Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 
 
 
 
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
 
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
 
 
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 
 
 
 
 
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 
 
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337	int err;
 338
 339	init_completion(&mrq->cmd_completion);
 340
 341	mmc_retune_hold(host);
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 347
 348	WARN_ON(!host->claimed);
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 353
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 356
 357	return 0;
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 
 392	}
 393
 394	return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 406		if (!cmd->error || !cmd->retries ||
 407		    mmc_card_removed(host->card))
 408			break;
 409
 410		mmc_retune_recheck(host);
 411
 412		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413			 mmc_hostname(host), cmd->opcode, cmd->error);
 414		cmd->retries--;
 415		cmd->error = 0;
 416		__mmc_start_request(host, mrq);
 417	}
 418
 419	mmc_retune_release(host);
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 432{
 433	int err;
 434
 435	/*
 436	 * CQE cannot process re-tuning commands. Caller must hold retuning
 437	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438	 * active requests i.e. this is the first.  Note, re-tuning will call
 439	 * ->cqe_off().
 440	 */
 441	err = mmc_retune(host);
 442	if (err)
 443		goto out_err;
 444
 445	mrq->host = host;
 446
 447	mmc_mrq_pr_debug(host, mrq, true);
 448
 449	err = mmc_mrq_prep(host, mrq);
 450	if (err)
 451		goto out_err;
 452
 453	err = host->cqe_ops->cqe_request(host, mrq);
 454	if (err)
 455		goto out_err;
 456
 457	trace_mmc_request_start(host, mrq);
 458
 459	return 0;
 460
 461out_err:
 462	if (mrq->cmd) {
 463		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464			 mmc_hostname(host), mrq->cmd->opcode, err);
 465	} else {
 466		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467			 mmc_hostname(host), mrq->tag, err);
 
 
 
 
 
 
 
 468	}
 469	return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *	@host: MMC host which completed request
 476 *	@mrq: MMC request which completed
 477 *
 478 *	CQE drivers should call this function when they have completed
 479 *	their processing of a request.
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 482{
 483	mmc_should_fail_request(host, mrq);
 484
 485	/* Flag re-tuning needed on CRC errors */
 486	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487	    (mrq->data && mrq->data->error == -EILSEQ))
 488		mmc_retune_needed(host);
 489
 490	trace_mmc_request_done(host, mrq);
 491
 492	if (mrq->cmd) {
 493		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495	} else {
 496		pr_debug("%s: CQE transfer done tag %d\n",
 497			 mmc_hostname(host), mrq->tag);
 498	}
 499
 500	if (mrq->data) {
 501		pr_debug("%s:     %d bytes transferred: %d\n",
 502			 mmc_hostname(host),
 503			 mrq->data->bytes_xfered, mrq->data->error);
 504	}
 505
 506	mrq->done(mrq);
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *	@host: MMC host
 513 *	@mrq: MMC request to be processed
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517	if (host->cqe_ops->cqe_post_req)
 518		host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT	1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 
 
 
 
 
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 
 535{
 536	struct mmc_command cmd;
 537	int err;
 
 538
 539	mmc_retune_hold_now(host);
 
 
 540
 541	/*
 542	 * Recovery is expected seldom, if at all, but it reduces performance,
 543	 * so make sure it is not completely silent.
 544	 */
 545	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547	host->cqe_ops->cqe_recovery_start(host);
 548
 549	memset(&cmd, 0, sizeof(cmd));
 550	cmd.opcode       = MMC_STOP_TRANSMISSION;
 551	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 552	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 554	mmc_wait_for_cmd(host, &cmd, 0);
 555
 556	memset(&cmd, 0, sizeof(cmd));
 557	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 558	cmd.arg          = 1; /* Discard entire queue */
 559	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 560	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 561	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 562	err = mmc_wait_for_cmd(host, &cmd, 0);
 563
 564	host->cqe_ops->cqe_recovery_finish(host);
 
 
 565
 566	mmc_retune_release(host);
 
 
 
 567
 568	return err;
 
 
 569}
 570EXPORT_SYMBOL(mmc_cqe_recovery);
 571
 572/**
 573 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 574 *	@host: MMC host
 575 *	@mrq: MMC request
 576 *
 577 *	mmc_is_req_done() is used with requests that have
 578 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 579 *	starting a request and before waiting for it to complete. That is,
 580 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 581 *	and before mmc_wait_for_req_done(). If it is called at other times the
 582 *	result is not meaningful.
 583 */
 584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 585{
 586	return completion_done(&mrq->completion);
 587}
 588EXPORT_SYMBOL(mmc_is_req_done);
 589
 590/**
 591 *	mmc_wait_for_req - start a request and wait for completion
 592 *	@host: MMC host to start command
 593 *	@mrq: MMC request to start
 594 *
 595 *	Start a new MMC custom command request for a host, and wait
 596 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 597 *	requests, the transfer is ongoing and the caller can issue further
 598 *	commands that do not use the data lines, and then wait by calling
 599 *	mmc_wait_for_req_done().
 600 *	Does not attempt to parse the response.
 601 */
 602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 603{
 604	__mmc_start_req(host, mrq);
 605
 606	if (!mrq->cap_cmd_during_tfr)
 607		mmc_wait_for_req_done(host, mrq);
 608}
 609EXPORT_SYMBOL(mmc_wait_for_req);
 610
 611/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612 *	mmc_wait_for_cmd - start a command and wait for completion
 613 *	@host: MMC host to start command
 614 *	@cmd: MMC command to start
 615 *	@retries: maximum number of retries
 616 *
 617 *	Start a new MMC command for a host, and wait for the command
 618 *	to complete.  Return any error that occurred while the command
 619 *	was executing.  Do not attempt to parse the response.
 620 */
 621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 622{
 623	struct mmc_request mrq = {};
 624
 625	WARN_ON(!host->claimed);
 626
 627	memset(cmd->resp, 0, sizeof(cmd->resp));
 628	cmd->retries = retries;
 629
 630	mrq.cmd = cmd;
 631	cmd->data = NULL;
 632
 633	mmc_wait_for_req(host, &mrq);
 634
 635	return cmd->error;
 636}
 637
 638EXPORT_SYMBOL(mmc_wait_for_cmd);
 639
 640/**
 641 *	mmc_set_data_timeout - set the timeout for a data command
 642 *	@data: data phase for command
 643 *	@card: the MMC card associated with the data transfer
 644 *
 645 *	Computes the data timeout parameters according to the
 646 *	correct algorithm given the card type.
 647 */
 648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 649{
 650	unsigned int mult;
 651
 652	/*
 653	 * SDIO cards only define an upper 1 s limit on access.
 654	 */
 655	if (mmc_card_sdio(card)) {
 656		data->timeout_ns = 1000000000;
 657		data->timeout_clks = 0;
 658		return;
 659	}
 660
 661	/*
 662	 * SD cards use a 100 multiplier rather than 10
 663	 */
 664	mult = mmc_card_sd(card) ? 100 : 10;
 665
 666	/*
 667	 * Scale up the multiplier (and therefore the timeout) by
 668	 * the r2w factor for writes.
 669	 */
 670	if (data->flags & MMC_DATA_WRITE)
 671		mult <<= card->csd.r2w_factor;
 672
 673	data->timeout_ns = card->csd.taac_ns * mult;
 674	data->timeout_clks = card->csd.taac_clks * mult;
 675
 676	/*
 677	 * SD cards also have an upper limit on the timeout.
 678	 */
 679	if (mmc_card_sd(card)) {
 680		unsigned int timeout_us, limit_us;
 681
 682		timeout_us = data->timeout_ns / 1000;
 683		if (card->host->ios.clock)
 684			timeout_us += data->timeout_clks * 1000 /
 685				(card->host->ios.clock / 1000);
 686
 687		if (data->flags & MMC_DATA_WRITE)
 688			/*
 689			 * The MMC spec "It is strongly recommended
 690			 * for hosts to implement more than 500ms
 691			 * timeout value even if the card indicates
 692			 * the 250ms maximum busy length."  Even the
 693			 * previous value of 300ms is known to be
 694			 * insufficient for some cards.
 695			 */
 696			limit_us = 3000000;
 697		else
 698			limit_us = 100000;
 699
 700		/*
 701		 * SDHC cards always use these fixed values.
 702		 */
 703		if (timeout_us > limit_us) {
 704			data->timeout_ns = limit_us * 1000;
 705			data->timeout_clks = 0;
 706		}
 707
 708		/* assign limit value if invalid */
 709		if (timeout_us == 0)
 710			data->timeout_ns = limit_us * 1000;
 711	}
 712
 713	/*
 714	 * Some cards require longer data read timeout than indicated in CSD.
 715	 * Address this by setting the read timeout to a "reasonably high"
 716	 * value. For the cards tested, 600ms has proven enough. If necessary,
 717	 * this value can be increased if other problematic cards require this.
 718	 */
 719	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 720		data->timeout_ns = 600000000;
 721		data->timeout_clks = 0;
 722	}
 723
 724	/*
 725	 * Some cards need very high timeouts if driven in SPI mode.
 726	 * The worst observed timeout was 900ms after writing a
 727	 * continuous stream of data until the internal logic
 728	 * overflowed.
 729	 */
 730	if (mmc_host_is_spi(card->host)) {
 731		if (data->flags & MMC_DATA_WRITE) {
 732			if (data->timeout_ns < 1000000000)
 733				data->timeout_ns = 1000000000;	/* 1s */
 734		} else {
 735			if (data->timeout_ns < 100000000)
 736				data->timeout_ns =  100000000;	/* 100ms */
 737		}
 738	}
 739}
 740EXPORT_SYMBOL(mmc_set_data_timeout);
 741
 742/*
 743 * Allow claiming an already claimed host if the context is the same or there is
 744 * no context but the task is the same.
 
 
 
 
 
 
 
 
 
 
 745 */
 746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 747				   struct task_struct *task)
 748{
 749	return host->claimer == ctx ||
 750	       (!ctx && task && host->claimer->task == task);
 751}
 
 
 
 752
 753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 754				       struct mmc_ctx *ctx,
 755				       struct task_struct *task)
 756{
 757	if (!host->claimer) {
 758		if (ctx)
 759			host->claimer = ctx;
 760		else
 761			host->claimer = &host->default_ctx;
 762	}
 763	if (task)
 764		host->claimer->task = task;
 765}
 
 766
 767/**
 768 *	__mmc_claim_host - exclusively claim a host
 769 *	@host: mmc host to claim
 770 *	@ctx: context that claims the host or NULL in which case the default
 771 *	context will be used
 772 *	@abort: whether or not the operation should be aborted
 773 *
 774 *	Claim a host for a set of operations.  If @abort is non null and
 775 *	dereference a non-zero value then this will return prematurely with
 776 *	that non-zero value without acquiring the lock.  Returns zero
 777 *	with the lock held otherwise.
 778 */
 779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 780		     atomic_t *abort)
 781{
 782	struct task_struct *task = ctx ? NULL : current;
 783	DECLARE_WAITQUEUE(wait, current);
 784	unsigned long flags;
 785	int stop;
 786	bool pm = false;
 787
 788	might_sleep();
 789
 790	add_wait_queue(&host->wq, &wait);
 791	spin_lock_irqsave(&host->lock, flags);
 792	while (1) {
 793		set_current_state(TASK_UNINTERRUPTIBLE);
 794		stop = abort ? atomic_read(abort) : 0;
 795		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 796			break;
 797		spin_unlock_irqrestore(&host->lock, flags);
 798		schedule();
 799		spin_lock_irqsave(&host->lock, flags);
 800	}
 801	set_current_state(TASK_RUNNING);
 802	if (!stop) {
 803		host->claimed = 1;
 804		mmc_ctx_set_claimer(host, ctx, task);
 805		host->claim_cnt += 1;
 806		if (host->claim_cnt == 1)
 807			pm = true;
 808	} else
 809		wake_up(&host->wq);
 810	spin_unlock_irqrestore(&host->lock, flags);
 811	remove_wait_queue(&host->wq, &wait);
 812
 813	if (pm)
 814		pm_runtime_get_sync(mmc_dev(host));
 815
 816	return stop;
 817}
 
 818EXPORT_SYMBOL(__mmc_claim_host);
 819
 820/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821 *	mmc_release_host - release a host
 822 *	@host: mmc host to release
 823 *
 824 *	Release a MMC host, allowing others to claim the host
 825 *	for their operations.
 826 */
 827void mmc_release_host(struct mmc_host *host)
 828{
 829	unsigned long flags;
 830
 831	WARN_ON(!host->claimed);
 832
 
 
 
 833	spin_lock_irqsave(&host->lock, flags);
 834	if (--host->claim_cnt) {
 835		/* Release for nested claim */
 836		spin_unlock_irqrestore(&host->lock, flags);
 837	} else {
 838		host->claimed = 0;
 839		host->claimer->task = NULL;
 840		host->claimer = NULL;
 841		spin_unlock_irqrestore(&host->lock, flags);
 842		wake_up(&host->wq);
 843		pm_runtime_mark_last_busy(mmc_dev(host));
 844		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 845			pm_runtime_put_sync_suspend(mmc_dev(host));
 846		else
 847			pm_runtime_put_autosuspend(mmc_dev(host));
 848	}
 849}
 850EXPORT_SYMBOL(mmc_release_host);
 851
 852/*
 853 * This is a helper function, which fetches a runtime pm reference for the
 854 * card device and also claims the host.
 855 */
 856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 857{
 858	pm_runtime_get_sync(&card->dev);
 859	__mmc_claim_host(card->host, ctx, NULL);
 860}
 861EXPORT_SYMBOL(mmc_get_card);
 862
 863/*
 864 * This is a helper function, which releases the host and drops the runtime
 865 * pm reference for the card device.
 866 */
 867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 868{
 869	struct mmc_host *host = card->host;
 870
 871	WARN_ON(ctx && host->claimer != ctx);
 872
 873	mmc_release_host(host);
 874	pm_runtime_mark_last_busy(&card->dev);
 875	pm_runtime_put_autosuspend(&card->dev);
 876}
 877EXPORT_SYMBOL(mmc_put_card);
 878
 879/*
 880 * Internal function that does the actual ios call to the host driver,
 881 * optionally printing some debug output.
 882 */
 883static inline void mmc_set_ios(struct mmc_host *host)
 884{
 885	struct mmc_ios *ios = &host->ios;
 886
 887	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 888		"width %u timing %u\n",
 889		 mmc_hostname(host), ios->clock, ios->bus_mode,
 890		 ios->power_mode, ios->chip_select, ios->vdd,
 891		 1 << ios->bus_width, ios->timing);
 892
 
 
 893	host->ops->set_ios(host, ios);
 894}
 895
 896/*
 897 * Control chip select pin on a host.
 898 */
 899void mmc_set_chip_select(struct mmc_host *host, int mode)
 900{
 
 901	host->ios.chip_select = mode;
 902	mmc_set_ios(host);
 
 903}
 904
 905/*
 906 * Sets the host clock to the highest possible frequency that
 907 * is below "hz".
 908 */
 909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 910{
 911	WARN_ON(hz && hz < host->f_min);
 912
 913	if (hz > host->f_max)
 914		hz = host->f_max;
 915
 916	host->ios.clock = hz;
 917	mmc_set_ios(host);
 918}
 919
 920int mmc_execute_tuning(struct mmc_card *card)
 921{
 922	struct mmc_host *host = card->host;
 923	u32 opcode;
 924	int err;
 925
 926	if (!host->ops->execute_tuning)
 927		return 0;
 928
 929	if (host->cqe_on)
 930		host->cqe_ops->cqe_off(host);
 
 
 
 
 
 931
 932	if (mmc_card_mmc(card))
 933		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 934	else
 935		opcode = MMC_SEND_TUNING_BLOCK;
 
 
 
 936
 937	err = host->ops->execute_tuning(host, opcode);
 938	if (!err) {
 939		mmc_retune_clear(host);
 940		mmc_retune_enable(host);
 941		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 942	}
 
 943
 944	/* Only print error when we don't check for card removal */
 945	if (!host->detect_change) {
 946		pr_err("%s: tuning execution failed: %d\n",
 947			mmc_hostname(host), err);
 948		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 949	}
 950
 951	return err;
 
 
 
 
 
 
 
 
 
 
 
 952}
 
 953
 954/*
 955 * Change the bus mode (open drain/push-pull) of a host.
 956 */
 957void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 958{
 
 959	host->ios.bus_mode = mode;
 960	mmc_set_ios(host);
 
 961}
 962
 963/*
 964 * Change data bus width of a host.
 965 */
 966void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 967{
 
 968	host->ios.bus_width = width;
 969	mmc_set_ios(host);
 970}
 971
 972/*
 973 * Set initial state after a power cycle or a hw_reset.
 974 */
 975void mmc_set_initial_state(struct mmc_host *host)
 976{
 977	if (host->cqe_on)
 978		host->cqe_ops->cqe_off(host);
 979
 980	mmc_retune_disable(host);
 981
 982	if (mmc_host_is_spi(host))
 983		host->ios.chip_select = MMC_CS_HIGH;
 984	else
 985		host->ios.chip_select = MMC_CS_DONTCARE;
 986	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 987	host->ios.bus_width = MMC_BUS_WIDTH_1;
 988	host->ios.timing = MMC_TIMING_LEGACY;
 989	host->ios.drv_type = 0;
 990	host->ios.enhanced_strobe = false;
 991
 992	/*
 993	 * Make sure we are in non-enhanced strobe mode before we
 994	 * actually enable it in ext_csd.
 995	 */
 996	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
 997	     host->ops->hs400_enhanced_strobe)
 998		host->ops->hs400_enhanced_strobe(host, &host->ios);
 999
1000	mmc_set_ios(host);
1001
1002	mmc_crypto_set_initial_state(host);
1003}
1004
1005/**
1006 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007 * @vdd:	voltage (mV)
1008 * @low_bits:	prefer low bits in boundary cases
1009 *
1010 * This function returns the OCR bit number according to the provided @vdd
1011 * value. If conversion is not possible a negative errno value returned.
1012 *
1013 * Depending on the @low_bits flag the function prefers low or high OCR bits
1014 * on boundary voltages. For example,
1015 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017 *
1018 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019 */
1020static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021{
1022	const int max_bit = ilog2(MMC_VDD_35_36);
1023	int bit;
1024
1025	if (vdd < 1650 || vdd > 3600)
1026		return -EINVAL;
1027
1028	if (vdd >= 1650 && vdd <= 1950)
1029		return ilog2(MMC_VDD_165_195);
1030
1031	if (low_bits)
1032		vdd -= 1;
1033
1034	/* Base 2000 mV, step 100 mV, bit's base 8. */
1035	bit = (vdd - 2000) / 100 + 8;
1036	if (bit > max_bit)
1037		return max_bit;
1038	return bit;
1039}
1040
1041/**
1042 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043 * @vdd_min:	minimum voltage value (mV)
1044 * @vdd_max:	maximum voltage value (mV)
1045 *
1046 * This function returns the OCR mask bits according to the provided @vdd_min
1047 * and @vdd_max values. If conversion is not possible the function returns 0.
1048 *
1049 * Notes wrt boundary cases:
1050 * This function sets the OCR bits for all boundary voltages, for example
1051 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052 * MMC_VDD_34_35 mask.
1053 */
1054u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055{
1056	u32 mask = 0;
1057
1058	if (vdd_max < vdd_min)
1059		return 0;
1060
1061	/* Prefer high bits for the boundary vdd_max values. */
1062	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063	if (vdd_max < 0)
1064		return 0;
1065
1066	/* Prefer low bits for the boundary vdd_min values. */
1067	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068	if (vdd_min < 0)
1069		return 0;
1070
1071	/* Fill the mask, from max bit to min bit. */
1072	while (vdd_max >= vdd_min)
1073		mask |= 1 << vdd_max--;
1074
1075	return mask;
1076}
 
 
 
1077
1078static int mmc_of_get_func_num(struct device_node *node)
 
 
 
 
 
 
 
 
 
1079{
1080	u32 reg;
1081	int ret;
 
1082
1083	ret = of_property_read_u32(node, "reg", &reg);
1084	if (ret < 0)
1085		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087	return reg;
1088}
 
1089
1090struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091		unsigned func_num)
1092{
1093	struct device_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095	if (!host->parent || !host->parent->of_node)
1096		return NULL;
1097
1098	for_each_child_of_node(host->parent->of_node, node) {
1099		if (mmc_of_get_func_num(node) == func_num)
1100			return node;
 
 
 
 
 
 
 
 
 
 
 
 
 
1101	}
1102
1103	return NULL;
 
 
 
1104}
 
 
 
1105
1106/*
1107 * Mask off any voltages we don't support and select
1108 * the lowest voltage
1109 */
1110u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111{
1112	int bit;
1113
1114	/*
1115	 * Sanity check the voltages that the card claims to
1116	 * support.
1117	 */
1118	if (ocr & 0x7F) {
1119		dev_warn(mmc_dev(host),
1120		"card claims to support voltages below defined range\n");
1121		ocr &= ~0x7F;
1122	}
1123
1124	ocr &= host->ocr_avail;
1125	if (!ocr) {
1126		dev_warn(mmc_dev(host), "no support for card's volts\n");
1127		return 0;
1128	}
1129
1130	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131		bit = ffs(ocr) - 1;
 
 
1132		ocr &= 3 << bit;
1133		mmc_power_cycle(host, ocr);
 
 
 
 
1134	} else {
1135		bit = fls(ocr) - 1;
1136		/*
1137		 * The bit variable represents the highest voltage bit set in
1138		 * the OCR register.
1139		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140		 * we must shift the mask '3' with (bit - 1).
1141		 */
1142		ocr &= 3 << (bit - 1);
1143		if (bit != host->ios.vdd)
1144			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145	}
1146
1147	return ocr;
1148}
1149
1150int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151{
 
1152	int err = 0;
1153	int old_signal_voltage = host->ios.signal_voltage;
1154
1155	host->ios.signal_voltage = signal_voltage;
1156	if (host->ops->start_signal_voltage_switch)
1157		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158
1159	if (err)
1160		host->ios.signal_voltage = old_signal_voltage;
1161
1162	return err;
1163
1164}
1165
1166void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167{
1168	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175}
1176
1177int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178{
1179	u32 clock;
1180
1181	/*
1182	 * During a signal voltage level switch, the clock must be gated
1183	 * for 5 ms according to the SD spec
1184	 */
1185	clock = host->ios.clock;
1186	host->ios.clock = 0;
1187	mmc_set_ios(host);
1188
1189	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190		return -EAGAIN;
1191
1192	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193	mmc_delay(10);
1194	host->ios.clock = clock;
1195	mmc_set_ios(host);
1196
1197	return 0;
1198}
1199
1200int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201{
1202	struct mmc_command cmd = {};
1203	int err = 0;
1204
1205	/*
1206	 * If we cannot switch voltages, return failure so the caller
1207	 * can continue without UHS mode
1208	 */
1209	if (!host->ops->start_signal_voltage_switch)
1210		return -EPERM;
1211	if (!host->ops->card_busy)
1212		pr_warn("%s: cannot verify signal voltage switch\n",
1213			mmc_hostname(host));
1214
1215	cmd.opcode = SD_SWITCH_VOLTAGE;
1216	cmd.arg = 0;
1217	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218
1219	err = mmc_wait_for_cmd(host, &cmd, 0);
1220	if (err)
1221		goto power_cycle;
1222
1223	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224		return -EIO;
 
1225
1226	/*
1227	 * The card should drive cmd and dat[0:3] low immediately
1228	 * after the response of cmd11, but wait 1 ms to be sure
1229	 */
1230	mmc_delay(1);
1231	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232		err = -EAGAIN;
1233		goto power_cycle;
1234	}
1235
1236	if (mmc_host_set_uhs_voltage(host)) {
1237		/*
1238		 * Voltages may not have been switched, but we've already
1239		 * sent CMD11, so a power cycle is required anyway
1240		 */
1241		err = -EAGAIN;
1242		goto power_cycle;
1243	}
1244
1245	/* Wait for at least 1 ms according to spec */
1246	mmc_delay(1);
1247
1248	/*
1249	 * Failure to switch is indicated by the card holding
1250	 * dat[0:3] low
1251	 */
1252	if (host->ops->card_busy && host->ops->card_busy(host))
1253		err = -EAGAIN;
1254
1255power_cycle:
1256	if (err) {
1257		pr_debug("%s: Signal voltage switch failed, "
1258			"power cycling card\n", mmc_hostname(host));
1259		mmc_power_cycle(host, ocr);
1260	}
1261
1262	return err;
1263}
1264
1265/*
1266 * Select timing parameters for host.
1267 */
1268void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269{
 
1270	host->ios.timing = timing;
1271	mmc_set_ios(host);
 
1272}
1273
1274/*
1275 * Select appropriate driver type for host.
1276 */
1277void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278{
 
1279	host->ios.drv_type = drv_type;
1280	mmc_set_ios(host);
 
1281}
1282
1283int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284			      int card_drv_type, int *drv_type)
1285{
1286	struct mmc_host *host = card->host;
1287	int host_drv_type = SD_DRIVER_TYPE_B;
 
 
 
 
 
1288
1289	*drv_type = 0;
 
 
 
 
 
1290
1291	if (!host->ops->select_drive_strength)
1292		return 0;
 
 
 
 
 
 
 
1293
1294	/* Use SD definition of driver strength for hosts */
1295	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296		host_drv_type |= SD_DRIVER_TYPE_A;
1297
1298	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299		host_drv_type |= SD_DRIVER_TYPE_C;
1300
1301	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302		host_drv_type |= SD_DRIVER_TYPE_D;
1303
1304	/*
1305	 * The drive strength that the hardware can support
1306	 * depends on the board design.  Pass the appropriate
1307	 * information and let the hardware specific code
1308	 * return what is possible given the options
1309	 */
1310	return host->ops->select_drive_strength(card, max_dtr,
1311						host_drv_type,
1312						card_drv_type,
1313						drv_type);
1314}
1315
1316/*
1317 * Apply power to the MMC stack.  This is a two-stage process.
1318 * First, we enable power to the card without the clock running.
1319 * We then wait a bit for the power to stabilise.  Finally,
1320 * enable the bus drivers and clock to the card.
1321 *
1322 * We must _NOT_ enable the clock prior to power stablising.
1323 *
1324 * If a host does all the power sequencing itself, ignore the
1325 * initial MMC_POWER_UP stage.
1326 */
1327void mmc_power_up(struct mmc_host *host, u32 ocr)
1328{
 
 
1329	if (host->ios.power_mode == MMC_POWER_ON)
1330		return;
1331
1332	mmc_pwrseq_pre_power_on(host);
1333
1334	host->ios.vdd = fls(ocr) - 1;
1335	host->ios.power_mode = MMC_POWER_UP;
1336	/* Set initial state and call mmc_set_ios */
1337	mmc_set_initial_state(host);
 
1338
1339	mmc_set_initial_signal_voltage(host);
 
 
 
 
 
 
 
 
 
1340
1341	/*
1342	 * This delay should be sufficient to allow the power supply
1343	 * to reach the minimum voltage.
1344	 */
1345	mmc_delay(host->ios.power_delay_ms);
1346
1347	mmc_pwrseq_post_power_on(host);
1348
1349	host->ios.clock = host->f_init;
1350
1351	host->ios.power_mode = MMC_POWER_ON;
1352	mmc_set_ios(host);
1353
1354	/*
1355	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356	 * time required to reach a stable voltage.
1357	 */
1358	mmc_delay(host->ios.power_delay_ms);
 
 
1359}
1360
1361void mmc_power_off(struct mmc_host *host)
1362{
 
 
1363	if (host->ios.power_mode == MMC_POWER_OFF)
1364		return;
1365
1366	mmc_pwrseq_power_off(host);
1367
1368	host->ios.clock = 0;
1369	host->ios.vdd = 0;
1370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371	host->ios.power_mode = MMC_POWER_OFF;
1372	/* Set initial state and call mmc_set_ios */
1373	mmc_set_initial_state(host);
 
1374
1375	/*
1376	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377	 * XO-1.5, require a short delay after poweroff before the card
1378	 * can be successfully turned on again.
1379	 */
1380	mmc_delay(1);
 
 
1381}
1382
1383void mmc_power_cycle(struct mmc_host *host, u32 ocr)
 
 
 
1384{
1385	mmc_power_off(host);
1386	/* Wait at least 1 ms according to SD spec */
1387	mmc_delay(1);
1388	mmc_power_up(host, ocr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389}
1390
1391/*
1392 * Assign a mmc bus handler to a host. Only one bus handler may control a
1393 * host at any given time.
1394 */
1395void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1396{
 
 
 
 
 
 
 
 
 
 
 
 
1397	host->bus_ops = ops;
 
 
 
 
1398}
1399
1400/*
1401 * Remove the current bus handler from a host.
1402 */
1403void mmc_detach_bus(struct mmc_host *host)
1404{
1405	host->bus_ops = NULL;
1406}
1407
1408void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1409{
1410	/*
1411	 * Prevent system sleep for 5s to allow user space to consume the
1412	 * corresponding uevent. This is especially useful, when CD irq is used
1413	 * as a system wakeup, but doesn't hurt in other cases.
1414	 */
1415	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1416		__pm_wakeup_event(host->ws, 5000);
1417
1418	host->detect_change = 1;
1419	mmc_schedule_delayed_work(&host->detect, delay);
 
 
 
 
 
 
 
 
1420}
1421
1422/**
1423 *	mmc_detect_change - process change of state on a MMC socket
1424 *	@host: host which changed state.
1425 *	@delay: optional delay to wait before detection (jiffies)
1426 *
1427 *	MMC drivers should call this when they detect a card has been
1428 *	inserted or removed. The MMC layer will confirm that any
1429 *	present card is still functional, and initialize any newly
1430 *	inserted.
1431 */
1432void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1433{
1434	_mmc_detect_change(host, delay, true);
 
 
 
 
 
 
 
1435}
 
1436EXPORT_SYMBOL(mmc_detect_change);
1437
1438void mmc_init_erase(struct mmc_card *card)
1439{
1440	unsigned int sz;
1441
1442	if (is_power_of_2(card->erase_size))
1443		card->erase_shift = ffs(card->erase_size) - 1;
1444	else
1445		card->erase_shift = 0;
1446
1447	/*
1448	 * It is possible to erase an arbitrarily large area of an SD or MMC
1449	 * card.  That is not desirable because it can take a long time
1450	 * (minutes) potentially delaying more important I/O, and also the
1451	 * timeout calculations become increasingly hugely over-estimated.
1452	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1453	 * to that size and alignment.
1454	 *
1455	 * For SD cards that define Allocation Unit size, limit erases to one
1456	 * Allocation Unit at a time.
1457	 * For MMC, have a stab at ai good value and for modern cards it will
1458	 * end up being 4MiB. Note that if the value is too small, it can end
1459	 * up taking longer to erase. Also note, erase_size is already set to
1460	 * High Capacity Erase Size if available when this function is called.
1461	 */
1462	if (mmc_card_sd(card) && card->ssr.au) {
1463		card->pref_erase = card->ssr.au;
1464		card->erase_shift = ffs(card->ssr.au) - 1;
1465	} else if (card->erase_size) {
 
 
1466		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1467		if (sz < 128)
1468			card->pref_erase = 512 * 1024 / 512;
1469		else if (sz < 512)
1470			card->pref_erase = 1024 * 1024 / 512;
1471		else if (sz < 1024)
1472			card->pref_erase = 2 * 1024 * 1024 / 512;
1473		else
1474			card->pref_erase = 4 * 1024 * 1024 / 512;
1475		if (card->pref_erase < card->erase_size)
1476			card->pref_erase = card->erase_size;
1477		else {
1478			sz = card->pref_erase % card->erase_size;
1479			if (sz)
1480				card->pref_erase += card->erase_size - sz;
1481		}
1482	} else
1483		card->pref_erase = 0;
1484}
1485
1486static bool is_trim_arg(unsigned int arg)
1487{
1488	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1489}
1490
1491static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1492				          unsigned int arg, unsigned int qty)
1493{
1494	unsigned int erase_timeout;
1495
1496	if (arg == MMC_DISCARD_ARG ||
1497	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1498		erase_timeout = card->ext_csd.trim_timeout;
1499	} else if (card->ext_csd.erase_group_def & 1) {
1500		/* High Capacity Erase Group Size uses HC timeouts */
1501		if (arg == MMC_TRIM_ARG)
1502			erase_timeout = card->ext_csd.trim_timeout;
1503		else
1504			erase_timeout = card->ext_csd.hc_erase_timeout;
1505	} else {
1506		/* CSD Erase Group Size uses write timeout */
1507		unsigned int mult = (10 << card->csd.r2w_factor);
1508		unsigned int timeout_clks = card->csd.taac_clks * mult;
1509		unsigned int timeout_us;
1510
1511		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1512		if (card->csd.taac_ns < 1000000)
1513			timeout_us = (card->csd.taac_ns * mult) / 1000;
1514		else
1515			timeout_us = (card->csd.taac_ns / 1000) * mult;
1516
1517		/*
1518		 * ios.clock is only a target.  The real clock rate might be
1519		 * less but not that much less, so fudge it by multiplying by 2.
1520		 */
1521		timeout_clks <<= 1;
1522		timeout_us += (timeout_clks * 1000) /
1523			      (card->host->ios.clock / 1000);
1524
1525		erase_timeout = timeout_us / 1000;
1526
1527		/*
1528		 * Theoretically, the calculation could underflow so round up
1529		 * to 1ms in that case.
1530		 */
1531		if (!erase_timeout)
1532			erase_timeout = 1;
1533	}
1534
1535	/* Multiplier for secure operations */
1536	if (arg & MMC_SECURE_ARGS) {
1537		if (arg == MMC_SECURE_ERASE_ARG)
1538			erase_timeout *= card->ext_csd.sec_erase_mult;
1539		else
1540			erase_timeout *= card->ext_csd.sec_trim_mult;
1541	}
1542
1543	erase_timeout *= qty;
1544
1545	/*
1546	 * Ensure at least a 1 second timeout for SPI as per
1547	 * 'mmc_set_data_timeout()'
1548	 */
1549	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1550		erase_timeout = 1000;
1551
1552	return erase_timeout;
1553}
1554
1555static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1556					 unsigned int arg,
1557					 unsigned int qty)
1558{
1559	unsigned int erase_timeout;
1560
1561	/* for DISCARD none of the below calculation applies.
1562	 * the busy timeout is 250msec per discard command.
1563	 */
1564	if (arg == SD_DISCARD_ARG)
1565		return SD_DISCARD_TIMEOUT_MS;
1566
1567	if (card->ssr.erase_timeout) {
1568		/* Erase timeout specified in SD Status Register (SSR) */
1569		erase_timeout = card->ssr.erase_timeout * qty +
1570				card->ssr.erase_offset;
1571	} else {
1572		/*
1573		 * Erase timeout not specified in SD Status Register (SSR) so
1574		 * use 250ms per write block.
1575		 */
1576		erase_timeout = 250 * qty;
1577	}
1578
1579	/* Must not be less than 1 second */
1580	if (erase_timeout < 1000)
1581		erase_timeout = 1000;
1582
1583	return erase_timeout;
1584}
1585
1586static unsigned int mmc_erase_timeout(struct mmc_card *card,
1587				      unsigned int arg,
1588				      unsigned int qty)
1589{
1590	if (mmc_card_sd(card))
1591		return mmc_sd_erase_timeout(card, arg, qty);
1592	else
1593		return mmc_mmc_erase_timeout(card, arg, qty);
1594}
1595
1596static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1597			unsigned int to, unsigned int arg)
1598{
1599	struct mmc_command cmd = {};
1600	unsigned int qty = 0, busy_timeout = 0;
1601	bool use_r1b_resp;
1602	int err;
1603
1604	mmc_retune_hold(card->host);
1605
1606	/*
1607	 * qty is used to calculate the erase timeout which depends on how many
1608	 * erase groups (or allocation units in SD terminology) are affected.
1609	 * We count erasing part of an erase group as one erase group.
1610	 * For SD, the allocation units are always a power of 2.  For MMC, the
1611	 * erase group size is almost certainly also power of 2, but it does not
1612	 * seem to insist on that in the JEDEC standard, so we fall back to
1613	 * division in that case.  SD may not specify an allocation unit size,
1614	 * in which case the timeout is based on the number of write blocks.
1615	 *
1616	 * Note that the timeout for secure trim 2 will only be correct if the
1617	 * number of erase groups specified is the same as the total of all
1618	 * preceding secure trim 1 commands.  Since the power may have been
1619	 * lost since the secure trim 1 commands occurred, it is generally
1620	 * impossible to calculate the secure trim 2 timeout correctly.
1621	 */
1622	if (card->erase_shift)
1623		qty += ((to >> card->erase_shift) -
1624			(from >> card->erase_shift)) + 1;
1625	else if (mmc_card_sd(card))
1626		qty += to - from + 1;
1627	else
1628		qty += ((to / card->erase_size) -
1629			(from / card->erase_size)) + 1;
1630
1631	if (!mmc_card_blockaddr(card)) {
1632		from <<= 9;
1633		to <<= 9;
1634	}
1635
1636	if (mmc_card_sd(card))
1637		cmd.opcode = SD_ERASE_WR_BLK_START;
1638	else
1639		cmd.opcode = MMC_ERASE_GROUP_START;
1640	cmd.arg = from;
1641	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1642	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1643	if (err) {
1644		pr_err("mmc_erase: group start error %d, "
1645		       "status %#x\n", err, cmd.resp[0]);
1646		err = -EIO;
1647		goto out;
1648	}
1649
1650	memset(&cmd, 0, sizeof(struct mmc_command));
1651	if (mmc_card_sd(card))
1652		cmd.opcode = SD_ERASE_WR_BLK_END;
1653	else
1654		cmd.opcode = MMC_ERASE_GROUP_END;
1655	cmd.arg = to;
1656	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1657	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1658	if (err) {
1659		pr_err("mmc_erase: group end error %d, status %#x\n",
1660		       err, cmd.resp[0]);
1661		err = -EIO;
1662		goto out;
1663	}
1664
1665	memset(&cmd, 0, sizeof(struct mmc_command));
1666	cmd.opcode = MMC_ERASE;
1667	cmd.arg = arg;
1668	busy_timeout = mmc_erase_timeout(card, arg, qty);
1669	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1670
1671	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1672	if (err) {
1673		pr_err("mmc_erase: erase error %d, status %#x\n",
1674		       err, cmd.resp[0]);
1675		err = -EIO;
1676		goto out;
1677	}
1678
1679	if (mmc_host_is_spi(card->host))
1680		goto out;
1681
1682	/*
1683	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1684	 * shall be avoided.
1685	 */
1686	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1687		goto out;
1688
1689	/* Let's poll to find out when the erase operation completes. */
1690	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1691
 
 
 
 
 
1692out:
1693	mmc_retune_release(card->host);
1694	return err;
1695}
1696
1697static unsigned int mmc_align_erase_size(struct mmc_card *card,
1698					 unsigned int *from,
1699					 unsigned int *to,
1700					 unsigned int nr)
1701{
1702	unsigned int from_new = *from, nr_new = nr, rem;
1703
1704	/*
1705	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1706	 * to align the erase size efficiently.
1707	 */
1708	if (is_power_of_2(card->erase_size)) {
1709		unsigned int temp = from_new;
1710
1711		from_new = round_up(temp, card->erase_size);
1712		rem = from_new - temp;
1713
1714		if (nr_new > rem)
1715			nr_new -= rem;
1716		else
1717			return 0;
1718
1719		nr_new = round_down(nr_new, card->erase_size);
1720	} else {
1721		rem = from_new % card->erase_size;
1722		if (rem) {
1723			rem = card->erase_size - rem;
1724			from_new += rem;
1725			if (nr_new > rem)
1726				nr_new -= rem;
1727			else
1728				return 0;
1729		}
1730
1731		rem = nr_new % card->erase_size;
1732		if (rem)
1733			nr_new -= rem;
1734	}
1735
1736	if (nr_new == 0)
1737		return 0;
1738
1739	*to = from_new + nr_new;
1740	*from = from_new;
1741
1742	return nr_new;
1743}
1744
1745/**
1746 * mmc_erase - erase sectors.
1747 * @card: card to erase
1748 * @from: first sector to erase
1749 * @nr: number of sectors to erase
1750 * @arg: erase command argument
1751 *
1752 * Caller must claim host before calling this function.
1753 */
1754int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1755	      unsigned int arg)
1756{
1757	unsigned int rem, to = from + nr;
1758	int err;
1759
1760	if (!(card->csd.cmdclass & CCC_ERASE))
 
1761		return -EOPNOTSUPP;
1762
1763	if (!card->erase_size)
1764		return -EOPNOTSUPP;
1765
1766	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1767		return -EOPNOTSUPP;
1768
1769	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1770	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1771		return -EOPNOTSUPP;
1772
1773	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1774	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1775		return -EOPNOTSUPP;
1776
1777	if (arg == MMC_SECURE_ERASE_ARG) {
1778		if (from % card->erase_size || nr % card->erase_size)
1779			return -EINVAL;
1780	}
1781
1782	if (arg == MMC_ERASE_ARG)
1783		nr = mmc_align_erase_size(card, &from, &to, nr);
 
 
 
 
 
 
 
 
 
 
 
 
1784
1785	if (nr == 0)
1786		return 0;
1787
 
 
1788	if (to <= from)
1789		return -EINVAL;
1790
1791	/* 'from' and 'to' are inclusive */
1792	to -= 1;
1793
1794	/*
1795	 * Special case where only one erase-group fits in the timeout budget:
1796	 * If the region crosses an erase-group boundary on this particular
1797	 * case, we will be trimming more than one erase-group which, does not
1798	 * fit in the timeout budget of the controller, so we need to split it
1799	 * and call mmc_do_erase() twice if necessary. This special case is
1800	 * identified by the card->eg_boundary flag.
1801	 */
1802	rem = card->erase_size - (from % card->erase_size);
1803	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1804		err = mmc_do_erase(card, from, from + rem - 1, arg);
1805		from += rem;
1806		if ((err) || (to <= from))
1807			return err;
1808	}
1809
1810	return mmc_do_erase(card, from, to, arg);
1811}
1812EXPORT_SYMBOL(mmc_erase);
1813
1814int mmc_can_erase(struct mmc_card *card)
1815{
1816	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
 
1817		return 1;
1818	return 0;
1819}
1820EXPORT_SYMBOL(mmc_can_erase);
1821
1822int mmc_can_trim(struct mmc_card *card)
1823{
1824	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1825	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1826		return 1;
1827	return 0;
1828}
1829EXPORT_SYMBOL(mmc_can_trim);
1830
1831int mmc_can_discard(struct mmc_card *card)
1832{
1833	/*
1834	 * As there's no way to detect the discard support bit at v4.5
1835	 * use the s/w feature support filed.
1836	 */
1837	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1838		return 1;
1839	return 0;
1840}
1841EXPORT_SYMBOL(mmc_can_discard);
1842
1843int mmc_can_sanitize(struct mmc_card *card)
1844{
1845	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1846		return 0;
1847	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1848		return 1;
1849	return 0;
1850}
 
1851
1852int mmc_can_secure_erase_trim(struct mmc_card *card)
1853{
1854	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1855	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1856		return 1;
1857	return 0;
1858}
1859EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1860
1861int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1862			    unsigned int nr)
1863{
1864	if (!card->erase_size)
1865		return 0;
1866	if (from % card->erase_size || nr % card->erase_size)
1867		return 0;
1868	return 1;
1869}
1870EXPORT_SYMBOL(mmc_erase_group_aligned);
1871
1872static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1873					    unsigned int arg)
1874{
1875	struct mmc_host *host = card->host;
1876	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1877	unsigned int last_timeout = 0;
1878	unsigned int max_busy_timeout = host->max_busy_timeout ?
1879			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1880
1881	if (card->erase_shift) {
1882		max_qty = UINT_MAX >> card->erase_shift;
1883		min_qty = card->pref_erase >> card->erase_shift;
1884	} else if (mmc_card_sd(card)) {
1885		max_qty = UINT_MAX;
1886		min_qty = card->pref_erase;
1887	} else {
1888		max_qty = UINT_MAX / card->erase_size;
1889		min_qty = card->pref_erase / card->erase_size;
1890	}
1891
1892	/*
1893	 * We should not only use 'host->max_busy_timeout' as the limitation
1894	 * when deciding the max discard sectors. We should set a balance value
1895	 * to improve the erase speed, and it can not get too long timeout at
1896	 * the same time.
1897	 *
1898	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1899	 * matter what size of 'host->max_busy_timeout', but if the
1900	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1901	 * then we can continue to increase the max discard sectors until we
1902	 * get a balance value. In cases when the 'host->max_busy_timeout'
1903	 * isn't specified, use the default max erase timeout.
1904	 */
1905	do {
1906		y = 0;
1907		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1908			timeout = mmc_erase_timeout(card, arg, qty + x);
1909
1910			if (qty + x > min_qty && timeout > max_busy_timeout)
1911				break;
1912
1913			if (timeout < last_timeout)
1914				break;
1915			last_timeout = timeout;
1916			y = x;
1917		}
1918		qty += y;
1919	} while (y);
1920
1921	if (!qty)
1922		return 0;
1923
1924	/*
1925	 * When specifying a sector range to trim, chances are we might cross
1926	 * an erase-group boundary even if the amount of sectors is less than
1927	 * one erase-group.
1928	 * If we can only fit one erase-group in the controller timeout budget,
1929	 * we have to care that erase-group boundaries are not crossed by a
1930	 * single trim operation. We flag that special case with "eg_boundary".
1931	 * In all other cases we can just decrement qty and pretend that we
1932	 * always touch (qty + 1) erase-groups as a simple optimization.
1933	 */
1934	if (qty == 1)
1935		card->eg_boundary = 1;
1936	else
1937		qty--;
1938
1939	/* Convert qty to sectors */
1940	if (card->erase_shift)
1941		max_discard = qty << card->erase_shift;
1942	else if (mmc_card_sd(card))
1943		max_discard = qty + 1;
1944	else
1945		max_discard = qty * card->erase_size;
1946
1947	return max_discard;
1948}
1949
1950unsigned int mmc_calc_max_discard(struct mmc_card *card)
1951{
1952	struct mmc_host *host = card->host;
1953	unsigned int max_discard, max_trim;
1954
 
 
 
1955	/*
1956	 * Without erase_group_def set, MMC erase timeout depends on clock
1957	 * frequence which can change.  In that case, the best choice is
1958	 * just the preferred erase size.
1959	 */
1960	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1961		return card->pref_erase;
1962
1963	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1964	if (mmc_can_trim(card)) {
1965		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1966		if (max_trim < max_discard || max_discard == 0)
1967			max_discard = max_trim;
1968	} else if (max_discard < card->erase_size) {
1969		max_discard = 0;
1970	}
1971	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1972		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1973		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1974	return max_discard;
1975}
1976EXPORT_SYMBOL(mmc_calc_max_discard);
1977
1978bool mmc_card_is_blockaddr(struct mmc_card *card)
1979{
1980	return card ? mmc_card_blockaddr(card) : false;
1981}
1982EXPORT_SYMBOL(mmc_card_is_blockaddr);
1983
1984int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1985{
1986	struct mmc_command cmd = {};
1987
1988	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1989	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1990		return 0;
1991
1992	cmd.opcode = MMC_SET_BLOCKLEN;
1993	cmd.arg = blocklen;
1994	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1995	return mmc_wait_for_cmd(card->host, &cmd, 5);
1996}
1997EXPORT_SYMBOL(mmc_set_blocklen);
1998
1999static void mmc_hw_reset_for_init(struct mmc_host *host)
2000{
2001	mmc_pwrseq_reset(host);
2002
2003	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2004		return;
2005	host->ops->card_hw_reset(host);
 
 
2006}
2007
2008/**
2009 * mmc_hw_reset - reset the card in hardware
2010 * @card: card to be reset
2011 *
2012 * Hard reset the card. This function is only for upper layers, like the
2013 * block layer or card drivers. You cannot use it in host drivers (struct
2014 * mmc_card might be gone then).
2015 *
2016 * Return: 0 on success, -errno on failure
2017 */
2018int mmc_hw_reset(struct mmc_card *card)
2019{
2020	struct mmc_host *host = card->host;
2021	int ret;
2022
2023	ret = host->bus_ops->hw_reset(host);
2024	if (ret < 0)
2025		pr_warn("%s: tried to HW reset card, got error %d\n",
2026			mmc_hostname(host), ret);
2027
2028	return ret;
 
 
 
 
 
2029}
2030EXPORT_SYMBOL(mmc_hw_reset);
2031
2032int mmc_sw_reset(struct mmc_card *card)
2033{
2034	struct mmc_host *host = card->host;
2035	int ret;
2036
2037	if (!host->bus_ops->sw_reset)
2038		return -EOPNOTSUPP;
2039
2040	ret = host->bus_ops->sw_reset(host);
2041	if (ret)
2042		pr_warn("%s: tried to SW reset card, got error %d\n",
2043			mmc_hostname(host), ret);
2044
2045	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046}
2047EXPORT_SYMBOL(mmc_sw_reset);
 
 
 
 
 
 
 
 
 
 
 
2048
2049static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2050{
2051	host->f_init = freq;
2052
2053	pr_debug("%s: %s: trying to init card at %u Hz\n",
 
2054		mmc_hostname(host), __func__, host->f_init);
2055
2056	mmc_power_up(host, host->ocr_avail);
2057
2058	/*
2059	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2060	 * do a hardware reset if possible.
2061	 */
2062	mmc_hw_reset_for_init(host);
2063
 
 
 
2064	/*
2065	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2066	 * if the card is being re-initialized, just send it.  CMD52
2067	 * should be ignored by SD/eMMC cards.
2068	 * Skip it if we already know that we do not support SDIO commands
2069	 */
2070	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2071		sdio_reset(host);
2072
2073	mmc_go_idle(host);
2074
2075	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2076		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2077			goto out;
2078		if (mmc_card_sd_express(host))
2079			return 0;
2080	}
2081
2082	/* Order's important: probe SDIO, then SD, then MMC */
2083	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2084		if (!mmc_attach_sdio(host))
2085			return 0;
2086
2087	if (!(host->caps2 & MMC_CAP2_NO_SD))
2088		if (!mmc_attach_sd(host))
2089			return 0;
2090
2091	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2092		if (!mmc_attach_mmc(host))
2093			return 0;
2094
2095out:
2096	mmc_power_off(host);
2097	return -EIO;
2098}
2099
2100int _mmc_detect_card_removed(struct mmc_host *host)
2101{
2102	int ret;
2103
 
 
 
2104	if (!host->card || mmc_card_removed(host->card))
2105		return 1;
2106
2107	ret = host->bus_ops->alive(host);
2108
2109	/*
2110	 * Card detect status and alive check may be out of sync if card is
2111	 * removed slowly, when card detect switch changes while card/slot
2112	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2113	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2114	 * detect work 200ms later for this case.
2115	 */
2116	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2117		mmc_detect_change(host, msecs_to_jiffies(200));
2118		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2119	}
2120
2121	if (ret) {
2122		mmc_card_set_removed(host->card);
2123		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2124	}
2125
2126	return ret;
2127}
2128
2129int mmc_detect_card_removed(struct mmc_host *host)
2130{
2131	struct mmc_card *card = host->card;
2132	int ret;
2133
2134	WARN_ON(!host->claimed);
2135
2136	if (!card)
2137		return 1;
2138
2139	if (!mmc_card_is_removable(host))
2140		return 0;
2141
2142	ret = mmc_card_removed(card);
2143	/*
2144	 * The card will be considered unchanged unless we have been asked to
2145	 * detect a change or host requires polling to provide card detection.
2146	 */
2147	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
 
2148		return ret;
2149
2150	host->detect_change = 0;
2151	if (!ret) {
2152		ret = _mmc_detect_card_removed(host);
2153		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2154			/*
2155			 * Schedule a detect work as soon as possible to let a
2156			 * rescan handle the card removal.
2157			 */
2158			cancel_delayed_work(&host->detect);
2159			_mmc_detect_change(host, 0, false);
2160		}
2161	}
2162
2163	return ret;
2164}
2165EXPORT_SYMBOL(mmc_detect_card_removed);
2166
2167int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2168{
2169	unsigned int boot_sectors_num;
2170
2171	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2172		return -EOPNOTSUPP;
2173
2174	/* filter out unrelated cards */
2175	if (card->ext_csd.rev < 3 ||
2176	    !mmc_card_mmc(card) ||
2177	    !mmc_card_is_blockaddr(card) ||
2178	     mmc_card_is_removable(card->host))
2179		return -ENOENT;
2180
2181	/*
2182	 * eMMC storage has two special boot partitions in addition to the
2183	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2184	 * accesses, this means that the partition table addresses are shifted
2185	 * by the size of boot partitions.  In accordance with the eMMC
2186	 * specification, the boot partition size is calculated as follows:
2187	 *
2188	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2189	 *
2190	 * Calculate number of sectors occupied by the both boot partitions.
2191	 */
2192	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2193			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2194
2195	/* Defined by NVIDIA and used by Android devices. */
2196	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2197
2198	return 0;
2199}
2200EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2201
2202void mmc_rescan(struct work_struct *work)
2203{
2204	struct mmc_host *host =
2205		container_of(work, struct mmc_host, detect.work);
2206	int i;
2207
2208	if (host->rescan_disable)
2209		return;
2210
2211	/* If there is a non-removable card registered, only scan once */
2212	if (!mmc_card_is_removable(host) && host->rescan_entered)
2213		return;
2214	host->rescan_entered = 1;
2215
2216	if (host->trigger_card_event && host->ops->card_event) {
2217		mmc_claim_host(host);
2218		host->ops->card_event(host);
2219		mmc_release_host(host);
2220		host->trigger_card_event = false;
2221	}
2222
2223	/* Verify a registered card to be functional, else remove it. */
2224	if (host->bus_ops)
 
 
 
 
2225		host->bus_ops->detect(host);
2226
2227	host->detect_change = 0;
2228
2229	/* if there still is a card present, stop here */
2230	if (host->bus_ops != NULL)
2231		goto out;
 
 
 
2232
2233	mmc_claim_host(host);
2234	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2235			host->ops->get_cd(host) == 0) {
2236		mmc_power_off(host);
2237		mmc_release_host(host);
2238		goto out;
2239	}
2240
2241	/* If an SD express card is present, then leave it as is. */
2242	if (mmc_card_sd_express(host)) {
 
 
 
 
 
 
 
2243		mmc_release_host(host);
2244		goto out;
2245	}
2246
 
2247	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2248		unsigned int freq = freqs[i];
2249		if (freq > host->f_max) {
2250			if (i + 1 < ARRAY_SIZE(freqs))
2251				continue;
2252			freq = host->f_max;
2253		}
2254		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2255			break;
2256		if (freqs[i] <= host->f_min)
2257			break;
2258	}
2259
2260	/*
2261	 * Ignore the command timeout errors observed during
2262	 * the card init as those are excepted.
2263	 */
2264	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2265	mmc_release_host(host);
2266
2267 out:
2268	if (host->caps & MMC_CAP_NEEDS_POLL)
2269		mmc_schedule_delayed_work(&host->detect, HZ);
2270}
2271
2272void mmc_start_host(struct mmc_host *host)
2273{
2274	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2275	host->rescan_disable = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276
2277	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2278		mmc_claim_host(host);
2279		mmc_power_up(host, host->ocr_avail);
 
2280		mmc_release_host(host);
 
 
2281	}
 
 
 
2282
2283	mmc_gpiod_request_cd_irq(host);
2284	_mmc_detect_change(host, 0, false);
2285}
2286
2287void __mmc_stop_host(struct mmc_host *host)
2288{
2289	if (host->slot.cd_irq >= 0) {
2290		mmc_gpio_set_cd_wake(host, false);
2291		disable_irq(host->slot.cd_irq);
 
 
 
 
 
 
 
 
2292	}
2293
2294	host->rescan_disable = 1;
2295	cancel_delayed_work_sync(&host->detect);
 
 
 
 
 
 
2296}
 
2297
2298void mmc_stop_host(struct mmc_host *host)
2299{
2300	__mmc_stop_host(host);
2301
2302	/* clear pm flags now and let card drivers set them as needed */
2303	host->pm_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2304
2305	if (host->bus_ops) {
2306		/* Calling bus_ops->remove() with a claimed host can deadlock */
2307		host->bus_ops->remove(host);
 
 
2308		mmc_claim_host(host);
2309		mmc_detach_bus(host);
2310		mmc_power_off(host);
2311		mmc_release_host(host);
2312		return;
 
 
 
 
 
 
 
 
 
 
 
 
2313	}
2314
2315	mmc_claim_host(host);
2316	mmc_power_off(host);
2317	mmc_release_host(host);
2318}
 
2319
2320static int __init mmc_init(void)
2321{
2322	int ret;
2323
 
 
 
 
2324	ret = mmc_register_bus();
2325	if (ret)
2326		return ret;
2327
2328	ret = mmc_register_host_class();
2329	if (ret)
2330		goto unregister_bus;
2331
2332	ret = sdio_register_bus();
2333	if (ret)
2334		goto unregister_host_class;
2335
2336	return 0;
2337
2338unregister_host_class:
2339	mmc_unregister_host_class();
2340unregister_bus:
2341	mmc_unregister_bus();
 
 
 
2342	return ret;
2343}
2344
2345static void __exit mmc_exit(void)
2346{
2347	sdio_unregister_bus();
2348	mmc_unregister_host_class();
2349	mmc_unregister_bus();
 
2350}
2351
2352subsys_initcall(mmc_init);
2353module_exit(mmc_exit);
2354
2355MODULE_LICENSE("GPL");
v3.5.6
 
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/suspend.h>
  27#include <linux/fault-inject.h>
  28#include <linux/random.h>
 
 
  29
  30#include <linux/mmc/card.h>
  31#include <linux/mmc/host.h>
  32#include <linux/mmc/mmc.h>
  33#include <linux/mmc/sd.h>
 
 
 
 
  34
  35#include "core.h"
 
 
  36#include "bus.h"
  37#include "host.h"
  38#include "sdio_bus.h"
 
  39
  40#include "mmc_ops.h"
  41#include "sd_ops.h"
  42#include "sdio_ops.h"
  43
  44static struct workqueue_struct *workqueue;
 
 
 
  45static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  46
  47/*
  48 * Enabling software CRCs on the data blocks can be a significant (30%)
  49 * performance cost, and for other reasons may not always be desired.
  50 * So we allow it it to be disabled.
  51 */
  52bool use_spi_crc = 1;
  53module_param(use_spi_crc, bool, 0);
  54
  55/*
  56 * We normally treat cards as removed during suspend if they are not
  57 * known to be on a non-removable bus, to avoid the risk of writing
  58 * back data to a different card after resume.  Allow this to be
  59 * overridden if necessary.
  60 */
  61#ifdef CONFIG_MMC_UNSAFE_RESUME
  62bool mmc_assume_removable;
  63#else
  64bool mmc_assume_removable = 1;
  65#endif
  66EXPORT_SYMBOL(mmc_assume_removable);
  67module_param_named(removable, mmc_assume_removable, bool, 0644);
  68MODULE_PARM_DESC(
  69	removable,
  70	"MMC/SD cards are removable and may be removed during suspend");
  71
  72/*
  73 * Internal function. Schedule delayed work in the MMC work queue.
  74 */
  75static int mmc_schedule_delayed_work(struct delayed_work *work,
  76				     unsigned long delay)
  77{
  78	return queue_delayed_work(workqueue, work, delay);
  79}
  80
  81/*
  82 * Internal function. Flush all scheduled work from the MMC work queue.
  83 */
  84static void mmc_flush_scheduled_work(void)
  85{
  86	flush_workqueue(workqueue);
  87}
  88
  89#ifdef CONFIG_FAIL_MMC_REQUEST
  90
  91/*
  92 * Internal function. Inject random data errors.
  93 * If mmc_data is NULL no errors are injected.
  94 */
  95static void mmc_should_fail_request(struct mmc_host *host,
  96				    struct mmc_request *mrq)
  97{
  98	struct mmc_command *cmd = mrq->cmd;
  99	struct mmc_data *data = mrq->data;
 100	static const int data_errors[] = {
 101		-ETIMEDOUT,
 102		-EILSEQ,
 103		-EIO,
 104	};
 105
 106	if (!data)
 107		return;
 108
 109	if (cmd->error || data->error ||
 110	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 111		return;
 112
 113	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
 114	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
 115}
 116
 117#else /* CONFIG_FAIL_MMC_REQUEST */
 118
 119static inline void mmc_should_fail_request(struct mmc_host *host,
 120					   struct mmc_request *mrq)
 121{
 122}
 123
 124#endif /* CONFIG_FAIL_MMC_REQUEST */
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126/**
 127 *	mmc_request_done - finish processing an MMC request
 128 *	@host: MMC host which completed request
 129 *	@mrq: MMC request which request
 130 *
 131 *	MMC drivers should call this function when they have completed
 132 *	their processing of a request.
 133 */
 134void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 135{
 136	struct mmc_command *cmd = mrq->cmd;
 137	int err = cmd->error;
 138
 
 
 
 
 
 
 
 
 139	if (err && cmd->retries && mmc_host_is_spi(host)) {
 140		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 141			cmd->retries = 0;
 142	}
 143
 144	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 145		/*
 146		 * Request starter must handle retries - see
 147		 * mmc_wait_for_req_done().
 148		 */
 149		if (mrq->done)
 150			mrq->done(mrq);
 151	} else {
 
 
 
 
 
 
 
 
 
 152		mmc_should_fail_request(host, mrq);
 153
 154		led_trigger_event(host->led, LED_OFF);
 
 
 
 
 
 
 
 
 
 155
 156		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 157			mmc_hostname(host), cmd->opcode, err,
 158			cmd->resp[0], cmd->resp[1],
 159			cmd->resp[2], cmd->resp[3]);
 160
 161		if (mrq->data) {
 162			pr_debug("%s:     %d bytes transferred: %d\n",
 163				mmc_hostname(host),
 164				mrq->data->bytes_xfered, mrq->data->error);
 165		}
 166
 167		if (mrq->stop) {
 168			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 169				mmc_hostname(host), mrq->stop->opcode,
 170				mrq->stop->error,
 171				mrq->stop->resp[0], mrq->stop->resp[1],
 172				mrq->stop->resp[2], mrq->stop->resp[3]);
 173		}
 174
 175		if (mrq->done)
 176			mrq->done(mrq);
 177
 178		mmc_host_clk_release(host);
 179	}
 
 
 
 
 
 
 180}
 181
 182EXPORT_SYMBOL(mmc_request_done);
 183
 184static void
 185mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 186{
 187#ifdef CONFIG_MMC_DEBUG
 188	unsigned int i, sz;
 189	struct scatterlist *sg;
 190#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 
 
 
 192	if (mrq->sbc) {
 193		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 194			 mmc_hostname(host), mrq->sbc->opcode,
 195			 mrq->sbc->arg, mrq->sbc->flags);
 196	}
 197
 198	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 199		 mmc_hostname(host), mrq->cmd->opcode,
 200		 mrq->cmd->arg, mrq->cmd->flags);
 
 
 
 
 
 201
 202	if (mrq->data) {
 203		pr_debug("%s:     blksz %d blocks %d flags %08x "
 204			"tsac %d ms nsac %d\n",
 205			mmc_hostname(host), mrq->data->blksz,
 206			mrq->data->blocks, mrq->data->flags,
 207			mrq->data->timeout_ns / 1000000,
 208			mrq->data->timeout_clks);
 209	}
 210
 211	if (mrq->stop) {
 212		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 213			 mmc_hostname(host), mrq->stop->opcode,
 214			 mrq->stop->arg, mrq->stop->flags);
 215	}
 
 216
 217	WARN_ON(!host->claimed);
 
 
 
 218
 219	mrq->cmd->error = 0;
 220	mrq->cmd->mrq = mrq;
 
 
 
 
 
 
 
 221	if (mrq->data) {
 222		BUG_ON(mrq->data->blksz > host->max_blk_size);
 223		BUG_ON(mrq->data->blocks > host->max_blk_count);
 224		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 225			host->max_req_size);
 226
 227#ifdef CONFIG_MMC_DEBUG
 228		sz = 0;
 229		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 230			sz += sg->length;
 231		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 232#endif
 233
 234		mrq->cmd->data = mrq->data;
 235		mrq->data->error = 0;
 236		mrq->data->mrq = mrq;
 237		if (mrq->stop) {
 238			mrq->data->stop = mrq->stop;
 239			mrq->stop->error = 0;
 240			mrq->stop->mrq = mrq;
 241		}
 242	}
 243	mmc_host_clk_hold(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244	led_trigger_event(host->led, LED_FULL);
 245	host->ops->request(host, mrq);
 
 
 246}
 
 247
 248static void mmc_wait_done(struct mmc_request *mrq)
 249{
 250	complete(&mrq->completion);
 251}
 252
 
 
 
 
 
 
 
 
 
 
 
 
 253static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 254{
 
 
 
 
 255	init_completion(&mrq->completion);
 256	mrq->done = mmc_wait_done;
 257	if (mmc_card_removed(host->card)) {
 258		mrq->cmd->error = -ENOMEDIUM;
 
 
 
 259		complete(&mrq->completion);
 260		return -ENOMEDIUM;
 261	}
 262	mmc_start_request(host, mrq);
 263	return 0;
 264}
 265
 266static void mmc_wait_for_req_done(struct mmc_host *host,
 267				  struct mmc_request *mrq)
 268{
 269	struct mmc_command *cmd;
 270
 271	while (1) {
 272		wait_for_completion(&mrq->completion);
 273
 274		cmd = mrq->cmd;
 
 275		if (!cmd->error || !cmd->retries ||
 276		    mmc_card_removed(host->card))
 277			break;
 278
 
 
 279		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 280			 mmc_hostname(host), cmd->opcode, cmd->error);
 281		cmd->retries--;
 282		cmd->error = 0;
 283		host->ops->request(host, mrq);
 284	}
 
 
 285}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286
 287/**
 288 *	mmc_pre_req - Prepare for a new request
 289 *	@host: MMC host to prepare command
 290 *	@mrq: MMC request to prepare for
 291 *	@is_first_req: true if there is no previous started request
 292 *                     that may run in parellel to this call, otherwise false
 293 *
 294 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 295 *	host prepare for the new request. Preparation of a request may be
 296 *	performed while another request is running on the host.
 297 */
 298static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 299		 bool is_first_req)
 300{
 301	if (host->ops->pre_req) {
 302		mmc_host_clk_hold(host);
 303		host->ops->pre_req(host, mrq, is_first_req);
 304		mmc_host_clk_release(host);
 305	}
 
 306}
 
 307
 308/**
 309 *	mmc_post_req - Post process a completed request
 310 *	@host: MMC host to post process command
 311 *	@mrq: MMC request to post process for
 312 *	@err: Error, if non zero, clean up any resources made in pre_req
 313 *
 314 *	Let the host post process a completed request. Post processing of
 315 *	a request may be performed while another reuqest is running.
 316 */
 317static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 318			 int err)
 319{
 320	if (host->ops->post_req) {
 321		mmc_host_clk_hold(host);
 322		host->ops->post_req(host, mrq, err);
 323		mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324	}
 
 
 325}
 
 326
 327/**
 328 *	mmc_start_req - start a non-blocking request
 329 *	@host: MMC host to start command
 330 *	@areq: async request to start
 331 *	@error: out parameter returns 0 for success, otherwise non zero
 
 
 
 
 
 
 
 
 
 
 
 
 
 332 *
 333 *	Start a new MMC custom command request for a host.
 334 *	If there is on ongoing async request wait for completion
 335 *	of that request and start the new one and return.
 336 *	Does not wait for the new request to complete.
 337 *
 338 *      Returns the completed request, NULL in case of none completed.
 339 *	Wait for the an ongoing request (previoulsy started) to complete and
 340 *	return the completed request. If there is no ongoing request, NULL
 341 *	is returned without waiting. NULL is not an error condition.
 342 */
 343struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 344				    struct mmc_async_req *areq, int *error)
 345{
 346	int err = 0;
 347	int start_err = 0;
 348	struct mmc_async_req *data = host->areq;
 349
 350	/* Prepare a new request */
 351	if (areq)
 352		mmc_pre_req(host, areq->mrq, !host->areq);
 353
 354	if (host->areq) {
 355		mmc_wait_for_req_done(host, host->areq->mrq);
 356		err = host->areq->err_check(host->card, host->areq);
 357	}
 
 
 
 358
 359	if (!err && areq)
 360		start_err = __mmc_start_req(host, areq->mrq);
 
 
 
 
 361
 362	if (host->areq)
 363		mmc_post_req(host, host->areq->mrq, 0);
 
 
 
 
 
 364
 365	 /* Cancel a prepared request if it was not started. */
 366	if ((err || start_err) && areq)
 367			mmc_post_req(host, areq->mrq, -EINVAL);
 368
 369	if (err)
 370		host->areq = NULL;
 371	else
 372		host->areq = areq;
 373
 374	if (error)
 375		*error = err;
 376	return data;
 377}
 378EXPORT_SYMBOL(mmc_start_req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379
 380/**
 381 *	mmc_wait_for_req - start a request and wait for completion
 382 *	@host: MMC host to start command
 383 *	@mrq: MMC request to start
 384 *
 385 *	Start a new MMC custom command request for a host, and wait
 386 *	for the command to complete. Does not attempt to parse the
 387 *	response.
 
 
 
 388 */
 389void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 390{
 391	__mmc_start_req(host, mrq);
 392	mmc_wait_for_req_done(host, mrq);
 
 
 393}
 394EXPORT_SYMBOL(mmc_wait_for_req);
 395
 396/**
 397 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 398 *	@card: the MMC card associated with the HPI transfer
 399 *
 400 *	Issued High Priority Interrupt, and check for card status
 401 *	util out-of prg-state.
 402 */
 403int mmc_interrupt_hpi(struct mmc_card *card)
 404{
 405	int err;
 406	u32 status;
 407
 408	BUG_ON(!card);
 409
 410	if (!card->ext_csd.hpi_en) {
 411		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 412		return 1;
 413	}
 414
 415	mmc_claim_host(card->host);
 416	err = mmc_send_status(card, &status);
 417	if (err) {
 418		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 419		goto out;
 420	}
 421
 422	/*
 423	 * If the card status is in PRG-state, we can send the HPI command.
 424	 */
 425	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
 426		do {
 427			/*
 428			 * We don't know when the HPI command will finish
 429			 * processing, so we need to resend HPI until out
 430			 * of prg-state, and keep checking the card status
 431			 * with SEND_STATUS.  If a timeout error occurs when
 432			 * sending the HPI command, we are already out of
 433			 * prg-state.
 434			 */
 435			err = mmc_send_hpi_cmd(card, &status);
 436			if (err)
 437				pr_debug("%s: abort HPI (%d error)\n",
 438					 mmc_hostname(card->host), err);
 439
 440			err = mmc_send_status(card, &status);
 441			if (err)
 442				break;
 443		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
 444	} else
 445		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
 446
 447out:
 448	mmc_release_host(card->host);
 449	return err;
 450}
 451EXPORT_SYMBOL(mmc_interrupt_hpi);
 452
 453/**
 454 *	mmc_wait_for_cmd - start a command and wait for completion
 455 *	@host: MMC host to start command
 456 *	@cmd: MMC command to start
 457 *	@retries: maximum number of retries
 458 *
 459 *	Start a new MMC command for a host, and wait for the command
 460 *	to complete.  Return any error that occurred while the command
 461 *	was executing.  Do not attempt to parse the response.
 462 */
 463int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 464{
 465	struct mmc_request mrq = {NULL};
 466
 467	WARN_ON(!host->claimed);
 468
 469	memset(cmd->resp, 0, sizeof(cmd->resp));
 470	cmd->retries = retries;
 471
 472	mrq.cmd = cmd;
 473	cmd->data = NULL;
 474
 475	mmc_wait_for_req(host, &mrq);
 476
 477	return cmd->error;
 478}
 479
 480EXPORT_SYMBOL(mmc_wait_for_cmd);
 481
 482/**
 483 *	mmc_set_data_timeout - set the timeout for a data command
 484 *	@data: data phase for command
 485 *	@card: the MMC card associated with the data transfer
 486 *
 487 *	Computes the data timeout parameters according to the
 488 *	correct algorithm given the card type.
 489 */
 490void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 491{
 492	unsigned int mult;
 493
 494	/*
 495	 * SDIO cards only define an upper 1 s limit on access.
 496	 */
 497	if (mmc_card_sdio(card)) {
 498		data->timeout_ns = 1000000000;
 499		data->timeout_clks = 0;
 500		return;
 501	}
 502
 503	/*
 504	 * SD cards use a 100 multiplier rather than 10
 505	 */
 506	mult = mmc_card_sd(card) ? 100 : 10;
 507
 508	/*
 509	 * Scale up the multiplier (and therefore the timeout) by
 510	 * the r2w factor for writes.
 511	 */
 512	if (data->flags & MMC_DATA_WRITE)
 513		mult <<= card->csd.r2w_factor;
 514
 515	data->timeout_ns = card->csd.tacc_ns * mult;
 516	data->timeout_clks = card->csd.tacc_clks * mult;
 517
 518	/*
 519	 * SD cards also have an upper limit on the timeout.
 520	 */
 521	if (mmc_card_sd(card)) {
 522		unsigned int timeout_us, limit_us;
 523
 524		timeout_us = data->timeout_ns / 1000;
 525		if (mmc_host_clk_rate(card->host))
 526			timeout_us += data->timeout_clks * 1000 /
 527				(mmc_host_clk_rate(card->host) / 1000);
 528
 529		if (data->flags & MMC_DATA_WRITE)
 530			/*
 531			 * The MMC spec "It is strongly recommended
 532			 * for hosts to implement more than 500ms
 533			 * timeout value even if the card indicates
 534			 * the 250ms maximum busy length."  Even the
 535			 * previous value of 300ms is known to be
 536			 * insufficient for some cards.
 537			 */
 538			limit_us = 3000000;
 539		else
 540			limit_us = 100000;
 541
 542		/*
 543		 * SDHC cards always use these fixed values.
 544		 */
 545		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 546			data->timeout_ns = limit_us * 1000;
 547			data->timeout_clks = 0;
 548		}
 
 
 
 
 549	}
 550
 551	/*
 552	 * Some cards require longer data read timeout than indicated in CSD.
 553	 * Address this by setting the read timeout to a "reasonably high"
 554	 * value. For the cards tested, 300ms has proven enough. If necessary,
 555	 * this value can be increased if other problematic cards require this.
 556	 */
 557	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 558		data->timeout_ns = 300000000;
 559		data->timeout_clks = 0;
 560	}
 561
 562	/*
 563	 * Some cards need very high timeouts if driven in SPI mode.
 564	 * The worst observed timeout was 900ms after writing a
 565	 * continuous stream of data until the internal logic
 566	 * overflowed.
 567	 */
 568	if (mmc_host_is_spi(card->host)) {
 569		if (data->flags & MMC_DATA_WRITE) {
 570			if (data->timeout_ns < 1000000000)
 571				data->timeout_ns = 1000000000;	/* 1s */
 572		} else {
 573			if (data->timeout_ns < 100000000)
 574				data->timeout_ns =  100000000;	/* 100ms */
 575		}
 576	}
 577}
 578EXPORT_SYMBOL(mmc_set_data_timeout);
 579
 580/**
 581 *	mmc_align_data_size - pads a transfer size to a more optimal value
 582 *	@card: the MMC card associated with the data transfer
 583 *	@sz: original transfer size
 584 *
 585 *	Pads the original data size with a number of extra bytes in
 586 *	order to avoid controller bugs and/or performance hits
 587 *	(e.g. some controllers revert to PIO for certain sizes).
 588 *
 589 *	Returns the improved size, which might be unmodified.
 590 *
 591 *	Note that this function is only relevant when issuing a
 592 *	single scatter gather entry.
 593 */
 594unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 
 595{
 596	/*
 597	 * FIXME: We don't have a system for the controller to tell
 598	 * the core about its problems yet, so for now we just 32-bit
 599	 * align the size.
 600	 */
 601	sz = ((sz + 3) / 4) * 4;
 602
 603	return sz;
 
 
 
 
 
 
 
 
 
 
 
 604}
 605EXPORT_SYMBOL(mmc_align_data_size);
 606
 607/**
 608 *	__mmc_claim_host - exclusively claim a host
 609 *	@host: mmc host to claim
 
 
 610 *	@abort: whether or not the operation should be aborted
 611 *
 612 *	Claim a host for a set of operations.  If @abort is non null and
 613 *	dereference a non-zero value then this will return prematurely with
 614 *	that non-zero value without acquiring the lock.  Returns zero
 615 *	with the lock held otherwise.
 616 */
 617int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 
 618{
 
 619	DECLARE_WAITQUEUE(wait, current);
 620	unsigned long flags;
 621	int stop;
 
 622
 623	might_sleep();
 624
 625	add_wait_queue(&host->wq, &wait);
 626	spin_lock_irqsave(&host->lock, flags);
 627	while (1) {
 628		set_current_state(TASK_UNINTERRUPTIBLE);
 629		stop = abort ? atomic_read(abort) : 0;
 630		if (stop || !host->claimed || host->claimer == current)
 631			break;
 632		spin_unlock_irqrestore(&host->lock, flags);
 633		schedule();
 634		spin_lock_irqsave(&host->lock, flags);
 635	}
 636	set_current_state(TASK_RUNNING);
 637	if (!stop) {
 638		host->claimed = 1;
 639		host->claimer = current;
 640		host->claim_cnt += 1;
 
 
 641	} else
 642		wake_up(&host->wq);
 643	spin_unlock_irqrestore(&host->lock, flags);
 644	remove_wait_queue(&host->wq, &wait);
 645	if (host->ops->enable && !stop && host->claim_cnt == 1)
 646		host->ops->enable(host);
 
 
 647	return stop;
 648}
 649
 650EXPORT_SYMBOL(__mmc_claim_host);
 651
 652/**
 653 *	mmc_try_claim_host - try exclusively to claim a host
 654 *	@host: mmc host to claim
 655 *
 656 *	Returns %1 if the host is claimed, %0 otherwise.
 657 */
 658int mmc_try_claim_host(struct mmc_host *host)
 659{
 660	int claimed_host = 0;
 661	unsigned long flags;
 662
 663	spin_lock_irqsave(&host->lock, flags);
 664	if (!host->claimed || host->claimer == current) {
 665		host->claimed = 1;
 666		host->claimer = current;
 667		host->claim_cnt += 1;
 668		claimed_host = 1;
 669	}
 670	spin_unlock_irqrestore(&host->lock, flags);
 671	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
 672		host->ops->enable(host);
 673	return claimed_host;
 674}
 675EXPORT_SYMBOL(mmc_try_claim_host);
 676
 677/**
 678 *	mmc_release_host - release a host
 679 *	@host: mmc host to release
 680 *
 681 *	Release a MMC host, allowing others to claim the host
 682 *	for their operations.
 683 */
 684void mmc_release_host(struct mmc_host *host)
 685{
 686	unsigned long flags;
 687
 688	WARN_ON(!host->claimed);
 689
 690	if (host->ops->disable && host->claim_cnt == 1)
 691		host->ops->disable(host);
 692
 693	spin_lock_irqsave(&host->lock, flags);
 694	if (--host->claim_cnt) {
 695		/* Release for nested claim */
 696		spin_unlock_irqrestore(&host->lock, flags);
 697	} else {
 698		host->claimed = 0;
 
 699		host->claimer = NULL;
 700		spin_unlock_irqrestore(&host->lock, flags);
 701		wake_up(&host->wq);
 
 
 
 
 
 702	}
 703}
 704EXPORT_SYMBOL(mmc_release_host);
 705
 706/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707 * Internal function that does the actual ios call to the host driver,
 708 * optionally printing some debug output.
 709 */
 710static inline void mmc_set_ios(struct mmc_host *host)
 711{
 712	struct mmc_ios *ios = &host->ios;
 713
 714	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 715		"width %u timing %u\n",
 716		 mmc_hostname(host), ios->clock, ios->bus_mode,
 717		 ios->power_mode, ios->chip_select, ios->vdd,
 718		 ios->bus_width, ios->timing);
 719
 720	if (ios->clock > 0)
 721		mmc_set_ungated(host);
 722	host->ops->set_ios(host, ios);
 723}
 724
 725/*
 726 * Control chip select pin on a host.
 727 */
 728void mmc_set_chip_select(struct mmc_host *host, int mode)
 729{
 730	mmc_host_clk_hold(host);
 731	host->ios.chip_select = mode;
 732	mmc_set_ios(host);
 733	mmc_host_clk_release(host);
 734}
 735
 736/*
 737 * Sets the host clock to the highest possible frequency that
 738 * is below "hz".
 739 */
 740static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 741{
 742	WARN_ON(hz < host->f_min);
 743
 744	if (hz > host->f_max)
 745		hz = host->f_max;
 746
 747	host->ios.clock = hz;
 748	mmc_set_ios(host);
 749}
 750
 751void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 752{
 753	mmc_host_clk_hold(host);
 754	__mmc_set_clock(host, hz);
 755	mmc_host_clk_release(host);
 756}
 
 
 757
 758#ifdef CONFIG_MMC_CLKGATE
 759/*
 760 * This gates the clock by setting it to 0 Hz.
 761 */
 762void mmc_gate_clock(struct mmc_host *host)
 763{
 764	unsigned long flags;
 765
 766	spin_lock_irqsave(&host->clk_lock, flags);
 767	host->clk_old = host->ios.clock;
 768	host->ios.clock = 0;
 769	host->clk_gated = true;
 770	spin_unlock_irqrestore(&host->clk_lock, flags);
 771	mmc_set_ios(host);
 772}
 773
 774/*
 775 * This restores the clock from gating by using the cached
 776 * clock value.
 777 */
 778void mmc_ungate_clock(struct mmc_host *host)
 779{
 780	/*
 781	 * We should previously have gated the clock, so the clock shall
 782	 * be 0 here! The clock may however be 0 during initialization,
 783	 * when some request operations are performed before setting
 784	 * the frequency. When ungate is requested in that situation
 785	 * we just ignore the call.
 786	 */
 787	if (host->clk_old) {
 788		BUG_ON(host->ios.clock);
 789		/* This call will also set host->clk_gated to false */
 790		__mmc_set_clock(host, host->clk_old);
 791	}
 792}
 793
 794void mmc_set_ungated(struct mmc_host *host)
 795{
 796	unsigned long flags;
 
 
 
 797
 798	/*
 799	 * We've been given a new frequency while the clock is gated,
 800	 * so make sure we regard this as ungating it.
 801	 */
 802	spin_lock_irqsave(&host->clk_lock, flags);
 803	host->clk_gated = false;
 804	spin_unlock_irqrestore(&host->clk_lock, flags);
 805}
 806
 807#else
 808void mmc_set_ungated(struct mmc_host *host)
 809{
 810}
 811#endif
 812
 813/*
 814 * Change the bus mode (open drain/push-pull) of a host.
 815 */
 816void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 817{
 818	mmc_host_clk_hold(host);
 819	host->ios.bus_mode = mode;
 820	mmc_set_ios(host);
 821	mmc_host_clk_release(host);
 822}
 823
 824/*
 825 * Change data bus width of a host.
 826 */
 827void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 828{
 829	mmc_host_clk_hold(host);
 830	host->ios.bus_width = width;
 831	mmc_set_ios(host);
 832	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833}
 834
 835/**
 836 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 837 * @vdd:	voltage (mV)
 838 * @low_bits:	prefer low bits in boundary cases
 839 *
 840 * This function returns the OCR bit number according to the provided @vdd
 841 * value. If conversion is not possible a negative errno value returned.
 842 *
 843 * Depending on the @low_bits flag the function prefers low or high OCR bits
 844 * on boundary voltages. For example,
 845 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
 846 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
 847 *
 848 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
 849 */
 850static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
 851{
 852	const int max_bit = ilog2(MMC_VDD_35_36);
 853	int bit;
 854
 855	if (vdd < 1650 || vdd > 3600)
 856		return -EINVAL;
 857
 858	if (vdd >= 1650 && vdd <= 1950)
 859		return ilog2(MMC_VDD_165_195);
 860
 861	if (low_bits)
 862		vdd -= 1;
 863
 864	/* Base 2000 mV, step 100 mV, bit's base 8. */
 865	bit = (vdd - 2000) / 100 + 8;
 866	if (bit > max_bit)
 867		return max_bit;
 868	return bit;
 869}
 870
 871/**
 872 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
 873 * @vdd_min:	minimum voltage value (mV)
 874 * @vdd_max:	maximum voltage value (mV)
 875 *
 876 * This function returns the OCR mask bits according to the provided @vdd_min
 877 * and @vdd_max values. If conversion is not possible the function returns 0.
 878 *
 879 * Notes wrt boundary cases:
 880 * This function sets the OCR bits for all boundary voltages, for example
 881 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
 882 * MMC_VDD_34_35 mask.
 883 */
 884u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
 885{
 886	u32 mask = 0;
 887
 888	if (vdd_max < vdd_min)
 889		return 0;
 890
 891	/* Prefer high bits for the boundary vdd_max values. */
 892	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
 893	if (vdd_max < 0)
 894		return 0;
 895
 896	/* Prefer low bits for the boundary vdd_min values. */
 897	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
 898	if (vdd_min < 0)
 899		return 0;
 900
 901	/* Fill the mask, from max bit to min bit. */
 902	while (vdd_max >= vdd_min)
 903		mask |= 1 << vdd_max--;
 904
 905	return mask;
 906}
 907EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
 908
 909#ifdef CONFIG_REGULATOR
 910
 911/**
 912 * mmc_regulator_get_ocrmask - return mask of supported voltages
 913 * @supply: regulator to use
 914 *
 915 * This returns either a negative errno, or a mask of voltages that
 916 * can be provided to MMC/SD/SDIO devices using the specified voltage
 917 * regulator.  This would normally be called before registering the
 918 * MMC host adapter.
 919 */
 920int mmc_regulator_get_ocrmask(struct regulator *supply)
 921{
 922	int			result = 0;
 923	int			count;
 924	int			i;
 925
 926	count = regulator_count_voltages(supply);
 927	if (count < 0)
 928		return count;
 929
 930	for (i = 0; i < count; i++) {
 931		int		vdd_uV;
 932		int		vdd_mV;
 933
 934		vdd_uV = regulator_list_voltage(supply, i);
 935		if (vdd_uV <= 0)
 936			continue;
 937
 938		vdd_mV = vdd_uV / 1000;
 939		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
 940	}
 941
 942	return result;
 943}
 944EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
 945
 946/**
 947 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
 948 * @mmc: the host to regulate
 949 * @supply: regulator to use
 950 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
 951 *
 952 * Returns zero on success, else negative errno.
 953 *
 954 * MMC host drivers may use this to enable or disable a regulator using
 955 * a particular supply voltage.  This would normally be called from the
 956 * set_ios() method.
 957 */
 958int mmc_regulator_set_ocr(struct mmc_host *mmc,
 959			struct regulator *supply,
 960			unsigned short vdd_bit)
 961{
 962	int			result = 0;
 963	int			min_uV, max_uV;
 964
 965	if (vdd_bit) {
 966		int		tmp;
 967		int		voltage;
 968
 969		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
 970		 * bits this regulator doesn't quite support ... don't
 971		 * be too picky, most cards and regulators are OK with
 972		 * a 0.1V range goof (it's a small error percentage).
 973		 */
 974		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
 975		if (tmp == 0) {
 976			min_uV = 1650 * 1000;
 977			max_uV = 1950 * 1000;
 978		} else {
 979			min_uV = 1900 * 1000 + tmp * 100 * 1000;
 980			max_uV = min_uV + 100 * 1000;
 981		}
 982
 983		/* avoid needless changes to this voltage; the regulator
 984		 * might not allow this operation
 985		 */
 986		voltage = regulator_get_voltage(supply);
 987
 988		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
 989			min_uV = max_uV = voltage;
 990
 991		if (voltage < 0)
 992			result = voltage;
 993		else if (voltage < min_uV || voltage > max_uV)
 994			result = regulator_set_voltage(supply, min_uV, max_uV);
 995		else
 996			result = 0;
 997
 998		if (result == 0 && !mmc->regulator_enabled) {
 999			result = regulator_enable(supply);
1000			if (!result)
1001				mmc->regulator_enabled = true;
1002		}
1003	} else if (mmc->regulator_enabled) {
1004		result = regulator_disable(supply);
1005		if (result == 0)
1006			mmc->regulator_enabled = false;
1007	}
1008
1009	if (result)
1010		dev_err(mmc_dev(mmc),
1011			"could not set regulator OCR (%d)\n", result);
1012	return result;
1013}
1014EXPORT_SYMBOL(mmc_regulator_set_ocr);
1015
1016#endif /* CONFIG_REGULATOR */
1017
1018/*
1019 * Mask off any voltages we don't support and select
1020 * the lowest voltage
1021 */
1022u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1023{
1024	int bit;
1025
 
 
 
 
 
 
 
 
 
 
1026	ocr &= host->ocr_avail;
 
 
 
 
1027
1028	bit = ffs(ocr);
1029	if (bit) {
1030		bit -= 1;
1031
1032		ocr &= 3 << bit;
1033
1034		mmc_host_clk_hold(host);
1035		host->ios.vdd = bit;
1036		mmc_set_ios(host);
1037		mmc_host_clk_release(host);
1038	} else {
1039		pr_warning("%s: host doesn't support card's voltages\n",
1040				mmc_hostname(host));
1041		ocr = 0;
 
 
 
 
 
 
 
1042	}
1043
1044	return ocr;
1045}
1046
1047int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1048{
1049	struct mmc_command cmd = {0};
1050	int err = 0;
 
 
 
 
 
 
 
 
 
 
1051
1052	BUG_ON(!host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053
1054	/*
1055	 * Send CMD11 only if the request is to switch the card to
1056	 * 1.8V signalling.
1057	 */
1058	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1059		cmd.opcode = SD_SWITCH_VOLTAGE;
1060		cmd.arg = 0;
1061		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062
1063		err = mmc_wait_for_cmd(host, &cmd, 0);
1064		if (err)
1065			return err;
1066
1067		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1068			return -EIO;
 
 
 
 
 
 
1069	}
1070
1071	host->ios.signal_voltage = signal_voltage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	if (host->ops->start_signal_voltage_switch) {
1074		mmc_host_clk_hold(host);
1075		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1076		mmc_host_clk_release(host);
 
1077	}
1078
1079	return err;
1080}
1081
1082/*
1083 * Select timing parameters for host.
1084 */
1085void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1086{
1087	mmc_host_clk_hold(host);
1088	host->ios.timing = timing;
1089	mmc_set_ios(host);
1090	mmc_host_clk_release(host);
1091}
1092
1093/*
1094 * Select appropriate driver type for host.
1095 */
1096void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1097{
1098	mmc_host_clk_hold(host);
1099	host->ios.drv_type = drv_type;
1100	mmc_set_ios(host);
1101	mmc_host_clk_release(host);
1102}
1103
1104static void mmc_poweroff_notify(struct mmc_host *host)
 
1105{
1106	struct mmc_card *card;
1107	unsigned int timeout;
1108	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1109	int err = 0;
1110
1111	card = host->card;
1112	mmc_claim_host(host);
1113
1114	/*
1115	 * Send power notify command only if card
1116	 * is mmc and notify state is powered ON
1117	 */
1118	if (card && mmc_card_mmc(card) &&
1119	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1120
1121		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1122			notify_type = EXT_CSD_POWER_OFF_SHORT;
1123			timeout = card->ext_csd.generic_cmd6_time;
1124			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1125		} else {
1126			notify_type = EXT_CSD_POWER_OFF_LONG;
1127			timeout = card->ext_csd.power_off_longtime;
1128			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1129		}
1130
1131		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1132				 EXT_CSD_POWER_OFF_NOTIFICATION,
1133				 notify_type, timeout);
1134
1135		if (err && err != -EBADMSG)
1136			pr_err("Device failed to respond within %d poweroff "
1137			       "time. Forcefully powering down the device\n",
1138			       timeout);
1139
1140		/* Set the card state to no notification after the poweroff */
1141		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1142	}
1143	mmc_release_host(host);
 
 
 
 
 
 
 
1144}
1145
1146/*
1147 * Apply power to the MMC stack.  This is a two-stage process.
1148 * First, we enable power to the card without the clock running.
1149 * We then wait a bit for the power to stabilise.  Finally,
1150 * enable the bus drivers and clock to the card.
1151 *
1152 * We must _NOT_ enable the clock prior to power stablising.
1153 *
1154 * If a host does all the power sequencing itself, ignore the
1155 * initial MMC_POWER_UP stage.
1156 */
1157static void mmc_power_up(struct mmc_host *host)
1158{
1159	int bit;
1160
1161	if (host->ios.power_mode == MMC_POWER_ON)
1162		return;
1163
1164	mmc_host_clk_hold(host);
1165
1166	/* If ocr is set, we use it */
1167	if (host->ocr)
1168		bit = ffs(host->ocr) - 1;
1169	else
1170		bit = fls(host->ocr_avail) - 1;
1171
1172	host->ios.vdd = bit;
1173	if (mmc_host_is_spi(host))
1174		host->ios.chip_select = MMC_CS_HIGH;
1175	else
1176		host->ios.chip_select = MMC_CS_DONTCARE;
1177	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1178	host->ios.power_mode = MMC_POWER_UP;
1179	host->ios.bus_width = MMC_BUS_WIDTH_1;
1180	host->ios.timing = MMC_TIMING_LEGACY;
1181	mmc_set_ios(host);
1182
1183	/*
1184	 * This delay should be sufficient to allow the power supply
1185	 * to reach the minimum voltage.
1186	 */
1187	mmc_delay(10);
 
 
1188
1189	host->ios.clock = host->f_init;
1190
1191	host->ios.power_mode = MMC_POWER_ON;
1192	mmc_set_ios(host);
1193
1194	/*
1195	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1196	 * time required to reach a stable voltage.
1197	 */
1198	mmc_delay(10);
1199
1200	mmc_host_clk_release(host);
1201}
1202
1203void mmc_power_off(struct mmc_host *host)
1204{
1205	int err = 0;
1206
1207	if (host->ios.power_mode == MMC_POWER_OFF)
1208		return;
1209
1210	mmc_host_clk_hold(host);
1211
1212	host->ios.clock = 0;
1213	host->ios.vdd = 0;
1214
1215	/*
1216	 * For eMMC 4.5 device send AWAKE command before
1217	 * POWER_OFF_NOTIFY command, because in sleep state
1218	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1219	 */
1220	if (host->card && mmc_card_is_sleep(host->card) &&
1221	    host->bus_ops->resume) {
1222		err = host->bus_ops->resume(host);
1223
1224		if (!err)
1225			mmc_poweroff_notify(host);
1226		else
1227			pr_warning("%s: error %d during resume "
1228				   "(continue with poweroff sequence)\n",
1229				   mmc_hostname(host), err);
1230	}
1231
1232	/*
1233	 * Reset ocr mask to be the highest possible voltage supported for
1234	 * this mmc host. This value will be used at next power up.
1235	 */
1236	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1237
1238	if (!mmc_host_is_spi(host)) {
1239		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1240		host->ios.chip_select = MMC_CS_DONTCARE;
1241	}
1242	host->ios.power_mode = MMC_POWER_OFF;
1243	host->ios.bus_width = MMC_BUS_WIDTH_1;
1244	host->ios.timing = MMC_TIMING_LEGACY;
1245	mmc_set_ios(host);
1246
1247	/*
1248	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1249	 * XO-1.5, require a short delay after poweroff before the card
1250	 * can be successfully turned on again.
1251	 */
1252	mmc_delay(1);
1253
1254	mmc_host_clk_release(host);
1255}
1256
1257/*
1258 * Cleanup when the last reference to the bus operator is dropped.
1259 */
1260static void __mmc_release_bus(struct mmc_host *host)
1261{
1262	BUG_ON(!host);
1263	BUG_ON(host->bus_refs);
1264	BUG_ON(!host->bus_dead);
1265
1266	host->bus_ops = NULL;
1267}
1268
1269/*
1270 * Increase reference count of bus operator
1271 */
1272static inline void mmc_bus_get(struct mmc_host *host)
1273{
1274	unsigned long flags;
1275
1276	spin_lock_irqsave(&host->lock, flags);
1277	host->bus_refs++;
1278	spin_unlock_irqrestore(&host->lock, flags);
1279}
1280
1281/*
1282 * Decrease reference count of bus operator and free it if
1283 * it is the last reference.
1284 */
1285static inline void mmc_bus_put(struct mmc_host *host)
1286{
1287	unsigned long flags;
1288
1289	spin_lock_irqsave(&host->lock, flags);
1290	host->bus_refs--;
1291	if ((host->bus_refs == 0) && host->bus_ops)
1292		__mmc_release_bus(host);
1293	spin_unlock_irqrestore(&host->lock, flags);
1294}
1295
1296/*
1297 * Assign a mmc bus handler to a host. Only one bus handler may control a
1298 * host at any given time.
1299 */
1300void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1301{
1302	unsigned long flags;
1303
1304	BUG_ON(!host);
1305	BUG_ON(!ops);
1306
1307	WARN_ON(!host->claimed);
1308
1309	spin_lock_irqsave(&host->lock, flags);
1310
1311	BUG_ON(host->bus_ops);
1312	BUG_ON(host->bus_refs);
1313
1314	host->bus_ops = ops;
1315	host->bus_refs = 1;
1316	host->bus_dead = 0;
1317
1318	spin_unlock_irqrestore(&host->lock, flags);
1319}
1320
1321/*
1322 * Remove the current bus handler from a host.
1323 */
1324void mmc_detach_bus(struct mmc_host *host)
1325{
1326	unsigned long flags;
 
1327
1328	BUG_ON(!host);
 
 
 
 
 
 
 
 
1329
1330	WARN_ON(!host->claimed);
1331	WARN_ON(!host->bus_ops);
1332
1333	spin_lock_irqsave(&host->lock, flags);
1334
1335	host->bus_dead = 1;
1336
1337	spin_unlock_irqrestore(&host->lock, flags);
1338
1339	mmc_bus_put(host);
1340}
1341
1342/**
1343 *	mmc_detect_change - process change of state on a MMC socket
1344 *	@host: host which changed state.
1345 *	@delay: optional delay to wait before detection (jiffies)
1346 *
1347 *	MMC drivers should call this when they detect a card has been
1348 *	inserted or removed. The MMC layer will confirm that any
1349 *	present card is still functional, and initialize any newly
1350 *	inserted.
1351 */
1352void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1353{
1354#ifdef CONFIG_MMC_DEBUG
1355	unsigned long flags;
1356	spin_lock_irqsave(&host->lock, flags);
1357	WARN_ON(host->removed);
1358	spin_unlock_irqrestore(&host->lock, flags);
1359#endif
1360	host->detect_change = 1;
1361	mmc_schedule_delayed_work(&host->detect, delay);
1362}
1363
1364EXPORT_SYMBOL(mmc_detect_change);
1365
1366void mmc_init_erase(struct mmc_card *card)
1367{
1368	unsigned int sz;
1369
1370	if (is_power_of_2(card->erase_size))
1371		card->erase_shift = ffs(card->erase_size) - 1;
1372	else
1373		card->erase_shift = 0;
1374
1375	/*
1376	 * It is possible to erase an arbitrarily large area of an SD or MMC
1377	 * card.  That is not desirable because it can take a long time
1378	 * (minutes) potentially delaying more important I/O, and also the
1379	 * timeout calculations become increasingly hugely over-estimated.
1380	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1381	 * to that size and alignment.
1382	 *
1383	 * For SD cards that define Allocation Unit size, limit erases to one
1384	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1385	 * Erase Size, whether it is switched on or not, limit to that size.
1386	 * Otherwise just have a stab at a good value.  For modern cards it
1387	 * will end up being 4MiB.  Note that if the value is too small, it
1388	 * can end up taking longer to erase.
1389	 */
1390	if (mmc_card_sd(card) && card->ssr.au) {
1391		card->pref_erase = card->ssr.au;
1392		card->erase_shift = ffs(card->ssr.au) - 1;
1393	} else if (card->ext_csd.hc_erase_size) {
1394		card->pref_erase = card->ext_csd.hc_erase_size;
1395	} else {
1396		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1397		if (sz < 128)
1398			card->pref_erase = 512 * 1024 / 512;
1399		else if (sz < 512)
1400			card->pref_erase = 1024 * 1024 / 512;
1401		else if (sz < 1024)
1402			card->pref_erase = 2 * 1024 * 1024 / 512;
1403		else
1404			card->pref_erase = 4 * 1024 * 1024 / 512;
1405		if (card->pref_erase < card->erase_size)
1406			card->pref_erase = card->erase_size;
1407		else {
1408			sz = card->pref_erase % card->erase_size;
1409			if (sz)
1410				card->pref_erase += card->erase_size - sz;
1411		}
1412	}
 
 
 
 
 
 
1413}
1414
1415static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1416				          unsigned int arg, unsigned int qty)
1417{
1418	unsigned int erase_timeout;
1419
1420	if (arg == MMC_DISCARD_ARG ||
1421	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1422		erase_timeout = card->ext_csd.trim_timeout;
1423	} else if (card->ext_csd.erase_group_def & 1) {
1424		/* High Capacity Erase Group Size uses HC timeouts */
1425		if (arg == MMC_TRIM_ARG)
1426			erase_timeout = card->ext_csd.trim_timeout;
1427		else
1428			erase_timeout = card->ext_csd.hc_erase_timeout;
1429	} else {
1430		/* CSD Erase Group Size uses write timeout */
1431		unsigned int mult = (10 << card->csd.r2w_factor);
1432		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1433		unsigned int timeout_us;
1434
1435		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1436		if (card->csd.tacc_ns < 1000000)
1437			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1438		else
1439			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1440
1441		/*
1442		 * ios.clock is only a target.  The real clock rate might be
1443		 * less but not that much less, so fudge it by multiplying by 2.
1444		 */
1445		timeout_clks <<= 1;
1446		timeout_us += (timeout_clks * 1000) /
1447			      (mmc_host_clk_rate(card->host) / 1000);
1448
1449		erase_timeout = timeout_us / 1000;
1450
1451		/*
1452		 * Theoretically, the calculation could underflow so round up
1453		 * to 1ms in that case.
1454		 */
1455		if (!erase_timeout)
1456			erase_timeout = 1;
1457	}
1458
1459	/* Multiplier for secure operations */
1460	if (arg & MMC_SECURE_ARGS) {
1461		if (arg == MMC_SECURE_ERASE_ARG)
1462			erase_timeout *= card->ext_csd.sec_erase_mult;
1463		else
1464			erase_timeout *= card->ext_csd.sec_trim_mult;
1465	}
1466
1467	erase_timeout *= qty;
1468
1469	/*
1470	 * Ensure at least a 1 second timeout for SPI as per
1471	 * 'mmc_set_data_timeout()'
1472	 */
1473	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1474		erase_timeout = 1000;
1475
1476	return erase_timeout;
1477}
1478
1479static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1480					 unsigned int arg,
1481					 unsigned int qty)
1482{
1483	unsigned int erase_timeout;
1484
 
 
 
 
 
 
1485	if (card->ssr.erase_timeout) {
1486		/* Erase timeout specified in SD Status Register (SSR) */
1487		erase_timeout = card->ssr.erase_timeout * qty +
1488				card->ssr.erase_offset;
1489	} else {
1490		/*
1491		 * Erase timeout not specified in SD Status Register (SSR) so
1492		 * use 250ms per write block.
1493		 */
1494		erase_timeout = 250 * qty;
1495	}
1496
1497	/* Must not be less than 1 second */
1498	if (erase_timeout < 1000)
1499		erase_timeout = 1000;
1500
1501	return erase_timeout;
1502}
1503
1504static unsigned int mmc_erase_timeout(struct mmc_card *card,
1505				      unsigned int arg,
1506				      unsigned int qty)
1507{
1508	if (mmc_card_sd(card))
1509		return mmc_sd_erase_timeout(card, arg, qty);
1510	else
1511		return mmc_mmc_erase_timeout(card, arg, qty);
1512}
1513
1514static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1515			unsigned int to, unsigned int arg)
1516{
1517	struct mmc_command cmd = {0};
1518	unsigned int qty = 0;
 
1519	int err;
1520
 
 
1521	/*
1522	 * qty is used to calculate the erase timeout which depends on how many
1523	 * erase groups (or allocation units in SD terminology) are affected.
1524	 * We count erasing part of an erase group as one erase group.
1525	 * For SD, the allocation units are always a power of 2.  For MMC, the
1526	 * erase group size is almost certainly also power of 2, but it does not
1527	 * seem to insist on that in the JEDEC standard, so we fall back to
1528	 * division in that case.  SD may not specify an allocation unit size,
1529	 * in which case the timeout is based on the number of write blocks.
1530	 *
1531	 * Note that the timeout for secure trim 2 will only be correct if the
1532	 * number of erase groups specified is the same as the total of all
1533	 * preceding secure trim 1 commands.  Since the power may have been
1534	 * lost since the secure trim 1 commands occurred, it is generally
1535	 * impossible to calculate the secure trim 2 timeout correctly.
1536	 */
1537	if (card->erase_shift)
1538		qty += ((to >> card->erase_shift) -
1539			(from >> card->erase_shift)) + 1;
1540	else if (mmc_card_sd(card))
1541		qty += to - from + 1;
1542	else
1543		qty += ((to / card->erase_size) -
1544			(from / card->erase_size)) + 1;
1545
1546	if (!mmc_card_blockaddr(card)) {
1547		from <<= 9;
1548		to <<= 9;
1549	}
1550
1551	if (mmc_card_sd(card))
1552		cmd.opcode = SD_ERASE_WR_BLK_START;
1553	else
1554		cmd.opcode = MMC_ERASE_GROUP_START;
1555	cmd.arg = from;
1556	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1557	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1558	if (err) {
1559		pr_err("mmc_erase: group start error %d, "
1560		       "status %#x\n", err, cmd.resp[0]);
1561		err = -EIO;
1562		goto out;
1563	}
1564
1565	memset(&cmd, 0, sizeof(struct mmc_command));
1566	if (mmc_card_sd(card))
1567		cmd.opcode = SD_ERASE_WR_BLK_END;
1568	else
1569		cmd.opcode = MMC_ERASE_GROUP_END;
1570	cmd.arg = to;
1571	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1572	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1573	if (err) {
1574		pr_err("mmc_erase: group end error %d, status %#x\n",
1575		       err, cmd.resp[0]);
1576		err = -EIO;
1577		goto out;
1578	}
1579
1580	memset(&cmd, 0, sizeof(struct mmc_command));
1581	cmd.opcode = MMC_ERASE;
1582	cmd.arg = arg;
1583	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1584	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
 
1585	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1586	if (err) {
1587		pr_err("mmc_erase: erase error %d, status %#x\n",
1588		       err, cmd.resp[0]);
1589		err = -EIO;
1590		goto out;
1591	}
1592
1593	if (mmc_host_is_spi(card->host))
1594		goto out;
1595
1596	do {
1597		memset(&cmd, 0, sizeof(struct mmc_command));
1598		cmd.opcode = MMC_SEND_STATUS;
1599		cmd.arg = card->rca << 16;
1600		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1601		/* Do not retry else we can't see errors */
1602		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1603		if (err || (cmd.resp[0] & 0xFDF92000)) {
1604			pr_err("error %d requesting status %#x\n",
1605				err, cmd.resp[0]);
1606			err = -EIO;
1607			goto out;
1608		}
1609	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1610		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1611out:
 
1612	return err;
1613}
1614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615/**
1616 * mmc_erase - erase sectors.
1617 * @card: card to erase
1618 * @from: first sector to erase
1619 * @nr: number of sectors to erase
1620 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1621 *
1622 * Caller must claim host before calling this function.
1623 */
1624int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1625	      unsigned int arg)
1626{
1627	unsigned int rem, to = from + nr;
 
1628
1629	if (!(card->host->caps & MMC_CAP_ERASE) ||
1630	    !(card->csd.cmdclass & CCC_ERASE))
1631		return -EOPNOTSUPP;
1632
1633	if (!card->erase_size)
1634		return -EOPNOTSUPP;
1635
1636	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1637		return -EOPNOTSUPP;
1638
1639	if ((arg & MMC_SECURE_ARGS) &&
1640	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1641		return -EOPNOTSUPP;
1642
1643	if ((arg & MMC_TRIM_ARGS) &&
1644	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1645		return -EOPNOTSUPP;
1646
1647	if (arg == MMC_SECURE_ERASE_ARG) {
1648		if (from % card->erase_size || nr % card->erase_size)
1649			return -EINVAL;
1650	}
1651
1652	if (arg == MMC_ERASE_ARG) {
1653		rem = from % card->erase_size;
1654		if (rem) {
1655			rem = card->erase_size - rem;
1656			from += rem;
1657			if (nr > rem)
1658				nr -= rem;
1659			else
1660				return 0;
1661		}
1662		rem = nr % card->erase_size;
1663		if (rem)
1664			nr -= rem;
1665	}
1666
1667	if (nr == 0)
1668		return 0;
1669
1670	to = from + nr;
1671
1672	if (to <= from)
1673		return -EINVAL;
1674
1675	/* 'from' and 'to' are inclusive */
1676	to -= 1;
1677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678	return mmc_do_erase(card, from, to, arg);
1679}
1680EXPORT_SYMBOL(mmc_erase);
1681
1682int mmc_can_erase(struct mmc_card *card)
1683{
1684	if ((card->host->caps & MMC_CAP_ERASE) &&
1685	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1686		return 1;
1687	return 0;
1688}
1689EXPORT_SYMBOL(mmc_can_erase);
1690
1691int mmc_can_trim(struct mmc_card *card)
1692{
1693	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
 
1694		return 1;
1695	return 0;
1696}
1697EXPORT_SYMBOL(mmc_can_trim);
1698
1699int mmc_can_discard(struct mmc_card *card)
1700{
1701	/*
1702	 * As there's no way to detect the discard support bit at v4.5
1703	 * use the s/w feature support filed.
1704	 */
1705	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1706		return 1;
1707	return 0;
1708}
1709EXPORT_SYMBOL(mmc_can_discard);
1710
1711int mmc_can_sanitize(struct mmc_card *card)
1712{
1713	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1714		return 0;
1715	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1716		return 1;
1717	return 0;
1718}
1719EXPORT_SYMBOL(mmc_can_sanitize);
1720
1721int mmc_can_secure_erase_trim(struct mmc_card *card)
1722{
1723	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
 
1724		return 1;
1725	return 0;
1726}
1727EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1728
1729int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1730			    unsigned int nr)
1731{
1732	if (!card->erase_size)
1733		return 0;
1734	if (from % card->erase_size || nr % card->erase_size)
1735		return 0;
1736	return 1;
1737}
1738EXPORT_SYMBOL(mmc_erase_group_aligned);
1739
1740static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1741					    unsigned int arg)
1742{
1743	struct mmc_host *host = card->host;
1744	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1745	unsigned int last_timeout = 0;
 
 
1746
1747	if (card->erase_shift)
1748		max_qty = UINT_MAX >> card->erase_shift;
1749	else if (mmc_card_sd(card))
 
1750		max_qty = UINT_MAX;
1751	else
 
1752		max_qty = UINT_MAX / card->erase_size;
 
 
1753
1754	/* Find the largest qty with an OK timeout */
 
 
 
 
 
 
 
 
 
 
 
 
1755	do {
1756		y = 0;
1757		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1758			timeout = mmc_erase_timeout(card, arg, qty + x);
1759			if (timeout > host->max_discard_to)
 
1760				break;
 
1761			if (timeout < last_timeout)
1762				break;
1763			last_timeout = timeout;
1764			y = x;
1765		}
1766		qty += y;
1767	} while (y);
1768
1769	if (!qty)
1770		return 0;
1771
 
 
 
 
 
 
 
 
 
 
1772	if (qty == 1)
1773		return 1;
 
 
1774
1775	/* Convert qty to sectors */
1776	if (card->erase_shift)
1777		max_discard = --qty << card->erase_shift;
1778	else if (mmc_card_sd(card))
1779		max_discard = qty;
1780	else
1781		max_discard = --qty * card->erase_size;
1782
1783	return max_discard;
1784}
1785
1786unsigned int mmc_calc_max_discard(struct mmc_card *card)
1787{
1788	struct mmc_host *host = card->host;
1789	unsigned int max_discard, max_trim;
1790
1791	if (!host->max_discard_to)
1792		return UINT_MAX;
1793
1794	/*
1795	 * Without erase_group_def set, MMC erase timeout depends on clock
1796	 * frequence which can change.  In that case, the best choice is
1797	 * just the preferred erase size.
1798	 */
1799	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1800		return card->pref_erase;
1801
1802	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1803	if (mmc_can_trim(card)) {
1804		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1805		if (max_trim < max_discard)
1806			max_discard = max_trim;
1807	} else if (max_discard < card->erase_size) {
1808		max_discard = 0;
1809	}
1810	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1811		 mmc_hostname(host), max_discard, host->max_discard_to);
 
1812	return max_discard;
1813}
1814EXPORT_SYMBOL(mmc_calc_max_discard);
1815
 
 
 
 
 
 
1816int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1817{
1818	struct mmc_command cmd = {0};
1819
1820	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
 
1821		return 0;
1822
1823	cmd.opcode = MMC_SET_BLOCKLEN;
1824	cmd.arg = blocklen;
1825	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1826	return mmc_wait_for_cmd(card->host, &cmd, 5);
1827}
1828EXPORT_SYMBOL(mmc_set_blocklen);
1829
1830static void mmc_hw_reset_for_init(struct mmc_host *host)
1831{
1832	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
 
 
1833		return;
1834	mmc_host_clk_hold(host);
1835	host->ops->hw_reset(host);
1836	mmc_host_clk_release(host);
1837}
1838
1839int mmc_can_reset(struct mmc_card *card)
 
 
 
 
 
 
 
 
 
 
1840{
1841	u8 rst_n_function;
 
 
 
 
 
 
1842
1843	if (!mmc_card_mmc(card))
1844		return 0;
1845	rst_n_function = card->ext_csd.rst_n_function;
1846	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1847		return 0;
1848	return 1;
1849}
1850EXPORT_SYMBOL(mmc_can_reset);
1851
1852static int mmc_do_hw_reset(struct mmc_host *host, int check)
1853{
1854	struct mmc_card *card = host->card;
 
1855
1856	if (!host->bus_ops->power_restore)
1857		return -EOPNOTSUPP;
1858
1859	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1860		return -EOPNOTSUPP;
 
 
1861
1862	if (!card)
1863		return -EINVAL;
1864
1865	if (!mmc_can_reset(card))
1866		return -EOPNOTSUPP;
1867
1868	mmc_host_clk_hold(host);
1869	mmc_set_clock(host, host->f_init);
1870
1871	host->ops->hw_reset(host);
1872
1873	/* If the reset has happened, then a status command will fail */
1874	if (check) {
1875		struct mmc_command cmd = {0};
1876		int err;
1877
1878		cmd.opcode = MMC_SEND_STATUS;
1879		if (!mmc_host_is_spi(card->host))
1880			cmd.arg = card->rca << 16;
1881		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1882		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1883		if (!err) {
1884			mmc_host_clk_release(host);
1885			return -ENOSYS;
1886		}
1887	}
1888
1889	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1890	if (mmc_host_is_spi(host)) {
1891		host->ios.chip_select = MMC_CS_HIGH;
1892		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1893	} else {
1894		host->ios.chip_select = MMC_CS_DONTCARE;
1895		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1896	}
1897	host->ios.bus_width = MMC_BUS_WIDTH_1;
1898	host->ios.timing = MMC_TIMING_LEGACY;
1899	mmc_set_ios(host);
1900
1901	mmc_host_clk_release(host);
1902
1903	return host->bus_ops->power_restore(host);
1904}
1905
1906int mmc_hw_reset(struct mmc_host *host)
1907{
1908	return mmc_do_hw_reset(host, 0);
1909}
1910EXPORT_SYMBOL(mmc_hw_reset);
1911
1912int mmc_hw_reset_check(struct mmc_host *host)
1913{
1914	return mmc_do_hw_reset(host, 1);
1915}
1916EXPORT_SYMBOL(mmc_hw_reset_check);
1917
1918static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1919{
1920	host->f_init = freq;
1921
1922#ifdef CONFIG_MMC_DEBUG
1923	pr_info("%s: %s: trying to init card at %u Hz\n",
1924		mmc_hostname(host), __func__, host->f_init);
1925#endif
1926	mmc_power_up(host);
1927
1928	/*
1929	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1930	 * do a hardware reset if possible.
1931	 */
1932	mmc_hw_reset_for_init(host);
1933
1934	/* Initialization should be done at 3.3 V I/O voltage. */
1935	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1936
1937	/*
1938	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1939	 * if the card is being re-initialized, just send it.  CMD52
1940	 * should be ignored by SD/eMMC cards.
 
1941	 */
1942	sdio_reset(host);
 
 
1943	mmc_go_idle(host);
1944
1945	mmc_send_if_cond(host, host->ocr_avail);
 
 
 
 
 
1946
1947	/* Order's important: probe SDIO, then SD, then MMC */
1948	if (!mmc_attach_sdio(host))
1949		return 0;
1950	if (!mmc_attach_sd(host))
1951		return 0;
1952	if (!mmc_attach_mmc(host))
1953		return 0;
 
 
 
 
 
1954
 
1955	mmc_power_off(host);
1956	return -EIO;
1957}
1958
1959int _mmc_detect_card_removed(struct mmc_host *host)
1960{
1961	int ret;
1962
1963	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1964		return 0;
1965
1966	if (!host->card || mmc_card_removed(host->card))
1967		return 1;
1968
1969	ret = host->bus_ops->alive(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
1970	if (ret) {
1971		mmc_card_set_removed(host->card);
1972		pr_debug("%s: card remove detected\n", mmc_hostname(host));
1973	}
1974
1975	return ret;
1976}
1977
1978int mmc_detect_card_removed(struct mmc_host *host)
1979{
1980	struct mmc_card *card = host->card;
1981	int ret;
1982
1983	WARN_ON(!host->claimed);
1984
1985	if (!card)
1986		return 1;
1987
 
 
 
1988	ret = mmc_card_removed(card);
1989	/*
1990	 * The card will be considered unchanged unless we have been asked to
1991	 * detect a change or host requires polling to provide card detection.
1992	 */
1993	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1994	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
1995		return ret;
1996
1997	host->detect_change = 0;
1998	if (!ret) {
1999		ret = _mmc_detect_card_removed(host);
2000		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2001			/*
2002			 * Schedule a detect work as soon as possible to let a
2003			 * rescan handle the card removal.
2004			 */
2005			cancel_delayed_work(&host->detect);
2006			mmc_detect_change(host, 0);
2007		}
2008	}
2009
2010	return ret;
2011}
2012EXPORT_SYMBOL(mmc_detect_card_removed);
2013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014void mmc_rescan(struct work_struct *work)
2015{
2016	struct mmc_host *host =
2017		container_of(work, struct mmc_host, detect.work);
2018	int i;
2019
2020	if (host->rescan_disable)
2021		return;
2022
2023	mmc_bus_get(host);
 
 
 
 
 
 
 
 
 
 
2024
2025	/*
2026	 * if there is a _removable_ card registered, check whether it is
2027	 * still present
2028	 */
2029	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2030	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2031		host->bus_ops->detect(host);
2032
2033	host->detect_change = 0;
2034
2035	/*
2036	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2037	 * the card is no longer present.
2038	 */
2039	mmc_bus_put(host);
2040	mmc_bus_get(host);
2041
2042	/* if there still is a card present, stop here */
2043	if (host->bus_ops != NULL) {
2044		mmc_bus_put(host);
 
 
2045		goto out;
2046	}
2047
2048	/*
2049	 * Only we can add a new handler, so it's safe to
2050	 * release the lock here.
2051	 */
2052	mmc_bus_put(host);
2053
2054	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2055		mmc_claim_host(host);
2056		mmc_power_off(host);
2057		mmc_release_host(host);
2058		goto out;
2059	}
2060
2061	mmc_claim_host(host);
2062	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2063		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
 
 
 
 
 
 
2064			break;
2065		if (freqs[i] <= host->f_min)
2066			break;
2067	}
 
 
 
 
 
 
2068	mmc_release_host(host);
2069
2070 out:
2071	if (host->caps & MMC_CAP_NEEDS_POLL)
2072		mmc_schedule_delayed_work(&host->detect, HZ);
2073}
2074
2075void mmc_start_host(struct mmc_host *host)
2076{
2077	host->f_init = max(freqs[0], host->f_min);
2078	mmc_power_up(host);
2079	mmc_detect_change(host, 0);
2080}
2081
2082void mmc_stop_host(struct mmc_host *host)
2083{
2084#ifdef CONFIG_MMC_DEBUG
2085	unsigned long flags;
2086	spin_lock_irqsave(&host->lock, flags);
2087	host->removed = 1;
2088	spin_unlock_irqrestore(&host->lock, flags);
2089#endif
2090
2091	cancel_delayed_work_sync(&host->detect);
2092	mmc_flush_scheduled_work();
2093
2094	/* clear pm flags now and let card drivers set them as needed */
2095	host->pm_flags = 0;
2096
2097	mmc_bus_get(host);
2098	if (host->bus_ops && !host->bus_dead) {
2099		/* Calling bus_ops->remove() with a claimed host can deadlock */
2100		if (host->bus_ops->remove)
2101			host->bus_ops->remove(host);
2102
 
2103		mmc_claim_host(host);
2104		mmc_detach_bus(host);
2105		mmc_power_off(host);
2106		mmc_release_host(host);
2107		mmc_bus_put(host);
2108		return;
2109	}
2110	mmc_bus_put(host);
2111
2112	BUG_ON(host->card);
2113
2114	mmc_power_off(host);
 
2115}
2116
2117int mmc_power_save_host(struct mmc_host *host)
2118{
2119	int ret = 0;
2120
2121#ifdef CONFIG_MMC_DEBUG
2122	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2123#endif
2124
2125	mmc_bus_get(host);
2126
2127	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2128		mmc_bus_put(host);
2129		return -EINVAL;
2130	}
2131
2132	if (host->bus_ops->power_save)
2133		ret = host->bus_ops->power_save(host);
2134
2135	mmc_bus_put(host);
2136
2137	mmc_power_off(host);
2138
2139	return ret;
2140}
2141EXPORT_SYMBOL(mmc_power_save_host);
2142
2143int mmc_power_restore_host(struct mmc_host *host)
2144{
2145	int ret;
2146
2147#ifdef CONFIG_MMC_DEBUG
2148	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2149#endif
2150
2151	mmc_bus_get(host);
2152
2153	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2154		mmc_bus_put(host);
2155		return -EINVAL;
2156	}
2157
2158	mmc_power_up(host);
2159	ret = host->bus_ops->power_restore(host);
2160
2161	mmc_bus_put(host);
2162
2163	return ret;
2164}
2165EXPORT_SYMBOL(mmc_power_restore_host);
2166
2167int mmc_card_awake(struct mmc_host *host)
2168{
2169	int err = -ENOSYS;
2170
2171	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2172		return 0;
2173
2174	mmc_bus_get(host);
2175
2176	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2177		err = host->bus_ops->awake(host);
2178
2179	mmc_bus_put(host);
2180
2181	return err;
2182}
2183EXPORT_SYMBOL(mmc_card_awake);
2184
2185int mmc_card_sleep(struct mmc_host *host)
2186{
2187	int err = -ENOSYS;
2188
2189	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2190		return 0;
2191
2192	mmc_bus_get(host);
2193
2194	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2195		err = host->bus_ops->sleep(host);
2196
2197	mmc_bus_put(host);
2198
2199	return err;
2200}
2201EXPORT_SYMBOL(mmc_card_sleep);
2202
2203int mmc_card_can_sleep(struct mmc_host *host)
2204{
2205	struct mmc_card *card = host->card;
2206
2207	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2208		return 1;
2209	return 0;
2210}
2211EXPORT_SYMBOL(mmc_card_can_sleep);
2212
2213/*
2214 * Flush the cache to the non-volatile storage.
2215 */
2216int mmc_flush_cache(struct mmc_card *card)
2217{
2218	struct mmc_host *host = card->host;
2219	int err = 0;
2220
2221	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2222		return err;
2223
2224	if (mmc_card_mmc(card) &&
2225			(card->ext_csd.cache_size > 0) &&
2226			(card->ext_csd.cache_ctrl & 1)) {
2227		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2228				EXT_CSD_FLUSH_CACHE, 1, 0);
2229		if (err)
2230			pr_err("%s: cache flush error %d\n",
2231					mmc_hostname(card->host), err);
2232	}
2233
2234	return err;
2235}
2236EXPORT_SYMBOL(mmc_flush_cache);
2237
2238/*
2239 * Turn the cache ON/OFF.
2240 * Turning the cache OFF shall trigger flushing of the data
2241 * to the non-volatile storage.
2242 */
2243int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2244{
2245	struct mmc_card *card = host->card;
2246	unsigned int timeout;
2247	int err = 0;
2248
2249	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2250			mmc_card_is_removable(host))
2251		return err;
2252
2253	mmc_claim_host(host);
2254	if (card && mmc_card_mmc(card) &&
2255			(card->ext_csd.cache_size > 0)) {
2256		enable = !!enable;
2257
2258		if (card->ext_csd.cache_ctrl ^ enable) {
2259			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2260			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2261					EXT_CSD_CACHE_CTRL, enable, timeout);
2262			if (err)
2263				pr_err("%s: cache %s error %d\n",
2264						mmc_hostname(card->host),
2265						enable ? "on" : "off",
2266						err);
2267			else
2268				card->ext_csd.cache_ctrl = enable;
2269		}
2270	}
2271	mmc_release_host(host);
2272
2273	return err;
2274}
2275EXPORT_SYMBOL(mmc_cache_ctrl);
2276
2277#ifdef CONFIG_PM
2278
2279/**
2280 *	mmc_suspend_host - suspend a host
2281 *	@host: mmc host
2282 */
2283int mmc_suspend_host(struct mmc_host *host)
2284{
2285	int err = 0;
2286
2287	cancel_delayed_work(&host->detect);
2288	mmc_flush_scheduled_work();
2289
2290	err = mmc_cache_ctrl(host, 0);
2291	if (err)
2292		goto out;
2293
2294	mmc_bus_get(host);
2295	if (host->bus_ops && !host->bus_dead) {
2296
2297		if (host->bus_ops->suspend)
2298			err = host->bus_ops->suspend(host);
2299
2300		if (err == -ENOSYS || !host->bus_ops->resume) {
2301			/*
2302			 * We simply "remove" the card in this case.
2303			 * It will be redetected on resume.  (Calling
2304			 * bus_ops->remove() with a claimed host can
2305			 * deadlock.)
2306			 */
2307			if (host->bus_ops->remove)
2308				host->bus_ops->remove(host);
2309			mmc_claim_host(host);
2310			mmc_detach_bus(host);
2311			mmc_power_off(host);
2312			mmc_release_host(host);
2313			host->pm_flags = 0;
2314			err = 0;
2315		}
2316	}
2317	mmc_bus_put(host);
2318
2319	if (!err && !mmc_card_keep_power(host))
2320		mmc_power_off(host);
2321
2322out:
2323	return err;
2324}
2325
2326EXPORT_SYMBOL(mmc_suspend_host);
2327
2328/**
2329 *	mmc_resume_host - resume a previously suspended host
2330 *	@host: mmc host
2331 */
2332int mmc_resume_host(struct mmc_host *host)
2333{
2334	int err = 0;
2335
2336	mmc_bus_get(host);
2337	if (host->bus_ops && !host->bus_dead) {
2338		if (!mmc_card_keep_power(host)) {
2339			mmc_power_up(host);
2340			mmc_select_voltage(host, host->ocr);
2341			/*
2342			 * Tell runtime PM core we just powered up the card,
2343			 * since it still believes the card is powered off.
2344			 * Note that currently runtime PM is only enabled
2345			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2346			 */
2347			if (mmc_card_sdio(host->card) &&
2348			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2349				pm_runtime_disable(&host->card->dev);
2350				pm_runtime_set_active(&host->card->dev);
2351				pm_runtime_enable(&host->card->dev);
2352			}
2353		}
2354		BUG_ON(!host->bus_ops->resume);
2355		err = host->bus_ops->resume(host);
2356		if (err) {
2357			pr_warning("%s: error %d during resume "
2358					    "(card was removed?)\n",
2359					    mmc_hostname(host), err);
2360			err = 0;
2361		}
2362	}
2363	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2364	mmc_bus_put(host);
2365
2366	return err;
2367}
2368EXPORT_SYMBOL(mmc_resume_host);
2369
2370/* Do the card removal on suspend if card is assumed removeable
2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372   to sync the card.
2373*/
2374int mmc_pm_notify(struct notifier_block *notify_block,
2375					unsigned long mode, void *unused)
2376{
2377	struct mmc_host *host = container_of(
2378		notify_block, struct mmc_host, pm_notify);
2379	unsigned long flags;
2380
2381
2382	switch (mode) {
2383	case PM_HIBERNATION_PREPARE:
2384	case PM_SUSPEND_PREPARE:
2385
2386		spin_lock_irqsave(&host->lock, flags);
2387		host->rescan_disable = 1;
2388		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2389		spin_unlock_irqrestore(&host->lock, flags);
2390		cancel_delayed_work_sync(&host->detect);
2391
2392		if (!host->bus_ops || host->bus_ops->suspend)
2393			break;
2394
 
2395		/* Calling bus_ops->remove() with a claimed host can deadlock */
2396		if (host->bus_ops->remove)
2397			host->bus_ops->remove(host);
2398
2399		mmc_claim_host(host);
2400		mmc_detach_bus(host);
2401		mmc_power_off(host);
2402		mmc_release_host(host);
2403		host->pm_flags = 0;
2404		break;
2405
2406	case PM_POST_SUSPEND:
2407	case PM_POST_HIBERNATION:
2408	case PM_POST_RESTORE:
2409
2410		spin_lock_irqsave(&host->lock, flags);
2411		host->rescan_disable = 0;
2412		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2413		spin_unlock_irqrestore(&host->lock, flags);
2414		mmc_detect_change(host, 0);
2415
2416	}
2417
2418	return 0;
 
 
2419}
2420#endif
2421
2422static int __init mmc_init(void)
2423{
2424	int ret;
2425
2426	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2427	if (!workqueue)
2428		return -ENOMEM;
2429
2430	ret = mmc_register_bus();
2431	if (ret)
2432		goto destroy_workqueue;
2433
2434	ret = mmc_register_host_class();
2435	if (ret)
2436		goto unregister_bus;
2437
2438	ret = sdio_register_bus();
2439	if (ret)
2440		goto unregister_host_class;
2441
2442	return 0;
2443
2444unregister_host_class:
2445	mmc_unregister_host_class();
2446unregister_bus:
2447	mmc_unregister_bus();
2448destroy_workqueue:
2449	destroy_workqueue(workqueue);
2450
2451	return ret;
2452}
2453
2454static void __exit mmc_exit(void)
2455{
2456	sdio_unregister_bus();
2457	mmc_unregister_host_class();
2458	mmc_unregister_bus();
2459	destroy_workqueue(workqueue);
2460}
2461
2462subsys_initcall(mmc_init);
2463module_exit(mmc_exit);
2464
2465MODULE_LICENSE("GPL");