Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 
 
 
 
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
 
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
 
 
 
 
 
 
 
 
 
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 
 
 
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 
 
 
 
 
 
 
 
 
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 
 322
 
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 
 
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 
 
 
 
 
 
 
 
 
 336{
 337	int err;
 
 
 338
 339	init_completion(&mrq->cmd_completion);
 
 340
 341	mmc_retune_hold(host);
 
 
 
 
 
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 
 
 347
 348	WARN_ON(!host->claimed);
 
 
 
 
 
 
 
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 353
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 
 
 
 
 
 
 
 356
 357	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 
 
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 392	}
 393
 394	return err;
 395}
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406		if (!cmd->error || !cmd->retries ||
 407		    mmc_card_removed(host->card))
 408			break;
 409
 410		mmc_retune_recheck(host);
 411
 412		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413			 mmc_hostname(host), cmd->opcode, cmd->error);
 414		cmd->retries--;
 415		cmd->error = 0;
 416		__mmc_start_request(host, mrq);
 417	}
 418
 419	mmc_retune_release(host);
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 
 
 
 
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 432{
 433	int err;
 434
 435	/*
 436	 * CQE cannot process re-tuning commands. Caller must hold retuning
 437	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438	 * active requests i.e. this is the first.  Note, re-tuning will call
 439	 * ->cqe_off().
 440	 */
 441	err = mmc_retune(host);
 442	if (err)
 443		goto out_err;
 444
 445	mrq->host = host;
 446
 447	mmc_mrq_pr_debug(host, mrq, true);
 448
 449	err = mmc_mrq_prep(host, mrq);
 450	if (err)
 451		goto out_err;
 452
 453	err = host->cqe_ops->cqe_request(host, mrq);
 454	if (err)
 455		goto out_err;
 456
 457	trace_mmc_request_start(host, mrq);
 458
 459	return 0;
 460
 461out_err:
 462	if (mrq->cmd) {
 463		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464			 mmc_hostname(host), mrq->cmd->opcode, err);
 465	} else {
 466		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467			 mmc_hostname(host), mrq->tag, err);
 468	}
 469	return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *	@host: MMC host which completed request
 476 *	@mrq: MMC request which completed
 477 *
 478 *	CQE drivers should call this function when they have completed
 479 *	their processing of a request.
 
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 482{
 483	mmc_should_fail_request(host, mrq);
 484
 485	/* Flag re-tuning needed on CRC errors */
 486	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487	    (mrq->data && mrq->data->error == -EILSEQ))
 488		mmc_retune_needed(host);
 489
 490	trace_mmc_request_done(host, mrq);
 491
 492	if (mrq->cmd) {
 493		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495	} else {
 496		pr_debug("%s: CQE transfer done tag %d\n",
 497			 mmc_hostname(host), mrq->tag);
 498	}
 499
 500	if (mrq->data) {
 501		pr_debug("%s:     %d bytes transferred: %d\n",
 502			 mmc_hostname(host),
 503			 mrq->data->bytes_xfered, mrq->data->error);
 504	}
 505
 506	mrq->done(mrq);
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *	@host: MMC host
 513 *	@mrq: MMC request to be processed
 
 
 
 
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 
 516{
 517	if (host->cqe_ops->cqe_post_req)
 518		host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT	1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 
 
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 535{
 536	struct mmc_command cmd;
 537	int err;
 538
 539	mmc_retune_hold_now(host);
 540
 541	/*
 542	 * Recovery is expected seldom, if at all, but it reduces performance,
 543	 * so make sure it is not completely silent.
 544	 */
 545	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547	host->cqe_ops->cqe_recovery_start(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548
 549	memset(&cmd, 0, sizeof(cmd));
 550	cmd.opcode       = MMC_STOP_TRANSMISSION;
 551	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 552	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 554	mmc_wait_for_cmd(host, &cmd, 0);
 555
 556	memset(&cmd, 0, sizeof(cmd));
 557	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 558	cmd.arg          = 1; /* Discard entire queue */
 559	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 560	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 561	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 562	err = mmc_wait_for_cmd(host, &cmd, 0);
 563
 564	host->cqe_ops->cqe_recovery_finish(host);
 
 
 565
 566	mmc_retune_release(host);
 
 
 
 567
 568	return err;
 
 
 569}
 570EXPORT_SYMBOL(mmc_cqe_recovery);
 571
 572/**
 573 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 574 *	@host: MMC host
 575 *	@mrq: MMC request
 576 *
 577 *	mmc_is_req_done() is used with requests that have
 578 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 579 *	starting a request and before waiting for it to complete. That is,
 580 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 581 *	and before mmc_wait_for_req_done(). If it is called at other times the
 582 *	result is not meaningful.
 583 */
 584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 585{
 586	return completion_done(&mrq->completion);
 587}
 588EXPORT_SYMBOL(mmc_is_req_done);
 589
 590/**
 591 *	mmc_wait_for_req - start a request and wait for completion
 592 *	@host: MMC host to start command
 593 *	@mrq: MMC request to start
 594 *
 595 *	Start a new MMC custom command request for a host, and wait
 596 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 597 *	requests, the transfer is ongoing and the caller can issue further
 598 *	commands that do not use the data lines, and then wait by calling
 599 *	mmc_wait_for_req_done().
 600 *	Does not attempt to parse the response.
 601 */
 602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 603{
 604	__mmc_start_req(host, mrq);
 605
 606	if (!mrq->cap_cmd_during_tfr)
 607		mmc_wait_for_req_done(host, mrq);
 608}
 609EXPORT_SYMBOL(mmc_wait_for_req);
 610
 611/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612 *	mmc_wait_for_cmd - start a command and wait for completion
 613 *	@host: MMC host to start command
 614 *	@cmd: MMC command to start
 615 *	@retries: maximum number of retries
 616 *
 617 *	Start a new MMC command for a host, and wait for the command
 618 *	to complete.  Return any error that occurred while the command
 619 *	was executing.  Do not attempt to parse the response.
 620 */
 621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 622{
 623	struct mmc_request mrq = {};
 624
 625	WARN_ON(!host->claimed);
 626
 627	memset(cmd->resp, 0, sizeof(cmd->resp));
 628	cmd->retries = retries;
 629
 630	mrq.cmd = cmd;
 631	cmd->data = NULL;
 632
 633	mmc_wait_for_req(host, &mrq);
 634
 635	return cmd->error;
 636}
 637
 638EXPORT_SYMBOL(mmc_wait_for_cmd);
 639
 640/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641 *	mmc_set_data_timeout - set the timeout for a data command
 642 *	@data: data phase for command
 643 *	@card: the MMC card associated with the data transfer
 644 *
 645 *	Computes the data timeout parameters according to the
 646 *	correct algorithm given the card type.
 647 */
 648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 649{
 650	unsigned int mult;
 651
 652	/*
 653	 * SDIO cards only define an upper 1 s limit on access.
 654	 */
 655	if (mmc_card_sdio(card)) {
 656		data->timeout_ns = 1000000000;
 657		data->timeout_clks = 0;
 658		return;
 659	}
 660
 661	/*
 662	 * SD cards use a 100 multiplier rather than 10
 663	 */
 664	mult = mmc_card_sd(card) ? 100 : 10;
 665
 666	/*
 667	 * Scale up the multiplier (and therefore the timeout) by
 668	 * the r2w factor for writes.
 669	 */
 670	if (data->flags & MMC_DATA_WRITE)
 671		mult <<= card->csd.r2w_factor;
 672
 673	data->timeout_ns = card->csd.taac_ns * mult;
 674	data->timeout_clks = card->csd.taac_clks * mult;
 675
 676	/*
 677	 * SD cards also have an upper limit on the timeout.
 678	 */
 679	if (mmc_card_sd(card)) {
 680		unsigned int timeout_us, limit_us;
 681
 682		timeout_us = data->timeout_ns / 1000;
 683		if (card->host->ios.clock)
 684			timeout_us += data->timeout_clks * 1000 /
 685				(card->host->ios.clock / 1000);
 686
 687		if (data->flags & MMC_DATA_WRITE)
 688			/*
 689			 * The MMC spec "It is strongly recommended
 690			 * for hosts to implement more than 500ms
 691			 * timeout value even if the card indicates
 692			 * the 250ms maximum busy length."  Even the
 693			 * previous value of 300ms is known to be
 694			 * insufficient for some cards.
 695			 */
 696			limit_us = 3000000;
 697		else
 698			limit_us = 100000;
 699
 700		/*
 701		 * SDHC cards always use these fixed values.
 702		 */
 703		if (timeout_us > limit_us) {
 704			data->timeout_ns = limit_us * 1000;
 705			data->timeout_clks = 0;
 706		}
 707
 708		/* assign limit value if invalid */
 709		if (timeout_us == 0)
 710			data->timeout_ns = limit_us * 1000;
 711	}
 712
 713	/*
 714	 * Some cards require longer data read timeout than indicated in CSD.
 715	 * Address this by setting the read timeout to a "reasonably high"
 716	 * value. For the cards tested, 600ms has proven enough. If necessary,
 717	 * this value can be increased if other problematic cards require this.
 718	 */
 719	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 720		data->timeout_ns = 600000000;
 721		data->timeout_clks = 0;
 722	}
 723
 724	/*
 725	 * Some cards need very high timeouts if driven in SPI mode.
 726	 * The worst observed timeout was 900ms after writing a
 727	 * continuous stream of data until the internal logic
 728	 * overflowed.
 729	 */
 730	if (mmc_host_is_spi(card->host)) {
 731		if (data->flags & MMC_DATA_WRITE) {
 732			if (data->timeout_ns < 1000000000)
 733				data->timeout_ns = 1000000000;	/* 1s */
 734		} else {
 735			if (data->timeout_ns < 100000000)
 736				data->timeout_ns =  100000000;	/* 100ms */
 737		}
 738	}
 739}
 740EXPORT_SYMBOL(mmc_set_data_timeout);
 741
 742/*
 743 * Allow claiming an already claimed host if the context is the same or there is
 744 * no context but the task is the same.
 
 
 
 
 
 
 
 
 
 
 745 */
 746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 747				   struct task_struct *task)
 748{
 749	return host->claimer == ctx ||
 750	       (!ctx && task && host->claimer->task == task);
 751}
 
 
 
 752
 753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 754				       struct mmc_ctx *ctx,
 755				       struct task_struct *task)
 756{
 757	if (!host->claimer) {
 758		if (ctx)
 759			host->claimer = ctx;
 760		else
 761			host->claimer = &host->default_ctx;
 762	}
 763	if (task)
 764		host->claimer->task = task;
 765}
 
 766
 767/**
 768 *	__mmc_claim_host - exclusively claim a host
 769 *	@host: mmc host to claim
 770 *	@ctx: context that claims the host or NULL in which case the default
 771 *	context will be used
 772 *	@abort: whether or not the operation should be aborted
 773 *
 774 *	Claim a host for a set of operations.  If @abort is non null and
 775 *	dereference a non-zero value then this will return prematurely with
 776 *	that non-zero value without acquiring the lock.  Returns zero
 777 *	with the lock held otherwise.
 778 */
 779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 780		     atomic_t *abort)
 781{
 782	struct task_struct *task = ctx ? NULL : current;
 783	DECLARE_WAITQUEUE(wait, current);
 784	unsigned long flags;
 785	int stop;
 786	bool pm = false;
 787
 788	might_sleep();
 789
 790	add_wait_queue(&host->wq, &wait);
 791	spin_lock_irqsave(&host->lock, flags);
 792	while (1) {
 793		set_current_state(TASK_UNINTERRUPTIBLE);
 794		stop = abort ? atomic_read(abort) : 0;
 795		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 796			break;
 797		spin_unlock_irqrestore(&host->lock, flags);
 798		schedule();
 799		spin_lock_irqsave(&host->lock, flags);
 800	}
 801	set_current_state(TASK_RUNNING);
 802	if (!stop) {
 803		host->claimed = 1;
 804		mmc_ctx_set_claimer(host, ctx, task);
 805		host->claim_cnt += 1;
 806		if (host->claim_cnt == 1)
 807			pm = true;
 808	} else
 809		wake_up(&host->wq);
 810	spin_unlock_irqrestore(&host->lock, flags);
 811	remove_wait_queue(&host->wq, &wait);
 812
 813	if (pm)
 814		pm_runtime_get_sync(mmc_dev(host));
 815
 816	return stop;
 817}
 818EXPORT_SYMBOL(__mmc_claim_host);
 819
 820/**
 821 *	mmc_release_host - release a host
 822 *	@host: mmc host to release
 823 *
 824 *	Release a MMC host, allowing others to claim the host
 825 *	for their operations.
 826 */
 827void mmc_release_host(struct mmc_host *host)
 828{
 829	unsigned long flags;
 830
 831	WARN_ON(!host->claimed);
 832
 833	spin_lock_irqsave(&host->lock, flags);
 834	if (--host->claim_cnt) {
 835		/* Release for nested claim */
 836		spin_unlock_irqrestore(&host->lock, flags);
 837	} else {
 838		host->claimed = 0;
 839		host->claimer->task = NULL;
 840		host->claimer = NULL;
 841		spin_unlock_irqrestore(&host->lock, flags);
 842		wake_up(&host->wq);
 843		pm_runtime_mark_last_busy(mmc_dev(host));
 844		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 845			pm_runtime_put_sync_suspend(mmc_dev(host));
 846		else
 847			pm_runtime_put_autosuspend(mmc_dev(host));
 848	}
 849}
 850EXPORT_SYMBOL(mmc_release_host);
 851
 852/*
 853 * This is a helper function, which fetches a runtime pm reference for the
 854 * card device and also claims the host.
 855 */
 856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 857{
 858	pm_runtime_get_sync(&card->dev);
 859	__mmc_claim_host(card->host, ctx, NULL);
 860}
 861EXPORT_SYMBOL(mmc_get_card);
 862
 863/*
 864 * This is a helper function, which releases the host and drops the runtime
 865 * pm reference for the card device.
 866 */
 867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 868{
 869	struct mmc_host *host = card->host;
 870
 871	WARN_ON(ctx && host->claimer != ctx);
 872
 873	mmc_release_host(host);
 874	pm_runtime_mark_last_busy(&card->dev);
 875	pm_runtime_put_autosuspend(&card->dev);
 876}
 877EXPORT_SYMBOL(mmc_put_card);
 878
 879/*
 880 * Internal function that does the actual ios call to the host driver,
 881 * optionally printing some debug output.
 882 */
 883static inline void mmc_set_ios(struct mmc_host *host)
 884{
 885	struct mmc_ios *ios = &host->ios;
 886
 887	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 888		"width %u timing %u\n",
 889		 mmc_hostname(host), ios->clock, ios->bus_mode,
 890		 ios->power_mode, ios->chip_select, ios->vdd,
 891		 1 << ios->bus_width, ios->timing);
 892
 893	host->ops->set_ios(host, ios);
 894}
 895
 896/*
 897 * Control chip select pin on a host.
 898 */
 899void mmc_set_chip_select(struct mmc_host *host, int mode)
 900{
 901	host->ios.chip_select = mode;
 902	mmc_set_ios(host);
 903}
 904
 905/*
 906 * Sets the host clock to the highest possible frequency that
 907 * is below "hz".
 908 */
 909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 910{
 911	WARN_ON(hz && hz < host->f_min);
 912
 913	if (hz > host->f_max)
 914		hz = host->f_max;
 915
 916	host->ios.clock = hz;
 917	mmc_set_ios(host);
 918}
 919
 920int mmc_execute_tuning(struct mmc_card *card)
 921{
 922	struct mmc_host *host = card->host;
 923	u32 opcode;
 924	int err;
 925
 926	if (!host->ops->execute_tuning)
 927		return 0;
 928
 929	if (host->cqe_on)
 930		host->cqe_ops->cqe_off(host);
 931
 932	if (mmc_card_mmc(card))
 933		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 934	else
 935		opcode = MMC_SEND_TUNING_BLOCK;
 936
 937	err = host->ops->execute_tuning(host, opcode);
 938	if (!err) {
 939		mmc_retune_clear(host);
 940		mmc_retune_enable(host);
 941		return 0;
 942	}
 943
 944	/* Only print error when we don't check for card removal */
 945	if (!host->detect_change) {
 946		pr_err("%s: tuning execution failed: %d\n",
 947			mmc_hostname(host), err);
 948		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 949	}
 950
 951	return err;
 952}
 953
 954/*
 955 * Change the bus mode (open drain/push-pull) of a host.
 956 */
 957void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 958{
 959	host->ios.bus_mode = mode;
 960	mmc_set_ios(host);
 961}
 962
 963/*
 964 * Change data bus width of a host.
 965 */
 966void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 967{
 968	host->ios.bus_width = width;
 969	mmc_set_ios(host);
 970}
 971
 972/*
 973 * Set initial state after a power cycle or a hw_reset.
 974 */
 975void mmc_set_initial_state(struct mmc_host *host)
 976{
 977	if (host->cqe_on)
 978		host->cqe_ops->cqe_off(host);
 979
 980	mmc_retune_disable(host);
 981
 982	if (mmc_host_is_spi(host))
 983		host->ios.chip_select = MMC_CS_HIGH;
 984	else
 985		host->ios.chip_select = MMC_CS_DONTCARE;
 986	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 987	host->ios.bus_width = MMC_BUS_WIDTH_1;
 988	host->ios.timing = MMC_TIMING_LEGACY;
 989	host->ios.drv_type = 0;
 990	host->ios.enhanced_strobe = false;
 991
 992	/*
 993	 * Make sure we are in non-enhanced strobe mode before we
 994	 * actually enable it in ext_csd.
 995	 */
 996	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
 997	     host->ops->hs400_enhanced_strobe)
 998		host->ops->hs400_enhanced_strobe(host, &host->ios);
 999
1000	mmc_set_ios(host);
1001
1002	mmc_crypto_set_initial_state(host);
1003}
1004
1005/**
1006 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007 * @vdd:	voltage (mV)
1008 * @low_bits:	prefer low bits in boundary cases
1009 *
1010 * This function returns the OCR bit number according to the provided @vdd
1011 * value. If conversion is not possible a negative errno value returned.
1012 *
1013 * Depending on the @low_bits flag the function prefers low or high OCR bits
1014 * on boundary voltages. For example,
1015 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017 *
1018 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019 */
1020static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021{
1022	const int max_bit = ilog2(MMC_VDD_35_36);
1023	int bit;
1024
1025	if (vdd < 1650 || vdd > 3600)
1026		return -EINVAL;
1027
1028	if (vdd >= 1650 && vdd <= 1950)
1029		return ilog2(MMC_VDD_165_195);
1030
1031	if (low_bits)
1032		vdd -= 1;
1033
1034	/* Base 2000 mV, step 100 mV, bit's base 8. */
1035	bit = (vdd - 2000) / 100 + 8;
1036	if (bit > max_bit)
1037		return max_bit;
1038	return bit;
1039}
1040
1041/**
1042 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043 * @vdd_min:	minimum voltage value (mV)
1044 * @vdd_max:	maximum voltage value (mV)
1045 *
1046 * This function returns the OCR mask bits according to the provided @vdd_min
1047 * and @vdd_max values. If conversion is not possible the function returns 0.
1048 *
1049 * Notes wrt boundary cases:
1050 * This function sets the OCR bits for all boundary voltages, for example
1051 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052 * MMC_VDD_34_35 mask.
1053 */
1054u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055{
1056	u32 mask = 0;
1057
1058	if (vdd_max < vdd_min)
1059		return 0;
1060
1061	/* Prefer high bits for the boundary vdd_max values. */
1062	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063	if (vdd_max < 0)
1064		return 0;
1065
1066	/* Prefer low bits for the boundary vdd_min values. */
1067	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068	if (vdd_min < 0)
1069		return 0;
1070
1071	/* Fill the mask, from max bit to min bit. */
1072	while (vdd_max >= vdd_min)
1073		mask |= 1 << vdd_max--;
1074
1075	return mask;
1076}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078static int mmc_of_get_func_num(struct device_node *node)
1079{
1080	u32 reg;
1081	int ret;
1082
1083	ret = of_property_read_u32(node, "reg", &reg);
1084	if (ret < 0)
1085		return ret;
1086
1087	return reg;
1088}
1089
1090struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091		unsigned func_num)
1092{
1093	struct device_node *node;
1094
1095	if (!host->parent || !host->parent->of_node)
1096		return NULL;
1097
1098	for_each_child_of_node(host->parent->of_node, node) {
1099		if (mmc_of_get_func_num(node) == func_num)
1100			return node;
1101	}
1102
1103	return NULL;
1104}
1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106/*
1107 * Mask off any voltages we don't support and select
1108 * the lowest voltage
1109 */
1110u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111{
1112	int bit;
1113
1114	/*
1115	 * Sanity check the voltages that the card claims to
1116	 * support.
1117	 */
1118	if (ocr & 0x7F) {
1119		dev_warn(mmc_dev(host),
1120		"card claims to support voltages below defined range\n");
1121		ocr &= ~0x7F;
1122	}
1123
1124	ocr &= host->ocr_avail;
1125	if (!ocr) {
1126		dev_warn(mmc_dev(host), "no support for card's volts\n");
1127		return 0;
1128	}
1129
1130	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131		bit = ffs(ocr) - 1;
1132		ocr &= 3 << bit;
1133		mmc_power_cycle(host, ocr);
1134	} else {
1135		bit = fls(ocr) - 1;
1136		/*
1137		 * The bit variable represents the highest voltage bit set in
1138		 * the OCR register.
1139		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140		 * we must shift the mask '3' with (bit - 1).
1141		 */
1142		ocr &= 3 << (bit - 1);
1143		if (bit != host->ios.vdd)
1144			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145	}
1146
1147	return ocr;
1148}
1149
1150int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151{
1152	int err = 0;
1153	int old_signal_voltage = host->ios.signal_voltage;
1154
1155	host->ios.signal_voltage = signal_voltage;
1156	if (host->ops->start_signal_voltage_switch)
1157		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158
1159	if (err)
1160		host->ios.signal_voltage = old_signal_voltage;
1161
1162	return err;
1163
1164}
1165
1166void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167{
1168	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175}
1176
1177int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178{
 
 
1179	u32 clock;
1180
1181	/*
1182	 * During a signal voltage level switch, the clock must be gated
1183	 * for 5 ms according to the SD spec
1184	 */
1185	clock = host->ios.clock;
1186	host->ios.clock = 0;
1187	mmc_set_ios(host);
1188
1189	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190		return -EAGAIN;
1191
1192	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193	mmc_delay(10);
1194	host->ios.clock = clock;
1195	mmc_set_ios(host);
1196
1197	return 0;
1198}
1199
1200int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201{
1202	struct mmc_command cmd = {};
1203	int err = 0;
1204
1205	/*
1206	 * If we cannot switch voltages, return failure so the caller
1207	 * can continue without UHS mode
1208	 */
1209	if (!host->ops->start_signal_voltage_switch)
1210		return -EPERM;
1211	if (!host->ops->card_busy)
1212		pr_warn("%s: cannot verify signal voltage switch\n",
1213			mmc_hostname(host));
1214
1215	cmd.opcode = SD_SWITCH_VOLTAGE;
1216	cmd.arg = 0;
1217	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218
1219	err = mmc_wait_for_cmd(host, &cmd, 0);
1220	if (err)
1221		goto power_cycle;
1222
1223	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224		return -EIO;
1225
1226	/*
1227	 * The card should drive cmd and dat[0:3] low immediately
1228	 * after the response of cmd11, but wait 1 ms to be sure
1229	 */
1230	mmc_delay(1);
1231	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232		err = -EAGAIN;
1233		goto power_cycle;
1234	}
 
 
 
 
 
 
 
1235
1236	if (mmc_host_set_uhs_voltage(host)) {
1237		/*
1238		 * Voltages may not have been switched, but we've already
1239		 * sent CMD11, so a power cycle is required anyway
1240		 */
1241		err = -EAGAIN;
1242		goto power_cycle;
1243	}
1244
 
 
 
 
 
1245	/* Wait for at least 1 ms according to spec */
1246	mmc_delay(1);
1247
1248	/*
1249	 * Failure to switch is indicated by the card holding
1250	 * dat[0:3] low
1251	 */
1252	if (host->ops->card_busy && host->ops->card_busy(host))
1253		err = -EAGAIN;
1254
1255power_cycle:
1256	if (err) {
1257		pr_debug("%s: Signal voltage switch failed, "
1258			"power cycling card\n", mmc_hostname(host));
1259		mmc_power_cycle(host, ocr);
1260	}
1261
1262	return err;
1263}
1264
1265/*
1266 * Select timing parameters for host.
1267 */
1268void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269{
1270	host->ios.timing = timing;
1271	mmc_set_ios(host);
1272}
1273
1274/*
1275 * Select appropriate driver type for host.
1276 */
1277void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278{
1279	host->ios.drv_type = drv_type;
1280	mmc_set_ios(host);
1281}
1282
1283int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284			      int card_drv_type, int *drv_type)
1285{
1286	struct mmc_host *host = card->host;
1287	int host_drv_type = SD_DRIVER_TYPE_B;
1288
1289	*drv_type = 0;
1290
1291	if (!host->ops->select_drive_strength)
1292		return 0;
1293
1294	/* Use SD definition of driver strength for hosts */
1295	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296		host_drv_type |= SD_DRIVER_TYPE_A;
1297
1298	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299		host_drv_type |= SD_DRIVER_TYPE_C;
1300
1301	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302		host_drv_type |= SD_DRIVER_TYPE_D;
1303
1304	/*
1305	 * The drive strength that the hardware can support
1306	 * depends on the board design.  Pass the appropriate
1307	 * information and let the hardware specific code
1308	 * return what is possible given the options
1309	 */
1310	return host->ops->select_drive_strength(card, max_dtr,
1311						host_drv_type,
1312						card_drv_type,
1313						drv_type);
1314}
1315
1316/*
1317 * Apply power to the MMC stack.  This is a two-stage process.
1318 * First, we enable power to the card without the clock running.
1319 * We then wait a bit for the power to stabilise.  Finally,
1320 * enable the bus drivers and clock to the card.
1321 *
1322 * We must _NOT_ enable the clock prior to power stablising.
1323 *
1324 * If a host does all the power sequencing itself, ignore the
1325 * initial MMC_POWER_UP stage.
1326 */
1327void mmc_power_up(struct mmc_host *host, u32 ocr)
1328{
1329	if (host->ios.power_mode == MMC_POWER_ON)
1330		return;
1331
1332	mmc_pwrseq_pre_power_on(host);
1333
1334	host->ios.vdd = fls(ocr) - 1;
1335	host->ios.power_mode = MMC_POWER_UP;
1336	/* Set initial state and call mmc_set_ios */
1337	mmc_set_initial_state(host);
1338
1339	mmc_set_initial_signal_voltage(host);
 
 
 
 
 
 
1340
1341	/*
1342	 * This delay should be sufficient to allow the power supply
1343	 * to reach the minimum voltage.
1344	 */
1345	mmc_delay(host->ios.power_delay_ms);
1346
1347	mmc_pwrseq_post_power_on(host);
1348
1349	host->ios.clock = host->f_init;
1350
1351	host->ios.power_mode = MMC_POWER_ON;
1352	mmc_set_ios(host);
1353
1354	/*
1355	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356	 * time required to reach a stable voltage.
1357	 */
1358	mmc_delay(host->ios.power_delay_ms);
1359}
1360
1361void mmc_power_off(struct mmc_host *host)
1362{
1363	if (host->ios.power_mode == MMC_POWER_OFF)
1364		return;
1365
1366	mmc_pwrseq_power_off(host);
1367
1368	host->ios.clock = 0;
1369	host->ios.vdd = 0;
1370
1371	host->ios.power_mode = MMC_POWER_OFF;
1372	/* Set initial state and call mmc_set_ios */
1373	mmc_set_initial_state(host);
1374
1375	/*
1376	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377	 * XO-1.5, require a short delay after poweroff before the card
1378	 * can be successfully turned on again.
1379	 */
1380	mmc_delay(1);
1381}
1382
1383void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1384{
1385	mmc_power_off(host);
1386	/* Wait at least 1 ms according to SD spec */
1387	mmc_delay(1);
1388	mmc_power_up(host, ocr);
1389}
1390
1391/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392 * Assign a mmc bus handler to a host. Only one bus handler may control a
1393 * host at any given time.
1394 */
1395void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1396{
 
 
 
 
 
 
 
 
 
1397	host->bus_ops = ops;
 
 
 
 
1398}
1399
1400/*
1401 * Remove the current bus handler from a host.
1402 */
1403void mmc_detach_bus(struct mmc_host *host)
1404{
1405	host->bus_ops = NULL;
 
 
 
 
 
 
 
 
 
 
 
1406}
1407
1408void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
 
1409{
 
 
 
 
 
 
 
1410	/*
1411	 * Prevent system sleep for 5s to allow user space to consume the
1412	 * corresponding uevent. This is especially useful, when CD irq is used
1413	 * as a system wakeup, but doesn't hurt in other cases.
1414	 */
1415	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1416		__pm_wakeup_event(host->ws, 5000);
 
1417
1418	host->detect_change = 1;
1419	mmc_schedule_delayed_work(&host->detect, delay);
1420}
1421
1422/**
1423 *	mmc_detect_change - process change of state on a MMC socket
1424 *	@host: host which changed state.
1425 *	@delay: optional delay to wait before detection (jiffies)
1426 *
1427 *	MMC drivers should call this when they detect a card has been
1428 *	inserted or removed. The MMC layer will confirm that any
1429 *	present card is still functional, and initialize any newly
1430 *	inserted.
1431 */
1432void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1433{
1434	_mmc_detect_change(host, delay, true);
1435}
1436EXPORT_SYMBOL(mmc_detect_change);
1437
1438void mmc_init_erase(struct mmc_card *card)
1439{
1440	unsigned int sz;
1441
1442	if (is_power_of_2(card->erase_size))
1443		card->erase_shift = ffs(card->erase_size) - 1;
1444	else
1445		card->erase_shift = 0;
1446
1447	/*
1448	 * It is possible to erase an arbitrarily large area of an SD or MMC
1449	 * card.  That is not desirable because it can take a long time
1450	 * (minutes) potentially delaying more important I/O, and also the
1451	 * timeout calculations become increasingly hugely over-estimated.
1452	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1453	 * to that size and alignment.
1454	 *
1455	 * For SD cards that define Allocation Unit size, limit erases to one
1456	 * Allocation Unit at a time.
1457	 * For MMC, have a stab at ai good value and for modern cards it will
1458	 * end up being 4MiB. Note that if the value is too small, it can end
1459	 * up taking longer to erase. Also note, erase_size is already set to
1460	 * High Capacity Erase Size if available when this function is called.
1461	 */
1462	if (mmc_card_sd(card) && card->ssr.au) {
1463		card->pref_erase = card->ssr.au;
1464		card->erase_shift = ffs(card->ssr.au) - 1;
1465	} else if (card->erase_size) {
1466		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1467		if (sz < 128)
1468			card->pref_erase = 512 * 1024 / 512;
1469		else if (sz < 512)
1470			card->pref_erase = 1024 * 1024 / 512;
1471		else if (sz < 1024)
1472			card->pref_erase = 2 * 1024 * 1024 / 512;
1473		else
1474			card->pref_erase = 4 * 1024 * 1024 / 512;
1475		if (card->pref_erase < card->erase_size)
1476			card->pref_erase = card->erase_size;
1477		else {
1478			sz = card->pref_erase % card->erase_size;
1479			if (sz)
1480				card->pref_erase += card->erase_size - sz;
1481		}
1482	} else
1483		card->pref_erase = 0;
1484}
1485
1486static bool is_trim_arg(unsigned int arg)
1487{
1488	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1489}
1490
1491static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1492				          unsigned int arg, unsigned int qty)
1493{
1494	unsigned int erase_timeout;
1495
1496	if (arg == MMC_DISCARD_ARG ||
1497	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1498		erase_timeout = card->ext_csd.trim_timeout;
1499	} else if (card->ext_csd.erase_group_def & 1) {
1500		/* High Capacity Erase Group Size uses HC timeouts */
1501		if (arg == MMC_TRIM_ARG)
1502			erase_timeout = card->ext_csd.trim_timeout;
1503		else
1504			erase_timeout = card->ext_csd.hc_erase_timeout;
1505	} else {
1506		/* CSD Erase Group Size uses write timeout */
1507		unsigned int mult = (10 << card->csd.r2w_factor);
1508		unsigned int timeout_clks = card->csd.taac_clks * mult;
1509		unsigned int timeout_us;
1510
1511		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1512		if (card->csd.taac_ns < 1000000)
1513			timeout_us = (card->csd.taac_ns * mult) / 1000;
1514		else
1515			timeout_us = (card->csd.taac_ns / 1000) * mult;
1516
1517		/*
1518		 * ios.clock is only a target.  The real clock rate might be
1519		 * less but not that much less, so fudge it by multiplying by 2.
1520		 */
1521		timeout_clks <<= 1;
1522		timeout_us += (timeout_clks * 1000) /
1523			      (card->host->ios.clock / 1000);
1524
1525		erase_timeout = timeout_us / 1000;
1526
1527		/*
1528		 * Theoretically, the calculation could underflow so round up
1529		 * to 1ms in that case.
1530		 */
1531		if (!erase_timeout)
1532			erase_timeout = 1;
1533	}
1534
1535	/* Multiplier for secure operations */
1536	if (arg & MMC_SECURE_ARGS) {
1537		if (arg == MMC_SECURE_ERASE_ARG)
1538			erase_timeout *= card->ext_csd.sec_erase_mult;
1539		else
1540			erase_timeout *= card->ext_csd.sec_trim_mult;
1541	}
1542
1543	erase_timeout *= qty;
1544
1545	/*
1546	 * Ensure at least a 1 second timeout for SPI as per
1547	 * 'mmc_set_data_timeout()'
1548	 */
1549	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1550		erase_timeout = 1000;
1551
1552	return erase_timeout;
1553}
1554
1555static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1556					 unsigned int arg,
1557					 unsigned int qty)
1558{
1559	unsigned int erase_timeout;
1560
1561	/* for DISCARD none of the below calculation applies.
1562	 * the busy timeout is 250msec per discard command.
1563	 */
1564	if (arg == SD_DISCARD_ARG)
1565		return SD_DISCARD_TIMEOUT_MS;
1566
1567	if (card->ssr.erase_timeout) {
1568		/* Erase timeout specified in SD Status Register (SSR) */
1569		erase_timeout = card->ssr.erase_timeout * qty +
1570				card->ssr.erase_offset;
1571	} else {
1572		/*
1573		 * Erase timeout not specified in SD Status Register (SSR) so
1574		 * use 250ms per write block.
1575		 */
1576		erase_timeout = 250 * qty;
1577	}
1578
1579	/* Must not be less than 1 second */
1580	if (erase_timeout < 1000)
1581		erase_timeout = 1000;
1582
1583	return erase_timeout;
1584}
1585
1586static unsigned int mmc_erase_timeout(struct mmc_card *card,
1587				      unsigned int arg,
1588				      unsigned int qty)
1589{
1590	if (mmc_card_sd(card))
1591		return mmc_sd_erase_timeout(card, arg, qty);
1592	else
1593		return mmc_mmc_erase_timeout(card, arg, qty);
1594}
1595
1596static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1597			unsigned int to, unsigned int arg)
1598{
1599	struct mmc_command cmd = {};
1600	unsigned int qty = 0, busy_timeout = 0;
1601	bool use_r1b_resp;
 
1602	int err;
1603
1604	mmc_retune_hold(card->host);
1605
1606	/*
1607	 * qty is used to calculate the erase timeout which depends on how many
1608	 * erase groups (or allocation units in SD terminology) are affected.
1609	 * We count erasing part of an erase group as one erase group.
1610	 * For SD, the allocation units are always a power of 2.  For MMC, the
1611	 * erase group size is almost certainly also power of 2, but it does not
1612	 * seem to insist on that in the JEDEC standard, so we fall back to
1613	 * division in that case.  SD may not specify an allocation unit size,
1614	 * in which case the timeout is based on the number of write blocks.
1615	 *
1616	 * Note that the timeout for secure trim 2 will only be correct if the
1617	 * number of erase groups specified is the same as the total of all
1618	 * preceding secure trim 1 commands.  Since the power may have been
1619	 * lost since the secure trim 1 commands occurred, it is generally
1620	 * impossible to calculate the secure trim 2 timeout correctly.
1621	 */
1622	if (card->erase_shift)
1623		qty += ((to >> card->erase_shift) -
1624			(from >> card->erase_shift)) + 1;
1625	else if (mmc_card_sd(card))
1626		qty += to - from + 1;
1627	else
1628		qty += ((to / card->erase_size) -
1629			(from / card->erase_size)) + 1;
1630
1631	if (!mmc_card_blockaddr(card)) {
1632		from <<= 9;
1633		to <<= 9;
1634	}
1635
1636	if (mmc_card_sd(card))
1637		cmd.opcode = SD_ERASE_WR_BLK_START;
1638	else
1639		cmd.opcode = MMC_ERASE_GROUP_START;
1640	cmd.arg = from;
1641	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1642	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1643	if (err) {
1644		pr_err("mmc_erase: group start error %d, "
1645		       "status %#x\n", err, cmd.resp[0]);
1646		err = -EIO;
1647		goto out;
1648	}
1649
1650	memset(&cmd, 0, sizeof(struct mmc_command));
1651	if (mmc_card_sd(card))
1652		cmd.opcode = SD_ERASE_WR_BLK_END;
1653	else
1654		cmd.opcode = MMC_ERASE_GROUP_END;
1655	cmd.arg = to;
1656	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1657	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1658	if (err) {
1659		pr_err("mmc_erase: group end error %d, status %#x\n",
1660		       err, cmd.resp[0]);
1661		err = -EIO;
1662		goto out;
1663	}
1664
1665	memset(&cmd, 0, sizeof(struct mmc_command));
1666	cmd.opcode = MMC_ERASE;
1667	cmd.arg = arg;
1668	busy_timeout = mmc_erase_timeout(card, arg, qty);
1669	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
 
 
 
 
 
 
 
 
 
 
 
 
 
1670
1671	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1672	if (err) {
1673		pr_err("mmc_erase: erase error %d, status %#x\n",
1674		       err, cmd.resp[0]);
1675		err = -EIO;
1676		goto out;
1677	}
1678
1679	if (mmc_host_is_spi(card->host))
1680		goto out;
1681
1682	/*
1683	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1684	 * shall be avoided.
1685	 */
1686	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1687		goto out;
1688
1689	/* Let's poll to find out when the erase operation completes. */
1690	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
 
 
1692out:
1693	mmc_retune_release(card->host);
1694	return err;
1695}
1696
1697static unsigned int mmc_align_erase_size(struct mmc_card *card,
1698					 unsigned int *from,
1699					 unsigned int *to,
1700					 unsigned int nr)
1701{
1702	unsigned int from_new = *from, nr_new = nr, rem;
1703
1704	/*
1705	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1706	 * to align the erase size efficiently.
1707	 */
1708	if (is_power_of_2(card->erase_size)) {
1709		unsigned int temp = from_new;
1710
1711		from_new = round_up(temp, card->erase_size);
1712		rem = from_new - temp;
1713
1714		if (nr_new > rem)
1715			nr_new -= rem;
1716		else
1717			return 0;
1718
1719		nr_new = round_down(nr_new, card->erase_size);
1720	} else {
1721		rem = from_new % card->erase_size;
1722		if (rem) {
1723			rem = card->erase_size - rem;
1724			from_new += rem;
1725			if (nr_new > rem)
1726				nr_new -= rem;
1727			else
1728				return 0;
1729		}
1730
1731		rem = nr_new % card->erase_size;
1732		if (rem)
1733			nr_new -= rem;
1734	}
1735
1736	if (nr_new == 0)
1737		return 0;
1738
1739	*to = from_new + nr_new;
1740	*from = from_new;
1741
1742	return nr_new;
1743}
1744
1745/**
1746 * mmc_erase - erase sectors.
1747 * @card: card to erase
1748 * @from: first sector to erase
1749 * @nr: number of sectors to erase
1750 * @arg: erase command argument
1751 *
1752 * Caller must claim host before calling this function.
1753 */
1754int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1755	      unsigned int arg)
1756{
1757	unsigned int rem, to = from + nr;
1758	int err;
1759
1760	if (!(card->csd.cmdclass & CCC_ERASE))
 
1761		return -EOPNOTSUPP;
1762
1763	if (!card->erase_size)
1764		return -EOPNOTSUPP;
1765
1766	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1767		return -EOPNOTSUPP;
1768
1769	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1770	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1771		return -EOPNOTSUPP;
1772
1773	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1774	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1775		return -EOPNOTSUPP;
1776
1777	if (arg == MMC_SECURE_ERASE_ARG) {
1778		if (from % card->erase_size || nr % card->erase_size)
1779			return -EINVAL;
1780	}
1781
1782	if (arg == MMC_ERASE_ARG)
1783		nr = mmc_align_erase_size(card, &from, &to, nr);
1784
1785	if (nr == 0)
1786		return 0;
1787
1788	if (to <= from)
1789		return -EINVAL;
1790
1791	/* 'from' and 'to' are inclusive */
1792	to -= 1;
1793
1794	/*
1795	 * Special case where only one erase-group fits in the timeout budget:
1796	 * If the region crosses an erase-group boundary on this particular
1797	 * case, we will be trimming more than one erase-group which, does not
1798	 * fit in the timeout budget of the controller, so we need to split it
1799	 * and call mmc_do_erase() twice if necessary. This special case is
1800	 * identified by the card->eg_boundary flag.
1801	 */
1802	rem = card->erase_size - (from % card->erase_size);
1803	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1804		err = mmc_do_erase(card, from, from + rem - 1, arg);
1805		from += rem;
1806		if ((err) || (to <= from))
1807			return err;
1808	}
1809
1810	return mmc_do_erase(card, from, to, arg);
1811}
1812EXPORT_SYMBOL(mmc_erase);
1813
1814int mmc_can_erase(struct mmc_card *card)
1815{
1816	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
 
1817		return 1;
1818	return 0;
1819}
1820EXPORT_SYMBOL(mmc_can_erase);
1821
1822int mmc_can_trim(struct mmc_card *card)
1823{
1824	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1825	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1826		return 1;
1827	return 0;
1828}
1829EXPORT_SYMBOL(mmc_can_trim);
1830
1831int mmc_can_discard(struct mmc_card *card)
1832{
1833	/*
1834	 * As there's no way to detect the discard support bit at v4.5
1835	 * use the s/w feature support filed.
1836	 */
1837	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1838		return 1;
1839	return 0;
1840}
1841EXPORT_SYMBOL(mmc_can_discard);
1842
1843int mmc_can_sanitize(struct mmc_card *card)
1844{
1845	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1846		return 0;
1847	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1848		return 1;
1849	return 0;
1850}
 
1851
1852int mmc_can_secure_erase_trim(struct mmc_card *card)
1853{
1854	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1855	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1856		return 1;
1857	return 0;
1858}
1859EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1860
1861int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1862			    unsigned int nr)
1863{
1864	if (!card->erase_size)
1865		return 0;
1866	if (from % card->erase_size || nr % card->erase_size)
1867		return 0;
1868	return 1;
1869}
1870EXPORT_SYMBOL(mmc_erase_group_aligned);
1871
1872static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1873					    unsigned int arg)
1874{
1875	struct mmc_host *host = card->host;
1876	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1877	unsigned int last_timeout = 0;
1878	unsigned int max_busy_timeout = host->max_busy_timeout ?
1879			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1880
1881	if (card->erase_shift) {
1882		max_qty = UINT_MAX >> card->erase_shift;
1883		min_qty = card->pref_erase >> card->erase_shift;
1884	} else if (mmc_card_sd(card)) {
1885		max_qty = UINT_MAX;
1886		min_qty = card->pref_erase;
1887	} else {
1888		max_qty = UINT_MAX / card->erase_size;
1889		min_qty = card->pref_erase / card->erase_size;
1890	}
1891
1892	/*
1893	 * We should not only use 'host->max_busy_timeout' as the limitation
1894	 * when deciding the max discard sectors. We should set a balance value
1895	 * to improve the erase speed, and it can not get too long timeout at
1896	 * the same time.
1897	 *
1898	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1899	 * matter what size of 'host->max_busy_timeout', but if the
1900	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1901	 * then we can continue to increase the max discard sectors until we
1902	 * get a balance value. In cases when the 'host->max_busy_timeout'
1903	 * isn't specified, use the default max erase timeout.
1904	 */
1905	do {
1906		y = 0;
1907		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1908			timeout = mmc_erase_timeout(card, arg, qty + x);
1909
1910			if (qty + x > min_qty && timeout > max_busy_timeout)
1911				break;
1912
1913			if (timeout < last_timeout)
1914				break;
1915			last_timeout = timeout;
1916			y = x;
1917		}
1918		qty += y;
1919	} while (y);
1920
1921	if (!qty)
1922		return 0;
1923
1924	/*
1925	 * When specifying a sector range to trim, chances are we might cross
1926	 * an erase-group boundary even if the amount of sectors is less than
1927	 * one erase-group.
1928	 * If we can only fit one erase-group in the controller timeout budget,
1929	 * we have to care that erase-group boundaries are not crossed by a
1930	 * single trim operation. We flag that special case with "eg_boundary".
1931	 * In all other cases we can just decrement qty and pretend that we
1932	 * always touch (qty + 1) erase-groups as a simple optimization.
1933	 */
1934	if (qty == 1)
1935		card->eg_boundary = 1;
1936	else
1937		qty--;
1938
1939	/* Convert qty to sectors */
1940	if (card->erase_shift)
1941		max_discard = qty << card->erase_shift;
1942	else if (mmc_card_sd(card))
1943		max_discard = qty + 1;
1944	else
1945		max_discard = qty * card->erase_size;
1946
1947	return max_discard;
1948}
1949
1950unsigned int mmc_calc_max_discard(struct mmc_card *card)
1951{
1952	struct mmc_host *host = card->host;
1953	unsigned int max_discard, max_trim;
1954
1955	/*
1956	 * Without erase_group_def set, MMC erase timeout depends on clock
1957	 * frequence which can change.  In that case, the best choice is
1958	 * just the preferred erase size.
1959	 */
1960	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1961		return card->pref_erase;
1962
1963	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1964	if (mmc_can_trim(card)) {
1965		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1966		if (max_trim < max_discard || max_discard == 0)
1967			max_discard = max_trim;
1968	} else if (max_discard < card->erase_size) {
1969		max_discard = 0;
1970	}
1971	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1972		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1973		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1974	return max_discard;
1975}
1976EXPORT_SYMBOL(mmc_calc_max_discard);
1977
1978bool mmc_card_is_blockaddr(struct mmc_card *card)
1979{
1980	return card ? mmc_card_blockaddr(card) : false;
1981}
1982EXPORT_SYMBOL(mmc_card_is_blockaddr);
1983
1984int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1985{
1986	struct mmc_command cmd = {};
1987
1988	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1989	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1990		return 0;
1991
1992	cmd.opcode = MMC_SET_BLOCKLEN;
1993	cmd.arg = blocklen;
1994	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1995	return mmc_wait_for_cmd(card->host, &cmd, 5);
1996}
1997EXPORT_SYMBOL(mmc_set_blocklen);
1998
1999static void mmc_hw_reset_for_init(struct mmc_host *host)
 
2000{
2001	mmc_pwrseq_reset(host);
2002
2003	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2004		return;
2005	host->ops->card_hw_reset(host);
 
 
 
2006}
 
2007
2008/**
2009 * mmc_hw_reset - reset the card in hardware
2010 * @card: card to be reset
2011 *
2012 * Hard reset the card. This function is only for upper layers, like the
2013 * block layer or card drivers. You cannot use it in host drivers (struct
2014 * mmc_card might be gone then).
2015 *
2016 * Return: 0 on success, -errno on failure
2017 */
2018int mmc_hw_reset(struct mmc_card *card)
2019{
2020	struct mmc_host *host = card->host;
2021	int ret;
2022
2023	ret = host->bus_ops->hw_reset(host);
2024	if (ret < 0)
2025		pr_warn("%s: tried to HW reset card, got error %d\n",
2026			mmc_hostname(host), ret);
2027
2028	return ret;
2029}
2030EXPORT_SYMBOL(mmc_hw_reset);
2031
2032int mmc_sw_reset(struct mmc_card *card)
2033{
2034	struct mmc_host *host = card->host;
2035	int ret;
2036
2037	if (!host->bus_ops->sw_reset)
 
 
 
 
 
2038		return -EOPNOTSUPP;
 
 
 
 
2039
2040	ret = host->bus_ops->sw_reset(host);
2041	if (ret)
2042		pr_warn("%s: tried to SW reset card, got error %d\n",
2043			mmc_hostname(host), ret);
2044
2045	return ret;
2046}
2047EXPORT_SYMBOL(mmc_sw_reset);
2048
2049static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2050{
2051	host->f_init = freq;
2052
2053	pr_debug("%s: %s: trying to init card at %u Hz\n",
 
2054		mmc_hostname(host), __func__, host->f_init);
2055
2056	mmc_power_up(host, host->ocr_avail);
2057
2058	/*
2059	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2060	 * do a hardware reset if possible.
2061	 */
2062	mmc_hw_reset_for_init(host);
2063
2064	/*
2065	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2066	 * if the card is being re-initialized, just send it.  CMD52
2067	 * should be ignored by SD/eMMC cards.
2068	 * Skip it if we already know that we do not support SDIO commands
2069	 */
2070	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2071		sdio_reset(host);
2072
2073	mmc_go_idle(host);
2074
2075	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2076		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2077			goto out;
2078		if (mmc_card_sd_express(host))
2079			return 0;
2080	}
2081
2082	/* Order's important: probe SDIO, then SD, then MMC */
2083	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2084		if (!mmc_attach_sdio(host))
2085			return 0;
2086
2087	if (!(host->caps2 & MMC_CAP2_NO_SD))
2088		if (!mmc_attach_sd(host))
2089			return 0;
2090
2091	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2092		if (!mmc_attach_mmc(host))
2093			return 0;
2094
2095out:
2096	mmc_power_off(host);
2097	return -EIO;
2098}
2099
2100int _mmc_detect_card_removed(struct mmc_host *host)
2101{
2102	int ret;
2103
2104	if (!host->card || mmc_card_removed(host->card))
2105		return 1;
2106
2107	ret = host->bus_ops->alive(host);
2108
2109	/*
2110	 * Card detect status and alive check may be out of sync if card is
2111	 * removed slowly, when card detect switch changes while card/slot
2112	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2113	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2114	 * detect work 200ms later for this case.
2115	 */
2116	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2117		mmc_detect_change(host, msecs_to_jiffies(200));
2118		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2119	}
2120
2121	if (ret) {
2122		mmc_card_set_removed(host->card);
2123		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2124	}
2125
2126	return ret;
2127}
2128
2129int mmc_detect_card_removed(struct mmc_host *host)
2130{
2131	struct mmc_card *card = host->card;
2132	int ret;
2133
2134	WARN_ON(!host->claimed);
2135
2136	if (!card)
2137		return 1;
2138
2139	if (!mmc_card_is_removable(host))
2140		return 0;
2141
2142	ret = mmc_card_removed(card);
2143	/*
2144	 * The card will be considered unchanged unless we have been asked to
2145	 * detect a change or host requires polling to provide card detection.
2146	 */
2147	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2148		return ret;
2149
2150	host->detect_change = 0;
2151	if (!ret) {
2152		ret = _mmc_detect_card_removed(host);
2153		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2154			/*
2155			 * Schedule a detect work as soon as possible to let a
2156			 * rescan handle the card removal.
2157			 */
2158			cancel_delayed_work(&host->detect);
2159			_mmc_detect_change(host, 0, false);
2160		}
2161	}
2162
2163	return ret;
2164}
2165EXPORT_SYMBOL(mmc_detect_card_removed);
2166
2167int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2168{
2169	unsigned int boot_sectors_num;
2170
2171	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2172		return -EOPNOTSUPP;
2173
2174	/* filter out unrelated cards */
2175	if (card->ext_csd.rev < 3 ||
2176	    !mmc_card_mmc(card) ||
2177	    !mmc_card_is_blockaddr(card) ||
2178	     mmc_card_is_removable(card->host))
2179		return -ENOENT;
2180
2181	/*
2182	 * eMMC storage has two special boot partitions in addition to the
2183	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2184	 * accesses, this means that the partition table addresses are shifted
2185	 * by the size of boot partitions.  In accordance with the eMMC
2186	 * specification, the boot partition size is calculated as follows:
2187	 *
2188	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2189	 *
2190	 * Calculate number of sectors occupied by the both boot partitions.
2191	 */
2192	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2193			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2194
2195	/* Defined by NVIDIA and used by Android devices. */
2196	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2197
2198	return 0;
2199}
2200EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2201
2202void mmc_rescan(struct work_struct *work)
2203{
2204	struct mmc_host *host =
2205		container_of(work, struct mmc_host, detect.work);
2206	int i;
2207
2208	if (host->rescan_disable)
2209		return;
2210
2211	/* If there is a non-removable card registered, only scan once */
2212	if (!mmc_card_is_removable(host) && host->rescan_entered)
2213		return;
2214	host->rescan_entered = 1;
2215
2216	if (host->trigger_card_event && host->ops->card_event) {
2217		mmc_claim_host(host);
2218		host->ops->card_event(host);
2219		mmc_release_host(host);
2220		host->trigger_card_event = false;
2221	}
2222
2223	/* Verify a registered card to be functional, else remove it. */
2224	if (host->bus_ops)
 
 
 
 
 
2225		host->bus_ops->detect(host);
2226
2227	host->detect_change = 0;
2228
 
 
 
 
 
 
 
2229	/* if there still is a card present, stop here */
2230	if (host->bus_ops != NULL)
 
2231		goto out;
 
 
 
 
 
 
 
2232
2233	mmc_claim_host(host);
2234	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2235			host->ops->get_cd(host) == 0) {
2236		mmc_power_off(host);
2237		mmc_release_host(host);
2238		goto out;
2239	}
2240
2241	/* If an SD express card is present, then leave it as is. */
2242	if (mmc_card_sd_express(host)) {
2243		mmc_release_host(host);
2244		goto out;
2245	}
2246
2247	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2248		unsigned int freq = freqs[i];
2249		if (freq > host->f_max) {
2250			if (i + 1 < ARRAY_SIZE(freqs))
2251				continue;
2252			freq = host->f_max;
2253		}
2254		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2255			break;
2256		if (freqs[i] <= host->f_min)
2257			break;
2258	}
2259
2260	/*
2261	 * Ignore the command timeout errors observed during
2262	 * the card init as those are excepted.
2263	 */
2264	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2265	mmc_release_host(host);
2266
2267 out:
2268	if (host->caps & MMC_CAP_NEEDS_POLL)
2269		mmc_schedule_delayed_work(&host->detect, HZ);
2270}
2271
2272void mmc_start_host(struct mmc_host *host)
2273{
2274	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2275	host->rescan_disable = 0;
 
2276
2277	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2278		mmc_claim_host(host);
2279		mmc_power_up(host, host->ocr_avail);
2280		mmc_release_host(host);
2281	}
2282
2283	mmc_gpiod_request_cd_irq(host);
2284	_mmc_detect_change(host, 0, false);
2285}
2286
2287void __mmc_stop_host(struct mmc_host *host)
2288{
2289	if (host->slot.cd_irq >= 0) {
2290		mmc_gpio_set_cd_wake(host, false);
 
 
 
 
 
2291		disable_irq(host->slot.cd_irq);
2292	}
2293
2294	host->rescan_disable = 1;
2295	cancel_delayed_work_sync(&host->detect);
2296}
2297
2298void mmc_stop_host(struct mmc_host *host)
2299{
2300	__mmc_stop_host(host);
2301
2302	/* clear pm flags now and let card drivers set them as needed */
2303	host->pm_flags = 0;
2304
2305	if (host->bus_ops) {
 
2306		/* Calling bus_ops->remove() with a claimed host can deadlock */
2307		host->bus_ops->remove(host);
2308		mmc_claim_host(host);
2309		mmc_detach_bus(host);
2310		mmc_power_off(host);
2311		mmc_release_host(host);
 
2312		return;
2313	}
 
2314
2315	mmc_claim_host(host);
2316	mmc_power_off(host);
2317	mmc_release_host(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318}
2319
2320static int __init mmc_init(void)
2321{
2322	int ret;
2323
2324	ret = mmc_register_bus();
2325	if (ret)
2326		return ret;
2327
2328	ret = mmc_register_host_class();
2329	if (ret)
2330		goto unregister_bus;
2331
2332	ret = sdio_register_bus();
2333	if (ret)
2334		goto unregister_host_class;
2335
2336	return 0;
2337
2338unregister_host_class:
2339	mmc_unregister_host_class();
2340unregister_bus:
2341	mmc_unregister_bus();
2342	return ret;
2343}
2344
2345static void __exit mmc_exit(void)
2346{
2347	sdio_unregister_bus();
2348	mmc_unregister_host_class();
2349	mmc_unregister_bus();
2350}
2351
2352subsys_initcall(mmc_init);
2353module_exit(mmc_exit);
2354
2355MODULE_LICENSE("GPL");
v4.10.11
 
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/mmc.h>
  41
  42#include "core.h"
 
 
  43#include "bus.h"
  44#include "host.h"
  45#include "sdio_bus.h"
  46#include "pwrseq.h"
  47
  48#include "mmc_ops.h"
  49#include "sd_ops.h"
  50#include "sdio_ops.h"
  51
  52/* If the device is not responding */
  53#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  54
  55/*
  56 * Background operations can take a long time, depending on the housekeeping
  57 * operations the card has to perform.
  58 */
  59#define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
  60
  61/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  62#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
 
  63
  64static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  65
  66/*
  67 * Enabling software CRCs on the data blocks can be a significant (30%)
  68 * performance cost, and for other reasons may not always be desired.
  69 * So we allow it it to be disabled.
  70 */
  71bool use_spi_crc = 1;
  72module_param(use_spi_crc, bool, 0);
  73
  74static int mmc_schedule_delayed_work(struct delayed_work *work,
  75				     unsigned long delay)
  76{
  77	/*
  78	 * We use the system_freezable_wq, because of two reasons.
  79	 * First, it allows several works (not the same work item) to be
  80	 * executed simultaneously. Second, the queue becomes frozen when
  81	 * userspace becomes frozen during system PM.
  82	 */
  83	return queue_delayed_work(system_freezable_wq, work, delay);
  84}
  85
  86#ifdef CONFIG_FAIL_MMC_REQUEST
  87
  88/*
  89 * Internal function. Inject random data errors.
  90 * If mmc_data is NULL no errors are injected.
  91 */
  92static void mmc_should_fail_request(struct mmc_host *host,
  93				    struct mmc_request *mrq)
  94{
  95	struct mmc_command *cmd = mrq->cmd;
  96	struct mmc_data *data = mrq->data;
  97	static const int data_errors[] = {
  98		-ETIMEDOUT,
  99		-EILSEQ,
 100		-EIO,
 101	};
 102
 103	if (!data)
 104		return;
 105
 106	if (cmd->error || data->error ||
 107	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 108		return;
 109
 110	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 111	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 112}
 113
 114#else /* CONFIG_FAIL_MMC_REQUEST */
 115
 116static inline void mmc_should_fail_request(struct mmc_host *host,
 117					   struct mmc_request *mrq)
 118{
 119}
 120
 121#endif /* CONFIG_FAIL_MMC_REQUEST */
 122
 123static inline void mmc_complete_cmd(struct mmc_request *mrq)
 124{
 125	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 126		complete_all(&mrq->cmd_completion);
 127}
 128
 129void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 130{
 131	if (!mrq->cap_cmd_during_tfr)
 132		return;
 133
 134	mmc_complete_cmd(mrq);
 135
 136	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 137		 mmc_hostname(host), mrq->cmd->opcode);
 138}
 139EXPORT_SYMBOL(mmc_command_done);
 140
 141/**
 142 *	mmc_request_done - finish processing an MMC request
 143 *	@host: MMC host which completed request
 144 *	@mrq: MMC request which request
 145 *
 146 *	MMC drivers should call this function when they have completed
 147 *	their processing of a request.
 148 */
 149void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 150{
 151	struct mmc_command *cmd = mrq->cmd;
 152	int err = cmd->error;
 153
 154	/* Flag re-tuning needed on CRC errors */
 155	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 156	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
 157	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 158	    (mrq->data && mrq->data->error == -EILSEQ) ||
 159	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 160		mmc_retune_needed(host);
 161
 162	if (err && cmd->retries && mmc_host_is_spi(host)) {
 163		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 164			cmd->retries = 0;
 165	}
 166
 167	if (host->ongoing_mrq == mrq)
 168		host->ongoing_mrq = NULL;
 169
 170	mmc_complete_cmd(mrq);
 171
 172	trace_mmc_request_done(host, mrq);
 173
 174	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 175		/*
 176		 * Request starter must handle retries - see
 177		 * mmc_wait_for_req_done().
 178		 */
 179		if (mrq->done)
 180			mrq->done(mrq);
 181	} else {
 
 
 182		mmc_should_fail_request(host, mrq);
 183
 184		if (!host->ongoing_mrq)
 185			led_trigger_event(host->led, LED_OFF);
 186
 187		if (mrq->sbc) {
 188			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 189				mmc_hostname(host), mrq->sbc->opcode,
 190				mrq->sbc->error,
 191				mrq->sbc->resp[0], mrq->sbc->resp[1],
 192				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 193		}
 194
 195		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 196			mmc_hostname(host), cmd->opcode, err,
 197			cmd->resp[0], cmd->resp[1],
 198			cmd->resp[2], cmd->resp[3]);
 199
 200		if (mrq->data) {
 201			pr_debug("%s:     %d bytes transferred: %d\n",
 202				mmc_hostname(host),
 203				mrq->data->bytes_xfered, mrq->data->error);
 204		}
 205
 206		if (mrq->stop) {
 207			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 208				mmc_hostname(host), mrq->stop->opcode,
 209				mrq->stop->error,
 210				mrq->stop->resp[0], mrq->stop->resp[1],
 211				mrq->stop->resp[2], mrq->stop->resp[3]);
 212		}
 213
 214		if (mrq->done)
 215			mrq->done(mrq);
 216	}
 
 
 
 
 
 
 217}
 218
 219EXPORT_SYMBOL(mmc_request_done);
 220
 221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 222{
 223	int err;
 224
 225	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 226	err = mmc_retune(host);
 227	if (err) {
 228		mrq->cmd->error = err;
 229		mmc_request_done(host, mrq);
 230		return;
 231	}
 232
 233	/*
 234	 * For sdio rw commands we must wait for card busy otherwise some
 235	 * sdio devices won't work properly.
 
 236	 */
 237	if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
 
 238		int tries = 500; /* Wait aprox 500ms at maximum */
 239
 240		while (host->ops->card_busy(host) && --tries)
 241			mmc_delay(1);
 242
 243		if (tries == 0) {
 244			mrq->cmd->error = -EBUSY;
 245			mmc_request_done(host, mrq);
 246			return;
 247		}
 248	}
 249
 250	if (mrq->cap_cmd_during_tfr) {
 251		host->ongoing_mrq = mrq;
 252		/*
 253		 * Retry path could come through here without having waiting on
 254		 * cmd_completion, so ensure it is reinitialised.
 255		 */
 256		reinit_completion(&mrq->cmd_completion);
 257	}
 258
 259	trace_mmc_request_start(host, mrq);
 260
 
 
 
 261	host->ops->request(host, mrq);
 262}
 263
 264static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 265{
 266#ifdef CONFIG_MMC_DEBUG
 267	unsigned int i, sz;
 268	struct scatterlist *sg;
 269#endif
 270	mmc_retune_hold(host);
 271
 272	if (mmc_card_removed(host->card))
 273		return -ENOMEDIUM;
 274
 275	if (mrq->sbc) {
 276		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 277			 mmc_hostname(host), mrq->sbc->opcode,
 278			 mrq->sbc->arg, mrq->sbc->flags);
 279	}
 280
 281	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 282		 mmc_hostname(host), mrq->cmd->opcode,
 283		 mrq->cmd->arg, mrq->cmd->flags);
 
 
 
 
 
 284
 285	if (mrq->data) {
 286		pr_debug("%s:     blksz %d blocks %d flags %08x "
 287			"tsac %d ms nsac %d\n",
 288			mmc_hostname(host), mrq->data->blksz,
 289			mrq->data->blocks, mrq->data->flags,
 290			mrq->data->timeout_ns / 1000000,
 291			mrq->data->timeout_clks);
 292	}
 293
 294	if (mrq->stop) {
 295		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 296			 mmc_hostname(host), mrq->stop->opcode,
 297			 mrq->stop->arg, mrq->stop->flags);
 298	}
 
 299
 300	WARN_ON(!host->claimed);
 
 
 
 301
 302	mrq->cmd->error = 0;
 303	mrq->cmd->mrq = mrq;
 
 
 
 304	if (mrq->sbc) {
 305		mrq->sbc->error = 0;
 306		mrq->sbc->mrq = mrq;
 307	}
 308	if (mrq->data) {
 309		if (mrq->data->blksz > host->max_blk_size ||
 310		    mrq->data->blocks > host->max_blk_count ||
 311		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 312			return -EINVAL;
 313#ifdef CONFIG_MMC_DEBUG
 314		sz = 0;
 315		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 316			sz += sg->length;
 317		if (sz != mrq->data->blocks * mrq->data->blksz)
 318			return -EINVAL;
 319#endif
 320
 321		mrq->cmd->data = mrq->data;
 322		mrq->data->error = 0;
 323		mrq->data->mrq = mrq;
 324		if (mrq->stop) {
 325			mrq->data->stop = mrq->stop;
 326			mrq->stop->error = 0;
 327			mrq->stop->mrq = mrq;
 328		}
 329	}
 330	led_trigger_event(host->led, LED_FULL);
 331	__mmc_start_request(host, mrq);
 332
 333	return 0;
 334}
 335
 336/**
 337 *	mmc_start_bkops - start BKOPS for supported cards
 338 *	@card: MMC card to start BKOPS
 339 *	@form_exception: A flag to indicate if this function was
 340 *			 called due to an exception raised by the card
 341 *
 342 *	Start background operations whenever requested.
 343 *	When the urgent BKOPS bit is set in a R1 command response
 344 *	then background operations should be started immediately.
 345*/
 346void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 347{
 348	int err;
 349	int timeout;
 350	bool use_busy_signal;
 351
 352	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
 353		return;
 354
 355	err = mmc_read_bkops_status(card);
 356	if (err) {
 357		pr_err("%s: Failed to read bkops status: %d\n",
 358		       mmc_hostname(card->host), err);
 359		return;
 360	}
 361
 362	if (!card->ext_csd.raw_bkops_status)
 363		return;
 364
 365	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 366	    from_exception)
 367		return;
 368
 369	mmc_claim_host(card->host);
 370	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 371		timeout = MMC_BKOPS_MAX_TIMEOUT;
 372		use_busy_signal = true;
 373	} else {
 374		timeout = 0;
 375		use_busy_signal = false;
 376	}
 377
 378	mmc_retune_hold(card->host);
 
 
 379
 380	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 381			EXT_CSD_BKOPS_START, 1, timeout, 0,
 382			use_busy_signal, true, false);
 383	if (err) {
 384		pr_warn("%s: Error %d starting bkops\n",
 385			mmc_hostname(card->host), err);
 386		mmc_retune_release(card->host);
 387		goto out;
 388	}
 389
 390	/*
 391	 * For urgent bkops status (LEVEL_2 and more)
 392	 * bkops executed synchronously, otherwise
 393	 * the operation is in progress
 394	 */
 395	if (!use_busy_signal)
 396		mmc_card_set_doing_bkops(card);
 397	else
 398		mmc_retune_release(card->host);
 399out:
 400	mmc_release_host(card->host);
 401}
 402EXPORT_SYMBOL(mmc_start_bkops);
 403
 404/*
 405 * mmc_wait_data_done() - done callback for data request
 406 * @mrq: done data request
 407 *
 408 * Wakes up mmc context, passed as a callback to host controller driver
 409 */
 410static void mmc_wait_data_done(struct mmc_request *mrq)
 411{
 412	struct mmc_context_info *context_info = &mrq->host->context_info;
 413
 414	context_info->is_done_rcv = true;
 415	wake_up_interruptible(&context_info->wait);
 416}
 
 417
 418static void mmc_wait_done(struct mmc_request *mrq)
 419{
 420	complete(&mrq->completion);
 421}
 422
 423static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 424{
 425	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 426
 427	/*
 428	 * If there is an ongoing transfer, wait for the command line to become
 429	 * available.
 430	 */
 431	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 432		wait_for_completion(&ongoing_mrq->cmd_completion);
 433}
 434
 435/*
 436 *__mmc_start_data_req() - starts data request
 437 * @host: MMC host to start the request
 438 * @mrq: data request to start
 439 *
 440 * Sets the done callback to be called when request is completed by the card.
 441 * Starts data mmc request execution
 442 * If an ongoing transfer is already in progress, wait for the command line
 443 * to become available before sending another command.
 444 */
 445static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 446{
 447	int err;
 448
 449	mmc_wait_ongoing_tfr_cmd(host);
 450
 451	mrq->done = mmc_wait_data_done;
 452	mrq->host = host;
 453
 454	init_completion(&mrq->cmd_completion);
 455
 456	err = mmc_start_request(host, mrq);
 457	if (err) {
 458		mrq->cmd->error = err;
 459		mmc_complete_cmd(mrq);
 460		mmc_wait_data_done(mrq);
 461	}
 462
 463	return err;
 464}
 465
 466static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 467{
 468	int err;
 469
 470	mmc_wait_ongoing_tfr_cmd(host);
 471
 472	init_completion(&mrq->completion);
 473	mrq->done = mmc_wait_done;
 474
 475	init_completion(&mrq->cmd_completion);
 476
 477	err = mmc_start_request(host, mrq);
 478	if (err) {
 479		mrq->cmd->error = err;
 480		mmc_complete_cmd(mrq);
 481		complete(&mrq->completion);
 482	}
 483
 484	return err;
 485}
 486
 487/*
 488 * mmc_wait_for_data_req_done() - wait for request completed
 489 * @host: MMC host to prepare the command.
 490 * @mrq: MMC request to wait for
 491 *
 492 * Blocks MMC context till host controller will ack end of data request
 493 * execution or new request notification arrives from the block layer.
 494 * Handles command retries.
 495 *
 496 * Returns enum mmc_blk_status after checking errors.
 497 */
 498static enum mmc_blk_status mmc_wait_for_data_req_done(struct mmc_host *host,
 499						      struct mmc_request *mrq)
 500{
 501	struct mmc_command *cmd;
 502	struct mmc_context_info *context_info = &host->context_info;
 503	enum mmc_blk_status status;
 504
 505	while (1) {
 506		wait_event_interruptible(context_info->wait,
 507				(context_info->is_done_rcv ||
 508				 context_info->is_new_req));
 509
 510		if (context_info->is_done_rcv) {
 511			context_info->is_done_rcv = false;
 512			cmd = mrq->cmd;
 513
 514			if (!cmd->error || !cmd->retries ||
 515			    mmc_card_removed(host->card)) {
 516				status = host->areq->err_check(host->card,
 517							       host->areq);
 518				break; /* return status */
 519			} else {
 520				mmc_retune_recheck(host);
 521				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 522					mmc_hostname(host),
 523					cmd->opcode, cmd->error);
 524				cmd->retries--;
 525				cmd->error = 0;
 526				__mmc_start_request(host, mrq);
 527				continue; /* wait for done/new event again */
 528			}
 529		}
 530
 531		return MMC_BLK_NEW_REQUEST;
 532	}
 533	mmc_retune_release(host);
 534	return status;
 535}
 536
 537void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 538{
 539	struct mmc_command *cmd;
 540
 541	while (1) {
 542		wait_for_completion(&mrq->completion);
 543
 544		cmd = mrq->cmd;
 545
 546		/*
 547		 * If host has timed out waiting for the sanitize
 548		 * to complete, card might be still in programming state
 549		 * so let's try to bring the card out of programming
 550		 * state.
 551		 */
 552		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 553			if (!mmc_interrupt_hpi(host->card)) {
 554				pr_warn("%s: %s: Interrupted sanitize\n",
 555					mmc_hostname(host), __func__);
 556				cmd->error = 0;
 557				break;
 558			} else {
 559				pr_err("%s: %s: Failed to interrupt sanitize\n",
 560				       mmc_hostname(host), __func__);
 561			}
 562		}
 563		if (!cmd->error || !cmd->retries ||
 564		    mmc_card_removed(host->card))
 565			break;
 566
 567		mmc_retune_recheck(host);
 568
 569		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 570			 mmc_hostname(host), cmd->opcode, cmd->error);
 571		cmd->retries--;
 572		cmd->error = 0;
 573		__mmc_start_request(host, mrq);
 574	}
 575
 576	mmc_retune_release(host);
 577}
 578EXPORT_SYMBOL(mmc_wait_for_req_done);
 579
 580/**
 581 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 582 *	@host: MMC host
 583 *	@mrq: MMC request
 584 *
 585 *	mmc_is_req_done() is used with requests that have
 586 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 587 *	starting a request and before waiting for it to complete. That is,
 588 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 589 *	and before mmc_wait_for_req_done(). If it is called at other times the
 590 *	result is not meaningful.
 591 */
 592bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 593{
 594	if (host->areq)
 595		return host->context_info.is_done_rcv;
 596	else
 597		return completion_done(&mrq->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598}
 599EXPORT_SYMBOL(mmc_is_req_done);
 600
 601/**
 602 *	mmc_pre_req - Prepare for a new request
 603 *	@host: MMC host to prepare command
 604 *	@mrq: MMC request to prepare for
 605 *
 606 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 607 *	host prepare for the new request. Preparation of a request may be
 608 *	performed while another request is running on the host.
 609 */
 610static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
 611{
 612	if (host->ops->pre_req)
 613		host->ops->pre_req(host, mrq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614}
 
 615
 616/**
 617 *	mmc_post_req - Post process a completed request
 618 *	@host: MMC host to post process command
 619 *	@mrq: MMC request to post process for
 620 *	@err: Error, if non zero, clean up any resources made in pre_req
 621 *
 622 *	Let the host post process a completed request. Post processing of
 623 *	a request may be performed while another reuqest is running.
 624 */
 625static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 626			 int err)
 627{
 628	if (host->ops->post_req)
 629		host->ops->post_req(host, mrq, err);
 630}
 
 
 
 
 631
 632/**
 633 *	mmc_start_req - start a non-blocking request
 634 *	@host: MMC host to start command
 635 *	@areq: async request to start
 636 *	@error: out parameter returns 0 for success, otherwise non zero
 637 *
 638 *	Start a new MMC custom command request for a host.
 639 *	If there is on ongoing async request wait for completion
 640 *	of that request and start the new one and return.
 641 *	Does not wait for the new request to complete.
 642 *
 643 *      Returns the completed request, NULL in case of none completed.
 644 *	Wait for the an ongoing request (previoulsy started) to complete and
 645 *	return the completed request. If there is no ongoing request, NULL
 646 *	is returned without waiting. NULL is not an error condition.
 647 */
 648struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 649				    struct mmc_async_req *areq,
 650				    enum mmc_blk_status *ret_stat)
 651{
 652	enum mmc_blk_status status = MMC_BLK_SUCCESS;
 653	int start_err = 0;
 654	struct mmc_async_req *data = host->areq;
 655
 656	/* Prepare a new request */
 657	if (areq)
 658		mmc_pre_req(host, areq->mrq);
 659
 660	if (host->areq) {
 661		status = mmc_wait_for_data_req_done(host, host->areq->mrq);
 662		if (status == MMC_BLK_NEW_REQUEST) {
 663			if (ret_stat)
 664				*ret_stat = status;
 665			/*
 666			 * The previous request was not completed,
 667			 * nothing to return
 668			 */
 669			return NULL;
 670		}
 671		/*
 672		 * Check BKOPS urgency for each R1 response
 673		 */
 674		if (host->card && mmc_card_mmc(host->card) &&
 675		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 676		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 677		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
 678
 679			/* Cancel the prepared request */
 680			if (areq)
 681				mmc_post_req(host, areq->mrq, -EINVAL);
 682
 683			mmc_start_bkops(host->card, true);
 684
 685			/* prepare the request again */
 686			if (areq)
 687				mmc_pre_req(host, areq->mrq);
 688		}
 689	}
 690
 691	if (status == MMC_BLK_SUCCESS && areq)
 692		start_err = __mmc_start_data_req(host, areq->mrq);
 
 
 
 
 693
 694	if (host->areq)
 695		mmc_post_req(host, host->areq->mrq, 0);
 
 
 
 
 
 696
 697	 /* Cancel a prepared request if it was not started. */
 698	if ((status != MMC_BLK_SUCCESS || start_err) && areq)
 699		mmc_post_req(host, areq->mrq, -EINVAL);
 700
 701	if (status != MMC_BLK_SUCCESS)
 702		host->areq = NULL;
 703	else
 704		host->areq = areq;
 705
 706	if (ret_stat)
 707		*ret_stat = status;
 708	return data;
 709}
 710EXPORT_SYMBOL(mmc_start_req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711
 712/**
 713 *	mmc_wait_for_req - start a request and wait for completion
 714 *	@host: MMC host to start command
 715 *	@mrq: MMC request to start
 716 *
 717 *	Start a new MMC custom command request for a host, and wait
 718 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 719 *	requests, the transfer is ongoing and the caller can issue further
 720 *	commands that do not use the data lines, and then wait by calling
 721 *	mmc_wait_for_req_done().
 722 *	Does not attempt to parse the response.
 723 */
 724void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 725{
 726	__mmc_start_req(host, mrq);
 727
 728	if (!mrq->cap_cmd_during_tfr)
 729		mmc_wait_for_req_done(host, mrq);
 730}
 731EXPORT_SYMBOL(mmc_wait_for_req);
 732
 733/**
 734 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 735 *	@card: the MMC card associated with the HPI transfer
 736 *
 737 *	Issued High Priority Interrupt, and check for card status
 738 *	until out-of prg-state.
 739 */
 740int mmc_interrupt_hpi(struct mmc_card *card)
 741{
 742	int err;
 743	u32 status;
 744	unsigned long prg_wait;
 745
 746	if (!card->ext_csd.hpi_en) {
 747		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 748		return 1;
 749	}
 750
 751	mmc_claim_host(card->host);
 752	err = mmc_send_status(card, &status);
 753	if (err) {
 754		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 755		goto out;
 756	}
 757
 758	switch (R1_CURRENT_STATE(status)) {
 759	case R1_STATE_IDLE:
 760	case R1_STATE_READY:
 761	case R1_STATE_STBY:
 762	case R1_STATE_TRAN:
 763		/*
 764		 * In idle and transfer states, HPI is not needed and the caller
 765		 * can issue the next intended command immediately
 766		 */
 767		goto out;
 768	case R1_STATE_PRG:
 769		break;
 770	default:
 771		/* In all other states, it's illegal to issue HPI */
 772		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 773			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 774		err = -EINVAL;
 775		goto out;
 776	}
 777
 778	err = mmc_send_hpi_cmd(card, &status);
 779	if (err)
 780		goto out;
 781
 782	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 783	do {
 784		err = mmc_send_status(card, &status);
 785
 786		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 787			break;
 788		if (time_after(jiffies, prg_wait))
 789			err = -ETIMEDOUT;
 790	} while (!err);
 791
 792out:
 793	mmc_release_host(card->host);
 794	return err;
 795}
 796EXPORT_SYMBOL(mmc_interrupt_hpi);
 797
 798/**
 799 *	mmc_wait_for_cmd - start a command and wait for completion
 800 *	@host: MMC host to start command
 801 *	@cmd: MMC command to start
 802 *	@retries: maximum number of retries
 803 *
 804 *	Start a new MMC command for a host, and wait for the command
 805 *	to complete.  Return any error that occurred while the command
 806 *	was executing.  Do not attempt to parse the response.
 807 */
 808int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 809{
 810	struct mmc_request mrq = {NULL};
 811
 812	WARN_ON(!host->claimed);
 813
 814	memset(cmd->resp, 0, sizeof(cmd->resp));
 815	cmd->retries = retries;
 816
 817	mrq.cmd = cmd;
 818	cmd->data = NULL;
 819
 820	mmc_wait_for_req(host, &mrq);
 821
 822	return cmd->error;
 823}
 824
 825EXPORT_SYMBOL(mmc_wait_for_cmd);
 826
 827/**
 828 *	mmc_stop_bkops - stop ongoing BKOPS
 829 *	@card: MMC card to check BKOPS
 830 *
 831 *	Send HPI command to stop ongoing background operations to
 832 *	allow rapid servicing of foreground operations, e.g. read/
 833 *	writes. Wait until the card comes out of the programming state
 834 *	to avoid errors in servicing read/write requests.
 835 */
 836int mmc_stop_bkops(struct mmc_card *card)
 837{
 838	int err = 0;
 839
 840	err = mmc_interrupt_hpi(card);
 841
 842	/*
 843	 * If err is EINVAL, we can't issue an HPI.
 844	 * It should complete the BKOPS.
 845	 */
 846	if (!err || (err == -EINVAL)) {
 847		mmc_card_clr_doing_bkops(card);
 848		mmc_retune_release(card->host);
 849		err = 0;
 850	}
 851
 852	return err;
 853}
 854EXPORT_SYMBOL(mmc_stop_bkops);
 855
 856int mmc_read_bkops_status(struct mmc_card *card)
 857{
 858	int err;
 859	u8 *ext_csd;
 860
 861	mmc_claim_host(card->host);
 862	err = mmc_get_ext_csd(card, &ext_csd);
 863	mmc_release_host(card->host);
 864	if (err)
 865		return err;
 866
 867	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 868	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 869	kfree(ext_csd);
 870	return 0;
 871}
 872EXPORT_SYMBOL(mmc_read_bkops_status);
 873
 874/**
 875 *	mmc_set_data_timeout - set the timeout for a data command
 876 *	@data: data phase for command
 877 *	@card: the MMC card associated with the data transfer
 878 *
 879 *	Computes the data timeout parameters according to the
 880 *	correct algorithm given the card type.
 881 */
 882void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 883{
 884	unsigned int mult;
 885
 886	/*
 887	 * SDIO cards only define an upper 1 s limit on access.
 888	 */
 889	if (mmc_card_sdio(card)) {
 890		data->timeout_ns = 1000000000;
 891		data->timeout_clks = 0;
 892		return;
 893	}
 894
 895	/*
 896	 * SD cards use a 100 multiplier rather than 10
 897	 */
 898	mult = mmc_card_sd(card) ? 100 : 10;
 899
 900	/*
 901	 * Scale up the multiplier (and therefore the timeout) by
 902	 * the r2w factor for writes.
 903	 */
 904	if (data->flags & MMC_DATA_WRITE)
 905		mult <<= card->csd.r2w_factor;
 906
 907	data->timeout_ns = card->csd.tacc_ns * mult;
 908	data->timeout_clks = card->csd.tacc_clks * mult;
 909
 910	/*
 911	 * SD cards also have an upper limit on the timeout.
 912	 */
 913	if (mmc_card_sd(card)) {
 914		unsigned int timeout_us, limit_us;
 915
 916		timeout_us = data->timeout_ns / 1000;
 917		if (card->host->ios.clock)
 918			timeout_us += data->timeout_clks * 1000 /
 919				(card->host->ios.clock / 1000);
 920
 921		if (data->flags & MMC_DATA_WRITE)
 922			/*
 923			 * The MMC spec "It is strongly recommended
 924			 * for hosts to implement more than 500ms
 925			 * timeout value even if the card indicates
 926			 * the 250ms maximum busy length."  Even the
 927			 * previous value of 300ms is known to be
 928			 * insufficient for some cards.
 929			 */
 930			limit_us = 3000000;
 931		else
 932			limit_us = 100000;
 933
 934		/*
 935		 * SDHC cards always use these fixed values.
 936		 */
 937		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 938			data->timeout_ns = limit_us * 1000;
 939			data->timeout_clks = 0;
 940		}
 941
 942		/* assign limit value if invalid */
 943		if (timeout_us == 0)
 944			data->timeout_ns = limit_us * 1000;
 945	}
 946
 947	/*
 948	 * Some cards require longer data read timeout than indicated in CSD.
 949	 * Address this by setting the read timeout to a "reasonably high"
 950	 * value. For the cards tested, 600ms has proven enough. If necessary,
 951	 * this value can be increased if other problematic cards require this.
 952	 */
 953	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 954		data->timeout_ns = 600000000;
 955		data->timeout_clks = 0;
 956	}
 957
 958	/*
 959	 * Some cards need very high timeouts if driven in SPI mode.
 960	 * The worst observed timeout was 900ms after writing a
 961	 * continuous stream of data until the internal logic
 962	 * overflowed.
 963	 */
 964	if (mmc_host_is_spi(card->host)) {
 965		if (data->flags & MMC_DATA_WRITE) {
 966			if (data->timeout_ns < 1000000000)
 967				data->timeout_ns = 1000000000;	/* 1s */
 968		} else {
 969			if (data->timeout_ns < 100000000)
 970				data->timeout_ns =  100000000;	/* 100ms */
 971		}
 972	}
 973}
 974EXPORT_SYMBOL(mmc_set_data_timeout);
 975
 976/**
 977 *	mmc_align_data_size - pads a transfer size to a more optimal value
 978 *	@card: the MMC card associated with the data transfer
 979 *	@sz: original transfer size
 980 *
 981 *	Pads the original data size with a number of extra bytes in
 982 *	order to avoid controller bugs and/or performance hits
 983 *	(e.g. some controllers revert to PIO for certain sizes).
 984 *
 985 *	Returns the improved size, which might be unmodified.
 986 *
 987 *	Note that this function is only relevant when issuing a
 988 *	single scatter gather entry.
 989 */
 990unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 
 991{
 992	/*
 993	 * FIXME: We don't have a system for the controller to tell
 994	 * the core about its problems yet, so for now we just 32-bit
 995	 * align the size.
 996	 */
 997	sz = ((sz + 3) / 4) * 4;
 998
 999	return sz;
 
 
 
 
 
 
 
 
 
 
 
1000}
1001EXPORT_SYMBOL(mmc_align_data_size);
1002
1003/**
1004 *	__mmc_claim_host - exclusively claim a host
1005 *	@host: mmc host to claim
 
 
1006 *	@abort: whether or not the operation should be aborted
1007 *
1008 *	Claim a host for a set of operations.  If @abort is non null and
1009 *	dereference a non-zero value then this will return prematurely with
1010 *	that non-zero value without acquiring the lock.  Returns zero
1011 *	with the lock held otherwise.
1012 */
1013int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 
1014{
 
1015	DECLARE_WAITQUEUE(wait, current);
1016	unsigned long flags;
1017	int stop;
1018	bool pm = false;
1019
1020	might_sleep();
1021
1022	add_wait_queue(&host->wq, &wait);
1023	spin_lock_irqsave(&host->lock, flags);
1024	while (1) {
1025		set_current_state(TASK_UNINTERRUPTIBLE);
1026		stop = abort ? atomic_read(abort) : 0;
1027		if (stop || !host->claimed || host->claimer == current)
1028			break;
1029		spin_unlock_irqrestore(&host->lock, flags);
1030		schedule();
1031		spin_lock_irqsave(&host->lock, flags);
1032	}
1033	set_current_state(TASK_RUNNING);
1034	if (!stop) {
1035		host->claimed = 1;
1036		host->claimer = current;
1037		host->claim_cnt += 1;
1038		if (host->claim_cnt == 1)
1039			pm = true;
1040	} else
1041		wake_up(&host->wq);
1042	spin_unlock_irqrestore(&host->lock, flags);
1043	remove_wait_queue(&host->wq, &wait);
1044
1045	if (pm)
1046		pm_runtime_get_sync(mmc_dev(host));
1047
1048	return stop;
1049}
1050EXPORT_SYMBOL(__mmc_claim_host);
1051
1052/**
1053 *	mmc_release_host - release a host
1054 *	@host: mmc host to release
1055 *
1056 *	Release a MMC host, allowing others to claim the host
1057 *	for their operations.
1058 */
1059void mmc_release_host(struct mmc_host *host)
1060{
1061	unsigned long flags;
1062
1063	WARN_ON(!host->claimed);
1064
1065	spin_lock_irqsave(&host->lock, flags);
1066	if (--host->claim_cnt) {
1067		/* Release for nested claim */
1068		spin_unlock_irqrestore(&host->lock, flags);
1069	} else {
1070		host->claimed = 0;
 
1071		host->claimer = NULL;
1072		spin_unlock_irqrestore(&host->lock, flags);
1073		wake_up(&host->wq);
1074		pm_runtime_mark_last_busy(mmc_dev(host));
1075		pm_runtime_put_autosuspend(mmc_dev(host));
 
 
 
1076	}
1077}
1078EXPORT_SYMBOL(mmc_release_host);
1079
1080/*
1081 * This is a helper function, which fetches a runtime pm reference for the
1082 * card device and also claims the host.
1083 */
1084void mmc_get_card(struct mmc_card *card)
1085{
1086	pm_runtime_get_sync(&card->dev);
1087	mmc_claim_host(card->host);
1088}
1089EXPORT_SYMBOL(mmc_get_card);
1090
1091/*
1092 * This is a helper function, which releases the host and drops the runtime
1093 * pm reference for the card device.
1094 */
1095void mmc_put_card(struct mmc_card *card)
1096{
1097	mmc_release_host(card->host);
 
 
 
 
1098	pm_runtime_mark_last_busy(&card->dev);
1099	pm_runtime_put_autosuspend(&card->dev);
1100}
1101EXPORT_SYMBOL(mmc_put_card);
1102
1103/*
1104 * Internal function that does the actual ios call to the host driver,
1105 * optionally printing some debug output.
1106 */
1107static inline void mmc_set_ios(struct mmc_host *host)
1108{
1109	struct mmc_ios *ios = &host->ios;
1110
1111	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1112		"width %u timing %u\n",
1113		 mmc_hostname(host), ios->clock, ios->bus_mode,
1114		 ios->power_mode, ios->chip_select, ios->vdd,
1115		 1 << ios->bus_width, ios->timing);
1116
1117	host->ops->set_ios(host, ios);
1118}
1119
1120/*
1121 * Control chip select pin on a host.
1122 */
1123void mmc_set_chip_select(struct mmc_host *host, int mode)
1124{
1125	host->ios.chip_select = mode;
1126	mmc_set_ios(host);
1127}
1128
1129/*
1130 * Sets the host clock to the highest possible frequency that
1131 * is below "hz".
1132 */
1133void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1134{
1135	WARN_ON(hz && hz < host->f_min);
1136
1137	if (hz > host->f_max)
1138		hz = host->f_max;
1139
1140	host->ios.clock = hz;
1141	mmc_set_ios(host);
1142}
1143
1144int mmc_execute_tuning(struct mmc_card *card)
1145{
1146	struct mmc_host *host = card->host;
1147	u32 opcode;
1148	int err;
1149
1150	if (!host->ops->execute_tuning)
1151		return 0;
1152
 
 
 
1153	if (mmc_card_mmc(card))
1154		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1155	else
1156		opcode = MMC_SEND_TUNING_BLOCK;
1157
1158	err = host->ops->execute_tuning(host, opcode);
 
 
 
 
 
1159
1160	if (err)
 
1161		pr_err("%s: tuning execution failed: %d\n",
1162			mmc_hostname(host), err);
1163	else
1164		mmc_retune_enable(host);
1165
1166	return err;
1167}
1168
1169/*
1170 * Change the bus mode (open drain/push-pull) of a host.
1171 */
1172void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1173{
1174	host->ios.bus_mode = mode;
1175	mmc_set_ios(host);
1176}
1177
1178/*
1179 * Change data bus width of a host.
1180 */
1181void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1182{
1183	host->ios.bus_width = width;
1184	mmc_set_ios(host);
1185}
1186
1187/*
1188 * Set initial state after a power cycle or a hw_reset.
1189 */
1190void mmc_set_initial_state(struct mmc_host *host)
1191{
 
 
 
1192	mmc_retune_disable(host);
1193
1194	if (mmc_host_is_spi(host))
1195		host->ios.chip_select = MMC_CS_HIGH;
1196	else
1197		host->ios.chip_select = MMC_CS_DONTCARE;
1198	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1199	host->ios.bus_width = MMC_BUS_WIDTH_1;
1200	host->ios.timing = MMC_TIMING_LEGACY;
1201	host->ios.drv_type = 0;
1202	host->ios.enhanced_strobe = false;
1203
1204	/*
1205	 * Make sure we are in non-enhanced strobe mode before we
1206	 * actually enable it in ext_csd.
1207	 */
1208	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1209	     host->ops->hs400_enhanced_strobe)
1210		host->ops->hs400_enhanced_strobe(host, &host->ios);
1211
1212	mmc_set_ios(host);
 
 
1213}
1214
1215/**
1216 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1217 * @vdd:	voltage (mV)
1218 * @low_bits:	prefer low bits in boundary cases
1219 *
1220 * This function returns the OCR bit number according to the provided @vdd
1221 * value. If conversion is not possible a negative errno value returned.
1222 *
1223 * Depending on the @low_bits flag the function prefers low or high OCR bits
1224 * on boundary voltages. For example,
1225 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1226 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1227 *
1228 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1229 */
1230static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1231{
1232	const int max_bit = ilog2(MMC_VDD_35_36);
1233	int bit;
1234
1235	if (vdd < 1650 || vdd > 3600)
1236		return -EINVAL;
1237
1238	if (vdd >= 1650 && vdd <= 1950)
1239		return ilog2(MMC_VDD_165_195);
1240
1241	if (low_bits)
1242		vdd -= 1;
1243
1244	/* Base 2000 mV, step 100 mV, bit's base 8. */
1245	bit = (vdd - 2000) / 100 + 8;
1246	if (bit > max_bit)
1247		return max_bit;
1248	return bit;
1249}
1250
1251/**
1252 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1253 * @vdd_min:	minimum voltage value (mV)
1254 * @vdd_max:	maximum voltage value (mV)
1255 *
1256 * This function returns the OCR mask bits according to the provided @vdd_min
1257 * and @vdd_max values. If conversion is not possible the function returns 0.
1258 *
1259 * Notes wrt boundary cases:
1260 * This function sets the OCR bits for all boundary voltages, for example
1261 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1262 * MMC_VDD_34_35 mask.
1263 */
1264u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1265{
1266	u32 mask = 0;
1267
1268	if (vdd_max < vdd_min)
1269		return 0;
1270
1271	/* Prefer high bits for the boundary vdd_max values. */
1272	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1273	if (vdd_max < 0)
1274		return 0;
1275
1276	/* Prefer low bits for the boundary vdd_min values. */
1277	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1278	if (vdd_min < 0)
1279		return 0;
1280
1281	/* Fill the mask, from max bit to min bit. */
1282	while (vdd_max >= vdd_min)
1283		mask |= 1 << vdd_max--;
1284
1285	return mask;
1286}
1287EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1288
1289#ifdef CONFIG_OF
1290
1291/**
1292 * mmc_of_parse_voltage - return mask of supported voltages
1293 * @np: The device node need to be parsed.
1294 * @mask: mask of voltages available for MMC/SD/SDIO
1295 *
1296 * Parse the "voltage-ranges" DT property, returning zero if it is not
1297 * found, negative errno if the voltage-range specification is invalid,
1298 * or one if the voltage-range is specified and successfully parsed.
1299 */
1300int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1301{
1302	const u32 *voltage_ranges;
1303	int num_ranges, i;
1304
1305	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1306	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1307	if (!voltage_ranges) {
1308		pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1309		return 0;
1310	}
1311	if (!num_ranges) {
1312		pr_err("%s: voltage-ranges empty\n", np->full_name);
1313		return -EINVAL;
1314	}
1315
1316	for (i = 0; i < num_ranges; i++) {
1317		const int j = i * 2;
1318		u32 ocr_mask;
1319
1320		ocr_mask = mmc_vddrange_to_ocrmask(
1321				be32_to_cpu(voltage_ranges[j]),
1322				be32_to_cpu(voltage_ranges[j + 1]));
1323		if (!ocr_mask) {
1324			pr_err("%s: voltage-range #%d is invalid\n",
1325				np->full_name, i);
1326			return -EINVAL;
1327		}
1328		*mask |= ocr_mask;
1329	}
1330
1331	return 1;
1332}
1333EXPORT_SYMBOL(mmc_of_parse_voltage);
1334
1335#endif /* CONFIG_OF */
1336
1337static int mmc_of_get_func_num(struct device_node *node)
1338{
1339	u32 reg;
1340	int ret;
1341
1342	ret = of_property_read_u32(node, "reg", &reg);
1343	if (ret < 0)
1344		return ret;
1345
1346	return reg;
1347}
1348
1349struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1350		unsigned func_num)
1351{
1352	struct device_node *node;
1353
1354	if (!host->parent || !host->parent->of_node)
1355		return NULL;
1356
1357	for_each_child_of_node(host->parent->of_node, node) {
1358		if (mmc_of_get_func_num(node) == func_num)
1359			return node;
1360	}
1361
1362	return NULL;
1363}
1364
1365#ifdef CONFIG_REGULATOR
1366
1367/**
1368 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1369 * @vdd_bit:	OCR bit number
1370 * @min_uV:	minimum voltage value (mV)
1371 * @max_uV:	maximum voltage value (mV)
1372 *
1373 * This function returns the voltage range according to the provided OCR
1374 * bit number. If conversion is not possible a negative errno value returned.
1375 */
1376static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1377{
1378	int		tmp;
1379
1380	if (!vdd_bit)
1381		return -EINVAL;
1382
1383	/*
1384	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1385	 * bits this regulator doesn't quite support ... don't
1386	 * be too picky, most cards and regulators are OK with
1387	 * a 0.1V range goof (it's a small error percentage).
1388	 */
1389	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1390	if (tmp == 0) {
1391		*min_uV = 1650 * 1000;
1392		*max_uV = 1950 * 1000;
1393	} else {
1394		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1395		*max_uV = *min_uV + 100 * 1000;
1396	}
1397
1398	return 0;
1399}
1400
1401/**
1402 * mmc_regulator_get_ocrmask - return mask of supported voltages
1403 * @supply: regulator to use
1404 *
1405 * This returns either a negative errno, or a mask of voltages that
1406 * can be provided to MMC/SD/SDIO devices using the specified voltage
1407 * regulator.  This would normally be called before registering the
1408 * MMC host adapter.
1409 */
1410int mmc_regulator_get_ocrmask(struct regulator *supply)
1411{
1412	int			result = 0;
1413	int			count;
1414	int			i;
1415	int			vdd_uV;
1416	int			vdd_mV;
1417
1418	count = regulator_count_voltages(supply);
1419	if (count < 0)
1420		return count;
1421
1422	for (i = 0; i < count; i++) {
1423		vdd_uV = regulator_list_voltage(supply, i);
1424		if (vdd_uV <= 0)
1425			continue;
1426
1427		vdd_mV = vdd_uV / 1000;
1428		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1429	}
1430
1431	if (!result) {
1432		vdd_uV = regulator_get_voltage(supply);
1433		if (vdd_uV <= 0)
1434			return vdd_uV;
1435
1436		vdd_mV = vdd_uV / 1000;
1437		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1438	}
1439
1440	return result;
1441}
1442EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1443
1444/**
1445 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1446 * @mmc: the host to regulate
1447 * @supply: regulator to use
1448 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1449 *
1450 * Returns zero on success, else negative errno.
1451 *
1452 * MMC host drivers may use this to enable or disable a regulator using
1453 * a particular supply voltage.  This would normally be called from the
1454 * set_ios() method.
1455 */
1456int mmc_regulator_set_ocr(struct mmc_host *mmc,
1457			struct regulator *supply,
1458			unsigned short vdd_bit)
1459{
1460	int			result = 0;
1461	int			min_uV, max_uV;
1462
1463	if (vdd_bit) {
1464		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1465
1466		result = regulator_set_voltage(supply, min_uV, max_uV);
1467		if (result == 0 && !mmc->regulator_enabled) {
1468			result = regulator_enable(supply);
1469			if (!result)
1470				mmc->regulator_enabled = true;
1471		}
1472	} else if (mmc->regulator_enabled) {
1473		result = regulator_disable(supply);
1474		if (result == 0)
1475			mmc->regulator_enabled = false;
1476	}
1477
1478	if (result)
1479		dev_err(mmc_dev(mmc),
1480			"could not set regulator OCR (%d)\n", result);
1481	return result;
1482}
1483EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1484
1485static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1486						  int min_uV, int target_uV,
1487						  int max_uV)
1488{
1489	/*
1490	 * Check if supported first to avoid errors since we may try several
1491	 * signal levels during power up and don't want to show errors.
1492	 */
1493	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1494		return -EINVAL;
1495
1496	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1497					     max_uV);
1498}
1499
1500/**
1501 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1502 *
1503 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1504 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1505 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1506 * SD card spec also define VQMMC in terms of VMMC.
1507 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1508 *
1509 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1510 * requested voltage.  This is definitely a good idea for UHS where there's a
1511 * separate regulator on the card that's trying to make 1.8V and it's best if
1512 * we match.
1513 *
1514 * This function is expected to be used by a controller's
1515 * start_signal_voltage_switch() function.
1516 */
1517int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1518{
1519	struct device *dev = mmc_dev(mmc);
1520	int ret, volt, min_uV, max_uV;
1521
1522	/* If no vqmmc supply then we can't change the voltage */
1523	if (IS_ERR(mmc->supply.vqmmc))
1524		return -EINVAL;
1525
1526	switch (ios->signal_voltage) {
1527	case MMC_SIGNAL_VOLTAGE_120:
1528		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1529						1100000, 1200000, 1300000);
1530	case MMC_SIGNAL_VOLTAGE_180:
1531		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1532						1700000, 1800000, 1950000);
1533	case MMC_SIGNAL_VOLTAGE_330:
1534		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1535		if (ret < 0)
1536			return ret;
1537
1538		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1539			__func__, volt, max_uV);
1540
1541		min_uV = max(volt - 300000, 2700000);
1542		max_uV = min(max_uV + 200000, 3600000);
1543
1544		/*
1545		 * Due to a limitation in the current implementation of
1546		 * regulator_set_voltage_triplet() which is taking the lowest
1547		 * voltage possible if below the target, search for a suitable
1548		 * voltage in two steps and try to stay close to vmmc
1549		 * with a 0.3V tolerance at first.
1550		 */
1551		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1552						min_uV, volt, max_uV))
1553			return 0;
1554
1555		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1556						2700000, volt, 3600000);
1557	default:
1558		return -EINVAL;
1559	}
1560}
1561EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1562
1563#endif /* CONFIG_REGULATOR */
1564
1565int mmc_regulator_get_supply(struct mmc_host *mmc)
1566{
1567	struct device *dev = mmc_dev(mmc);
1568	int ret;
1569
1570	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1571	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1572
1573	if (IS_ERR(mmc->supply.vmmc)) {
1574		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1575			return -EPROBE_DEFER;
1576		dev_dbg(dev, "No vmmc regulator found\n");
1577	} else {
1578		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1579		if (ret > 0)
1580			mmc->ocr_avail = ret;
1581		else
1582			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1583	}
1584
1585	if (IS_ERR(mmc->supply.vqmmc)) {
1586		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1587			return -EPROBE_DEFER;
1588		dev_dbg(dev, "No vqmmc regulator found\n");
1589	}
1590
1591	return 0;
1592}
1593EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1594
1595/*
1596 * Mask off any voltages we don't support and select
1597 * the lowest voltage
1598 */
1599u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1600{
1601	int bit;
1602
1603	/*
1604	 * Sanity check the voltages that the card claims to
1605	 * support.
1606	 */
1607	if (ocr & 0x7F) {
1608		dev_warn(mmc_dev(host),
1609		"card claims to support voltages below defined range\n");
1610		ocr &= ~0x7F;
1611	}
1612
1613	ocr &= host->ocr_avail;
1614	if (!ocr) {
1615		dev_warn(mmc_dev(host), "no support for card's volts\n");
1616		return 0;
1617	}
1618
1619	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1620		bit = ffs(ocr) - 1;
1621		ocr &= 3 << bit;
1622		mmc_power_cycle(host, ocr);
1623	} else {
1624		bit = fls(ocr) - 1;
1625		ocr &= 3 << bit;
 
 
 
 
 
 
1626		if (bit != host->ios.vdd)
1627			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1628	}
1629
1630	return ocr;
1631}
1632
1633int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1634{
1635	int err = 0;
1636	int old_signal_voltage = host->ios.signal_voltage;
1637
1638	host->ios.signal_voltage = signal_voltage;
1639	if (host->ops->start_signal_voltage_switch)
1640		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1641
1642	if (err)
1643		host->ios.signal_voltage = old_signal_voltage;
1644
1645	return err;
1646
1647}
1648
1649int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
 
 
 
 
 
 
 
 
 
 
 
1650{
1651	struct mmc_command cmd = {0};
1652	int err = 0;
1653	u32 clock;
1654
1655	/*
1656	 * Send CMD11 only if the request is to switch the card to
1657	 * 1.8V signalling.
1658	 */
1659	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1660		return __mmc_set_signal_voltage(host, signal_voltage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661
1662	/*
1663	 * If we cannot switch voltages, return failure so the caller
1664	 * can continue without UHS mode
1665	 */
1666	if (!host->ops->start_signal_voltage_switch)
1667		return -EPERM;
1668	if (!host->ops->card_busy)
1669		pr_warn("%s: cannot verify signal voltage switch\n",
1670			mmc_hostname(host));
1671
1672	cmd.opcode = SD_SWITCH_VOLTAGE;
1673	cmd.arg = 0;
1674	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1675
1676	err = mmc_wait_for_cmd(host, &cmd, 0);
1677	if (err)
1678		return err;
1679
1680	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1681		return -EIO;
1682
1683	/*
1684	 * The card should drive cmd and dat[0:3] low immediately
1685	 * after the response of cmd11, but wait 1 ms to be sure
1686	 */
1687	mmc_delay(1);
1688	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1689		err = -EAGAIN;
1690		goto power_cycle;
1691	}
1692	/*
1693	 * During a signal voltage level switch, the clock must be gated
1694	 * for 5 ms according to the SD spec
1695	 */
1696	clock = host->ios.clock;
1697	host->ios.clock = 0;
1698	mmc_set_ios(host);
1699
1700	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1701		/*
1702		 * Voltages may not have been switched, but we've already
1703		 * sent CMD11, so a power cycle is required anyway
1704		 */
1705		err = -EAGAIN;
1706		goto power_cycle;
1707	}
1708
1709	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1710	mmc_delay(10);
1711	host->ios.clock = clock;
1712	mmc_set_ios(host);
1713
1714	/* Wait for at least 1 ms according to spec */
1715	mmc_delay(1);
1716
1717	/*
1718	 * Failure to switch is indicated by the card holding
1719	 * dat[0:3] low
1720	 */
1721	if (host->ops->card_busy && host->ops->card_busy(host))
1722		err = -EAGAIN;
1723
1724power_cycle:
1725	if (err) {
1726		pr_debug("%s: Signal voltage switch failed, "
1727			"power cycling card\n", mmc_hostname(host));
1728		mmc_power_cycle(host, ocr);
1729	}
1730
1731	return err;
1732}
1733
1734/*
1735 * Select timing parameters for host.
1736 */
1737void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1738{
1739	host->ios.timing = timing;
1740	mmc_set_ios(host);
1741}
1742
1743/*
1744 * Select appropriate driver type for host.
1745 */
1746void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1747{
1748	host->ios.drv_type = drv_type;
1749	mmc_set_ios(host);
1750}
1751
1752int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1753			      int card_drv_type, int *drv_type)
1754{
1755	struct mmc_host *host = card->host;
1756	int host_drv_type = SD_DRIVER_TYPE_B;
1757
1758	*drv_type = 0;
1759
1760	if (!host->ops->select_drive_strength)
1761		return 0;
1762
1763	/* Use SD definition of driver strength for hosts */
1764	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1765		host_drv_type |= SD_DRIVER_TYPE_A;
1766
1767	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1768		host_drv_type |= SD_DRIVER_TYPE_C;
1769
1770	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1771		host_drv_type |= SD_DRIVER_TYPE_D;
1772
1773	/*
1774	 * The drive strength that the hardware can support
1775	 * depends on the board design.  Pass the appropriate
1776	 * information and let the hardware specific code
1777	 * return what is possible given the options
1778	 */
1779	return host->ops->select_drive_strength(card, max_dtr,
1780						host_drv_type,
1781						card_drv_type,
1782						drv_type);
1783}
1784
1785/*
1786 * Apply power to the MMC stack.  This is a two-stage process.
1787 * First, we enable power to the card without the clock running.
1788 * We then wait a bit for the power to stabilise.  Finally,
1789 * enable the bus drivers and clock to the card.
1790 *
1791 * We must _NOT_ enable the clock prior to power stablising.
1792 *
1793 * If a host does all the power sequencing itself, ignore the
1794 * initial MMC_POWER_UP stage.
1795 */
1796void mmc_power_up(struct mmc_host *host, u32 ocr)
1797{
1798	if (host->ios.power_mode == MMC_POWER_ON)
1799		return;
1800
1801	mmc_pwrseq_pre_power_on(host);
1802
1803	host->ios.vdd = fls(ocr) - 1;
1804	host->ios.power_mode = MMC_POWER_UP;
1805	/* Set initial state and call mmc_set_ios */
1806	mmc_set_initial_state(host);
1807
1808	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1809	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1810		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1811	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1812		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1813	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1814		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1815
1816	/*
1817	 * This delay should be sufficient to allow the power supply
1818	 * to reach the minimum voltage.
1819	 */
1820	mmc_delay(10);
1821
1822	mmc_pwrseq_post_power_on(host);
1823
1824	host->ios.clock = host->f_init;
1825
1826	host->ios.power_mode = MMC_POWER_ON;
1827	mmc_set_ios(host);
1828
1829	/*
1830	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1831	 * time required to reach a stable voltage.
1832	 */
1833	mmc_delay(10);
1834}
1835
1836void mmc_power_off(struct mmc_host *host)
1837{
1838	if (host->ios.power_mode == MMC_POWER_OFF)
1839		return;
1840
1841	mmc_pwrseq_power_off(host);
1842
1843	host->ios.clock = 0;
1844	host->ios.vdd = 0;
1845
1846	host->ios.power_mode = MMC_POWER_OFF;
1847	/* Set initial state and call mmc_set_ios */
1848	mmc_set_initial_state(host);
1849
1850	/*
1851	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1852	 * XO-1.5, require a short delay after poweroff before the card
1853	 * can be successfully turned on again.
1854	 */
1855	mmc_delay(1);
1856}
1857
1858void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1859{
1860	mmc_power_off(host);
1861	/* Wait at least 1 ms according to SD spec */
1862	mmc_delay(1);
1863	mmc_power_up(host, ocr);
1864}
1865
1866/*
1867 * Cleanup when the last reference to the bus operator is dropped.
1868 */
1869static void __mmc_release_bus(struct mmc_host *host)
1870{
1871	WARN_ON(!host->bus_dead);
1872
1873	host->bus_ops = NULL;
1874}
1875
1876/*
1877 * Increase reference count of bus operator
1878 */
1879static inline void mmc_bus_get(struct mmc_host *host)
1880{
1881	unsigned long flags;
1882
1883	spin_lock_irqsave(&host->lock, flags);
1884	host->bus_refs++;
1885	spin_unlock_irqrestore(&host->lock, flags);
1886}
1887
1888/*
1889 * Decrease reference count of bus operator and free it if
1890 * it is the last reference.
1891 */
1892static inline void mmc_bus_put(struct mmc_host *host)
1893{
1894	unsigned long flags;
1895
1896	spin_lock_irqsave(&host->lock, flags);
1897	host->bus_refs--;
1898	if ((host->bus_refs == 0) && host->bus_ops)
1899		__mmc_release_bus(host);
1900	spin_unlock_irqrestore(&host->lock, flags);
1901}
1902
1903/*
1904 * Assign a mmc bus handler to a host. Only one bus handler may control a
1905 * host at any given time.
1906 */
1907void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1908{
1909	unsigned long flags;
1910
1911	WARN_ON(!host->claimed);
1912
1913	spin_lock_irqsave(&host->lock, flags);
1914
1915	WARN_ON(host->bus_ops);
1916	WARN_ON(host->bus_refs);
1917
1918	host->bus_ops = ops;
1919	host->bus_refs = 1;
1920	host->bus_dead = 0;
1921
1922	spin_unlock_irqrestore(&host->lock, flags);
1923}
1924
1925/*
1926 * Remove the current bus handler from a host.
1927 */
1928void mmc_detach_bus(struct mmc_host *host)
1929{
1930	unsigned long flags;
1931
1932	WARN_ON(!host->claimed);
1933	WARN_ON(!host->bus_ops);
1934
1935	spin_lock_irqsave(&host->lock, flags);
1936
1937	host->bus_dead = 1;
1938
1939	spin_unlock_irqrestore(&host->lock, flags);
1940
1941	mmc_bus_put(host);
1942}
1943
1944static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1945				bool cd_irq)
1946{
1947#ifdef CONFIG_MMC_DEBUG
1948	unsigned long flags;
1949	spin_lock_irqsave(&host->lock, flags);
1950	WARN_ON(host->removed);
1951	spin_unlock_irqrestore(&host->lock, flags);
1952#endif
1953
1954	/*
1955	 * If the device is configured as wakeup, we prevent a new sleep for
1956	 * 5 s to give provision for user space to consume the event.
 
1957	 */
1958	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1959		device_can_wakeup(mmc_dev(host)))
1960		pm_wakeup_event(mmc_dev(host), 5000);
1961
1962	host->detect_change = 1;
1963	mmc_schedule_delayed_work(&host->detect, delay);
1964}
1965
1966/**
1967 *	mmc_detect_change - process change of state on a MMC socket
1968 *	@host: host which changed state.
1969 *	@delay: optional delay to wait before detection (jiffies)
1970 *
1971 *	MMC drivers should call this when they detect a card has been
1972 *	inserted or removed. The MMC layer will confirm that any
1973 *	present card is still functional, and initialize any newly
1974 *	inserted.
1975 */
1976void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1977{
1978	_mmc_detect_change(host, delay, true);
1979}
1980EXPORT_SYMBOL(mmc_detect_change);
1981
1982void mmc_init_erase(struct mmc_card *card)
1983{
1984	unsigned int sz;
1985
1986	if (is_power_of_2(card->erase_size))
1987		card->erase_shift = ffs(card->erase_size) - 1;
1988	else
1989		card->erase_shift = 0;
1990
1991	/*
1992	 * It is possible to erase an arbitrarily large area of an SD or MMC
1993	 * card.  That is not desirable because it can take a long time
1994	 * (minutes) potentially delaying more important I/O, and also the
1995	 * timeout calculations become increasingly hugely over-estimated.
1996	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1997	 * to that size and alignment.
1998	 *
1999	 * For SD cards that define Allocation Unit size, limit erases to one
2000	 * Allocation Unit at a time.
2001	 * For MMC, have a stab at ai good value and for modern cards it will
2002	 * end up being 4MiB. Note that if the value is too small, it can end
2003	 * up taking longer to erase. Also note, erase_size is already set to
2004	 * High Capacity Erase Size if available when this function is called.
2005	 */
2006	if (mmc_card_sd(card) && card->ssr.au) {
2007		card->pref_erase = card->ssr.au;
2008		card->erase_shift = ffs(card->ssr.au) - 1;
2009	} else if (card->erase_size) {
2010		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2011		if (sz < 128)
2012			card->pref_erase = 512 * 1024 / 512;
2013		else if (sz < 512)
2014			card->pref_erase = 1024 * 1024 / 512;
2015		else if (sz < 1024)
2016			card->pref_erase = 2 * 1024 * 1024 / 512;
2017		else
2018			card->pref_erase = 4 * 1024 * 1024 / 512;
2019		if (card->pref_erase < card->erase_size)
2020			card->pref_erase = card->erase_size;
2021		else {
2022			sz = card->pref_erase % card->erase_size;
2023			if (sz)
2024				card->pref_erase += card->erase_size - sz;
2025		}
2026	} else
2027		card->pref_erase = 0;
2028}
2029
 
 
 
 
 
2030static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2031				          unsigned int arg, unsigned int qty)
2032{
2033	unsigned int erase_timeout;
2034
2035	if (arg == MMC_DISCARD_ARG ||
2036	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2037		erase_timeout = card->ext_csd.trim_timeout;
2038	} else if (card->ext_csd.erase_group_def & 1) {
2039		/* High Capacity Erase Group Size uses HC timeouts */
2040		if (arg == MMC_TRIM_ARG)
2041			erase_timeout = card->ext_csd.trim_timeout;
2042		else
2043			erase_timeout = card->ext_csd.hc_erase_timeout;
2044	} else {
2045		/* CSD Erase Group Size uses write timeout */
2046		unsigned int mult = (10 << card->csd.r2w_factor);
2047		unsigned int timeout_clks = card->csd.tacc_clks * mult;
2048		unsigned int timeout_us;
2049
2050		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2051		if (card->csd.tacc_ns < 1000000)
2052			timeout_us = (card->csd.tacc_ns * mult) / 1000;
2053		else
2054			timeout_us = (card->csd.tacc_ns / 1000) * mult;
2055
2056		/*
2057		 * ios.clock is only a target.  The real clock rate might be
2058		 * less but not that much less, so fudge it by multiplying by 2.
2059		 */
2060		timeout_clks <<= 1;
2061		timeout_us += (timeout_clks * 1000) /
2062			      (card->host->ios.clock / 1000);
2063
2064		erase_timeout = timeout_us / 1000;
2065
2066		/*
2067		 * Theoretically, the calculation could underflow so round up
2068		 * to 1ms in that case.
2069		 */
2070		if (!erase_timeout)
2071			erase_timeout = 1;
2072	}
2073
2074	/* Multiplier for secure operations */
2075	if (arg & MMC_SECURE_ARGS) {
2076		if (arg == MMC_SECURE_ERASE_ARG)
2077			erase_timeout *= card->ext_csd.sec_erase_mult;
2078		else
2079			erase_timeout *= card->ext_csd.sec_trim_mult;
2080	}
2081
2082	erase_timeout *= qty;
2083
2084	/*
2085	 * Ensure at least a 1 second timeout for SPI as per
2086	 * 'mmc_set_data_timeout()'
2087	 */
2088	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2089		erase_timeout = 1000;
2090
2091	return erase_timeout;
2092}
2093
2094static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2095					 unsigned int arg,
2096					 unsigned int qty)
2097{
2098	unsigned int erase_timeout;
2099
 
 
 
 
 
 
2100	if (card->ssr.erase_timeout) {
2101		/* Erase timeout specified in SD Status Register (SSR) */
2102		erase_timeout = card->ssr.erase_timeout * qty +
2103				card->ssr.erase_offset;
2104	} else {
2105		/*
2106		 * Erase timeout not specified in SD Status Register (SSR) so
2107		 * use 250ms per write block.
2108		 */
2109		erase_timeout = 250 * qty;
2110	}
2111
2112	/* Must not be less than 1 second */
2113	if (erase_timeout < 1000)
2114		erase_timeout = 1000;
2115
2116	return erase_timeout;
2117}
2118
2119static unsigned int mmc_erase_timeout(struct mmc_card *card,
2120				      unsigned int arg,
2121				      unsigned int qty)
2122{
2123	if (mmc_card_sd(card))
2124		return mmc_sd_erase_timeout(card, arg, qty);
2125	else
2126		return mmc_mmc_erase_timeout(card, arg, qty);
2127}
2128
2129static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2130			unsigned int to, unsigned int arg)
2131{
2132	struct mmc_command cmd = {0};
2133	unsigned int qty = 0, busy_timeout = 0;
2134	bool use_r1b_resp = false;
2135	unsigned long timeout;
2136	int err;
2137
2138	mmc_retune_hold(card->host);
2139
2140	/*
2141	 * qty is used to calculate the erase timeout which depends on how many
2142	 * erase groups (or allocation units in SD terminology) are affected.
2143	 * We count erasing part of an erase group as one erase group.
2144	 * For SD, the allocation units are always a power of 2.  For MMC, the
2145	 * erase group size is almost certainly also power of 2, but it does not
2146	 * seem to insist on that in the JEDEC standard, so we fall back to
2147	 * division in that case.  SD may not specify an allocation unit size,
2148	 * in which case the timeout is based on the number of write blocks.
2149	 *
2150	 * Note that the timeout for secure trim 2 will only be correct if the
2151	 * number of erase groups specified is the same as the total of all
2152	 * preceding secure trim 1 commands.  Since the power may have been
2153	 * lost since the secure trim 1 commands occurred, it is generally
2154	 * impossible to calculate the secure trim 2 timeout correctly.
2155	 */
2156	if (card->erase_shift)
2157		qty += ((to >> card->erase_shift) -
2158			(from >> card->erase_shift)) + 1;
2159	else if (mmc_card_sd(card))
2160		qty += to - from + 1;
2161	else
2162		qty += ((to / card->erase_size) -
2163			(from / card->erase_size)) + 1;
2164
2165	if (!mmc_card_blockaddr(card)) {
2166		from <<= 9;
2167		to <<= 9;
2168	}
2169
2170	if (mmc_card_sd(card))
2171		cmd.opcode = SD_ERASE_WR_BLK_START;
2172	else
2173		cmd.opcode = MMC_ERASE_GROUP_START;
2174	cmd.arg = from;
2175	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2176	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2177	if (err) {
2178		pr_err("mmc_erase: group start error %d, "
2179		       "status %#x\n", err, cmd.resp[0]);
2180		err = -EIO;
2181		goto out;
2182	}
2183
2184	memset(&cmd, 0, sizeof(struct mmc_command));
2185	if (mmc_card_sd(card))
2186		cmd.opcode = SD_ERASE_WR_BLK_END;
2187	else
2188		cmd.opcode = MMC_ERASE_GROUP_END;
2189	cmd.arg = to;
2190	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2191	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2192	if (err) {
2193		pr_err("mmc_erase: group end error %d, status %#x\n",
2194		       err, cmd.resp[0]);
2195		err = -EIO;
2196		goto out;
2197	}
2198
2199	memset(&cmd, 0, sizeof(struct mmc_command));
2200	cmd.opcode = MMC_ERASE;
2201	cmd.arg = arg;
2202	busy_timeout = mmc_erase_timeout(card, arg, qty);
2203	/*
2204	 * If the host controller supports busy signalling and the timeout for
2205	 * the erase operation does not exceed the max_busy_timeout, we should
2206	 * use R1B response. Or we need to prevent the host from doing hw busy
2207	 * detection, which is done by converting to a R1 response instead.
2208	 */
2209	if (card->host->max_busy_timeout &&
2210	    busy_timeout > card->host->max_busy_timeout) {
2211		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2212	} else {
2213		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2214		cmd.busy_timeout = busy_timeout;
2215		use_r1b_resp = true;
2216	}
2217
2218	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2219	if (err) {
2220		pr_err("mmc_erase: erase error %d, status %#x\n",
2221		       err, cmd.resp[0]);
2222		err = -EIO;
2223		goto out;
2224	}
2225
2226	if (mmc_host_is_spi(card->host))
2227		goto out;
2228
2229	/*
2230	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2231	 * shall be avoided.
2232	 */
2233	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2234		goto out;
2235
2236	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2237	do {
2238		memset(&cmd, 0, sizeof(struct mmc_command));
2239		cmd.opcode = MMC_SEND_STATUS;
2240		cmd.arg = card->rca << 16;
2241		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2242		/* Do not retry else we can't see errors */
2243		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2244		if (err || (cmd.resp[0] & 0xFDF92000)) {
2245			pr_err("error %d requesting status %#x\n",
2246				err, cmd.resp[0]);
2247			err = -EIO;
2248			goto out;
2249		}
2250
2251		/* Timeout if the device never becomes ready for data and
2252		 * never leaves the program state.
2253		 */
2254		if (time_after(jiffies, timeout)) {
2255			pr_err("%s: Card stuck in programming state! %s\n",
2256				mmc_hostname(card->host), __func__);
2257			err =  -EIO;
2258			goto out;
2259		}
2260
2261	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2262		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2263out:
2264	mmc_retune_release(card->host);
2265	return err;
2266}
2267
2268static unsigned int mmc_align_erase_size(struct mmc_card *card,
2269					 unsigned int *from,
2270					 unsigned int *to,
2271					 unsigned int nr)
2272{
2273	unsigned int from_new = *from, nr_new = nr, rem;
2274
2275	/*
2276	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2277	 * to align the erase size efficiently.
2278	 */
2279	if (is_power_of_2(card->erase_size)) {
2280		unsigned int temp = from_new;
2281
2282		from_new = round_up(temp, card->erase_size);
2283		rem = from_new - temp;
2284
2285		if (nr_new > rem)
2286			nr_new -= rem;
2287		else
2288			return 0;
2289
2290		nr_new = round_down(nr_new, card->erase_size);
2291	} else {
2292		rem = from_new % card->erase_size;
2293		if (rem) {
2294			rem = card->erase_size - rem;
2295			from_new += rem;
2296			if (nr_new > rem)
2297				nr_new -= rem;
2298			else
2299				return 0;
2300		}
2301
2302		rem = nr_new % card->erase_size;
2303		if (rem)
2304			nr_new -= rem;
2305	}
2306
2307	if (nr_new == 0)
2308		return 0;
2309
2310	*to = from_new + nr_new;
2311	*from = from_new;
2312
2313	return nr_new;
2314}
2315
2316/**
2317 * mmc_erase - erase sectors.
2318 * @card: card to erase
2319 * @from: first sector to erase
2320 * @nr: number of sectors to erase
2321 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2322 *
2323 * Caller must claim host before calling this function.
2324 */
2325int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2326	      unsigned int arg)
2327{
2328	unsigned int rem, to = from + nr;
2329	int err;
2330
2331	if (!(card->host->caps & MMC_CAP_ERASE) ||
2332	    !(card->csd.cmdclass & CCC_ERASE))
2333		return -EOPNOTSUPP;
2334
2335	if (!card->erase_size)
2336		return -EOPNOTSUPP;
2337
2338	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2339		return -EOPNOTSUPP;
2340
2341	if ((arg & MMC_SECURE_ARGS) &&
2342	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2343		return -EOPNOTSUPP;
2344
2345	if ((arg & MMC_TRIM_ARGS) &&
2346	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2347		return -EOPNOTSUPP;
2348
2349	if (arg == MMC_SECURE_ERASE_ARG) {
2350		if (from % card->erase_size || nr % card->erase_size)
2351			return -EINVAL;
2352	}
2353
2354	if (arg == MMC_ERASE_ARG)
2355		nr = mmc_align_erase_size(card, &from, &to, nr);
2356
2357	if (nr == 0)
2358		return 0;
2359
2360	if (to <= from)
2361		return -EINVAL;
2362
2363	/* 'from' and 'to' are inclusive */
2364	to -= 1;
2365
2366	/*
2367	 * Special case where only one erase-group fits in the timeout budget:
2368	 * If the region crosses an erase-group boundary on this particular
2369	 * case, we will be trimming more than one erase-group which, does not
2370	 * fit in the timeout budget of the controller, so we need to split it
2371	 * and call mmc_do_erase() twice if necessary. This special case is
2372	 * identified by the card->eg_boundary flag.
2373	 */
2374	rem = card->erase_size - (from % card->erase_size);
2375	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2376		err = mmc_do_erase(card, from, from + rem - 1, arg);
2377		from += rem;
2378		if ((err) || (to <= from))
2379			return err;
2380	}
2381
2382	return mmc_do_erase(card, from, to, arg);
2383}
2384EXPORT_SYMBOL(mmc_erase);
2385
2386int mmc_can_erase(struct mmc_card *card)
2387{
2388	if ((card->host->caps & MMC_CAP_ERASE) &&
2389	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2390		return 1;
2391	return 0;
2392}
2393EXPORT_SYMBOL(mmc_can_erase);
2394
2395int mmc_can_trim(struct mmc_card *card)
2396{
2397	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2398	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2399		return 1;
2400	return 0;
2401}
2402EXPORT_SYMBOL(mmc_can_trim);
2403
2404int mmc_can_discard(struct mmc_card *card)
2405{
2406	/*
2407	 * As there's no way to detect the discard support bit at v4.5
2408	 * use the s/w feature support filed.
2409	 */
2410	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2411		return 1;
2412	return 0;
2413}
2414EXPORT_SYMBOL(mmc_can_discard);
2415
2416int mmc_can_sanitize(struct mmc_card *card)
2417{
2418	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2419		return 0;
2420	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2421		return 1;
2422	return 0;
2423}
2424EXPORT_SYMBOL(mmc_can_sanitize);
2425
2426int mmc_can_secure_erase_trim(struct mmc_card *card)
2427{
2428	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2429	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2430		return 1;
2431	return 0;
2432}
2433EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2434
2435int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2436			    unsigned int nr)
2437{
2438	if (!card->erase_size)
2439		return 0;
2440	if (from % card->erase_size || nr % card->erase_size)
2441		return 0;
2442	return 1;
2443}
2444EXPORT_SYMBOL(mmc_erase_group_aligned);
2445
2446static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2447					    unsigned int arg)
2448{
2449	struct mmc_host *host = card->host;
2450	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2451	unsigned int last_timeout = 0;
2452	unsigned int max_busy_timeout = host->max_busy_timeout ?
2453			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2454
2455	if (card->erase_shift) {
2456		max_qty = UINT_MAX >> card->erase_shift;
2457		min_qty = card->pref_erase >> card->erase_shift;
2458	} else if (mmc_card_sd(card)) {
2459		max_qty = UINT_MAX;
2460		min_qty = card->pref_erase;
2461	} else {
2462		max_qty = UINT_MAX / card->erase_size;
2463		min_qty = card->pref_erase / card->erase_size;
2464	}
2465
2466	/*
2467	 * We should not only use 'host->max_busy_timeout' as the limitation
2468	 * when deciding the max discard sectors. We should set a balance value
2469	 * to improve the erase speed, and it can not get too long timeout at
2470	 * the same time.
2471	 *
2472	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2473	 * matter what size of 'host->max_busy_timeout', but if the
2474	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2475	 * then we can continue to increase the max discard sectors until we
2476	 * get a balance value. In cases when the 'host->max_busy_timeout'
2477	 * isn't specified, use the default max erase timeout.
2478	 */
2479	do {
2480		y = 0;
2481		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2482			timeout = mmc_erase_timeout(card, arg, qty + x);
2483
2484			if (qty + x > min_qty && timeout > max_busy_timeout)
2485				break;
2486
2487			if (timeout < last_timeout)
2488				break;
2489			last_timeout = timeout;
2490			y = x;
2491		}
2492		qty += y;
2493	} while (y);
2494
2495	if (!qty)
2496		return 0;
2497
2498	/*
2499	 * When specifying a sector range to trim, chances are we might cross
2500	 * an erase-group boundary even if the amount of sectors is less than
2501	 * one erase-group.
2502	 * If we can only fit one erase-group in the controller timeout budget,
2503	 * we have to care that erase-group boundaries are not crossed by a
2504	 * single trim operation. We flag that special case with "eg_boundary".
2505	 * In all other cases we can just decrement qty and pretend that we
2506	 * always touch (qty + 1) erase-groups as a simple optimization.
2507	 */
2508	if (qty == 1)
2509		card->eg_boundary = 1;
2510	else
2511		qty--;
2512
2513	/* Convert qty to sectors */
2514	if (card->erase_shift)
2515		max_discard = qty << card->erase_shift;
2516	else if (mmc_card_sd(card))
2517		max_discard = qty + 1;
2518	else
2519		max_discard = qty * card->erase_size;
2520
2521	return max_discard;
2522}
2523
2524unsigned int mmc_calc_max_discard(struct mmc_card *card)
2525{
2526	struct mmc_host *host = card->host;
2527	unsigned int max_discard, max_trim;
2528
2529	/*
2530	 * Without erase_group_def set, MMC erase timeout depends on clock
2531	 * frequence which can change.  In that case, the best choice is
2532	 * just the preferred erase size.
2533	 */
2534	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2535		return card->pref_erase;
2536
2537	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2538	if (mmc_can_trim(card)) {
2539		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2540		if (max_trim < max_discard)
2541			max_discard = max_trim;
2542	} else if (max_discard < card->erase_size) {
2543		max_discard = 0;
2544	}
2545	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2546		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2547		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2548	return max_discard;
2549}
2550EXPORT_SYMBOL(mmc_calc_max_discard);
2551
 
 
 
 
 
 
2552int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2553{
2554	struct mmc_command cmd = {0};
2555
2556	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2557	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2558		return 0;
2559
2560	cmd.opcode = MMC_SET_BLOCKLEN;
2561	cmd.arg = blocklen;
2562	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2563	return mmc_wait_for_cmd(card->host, &cmd, 5);
2564}
2565EXPORT_SYMBOL(mmc_set_blocklen);
2566
2567int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2568			bool is_rel_write)
2569{
2570	struct mmc_command cmd = {0};
2571
2572	cmd.opcode = MMC_SET_BLOCK_COUNT;
2573	cmd.arg = blockcount & 0x0000FFFF;
2574	if (is_rel_write)
2575		cmd.arg |= 1 << 31;
2576	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2577	return mmc_wait_for_cmd(card->host, &cmd, 5);
2578}
2579EXPORT_SYMBOL(mmc_set_blockcount);
2580
2581static void mmc_hw_reset_for_init(struct mmc_host *host)
 
 
 
 
 
 
 
 
 
 
2582{
2583	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2584		return;
2585	host->ops->hw_reset(host);
 
 
 
 
 
 
2586}
 
2587
2588int mmc_hw_reset(struct mmc_host *host)
2589{
 
2590	int ret;
2591
2592	if (!host->card)
2593		return -EINVAL;
2594
2595	mmc_bus_get(host);
2596	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2597		mmc_bus_put(host);
2598		return -EOPNOTSUPP;
2599	}
2600
2601	ret = host->bus_ops->reset(host);
2602	mmc_bus_put(host);
2603
 
2604	if (ret)
2605		pr_warn("%s: tried to reset card, got error %d\n",
2606			mmc_hostname(host), ret);
2607
2608	return ret;
2609}
2610EXPORT_SYMBOL(mmc_hw_reset);
2611
2612static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2613{
2614	host->f_init = freq;
2615
2616#ifdef CONFIG_MMC_DEBUG
2617	pr_info("%s: %s: trying to init card at %u Hz\n",
2618		mmc_hostname(host), __func__, host->f_init);
2619#endif
2620	mmc_power_up(host, host->ocr_avail);
2621
2622	/*
2623	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2624	 * do a hardware reset if possible.
2625	 */
2626	mmc_hw_reset_for_init(host);
2627
2628	/*
2629	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2630	 * if the card is being re-initialized, just send it.  CMD52
2631	 * should be ignored by SD/eMMC cards.
2632	 * Skip it if we already know that we do not support SDIO commands
2633	 */
2634	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2635		sdio_reset(host);
2636
2637	mmc_go_idle(host);
2638
2639	if (!(host->caps2 & MMC_CAP2_NO_SD))
2640		mmc_send_if_cond(host, host->ocr_avail);
 
 
 
 
2641
2642	/* Order's important: probe SDIO, then SD, then MMC */
2643	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2644		if (!mmc_attach_sdio(host))
2645			return 0;
2646
2647	if (!(host->caps2 & MMC_CAP2_NO_SD))
2648		if (!mmc_attach_sd(host))
2649			return 0;
2650
2651	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2652		if (!mmc_attach_mmc(host))
2653			return 0;
2654
 
2655	mmc_power_off(host);
2656	return -EIO;
2657}
2658
2659int _mmc_detect_card_removed(struct mmc_host *host)
2660{
2661	int ret;
2662
2663	if (!host->card || mmc_card_removed(host->card))
2664		return 1;
2665
2666	ret = host->bus_ops->alive(host);
2667
2668	/*
2669	 * Card detect status and alive check may be out of sync if card is
2670	 * removed slowly, when card detect switch changes while card/slot
2671	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2672	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2673	 * detect work 200ms later for this case.
2674	 */
2675	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2676		mmc_detect_change(host, msecs_to_jiffies(200));
2677		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2678	}
2679
2680	if (ret) {
2681		mmc_card_set_removed(host->card);
2682		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2683	}
2684
2685	return ret;
2686}
2687
2688int mmc_detect_card_removed(struct mmc_host *host)
2689{
2690	struct mmc_card *card = host->card;
2691	int ret;
2692
2693	WARN_ON(!host->claimed);
2694
2695	if (!card)
2696		return 1;
2697
2698	if (!mmc_card_is_removable(host))
2699		return 0;
2700
2701	ret = mmc_card_removed(card);
2702	/*
2703	 * The card will be considered unchanged unless we have been asked to
2704	 * detect a change or host requires polling to provide card detection.
2705	 */
2706	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2707		return ret;
2708
2709	host->detect_change = 0;
2710	if (!ret) {
2711		ret = _mmc_detect_card_removed(host);
2712		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2713			/*
2714			 * Schedule a detect work as soon as possible to let a
2715			 * rescan handle the card removal.
2716			 */
2717			cancel_delayed_work(&host->detect);
2718			_mmc_detect_change(host, 0, false);
2719		}
2720	}
2721
2722	return ret;
2723}
2724EXPORT_SYMBOL(mmc_detect_card_removed);
2725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2726void mmc_rescan(struct work_struct *work)
2727{
2728	struct mmc_host *host =
2729		container_of(work, struct mmc_host, detect.work);
2730	int i;
2731
2732	if (host->rescan_disable)
2733		return;
2734
2735	/* If there is a non-removable card registered, only scan once */
2736	if (!mmc_card_is_removable(host) && host->rescan_entered)
2737		return;
2738	host->rescan_entered = 1;
2739
2740	if (host->trigger_card_event && host->ops->card_event) {
2741		mmc_claim_host(host);
2742		host->ops->card_event(host);
2743		mmc_release_host(host);
2744		host->trigger_card_event = false;
2745	}
2746
2747	mmc_bus_get(host);
2748
2749	/*
2750	 * if there is a _removable_ card registered, check whether it is
2751	 * still present
2752	 */
2753	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2754		host->bus_ops->detect(host);
2755
2756	host->detect_change = 0;
2757
2758	/*
2759	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2760	 * the card is no longer present.
2761	 */
2762	mmc_bus_put(host);
2763	mmc_bus_get(host);
2764
2765	/* if there still is a card present, stop here */
2766	if (host->bus_ops != NULL) {
2767		mmc_bus_put(host);
2768		goto out;
2769	}
2770
2771	/*
2772	 * Only we can add a new handler, so it's safe to
2773	 * release the lock here.
2774	 */
2775	mmc_bus_put(host);
2776
2777	mmc_claim_host(host);
2778	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2779			host->ops->get_cd(host) == 0) {
2780		mmc_power_off(host);
2781		mmc_release_host(host);
2782		goto out;
2783	}
2784
 
 
 
 
 
 
2785	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2786		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
 
 
 
 
 
 
2787			break;
2788		if (freqs[i] <= host->f_min)
2789			break;
2790	}
 
 
 
 
 
 
2791	mmc_release_host(host);
2792
2793 out:
2794	if (host->caps & MMC_CAP_NEEDS_POLL)
2795		mmc_schedule_delayed_work(&host->detect, HZ);
2796}
2797
2798void mmc_start_host(struct mmc_host *host)
2799{
2800	host->f_init = max(freqs[0], host->f_min);
2801	host->rescan_disable = 0;
2802	host->ios.power_mode = MMC_POWER_UNDEFINED;
2803
2804	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2805		mmc_claim_host(host);
2806		mmc_power_up(host, host->ocr_avail);
2807		mmc_release_host(host);
2808	}
2809
2810	mmc_gpiod_request_cd_irq(host);
2811	_mmc_detect_change(host, 0, false);
2812}
2813
2814void mmc_stop_host(struct mmc_host *host)
2815{
2816#ifdef CONFIG_MMC_DEBUG
2817	unsigned long flags;
2818	spin_lock_irqsave(&host->lock, flags);
2819	host->removed = 1;
2820	spin_unlock_irqrestore(&host->lock, flags);
2821#endif
2822	if (host->slot.cd_irq >= 0)
2823		disable_irq(host->slot.cd_irq);
 
2824
2825	host->rescan_disable = 1;
2826	cancel_delayed_work_sync(&host->detect);
 
 
 
 
 
2827
2828	/* clear pm flags now and let card drivers set them as needed */
2829	host->pm_flags = 0;
2830
2831	mmc_bus_get(host);
2832	if (host->bus_ops && !host->bus_dead) {
2833		/* Calling bus_ops->remove() with a claimed host can deadlock */
2834		host->bus_ops->remove(host);
2835		mmc_claim_host(host);
2836		mmc_detach_bus(host);
2837		mmc_power_off(host);
2838		mmc_release_host(host);
2839		mmc_bus_put(host);
2840		return;
2841	}
2842	mmc_bus_put(host);
2843
2844	mmc_claim_host(host);
2845	mmc_power_off(host);
2846	mmc_release_host(host);
2847}
2848
2849int mmc_power_save_host(struct mmc_host *host)
2850{
2851	int ret = 0;
2852
2853#ifdef CONFIG_MMC_DEBUG
2854	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2855#endif
2856
2857	mmc_bus_get(host);
2858
2859	if (!host->bus_ops || host->bus_dead) {
2860		mmc_bus_put(host);
2861		return -EINVAL;
2862	}
2863
2864	if (host->bus_ops->power_save)
2865		ret = host->bus_ops->power_save(host);
2866
2867	mmc_bus_put(host);
2868
2869	mmc_power_off(host);
2870
2871	return ret;
2872}
2873EXPORT_SYMBOL(mmc_power_save_host);
2874
2875int mmc_power_restore_host(struct mmc_host *host)
2876{
2877	int ret;
2878
2879#ifdef CONFIG_MMC_DEBUG
2880	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2881#endif
2882
2883	mmc_bus_get(host);
2884
2885	if (!host->bus_ops || host->bus_dead) {
2886		mmc_bus_put(host);
2887		return -EINVAL;
2888	}
2889
2890	mmc_power_up(host, host->card->ocr);
2891	ret = host->bus_ops->power_restore(host);
2892
2893	mmc_bus_put(host);
2894
2895	return ret;
2896}
2897EXPORT_SYMBOL(mmc_power_restore_host);
2898
2899/*
2900 * Flush the cache to the non-volatile storage.
2901 */
2902int mmc_flush_cache(struct mmc_card *card)
2903{
2904	int err = 0;
2905
2906	if (mmc_card_mmc(card) &&
2907			(card->ext_csd.cache_size > 0) &&
2908			(card->ext_csd.cache_ctrl & 1)) {
2909		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2910				EXT_CSD_FLUSH_CACHE, 1, 0);
2911		if (err)
2912			pr_err("%s: cache flush error %d\n",
2913					mmc_hostname(card->host), err);
2914	}
2915
2916	return err;
2917}
2918EXPORT_SYMBOL(mmc_flush_cache);
2919
2920#ifdef CONFIG_PM_SLEEP
2921/* Do the card removal on suspend if card is assumed removeable
2922 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2923   to sync the card.
2924*/
2925static int mmc_pm_notify(struct notifier_block *notify_block,
2926			unsigned long mode, void *unused)
2927{
2928	struct mmc_host *host = container_of(
2929		notify_block, struct mmc_host, pm_notify);
2930	unsigned long flags;
2931	int err = 0;
2932
2933	switch (mode) {
2934	case PM_HIBERNATION_PREPARE:
2935	case PM_SUSPEND_PREPARE:
2936	case PM_RESTORE_PREPARE:
2937		spin_lock_irqsave(&host->lock, flags);
2938		host->rescan_disable = 1;
2939		spin_unlock_irqrestore(&host->lock, flags);
2940		cancel_delayed_work_sync(&host->detect);
2941
2942		if (!host->bus_ops)
2943			break;
2944
2945		/* Validate prerequisites for suspend */
2946		if (host->bus_ops->pre_suspend)
2947			err = host->bus_ops->pre_suspend(host);
2948		if (!err)
2949			break;
2950
2951		/* Calling bus_ops->remove() with a claimed host can deadlock */
2952		host->bus_ops->remove(host);
2953		mmc_claim_host(host);
2954		mmc_detach_bus(host);
2955		mmc_power_off(host);
2956		mmc_release_host(host);
2957		host->pm_flags = 0;
2958		break;
2959
2960	case PM_POST_SUSPEND:
2961	case PM_POST_HIBERNATION:
2962	case PM_POST_RESTORE:
2963
2964		spin_lock_irqsave(&host->lock, flags);
2965		host->rescan_disable = 0;
2966		spin_unlock_irqrestore(&host->lock, flags);
2967		_mmc_detect_change(host, 0, false);
2968
2969	}
2970
2971	return 0;
2972}
2973
2974void mmc_register_pm_notifier(struct mmc_host *host)
2975{
2976	host->pm_notify.notifier_call = mmc_pm_notify;
2977	register_pm_notifier(&host->pm_notify);
2978}
2979
2980void mmc_unregister_pm_notifier(struct mmc_host *host)
2981{
2982	unregister_pm_notifier(&host->pm_notify);
2983}
2984#endif
2985
2986/**
2987 * mmc_init_context_info() - init synchronization context
2988 * @host: mmc host
2989 *
2990 * Init struct context_info needed to implement asynchronous
2991 * request mechanism, used by mmc core, host driver and mmc requests
2992 * supplier.
2993 */
2994void mmc_init_context_info(struct mmc_host *host)
2995{
2996	host->context_info.is_new_req = false;
2997	host->context_info.is_done_rcv = false;
2998	host->context_info.is_waiting_last_req = false;
2999	init_waitqueue_head(&host->context_info.wait);
3000}
3001
3002static int __init mmc_init(void)
3003{
3004	int ret;
3005
3006	ret = mmc_register_bus();
3007	if (ret)
3008		return ret;
3009
3010	ret = mmc_register_host_class();
3011	if (ret)
3012		goto unregister_bus;
3013
3014	ret = sdio_register_bus();
3015	if (ret)
3016		goto unregister_host_class;
3017
3018	return 0;
3019
3020unregister_host_class:
3021	mmc_unregister_host_class();
3022unregister_bus:
3023	mmc_unregister_bus();
3024	return ret;
3025}
3026
3027static void __exit mmc_exit(void)
3028{
3029	sdio_unregister_bus();
3030	mmc_unregister_host_class();
3031	mmc_unregister_bus();
3032}
3033
3034subsys_initcall(mmc_init);
3035module_exit(mmc_exit);
3036
3037MODULE_LICENSE("GPL");