414 if (is_rel_write)
2415 cmd.arg |= 1 << 31;
2416 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2417 return mmc_wait_for_cmd(card->host, &cmd, 5);
2418}
2419EXPORT_SYMBOL(mmc_set_blockcount);
2420
2421static void mmc_hw_reset_for_init(struct mmc_host *host)
2422{
2423 mmc_pwrseq_reset(host);
2424
2425 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426 return;
2427 host->ops->hw_reset(host);
2428}
2429
2430int mmc_hw_reset(struct mmc_host *host)
2431{
2432 int ret;
2433
2434 if (!host->card)
2435 return -EINVAL;
2436
2437 mmc_bus_get(host);
2438 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439 mmc_bus_put(host);
2440 return -EOPNOTSUPP;
2441 }
2442
2443 ret = host->bus_ops->reset(host);
2444 mmc_bus_put(host);
2445
2446 if (ret)
2447 pr_warn("%s: tried to reset card, got error %d\n",
2448 mmc_hostname(host), ret);
2449
2450 return ret;
2451}
2452EXPORT_SYMBOL(mmc_hw_reset);
2453
2454static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455{
2456 host->f_init = freq;
2457
2458 pr_debug("%s: %s: trying to init card at %u Hz\n",
2459 mmc_hostname(host), __func__, host->f_init);
2460
2461 mmc_power_up(host, host->ocr_avail);
2462
2463 /*
2464 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 * do a hardware reset if possible.
2466 */
2467 mmc_hw_reset_for_init(host);
2468
2469 /*
2470 * sdio_reset sends CMD52 to reset card. Since we do not know
2471 * if the card is being re-initialized, just send it. CMD52
2472 * should be ignored by SD/eMMC cards.
2473 * Skip it if we already know that we do not support SDIO commands
2474 */
2475 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476 sdio_reset(host);
2477
2478 mmc_go_idle(host);
2479
2480 if (!(host->caps2 & MMC_CAP2_NO_SD))
2481 mmc_send_if_cond(host, host->ocr_avail);
2482
2483 /* Order's important: probe SDIO, then SD, then MMC */
2484 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2485 if (!mmc_attach_sdio(host))
2486 return 0;
2487
2488 if (!(host->caps2 & MMC_CAP2_NO_SD))
2489 if (!mmc_attach_sd(host))
2490 return 0;
2491
2492 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2493 if (!mmc_attach_mmc(host))
2494 return 0;
2495
2496 mmc_power_off(host);
2497 return -EIO;
2498}
2499
2500int _mmc_detect_card_removed(struct mmc_host *host)
2501{
2502 int ret;
2503
2504 if (!host->card || mmc_card_removed(host->card))
2505 return 1;
2506
2507 ret = host->bus_ops->alive(host);
2508
2509 /*
2510 * Card detect status and alive check may be out of sync if card is
2511 * removed slowly, when card detect switch changes while card/slot
2512 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514 * detect work 200ms later for this case.
2515 */
2516 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517 mmc_detect_change(host, msecs_to_jiffies(200));
2518 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2519 }
2520
2521 if (ret) {
2522 mmc_card_set_removed(host->card);
2523 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2524 }
2525
2526 return ret;
2527}
2528
2529int mmc_detect_card_removed(struct mmc_host *host)
2530{
2531 struct mmc_card *card = host->card;
2532 int ret;
2533
2534 WARN_ON(!host->claimed);
2535
2536 if (!card)
2537 return 1;
2538
2539 if (!mmc_card_is_removable(host))
2540 return 0;
2541
2542 ret = mmc_card_removed(card);
2543 /*
2544 * The card will be considered unchanged unless we have been asked to
2545 * detect a change or host requires polling to provide card detection.
2546 */
2547 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2548 return ret;
2549
2550 host->detect_change = 0;
2551 if (!ret) {
2552 ret = _mmc_detect_card_removed(host);
2553 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2554 /*
2555 * Schedule a detect work as soon as possible to let a
2556 * rescan handle the card removal.
2557 */
2558 cancel_delayed_work(&host->detect);
2559 _mmc_detect_change(host, 0, false);
2560 }
2561 }
2562
2563 return ret;
2564}
2565EXPORT_SYMBOL(mmc_detect_card_removed);
2566
2567void mmc_rescan(struct work_struct *work)
2568{
2569 struct mmc_host *host =
2570 container_of(work, struct mmc_host, detect.work);
2571 int i;
2572
2573 if (host->rescan_disable)
2574 return;
2575
2576 /* If there is a non-removable card registered, only scan once */
2577 if (!mmc_card_is_removable(host) && host->rescan_entered)
2578 return;
2579 host->rescan_entered = 1;
2580
2581 if (host->trigger_card_event && host->ops->card_event) {
2582 mmc_claim_host(host);
2583 host->ops->card_event(host);
2584 mmc_release_host(host);
2585 host->trigger_card_event = false;
2586 }
2587
2588 mmc_bus_get(host);
2589
2590 /*
2591 * if there is a _removable_ card registered, check whether it is
2592 * still present
2593 */
2594 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2595 host->bus_ops->detect(host);
2596
2597 host->detect_change = 0;
2598
2599 /*
2600 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2601 * the card is no longer present.
2602 */
2603 mmc_bus_put(host);
2604 mmc_bus_get(host);
2605
2606 /* if there still is a card present, stop here */
2607 if (host->bus_ops != NULL) {
2608 mmc_bus_put(host);
2609 goto out;
2610 }
2611
2612 /*
2613 * Only we can add a new handler, so it's safe to
2614 * release the lock here.
2615 */
2616 mmc_bus_put(host);
2617
2618 mmc_claim_host(host);
2619 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2620 host->ops->get_cd(host) == 0) {
2621 mmc_power_off(host);
2622 mmc_release_host(host);
2623 goto out;
2624 }
2625
2626 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2627 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2628 break;
2629 if (freqs[i] <= host->f_min)
2630 break;
2631 }
2632 mmc_release_host(host);
2633
2634 out:
2635 if (host->caps & MMC_CAP_NEEDS_POLL)
2636 mmc_schedule_delayed_work(&host->detect, HZ);
2637}
2638
2639void mmc_start_host(struct mmc_host *host)
2640{
2641 host->f_init = max(freqs[0], host->f_min);
2642 host->rescan_disable = 0;
2643 host->ios.power_mode = MMC_POWER_UNDEFINED;
2644
2645 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2646 mmc_claim_host(host);
2647 mmc_power_up(host, host->ocr_avail);
2648 mmc_release_host(host);
2649 }
2650
2651 mmc_gpiod_request_cd_irq(host);
2652 _mmc_detect_change(host, 0, false);
2653}
2654
2655void mmc_stop_host(struct mmc_host *host)
2656{
2657 if (host->slot.cd_irq >= 0) {
2658 mmc_gpio_set_cd_wake(host, false);
2659 disable_irq(host->slot.cd_irq);
2660 }
2661
2662 host->rescan_disable = 1;
2663 cancel_delayed_work_sync(&host->detect);
2664
2665 /* clear pm flags now and let card drivers set them as needed */
2666 host->pm_flags = 0;
2667
2668 mmc_bus_get(host);
2669 if (host->bus_ops && !host->bus_dead) {
2670 /* Calling bus_ops->remove() with a claimed host can deadlock */
2671 host->bus_ops->remove(host);
2672 mmc_claim_host(host);
2673 mmc_detach_bus(host);
2674 mmc_power_off(host);
2675 mmc_release_host(host);
2676 mmc_bus_put(host);
2677 return;
2678 }
2679 mmc_bus_put(host);
2680
2681 mmc_claim_host(host);
2682 mmc_power_off(host);
2683 mmc_release_host(host);
2684}
2685
2686int mmc_power_save_host(struct mmc_host *host)
2687{
2688 int ret = 0;
2689
2690 pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2691
2692 mmc_bus_get(host);
2693
2694 if (!host->bus_ops || host->bus_dead) {
2695 mmc_bus_put(host);
2696 return -EINVAL;
2697 }
2698
2699 if (host->bus_ops->power_save)
2700 ret = host->bus_ops->power_save(host);
2701
2702 mmc_bus_put(host);
2703
2704 mmc_power_off(host);
2705
2706 return ret;
2707}
2708EXPORT_SYMBOL(mmc_power_save_host);
2709
2710int mmc_power_restore_host(struct mmc_host *host)
2711{
2712 int ret;
2713
2714 pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2715
2716 mmc_bus_get(host);
2717
2718 if (!host->bus_ops || host->bus_dead) {
2719 mmc_bus_put(host);
2720 return -EINVAL;
2721 }
2722
2723 mmc_power_up(host, host->card->ocr);
2724 ret = host->bus_ops->power_restore(host);
2725
2726 mmc_bus_put(host);
2727
2728 return ret;
2729}
2730EXPORT_SYMBOL(mmc_power_restore_host);
2731
2732#ifdef CONFIG_PM_SLEEP
2733/* Do the card removal on suspend if card is assumed removeable
2734 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2735 to sync the card.
2736*/
2737static int mmc_pm_notify(struct notifier_block *notify_block,
2738 unsigned long mode, void *unused)
2739{
2740 struct mmc_host *host = container_of(
2741 notify_block, struct mmc_host, pm_notify);
2742 unsigned long flags;
2743 int err = 0;
2744
2745 switch (mode) {
2746 case PM_HIBERNATION_PREPARE:
2747 case PM_SUSPEND_PREPARE:
2748 case PM_RESTORE_PREPARE:
2749 spin_lock_irqsave(&host->lock, flags);
2750 host->rescan_disable = 1;
2751 spin_unlock_irqrestore(&host->lock, flags);
2752 cancel_delayed_work_sync(&host->detect);
2753
2754 if (!host->bus_ops)
2755 break;
2756
2757 /* Validate prerequisites for suspend */
2758 if (host->bus_ops->pre_suspend)
2759 err = host->bus_ops->pre_suspend(host);
2760 if (!err)
2761 break;
2762
2763 if (!mmc_card_is_removable(host)) {
2764 dev_warn(mmc_dev(host),
2765 "pre_suspend failed for non-removable host: "
2766 "%d\n", err);
2767 /* Avoid removing non-removable hosts */
2768 break;
2769 }
2770
2771 /* Calling bus_ops->remove() with a claimed host can deadlock */
2772 host->bus_ops->remove(host);
2773 mmc_claim_host(host);
2774 mmc_detach_bus(host);
2775 mmc_power_off(host);
2776 mmc_release_host(host);
2777 host->pm_flags = 0;
2778 break;
2779
2780 case PM_POST_SUSPEND:
2781 case PM_POST_HIBERNATION:
2782 case PM_POST_RESTORE:
2783
2784 spin_lock_irqsave(&host->lock, flags);
2785 host->rescan_disable = 0;
2786 spin_unlock_irqrestore(&host->lock, flags);
2787 _mmc_detect_change(host, 0, false);
2788
2789 }
2790
2791 return 0;
2792}
2793
2794void mmc_register_pm_notifier(struct mmc_host *host)
2795{
2796 host->pm_notify.notifier_call = mmc_pm_notify;
2797 register_pm_notifier(&host->pm_notify);
2798}
2799
2800void mmc_unregister_pm_notifier(struct mmc_host *host)
2801{
2802 unregister_pm_notifier(&host->pm_notify);
2803}
2804#endif
2805
2806static int __init mmc_init(void)
2807{
2808 int ret;
2809
2810 ret = mmc_register_bus();
2811 if (ret)
2812 return ret;
2813
2814 ret = mmc_register_host_class();
2815 if (ret)
2816 goto unregister_bus;
2817
2818 ret = sdio_register_bus();
2819 if (ret)
2820 goto unregister_host_class;
2821
2822 return 0;
2823
2824unregister_host_class:
2825 mmc_unregister_host_class();
2826unregister_bus:
2827 mmc_unregister_bus();
2828 return ret;
2829}
2830
2831static void __exit mmc_exit(void)
2832{
2833 sdio_unregister_bus();
2834 mmc_unregister_host_class();
2835 mmc_unregister_bus();
2836}
2837
2838subsys_initcall(mmc_init);
2839module_exit(mmc_exit);
2840
2841MODULE_LICENSE("GPL");