Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262}
263
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266{
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296}
297
298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299{
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333}
334
335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336{
337 int err;
338
339 init_completion(&mrq->cmd_completion);
340
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
346 mmc_mrq_pr_debug(host, mrq, false);
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
356
357 return 0;
358}
359EXPORT_SYMBOL(mmc_start_request);
360
361static void mmc_wait_done(struct mmc_request *mrq)
362{
363 complete(&mrq->completion);
364}
365
366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367{
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376}
377
378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379{
380 int err;
381
382 mmc_wait_ongoing_tfr_cmd(host);
383
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
392 }
393
394 return err;
395}
396
397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398{
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
405
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
408 break;
409
410 mmc_retune_recheck(host);
411
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 __mmc_start_request(host, mrq);
417 }
418
419 mmc_retune_release(host);
420}
421EXPORT_SYMBOL(mmc_wait_for_req_done);
422
423/*
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
427 *
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
430 */
431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432{
433 int err;
434
435 /*
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
440 */
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
444
445 mrq->host = host;
446
447 mmc_mrq_pr_debug(host, mrq, true);
448
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
452
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
456
457 trace_mmc_request_start(host, mrq);
458
459 return 0;
460
461out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
468 }
469 return err;
470}
471EXPORT_SYMBOL(mmc_cqe_start_req);
472
473/**
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
477 *
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
480 */
481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482{
483 mmc_should_fail_request(host, mrq);
484
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
489
490 trace_mmc_request_done(host, mrq);
491
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
498 }
499
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
504 }
505
506 mrq->done(mrq);
507}
508EXPORT_SYMBOL(mmc_cqe_request_done);
509
510/**
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
514 */
515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516{
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
519}
520EXPORT_SYMBOL(mmc_cqe_post_req);
521
522/* Arbitrary 1 second timeout */
523#define MMC_CQE_RECOVERY_TIMEOUT 1000
524
525/*
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
528 *
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
533 */
534int mmc_cqe_recovery(struct mmc_host *host)
535{
536 struct mmc_command cmd;
537 int err;
538
539 mmc_retune_hold_now(host);
540
541 /*
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
544 */
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546
547 host->cqe_ops->cqe_recovery_start(host);
548
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION;
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
554 mmc_wait_for_cmd(host, &cmd, 0);
555
556 memset(&cmd, 0, sizeof(cmd));
557 cmd.opcode = MMC_CMDQ_TASK_MGMT;
558 cmd.arg = 1; /* Discard entire queue */
559 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
560 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
561 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
562 err = mmc_wait_for_cmd(host, &cmd, 0);
563
564 host->cqe_ops->cqe_recovery_finish(host);
565
566 mmc_retune_release(host);
567
568 return err;
569}
570EXPORT_SYMBOL(mmc_cqe_recovery);
571
572/**
573 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
574 * @host: MMC host
575 * @mrq: MMC request
576 *
577 * mmc_is_req_done() is used with requests that have
578 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579 * starting a request and before waiting for it to complete. That is,
580 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581 * and before mmc_wait_for_req_done(). If it is called at other times the
582 * result is not meaningful.
583 */
584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
585{
586 return completion_done(&mrq->completion);
587}
588EXPORT_SYMBOL(mmc_is_req_done);
589
590/**
591 * mmc_wait_for_req - start a request and wait for completion
592 * @host: MMC host to start command
593 * @mrq: MMC request to start
594 *
595 * Start a new MMC custom command request for a host, and wait
596 * for the command to complete. In the case of 'cap_cmd_during_tfr'
597 * requests, the transfer is ongoing and the caller can issue further
598 * commands that do not use the data lines, and then wait by calling
599 * mmc_wait_for_req_done().
600 * Does not attempt to parse the response.
601 */
602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
603{
604 __mmc_start_req(host, mrq);
605
606 if (!mrq->cap_cmd_during_tfr)
607 mmc_wait_for_req_done(host, mrq);
608}
609EXPORT_SYMBOL(mmc_wait_for_req);
610
611/**
612 * mmc_wait_for_cmd - start a command and wait for completion
613 * @host: MMC host to start command
614 * @cmd: MMC command to start
615 * @retries: maximum number of retries
616 *
617 * Start a new MMC command for a host, and wait for the command
618 * to complete. Return any error that occurred while the command
619 * was executing. Do not attempt to parse the response.
620 */
621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
622{
623 struct mmc_request mrq = {};
624
625 WARN_ON(!host->claimed);
626
627 memset(cmd->resp, 0, sizeof(cmd->resp));
628 cmd->retries = retries;
629
630 mrq.cmd = cmd;
631 cmd->data = NULL;
632
633 mmc_wait_for_req(host, &mrq);
634
635 return cmd->error;
636}
637
638EXPORT_SYMBOL(mmc_wait_for_cmd);
639
640/**
641 * mmc_set_data_timeout - set the timeout for a data command
642 * @data: data phase for command
643 * @card: the MMC card associated with the data transfer
644 *
645 * Computes the data timeout parameters according to the
646 * correct algorithm given the card type.
647 */
648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
649{
650 unsigned int mult;
651
652 /*
653 * SDIO cards only define an upper 1 s limit on access.
654 */
655 if (mmc_card_sdio(card)) {
656 data->timeout_ns = 1000000000;
657 data->timeout_clks = 0;
658 return;
659 }
660
661 /*
662 * SD cards use a 100 multiplier rather than 10
663 */
664 mult = mmc_card_sd(card) ? 100 : 10;
665
666 /*
667 * Scale up the multiplier (and therefore the timeout) by
668 * the r2w factor for writes.
669 */
670 if (data->flags & MMC_DATA_WRITE)
671 mult <<= card->csd.r2w_factor;
672
673 data->timeout_ns = card->csd.taac_ns * mult;
674 data->timeout_clks = card->csd.taac_clks * mult;
675
676 /*
677 * SD cards also have an upper limit on the timeout.
678 */
679 if (mmc_card_sd(card)) {
680 unsigned int timeout_us, limit_us;
681
682 timeout_us = data->timeout_ns / 1000;
683 if (card->host->ios.clock)
684 timeout_us += data->timeout_clks * 1000 /
685 (card->host->ios.clock / 1000);
686
687 if (data->flags & MMC_DATA_WRITE)
688 /*
689 * The MMC spec "It is strongly recommended
690 * for hosts to implement more than 500ms
691 * timeout value even if the card indicates
692 * the 250ms maximum busy length." Even the
693 * previous value of 300ms is known to be
694 * insufficient for some cards.
695 */
696 limit_us = 3000000;
697 else
698 limit_us = 100000;
699
700 /*
701 * SDHC cards always use these fixed values.
702 */
703 if (timeout_us > limit_us) {
704 data->timeout_ns = limit_us * 1000;
705 data->timeout_clks = 0;
706 }
707
708 /* assign limit value if invalid */
709 if (timeout_us == 0)
710 data->timeout_ns = limit_us * 1000;
711 }
712
713 /*
714 * Some cards require longer data read timeout than indicated in CSD.
715 * Address this by setting the read timeout to a "reasonably high"
716 * value. For the cards tested, 600ms has proven enough. If necessary,
717 * this value can be increased if other problematic cards require this.
718 */
719 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
720 data->timeout_ns = 600000000;
721 data->timeout_clks = 0;
722 }
723
724 /*
725 * Some cards need very high timeouts if driven in SPI mode.
726 * The worst observed timeout was 900ms after writing a
727 * continuous stream of data until the internal logic
728 * overflowed.
729 */
730 if (mmc_host_is_spi(card->host)) {
731 if (data->flags & MMC_DATA_WRITE) {
732 if (data->timeout_ns < 1000000000)
733 data->timeout_ns = 1000000000; /* 1s */
734 } else {
735 if (data->timeout_ns < 100000000)
736 data->timeout_ns = 100000000; /* 100ms */
737 }
738 }
739}
740EXPORT_SYMBOL(mmc_set_data_timeout);
741
742/*
743 * Allow claiming an already claimed host if the context is the same or there is
744 * no context but the task is the same.
745 */
746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
747 struct task_struct *task)
748{
749 return host->claimer == ctx ||
750 (!ctx && task && host->claimer->task == task);
751}
752
753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
754 struct mmc_ctx *ctx,
755 struct task_struct *task)
756{
757 if (!host->claimer) {
758 if (ctx)
759 host->claimer = ctx;
760 else
761 host->claimer = &host->default_ctx;
762 }
763 if (task)
764 host->claimer->task = task;
765}
766
767/**
768 * __mmc_claim_host - exclusively claim a host
769 * @host: mmc host to claim
770 * @ctx: context that claims the host or NULL in which case the default
771 * context will be used
772 * @abort: whether or not the operation should be aborted
773 *
774 * Claim a host for a set of operations. If @abort is non null and
775 * dereference a non-zero value then this will return prematurely with
776 * that non-zero value without acquiring the lock. Returns zero
777 * with the lock held otherwise.
778 */
779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
780 atomic_t *abort)
781{
782 struct task_struct *task = ctx ? NULL : current;
783 DECLARE_WAITQUEUE(wait, current);
784 unsigned long flags;
785 int stop;
786 bool pm = false;
787
788 might_sleep();
789
790 add_wait_queue(&host->wq, &wait);
791 spin_lock_irqsave(&host->lock, flags);
792 while (1) {
793 set_current_state(TASK_UNINTERRUPTIBLE);
794 stop = abort ? atomic_read(abort) : 0;
795 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
796 break;
797 spin_unlock_irqrestore(&host->lock, flags);
798 schedule();
799 spin_lock_irqsave(&host->lock, flags);
800 }
801 set_current_state(TASK_RUNNING);
802 if (!stop) {
803 host->claimed = 1;
804 mmc_ctx_set_claimer(host, ctx, task);
805 host->claim_cnt += 1;
806 if (host->claim_cnt == 1)
807 pm = true;
808 } else
809 wake_up(&host->wq);
810 spin_unlock_irqrestore(&host->lock, flags);
811 remove_wait_queue(&host->wq, &wait);
812
813 if (pm)
814 pm_runtime_get_sync(mmc_dev(host));
815
816 return stop;
817}
818EXPORT_SYMBOL(__mmc_claim_host);
819
820/**
821 * mmc_release_host - release a host
822 * @host: mmc host to release
823 *
824 * Release a MMC host, allowing others to claim the host
825 * for their operations.
826 */
827void mmc_release_host(struct mmc_host *host)
828{
829 unsigned long flags;
830
831 WARN_ON(!host->claimed);
832
833 spin_lock_irqsave(&host->lock, flags);
834 if (--host->claim_cnt) {
835 /* Release for nested claim */
836 spin_unlock_irqrestore(&host->lock, flags);
837 } else {
838 host->claimed = 0;
839 host->claimer->task = NULL;
840 host->claimer = NULL;
841 spin_unlock_irqrestore(&host->lock, flags);
842 wake_up(&host->wq);
843 pm_runtime_mark_last_busy(mmc_dev(host));
844 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
845 pm_runtime_put_sync_suspend(mmc_dev(host));
846 else
847 pm_runtime_put_autosuspend(mmc_dev(host));
848 }
849}
850EXPORT_SYMBOL(mmc_release_host);
851
852/*
853 * This is a helper function, which fetches a runtime pm reference for the
854 * card device and also claims the host.
855 */
856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
857{
858 pm_runtime_get_sync(&card->dev);
859 __mmc_claim_host(card->host, ctx, NULL);
860}
861EXPORT_SYMBOL(mmc_get_card);
862
863/*
864 * This is a helper function, which releases the host and drops the runtime
865 * pm reference for the card device.
866 */
867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
868{
869 struct mmc_host *host = card->host;
870
871 WARN_ON(ctx && host->claimer != ctx);
872
873 mmc_release_host(host);
874 pm_runtime_mark_last_busy(&card->dev);
875 pm_runtime_put_autosuspend(&card->dev);
876}
877EXPORT_SYMBOL(mmc_put_card);
878
879/*
880 * Internal function that does the actual ios call to the host driver,
881 * optionally printing some debug output.
882 */
883static inline void mmc_set_ios(struct mmc_host *host)
884{
885 struct mmc_ios *ios = &host->ios;
886
887 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 "width %u timing %u\n",
889 mmc_hostname(host), ios->clock, ios->bus_mode,
890 ios->power_mode, ios->chip_select, ios->vdd,
891 1 << ios->bus_width, ios->timing);
892
893 host->ops->set_ios(host, ios);
894}
895
896/*
897 * Control chip select pin on a host.
898 */
899void mmc_set_chip_select(struct mmc_host *host, int mode)
900{
901 host->ios.chip_select = mode;
902 mmc_set_ios(host);
903}
904
905/*
906 * Sets the host clock to the highest possible frequency that
907 * is below "hz".
908 */
909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
910{
911 WARN_ON(hz && hz < host->f_min);
912
913 if (hz > host->f_max)
914 hz = host->f_max;
915
916 host->ios.clock = hz;
917 mmc_set_ios(host);
918}
919
920int mmc_execute_tuning(struct mmc_card *card)
921{
922 struct mmc_host *host = card->host;
923 u32 opcode;
924 int err;
925
926 if (!host->ops->execute_tuning)
927 return 0;
928
929 if (host->cqe_on)
930 host->cqe_ops->cqe_off(host);
931
932 if (mmc_card_mmc(card))
933 opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 else
935 opcode = MMC_SEND_TUNING_BLOCK;
936
937 err = host->ops->execute_tuning(host, opcode);
938 if (!err) {
939 mmc_retune_clear(host);
940 mmc_retune_enable(host);
941 return 0;
942 }
943
944 /* Only print error when we don't check for card removal */
945 if (!host->detect_change) {
946 pr_err("%s: tuning execution failed: %d\n",
947 mmc_hostname(host), err);
948 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
949 }
950
951 return err;
952}
953
954/*
955 * Change the bus mode (open drain/push-pull) of a host.
956 */
957void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
958{
959 host->ios.bus_mode = mode;
960 mmc_set_ios(host);
961}
962
963/*
964 * Change data bus width of a host.
965 */
966void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
967{
968 host->ios.bus_width = width;
969 mmc_set_ios(host);
970}
971
972/*
973 * Set initial state after a power cycle or a hw_reset.
974 */
975void mmc_set_initial_state(struct mmc_host *host)
976{
977 if (host->cqe_on)
978 host->cqe_ops->cqe_off(host);
979
980 mmc_retune_disable(host);
981
982 if (mmc_host_is_spi(host))
983 host->ios.chip_select = MMC_CS_HIGH;
984 else
985 host->ios.chip_select = MMC_CS_DONTCARE;
986 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
987 host->ios.bus_width = MMC_BUS_WIDTH_1;
988 host->ios.timing = MMC_TIMING_LEGACY;
989 host->ios.drv_type = 0;
990 host->ios.enhanced_strobe = false;
991
992 /*
993 * Make sure we are in non-enhanced strobe mode before we
994 * actually enable it in ext_csd.
995 */
996 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
997 host->ops->hs400_enhanced_strobe)
998 host->ops->hs400_enhanced_strobe(host, &host->ios);
999
1000 mmc_set_ios(host);
1001
1002 mmc_crypto_set_initial_state(host);
1003}
1004
1005/**
1006 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007 * @vdd: voltage (mV)
1008 * @low_bits: prefer low bits in boundary cases
1009 *
1010 * This function returns the OCR bit number according to the provided @vdd
1011 * value. If conversion is not possible a negative errno value returned.
1012 *
1013 * Depending on the @low_bits flag the function prefers low or high OCR bits
1014 * on boundary voltages. For example,
1015 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017 *
1018 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019 */
1020static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021{
1022 const int max_bit = ilog2(MMC_VDD_35_36);
1023 int bit;
1024
1025 if (vdd < 1650 || vdd > 3600)
1026 return -EINVAL;
1027
1028 if (vdd >= 1650 && vdd <= 1950)
1029 return ilog2(MMC_VDD_165_195);
1030
1031 if (low_bits)
1032 vdd -= 1;
1033
1034 /* Base 2000 mV, step 100 mV, bit's base 8. */
1035 bit = (vdd - 2000) / 100 + 8;
1036 if (bit > max_bit)
1037 return max_bit;
1038 return bit;
1039}
1040
1041/**
1042 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043 * @vdd_min: minimum voltage value (mV)
1044 * @vdd_max: maximum voltage value (mV)
1045 *
1046 * This function returns the OCR mask bits according to the provided @vdd_min
1047 * and @vdd_max values. If conversion is not possible the function returns 0.
1048 *
1049 * Notes wrt boundary cases:
1050 * This function sets the OCR bits for all boundary voltages, for example
1051 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052 * MMC_VDD_34_35 mask.
1053 */
1054u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055{
1056 u32 mask = 0;
1057
1058 if (vdd_max < vdd_min)
1059 return 0;
1060
1061 /* Prefer high bits for the boundary vdd_max values. */
1062 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063 if (vdd_max < 0)
1064 return 0;
1065
1066 /* Prefer low bits for the boundary vdd_min values. */
1067 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068 if (vdd_min < 0)
1069 return 0;
1070
1071 /* Fill the mask, from max bit to min bit. */
1072 while (vdd_max >= vdd_min)
1073 mask |= 1 << vdd_max--;
1074
1075 return mask;
1076}
1077
1078static int mmc_of_get_func_num(struct device_node *node)
1079{
1080 u32 reg;
1081 int ret;
1082
1083 ret = of_property_read_u32(node, "reg", ®);
1084 if (ret < 0)
1085 return ret;
1086
1087 return reg;
1088}
1089
1090struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091 unsigned func_num)
1092{
1093 struct device_node *node;
1094
1095 if (!host->parent || !host->parent->of_node)
1096 return NULL;
1097
1098 for_each_child_of_node(host->parent->of_node, node) {
1099 if (mmc_of_get_func_num(node) == func_num)
1100 return node;
1101 }
1102
1103 return NULL;
1104}
1105
1106/*
1107 * Mask off any voltages we don't support and select
1108 * the lowest voltage
1109 */
1110u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111{
1112 int bit;
1113
1114 /*
1115 * Sanity check the voltages that the card claims to
1116 * support.
1117 */
1118 if (ocr & 0x7F) {
1119 dev_warn(mmc_dev(host),
1120 "card claims to support voltages below defined range\n");
1121 ocr &= ~0x7F;
1122 }
1123
1124 ocr &= host->ocr_avail;
1125 if (!ocr) {
1126 dev_warn(mmc_dev(host), "no support for card's volts\n");
1127 return 0;
1128 }
1129
1130 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131 bit = ffs(ocr) - 1;
1132 ocr &= 3 << bit;
1133 mmc_power_cycle(host, ocr);
1134 } else {
1135 bit = fls(ocr) - 1;
1136 /*
1137 * The bit variable represents the highest voltage bit set in
1138 * the OCR register.
1139 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140 * we must shift the mask '3' with (bit - 1).
1141 */
1142 ocr &= 3 << (bit - 1);
1143 if (bit != host->ios.vdd)
1144 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145 }
1146
1147 return ocr;
1148}
1149
1150int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151{
1152 int err = 0;
1153 int old_signal_voltage = host->ios.signal_voltage;
1154
1155 host->ios.signal_voltage = signal_voltage;
1156 if (host->ops->start_signal_voltage_switch)
1157 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158
1159 if (err)
1160 host->ios.signal_voltage = old_signal_voltage;
1161
1162 return err;
1163
1164}
1165
1166void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167{
1168 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175}
1176
1177int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178{
1179 u32 clock;
1180
1181 /*
1182 * During a signal voltage level switch, the clock must be gated
1183 * for 5 ms according to the SD spec
1184 */
1185 clock = host->ios.clock;
1186 host->ios.clock = 0;
1187 mmc_set_ios(host);
1188
1189 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190 return -EAGAIN;
1191
1192 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193 mmc_delay(10);
1194 host->ios.clock = clock;
1195 mmc_set_ios(host);
1196
1197 return 0;
1198}
1199
1200int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201{
1202 struct mmc_command cmd = {};
1203 int err = 0;
1204
1205 /*
1206 * If we cannot switch voltages, return failure so the caller
1207 * can continue without UHS mode
1208 */
1209 if (!host->ops->start_signal_voltage_switch)
1210 return -EPERM;
1211 if (!host->ops->card_busy)
1212 pr_warn("%s: cannot verify signal voltage switch\n",
1213 mmc_hostname(host));
1214
1215 cmd.opcode = SD_SWITCH_VOLTAGE;
1216 cmd.arg = 0;
1217 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218
1219 err = mmc_wait_for_cmd(host, &cmd, 0);
1220 if (err)
1221 goto power_cycle;
1222
1223 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224 return -EIO;
1225
1226 /*
1227 * The card should drive cmd and dat[0:3] low immediately
1228 * after the response of cmd11, but wait 1 ms to be sure
1229 */
1230 mmc_delay(1);
1231 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232 err = -EAGAIN;
1233 goto power_cycle;
1234 }
1235
1236 if (mmc_host_set_uhs_voltage(host)) {
1237 /*
1238 * Voltages may not have been switched, but we've already
1239 * sent CMD11, so a power cycle is required anyway
1240 */
1241 err = -EAGAIN;
1242 goto power_cycle;
1243 }
1244
1245 /* Wait for at least 1 ms according to spec */
1246 mmc_delay(1);
1247
1248 /*
1249 * Failure to switch is indicated by the card holding
1250 * dat[0:3] low
1251 */
1252 if (host->ops->card_busy && host->ops->card_busy(host))
1253 err = -EAGAIN;
1254
1255power_cycle:
1256 if (err) {
1257 pr_debug("%s: Signal voltage switch failed, "
1258 "power cycling card\n", mmc_hostname(host));
1259 mmc_power_cycle(host, ocr);
1260 }
1261
1262 return err;
1263}
1264
1265/*
1266 * Select timing parameters for host.
1267 */
1268void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269{
1270 host->ios.timing = timing;
1271 mmc_set_ios(host);
1272}
1273
1274/*
1275 * Select appropriate driver type for host.
1276 */
1277void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278{
1279 host->ios.drv_type = drv_type;
1280 mmc_set_ios(host);
1281}
1282
1283int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284 int card_drv_type, int *drv_type)
1285{
1286 struct mmc_host *host = card->host;
1287 int host_drv_type = SD_DRIVER_TYPE_B;
1288
1289 *drv_type = 0;
1290
1291 if (!host->ops->select_drive_strength)
1292 return 0;
1293
1294 /* Use SD definition of driver strength for hosts */
1295 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296 host_drv_type |= SD_DRIVER_TYPE_A;
1297
1298 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299 host_drv_type |= SD_DRIVER_TYPE_C;
1300
1301 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302 host_drv_type |= SD_DRIVER_TYPE_D;
1303
1304 /*
1305 * The drive strength that the hardware can support
1306 * depends on the board design. Pass the appropriate
1307 * information and let the hardware specific code
1308 * return what is possible given the options
1309 */
1310 return host->ops->select_drive_strength(card, max_dtr,
1311 host_drv_type,
1312 card_drv_type,
1313 drv_type);
1314}
1315
1316/*
1317 * Apply power to the MMC stack. This is a two-stage process.
1318 * First, we enable power to the card without the clock running.
1319 * We then wait a bit for the power to stabilise. Finally,
1320 * enable the bus drivers and clock to the card.
1321 *
1322 * We must _NOT_ enable the clock prior to power stablising.
1323 *
1324 * If a host does all the power sequencing itself, ignore the
1325 * initial MMC_POWER_UP stage.
1326 */
1327void mmc_power_up(struct mmc_host *host, u32 ocr)
1328{
1329 if (host->ios.power_mode == MMC_POWER_ON)
1330 return;
1331
1332 mmc_pwrseq_pre_power_on(host);
1333
1334 host->ios.vdd = fls(ocr) - 1;
1335 host->ios.power_mode = MMC_POWER_UP;
1336 /* Set initial state and call mmc_set_ios */
1337 mmc_set_initial_state(host);
1338
1339 mmc_set_initial_signal_voltage(host);
1340
1341 /*
1342 * This delay should be sufficient to allow the power supply
1343 * to reach the minimum voltage.
1344 */
1345 mmc_delay(host->ios.power_delay_ms);
1346
1347 mmc_pwrseq_post_power_on(host);
1348
1349 host->ios.clock = host->f_init;
1350
1351 host->ios.power_mode = MMC_POWER_ON;
1352 mmc_set_ios(host);
1353
1354 /*
1355 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356 * time required to reach a stable voltage.
1357 */
1358 mmc_delay(host->ios.power_delay_ms);
1359}
1360
1361void mmc_power_off(struct mmc_host *host)
1362{
1363 if (host->ios.power_mode == MMC_POWER_OFF)
1364 return;
1365
1366 mmc_pwrseq_power_off(host);
1367
1368 host->ios.clock = 0;
1369 host->ios.vdd = 0;
1370
1371 host->ios.power_mode = MMC_POWER_OFF;
1372 /* Set initial state and call mmc_set_ios */
1373 mmc_set_initial_state(host);
1374
1375 /*
1376 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377 * XO-1.5, require a short delay after poweroff before the card
1378 * can be successfully turned on again.
1379 */
1380 mmc_delay(1);
1381}
1382
1383void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1384{
1385 mmc_power_off(host);
1386 /* Wait at least 1 ms according to SD spec */
1387 mmc_delay(1);
1388 mmc_power_up(host, ocr);
1389}
1390
1391/*
1392 * Assign a mmc bus handler to a host. Only one bus handler may control a
1393 * host at any given time.
1394 */
1395void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1396{
1397 host->bus_ops = ops;
1398}
1399
1400/*
1401 * Remove the current bus handler from a host.
1402 */
1403void mmc_detach_bus(struct mmc_host *host)
1404{
1405 host->bus_ops = NULL;
1406}
1407
1408void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1409{
1410 /*
1411 * Prevent system sleep for 5s to allow user space to consume the
1412 * corresponding uevent. This is especially useful, when CD irq is used
1413 * as a system wakeup, but doesn't hurt in other cases.
1414 */
1415 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1416 __pm_wakeup_event(host->ws, 5000);
1417
1418 host->detect_change = 1;
1419 mmc_schedule_delayed_work(&host->detect, delay);
1420}
1421
1422/**
1423 * mmc_detect_change - process change of state on a MMC socket
1424 * @host: host which changed state.
1425 * @delay: optional delay to wait before detection (jiffies)
1426 *
1427 * MMC drivers should call this when they detect a card has been
1428 * inserted or removed. The MMC layer will confirm that any
1429 * present card is still functional, and initialize any newly
1430 * inserted.
1431 */
1432void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1433{
1434 _mmc_detect_change(host, delay, true);
1435}
1436EXPORT_SYMBOL(mmc_detect_change);
1437
1438void mmc_init_erase(struct mmc_card *card)
1439{
1440 unsigned int sz;
1441
1442 if (is_power_of_2(card->erase_size))
1443 card->erase_shift = ffs(card->erase_size) - 1;
1444 else
1445 card->erase_shift = 0;
1446
1447 /*
1448 * It is possible to erase an arbitrarily large area of an SD or MMC
1449 * card. That is not desirable because it can take a long time
1450 * (minutes) potentially delaying more important I/O, and also the
1451 * timeout calculations become increasingly hugely over-estimated.
1452 * Consequently, 'pref_erase' is defined as a guide to limit erases
1453 * to that size and alignment.
1454 *
1455 * For SD cards that define Allocation Unit size, limit erases to one
1456 * Allocation Unit at a time.
1457 * For MMC, have a stab at ai good value and for modern cards it will
1458 * end up being 4MiB. Note that if the value is too small, it can end
1459 * up taking longer to erase. Also note, erase_size is already set to
1460 * High Capacity Erase Size if available when this function is called.
1461 */
1462 if (mmc_card_sd(card) && card->ssr.au) {
1463 card->pref_erase = card->ssr.au;
1464 card->erase_shift = ffs(card->ssr.au) - 1;
1465 } else if (card->erase_size) {
1466 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1467 if (sz < 128)
1468 card->pref_erase = 512 * 1024 / 512;
1469 else if (sz < 512)
1470 card->pref_erase = 1024 * 1024 / 512;
1471 else if (sz < 1024)
1472 card->pref_erase = 2 * 1024 * 1024 / 512;
1473 else
1474 card->pref_erase = 4 * 1024 * 1024 / 512;
1475 if (card->pref_erase < card->erase_size)
1476 card->pref_erase = card->erase_size;
1477 else {
1478 sz = card->pref_erase % card->erase_size;
1479 if (sz)
1480 card->pref_erase += card->erase_size - sz;
1481 }
1482 } else
1483 card->pref_erase = 0;
1484}
1485
1486static bool is_trim_arg(unsigned int arg)
1487{
1488 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1489}
1490
1491static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1492 unsigned int arg, unsigned int qty)
1493{
1494 unsigned int erase_timeout;
1495
1496 if (arg == MMC_DISCARD_ARG ||
1497 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1498 erase_timeout = card->ext_csd.trim_timeout;
1499 } else if (card->ext_csd.erase_group_def & 1) {
1500 /* High Capacity Erase Group Size uses HC timeouts */
1501 if (arg == MMC_TRIM_ARG)
1502 erase_timeout = card->ext_csd.trim_timeout;
1503 else
1504 erase_timeout = card->ext_csd.hc_erase_timeout;
1505 } else {
1506 /* CSD Erase Group Size uses write timeout */
1507 unsigned int mult = (10 << card->csd.r2w_factor);
1508 unsigned int timeout_clks = card->csd.taac_clks * mult;
1509 unsigned int timeout_us;
1510
1511 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1512 if (card->csd.taac_ns < 1000000)
1513 timeout_us = (card->csd.taac_ns * mult) / 1000;
1514 else
1515 timeout_us = (card->csd.taac_ns / 1000) * mult;
1516
1517 /*
1518 * ios.clock is only a target. The real clock rate might be
1519 * less but not that much less, so fudge it by multiplying by 2.
1520 */
1521 timeout_clks <<= 1;
1522 timeout_us += (timeout_clks * 1000) /
1523 (card->host->ios.clock / 1000);
1524
1525 erase_timeout = timeout_us / 1000;
1526
1527 /*
1528 * Theoretically, the calculation could underflow so round up
1529 * to 1ms in that case.
1530 */
1531 if (!erase_timeout)
1532 erase_timeout = 1;
1533 }
1534
1535 /* Multiplier for secure operations */
1536 if (arg & MMC_SECURE_ARGS) {
1537 if (arg == MMC_SECURE_ERASE_ARG)
1538 erase_timeout *= card->ext_csd.sec_erase_mult;
1539 else
1540 erase_timeout *= card->ext_csd.sec_trim_mult;
1541 }
1542
1543 erase_timeout *= qty;
1544
1545 /*
1546 * Ensure at least a 1 second timeout for SPI as per
1547 * 'mmc_set_data_timeout()'
1548 */
1549 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1550 erase_timeout = 1000;
1551
1552 return erase_timeout;
1553}
1554
1555static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1556 unsigned int arg,
1557 unsigned int qty)
1558{
1559 unsigned int erase_timeout;
1560
1561 /* for DISCARD none of the below calculation applies.
1562 * the busy timeout is 250msec per discard command.
1563 */
1564 if (arg == SD_DISCARD_ARG)
1565 return SD_DISCARD_TIMEOUT_MS;
1566
1567 if (card->ssr.erase_timeout) {
1568 /* Erase timeout specified in SD Status Register (SSR) */
1569 erase_timeout = card->ssr.erase_timeout * qty +
1570 card->ssr.erase_offset;
1571 } else {
1572 /*
1573 * Erase timeout not specified in SD Status Register (SSR) so
1574 * use 250ms per write block.
1575 */
1576 erase_timeout = 250 * qty;
1577 }
1578
1579 /* Must not be less than 1 second */
1580 if (erase_timeout < 1000)
1581 erase_timeout = 1000;
1582
1583 return erase_timeout;
1584}
1585
1586static unsigned int mmc_erase_timeout(struct mmc_card *card,
1587 unsigned int arg,
1588 unsigned int qty)
1589{
1590 if (mmc_card_sd(card))
1591 return mmc_sd_erase_timeout(card, arg, qty);
1592 else
1593 return mmc_mmc_erase_timeout(card, arg, qty);
1594}
1595
1596static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1597 unsigned int to, unsigned int arg)
1598{
1599 struct mmc_command cmd = {};
1600 unsigned int qty = 0, busy_timeout = 0;
1601 bool use_r1b_resp;
1602 int err;
1603
1604 mmc_retune_hold(card->host);
1605
1606 /*
1607 * qty is used to calculate the erase timeout which depends on how many
1608 * erase groups (or allocation units in SD terminology) are affected.
1609 * We count erasing part of an erase group as one erase group.
1610 * For SD, the allocation units are always a power of 2. For MMC, the
1611 * erase group size is almost certainly also power of 2, but it does not
1612 * seem to insist on that in the JEDEC standard, so we fall back to
1613 * division in that case. SD may not specify an allocation unit size,
1614 * in which case the timeout is based on the number of write blocks.
1615 *
1616 * Note that the timeout for secure trim 2 will only be correct if the
1617 * number of erase groups specified is the same as the total of all
1618 * preceding secure trim 1 commands. Since the power may have been
1619 * lost since the secure trim 1 commands occurred, it is generally
1620 * impossible to calculate the secure trim 2 timeout correctly.
1621 */
1622 if (card->erase_shift)
1623 qty += ((to >> card->erase_shift) -
1624 (from >> card->erase_shift)) + 1;
1625 else if (mmc_card_sd(card))
1626 qty += to - from + 1;
1627 else
1628 qty += ((to / card->erase_size) -
1629 (from / card->erase_size)) + 1;
1630
1631 if (!mmc_card_blockaddr(card)) {
1632 from <<= 9;
1633 to <<= 9;
1634 }
1635
1636 if (mmc_card_sd(card))
1637 cmd.opcode = SD_ERASE_WR_BLK_START;
1638 else
1639 cmd.opcode = MMC_ERASE_GROUP_START;
1640 cmd.arg = from;
1641 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1642 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1643 if (err) {
1644 pr_err("mmc_erase: group start error %d, "
1645 "status %#x\n", err, cmd.resp[0]);
1646 err = -EIO;
1647 goto out;
1648 }
1649
1650 memset(&cmd, 0, sizeof(struct mmc_command));
1651 if (mmc_card_sd(card))
1652 cmd.opcode = SD_ERASE_WR_BLK_END;
1653 else
1654 cmd.opcode = MMC_ERASE_GROUP_END;
1655 cmd.arg = to;
1656 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1657 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1658 if (err) {
1659 pr_err("mmc_erase: group end error %d, status %#x\n",
1660 err, cmd.resp[0]);
1661 err = -EIO;
1662 goto out;
1663 }
1664
1665 memset(&cmd, 0, sizeof(struct mmc_command));
1666 cmd.opcode = MMC_ERASE;
1667 cmd.arg = arg;
1668 busy_timeout = mmc_erase_timeout(card, arg, qty);
1669 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1670
1671 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1672 if (err) {
1673 pr_err("mmc_erase: erase error %d, status %#x\n",
1674 err, cmd.resp[0]);
1675 err = -EIO;
1676 goto out;
1677 }
1678
1679 if (mmc_host_is_spi(card->host))
1680 goto out;
1681
1682 /*
1683 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1684 * shall be avoided.
1685 */
1686 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1687 goto out;
1688
1689 /* Let's poll to find out when the erase operation completes. */
1690 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1691
1692out:
1693 mmc_retune_release(card->host);
1694 return err;
1695}
1696
1697static unsigned int mmc_align_erase_size(struct mmc_card *card,
1698 unsigned int *from,
1699 unsigned int *to,
1700 unsigned int nr)
1701{
1702 unsigned int from_new = *from, nr_new = nr, rem;
1703
1704 /*
1705 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1706 * to align the erase size efficiently.
1707 */
1708 if (is_power_of_2(card->erase_size)) {
1709 unsigned int temp = from_new;
1710
1711 from_new = round_up(temp, card->erase_size);
1712 rem = from_new - temp;
1713
1714 if (nr_new > rem)
1715 nr_new -= rem;
1716 else
1717 return 0;
1718
1719 nr_new = round_down(nr_new, card->erase_size);
1720 } else {
1721 rem = from_new % card->erase_size;
1722 if (rem) {
1723 rem = card->erase_size - rem;
1724 from_new += rem;
1725 if (nr_new > rem)
1726 nr_new -= rem;
1727 else
1728 return 0;
1729 }
1730
1731 rem = nr_new % card->erase_size;
1732 if (rem)
1733 nr_new -= rem;
1734 }
1735
1736 if (nr_new == 0)
1737 return 0;
1738
1739 *to = from_new + nr_new;
1740 *from = from_new;
1741
1742 return nr_new;
1743}
1744
1745/**
1746 * mmc_erase - erase sectors.
1747 * @card: card to erase
1748 * @from: first sector to erase
1749 * @nr: number of sectors to erase
1750 * @arg: erase command argument
1751 *
1752 * Caller must claim host before calling this function.
1753 */
1754int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1755 unsigned int arg)
1756{
1757 unsigned int rem, to = from + nr;
1758 int err;
1759
1760 if (!(card->csd.cmdclass & CCC_ERASE))
1761 return -EOPNOTSUPP;
1762
1763 if (!card->erase_size)
1764 return -EOPNOTSUPP;
1765
1766 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1767 return -EOPNOTSUPP;
1768
1769 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1770 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1771 return -EOPNOTSUPP;
1772
1773 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1774 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1775 return -EOPNOTSUPP;
1776
1777 if (arg == MMC_SECURE_ERASE_ARG) {
1778 if (from % card->erase_size || nr % card->erase_size)
1779 return -EINVAL;
1780 }
1781
1782 if (arg == MMC_ERASE_ARG)
1783 nr = mmc_align_erase_size(card, &from, &to, nr);
1784
1785 if (nr == 0)
1786 return 0;
1787
1788 if (to <= from)
1789 return -EINVAL;
1790
1791 /* 'from' and 'to' are inclusive */
1792 to -= 1;
1793
1794 /*
1795 * Special case where only one erase-group fits in the timeout budget:
1796 * If the region crosses an erase-group boundary on this particular
1797 * case, we will be trimming more than one erase-group which, does not
1798 * fit in the timeout budget of the controller, so we need to split it
1799 * and call mmc_do_erase() twice if necessary. This special case is
1800 * identified by the card->eg_boundary flag.
1801 */
1802 rem = card->erase_size - (from % card->erase_size);
1803 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1804 err = mmc_do_erase(card, from, from + rem - 1, arg);
1805 from += rem;
1806 if ((err) || (to <= from))
1807 return err;
1808 }
1809
1810 return mmc_do_erase(card, from, to, arg);
1811}
1812EXPORT_SYMBOL(mmc_erase);
1813
1814int mmc_can_erase(struct mmc_card *card)
1815{
1816 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1817 return 1;
1818 return 0;
1819}
1820EXPORT_SYMBOL(mmc_can_erase);
1821
1822int mmc_can_trim(struct mmc_card *card)
1823{
1824 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1825 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1826 return 1;
1827 return 0;
1828}
1829EXPORT_SYMBOL(mmc_can_trim);
1830
1831int mmc_can_discard(struct mmc_card *card)
1832{
1833 /*
1834 * As there's no way to detect the discard support bit at v4.5
1835 * use the s/w feature support filed.
1836 */
1837 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1838 return 1;
1839 return 0;
1840}
1841EXPORT_SYMBOL(mmc_can_discard);
1842
1843int mmc_can_sanitize(struct mmc_card *card)
1844{
1845 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1846 return 0;
1847 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1848 return 1;
1849 return 0;
1850}
1851
1852int mmc_can_secure_erase_trim(struct mmc_card *card)
1853{
1854 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1855 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1856 return 1;
1857 return 0;
1858}
1859EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1860
1861int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1862 unsigned int nr)
1863{
1864 if (!card->erase_size)
1865 return 0;
1866 if (from % card->erase_size || nr % card->erase_size)
1867 return 0;
1868 return 1;
1869}
1870EXPORT_SYMBOL(mmc_erase_group_aligned);
1871
1872static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1873 unsigned int arg)
1874{
1875 struct mmc_host *host = card->host;
1876 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1877 unsigned int last_timeout = 0;
1878 unsigned int max_busy_timeout = host->max_busy_timeout ?
1879 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1880
1881 if (card->erase_shift) {
1882 max_qty = UINT_MAX >> card->erase_shift;
1883 min_qty = card->pref_erase >> card->erase_shift;
1884 } else if (mmc_card_sd(card)) {
1885 max_qty = UINT_MAX;
1886 min_qty = card->pref_erase;
1887 } else {
1888 max_qty = UINT_MAX / card->erase_size;
1889 min_qty = card->pref_erase / card->erase_size;
1890 }
1891
1892 /*
1893 * We should not only use 'host->max_busy_timeout' as the limitation
1894 * when deciding the max discard sectors. We should set a balance value
1895 * to improve the erase speed, and it can not get too long timeout at
1896 * the same time.
1897 *
1898 * Here we set 'card->pref_erase' as the minimal discard sectors no
1899 * matter what size of 'host->max_busy_timeout', but if the
1900 * 'host->max_busy_timeout' is large enough for more discard sectors,
1901 * then we can continue to increase the max discard sectors until we
1902 * get a balance value. In cases when the 'host->max_busy_timeout'
1903 * isn't specified, use the default max erase timeout.
1904 */
1905 do {
1906 y = 0;
1907 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1908 timeout = mmc_erase_timeout(card, arg, qty + x);
1909
1910 if (qty + x > min_qty && timeout > max_busy_timeout)
1911 break;
1912
1913 if (timeout < last_timeout)
1914 break;
1915 last_timeout = timeout;
1916 y = x;
1917 }
1918 qty += y;
1919 } while (y);
1920
1921 if (!qty)
1922 return 0;
1923
1924 /*
1925 * When specifying a sector range to trim, chances are we might cross
1926 * an erase-group boundary even if the amount of sectors is less than
1927 * one erase-group.
1928 * If we can only fit one erase-group in the controller timeout budget,
1929 * we have to care that erase-group boundaries are not crossed by a
1930 * single trim operation. We flag that special case with "eg_boundary".
1931 * In all other cases we can just decrement qty and pretend that we
1932 * always touch (qty + 1) erase-groups as a simple optimization.
1933 */
1934 if (qty == 1)
1935 card->eg_boundary = 1;
1936 else
1937 qty--;
1938
1939 /* Convert qty to sectors */
1940 if (card->erase_shift)
1941 max_discard = qty << card->erase_shift;
1942 else if (mmc_card_sd(card))
1943 max_discard = qty + 1;
1944 else
1945 max_discard = qty * card->erase_size;
1946
1947 return max_discard;
1948}
1949
1950unsigned int mmc_calc_max_discard(struct mmc_card *card)
1951{
1952 struct mmc_host *host = card->host;
1953 unsigned int max_discard, max_trim;
1954
1955 /*
1956 * Without erase_group_def set, MMC erase timeout depends on clock
1957 * frequence which can change. In that case, the best choice is
1958 * just the preferred erase size.
1959 */
1960 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1961 return card->pref_erase;
1962
1963 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1964 if (mmc_can_trim(card)) {
1965 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1966 if (max_trim < max_discard || max_discard == 0)
1967 max_discard = max_trim;
1968 } else if (max_discard < card->erase_size) {
1969 max_discard = 0;
1970 }
1971 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1972 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1973 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1974 return max_discard;
1975}
1976EXPORT_SYMBOL(mmc_calc_max_discard);
1977
1978bool mmc_card_is_blockaddr(struct mmc_card *card)
1979{
1980 return card ? mmc_card_blockaddr(card) : false;
1981}
1982EXPORT_SYMBOL(mmc_card_is_blockaddr);
1983
1984int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1985{
1986 struct mmc_command cmd = {};
1987
1988 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1989 mmc_card_hs400(card) || mmc_card_hs400es(card))
1990 return 0;
1991
1992 cmd.opcode = MMC_SET_BLOCKLEN;
1993 cmd.arg = blocklen;
1994 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1995 return mmc_wait_for_cmd(card->host, &cmd, 5);
1996}
1997EXPORT_SYMBOL(mmc_set_blocklen);
1998
1999static void mmc_hw_reset_for_init(struct mmc_host *host)
2000{
2001 mmc_pwrseq_reset(host);
2002
2003 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2004 return;
2005 host->ops->card_hw_reset(host);
2006}
2007
2008/**
2009 * mmc_hw_reset - reset the card in hardware
2010 * @card: card to be reset
2011 *
2012 * Hard reset the card. This function is only for upper layers, like the
2013 * block layer or card drivers. You cannot use it in host drivers (struct
2014 * mmc_card might be gone then).
2015 *
2016 * Return: 0 on success, -errno on failure
2017 */
2018int mmc_hw_reset(struct mmc_card *card)
2019{
2020 struct mmc_host *host = card->host;
2021 int ret;
2022
2023 ret = host->bus_ops->hw_reset(host);
2024 if (ret < 0)
2025 pr_warn("%s: tried to HW reset card, got error %d\n",
2026 mmc_hostname(host), ret);
2027
2028 return ret;
2029}
2030EXPORT_SYMBOL(mmc_hw_reset);
2031
2032int mmc_sw_reset(struct mmc_card *card)
2033{
2034 struct mmc_host *host = card->host;
2035 int ret;
2036
2037 if (!host->bus_ops->sw_reset)
2038 return -EOPNOTSUPP;
2039
2040 ret = host->bus_ops->sw_reset(host);
2041 if (ret)
2042 pr_warn("%s: tried to SW reset card, got error %d\n",
2043 mmc_hostname(host), ret);
2044
2045 return ret;
2046}
2047EXPORT_SYMBOL(mmc_sw_reset);
2048
2049static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2050{
2051 host->f_init = freq;
2052
2053 pr_debug("%s: %s: trying to init card at %u Hz\n",
2054 mmc_hostname(host), __func__, host->f_init);
2055
2056 mmc_power_up(host, host->ocr_avail);
2057
2058 /*
2059 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2060 * do a hardware reset if possible.
2061 */
2062 mmc_hw_reset_for_init(host);
2063
2064 /*
2065 * sdio_reset sends CMD52 to reset card. Since we do not know
2066 * if the card is being re-initialized, just send it. CMD52
2067 * should be ignored by SD/eMMC cards.
2068 * Skip it if we already know that we do not support SDIO commands
2069 */
2070 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2071 sdio_reset(host);
2072
2073 mmc_go_idle(host);
2074
2075 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2076 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2077 goto out;
2078 if (mmc_card_sd_express(host))
2079 return 0;
2080 }
2081
2082 /* Order's important: probe SDIO, then SD, then MMC */
2083 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2084 if (!mmc_attach_sdio(host))
2085 return 0;
2086
2087 if (!(host->caps2 & MMC_CAP2_NO_SD))
2088 if (!mmc_attach_sd(host))
2089 return 0;
2090
2091 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2092 if (!mmc_attach_mmc(host))
2093 return 0;
2094
2095out:
2096 mmc_power_off(host);
2097 return -EIO;
2098}
2099
2100int _mmc_detect_card_removed(struct mmc_host *host)
2101{
2102 int ret;
2103
2104 if (!host->card || mmc_card_removed(host->card))
2105 return 1;
2106
2107 ret = host->bus_ops->alive(host);
2108
2109 /*
2110 * Card detect status and alive check may be out of sync if card is
2111 * removed slowly, when card detect switch changes while card/slot
2112 * pads are still contacted in hardware (refer to "SD Card Mechanical
2113 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2114 * detect work 200ms later for this case.
2115 */
2116 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2117 mmc_detect_change(host, msecs_to_jiffies(200));
2118 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2119 }
2120
2121 if (ret) {
2122 mmc_card_set_removed(host->card);
2123 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2124 }
2125
2126 return ret;
2127}
2128
2129int mmc_detect_card_removed(struct mmc_host *host)
2130{
2131 struct mmc_card *card = host->card;
2132 int ret;
2133
2134 WARN_ON(!host->claimed);
2135
2136 if (!card)
2137 return 1;
2138
2139 if (!mmc_card_is_removable(host))
2140 return 0;
2141
2142 ret = mmc_card_removed(card);
2143 /*
2144 * The card will be considered unchanged unless we have been asked to
2145 * detect a change or host requires polling to provide card detection.
2146 */
2147 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2148 return ret;
2149
2150 host->detect_change = 0;
2151 if (!ret) {
2152 ret = _mmc_detect_card_removed(host);
2153 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2154 /*
2155 * Schedule a detect work as soon as possible to let a
2156 * rescan handle the card removal.
2157 */
2158 cancel_delayed_work(&host->detect);
2159 _mmc_detect_change(host, 0, false);
2160 }
2161 }
2162
2163 return ret;
2164}
2165EXPORT_SYMBOL(mmc_detect_card_removed);
2166
2167int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2168{
2169 unsigned int boot_sectors_num;
2170
2171 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2172 return -EOPNOTSUPP;
2173
2174 /* filter out unrelated cards */
2175 if (card->ext_csd.rev < 3 ||
2176 !mmc_card_mmc(card) ||
2177 !mmc_card_is_blockaddr(card) ||
2178 mmc_card_is_removable(card->host))
2179 return -ENOENT;
2180
2181 /*
2182 * eMMC storage has two special boot partitions in addition to the
2183 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2184 * accesses, this means that the partition table addresses are shifted
2185 * by the size of boot partitions. In accordance with the eMMC
2186 * specification, the boot partition size is calculated as follows:
2187 *
2188 * boot partition size = 128K byte x BOOT_SIZE_MULT
2189 *
2190 * Calculate number of sectors occupied by the both boot partitions.
2191 */
2192 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2193 SZ_512 * MMC_NUM_BOOT_PARTITION;
2194
2195 /* Defined by NVIDIA and used by Android devices. */
2196 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2197
2198 return 0;
2199}
2200EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2201
2202void mmc_rescan(struct work_struct *work)
2203{
2204 struct mmc_host *host =
2205 container_of(work, struct mmc_host, detect.work);
2206 int i;
2207
2208 if (host->rescan_disable)
2209 return;
2210
2211 /* If there is a non-removable card registered, only scan once */
2212 if (!mmc_card_is_removable(host) && host->rescan_entered)
2213 return;
2214 host->rescan_entered = 1;
2215
2216 if (host->trigger_card_event && host->ops->card_event) {
2217 mmc_claim_host(host);
2218 host->ops->card_event(host);
2219 mmc_release_host(host);
2220 host->trigger_card_event = false;
2221 }
2222
2223 /* Verify a registered card to be functional, else remove it. */
2224 if (host->bus_ops)
2225 host->bus_ops->detect(host);
2226
2227 host->detect_change = 0;
2228
2229 /* if there still is a card present, stop here */
2230 if (host->bus_ops != NULL)
2231 goto out;
2232
2233 mmc_claim_host(host);
2234 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2235 host->ops->get_cd(host) == 0) {
2236 mmc_power_off(host);
2237 mmc_release_host(host);
2238 goto out;
2239 }
2240
2241 /* If an SD express card is present, then leave it as is. */
2242 if (mmc_card_sd_express(host)) {
2243 mmc_release_host(host);
2244 goto out;
2245 }
2246
2247 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2248 unsigned int freq = freqs[i];
2249 if (freq > host->f_max) {
2250 if (i + 1 < ARRAY_SIZE(freqs))
2251 continue;
2252 freq = host->f_max;
2253 }
2254 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2255 break;
2256 if (freqs[i] <= host->f_min)
2257 break;
2258 }
2259
2260 /*
2261 * Ignore the command timeout errors observed during
2262 * the card init as those are excepted.
2263 */
2264 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2265 mmc_release_host(host);
2266
2267 out:
2268 if (host->caps & MMC_CAP_NEEDS_POLL)
2269 mmc_schedule_delayed_work(&host->detect, HZ);
2270}
2271
2272void mmc_start_host(struct mmc_host *host)
2273{
2274 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2275 host->rescan_disable = 0;
2276
2277 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2278 mmc_claim_host(host);
2279 mmc_power_up(host, host->ocr_avail);
2280 mmc_release_host(host);
2281 }
2282
2283 mmc_gpiod_request_cd_irq(host);
2284 _mmc_detect_change(host, 0, false);
2285}
2286
2287void __mmc_stop_host(struct mmc_host *host)
2288{
2289 if (host->slot.cd_irq >= 0) {
2290 mmc_gpio_set_cd_wake(host, false);
2291 disable_irq(host->slot.cd_irq);
2292 }
2293
2294 host->rescan_disable = 1;
2295 cancel_delayed_work_sync(&host->detect);
2296}
2297
2298void mmc_stop_host(struct mmc_host *host)
2299{
2300 __mmc_stop_host(host);
2301
2302 /* clear pm flags now and let card drivers set them as needed */
2303 host->pm_flags = 0;
2304
2305 if (host->bus_ops) {
2306 /* Calling bus_ops->remove() with a claimed host can deadlock */
2307 host->bus_ops->remove(host);
2308 mmc_claim_host(host);
2309 mmc_detach_bus(host);
2310 mmc_power_off(host);
2311 mmc_release_host(host);
2312 return;
2313 }
2314
2315 mmc_claim_host(host);
2316 mmc_power_off(host);
2317 mmc_release_host(host);
2318}
2319
2320static int __init mmc_init(void)
2321{
2322 int ret;
2323
2324 ret = mmc_register_bus();
2325 if (ret)
2326 return ret;
2327
2328 ret = mmc_register_host_class();
2329 if (ret)
2330 goto unregister_bus;
2331
2332 ret = sdio_register_bus();
2333 if (ret)
2334 goto unregister_host_class;
2335
2336 return 0;
2337
2338unregister_host_class:
2339 mmc_unregister_host_class();
2340unregister_bus:
2341 mmc_unregister_bus();
2342 return ret;
2343}
2344
2345static void __exit mmc_exit(void)
2346{
2347 sdio_unregister_bus();
2348 mmc_unregister_host_class();
2349 mmc_unregister_bus();
2350}
2351
2352subsys_initcall(mmc_init);
2353module_exit(mmc_exit);
2354
2355MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/suspend.h>
27#include <linux/fault-inject.h>
28#include <linux/random.h>
29
30#include <linux/mmc/card.h>
31#include <linux/mmc/host.h>
32#include <linux/mmc/mmc.h>
33#include <linux/mmc/sd.h>
34
35#include "core.h"
36#include "bus.h"
37#include "host.h"
38#include "sdio_bus.h"
39
40#include "mmc_ops.h"
41#include "sd_ops.h"
42#include "sdio_ops.h"
43
44static struct workqueue_struct *workqueue;
45static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
46
47/*
48 * Enabling software CRCs on the data blocks can be a significant (30%)
49 * performance cost, and for other reasons may not always be desired.
50 * So we allow it it to be disabled.
51 */
52bool use_spi_crc = 1;
53module_param(use_spi_crc, bool, 0);
54
55/*
56 * We normally treat cards as removed during suspend if they are not
57 * known to be on a non-removable bus, to avoid the risk of writing
58 * back data to a different card after resume. Allow this to be
59 * overridden if necessary.
60 */
61#ifdef CONFIG_MMC_UNSAFE_RESUME
62bool mmc_assume_removable;
63#else
64bool mmc_assume_removable = 1;
65#endif
66EXPORT_SYMBOL(mmc_assume_removable);
67module_param_named(removable, mmc_assume_removable, bool, 0644);
68MODULE_PARM_DESC(
69 removable,
70 "MMC/SD cards are removable and may be removed during suspend");
71
72/*
73 * Internal function. Schedule delayed work in the MMC work queue.
74 */
75static int mmc_schedule_delayed_work(struct delayed_work *work,
76 unsigned long delay)
77{
78 return queue_delayed_work(workqueue, work, delay);
79}
80
81/*
82 * Internal function. Flush all scheduled work from the MMC work queue.
83 */
84static void mmc_flush_scheduled_work(void)
85{
86 flush_workqueue(workqueue);
87}
88
89#ifdef CONFIG_FAIL_MMC_REQUEST
90
91/*
92 * Internal function. Inject random data errors.
93 * If mmc_data is NULL no errors are injected.
94 */
95static void mmc_should_fail_request(struct mmc_host *host,
96 struct mmc_request *mrq)
97{
98 struct mmc_command *cmd = mrq->cmd;
99 struct mmc_data *data = mrq->data;
100 static const int data_errors[] = {
101 -ETIMEDOUT,
102 -EILSEQ,
103 -EIO,
104 };
105
106 if (!data)
107 return;
108
109 if (cmd->error || data->error ||
110 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
111 return;
112
113 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
114 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
115}
116
117#else /* CONFIG_FAIL_MMC_REQUEST */
118
119static inline void mmc_should_fail_request(struct mmc_host *host,
120 struct mmc_request *mrq)
121{
122}
123
124#endif /* CONFIG_FAIL_MMC_REQUEST */
125
126/**
127 * mmc_request_done - finish processing an MMC request
128 * @host: MMC host which completed request
129 * @mrq: MMC request which request
130 *
131 * MMC drivers should call this function when they have completed
132 * their processing of a request.
133 */
134void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
135{
136 struct mmc_command *cmd = mrq->cmd;
137 int err = cmd->error;
138
139 if (err && cmd->retries && mmc_host_is_spi(host)) {
140 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
141 cmd->retries = 0;
142 }
143
144 if (err && cmd->retries && !mmc_card_removed(host->card)) {
145 /*
146 * Request starter must handle retries - see
147 * mmc_wait_for_req_done().
148 */
149 if (mrq->done)
150 mrq->done(mrq);
151 } else {
152 mmc_should_fail_request(host, mrq);
153
154 led_trigger_event(host->led, LED_OFF);
155
156 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
157 mmc_hostname(host), cmd->opcode, err,
158 cmd->resp[0], cmd->resp[1],
159 cmd->resp[2], cmd->resp[3]);
160
161 if (mrq->data) {
162 pr_debug("%s: %d bytes transferred: %d\n",
163 mmc_hostname(host),
164 mrq->data->bytes_xfered, mrq->data->error);
165 }
166
167 if (mrq->stop) {
168 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
169 mmc_hostname(host), mrq->stop->opcode,
170 mrq->stop->error,
171 mrq->stop->resp[0], mrq->stop->resp[1],
172 mrq->stop->resp[2], mrq->stop->resp[3]);
173 }
174
175 if (mrq->done)
176 mrq->done(mrq);
177
178 mmc_host_clk_release(host);
179 }
180}
181
182EXPORT_SYMBOL(mmc_request_done);
183
184static void
185mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
186{
187#ifdef CONFIG_MMC_DEBUG
188 unsigned int i, sz;
189 struct scatterlist *sg;
190#endif
191
192 if (mrq->sbc) {
193 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
194 mmc_hostname(host), mrq->sbc->opcode,
195 mrq->sbc->arg, mrq->sbc->flags);
196 }
197
198 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
199 mmc_hostname(host), mrq->cmd->opcode,
200 mrq->cmd->arg, mrq->cmd->flags);
201
202 if (mrq->data) {
203 pr_debug("%s: blksz %d blocks %d flags %08x "
204 "tsac %d ms nsac %d\n",
205 mmc_hostname(host), mrq->data->blksz,
206 mrq->data->blocks, mrq->data->flags,
207 mrq->data->timeout_ns / 1000000,
208 mrq->data->timeout_clks);
209 }
210
211 if (mrq->stop) {
212 pr_debug("%s: CMD%u arg %08x flags %08x\n",
213 mmc_hostname(host), mrq->stop->opcode,
214 mrq->stop->arg, mrq->stop->flags);
215 }
216
217 WARN_ON(!host->claimed);
218
219 mrq->cmd->error = 0;
220 mrq->cmd->mrq = mrq;
221 if (mrq->data) {
222 BUG_ON(mrq->data->blksz > host->max_blk_size);
223 BUG_ON(mrq->data->blocks > host->max_blk_count);
224 BUG_ON(mrq->data->blocks * mrq->data->blksz >
225 host->max_req_size);
226
227#ifdef CONFIG_MMC_DEBUG
228 sz = 0;
229 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
230 sz += sg->length;
231 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
232#endif
233
234 mrq->cmd->data = mrq->data;
235 mrq->data->error = 0;
236 mrq->data->mrq = mrq;
237 if (mrq->stop) {
238 mrq->data->stop = mrq->stop;
239 mrq->stop->error = 0;
240 mrq->stop->mrq = mrq;
241 }
242 }
243 mmc_host_clk_hold(host);
244 led_trigger_event(host->led, LED_FULL);
245 host->ops->request(host, mrq);
246}
247
248static void mmc_wait_done(struct mmc_request *mrq)
249{
250 complete(&mrq->completion);
251}
252
253static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
254{
255 init_completion(&mrq->completion);
256 mrq->done = mmc_wait_done;
257 if (mmc_card_removed(host->card)) {
258 mrq->cmd->error = -ENOMEDIUM;
259 complete(&mrq->completion);
260 return -ENOMEDIUM;
261 }
262 mmc_start_request(host, mrq);
263 return 0;
264}
265
266static void mmc_wait_for_req_done(struct mmc_host *host,
267 struct mmc_request *mrq)
268{
269 struct mmc_command *cmd;
270
271 while (1) {
272 wait_for_completion(&mrq->completion);
273
274 cmd = mrq->cmd;
275 if (!cmd->error || !cmd->retries ||
276 mmc_card_removed(host->card))
277 break;
278
279 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
280 mmc_hostname(host), cmd->opcode, cmd->error);
281 cmd->retries--;
282 cmd->error = 0;
283 host->ops->request(host, mrq);
284 }
285}
286
287/**
288 * mmc_pre_req - Prepare for a new request
289 * @host: MMC host to prepare command
290 * @mrq: MMC request to prepare for
291 * @is_first_req: true if there is no previous started request
292 * that may run in parellel to this call, otherwise false
293 *
294 * mmc_pre_req() is called in prior to mmc_start_req() to let
295 * host prepare for the new request. Preparation of a request may be
296 * performed while another request is running on the host.
297 */
298static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
299 bool is_first_req)
300{
301 if (host->ops->pre_req) {
302 mmc_host_clk_hold(host);
303 host->ops->pre_req(host, mrq, is_first_req);
304 mmc_host_clk_release(host);
305 }
306}
307
308/**
309 * mmc_post_req - Post process a completed request
310 * @host: MMC host to post process command
311 * @mrq: MMC request to post process for
312 * @err: Error, if non zero, clean up any resources made in pre_req
313 *
314 * Let the host post process a completed request. Post processing of
315 * a request may be performed while another reuqest is running.
316 */
317static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
318 int err)
319{
320 if (host->ops->post_req) {
321 mmc_host_clk_hold(host);
322 host->ops->post_req(host, mrq, err);
323 mmc_host_clk_release(host);
324 }
325}
326
327/**
328 * mmc_start_req - start a non-blocking request
329 * @host: MMC host to start command
330 * @areq: async request to start
331 * @error: out parameter returns 0 for success, otherwise non zero
332 *
333 * Start a new MMC custom command request for a host.
334 * If there is on ongoing async request wait for completion
335 * of that request and start the new one and return.
336 * Does not wait for the new request to complete.
337 *
338 * Returns the completed request, NULL in case of none completed.
339 * Wait for the an ongoing request (previoulsy started) to complete and
340 * return the completed request. If there is no ongoing request, NULL
341 * is returned without waiting. NULL is not an error condition.
342 */
343struct mmc_async_req *mmc_start_req(struct mmc_host *host,
344 struct mmc_async_req *areq, int *error)
345{
346 int err = 0;
347 int start_err = 0;
348 struct mmc_async_req *data = host->areq;
349
350 /* Prepare a new request */
351 if (areq)
352 mmc_pre_req(host, areq->mrq, !host->areq);
353
354 if (host->areq) {
355 mmc_wait_for_req_done(host, host->areq->mrq);
356 err = host->areq->err_check(host->card, host->areq);
357 }
358
359 if (!err && areq)
360 start_err = __mmc_start_req(host, areq->mrq);
361
362 if (host->areq)
363 mmc_post_req(host, host->areq->mrq, 0);
364
365 /* Cancel a prepared request if it was not started. */
366 if ((err || start_err) && areq)
367 mmc_post_req(host, areq->mrq, -EINVAL);
368
369 if (err)
370 host->areq = NULL;
371 else
372 host->areq = areq;
373
374 if (error)
375 *error = err;
376 return data;
377}
378EXPORT_SYMBOL(mmc_start_req);
379
380/**
381 * mmc_wait_for_req - start a request and wait for completion
382 * @host: MMC host to start command
383 * @mrq: MMC request to start
384 *
385 * Start a new MMC custom command request for a host, and wait
386 * for the command to complete. Does not attempt to parse the
387 * response.
388 */
389void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
390{
391 __mmc_start_req(host, mrq);
392 mmc_wait_for_req_done(host, mrq);
393}
394EXPORT_SYMBOL(mmc_wait_for_req);
395
396/**
397 * mmc_interrupt_hpi - Issue for High priority Interrupt
398 * @card: the MMC card associated with the HPI transfer
399 *
400 * Issued High Priority Interrupt, and check for card status
401 * util out-of prg-state.
402 */
403int mmc_interrupt_hpi(struct mmc_card *card)
404{
405 int err;
406 u32 status;
407
408 BUG_ON(!card);
409
410 if (!card->ext_csd.hpi_en) {
411 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
412 return 1;
413 }
414
415 mmc_claim_host(card->host);
416 err = mmc_send_status(card, &status);
417 if (err) {
418 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
419 goto out;
420 }
421
422 /*
423 * If the card status is in PRG-state, we can send the HPI command.
424 */
425 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
426 do {
427 /*
428 * We don't know when the HPI command will finish
429 * processing, so we need to resend HPI until out
430 * of prg-state, and keep checking the card status
431 * with SEND_STATUS. If a timeout error occurs when
432 * sending the HPI command, we are already out of
433 * prg-state.
434 */
435 err = mmc_send_hpi_cmd(card, &status);
436 if (err)
437 pr_debug("%s: abort HPI (%d error)\n",
438 mmc_hostname(card->host), err);
439
440 err = mmc_send_status(card, &status);
441 if (err)
442 break;
443 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
444 } else
445 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
446
447out:
448 mmc_release_host(card->host);
449 return err;
450}
451EXPORT_SYMBOL(mmc_interrupt_hpi);
452
453/**
454 * mmc_wait_for_cmd - start a command and wait for completion
455 * @host: MMC host to start command
456 * @cmd: MMC command to start
457 * @retries: maximum number of retries
458 *
459 * Start a new MMC command for a host, and wait for the command
460 * to complete. Return any error that occurred while the command
461 * was executing. Do not attempt to parse the response.
462 */
463int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
464{
465 struct mmc_request mrq = {NULL};
466
467 WARN_ON(!host->claimed);
468
469 memset(cmd->resp, 0, sizeof(cmd->resp));
470 cmd->retries = retries;
471
472 mrq.cmd = cmd;
473 cmd->data = NULL;
474
475 mmc_wait_for_req(host, &mrq);
476
477 return cmd->error;
478}
479
480EXPORT_SYMBOL(mmc_wait_for_cmd);
481
482/**
483 * mmc_set_data_timeout - set the timeout for a data command
484 * @data: data phase for command
485 * @card: the MMC card associated with the data transfer
486 *
487 * Computes the data timeout parameters according to the
488 * correct algorithm given the card type.
489 */
490void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
491{
492 unsigned int mult;
493
494 /*
495 * SDIO cards only define an upper 1 s limit on access.
496 */
497 if (mmc_card_sdio(card)) {
498 data->timeout_ns = 1000000000;
499 data->timeout_clks = 0;
500 return;
501 }
502
503 /*
504 * SD cards use a 100 multiplier rather than 10
505 */
506 mult = mmc_card_sd(card) ? 100 : 10;
507
508 /*
509 * Scale up the multiplier (and therefore the timeout) by
510 * the r2w factor for writes.
511 */
512 if (data->flags & MMC_DATA_WRITE)
513 mult <<= card->csd.r2w_factor;
514
515 data->timeout_ns = card->csd.tacc_ns * mult;
516 data->timeout_clks = card->csd.tacc_clks * mult;
517
518 /*
519 * SD cards also have an upper limit on the timeout.
520 */
521 if (mmc_card_sd(card)) {
522 unsigned int timeout_us, limit_us;
523
524 timeout_us = data->timeout_ns / 1000;
525 if (mmc_host_clk_rate(card->host))
526 timeout_us += data->timeout_clks * 1000 /
527 (mmc_host_clk_rate(card->host) / 1000);
528
529 if (data->flags & MMC_DATA_WRITE)
530 /*
531 * The MMC spec "It is strongly recommended
532 * for hosts to implement more than 500ms
533 * timeout value even if the card indicates
534 * the 250ms maximum busy length." Even the
535 * previous value of 300ms is known to be
536 * insufficient for some cards.
537 */
538 limit_us = 3000000;
539 else
540 limit_us = 100000;
541
542 /*
543 * SDHC cards always use these fixed values.
544 */
545 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
546 data->timeout_ns = limit_us * 1000;
547 data->timeout_clks = 0;
548 }
549 }
550
551 /*
552 * Some cards require longer data read timeout than indicated in CSD.
553 * Address this by setting the read timeout to a "reasonably high"
554 * value. For the cards tested, 300ms has proven enough. If necessary,
555 * this value can be increased if other problematic cards require this.
556 */
557 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
558 data->timeout_ns = 300000000;
559 data->timeout_clks = 0;
560 }
561
562 /*
563 * Some cards need very high timeouts if driven in SPI mode.
564 * The worst observed timeout was 900ms after writing a
565 * continuous stream of data until the internal logic
566 * overflowed.
567 */
568 if (mmc_host_is_spi(card->host)) {
569 if (data->flags & MMC_DATA_WRITE) {
570 if (data->timeout_ns < 1000000000)
571 data->timeout_ns = 1000000000; /* 1s */
572 } else {
573 if (data->timeout_ns < 100000000)
574 data->timeout_ns = 100000000; /* 100ms */
575 }
576 }
577}
578EXPORT_SYMBOL(mmc_set_data_timeout);
579
580/**
581 * mmc_align_data_size - pads a transfer size to a more optimal value
582 * @card: the MMC card associated with the data transfer
583 * @sz: original transfer size
584 *
585 * Pads the original data size with a number of extra bytes in
586 * order to avoid controller bugs and/or performance hits
587 * (e.g. some controllers revert to PIO for certain sizes).
588 *
589 * Returns the improved size, which might be unmodified.
590 *
591 * Note that this function is only relevant when issuing a
592 * single scatter gather entry.
593 */
594unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
595{
596 /*
597 * FIXME: We don't have a system for the controller to tell
598 * the core about its problems yet, so for now we just 32-bit
599 * align the size.
600 */
601 sz = ((sz + 3) / 4) * 4;
602
603 return sz;
604}
605EXPORT_SYMBOL(mmc_align_data_size);
606
607/**
608 * __mmc_claim_host - exclusively claim a host
609 * @host: mmc host to claim
610 * @abort: whether or not the operation should be aborted
611 *
612 * Claim a host for a set of operations. If @abort is non null and
613 * dereference a non-zero value then this will return prematurely with
614 * that non-zero value without acquiring the lock. Returns zero
615 * with the lock held otherwise.
616 */
617int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
618{
619 DECLARE_WAITQUEUE(wait, current);
620 unsigned long flags;
621 int stop;
622
623 might_sleep();
624
625 add_wait_queue(&host->wq, &wait);
626 spin_lock_irqsave(&host->lock, flags);
627 while (1) {
628 set_current_state(TASK_UNINTERRUPTIBLE);
629 stop = abort ? atomic_read(abort) : 0;
630 if (stop || !host->claimed || host->claimer == current)
631 break;
632 spin_unlock_irqrestore(&host->lock, flags);
633 schedule();
634 spin_lock_irqsave(&host->lock, flags);
635 }
636 set_current_state(TASK_RUNNING);
637 if (!stop) {
638 host->claimed = 1;
639 host->claimer = current;
640 host->claim_cnt += 1;
641 } else
642 wake_up(&host->wq);
643 spin_unlock_irqrestore(&host->lock, flags);
644 remove_wait_queue(&host->wq, &wait);
645 if (host->ops->enable && !stop && host->claim_cnt == 1)
646 host->ops->enable(host);
647 return stop;
648}
649
650EXPORT_SYMBOL(__mmc_claim_host);
651
652/**
653 * mmc_try_claim_host - try exclusively to claim a host
654 * @host: mmc host to claim
655 *
656 * Returns %1 if the host is claimed, %0 otherwise.
657 */
658int mmc_try_claim_host(struct mmc_host *host)
659{
660 int claimed_host = 0;
661 unsigned long flags;
662
663 spin_lock_irqsave(&host->lock, flags);
664 if (!host->claimed || host->claimer == current) {
665 host->claimed = 1;
666 host->claimer = current;
667 host->claim_cnt += 1;
668 claimed_host = 1;
669 }
670 spin_unlock_irqrestore(&host->lock, flags);
671 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
672 host->ops->enable(host);
673 return claimed_host;
674}
675EXPORT_SYMBOL(mmc_try_claim_host);
676
677/**
678 * mmc_release_host - release a host
679 * @host: mmc host to release
680 *
681 * Release a MMC host, allowing others to claim the host
682 * for their operations.
683 */
684void mmc_release_host(struct mmc_host *host)
685{
686 unsigned long flags;
687
688 WARN_ON(!host->claimed);
689
690 if (host->ops->disable && host->claim_cnt == 1)
691 host->ops->disable(host);
692
693 spin_lock_irqsave(&host->lock, flags);
694 if (--host->claim_cnt) {
695 /* Release for nested claim */
696 spin_unlock_irqrestore(&host->lock, flags);
697 } else {
698 host->claimed = 0;
699 host->claimer = NULL;
700 spin_unlock_irqrestore(&host->lock, flags);
701 wake_up(&host->wq);
702 }
703}
704EXPORT_SYMBOL(mmc_release_host);
705
706/*
707 * Internal function that does the actual ios call to the host driver,
708 * optionally printing some debug output.
709 */
710static inline void mmc_set_ios(struct mmc_host *host)
711{
712 struct mmc_ios *ios = &host->ios;
713
714 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
715 "width %u timing %u\n",
716 mmc_hostname(host), ios->clock, ios->bus_mode,
717 ios->power_mode, ios->chip_select, ios->vdd,
718 ios->bus_width, ios->timing);
719
720 if (ios->clock > 0)
721 mmc_set_ungated(host);
722 host->ops->set_ios(host, ios);
723}
724
725/*
726 * Control chip select pin on a host.
727 */
728void mmc_set_chip_select(struct mmc_host *host, int mode)
729{
730 mmc_host_clk_hold(host);
731 host->ios.chip_select = mode;
732 mmc_set_ios(host);
733 mmc_host_clk_release(host);
734}
735
736/*
737 * Sets the host clock to the highest possible frequency that
738 * is below "hz".
739 */
740static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
741{
742 WARN_ON(hz < host->f_min);
743
744 if (hz > host->f_max)
745 hz = host->f_max;
746
747 host->ios.clock = hz;
748 mmc_set_ios(host);
749}
750
751void mmc_set_clock(struct mmc_host *host, unsigned int hz)
752{
753 mmc_host_clk_hold(host);
754 __mmc_set_clock(host, hz);
755 mmc_host_clk_release(host);
756}
757
758#ifdef CONFIG_MMC_CLKGATE
759/*
760 * This gates the clock by setting it to 0 Hz.
761 */
762void mmc_gate_clock(struct mmc_host *host)
763{
764 unsigned long flags;
765
766 spin_lock_irqsave(&host->clk_lock, flags);
767 host->clk_old = host->ios.clock;
768 host->ios.clock = 0;
769 host->clk_gated = true;
770 spin_unlock_irqrestore(&host->clk_lock, flags);
771 mmc_set_ios(host);
772}
773
774/*
775 * This restores the clock from gating by using the cached
776 * clock value.
777 */
778void mmc_ungate_clock(struct mmc_host *host)
779{
780 /*
781 * We should previously have gated the clock, so the clock shall
782 * be 0 here! The clock may however be 0 during initialization,
783 * when some request operations are performed before setting
784 * the frequency. When ungate is requested in that situation
785 * we just ignore the call.
786 */
787 if (host->clk_old) {
788 BUG_ON(host->ios.clock);
789 /* This call will also set host->clk_gated to false */
790 __mmc_set_clock(host, host->clk_old);
791 }
792}
793
794void mmc_set_ungated(struct mmc_host *host)
795{
796 unsigned long flags;
797
798 /*
799 * We've been given a new frequency while the clock is gated,
800 * so make sure we regard this as ungating it.
801 */
802 spin_lock_irqsave(&host->clk_lock, flags);
803 host->clk_gated = false;
804 spin_unlock_irqrestore(&host->clk_lock, flags);
805}
806
807#else
808void mmc_set_ungated(struct mmc_host *host)
809{
810}
811#endif
812
813/*
814 * Change the bus mode (open drain/push-pull) of a host.
815 */
816void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
817{
818 mmc_host_clk_hold(host);
819 host->ios.bus_mode = mode;
820 mmc_set_ios(host);
821 mmc_host_clk_release(host);
822}
823
824/*
825 * Change data bus width of a host.
826 */
827void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
828{
829 mmc_host_clk_hold(host);
830 host->ios.bus_width = width;
831 mmc_set_ios(host);
832 mmc_host_clk_release(host);
833}
834
835/**
836 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
837 * @vdd: voltage (mV)
838 * @low_bits: prefer low bits in boundary cases
839 *
840 * This function returns the OCR bit number according to the provided @vdd
841 * value. If conversion is not possible a negative errno value returned.
842 *
843 * Depending on the @low_bits flag the function prefers low or high OCR bits
844 * on boundary voltages. For example,
845 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
846 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
847 *
848 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
849 */
850static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
851{
852 const int max_bit = ilog2(MMC_VDD_35_36);
853 int bit;
854
855 if (vdd < 1650 || vdd > 3600)
856 return -EINVAL;
857
858 if (vdd >= 1650 && vdd <= 1950)
859 return ilog2(MMC_VDD_165_195);
860
861 if (low_bits)
862 vdd -= 1;
863
864 /* Base 2000 mV, step 100 mV, bit's base 8. */
865 bit = (vdd - 2000) / 100 + 8;
866 if (bit > max_bit)
867 return max_bit;
868 return bit;
869}
870
871/**
872 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
873 * @vdd_min: minimum voltage value (mV)
874 * @vdd_max: maximum voltage value (mV)
875 *
876 * This function returns the OCR mask bits according to the provided @vdd_min
877 * and @vdd_max values. If conversion is not possible the function returns 0.
878 *
879 * Notes wrt boundary cases:
880 * This function sets the OCR bits for all boundary voltages, for example
881 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
882 * MMC_VDD_34_35 mask.
883 */
884u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
885{
886 u32 mask = 0;
887
888 if (vdd_max < vdd_min)
889 return 0;
890
891 /* Prefer high bits for the boundary vdd_max values. */
892 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
893 if (vdd_max < 0)
894 return 0;
895
896 /* Prefer low bits for the boundary vdd_min values. */
897 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
898 if (vdd_min < 0)
899 return 0;
900
901 /* Fill the mask, from max bit to min bit. */
902 while (vdd_max >= vdd_min)
903 mask |= 1 << vdd_max--;
904
905 return mask;
906}
907EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
908
909#ifdef CONFIG_REGULATOR
910
911/**
912 * mmc_regulator_get_ocrmask - return mask of supported voltages
913 * @supply: regulator to use
914 *
915 * This returns either a negative errno, or a mask of voltages that
916 * can be provided to MMC/SD/SDIO devices using the specified voltage
917 * regulator. This would normally be called before registering the
918 * MMC host adapter.
919 */
920int mmc_regulator_get_ocrmask(struct regulator *supply)
921{
922 int result = 0;
923 int count;
924 int i;
925
926 count = regulator_count_voltages(supply);
927 if (count < 0)
928 return count;
929
930 for (i = 0; i < count; i++) {
931 int vdd_uV;
932 int vdd_mV;
933
934 vdd_uV = regulator_list_voltage(supply, i);
935 if (vdd_uV <= 0)
936 continue;
937
938 vdd_mV = vdd_uV / 1000;
939 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
940 }
941
942 return result;
943}
944EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
945
946/**
947 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
948 * @mmc: the host to regulate
949 * @supply: regulator to use
950 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
951 *
952 * Returns zero on success, else negative errno.
953 *
954 * MMC host drivers may use this to enable or disable a regulator using
955 * a particular supply voltage. This would normally be called from the
956 * set_ios() method.
957 */
958int mmc_regulator_set_ocr(struct mmc_host *mmc,
959 struct regulator *supply,
960 unsigned short vdd_bit)
961{
962 int result = 0;
963 int min_uV, max_uV;
964
965 if (vdd_bit) {
966 int tmp;
967 int voltage;
968
969 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
970 * bits this regulator doesn't quite support ... don't
971 * be too picky, most cards and regulators are OK with
972 * a 0.1V range goof (it's a small error percentage).
973 */
974 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
975 if (tmp == 0) {
976 min_uV = 1650 * 1000;
977 max_uV = 1950 * 1000;
978 } else {
979 min_uV = 1900 * 1000 + tmp * 100 * 1000;
980 max_uV = min_uV + 100 * 1000;
981 }
982
983 /* avoid needless changes to this voltage; the regulator
984 * might not allow this operation
985 */
986 voltage = regulator_get_voltage(supply);
987
988 if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
989 min_uV = max_uV = voltage;
990
991 if (voltage < 0)
992 result = voltage;
993 else if (voltage < min_uV || voltage > max_uV)
994 result = regulator_set_voltage(supply, min_uV, max_uV);
995 else
996 result = 0;
997
998 if (result == 0 && !mmc->regulator_enabled) {
999 result = regulator_enable(supply);
1000 if (!result)
1001 mmc->regulator_enabled = true;
1002 }
1003 } else if (mmc->regulator_enabled) {
1004 result = regulator_disable(supply);
1005 if (result == 0)
1006 mmc->regulator_enabled = false;
1007 }
1008
1009 if (result)
1010 dev_err(mmc_dev(mmc),
1011 "could not set regulator OCR (%d)\n", result);
1012 return result;
1013}
1014EXPORT_SYMBOL(mmc_regulator_set_ocr);
1015
1016#endif /* CONFIG_REGULATOR */
1017
1018/*
1019 * Mask off any voltages we don't support and select
1020 * the lowest voltage
1021 */
1022u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1023{
1024 int bit;
1025
1026 ocr &= host->ocr_avail;
1027
1028 bit = ffs(ocr);
1029 if (bit) {
1030 bit -= 1;
1031
1032 ocr &= 3 << bit;
1033
1034 mmc_host_clk_hold(host);
1035 host->ios.vdd = bit;
1036 mmc_set_ios(host);
1037 mmc_host_clk_release(host);
1038 } else {
1039 pr_warning("%s: host doesn't support card's voltages\n",
1040 mmc_hostname(host));
1041 ocr = 0;
1042 }
1043
1044 return ocr;
1045}
1046
1047int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1048{
1049 struct mmc_command cmd = {0};
1050 int err = 0;
1051
1052 BUG_ON(!host);
1053
1054 /*
1055 * Send CMD11 only if the request is to switch the card to
1056 * 1.8V signalling.
1057 */
1058 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1059 cmd.opcode = SD_SWITCH_VOLTAGE;
1060 cmd.arg = 0;
1061 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1062
1063 err = mmc_wait_for_cmd(host, &cmd, 0);
1064 if (err)
1065 return err;
1066
1067 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1068 return -EIO;
1069 }
1070
1071 host->ios.signal_voltage = signal_voltage;
1072
1073 if (host->ops->start_signal_voltage_switch) {
1074 mmc_host_clk_hold(host);
1075 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1076 mmc_host_clk_release(host);
1077 }
1078
1079 return err;
1080}
1081
1082/*
1083 * Select timing parameters for host.
1084 */
1085void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1086{
1087 mmc_host_clk_hold(host);
1088 host->ios.timing = timing;
1089 mmc_set_ios(host);
1090 mmc_host_clk_release(host);
1091}
1092
1093/*
1094 * Select appropriate driver type for host.
1095 */
1096void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1097{
1098 mmc_host_clk_hold(host);
1099 host->ios.drv_type = drv_type;
1100 mmc_set_ios(host);
1101 mmc_host_clk_release(host);
1102}
1103
1104static void mmc_poweroff_notify(struct mmc_host *host)
1105{
1106 struct mmc_card *card;
1107 unsigned int timeout;
1108 unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1109 int err = 0;
1110
1111 card = host->card;
1112 mmc_claim_host(host);
1113
1114 /*
1115 * Send power notify command only if card
1116 * is mmc and notify state is powered ON
1117 */
1118 if (card && mmc_card_mmc(card) &&
1119 (card->poweroff_notify_state == MMC_POWERED_ON)) {
1120
1121 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1122 notify_type = EXT_CSD_POWER_OFF_SHORT;
1123 timeout = card->ext_csd.generic_cmd6_time;
1124 card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1125 } else {
1126 notify_type = EXT_CSD_POWER_OFF_LONG;
1127 timeout = card->ext_csd.power_off_longtime;
1128 card->poweroff_notify_state = MMC_POWEROFF_LONG;
1129 }
1130
1131 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1132 EXT_CSD_POWER_OFF_NOTIFICATION,
1133 notify_type, timeout);
1134
1135 if (err && err != -EBADMSG)
1136 pr_err("Device failed to respond within %d poweroff "
1137 "time. Forcefully powering down the device\n",
1138 timeout);
1139
1140 /* Set the card state to no notification after the poweroff */
1141 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1142 }
1143 mmc_release_host(host);
1144}
1145
1146/*
1147 * Apply power to the MMC stack. This is a two-stage process.
1148 * First, we enable power to the card without the clock running.
1149 * We then wait a bit for the power to stabilise. Finally,
1150 * enable the bus drivers and clock to the card.
1151 *
1152 * We must _NOT_ enable the clock prior to power stablising.
1153 *
1154 * If a host does all the power sequencing itself, ignore the
1155 * initial MMC_POWER_UP stage.
1156 */
1157static void mmc_power_up(struct mmc_host *host)
1158{
1159 int bit;
1160
1161 if (host->ios.power_mode == MMC_POWER_ON)
1162 return;
1163
1164 mmc_host_clk_hold(host);
1165
1166 /* If ocr is set, we use it */
1167 if (host->ocr)
1168 bit = ffs(host->ocr) - 1;
1169 else
1170 bit = fls(host->ocr_avail) - 1;
1171
1172 host->ios.vdd = bit;
1173 if (mmc_host_is_spi(host))
1174 host->ios.chip_select = MMC_CS_HIGH;
1175 else
1176 host->ios.chip_select = MMC_CS_DONTCARE;
1177 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1178 host->ios.power_mode = MMC_POWER_UP;
1179 host->ios.bus_width = MMC_BUS_WIDTH_1;
1180 host->ios.timing = MMC_TIMING_LEGACY;
1181 mmc_set_ios(host);
1182
1183 /*
1184 * This delay should be sufficient to allow the power supply
1185 * to reach the minimum voltage.
1186 */
1187 mmc_delay(10);
1188
1189 host->ios.clock = host->f_init;
1190
1191 host->ios.power_mode = MMC_POWER_ON;
1192 mmc_set_ios(host);
1193
1194 /*
1195 * This delay must be at least 74 clock sizes, or 1 ms, or the
1196 * time required to reach a stable voltage.
1197 */
1198 mmc_delay(10);
1199
1200 mmc_host_clk_release(host);
1201}
1202
1203void mmc_power_off(struct mmc_host *host)
1204{
1205 int err = 0;
1206
1207 if (host->ios.power_mode == MMC_POWER_OFF)
1208 return;
1209
1210 mmc_host_clk_hold(host);
1211
1212 host->ios.clock = 0;
1213 host->ios.vdd = 0;
1214
1215 /*
1216 * For eMMC 4.5 device send AWAKE command before
1217 * POWER_OFF_NOTIFY command, because in sleep state
1218 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1219 */
1220 if (host->card && mmc_card_is_sleep(host->card) &&
1221 host->bus_ops->resume) {
1222 err = host->bus_ops->resume(host);
1223
1224 if (!err)
1225 mmc_poweroff_notify(host);
1226 else
1227 pr_warning("%s: error %d during resume "
1228 "(continue with poweroff sequence)\n",
1229 mmc_hostname(host), err);
1230 }
1231
1232 /*
1233 * Reset ocr mask to be the highest possible voltage supported for
1234 * this mmc host. This value will be used at next power up.
1235 */
1236 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1237
1238 if (!mmc_host_is_spi(host)) {
1239 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1240 host->ios.chip_select = MMC_CS_DONTCARE;
1241 }
1242 host->ios.power_mode = MMC_POWER_OFF;
1243 host->ios.bus_width = MMC_BUS_WIDTH_1;
1244 host->ios.timing = MMC_TIMING_LEGACY;
1245 mmc_set_ios(host);
1246
1247 /*
1248 * Some configurations, such as the 802.11 SDIO card in the OLPC
1249 * XO-1.5, require a short delay after poweroff before the card
1250 * can be successfully turned on again.
1251 */
1252 mmc_delay(1);
1253
1254 mmc_host_clk_release(host);
1255}
1256
1257/*
1258 * Cleanup when the last reference to the bus operator is dropped.
1259 */
1260static void __mmc_release_bus(struct mmc_host *host)
1261{
1262 BUG_ON(!host);
1263 BUG_ON(host->bus_refs);
1264 BUG_ON(!host->bus_dead);
1265
1266 host->bus_ops = NULL;
1267}
1268
1269/*
1270 * Increase reference count of bus operator
1271 */
1272static inline void mmc_bus_get(struct mmc_host *host)
1273{
1274 unsigned long flags;
1275
1276 spin_lock_irqsave(&host->lock, flags);
1277 host->bus_refs++;
1278 spin_unlock_irqrestore(&host->lock, flags);
1279}
1280
1281/*
1282 * Decrease reference count of bus operator and free it if
1283 * it is the last reference.
1284 */
1285static inline void mmc_bus_put(struct mmc_host *host)
1286{
1287 unsigned long flags;
1288
1289 spin_lock_irqsave(&host->lock, flags);
1290 host->bus_refs--;
1291 if ((host->bus_refs == 0) && host->bus_ops)
1292 __mmc_release_bus(host);
1293 spin_unlock_irqrestore(&host->lock, flags);
1294}
1295
1296/*
1297 * Assign a mmc bus handler to a host. Only one bus handler may control a
1298 * host at any given time.
1299 */
1300void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1301{
1302 unsigned long flags;
1303
1304 BUG_ON(!host);
1305 BUG_ON(!ops);
1306
1307 WARN_ON(!host->claimed);
1308
1309 spin_lock_irqsave(&host->lock, flags);
1310
1311 BUG_ON(host->bus_ops);
1312 BUG_ON(host->bus_refs);
1313
1314 host->bus_ops = ops;
1315 host->bus_refs = 1;
1316 host->bus_dead = 0;
1317
1318 spin_unlock_irqrestore(&host->lock, flags);
1319}
1320
1321/*
1322 * Remove the current bus handler from a host.
1323 */
1324void mmc_detach_bus(struct mmc_host *host)
1325{
1326 unsigned long flags;
1327
1328 BUG_ON(!host);
1329
1330 WARN_ON(!host->claimed);
1331 WARN_ON(!host->bus_ops);
1332
1333 spin_lock_irqsave(&host->lock, flags);
1334
1335 host->bus_dead = 1;
1336
1337 spin_unlock_irqrestore(&host->lock, flags);
1338
1339 mmc_bus_put(host);
1340}
1341
1342/**
1343 * mmc_detect_change - process change of state on a MMC socket
1344 * @host: host which changed state.
1345 * @delay: optional delay to wait before detection (jiffies)
1346 *
1347 * MMC drivers should call this when they detect a card has been
1348 * inserted or removed. The MMC layer will confirm that any
1349 * present card is still functional, and initialize any newly
1350 * inserted.
1351 */
1352void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1353{
1354#ifdef CONFIG_MMC_DEBUG
1355 unsigned long flags;
1356 spin_lock_irqsave(&host->lock, flags);
1357 WARN_ON(host->removed);
1358 spin_unlock_irqrestore(&host->lock, flags);
1359#endif
1360 host->detect_change = 1;
1361 mmc_schedule_delayed_work(&host->detect, delay);
1362}
1363
1364EXPORT_SYMBOL(mmc_detect_change);
1365
1366void mmc_init_erase(struct mmc_card *card)
1367{
1368 unsigned int sz;
1369
1370 if (is_power_of_2(card->erase_size))
1371 card->erase_shift = ffs(card->erase_size) - 1;
1372 else
1373 card->erase_shift = 0;
1374
1375 /*
1376 * It is possible to erase an arbitrarily large area of an SD or MMC
1377 * card. That is not desirable because it can take a long time
1378 * (minutes) potentially delaying more important I/O, and also the
1379 * timeout calculations become increasingly hugely over-estimated.
1380 * Consequently, 'pref_erase' is defined as a guide to limit erases
1381 * to that size and alignment.
1382 *
1383 * For SD cards that define Allocation Unit size, limit erases to one
1384 * Allocation Unit at a time. For MMC cards that define High Capacity
1385 * Erase Size, whether it is switched on or not, limit to that size.
1386 * Otherwise just have a stab at a good value. For modern cards it
1387 * will end up being 4MiB. Note that if the value is too small, it
1388 * can end up taking longer to erase.
1389 */
1390 if (mmc_card_sd(card) && card->ssr.au) {
1391 card->pref_erase = card->ssr.au;
1392 card->erase_shift = ffs(card->ssr.au) - 1;
1393 } else if (card->ext_csd.hc_erase_size) {
1394 card->pref_erase = card->ext_csd.hc_erase_size;
1395 } else {
1396 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1397 if (sz < 128)
1398 card->pref_erase = 512 * 1024 / 512;
1399 else if (sz < 512)
1400 card->pref_erase = 1024 * 1024 / 512;
1401 else if (sz < 1024)
1402 card->pref_erase = 2 * 1024 * 1024 / 512;
1403 else
1404 card->pref_erase = 4 * 1024 * 1024 / 512;
1405 if (card->pref_erase < card->erase_size)
1406 card->pref_erase = card->erase_size;
1407 else {
1408 sz = card->pref_erase % card->erase_size;
1409 if (sz)
1410 card->pref_erase += card->erase_size - sz;
1411 }
1412 }
1413}
1414
1415static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1416 unsigned int arg, unsigned int qty)
1417{
1418 unsigned int erase_timeout;
1419
1420 if (arg == MMC_DISCARD_ARG ||
1421 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1422 erase_timeout = card->ext_csd.trim_timeout;
1423 } else if (card->ext_csd.erase_group_def & 1) {
1424 /* High Capacity Erase Group Size uses HC timeouts */
1425 if (arg == MMC_TRIM_ARG)
1426 erase_timeout = card->ext_csd.trim_timeout;
1427 else
1428 erase_timeout = card->ext_csd.hc_erase_timeout;
1429 } else {
1430 /* CSD Erase Group Size uses write timeout */
1431 unsigned int mult = (10 << card->csd.r2w_factor);
1432 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1433 unsigned int timeout_us;
1434
1435 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1436 if (card->csd.tacc_ns < 1000000)
1437 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1438 else
1439 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1440
1441 /*
1442 * ios.clock is only a target. The real clock rate might be
1443 * less but not that much less, so fudge it by multiplying by 2.
1444 */
1445 timeout_clks <<= 1;
1446 timeout_us += (timeout_clks * 1000) /
1447 (mmc_host_clk_rate(card->host) / 1000);
1448
1449 erase_timeout = timeout_us / 1000;
1450
1451 /*
1452 * Theoretically, the calculation could underflow so round up
1453 * to 1ms in that case.
1454 */
1455 if (!erase_timeout)
1456 erase_timeout = 1;
1457 }
1458
1459 /* Multiplier for secure operations */
1460 if (arg & MMC_SECURE_ARGS) {
1461 if (arg == MMC_SECURE_ERASE_ARG)
1462 erase_timeout *= card->ext_csd.sec_erase_mult;
1463 else
1464 erase_timeout *= card->ext_csd.sec_trim_mult;
1465 }
1466
1467 erase_timeout *= qty;
1468
1469 /*
1470 * Ensure at least a 1 second timeout for SPI as per
1471 * 'mmc_set_data_timeout()'
1472 */
1473 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1474 erase_timeout = 1000;
1475
1476 return erase_timeout;
1477}
1478
1479static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1480 unsigned int arg,
1481 unsigned int qty)
1482{
1483 unsigned int erase_timeout;
1484
1485 if (card->ssr.erase_timeout) {
1486 /* Erase timeout specified in SD Status Register (SSR) */
1487 erase_timeout = card->ssr.erase_timeout * qty +
1488 card->ssr.erase_offset;
1489 } else {
1490 /*
1491 * Erase timeout not specified in SD Status Register (SSR) so
1492 * use 250ms per write block.
1493 */
1494 erase_timeout = 250 * qty;
1495 }
1496
1497 /* Must not be less than 1 second */
1498 if (erase_timeout < 1000)
1499 erase_timeout = 1000;
1500
1501 return erase_timeout;
1502}
1503
1504static unsigned int mmc_erase_timeout(struct mmc_card *card,
1505 unsigned int arg,
1506 unsigned int qty)
1507{
1508 if (mmc_card_sd(card))
1509 return mmc_sd_erase_timeout(card, arg, qty);
1510 else
1511 return mmc_mmc_erase_timeout(card, arg, qty);
1512}
1513
1514static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1515 unsigned int to, unsigned int arg)
1516{
1517 struct mmc_command cmd = {0};
1518 unsigned int qty = 0;
1519 int err;
1520
1521 /*
1522 * qty is used to calculate the erase timeout which depends on how many
1523 * erase groups (or allocation units in SD terminology) are affected.
1524 * We count erasing part of an erase group as one erase group.
1525 * For SD, the allocation units are always a power of 2. For MMC, the
1526 * erase group size is almost certainly also power of 2, but it does not
1527 * seem to insist on that in the JEDEC standard, so we fall back to
1528 * division in that case. SD may not specify an allocation unit size,
1529 * in which case the timeout is based on the number of write blocks.
1530 *
1531 * Note that the timeout for secure trim 2 will only be correct if the
1532 * number of erase groups specified is the same as the total of all
1533 * preceding secure trim 1 commands. Since the power may have been
1534 * lost since the secure trim 1 commands occurred, it is generally
1535 * impossible to calculate the secure trim 2 timeout correctly.
1536 */
1537 if (card->erase_shift)
1538 qty += ((to >> card->erase_shift) -
1539 (from >> card->erase_shift)) + 1;
1540 else if (mmc_card_sd(card))
1541 qty += to - from + 1;
1542 else
1543 qty += ((to / card->erase_size) -
1544 (from / card->erase_size)) + 1;
1545
1546 if (!mmc_card_blockaddr(card)) {
1547 from <<= 9;
1548 to <<= 9;
1549 }
1550
1551 if (mmc_card_sd(card))
1552 cmd.opcode = SD_ERASE_WR_BLK_START;
1553 else
1554 cmd.opcode = MMC_ERASE_GROUP_START;
1555 cmd.arg = from;
1556 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1557 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1558 if (err) {
1559 pr_err("mmc_erase: group start error %d, "
1560 "status %#x\n", err, cmd.resp[0]);
1561 err = -EIO;
1562 goto out;
1563 }
1564
1565 memset(&cmd, 0, sizeof(struct mmc_command));
1566 if (mmc_card_sd(card))
1567 cmd.opcode = SD_ERASE_WR_BLK_END;
1568 else
1569 cmd.opcode = MMC_ERASE_GROUP_END;
1570 cmd.arg = to;
1571 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1572 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1573 if (err) {
1574 pr_err("mmc_erase: group end error %d, status %#x\n",
1575 err, cmd.resp[0]);
1576 err = -EIO;
1577 goto out;
1578 }
1579
1580 memset(&cmd, 0, sizeof(struct mmc_command));
1581 cmd.opcode = MMC_ERASE;
1582 cmd.arg = arg;
1583 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1584 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1585 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1586 if (err) {
1587 pr_err("mmc_erase: erase error %d, status %#x\n",
1588 err, cmd.resp[0]);
1589 err = -EIO;
1590 goto out;
1591 }
1592
1593 if (mmc_host_is_spi(card->host))
1594 goto out;
1595
1596 do {
1597 memset(&cmd, 0, sizeof(struct mmc_command));
1598 cmd.opcode = MMC_SEND_STATUS;
1599 cmd.arg = card->rca << 16;
1600 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1601 /* Do not retry else we can't see errors */
1602 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1603 if (err || (cmd.resp[0] & 0xFDF92000)) {
1604 pr_err("error %d requesting status %#x\n",
1605 err, cmd.resp[0]);
1606 err = -EIO;
1607 goto out;
1608 }
1609 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1610 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1611out:
1612 return err;
1613}
1614
1615/**
1616 * mmc_erase - erase sectors.
1617 * @card: card to erase
1618 * @from: first sector to erase
1619 * @nr: number of sectors to erase
1620 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1621 *
1622 * Caller must claim host before calling this function.
1623 */
1624int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1625 unsigned int arg)
1626{
1627 unsigned int rem, to = from + nr;
1628
1629 if (!(card->host->caps & MMC_CAP_ERASE) ||
1630 !(card->csd.cmdclass & CCC_ERASE))
1631 return -EOPNOTSUPP;
1632
1633 if (!card->erase_size)
1634 return -EOPNOTSUPP;
1635
1636 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1637 return -EOPNOTSUPP;
1638
1639 if ((arg & MMC_SECURE_ARGS) &&
1640 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1641 return -EOPNOTSUPP;
1642
1643 if ((arg & MMC_TRIM_ARGS) &&
1644 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1645 return -EOPNOTSUPP;
1646
1647 if (arg == MMC_SECURE_ERASE_ARG) {
1648 if (from % card->erase_size || nr % card->erase_size)
1649 return -EINVAL;
1650 }
1651
1652 if (arg == MMC_ERASE_ARG) {
1653 rem = from % card->erase_size;
1654 if (rem) {
1655 rem = card->erase_size - rem;
1656 from += rem;
1657 if (nr > rem)
1658 nr -= rem;
1659 else
1660 return 0;
1661 }
1662 rem = nr % card->erase_size;
1663 if (rem)
1664 nr -= rem;
1665 }
1666
1667 if (nr == 0)
1668 return 0;
1669
1670 to = from + nr;
1671
1672 if (to <= from)
1673 return -EINVAL;
1674
1675 /* 'from' and 'to' are inclusive */
1676 to -= 1;
1677
1678 return mmc_do_erase(card, from, to, arg);
1679}
1680EXPORT_SYMBOL(mmc_erase);
1681
1682int mmc_can_erase(struct mmc_card *card)
1683{
1684 if ((card->host->caps & MMC_CAP_ERASE) &&
1685 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1686 return 1;
1687 return 0;
1688}
1689EXPORT_SYMBOL(mmc_can_erase);
1690
1691int mmc_can_trim(struct mmc_card *card)
1692{
1693 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1694 return 1;
1695 return 0;
1696}
1697EXPORT_SYMBOL(mmc_can_trim);
1698
1699int mmc_can_discard(struct mmc_card *card)
1700{
1701 /*
1702 * As there's no way to detect the discard support bit at v4.5
1703 * use the s/w feature support filed.
1704 */
1705 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1706 return 1;
1707 return 0;
1708}
1709EXPORT_SYMBOL(mmc_can_discard);
1710
1711int mmc_can_sanitize(struct mmc_card *card)
1712{
1713 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1714 return 0;
1715 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1716 return 1;
1717 return 0;
1718}
1719EXPORT_SYMBOL(mmc_can_sanitize);
1720
1721int mmc_can_secure_erase_trim(struct mmc_card *card)
1722{
1723 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1724 return 1;
1725 return 0;
1726}
1727EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1728
1729int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1730 unsigned int nr)
1731{
1732 if (!card->erase_size)
1733 return 0;
1734 if (from % card->erase_size || nr % card->erase_size)
1735 return 0;
1736 return 1;
1737}
1738EXPORT_SYMBOL(mmc_erase_group_aligned);
1739
1740static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1741 unsigned int arg)
1742{
1743 struct mmc_host *host = card->host;
1744 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1745 unsigned int last_timeout = 0;
1746
1747 if (card->erase_shift)
1748 max_qty = UINT_MAX >> card->erase_shift;
1749 else if (mmc_card_sd(card))
1750 max_qty = UINT_MAX;
1751 else
1752 max_qty = UINT_MAX / card->erase_size;
1753
1754 /* Find the largest qty with an OK timeout */
1755 do {
1756 y = 0;
1757 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1758 timeout = mmc_erase_timeout(card, arg, qty + x);
1759 if (timeout > host->max_discard_to)
1760 break;
1761 if (timeout < last_timeout)
1762 break;
1763 last_timeout = timeout;
1764 y = x;
1765 }
1766 qty += y;
1767 } while (y);
1768
1769 if (!qty)
1770 return 0;
1771
1772 if (qty == 1)
1773 return 1;
1774
1775 /* Convert qty to sectors */
1776 if (card->erase_shift)
1777 max_discard = --qty << card->erase_shift;
1778 else if (mmc_card_sd(card))
1779 max_discard = qty;
1780 else
1781 max_discard = --qty * card->erase_size;
1782
1783 return max_discard;
1784}
1785
1786unsigned int mmc_calc_max_discard(struct mmc_card *card)
1787{
1788 struct mmc_host *host = card->host;
1789 unsigned int max_discard, max_trim;
1790
1791 if (!host->max_discard_to)
1792 return UINT_MAX;
1793
1794 /*
1795 * Without erase_group_def set, MMC erase timeout depends on clock
1796 * frequence which can change. In that case, the best choice is
1797 * just the preferred erase size.
1798 */
1799 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1800 return card->pref_erase;
1801
1802 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1803 if (mmc_can_trim(card)) {
1804 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1805 if (max_trim < max_discard)
1806 max_discard = max_trim;
1807 } else if (max_discard < card->erase_size) {
1808 max_discard = 0;
1809 }
1810 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1811 mmc_hostname(host), max_discard, host->max_discard_to);
1812 return max_discard;
1813}
1814EXPORT_SYMBOL(mmc_calc_max_discard);
1815
1816int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1817{
1818 struct mmc_command cmd = {0};
1819
1820 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1821 return 0;
1822
1823 cmd.opcode = MMC_SET_BLOCKLEN;
1824 cmd.arg = blocklen;
1825 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1826 return mmc_wait_for_cmd(card->host, &cmd, 5);
1827}
1828EXPORT_SYMBOL(mmc_set_blocklen);
1829
1830static void mmc_hw_reset_for_init(struct mmc_host *host)
1831{
1832 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1833 return;
1834 mmc_host_clk_hold(host);
1835 host->ops->hw_reset(host);
1836 mmc_host_clk_release(host);
1837}
1838
1839int mmc_can_reset(struct mmc_card *card)
1840{
1841 u8 rst_n_function;
1842
1843 if (!mmc_card_mmc(card))
1844 return 0;
1845 rst_n_function = card->ext_csd.rst_n_function;
1846 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1847 return 0;
1848 return 1;
1849}
1850EXPORT_SYMBOL(mmc_can_reset);
1851
1852static int mmc_do_hw_reset(struct mmc_host *host, int check)
1853{
1854 struct mmc_card *card = host->card;
1855
1856 if (!host->bus_ops->power_restore)
1857 return -EOPNOTSUPP;
1858
1859 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1860 return -EOPNOTSUPP;
1861
1862 if (!card)
1863 return -EINVAL;
1864
1865 if (!mmc_can_reset(card))
1866 return -EOPNOTSUPP;
1867
1868 mmc_host_clk_hold(host);
1869 mmc_set_clock(host, host->f_init);
1870
1871 host->ops->hw_reset(host);
1872
1873 /* If the reset has happened, then a status command will fail */
1874 if (check) {
1875 struct mmc_command cmd = {0};
1876 int err;
1877
1878 cmd.opcode = MMC_SEND_STATUS;
1879 if (!mmc_host_is_spi(card->host))
1880 cmd.arg = card->rca << 16;
1881 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1882 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1883 if (!err) {
1884 mmc_host_clk_release(host);
1885 return -ENOSYS;
1886 }
1887 }
1888
1889 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1890 if (mmc_host_is_spi(host)) {
1891 host->ios.chip_select = MMC_CS_HIGH;
1892 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1893 } else {
1894 host->ios.chip_select = MMC_CS_DONTCARE;
1895 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1896 }
1897 host->ios.bus_width = MMC_BUS_WIDTH_1;
1898 host->ios.timing = MMC_TIMING_LEGACY;
1899 mmc_set_ios(host);
1900
1901 mmc_host_clk_release(host);
1902
1903 return host->bus_ops->power_restore(host);
1904}
1905
1906int mmc_hw_reset(struct mmc_host *host)
1907{
1908 return mmc_do_hw_reset(host, 0);
1909}
1910EXPORT_SYMBOL(mmc_hw_reset);
1911
1912int mmc_hw_reset_check(struct mmc_host *host)
1913{
1914 return mmc_do_hw_reset(host, 1);
1915}
1916EXPORT_SYMBOL(mmc_hw_reset_check);
1917
1918static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1919{
1920 host->f_init = freq;
1921
1922#ifdef CONFIG_MMC_DEBUG
1923 pr_info("%s: %s: trying to init card at %u Hz\n",
1924 mmc_hostname(host), __func__, host->f_init);
1925#endif
1926 mmc_power_up(host);
1927
1928 /*
1929 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1930 * do a hardware reset if possible.
1931 */
1932 mmc_hw_reset_for_init(host);
1933
1934 /* Initialization should be done at 3.3 V I/O voltage. */
1935 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1936
1937 /*
1938 * sdio_reset sends CMD52 to reset card. Since we do not know
1939 * if the card is being re-initialized, just send it. CMD52
1940 * should be ignored by SD/eMMC cards.
1941 */
1942 sdio_reset(host);
1943 mmc_go_idle(host);
1944
1945 mmc_send_if_cond(host, host->ocr_avail);
1946
1947 /* Order's important: probe SDIO, then SD, then MMC */
1948 if (!mmc_attach_sdio(host))
1949 return 0;
1950 if (!mmc_attach_sd(host))
1951 return 0;
1952 if (!mmc_attach_mmc(host))
1953 return 0;
1954
1955 mmc_power_off(host);
1956 return -EIO;
1957}
1958
1959int _mmc_detect_card_removed(struct mmc_host *host)
1960{
1961 int ret;
1962
1963 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1964 return 0;
1965
1966 if (!host->card || mmc_card_removed(host->card))
1967 return 1;
1968
1969 ret = host->bus_ops->alive(host);
1970 if (ret) {
1971 mmc_card_set_removed(host->card);
1972 pr_debug("%s: card remove detected\n", mmc_hostname(host));
1973 }
1974
1975 return ret;
1976}
1977
1978int mmc_detect_card_removed(struct mmc_host *host)
1979{
1980 struct mmc_card *card = host->card;
1981 int ret;
1982
1983 WARN_ON(!host->claimed);
1984
1985 if (!card)
1986 return 1;
1987
1988 ret = mmc_card_removed(card);
1989 /*
1990 * The card will be considered unchanged unless we have been asked to
1991 * detect a change or host requires polling to provide card detection.
1992 */
1993 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1994 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
1995 return ret;
1996
1997 host->detect_change = 0;
1998 if (!ret) {
1999 ret = _mmc_detect_card_removed(host);
2000 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2001 /*
2002 * Schedule a detect work as soon as possible to let a
2003 * rescan handle the card removal.
2004 */
2005 cancel_delayed_work(&host->detect);
2006 mmc_detect_change(host, 0);
2007 }
2008 }
2009
2010 return ret;
2011}
2012EXPORT_SYMBOL(mmc_detect_card_removed);
2013
2014void mmc_rescan(struct work_struct *work)
2015{
2016 struct mmc_host *host =
2017 container_of(work, struct mmc_host, detect.work);
2018 int i;
2019
2020 if (host->rescan_disable)
2021 return;
2022
2023 mmc_bus_get(host);
2024
2025 /*
2026 * if there is a _removable_ card registered, check whether it is
2027 * still present
2028 */
2029 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2030 && !(host->caps & MMC_CAP_NONREMOVABLE))
2031 host->bus_ops->detect(host);
2032
2033 host->detect_change = 0;
2034
2035 /*
2036 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2037 * the card is no longer present.
2038 */
2039 mmc_bus_put(host);
2040 mmc_bus_get(host);
2041
2042 /* if there still is a card present, stop here */
2043 if (host->bus_ops != NULL) {
2044 mmc_bus_put(host);
2045 goto out;
2046 }
2047
2048 /*
2049 * Only we can add a new handler, so it's safe to
2050 * release the lock here.
2051 */
2052 mmc_bus_put(host);
2053
2054 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2055 mmc_claim_host(host);
2056 mmc_power_off(host);
2057 mmc_release_host(host);
2058 goto out;
2059 }
2060
2061 mmc_claim_host(host);
2062 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2063 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2064 break;
2065 if (freqs[i] <= host->f_min)
2066 break;
2067 }
2068 mmc_release_host(host);
2069
2070 out:
2071 if (host->caps & MMC_CAP_NEEDS_POLL)
2072 mmc_schedule_delayed_work(&host->detect, HZ);
2073}
2074
2075void mmc_start_host(struct mmc_host *host)
2076{
2077 host->f_init = max(freqs[0], host->f_min);
2078 mmc_power_up(host);
2079 mmc_detect_change(host, 0);
2080}
2081
2082void mmc_stop_host(struct mmc_host *host)
2083{
2084#ifdef CONFIG_MMC_DEBUG
2085 unsigned long flags;
2086 spin_lock_irqsave(&host->lock, flags);
2087 host->removed = 1;
2088 spin_unlock_irqrestore(&host->lock, flags);
2089#endif
2090
2091 cancel_delayed_work_sync(&host->detect);
2092 mmc_flush_scheduled_work();
2093
2094 /* clear pm flags now and let card drivers set them as needed */
2095 host->pm_flags = 0;
2096
2097 mmc_bus_get(host);
2098 if (host->bus_ops && !host->bus_dead) {
2099 /* Calling bus_ops->remove() with a claimed host can deadlock */
2100 if (host->bus_ops->remove)
2101 host->bus_ops->remove(host);
2102
2103 mmc_claim_host(host);
2104 mmc_detach_bus(host);
2105 mmc_power_off(host);
2106 mmc_release_host(host);
2107 mmc_bus_put(host);
2108 return;
2109 }
2110 mmc_bus_put(host);
2111
2112 BUG_ON(host->card);
2113
2114 mmc_power_off(host);
2115}
2116
2117int mmc_power_save_host(struct mmc_host *host)
2118{
2119 int ret = 0;
2120
2121#ifdef CONFIG_MMC_DEBUG
2122 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2123#endif
2124
2125 mmc_bus_get(host);
2126
2127 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2128 mmc_bus_put(host);
2129 return -EINVAL;
2130 }
2131
2132 if (host->bus_ops->power_save)
2133 ret = host->bus_ops->power_save(host);
2134
2135 mmc_bus_put(host);
2136
2137 mmc_power_off(host);
2138
2139 return ret;
2140}
2141EXPORT_SYMBOL(mmc_power_save_host);
2142
2143int mmc_power_restore_host(struct mmc_host *host)
2144{
2145 int ret;
2146
2147#ifdef CONFIG_MMC_DEBUG
2148 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2149#endif
2150
2151 mmc_bus_get(host);
2152
2153 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2154 mmc_bus_put(host);
2155 return -EINVAL;
2156 }
2157
2158 mmc_power_up(host);
2159 ret = host->bus_ops->power_restore(host);
2160
2161 mmc_bus_put(host);
2162
2163 return ret;
2164}
2165EXPORT_SYMBOL(mmc_power_restore_host);
2166
2167int mmc_card_awake(struct mmc_host *host)
2168{
2169 int err = -ENOSYS;
2170
2171 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2172 return 0;
2173
2174 mmc_bus_get(host);
2175
2176 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2177 err = host->bus_ops->awake(host);
2178
2179 mmc_bus_put(host);
2180
2181 return err;
2182}
2183EXPORT_SYMBOL(mmc_card_awake);
2184
2185int mmc_card_sleep(struct mmc_host *host)
2186{
2187 int err = -ENOSYS;
2188
2189 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2190 return 0;
2191
2192 mmc_bus_get(host);
2193
2194 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2195 err = host->bus_ops->sleep(host);
2196
2197 mmc_bus_put(host);
2198
2199 return err;
2200}
2201EXPORT_SYMBOL(mmc_card_sleep);
2202
2203int mmc_card_can_sleep(struct mmc_host *host)
2204{
2205 struct mmc_card *card = host->card;
2206
2207 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2208 return 1;
2209 return 0;
2210}
2211EXPORT_SYMBOL(mmc_card_can_sleep);
2212
2213/*
2214 * Flush the cache to the non-volatile storage.
2215 */
2216int mmc_flush_cache(struct mmc_card *card)
2217{
2218 struct mmc_host *host = card->host;
2219 int err = 0;
2220
2221 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2222 return err;
2223
2224 if (mmc_card_mmc(card) &&
2225 (card->ext_csd.cache_size > 0) &&
2226 (card->ext_csd.cache_ctrl & 1)) {
2227 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2228 EXT_CSD_FLUSH_CACHE, 1, 0);
2229 if (err)
2230 pr_err("%s: cache flush error %d\n",
2231 mmc_hostname(card->host), err);
2232 }
2233
2234 return err;
2235}
2236EXPORT_SYMBOL(mmc_flush_cache);
2237
2238/*
2239 * Turn the cache ON/OFF.
2240 * Turning the cache OFF shall trigger flushing of the data
2241 * to the non-volatile storage.
2242 */
2243int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2244{
2245 struct mmc_card *card = host->card;
2246 unsigned int timeout;
2247 int err = 0;
2248
2249 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2250 mmc_card_is_removable(host))
2251 return err;
2252
2253 mmc_claim_host(host);
2254 if (card && mmc_card_mmc(card) &&
2255 (card->ext_csd.cache_size > 0)) {
2256 enable = !!enable;
2257
2258 if (card->ext_csd.cache_ctrl ^ enable) {
2259 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2260 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2261 EXT_CSD_CACHE_CTRL, enable, timeout);
2262 if (err)
2263 pr_err("%s: cache %s error %d\n",
2264 mmc_hostname(card->host),
2265 enable ? "on" : "off",
2266 err);
2267 else
2268 card->ext_csd.cache_ctrl = enable;
2269 }
2270 }
2271 mmc_release_host(host);
2272
2273 return err;
2274}
2275EXPORT_SYMBOL(mmc_cache_ctrl);
2276
2277#ifdef CONFIG_PM
2278
2279/**
2280 * mmc_suspend_host - suspend a host
2281 * @host: mmc host
2282 */
2283int mmc_suspend_host(struct mmc_host *host)
2284{
2285 int err = 0;
2286
2287 cancel_delayed_work(&host->detect);
2288 mmc_flush_scheduled_work();
2289
2290 err = mmc_cache_ctrl(host, 0);
2291 if (err)
2292 goto out;
2293
2294 mmc_bus_get(host);
2295 if (host->bus_ops && !host->bus_dead) {
2296
2297 if (host->bus_ops->suspend)
2298 err = host->bus_ops->suspend(host);
2299
2300 if (err == -ENOSYS || !host->bus_ops->resume) {
2301 /*
2302 * We simply "remove" the card in this case.
2303 * It will be redetected on resume. (Calling
2304 * bus_ops->remove() with a claimed host can
2305 * deadlock.)
2306 */
2307 if (host->bus_ops->remove)
2308 host->bus_ops->remove(host);
2309 mmc_claim_host(host);
2310 mmc_detach_bus(host);
2311 mmc_power_off(host);
2312 mmc_release_host(host);
2313 host->pm_flags = 0;
2314 err = 0;
2315 }
2316 }
2317 mmc_bus_put(host);
2318
2319 if (!err && !mmc_card_keep_power(host))
2320 mmc_power_off(host);
2321
2322out:
2323 return err;
2324}
2325
2326EXPORT_SYMBOL(mmc_suspend_host);
2327
2328/**
2329 * mmc_resume_host - resume a previously suspended host
2330 * @host: mmc host
2331 */
2332int mmc_resume_host(struct mmc_host *host)
2333{
2334 int err = 0;
2335
2336 mmc_bus_get(host);
2337 if (host->bus_ops && !host->bus_dead) {
2338 if (!mmc_card_keep_power(host)) {
2339 mmc_power_up(host);
2340 mmc_select_voltage(host, host->ocr);
2341 /*
2342 * Tell runtime PM core we just powered up the card,
2343 * since it still believes the card is powered off.
2344 * Note that currently runtime PM is only enabled
2345 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2346 */
2347 if (mmc_card_sdio(host->card) &&
2348 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2349 pm_runtime_disable(&host->card->dev);
2350 pm_runtime_set_active(&host->card->dev);
2351 pm_runtime_enable(&host->card->dev);
2352 }
2353 }
2354 BUG_ON(!host->bus_ops->resume);
2355 err = host->bus_ops->resume(host);
2356 if (err) {
2357 pr_warning("%s: error %d during resume "
2358 "(card was removed?)\n",
2359 mmc_hostname(host), err);
2360 err = 0;
2361 }
2362 }
2363 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2364 mmc_bus_put(host);
2365
2366 return err;
2367}
2368EXPORT_SYMBOL(mmc_resume_host);
2369
2370/* Do the card removal on suspend if card is assumed removeable
2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372 to sync the card.
2373*/
2374int mmc_pm_notify(struct notifier_block *notify_block,
2375 unsigned long mode, void *unused)
2376{
2377 struct mmc_host *host = container_of(
2378 notify_block, struct mmc_host, pm_notify);
2379 unsigned long flags;
2380
2381
2382 switch (mode) {
2383 case PM_HIBERNATION_PREPARE:
2384 case PM_SUSPEND_PREPARE:
2385
2386 spin_lock_irqsave(&host->lock, flags);
2387 host->rescan_disable = 1;
2388 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2389 spin_unlock_irqrestore(&host->lock, flags);
2390 cancel_delayed_work_sync(&host->detect);
2391
2392 if (!host->bus_ops || host->bus_ops->suspend)
2393 break;
2394
2395 /* Calling bus_ops->remove() with a claimed host can deadlock */
2396 if (host->bus_ops->remove)
2397 host->bus_ops->remove(host);
2398
2399 mmc_claim_host(host);
2400 mmc_detach_bus(host);
2401 mmc_power_off(host);
2402 mmc_release_host(host);
2403 host->pm_flags = 0;
2404 break;
2405
2406 case PM_POST_SUSPEND:
2407 case PM_POST_HIBERNATION:
2408 case PM_POST_RESTORE:
2409
2410 spin_lock_irqsave(&host->lock, flags);
2411 host->rescan_disable = 0;
2412 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2413 spin_unlock_irqrestore(&host->lock, flags);
2414 mmc_detect_change(host, 0);
2415
2416 }
2417
2418 return 0;
2419}
2420#endif
2421
2422static int __init mmc_init(void)
2423{
2424 int ret;
2425
2426 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2427 if (!workqueue)
2428 return -ENOMEM;
2429
2430 ret = mmc_register_bus();
2431 if (ret)
2432 goto destroy_workqueue;
2433
2434 ret = mmc_register_host_class();
2435 if (ret)
2436 goto unregister_bus;
2437
2438 ret = sdio_register_bus();
2439 if (ret)
2440 goto unregister_host_class;
2441
2442 return 0;
2443
2444unregister_host_class:
2445 mmc_unregister_host_class();
2446unregister_bus:
2447 mmc_unregister_bus();
2448destroy_workqueue:
2449 destroy_workqueue(workqueue);
2450
2451 return ret;
2452}
2453
2454static void __exit mmc_exit(void)
2455{
2456 sdio_unregister_bus();
2457 mmc_unregister_host_class();
2458 mmc_unregister_bus();
2459 destroy_workqueue(workqueue);
2460}
2461
2462subsys_initcall(mmc_init);
2463module_exit(mmc_exit);
2464
2465MODULE_LICENSE("GPL");